Mostrar el registro sencillo del ítem

dc.contributor.authorValenzuela, Antonio
dc.contributor.authorBazo, Elena
dc.contributor.authorRica, R.A
dc.contributor.authorAlados-Arboledas, Lucas 
dc.contributor.authorOlmo Reyes, Francisco José 
dc.date.accessioned2023-12-14T09:27:41Z
dc.date.available2023-12-14T09:27:41Z
dc.date.issued2023
dc.identifier.urihttps://hdl.handle.net/10481/86198
dc.description.abstractThe study of the interaction of light with matter upon changing environmental conditions requires new platforms that provide accurate and reliable measurements. One suitable technique for studying such interaction uses electrodynamic traps to levitate micro or nanoparticles in combination with an optical interrogation technique, but improvements and new developments that complement spectroscopic information are necessary. Here, we use a Paul Electrodynamic Trap (PET) coupled to a Double-Cavity Ring Down Spectroscopy (D-CRDS) to measure the extinction cross section of single levitated particles at two different wavelengths (405 and 532 nm). The level of control achieved over the motion and stability is such that the particle can be consecutively placed at the central maximum of two independent TEM00 Gaussian modes of the ring-down cavities. Therefore, we can directly measure the dynamic change of the extinction cross section of a single particle at two different wavelengths. The combination of simulations using Mie theory and experiments demonstrates the potential of this robust and versatile setup applied to 1,2,6-hexanetriol particles. Unlike standard methods, our system provides crucial information of drastic and reversible change in the extinction cross-section of a sodium chloride particle in efflorescence and deliquescence points, indicating changes in solute mass, charge, refractive index, sphericity and size during the dehydration and hydration processes.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovation through projects ELPIS (PID2020-12001-5RB-I00)es_ES
dc.description.sponsorshipJunta de Andalucía Excellence projects ADAPNE (P20-00136)es_ES
dc.description.sponsorshipAEROPRE (P-18-RT-3820)es_ES
dc.description.sponsorshipNANOHYBRID (AFQM-644-UGR20) FEDER Una manera de hacer Europaes_ES
dc.description.sponsorshipEQC2019-006423-Pes_ES
dc.description.sponsorshipthe European Union's Horizon 2020 research and innovation program through project ACTRIS.IMP (grant agreement No 871115)es_ES
dc.description.sponsorshipATMO-ACCESS (grant agreement No 22 101008004)es_ES
dc.description.sponsorshipACTRIS-España (RED2022-134824-E)es_ES
dc.description.sponsorshipUniversity of Granada Plan Propio through Excellence Research Unit Earth Science and Singular Laboratory AGORA (LS2022-1) programs.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_EN
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_EN
dc.subjectsingle levitated particlees_ES
dc.subjectelectrodynamic trapes_ES
dc.subjectcavity ring down spectroscopyes_ES
dc.subjectextinction cross sectiones_ES
dc.subjectelastic scatteringes_ES
dc.subjectclimate changees_ES
dc.titleElectrodynamic single-particle trap integrated into double-cavity ring-down spectroscopy for light extinctiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.jaerosci.2023.106292


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License