Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Sandoval, Daffne C.
dc.contributor.authorDelgado Huertas, Antonio
dc.date.accessioned2020-02-06T11:58:09Z
dc.date.available2020-02-06T11:58:09Z
dc.date.issued2019
dc.identifier.citationLópez‐Sandoval, D. C., Delgado‐Huertas, A., Carrillo‐de‐Albornoz, P., Duarte, C. M., & Agustí, S. (2019). Use of cavity ring‐down spectrometry to quantify 13C‐primary productivity in oligotrophic waters. Limnology and Oceanography: Methods, 17(2), 137-144.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/59494
dc.description.abstractCavity ring-down spectroscopy (CRDS) is a highly sensitive laser technique that allows the analysis of isotopic signals and absolute concentration of individual molecular species in small-volume samples. Here, we describe a protocol to quantify photosynthetic 13C-uptake rates of marine phytoplankton by using the CRDS technique (13C-CRDS-PP). We validated our method by comparing the 13C-PP rates measured between CRDS and isotope ratio mass spectrometry (IRMS) in samples with different carbon content (30–160 μgC). The comparison revealed that 13C-CRDS-PP rates were highly correlated with those obtained by IRMS (Spearman correlation coefficient, ρ = 0.95, p < 0.0001, n = 15), with a mean difference between the two estimates of +- 0.08 mgC m−3 h−1. Moreover, the slope of the relationship between CRDS and IRMS results was not significantly different from 1 (F = 0.03, p = 0.86), and the intercept did not differ from 0 (F = 1.4, p = 0.24), indicating that there was no bias in the CRDS relative to the IRMS-based measurements. A separate analysis also showed that despite the difference in volume and carbon content between samples (40 +- 10 μgC and 160 +- 40 μgC, respectively), the 13C-CRDS-PP technique provides similar results (Mann–Whitney test, U = 30.5, p = 0.90, n = 8). In addition, 13C-CRDS-PP rates measured along the Red Sea (~ 176 mgC m−2 d−1) agreed with 14C-based PP rates previously reported for similar locations. Thus, this study evidenced that the 13C-CRDS-PP method is sensitive enough to quantify carbon fixation rates in oligotrophic regions.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleUse of cavity ring-down spectrometry to quantify 13C-primary productivity in oligotrophic waterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1002/lom3.10305


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España