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Abstract: The analysis of spectral reflectance data is an important tool for obtaining relevant informa-
tion about the mineral composition of objects and has been used for research in chemistry, geology,
biology, archaeology, pharmacy, medicine, anthropology, and other disciplines. In archaeology, the
use of spectroscopic data allows us to characterize and classify artifacts and ecofacts, to analyze
patterns, and to study the exchange of materials, etc., as well as to explain some properties, such as
color or post-depositional processes. The spectroscopic data are of the so-called “big data” type and
must be analyzed using multivariate statistical techniques, usually principal component analysis
and cluster analysis. Although there are different transformations of the raw data, in this paper, we
propose preprocessing by means of an affine transformation. From a mathematical point of view, this
process modifies the values of reflectance for each spectral signature scaling them into a [0, 1] interval
using minimum and maximum values of reflectance, thus highlighting the features of spectral curves.
This method optimizes the characteristics of amplitude and shape, reduces the influence of noise,
and improves results by highlighting relevant features as peaks and valleys that may remain hidden
using the raw data. This methodology has been applied to a case study of prehistoric chert (flint)
artifacts retrieved in archaeological excavations in the Andévalo area located in the Archaeological
Museum of Huelva (Huelva, Andalusia). The use of transformed data considerably improves the
results obtained with raw data, highlighting the peaks, valleys, and the shape of spectral signatures.

Keywords: affine transformation; archaeology; flint (chert); multivariate statistics; pattern recognition;
spectroscopy

MSC: 62H99

1. Introduction

Dolmens are the oldest stone architecture erected by humans to monumentalize their
funerary spaces. They are collective or individual tombs with a trousseau associated
with the megalithic phenomenon from the 5th millennium to the 3rd millennium BC [1],
with permanence and/or reuse reaching up to the 2nd and 1st millennium BC [2–4].
The trousseaus are made up mainly of chert (flint) and, in some places, obsidian, and
other minerals.

Chert is a sedimentary rock made up of 70–99.9% microcrystalline quartz (SiO2),
containing small percentages of water and various associated oxides (Ca, C, Fe, K, Al, and
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Mg) [5,6]. These features allow us to compare different rocks to determine similarities and
differences. Chert from different origins can often be distinguished visually but using only
visual identification per se is inappropriate because samples from the same provenance can
exhibit a high degree of visual diversity [7]. Petrological characterization of chert has been
based mainly on its mineralogical composition, texture, fossil content, and the environment
in which it was formed [8]. At present, reflectance spectroscopy is being used for the
identification and characterization of minerals and rocks since they are non-destructive
techniques at medium cost and allow for quite rapid acquisition of raw data. Nevertheless,
the great amount of data obtained presents great variability and requires the application of
complex methods of mathematical big data analysis [9–11].

In Andalusia, the megalithic phenomenon has great relevance, with a large number of
dolmens used as individual or collective funerary tombs [12]. In this work, we obtained the
spectral signatures of lithic material found inside the excavated dolmens in the Andévalo
region (Figure 1):
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Figure 1. Sites analyzed in the Andévalo region (Andalusia, Spain). (1) El Moro tholos, (2) San
Bartolomé tholos, (3) El Tejar dolmen, and (4) La Zarcita tholos.

A spectral library was created containing the spectral signatures of these artifacts.
The material was analyzed using preprocessing transformation and big data methods to
characterize, classify, establish similarities, and discriminate between chert artifacts. In this
paper, we propose preprocessing by means of an affine transformation.

The interaction between light and matter is a complex process, and, in addition, data
collection is limited by the accuracy of the instrument used, the wavelength range used,
and the distortion caused by noise in the data acquisition. It is usual to use previous
data preprocessing, mainly applying mathematical techniques of smoothing, baseline
removal, and data normalization [13–15]. This transformation uses the specific parameters
Maximum and Minimum of the spectral signature and enhances the values of each sample
by sharpening the shapes and highlighting the peaks and valleys, obtaining important
details that remain masked using raw data. In this work, preprocessing data using the
affine transformation to highlight the amplitudes and shapes of the spectral signatures
is proposed.

2. Materials and Methods

Spectroscopy records the interaction between light and matter, and the study of the
reflected radiation after its interaction with matter is known as reflectance spectroscopy.
Light reflected by a material gives rise to specular reflectance and diffuse reflectance. In
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specular reflectance, the incident rays are reflected without interacting with the sample,
with the incident angle equal to the reflected angle. In diffuse reflectance, part of the
incident rays interacts with the sample components and are absorbed and diffused ac-
cording to the intensity and spectral composition of the radiation, reflecting in different
directions. Only diffuse reflectance is relevant to reflectance spectroscopy. Each sample,
depending on its chemical composition and optical properties, will return a characteristic
reflectance curve called spectral signature as a function of absorption and reflection due to
the sample composition.

The spectra in the visible and near-infrared ranges contain considerable information
about the physical and molecular composition of materials (e.g., flint), as they detect
molecules from the absorbed wavelengths such as water, hydroxyls, phosphates, nitrates,
carbonates, sulfates, and metal oxides and hydroxides [3]. Therefore, infrared spectroscopy
has been proposed as a new technique to detect heat-induced effects within lithic artifacts
and to quantify OH and water ions in archaeological flints.

The siliceous rock quarries linked to the production of specialized flint flakes in
Andalusia are grouped into four large areas [11]: (1) the Pyritic Belt of Huelva with
rhyolites and rhyodacites mainly from the Paleozoic; (2) the Middle Sub-Baetic of External
Areas, centered in Granada province, with flints characteristic of the Upper Jurassic Milanos
Formation; (3) flint quarries in Málaga province and the Campo de Gibraltar Complex
(Cádiz province); and (4) the flint quarries of the Malaver Formation (Ronda, Málaga) from
the Tertiary.

In this study, the samples analyzed are prehistoric lithic artifacts retrieved in archaeo-
logical excavations in the Andévalo area (Huelva, Andalusia). The chert artifacts come from
four locations corresponding to San Bartolomé de la Torre dolmen (SBn◦ with 5 samples),
El Tejar dolmen from Higuera de la Sierra (Tn◦ having 5 samples), La Zarcita dolmen in the
town of Santa Bárbara de Casa (Zn◦ with 15 samples), and the tholos of El Moro in Niebla
(TMn◦ with 1 sample) (Figure 2).
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Figure 2. Some of the lithic tools from the tholos of La Zarcita: (1) Z-132, (2) Z-134, and (3) Z-215.

Reflectance spectra were collected using an Analytical Spectrometer Device (ASD)
Portable Spectroradiometer FieldSpec4STD (Malvern Panalytical, Malvern, UK), which
records the amplitude value of electromagnetic waves between 350 nm and 2500 nm
(spectral range). This spectroradiometer is designed with three channels, and in each
channel, it can distinguish a very small difference in wavelengths (spectral resolution),
with a spectral resolution between 3 nm at 700 nm and 10 nm at 1400 and 2100 nm, with
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a total number of 2151 spectral bands. The measuring interval was 1.4 nm in the spectral
range of 350–1000 nm and 2 nm in the 1001–2500 nm range, using a high-intensity contact
probe A122307 (Analytical Spectral Devices, Inc., Boulder, CO, USA) with a halogen light
source, a measurement surface area equivalent to a circle 2 cm in diameter, and a maximum
specular reflectance of 5%. The white level was calibrated on a Spectralon of 3.62” diameter
(Analytical Spectral Devices, Inc.), providing a nearly 100% reflective Lambertian surface
across the entire spectrum. Dark correction (DCC) was applied to remove the electrical
current generated by thermal electrons and was added to that generated by incoming
photons. Raw data returned are 16-bit numbers corresponding to the output of each
element in the VIS/NIRS detector array and each 2 nm sample of the spectrum to generate
a relative reflectance. This system reduces noise using a spectrum averaging technique
(average of 20 spectra per quantification). Three spectra were acquired for each chert
sample, and their mean was used. According to the ASD manual, the white level was
calibrated after every 25 spectra.

The results obtained in the quarries in the case of Andévalo have been analyzed by
using preprocessing mathematical transformations to analyze spectroscopy data, including
logarithms, standardizations of different types (the most usual one is Z-score), etc. The
affine transformation is based on the use of specific parameters obtained from the spectral
signature of the data used (Maximum and Minimum). This transformation allows enhance-
ment of the values of each sample by sharpening the shapes and highlighting the peaks and
valleys. The scale is [0,1] because spectrometers usually provide the recorded reflectance
values in this interval. Figure 3 shows a graphic diagram of the proposed methodology.
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3. Preprocessing Data

The analysis of spectral data from raw data presents some problems, mainly due
to the characteristics of the interaction process of light and matter, the limitations of the
instruments used, and the distortion produced by noise. However, the use of preprocessing
methods allows us to improve the results and attenuate the influence of noise by applying
mathematical techniques of smoothing, elimination of baseline, scaling, and normaliza-
tion [13–15]. The suitable preprocess transforms the reflectance values, maintaining the
relationships in amplitude and between the shapes, features, and other details and allowing
them to stand out when they would otherwise remain hidden or masked [16].
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Preprocess transformations belong to three basic groups: functional, statistical, and
geometric. Functional transformations are based on applying a function, generally defined
in implicit coordinates, to the spectral signatures. Among the most common functional
transformations, those belonging to the family of logarithmic functions X

′
i = loga(Xi)

and potentials X
′
i = aXi (usually a = e) stand out, although there are some quite complex

functions, such as the sigmoid function X′ = 1−e(−aX)

1+e(−aX) that equalizes the reflectance data
with distortion proportional to the a parameter [17].

Statistical transformations modify the scale of the distribution of a variable to make
comparisons between elements, sets of elements, or different parameters, homogenizing
the units of measurement between variables. Among the most used are the typified Z
or standardized scores from a normal distribution (Zi = Xi−µ

σ ), related to range (X
′
i =

Xi
Xmax−Xmin

), to range 0–1 (X
′
i =

Xi−µ
Xmax−Xmin

), to the maximum magnitude (X
′
i =

Xi
Xmax

), to the

mean (X
′
i = Xi − µ), or to the standard deviation

(
X
′
i =

Xi
σ

)
[18].

A very important class is composed of geometric transformations based on the con-
cepts of Euclidean geometry (adjusted to the Euclid postulates). Among them, affine
geometry stands out as a generalization of Euclidean geometry with properties applicable
in a Minkowski space. These concepts were formalized in the language of Felix Klein’s
Erlangen Program [19,20]. Among the important geometric transformations are the affine
transformations in the R× R vector space

→
q = α

(
A
→
s + b

)
, where A is a real and non-

singular 2 × 2 matrix, b a 2 × 1 real vector, and α a real number. In the case of spectral
curves, these values are simplified since A and B are real numbers, and the standard affine
transformation is expressed by f : [rmin, rmax]→

[
r′min, r′max

]
= [0, 1]

f (x) =
x− rmin

rmax − rmin

providing a min–max normalization (MMN) [17,21]. The classification performance can
hardly be improved by this method [22].

In this work, the affine transformation is proposed in order to simultaneously maintain
the coherence of the original reflectance values (raw data) and the shape of the graphical
representation, highlighting as well the peaks, valleys, and trends of each signature. Raw
data and transformed plots are shown in Figure 4.

Signatures of samples from San Bartolomé are homogeneous in shape with a decreas-
ing trend at the end of the spectrum. The standard affine transformation highlights the
aggrupation of these samples and points out materials with the same diagenetic processes
and, possibly, similar post-depositional alterations of environmental and/or anthropic
origin. However, SB1357 shows a very flat curve with an almost constant reflectance and a
gently increasing trend, making it very difficult to distinguish its shape (Figure 4a). The
preprocessed values highlight a peak at ~530 nm, the maximum of the signature, as well
as a doublet at ~2200 nm. The petrochemical analysis assigns this sample to the group of
rhyolitic rocks in the Odiel river area [23], having differences from the other samples at
550–2500 nm (Figure 4b).

Four samples from El Tejar agree with the general patterns of chert with high re-
flectance. Sample T3874 is similar to SB1357, with a peak at ~530 nm, low reflectance, and
a characteristic double valley shape at ~2200 nm. Both samples can be associated with
crystalline and luminous minerals.

Fifteen lithic artifacts found in the Zarcita dolmen show great variability but maintain
the general shape of signatures of chert. The Z215 sample is very different from the rest,
having a small reflectance range with an absolute maximum at ~550 nm and doublet
absorption at ~2200 nm.

The visual analysis of T3874 and Z215 show similar features even in the visible
spectrum, but the adscription of SB1357 is not clear using the raw data (Figure 5).
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transformation.

Again, the affine transformation highlights important underlying features. Samples
T3894 and Z215 have similar shapes in the VNIR spectrum, while SB1357 has the same
curve only in the 350–550 nm range. The three signatures have a decreasing trend in
1000–1700 nm, but SB1357 is different. These features point out diagenetic processes that
are similar but with some differences at 800–1800 nm, possibly due to large areas of Europe
having been subjected to similar processes in the formation of geological materials during
a specific period, although with local variations.

4. Singular Statistical Parameters: Peaks and Valleys

Rock identification is dependent upon several variables, such as mineral associations,
diagenetic processes and transformations through geologic time, mineral alterations, cur-
rent large- and small-scale morphology, and recent climatic conditions [24]. Some authors
propose a description of spectral curves based on: (1) the position of wavelengths min-
imizing the values of reflectance of absorption bands; (2) the depth, width, area, and
asymmetry of the bands; and (3) the position of the slope changes and inflection points on
the curve [25].

The spectral absorption patterns in the SWIR spectrum provide great homogeneity
with very small coefficients of variation at important flint wavelengths (~1400, ~1900, ~2200,
and ~2350) (Table 1).

Table 1. Statistical parameters of the most prominent absorption patterns in the SWIR range.

~1400 ~1900 ~2200 ~2350

Peak Valley Peak Valley Peak Valley Peak

x 1227.82 1424.66 1653.71 1923.56 2111.30 2245.20 2349.92

sd 87.99 6.08 29.15 1.90 41.21 9.42 13.82

cv % 7.2 0.4 1.5 0.1 1.9 0.4 0.6
Note: x = sample mean; sd = standard deviation; cv % = coefficient of variation.

The last peak (~2350 nm) is a specific diagnostic with a great homogeneity, identified by
the peaks of various cations and anions in the SWIR region, mainly due to carbonates [26].
Moreover, some authors propose the characteristic bands of major absorption in the SWIR
region for the common mineral groups corresponding to carbonates and Mg-OH, as well
as Mg–OH vibration in amphiboles [24,27].

On the other hand, the shape in the visible spectrum of SB1357, T3874, and Z215
stand out from the rest, with a peak at ~540 nm, having the maximum reflectance in
each signature. This peak is related to ferric and ferrous ions (mainly oxides), silicates,
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sulfates, sulfites, manganese, and chromium ions [26,28]. Other authors propose Fe2
+ chlorites, Ni Chrysoprase, and Cr-diopside [27], as unbound electrons whose atomic
structure and mineral impurities the diagnostic attributes detected [29]. These three samples
possibly correspond to rocks whose main components are serpentine, olivine, or malachite,
along with other components. These common minerals in Western Andalusia have great
reflectance at ~540 nm, with green or greenish colors.

5. Pattern Recognition

The large amount of data (big data) registered by spectroscopy requires the use of
complex statistical methods of multivariate statistical analysis to obtain the possible patterns
(pattern recognition) in the data. These methods include primarily factor analysis (FA),
principal component analysis (PCA), discriminant analysis (DA), principal component
regression (PCR), multiple linear regression (MLR), and partial least squares regression
(PLS). DA and PCA are widely used tools for quantitative analysis. Additionally, CA
(cluster analysis) is another important method that allows us to obtain a data classification
using geometric and statistical methods [3,30].

In this paper, we have applied Principal Component Analysis and Cluster Analysis,
as they are the most reliable methods for our analysis.

5.1. Principal Component Analysis

The essential concept is to consider each signature as a point in multidimensional
vector space with the wavelengths as the dimensions, usually with 1 nm accuracy. Factorial
analysis (FA) provides a new coordinate system constituted by a linear combination of the
original variables, which are called components. The most used algorithm is the principal
components algorithm (PCA), whose components are chosen so that PC1 includes the
greatest variability of the data. Then, PC2 is chosen orthogonal to PC1, including the
maximum remaining variability, and so on.

The PCA method is used with a great number of variables to drastically reduce their
dimensionality in an interpretable way, preserving the greatest part of the information
in the data. Normally, the first principal components involving a large amount of total
variance (usually more than 80%) are taken into account. The remainder of the components
then contains minor characteristics and noise. The importance of each original variable
is measured by the matrix of loadings, and these values indicate the importance of each
original variable in the data set. Usually, the first principal components are considered in
order to study factor structure. Then, the trends underlying the data are drawn in different
bivariate plots using PCAs [31,32]. The main uses of PCAs are exploratory rather than
inferential to detect the underlying trends in the data and, in some cases, to obtain a visual
prior data classification.

The application of exploratory PCAs to the samples from Andévalo shows some
notable trends. Using the first three components, the results are similar in terms of total
variation carried with the raw data (99.2%) or the transformed data (95.2%) (Table 2).

Table 2. Eigenvalues and accumulated variance: a) raw data, and b) transformed data.

Eigenvalues (Raw Data) Eigenvalues (Affine Transformed)

% Var % Cum Var % Var % Cum Var

PC1 89.726 89.726 PC1 55.438 55.438
PC2 7.040 96.766 PC2 21.218 76.657
PC3 2.375 99.141 PC3 18.638 95.294

Raw variables are highly correlated, providing a very large first eigenvalue (size effect)
with explained variance close to 100%. The transformed data show a factorial structure
with three factors that have more defined matrix loadings. Matrix loading determines
which variables are most important when analyzing the variability and is fundamental in
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deciding which minimum values are chosen, with the loadings interpreted using robust
cut-offs in the presence of non-normal distributions [22]. Some authors propose absolute
values ≥ 0.45 as relevant, ≥0.45 to 0.55 as good, and ≥0.63 as very good [33]. Other
methods use resampling techniques, such as jack-knifing or bootstrapping [34,35], with
similar results.

The instrument used is based on the FORS (Fiber Optics Reflectance Spectroscopy)
technique with 2151 variables corresponding to wavelengths of 350–2500 nm, so choosing
only a few factors (components) is quite difficult. We propose choosing continuous wave-
length intervals with no isolated values, corresponding to most of the load factors when
their absolute value is ≥0.55 (Figure 6).
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The factor structure with raw data is dominated by PC1, a “size factor” with loads
greater than 0.8. The other factors have very small loads. Thus, obtaining detailed features
is very difficult. The use of transformed data provides the emergence of a more detailed
factorial structure. The PC1 factor highlights the NIR interval (1400–2500 nm) as one of the
most important features when studying absorption bands of minerals, those being mainly
-OH oxidrile (~1400 nm), H2O (~1900 nm), and Metal-OH ions (~2200 nm) [6]. By separating
the samples, the loads in PC2 show a bipolar factor due to the reflectance in the VIS + NIR
and SWR2 intervals (e.g., SB1357) against high values in the full spectrum (e.g., Z239).

Plot PC1–PC2 shows that important details of diagnostic features are lost with raw
data but transformed data highlight the differences much better, with the visual groups
being more homogeneous and consistent. Thus, with raw data, only factor 1 is relevant, it
being a “size factor”; the other factors do not practically discriminate (Figure 7a). With the
exception of SB1357 and Z215, the transformed data highlight an important relationship
between the samples from San Bartolomé and those at the Zarcita dolmen and also establish
possible graphic associations (Figure 7b):



Mathematics 2022, 10, 4250 10 of 14

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 14 

Figure 7. Plots of PC1–PC2: (a) raw data, and (b) transformed data. 

5.2. Cluster Analysis
Using multivariate geometric and statistical algorithms, cluster analysis is focused 

on classifying objects into significant groups or clusters where there was no prior infor-
mation about cluster membership in predefined groups. The most used clustering tech-
niques are of type SHAN (Sequential Hierarchical Agglomerative Not overlapping), ob-
taining a classification dendrogram [36,37].

The algorithms are based on a previous similarity measure or distance in addition to 
an agglomeration criterion maximizing intragroup similarity and minimizing intergroup 
similarity. The single linkage and the average linkage algorithms are among the most used 
and highlight the Ward, the nearest neighbor. The Euclidean or squared distance is the 
most commonly used similarity measure for quantitative variables. A SHAN clustering is 
computed on the Andévalo samples with squared Euclidean distance as a similarity meas-
ure and Ward’s clustering algorithm (minimum variance) as the clustering algorithm 
[38,39].  

The Ward method is based on the loss of information between each object and the 
average of each cluster in which it is integrated, which is produced in each pass when 
calculating the total sum of the squares of the deviations between each object and the av-
erage of the cluster in which it is integrated. Some authors have found that this provides 
a more optimal classification than other methods, such as minimum distance, maximum 
distance, average distance, or centroid methods [40]. 

The determination of the number of clusters is based on the Elbow Method, which 
looks at the total WSS (Within Sum of Squares) to measure the compactness of the clus-
tering and the goodness of the clustering structure. A curve plots the number of clusters 
versus the WSS measures. The location of an elbow (“knee”) in the plot is considered an 
indicator of the appropriate number of clusters [41,42]. Application of that method to our 
data set provides that the best number of clusters is n = 5 (Figure 8). 

Figure 7. Plots of PC1–PC2: (a) raw data, and (b) transformed data.

5.2. Cluster Analysis

Using multivariate geometric and statistical algorithms, cluster analysis is focused on
classifying objects into significant groups or clusters where there was no prior information
about cluster membership in predefined groups. The most used clustering techniques
are of type SHAN (Sequential Hierarchical Agglomerative Not overlapping), obtaining a
classification dendrogram [36,37].

The algorithms are based on a previous similarity measure or distance in addition to
an agglomeration criterion maximizing intragroup similarity and minimizing intergroup
similarity. The single linkage and the average linkage algorithms are among the most used
and highlight the Ward, the nearest neighbor. The Euclidean or squared distance is the most
commonly used similarity measure for quantitative variables. A SHAN clustering is com-
puted on the Andévalo samples with squared Euclidean distance as a similarity measure
and Ward’s clustering algorithm (minimum variance) as the clustering algorithm [38,39].

The Ward method is based on the loss of information between each object and the
average of each cluster in which it is integrated, which is produced in each pass when
calculating the total sum of the squares of the deviations between each object and the
average of the cluster in which it is integrated. Some authors have found that this provides
a more optimal classification than other methods, such as minimum distance, maximum
distance, average distance, or centroid methods [40].

The determination of the number of clusters is based on the Elbow Method, which
looks at the total WSS (Within Sum of Squares) to measure the compactness of the clustering
and the goodness of the clustering structure. A curve plots the number of clusters versus
the WSS measures. The location of an elbow (“knee”) in the plot is considered an indicator
of the appropriate number of clusters [41,42]. Application of that method to our data set
provides that the best number of clusters is n = 5 (Figure 8).

CLUSTER 1 presents great variability with samples from all the areas studied, pointing
to the fact that the objects are exchanged in the zone. CLUSTER 2 consists almost exclusively
of samples from the tholos La Zarcita in Northern Andévalo, except one sample from the
El Moro, and CLUSTER 3 is formed from samples from El Tejar and La Zarcita, possibly
because they come from quarries with similar characteristics. CLUSTER 4 is composed of
a rhyolite (extrusive igneous rock) very different from flint, which is a rock formed by a
mixture of siliceous minerals from the closest volcanic area to the Andévalo, and points to
exchanges throughout the south of the Iberian Peninsula. Finally, CLUSTER 5 is composed
of two samples with great similarities between them. This group is similar to the rhyolite
in CLUSTER 4, indicating that they come from the same quarry (Figure 5), although with
small variations. Further, SB1357 appears isolated from the others, although it shares
many similar characteristics with T3874 and Z215, maintaining the absorption in the visible
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spectrum but with very high reflectance values. Its singularity comes from the higher
values in the visible spectrum, with a peak at ~535 nm and higher values than in previous
cases. SB1357 is a volcanic siliceous rock mainly composed of rhyolite, very different from
chert. Identification of these three samples corresponds to rocks whose main components
are chlorite, serpentine, olivine, or malachite (peaks in ~535 nm), very abundant in this
so-called “pyritic belt” area of Andalusia, in addition to other components.
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From the Andévalo samples: cluster analysis provides a classification into five clusters
(Figure 9).
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6. Conclusions

Spectroscopic methods allow us to obtain important information about the structure
and composition of minerals in the VNIR range of the electromagnetic spectrum at the level
of atoms, electrons, molecules, and crystal lattices. This information can be used to better
understand the physical and chemical conditions of the mineral formations and explain
various properties, such as color, and analyze the provenance of lithic tools manufactured
by prehistoric people.

The samples analyzed correspond to prehistoric lithic artifacts obtained from archae-
ological excavations in the Andévalo region (Huelva, Andalusia) belonging to the Later
Neolithic and Chalcolithic periods. Spectral signatures were obtained and analyzed, but
their low reflectance and the small range of variation between minimum and maximum in
some samples required previous preprocessing data to highlight their characteristics and
obtain more reliable measurements of some features. Among the large number of existing
transformations, the standard affine transformation has been used to typify data values
and highlight their differences while keeping the shape of the curve. Further, the affine-
transformed data greatly increased the effectiveness of statistical analysis with respect to
the raw data.

The results confirm the circulation of lithic artifacts in the Andévalo region and allow
us to draw conclusions about the places of extraction, the origin of lithic material, patterns
of cultural transmission, circulation, and paths of exchange. Given this, we can deduce that
during the Chalcolithic period, the southwest of Andalusia seems to have formed an area
in which the exchange of information, objects, and, possibly, people took place.

It is important to note that two statistical methodologies, Principal Component Anal-
ysis and Cluster Analysis, have been applied to study the classification of the samples
considering the transformed data, obtaining identical classifications that also coincide with
the origin of the samples.
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for Monitoring Soil Heavy Metals Based on Soil Spectral Features. Soil Water Res. 2015, 10, 218–227. [CrossRef]
14. Fang, Q.; Houng, H.; Zhao, L.; Kukolich, S.; Yin, K.; Wang, C. Visible and Near-Infrared Reflectance Spectroscopy for Investigating

Soil Mineralogy: A Review. J. Spectrosc. 2018, 2018, 3168974. [CrossRef]
15. Angelopoulou, T.; Balafoutis, A.; Zalidis, G.; Bochtis, S. From Laboratory to Proximal Sensing Spectroscopy for Soil Organic

Carbon Estimation. Sustainability 2020, 12, 443. [CrossRef]
16. Sgavetti, M.; Pompilio, L.; Meli, S. Reflectance spectroscopy (0.3–2.5 µm) at various scales for bulk-rock identification. Geosphere

2006, 2, 142–160. [CrossRef]
17. Da Fontoura, L.; Marcontes, R. Shape Classification and Analysis, 2nd ed.; CRC Press, Taylor and Francis Group: Boca Ratón, FL,

USA, 2009.
18. Dodge, Y. The Oxford Dictionary of Statistical Terms, 6th ed.; Oxford University Press: Oxford, UK, 2003.
19. Nomizu, K.; Sasaki, T. Affine Differential Geometry: Geometry of Affine Immersions. (Cambridge Tracts in Mathematics, Series Number

111); Cambridge University Press: Cambridge, UK, 2008.
20. Vargas, J.G. Differential Geometry for Physicists and Mathematicians. Moving Frames and Differential Forms: From Euclid Past Riemann;

World Scientific: New York, NY, USA, 2014.
21. Solomon, C.; Breckon, T. Fundamentals of Digital Image Processing. A Practical Approach with Examples in Matlab; John Wiley & Sons:

Oxford, UK, 2011.
22. Wang, B.; Yan, X.; Jiang, Q. Loading-Based Principal Component Selection for PCA Integrated with Support Vector Data

Description. Ind. Eng. Chem. Res. 2015, 54, 1615–1627. [CrossRef]
23. Donaire, T.; Toscano, M.; Valenzuela, A.; González, M.J.; Pascual, E. Alteración diferencial de las rocas volcánicas ácidas en el

sector de Riotinto, Faja Pirítica Ibérica. Geogaceta 2010, 48, 147–150.
24. Longhi, I.; Sgavetti, M.; Chiari, R.; Mazzoli, C. Spectral analysis and classification of metamorphic rocks from laboratory

reflectance spectra in the 0.4–2.5 mm interval: A tool for hyperspectral data interpretation. Int. J. Remote Sens. 2001, 22, 3763–3782.
[CrossRef]

25. Grove, C.I.; Hook, S.J.; Paylor, E.D. Laboratory Reflectance Spectra of 160 Minerals, 0.4 to 2.0 Micrometers; JPL Publication 92-2; Jet
Propulsion Laboratory: Pasadena, CA, USA, 1992.

26. Gupta, R.P. Remote Sensing Geology, 3rd ed.; Springer: Berlin, Germany, 2018.
27. Hauff, P. An Overview of VIS-NIR-SWIR Field Spectroscopy as Applied to Precious Metals Exploration; Spectral International Inc.:

Arvada, CO, USA, 2008.
28. Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 468–671. [CrossRef]
29. Parish, R.M. Reflectance Spectroscopy as a Chert Sourcing Method. Archaeol. Pol. 2016, 54, 115–128.
30. Esbensen, K.H.; Swarbrick, B. Multivariate Data Analysis: An introduction to Multivariate Analysis, Process Analytical Technology and

Quality by Design, 6th ed.; CAMO Software AS: Oslo, Norway, 2018.
31. Ritz, M.; Vaculíková, L.; Plevová, E. Application of Infrared Spectroscopy and Chemometric Methods to Identification of Selected

Minerals. Acta Geodyn. Geomater. 2011, 8, 47–58.
32. Izenman, A.J. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer Texts in Statistics,

2nd ed.; Springer: New York, NY, USA, 2013.
33. Finch, A.P.; Brazier, J.E.; Mukuria, C.; Bjorner, J.B. An Exploratory Study on Using Principal-Component Analysis and Confir-

matory Factor Analysis to Identify Bolt-On Dimensions: The EQ-5D Case Study. Value Health 2017, 20, 1362–1375. [CrossRef]
[PubMed]

34. Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. Giving Meaningful Interpretation to Ordination Axes: Assessing Loading Signifi-
cance in principal Component Analysis. Ecology 2018, 84, 2347–2363. [CrossRef]

http://doi.org/10.2307/279116
http://doi.org/10.1016/j.jasrep.2021.103041
http://doi.org/10.17221/113/2015-SWR
http://doi.org/10.1155/2018/3168974
http://doi.org/10.3390/su12020443
http://doi.org/10.1130/GES00039.1
http://doi.org/10.1021/ie503618r
http://doi.org/10.1080/01431160010006980
http://doi.org/10.1190/1.1440721
http://doi.org/10.1016/j.jval.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29241896
http://doi.org/10.1890/00-0634


Mathematics 2022, 10, 4250 14 of 14

35. Timmerman, M.E.; Kiers, H.A.L.; Smilde, A.K. Estimating confidence intervals for principal component loadings: A comparison
between the bootstrap and asymptotic results. Br. J. Math. Stat. Psychol. 2007, 60, 295–314. [CrossRef] [PubMed]

36. Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification, 2nd revised ed.; W.H. Freeman:
San Francisco, CA, USA, 1973.

37. Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; Wiley in Probability and Statistics: New York, NY, USA, 2011.
38. King, R.S. Cluster Analysis and Data Mining: An Introduction; Mercury Learning & Information: Vancouver, BC, Canada, 2014.
39. Wierzchon, S.T.; Klopotek, M.A. Modern Algorithms of Cluster Analysis. Studies in Big Data 34; Springer International Publishing

AG: Cham, Switzerland, 2018.
40. Kuiper, F.K.; Fisher, L. A Monte Carlo comparison of six clustering procedures. Biometrics 1975, 31, 777–783. [CrossRef]
41. Raykov, Y.P.; Boukouvalas, A.; Baig, F.; Little, M.A. What to do when K-Means Clustering Fails: A Simple yet Principled

Alternative Algorithm. PLoS ONE 2016, 26, e0162259. [CrossRef] [PubMed]
42. Patil, C.; Baidari, I. Estimating the Optimal Number of Clusters k in a Dataset Using Data Depth. Data Sci. Eng. 2019, 4, 132–140.

[CrossRef]

http://doi.org/10.1348/000711006X109636
http://www.ncbi.nlm.nih.gov/pubmed/17971271
http://doi.org/10.2307/2529565
http://doi.org/10.1371/journal.pone.0162259
http://www.ncbi.nlm.nih.gov/pubmed/27669525
http://doi.org/10.1007/s41019-019-0091-y

	Introduction 
	Materials and Methods 
	Preprocessing Data 
	Singular Statistical Parameters: Peaks and Valleys 
	Pattern Recognition 
	Principal Component Analysis 
	Cluster Analysis 

	Conclusions 
	References

