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Abstract We prove some results on weakly almost square Banach spaces and their relatives. On the
one hand, we discuss weak almost squareness in the setting of Banach function spaces. More precisely,
let (Ω,Σ) be a measurable space, let E be a Banach lattice and let ν : Σ → E+ be a non-atomic
countably additive measure having relatively norm compact range. Then the space L1(ν) is weakly
almost square. This result applies to some abstract Cesàro function spaces. Similar arguments show
that the Lebesgue–Bochner space L1(µ, Y ) is weakly almost square for any Banach space Y and for
any non-atomic finite measure µ. On the other hand, we make some progress on the open question of
whether there exists a locally almost square Banach space, which fails the diameter two property. In this
line, we prove that if X is any Banach space containing a complemented isomorphic copy of c0, then
for every 0 < ε < 1, there exists an equivalent norm | · | on X satisfying the following: (i) every slice of
the unit ball B(X,|·|) has diameter 2; (ii) B(X,|·|) contains non-empty relatively weakly open subsets of

arbitrarily small diameter and (iii) (X, | · |) is (r, s)-SQ for all 0 < r, s < 1−ε
1+ε

.
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1. Introduction

Let (X, ‖ · ‖) be a Banach space. The (closed) unit ball and the unit sphere of X are
denoted by B(X,‖·‖) and S(X,‖·‖), respectively. If the norm does not need to be explicitly
mentioned, we just write BX and SX instead. Given a bounded set C ⊆ X, a slice of C
is a set of the form

S(C, x∗, α) := {x ∈ C : x∗(x) > supx∗(C)− α}

for some x∗ ∈ X∗ (the topological dual of X ) and α> 0. Notice that S(C, x∗, α) is
non-empty and relatively weakly open in C. A Banach space is said to have the slice diam-
eter two property (slice-D2P) (respectively, diameter two property – D2P, strong diameter
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two property – SD2P) if every slice (respectively, non-empty relatively weakly open sub-
set, convex combination of slices) of the unit ball has diameter 2. D2Ps have attracted the
attention of many researchers in the last 20 years (see, e.g., [1, 3, 19, 20, 25]) and have
motivated the appearance of new properties of Banach spaces (almost squareness [2],
symmetric strong D2Ps [24, 34], or diametral D2Ps [23]).
According to Abrahamsen et al. [2], a Banach space (X, ‖ · ‖) is said to be

(i) locally almost square (LASQ) if for every x ∈ S(X,‖·‖), there exists a sequence
(yn)n∈N in B(X,‖·‖) such that ‖x± yn‖ → 1 and ‖yn‖ → 1;

(ii) weakly almost square (WASQ) if for every x ∈ S(X,‖·‖), there exists a weakly null
sequence (yn)n∈N in B(X,‖·‖) such that ‖x± yn‖ → 1 and ‖yn‖ → 1;

(iii) almost square (ASQ) if for every finite set {x1, . . . , xk} ⊆ S(X,‖·‖), there exists a
sequence (yn)n∈N in B(X,‖·‖) such that ‖xi ± yn‖ → 1 for every i ∈ {1, . . . , k} and
‖yn‖ → 1.

All these properties are isometric in nature, that is, they depend on the norm considered.
For instance, the basic example of an ASQ space is c0 with its usual norm, while every
Banach space admits an equivalent norm failing the slice-D2P and so it cannot be LASQ
(see, e.g., [22, Lemma 2.1]).
Even though the previous properties were introduced in [2], LASQ and WASQ spaces

were implicitly used by Kubiak [31] to study the D2P in some Cesàro function spaces.
Apart from being interesting by themselves, almost squareness properties have shown to
be a powerful tool in order to study D2Ps in certain Banach spaces where there is no
good description of the dual space. In this direction, let us mention, for instance, that
in [27, Section 4], it is proved that if X is LASQ (respectively, ASQ), then any ultra-
power XU of X is LASQ (respectively, ASQ), and, in particular, XU has the slice-D2P
(respectively, SD2P). Observe that it is unclear whether XU has the slice-D2P (respec-
tively, SD2P) if X has the slice-D2P (respectively, SD2P). Another context in which these
properties are useful are the projective symmetric tensor products. It is known that if
X is WASQ and has the Dunford-Pettis property (respectively, X is ASQ), then all the
projective symmetric tensor products ⊗̂π,s,NX have the slice-D2P [33, Proposition 3.6]
(respectively, SD2P [21, Theorem 3.3]). Notice that it is unknown whether any of the
D2Ps is stable by taking projective symmetric tensor products.
Among all the almost squareness properties introduced in [2], it is clear that ASQ has

been studied in a more intensive way because it turns out to characterize the containment
of c0. More precisely, a Banach space admits an ASQ equivalent renorming if and only
if it contains an isomorphic copy of c0 (see [2, Lemma 2.6] and [21, Theorem 2.3]). The
contribution to examples of LASQ and WASQ spaces has been more modest. In spite
of that, we find several results in the literature about these properties in the context of
function spaces. On the one hand, Kubiak proved in [31, Lemma 3.3] that the weighted
Cesàro function spaces on an interval are WASQ. In particular, L1[0, 1] is WASQ. On the
other hand, Hardtke proved in [28, Theorem 3.1] that the Köthe–Bochner space E (X ) is
LASQ whenever the Banach space X is LASQ, for any Banach function space E.
The aim of this note is to deepen the understanding of WASQ and LASQ Banach

spaces. The paper is organized as follows.
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In § 2, we focus on certain Banach function spaces, which play an important role in
Banach lattice and operator theory. Namely, we consider the space L1(ν) of all real-valued
functions that are integrable with respect to a countably additive vector measure ν
(defined on a σ-algebra and taking values in a Banach space). Up to Banach lattice
isometries, these spaces represent all order continuous Banach lattices having a weak
order unit (see, e.g., [12, Theorem 8]). Therefore, there are reflexive (hence, having the
Radon–Nikodým property and so failing the slice-D2P) Banach lattices within this class,
like `p and Lp[0, 1] for 1 < p < ∞. For detailed information on the L1 space of a vector
measure, see [38]. More recent references on this topic are [10, 14, 15, 37, 39]. Our main
result in this section is the following:

Theorem 1.1. Let (Ω,Σ) be a measurable space, let E be a Banach lattice and let
ν : Σ → E be a countably additive measure. If ν is non-atomic and the set

R(ν) := {ν(A) : A ∈ Σ}

(the range of ν) is a relatively norm compact subset of E+ := {x ∈ E : x ≥ 0}, then
L1(ν) is WASQ.

Clearly, Theorem 1.1 generalizes the fact that the classical space L1(µ) of a non-atomic
finite measure µ is WASQ. As an application of Theorem 1.1 and some results of Curbera
and Ricker [13], it follows that if E is an order continuous rearrangement invariant
Banach function space on [0, 1], then the abstract Cesàro function space [C, E] is WASQ
(Corollary 2.3). This generalizes the aforementioned result by Kubiak in the case of the
interval [0, 1]. Abstract Cesàro function spaces have been widely studied in the literature
(see, e.g., [6, 7, 13]).
The techniques of Theorem 1.1 allow us to show the Lebesgue–Bochner space

L1(µ, Y ) is WASQ for any Banach space Y whenever µ is a non-atomic finite measure
(Corollary 2.5). This result should be compared with the above mentioned result of [28]
that the property of being LASQ passes from a Banach space Y to the Köthe–Bochner
space E (Y ), for any Banach function space E. We finish § 2 with an example of a WASQ
Banach space of the form L1(ν) as in Theorem 1.1, which is not an L1-space (§ 2.3).
In § 3, we go a bit further in the analysis of the link between almost squareness and

D2Ps. One of the main questions raised in [2] is whether there exists an LASQ Banach
space that is not WASQ. Very recently, Kaasik and Veeorg proved in [29, Section 2] that
the answer is negative and that an example can be found in the class of Lipschitz-free
spaces over complete metric spaces. For such spaces, the properties SD2P, D2P, slice-D2P
and LASQ are equivalent (combine [8, Theorem 1.5] and [26, Theorem 3.1]), so the above
mentioned example satisfies the SD2P. Since the slice-D2P and the D2P are different
properties [19], it is a natural question whether there exists an LASQ Banach space that
fails the D2P. Within the framework of Banach lattices, a stronger version of the LASQ
property that implies the D2P has been considered in [11]. Even though we do not know
the answer to the previous question, we make some progress in this direction. Our main
result in § 3 is the following:

Theorem 1.2. Let X be a Banach space containing a complemented isomorphic copy
of c0. Then for any 0 < ε < 1, there exists an equivalent norm | · | on X such that:
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(i) (X, | · |) has the slice-D2P, that is, every slice of B(X,|·|) has a diameter 2.
(ii) There are non-empty relatively weakly open subsets of B(X,|·|) of arbitrarily small

diameter.
(iii) (X, | · |) is (r, s)-SQ for all 0 < r, s < 1−ε

1+ε in the sense of [9, Section 6], that is, for
every finite set {x1, . . . , xn} ⊆ SX , there exists y ∈ SX satisfying

|rxi ± sy| ≤ 1 for every i ∈ {1, . . . , n}.

Condition (iii) measures somehow how far is the norm from being ASQ. Notice that a
Banach space is ASQ if and only if it is (r, s)-SQ for all 0 < r, s < 1.
Theorem 1.2 applies to any separable Banach space containing an isomorphic copy

of c0, thanks to Sobczyk’s theorem. The proof of Theorem 1.2 is inspired by the renorming
technique developed by Becerra Guerrero et al. in [19, Theorem 2.4], which in turn uses
ideas of the example of Argyros et al. [5] of a closed bounded convex subset of c0 having
the convex point of continuity property but failing the point of continuity property.

Terminology

We follow standard notation as can be found in [4, 17]. We will consider real Banach
spaces only. By an operator we mean a continuous linear map between Banach spaces.
By a subspace of a Banach space we mean a norm closed linear subspace. Let (X, ‖ ·‖) be
a Banach space. Given a set C ⊆ X, we denote by conv(C) (respectively, conv(C))
its convex hull (respectively, closed convex hull). The diameter of C is defined by
diam‖·‖(C) := sup{‖x − x′‖ : x, x′ ∈ C} and will be also denoted by diam(C) if no
confusion arises.
Let (Ω,Σ, µ) be a finite measure space. A Banach space (E, ‖·‖) is said to be a Banach

function space on (Ω,Σ, µ) (or just over µ) if the following conditions hold:

(i) E is a (not necessarily closed) linear subspace of L1(µ);
(ii) if f ∈ L0(µ) and |f | ≤ |g| µ-a.e. for some g ∈ E, then f ∈ E and ‖f‖ ≤ ‖g‖;
(iii) the characteristic function χA of each A ∈ Σ belongs to E.

In this case, E is a Banach lattice when endowed with the µ-a.e. order, and the inclusion
map from E to L1(µ) is an operator. A set H ⊆ E is called uniformly µ-integrable if
for each ε> 0 there is δ > 0 such that ‖fχA‖ ≤ ε for every f ∈ H and for every A ∈ Σ
with µ(A) ≤ δ. Suppose now that E is order continuous. Then every bounded uniformly
µ-integrable subset of E is relatively weakly compact (see, e.g., [38, Proposition 2.39]),
but the converse might fail, in contrast to the case of the classical L1 space of a finite
measure (for which the Dunford–Pettis theorem ensures the equivalence). Moreover, given
f, g ∈ E with f ≤ g, the order interval [f, g] ⊆ E is uniformly µ-integrable (see, e.g.,
[38, Lemma 2.37]) and weakly compact.

2. WASQ Banach function spaces

We begin this section with some preliminaries on the L1 space of a vector measure (see
[38, Chapter 3] for the basics on this topic). Let (Ω,Σ) be a measurable space, let X be

https://doi.org/10.1017/S0013091523000536 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000536


On weakly almost square banach spaces 983

a Banach space and let ν : Σ → X be a countably additive measure. A set A ∈ Σ is said
to be ν-null if ν(B) = 0 for every B ∈ Σ with B ⊆ A. The family of all ν-null sets is
denoted by N (ν). We say that a property holds ν-a.e. if it holds on some A ∈ Σ such
that Ω \ A ∈ N (ν). We say that a set A ∈ Σ \ N (ν) is an atom of ν if for every B ∈ Σ
with B ⊆ A, we have either B ∈ N (ν) or A \ B ∈ N (ν). We say that ν is non-atomic
if it has no atoms. By a Rybakov control measure of ν, we mean a finite measure of the
form µ = |x∗

0 ◦ ν| (the variation of the signed measure x∗
0 ◦ ν : Σ → R) for some x∗

0 ∈ X∗

such that N (µ) = N (ν) (see, e.g., [17, p. 268, Theorem 2] for a proof of the existence of
Rybakov control measures).
A Σ-measurable function f : Ω → R is called ν-integrable if f ∈ L1(|x∗ ◦ ν|) for all

x∗ ∈ X∗ and, for each A ∈ Σ, there is
∫
A
f dν ∈ X such that

x∗
(∫

A

f dν

)
=

∫
A

f d(x∗ ◦ ν) for all x∗ ∈ X∗.

Identifying functions that coincide ν-a.e., the set L1(ν) of all (equivalence classes of)
ν-integrable functions is a Banach lattice with the ν-a.e. order and the norm

‖f‖L1(ν)
:= sup

x∗∈BX∗

∫
Ω

|f | d|x∗ ◦ ν|.

L1(ν) is an order continuous Banach function space over any Rybakov control measure
of ν. The (norm 1) operator Iν : L1(ν) → X defined by

Iν(f) :=

∫
Ω

f dν for all f ∈ L1(ν)

is called the integration operator of ν.
To provide a proof of Theorem 1.1, we need a couple of lemmata. The first one belongs

to the folklore (cf. [4, Lemma 6.3.2] for the case of the unit interval):

Lemma 2.1. Let (Ω,Σ, µ) be a non-atomic finite measure space. Then there is a
sequence (rn)n∈N in L∞(µ) such that:

(i) |rn| = 1 for all n ∈ N; and
(ii) for each f ∈ L1(µ), the sequence (frn)n∈N is weakly null in L1(µ).

A sequence as in the previous lemma will be called a Rademacher-type sequence on
(Ω,Σ, µ).

Lemma 2.2. Let (Ω,Σ) be a measurable space, let X be a Banach space and let ν : Σ →
X be a non-atomic countably additive measure. Let µ be a Rybakov control measure of ν
and let (rn)n∈N be a Rademacher-type sequence on (Ω,Σ, µ). Then for each f ∈ L1(ν),
the sequence (frn)n∈N is weakly null in L1(ν).
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Proof. Fix f ∈ L1(ν) and take any ϕ ∈ L1(ν)
∗. Since L1(ν) is an order continuous

Banach function space over µ, there is g ∈ L1(µ) such that for each h ∈ L1(ν), we have
hg ∈ L1(µ) and

ϕ(h) =

∫
Ω

hg dµ

(see, e.g., [36, p. 29]). In particular, we have fg ∈ L1(µ) and so (fgrn)n∈N is weakly null
in L1(µ). Hence, ϕ(frn) =

∫
Ω
fgrn dµ → 0 as n → ∞. �

Proof of Theorem 1.1 The fact that R(ν) = {ν(A) : A ∈ Σ} ⊆ E+ ensures that

‖h‖L1(ν)
=

∥∥∥∥∫
Ω

|h|dν
∥∥∥∥
E

for all h ∈ L1(ν) (2.1)

(see, e.g., [38, Lemma 3.13]), where ‖ · ‖E denotes the norm of E. Let µ be a Rybakov
control measure of ν and let (rn)n∈N be a Rademacher-type sequence on (Ω,Σ, µ).
Fix f ∈ SL1(ν)

. For each n ∈ N, we have frn ∈ L1(ν) and

‖frn‖L1(ν)

(2.1)
=

∥∥∥∥∫
Ω

|frn|dν
∥∥∥∥
E

=

∥∥∥∥∫
Ω

|f |dν
∥∥∥∥
E

(2.1)
= ‖f‖L1(ν)

= 1.

Moreover, the sequence (frn)n∈N is weakly null in L1(ν) (by Lemma 2.2).
We claim that ‖f±frn‖L1(ν)

→ 1 as n → ∞. Indeed, for each n ∈ N, we have 1±rn ≥ 0
and so

g±n := |f ± frn| = |f |(1± rn) = |f | ± |f |rn.

Therefore, both sequences (g+n )n∈N and (g−n )n∈N converge weakly to |f | in L1(ν) (by
Lemma 2.2 applied to |f |). Hence, (Iν(g

+
n ))n∈N and (Iν(g

−
n ))n∈N converge weakly

to Iν(|f |) in E, where Iν : L1(ν) → E denotes the integration operator of ν. Observe
that each g±n belongs to the order interval K := [0, 2|f |] ⊆ L1(ν), which is uniformly
µ-integrable and weakly compact.
Since R(ν) is relatively norm compact, Iν maps every bounded, uniformly

µ-integrable subset of L1(ν) to a relatively norm compact subset of E (see, e.g., [38,
Proposition 3.56(I)]). Therefore, Iν(K) is norm compact. It follows that both sequences
(Iν(g

+
n ))n∈N and (Iν(g

−
n ))n∈N are norm convergent to Iν(|f |), so

‖f ± frn‖L1(ν)

(2.1)
=

∥∥Iν(g±n )∥∥E → ‖Iν(|f |)‖E
(2.1)
= ‖f‖L1(ν)

= 1

as n → ∞. The proof is completed. �

The rest of this section is devoted to providing applications of Theorem 1.1.
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2.1. Cesàro function spaces

The Cesàro “operator” is the map f 7→ C(f) defined pointwise by C(f)(x) :=
1
x

∫ x

0
f(t) dt for any f ∈ L1[0, 1]. Given a rearrangement invariant Banach function

space (E, ‖ · ‖E) on [0, 1], the Cesàro function space [C, E] is the Banach function space
on [0, 1] consisting of all f ∈ L1[0, 1] for which C(|f |) ∈ E, equipped with the norm
‖f‖[C,E] := ‖C(|f |)‖E .

Corollary 2.3. Let E be an order continuous rearrangement invariant Banach
function space on [0, 1]. Then the Cesàro function space [C, E] is WASQ.

Proof. By [13, Theorem 2.1], the formula ν(A) := C(χA) defines an E+-valued count-
ably additive measure on the Lebesgue σ-algebra of [0, 1] such that ν has the same null sets
as the Lebesgue measure (hence, it is non-atomic) and the range of ν is relatively norm
compact. Since E is order continuous, we have [C, E] = L1(ν) (see [13, Proposition 3.1]).
The conclusion now follows from Theorem 1.1. �

We stress that the weighed Cesàro function space Cp,w on [0, 1] considered in [31],
for 1 ≤ p < ∞ and a measurable positive function w, is equal to [C, E] for E =
Lp((xw(x))

p dx). Thus, the previous corollary generalizes [31, Lemma 3.3] in the case
of [0, 1].

2.2. Köthe–Bochner spaces

Let (E, ‖ · ‖E) be a Banach function space on a finite measure space (Ω,Σ, µ) and let
(Y, ‖ · ‖) be a Banach space. The Köthe–Bochner space E (Y ) is the Banach space of all
(equivalence classes of) strongly µ-measurable functions f : Ω → Y such that ‖f(·)‖ ∈ E,
with the norm ‖f‖E(Y ) := ‖‖f(·)‖‖E . Here ‖f(·)‖ : Ω → R is the µ-measurable function
given by t 7→ ‖f(t)‖.
The following result should be compared with [28, Theorem 3.1], where it is proved

that E (Y ) is LASQ if Y is LASQ.

Theorem 2.4. Let (Ω,Σ) be a measurable space, let X be a Banach lattice and let
ν : Σ → X be a non-atomic countably additive measure such that R(ν) is a relatively
norm compact subset of X+. Let µ be a Rybakov control measure of ν and consider
E := L1(ν) as a Banach function space on (Ω,Σ, µ). Let Y be a Banach space. Then the
Köthe–Bochner space E(Y) is WASQ.

Proof. Let (rn)n∈N be a Rademacher-type sequence on (Ω,Σ, µ) (see Lemma 2.1).
Fix f ∈ SE(Y ). Then frn ∈ SE(Y ) for every n ∈ N, and we claim that (frn)n∈N is

weakly null in E (Y ). Indeed, given any ϕ ∈ E(Y )∗, the order continuity of E allows us
to represent ϕ as a w∗-scalarly µ-measurable function ϕ : Ω → Y ∗ such that ‖ϕ(·)‖ ∈ E∗,
the duality being given by

ϕ(h) =

∫
Ω

〈ϕ, h〉dµ for every h ∈ E(Y )

(see, e.g., [35, Theorem 3.2.4]). Here we denote by ‖ · ‖ the norm of both Y and Y ∗,
while 〈ϕ, h〉 ∈ L1(µ) is defined by t 7→ 〈ϕ(t), h(t)〉. Therefore, we have ϕ(frn) =
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Ω
〈ϕ, f〉rn dµ → 0 as n → ∞. This shows that (frn)n∈N is weakly null in E (Y ), as

claimed.
Moreover, we have ‖f(·)‖ ∈ SE and so

‖f ± frn‖E(Y ) = ‖‖f(·)‖(1± rn)‖L1(ν)
→ 1

as n → ∞, by the proof of Theorem 1.1. �

To the best of our knowledge, the following corollary seems to be new:

Corollary 2.5. Let (Ω,Σ, µ) be a non-atomic finite measure space and let Y be a
Banach space. Then the Lebesgue–Bochner space L1(µ, Y ) is WASQ.

Remark 2.6. The previous result is also interesting from the point of view of the
identification of the space L1(µ, Y ) as the projective tensor product L1(µ)⊗̂πY (see, e.g.,
[17, p. 228, Example 10]). In general, given two Banach spaces X and Y, it is not known
whether X⊗̂πY is WASQ if X is WASQ. It is even open if X⊗̂πY has the D2P if X has
the D2P (see [33, Question 4.2]).

2.3. An example

The aim of this subsection is to give an example of a WASQ Banach function space as in
Theorem 1.1, which is not an L1-space. To do so, we need to introduce some terminology
first. Throughout this subsection, (pn)n∈N is a sequence in (1,∞).
The Nakano sequence space `(pn) is the Banach lattice consisting of all sequences

(an)n∈N ∈ RN such that
∑

n∈N |san|pn < ∞ for some s > 0, equipped with the
coordinate-wise ordering and the norm

‖(an)n∈N‖`(pn)
:= inf

{
t > 0 :

∑
n∈N

∣∣∣an
t

∣∣∣pn ≤ 1

}
.

Given a sequence of Banach spaces (Xn, ‖ · ‖Xn)n∈N, its `(pn)-sum is the Banach space
`(pn)(Xn) consisting of all sequences (xn)n∈N ∈

∏
n∈N Xn, such that (‖xn‖Xn)n∈N ∈ `(pn),

with the norm

‖(xn)n∈N‖`(pn)(Xn) :=
∥∥(‖xn‖Xn)n∈N

∥∥
`(pn)

.

If (pn)n∈N is bounded, then the unit vectors form an unconditional basis of `(pn) (see,
e.g., [41, Theorem 3.5]) and so [2, Proposition 5.2] applies to get:

Corollary 2.7. Suppose that (pn)n∈N is bounded and let (Xn)n∈N be a sequence of
Banach spaces which are WASQ. Then `(pn)(Xn) is WASQ.

We denote by λ the Lebesgue measure on the Lebesgue σ-algebra Σ of [0, 1].
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Proposition 2.8. Let (An)n∈N be a partition of [0, 1] such that An ∈ Σ \N (λ) for all
n ∈ N. Then the map ν : Σ → `(pn) given by

ν(A) :=
(
λ(A ∩An)

)
n∈N for all A ∈ Σ

is a well-defined countably additive measure. Moreover,

(i) ν is non-atomic and R(ν) is relatively norm compact.
(ii) L1(ν) is WASQ.
(iii) For each n ∈ N, let λn be the restriction of λ to the σ-algebra on An given by

Σn := {A ∩An : A ∈ Σ}. If (pn)n∈N is bounded, then the map

Φ : L1(ν) → `(pn)(L1(λn))

given by

Φ(f) :=
(
f |An

)
n∈N for all f ∈ L1(ν)

is a well-defined lattice isometry.

Proof. Define ν̃ : Σ → `1 by

ν̃(A) :=
(
λ(A ∩An)

)
n∈N for all A ∈ Σ.

Note that ν̃ is finitely additive and satisfies ‖ν̃(A)‖`1 = λ(A) for all A ∈ Σ; hence, ν̃
is countably additive. Since the inclusion ι : `1 ↪→ `(pn) is a well-defined operator, the
composition ν = ι ◦ ν̃ : Σ → `(pn) is a countably additive measure.
(i) Clearly, we have N (λ) = N (ν), so ν is non-atomic. The range of any countably

additive Banach space-valued measure is relatively weakly compact (see, e.g., [17, p. 14,
Corollary 7]). Hence, by the Schur property of `1, the set R(ν̃) is relatively norm com-
pact. Alternatively, this can also be deduced from the usual criterion of relative norm
compactness in `1 (see, e.g., [16, p. 6, Exercise 6]). Therefore, R(ν) = ι(R(ν̃)) is relatively
norm compact as well.
(ii) Follows from (i) and Theorem 1.1 (note that ν takes values in `+(pn)).

(iii) Fix f ∈ L1(ν). For each n ∈ N, let πn ∈ `∗(pn) be the nth-coordinate functional.

Since (πn ◦ ν)(A) = λ(A ∩An) for all A ∈ Σ and f ∈ L1(πn ◦ ν), we have f |An ∈ L1(λn)
and

πn (Iν(|f |)) =
∫
[0,1]

|f |d(πn ◦ ν) = ‖f |An‖L1(λn) .

Hence, (‖f |An‖L1(λn))n∈N = Iν(|f |) ∈ `(pn). Moreover, the fact that ν takes values in

`+(pn) ensures that

‖f‖L1(ν)
=

∥∥Iν(|f |)∥∥`(pn)
=

∥∥∥∥(‖f |An‖L1(λn)

)
n∈N

∥∥∥∥
`(pn)
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(see, e.g., [38, Lemma 3.13]). Thus, Φ is a well-defined isometric embedding. Clearly, Φ
is a lattice homomorphism. It remains to check that Φ is surjective.
Let (fn)n∈N ∈ `(pn)(L1(λn)). Define f ∈ L0[0, 1] by declaring f |An := fn for all n ∈ N.

Since (pn)n∈N is bounded, the space `(pn) contains no isomorphic copy of c0 (see, e.g.,
[41, Theorem 3.5]). Therefore, in order to prove that f ∈ L1(ν), it suffices to show that
f ∈ L1(|ϕ ◦ ν|) for every ϕ ∈ `∗(pn) (see, e.g., [30, p. 31, Theorem 1]). It is known that

`∗(pn) = `(qn), where (qn)n∈N is the sequence in (1,∞) defined by 1/pn + 1/qn = 1 for all
n ∈ N, the duality being〈

(an)n∈N, (bn)n∈N
〉
=

∑
n∈N

anbn for all (an)n∈N ∈ `(pn) and (bn)n∈N ∈ `(qn)

(see, e.g., [41, Theorem 4.2]). Take any ϕ = (bn)n∈N ∈ `(qn). Then

(ϕ ◦ ν)(A) =
∑
n∈N

bnλ(A ∩An) for all A ∈ Σ

and so the variation of ϕ ◦ ν is given by

|ϕ ◦ ν|(A) =
∑
n∈N

|bn|λ(A ∩An) for all A ∈ Σ.

Then∫
[0,1]

|f |d|ϕ ◦ ν| =
∑
n∈N

∫
An

|f | d|ϕ ◦ ν|

=
∑
n∈N

|bn|
∫
An

|f | dλ =
∑
n∈N

|bn|‖fn‖L1(λn) < ∞,

because
(
‖fn

∥∥
L1(λn)

)
n∈N

∈ `(pn) and ϕ ∈ `(qn). Thus, f ∈ L1(ν), and we have Φ(f) =

(fn)n∈N. The proof is completed. �

Remark 2.9. Note that each L1(λn) is WASQ (in fact, it is isometrically isomorphic
to L1[0, 1]). Hence, when (pn)n∈N is bounded, the fact that L1(ν) is WASQ can also be
deduced from Corollary 2.7 and Proposition 2.8(iii).

Proposition 2.10. Let ν be as in Proposition 2.8. If (pn)n∈N is bounded and
pn

(pn−1) logn → 0 as n → ∞, then L1(ν) is not an L1-space.

Proof. Since (pn)n∈N is bounded, the space `(pn) has an unconditional basis (see, e.g.,
[41, Theorem 3.5]). The additional condition on (pn)n∈N implies that `(pn) is not isomor-
phic to `1, see [40, Lemma 4]. Therefore, `(pn) cannot be isomorphic to a complemented
subspace of an L1-space (see, e.g., [18, Theorem 3.13]).
Since L1(ν) contains a complemented subspace isomorphic to `(pn) (this can be deduced

from Proposition 2.8(iii)), it follows that L1(ν) is not an L1-space. �
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For instance, the sequence pn := 1 + (log(n + 1))−1/2 satisfies the conditions of
Proposition 2.10.

3. Proof of Theorem 1.2

The aim of this section is to provide a proof of Theorem 1.2. The first step is to prove the
result for the space c0, see Theorem 3.5 below. The proof of this particular case is based
on the renorming technique of [19, Theorem 2.4], where it was shown that every Banach
space containing an isomorphic copy of c0 admits an equivalent norm so that its unit
ball contains non-empty relatively weakly open subsets with arbitrarily small diameter,
but every slice has a diameter 2.
The symbol N<ω stands for the Baire tree, i.e., the set of all finite sequences of positive

integers. The empty sequence is included in N<ω as the root of the tree. The order on
N<ω is defined by declaring that α � β if and only if β extends α. Given α ∈ N<ω and
p ∈ N, we denote by α a p ∈ N<ω the sequence defined by α a p := (α1, . . . , αn, p)
if α = (α1, . . . , αn) or α a p := (p) (a sequence with just one element) if α = ∅. The
following is standard (see, e.g., [19, p. 857]):

Lemma 3.1. There exists a bijection φ : N<ω → N such that:

(i) φ(∅) = 1.
(ii) φ(α) ≤ φ(β) for all α, β ∈ N<ω with α � β.
(iii) φ(α a j) < φ(α a k) for every α ∈ N<ω and for all j, k ∈ N with j< k.

Let c be the subspace of `∞ consisting of all convergent sequences and let c(N<ω) be
the subspace of `∞(N<ω) defined by

c(N<ω) := {x ∈ `∞(N<ω) : x ◦ φ−1 ∈ c}.

Clearly, c(N<ω) and c are isometric; hence, c(N<ω) is isomorphic to c0. We denote by
lim ∈ c(N<ω)∗ the functional defined by

limx := lim
n→∞

x(φ−1(n)) for all x ∈ c(N<ω).

For each α ∈ N<ω, we denote by e∗α ∈ c(N<ω)∗ the functional defined by

e∗α(x) := x(α) for all x ∈ c(N<ω).

Given α ∈ N<ω, we define xα ∈ `∞(N<ω) by the formula

xα(β) :=

{
1 if β � α

−1 otherwise

so that xα ∈ Sc(N<ω) and limxα = −1. Define

A := {xα : α ∈ N<ω} ⊆ Sc(N<ω) and K := conv(A ∪ −A) ⊆ Bc(N<ω).
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We will need the following result (see [19, Proposition 2.2]):

Lemma 3.2. Let n ∈ N and ρ> 0. Define

Wn,ρ :=

{
x ∈ K : e∗∅ai(x) >

2

n
− 1− 2ρ for all i ∈ {1, . . . , n}

and limx < −1 + ρ

}
.

Then Wn,ρ is a non-empty relatively weakly open subset of K and diam(Wn,ρ) → 0 as
n → ∞ and ρ→ 0.

The following lemma is elementary and its proof will be omitted:

Lemma 3.3. Let V be a linear space, let A1, . . . , Am be subsets of V and let v ∈
conv(A1 ∪ · · · ∪ Am). Then there exist vi ∈ conv(Ai) and ci ∈ [0,∞) for i ∈ {1, . . . ,m}
such that

∑m
i=1 civi = v and

∑m
i=1 ci = 1.

Lemma 3.4. Let (X, ‖ · ‖) be a Banach space, let S ⊆ S(X,‖·‖) be a dense set and let
0 < δ < 1. Suppose that for all 0 < r, s < δ and for every finite set {x1, . . . , xn} ⊆ S,
there exists y ∈ S(X,‖·‖) satisfying

‖rxi ± sy‖ ≤ 1 for every i ∈ {1, . . . , n}.

Then (X, ‖ · ‖) is (r, s)-SQ for all 0 < r, s < δ.

Proof. Fix 0 < r, s < δ. Choose r < r′ < δ such that s′ := s r′
r < δ and then choose

θ > 0 such that rθ + r
r′ ≤ 1. Take any finite set {x1, . . . , xn} ⊆ S(X,‖·‖). Since S is dense

in S(X,‖·‖), there exist x′
1, . . . , x

′
n ∈ S such that ‖xi − x′

i‖ ≤ θ for every i ∈ {1, . . . , n}.
By the assumption, we can find y ∈ S(X,‖·‖) in such a way that ‖r′x′

i± s′y‖ ≤ 1 for every
i ∈ {1, . . . , n}. Then

‖rxi ± sy‖ ≤ r‖xi − x′
i‖+

r

r′
‖r′x′

i ± s′y‖ ≤ rθ +
r

r′
≤ 1

for every i ∈ {1, . . . , n}. This shows that (X, ‖ · ‖) is (r, s)-SQ. �

Theorem 3.5. Let 0 < ε < 1. Then there exists an equivalent norm | · | on c0 such
that:

(i) (c0, | · |) has the slice-D2P.
(ii) There are non-empty relatively weakly open subsets of B(c0,|·|) of arbitrarily small

diameter.
(iii) (c0, | · |) is (r, s)-SQ for all 0 < r, s < 1−ε

1+ε .

Proof. Let us denote by ‖ · ‖Z the norm of the Banach space Z := c(N<ω) ⊕∞ c0.
Since c0 and Z are isomorphic, it suffices to prove the statement of the theorem for the
space (Z, ‖ · ‖Z). Let c0(N<ω) ⊆ c(N<ω) be the subspace of all x ∈ c(N<ω) such that
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limx = 0. For each α ∈ N<ω, we write eα to denote the element of Sc0(N<ω) defined by

eα(α) = 1 and eα(β) = 0 for every β ∈ N<ω \ {α}.
Let | · | be the Minkowski functional of the closed convex symmetric set

B := conv
(
(A× {0}) ∪ (−A× {0}) ∪

(
(1− ε)BZ + εBc0(N<ω) × {0}

))
⊆ Z,

that is, |z| := inf{t > 0 : z ∈ tB} for all z ∈ Z. Since (1 − ε)BZ ⊆ B ⊆ BZ , it follows
that | · | is an equivalent norm on Z with unit ball B(Z,|·|) = B. We have

‖z‖Z ≤ |z| ≤ 1

1− ε
‖z‖Z for all z ∈ Z (3.1)

and

|(x, 0)| = ‖(x, 0)‖Z = ‖x‖∞ for all x ∈ c0(N<ω) (3.2)

because Bc0(N<ω) × {0} ⊆ B. We denote by ‖ · ‖Z∗ and | · |Z∗ the equivalent norms

on Z∗ induced by ‖ · ‖Z and | · |, respectively. We will check that | · | satisfies the required
properties.
Proof of (i). Let S ⊆ B be a slice of B. Since B \ S is convex and closed, we have

S ∩
(
(A× {0}) ∪ (−A× {0}) ∪

(
(1− ε)BZ + εBc0(N<ω) × {0}

))
6= ∅.

We now distinguish several cases.
Case (a): S ∩ (A × {0}) 6= ∅. Then (xα, 0) ∈ S for some α ∈ N<ω. Observe that

the sequence ((xαan, 0))n∈N = ((xα + 2eαan, 0))n∈N converges weakly to (xα, 0) in Z
(because (eαan)n∈N is weakly null in c0(N<ω)). Since S is relatively weakly open in B
and (xαan, 0) ∈ B for every n ∈ N, we have (xαan0

, 0) ∈ S for large enough n0 ∈ N.
Hence,

diam|·|(S) ≥ |(xαan0
, 0)− (xα, 0)| = 2|(eαan0

, 0)|
(3.2)
= 2‖(eαan0

, 0)‖Z = 2

and, therefore, diam|·|(S) = 2.
Case (b): S ∩ (−A× {0}) 6= ∅. The proof that diam|·|(S) = 2 runs similarly as in (a).
Case (c): S ∩ ((1 − ε)BZ + εBc0(N<ω) × {0}) 6= ∅. Then we can pick (x, y) ∈ BZ and

x′ ∈ Bc0(N<ω) in such a way that

z := (1− ε)(x, y) + ε(x′, 0) ∈ S.

We can assume without loss of generality that x
′
has finite support because the set of

all finitely supported functions from N<ω to [−1, 1] is a norm dense subset of Bc0(N<ω).
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Choose α ∈ N<ω such that x′(α a n) = 0 for every n ∈ N. Observe that

x− x(α a n)eαan ± eαan ∈ Bc(N<ω) and x′ ± eαan ∈ Bc0(N<ω)

and so

z±n := (1− ε)
(
x− x(α a n)eαan, y

)
+ ε(x′, 0)± (eαan, 0)

= (1− ε)
(
x− x(α a n)eαan ± eαan, y

)
+ ε(x′ ± eαan, 0) ∈ B

for every n ∈ N. Since S is relatively weakly open in B and both sequences (z+n )n∈N and
(z−n )n∈N converge weakly to z in Z, we can find n0 ∈ N large enough so that both z+n0
and z−n0 belong to S. Hence,

diam|·|(S) ≥ |z+n0 − z−n0 | = 2|(eαan0
, 0)|

(3.2)
= 2‖(eαan0

, 0)‖Z = 2

and so diam|·|(S) = 2. This completes the proof of (i).
Proof of (ii). Fix θ > 0. By Lemma 3.2, we can take n ∈ N and ρ> 0 such that

diam(Wn,ρ) ≤
(1− ε)θ

2
and η :=

2ρ

5
≤ θ

16
. (3.3)

Define

U :=
{
z ∈ B : (e∗∅ai, 0)(z) >

2

n
− 1− η for all i ∈{1, . . . , n}

and (lim, 0)(z) < −1 + εη
}
.

It is clear that U is a relatively weakly open subset of B. To prove that U 6= ∅, we
will check that the vector z0 := ( 1n

∑n
j=1 x∅aj , 0) ∈ B belongs to U. Indeed, for each

i ∈ {1, . . . , n}, we have

(e∗∅ai, 0)(z0) =
1

n

n∑
j=1

e∗∅ai(x∅aj) =
1

n

(
1− (n− 1)

)
=

2

n
− 1 >

2

n
− 1− η,

and we also have

(lim, 0)(z0) =
1

n

n∑
j=1

limx∅aj = −1 < −1 + εη.

Hence, z0 ∈ U and so U 6= ∅.
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We will show that diam|·|(U) ≤ θ. The key point is the following:
Claim. For every

z ∈ V := U ∩ conv
(
(A× {0}) ∪ (−A× {0}) ∪

(
(1− ε)BZ + εBc0(N<ω) × {0}

))
,

there is z′ ∈ Wn,ρ × {0} such that |z − z′| < 4η.
Indeed, by Lemma 3.3, we can write

z = az1 − bz2 + c((1− ε)u+ εv) (3.4)

for some a, b, c ≥ 0 with a+ b+ c = 1 and

z1, z2 ∈ conv(A× {0}), u ∈ BZ and v ∈ Bc0(N<ω) × {0}.

Observe that

(lim, 0)(z1) = (lim, 0)(z2) = −1

because limxα = −1 for all α ∈ N<ω. We also have

|(lim, 0)(u)| ≤ ‖(lim, 0)‖Z∗‖u‖Z ≤ 1 and (lim, 0)(v) = 0.

Thus,

−1 + εη > (lim, 0)(z)
(3.4)
= −a+ b+ c(1− ε)(lim, 0)(u)

≥ −a+ b− c(1− ε) = −a− b− c+ 2b+ εc = −1 + 2b+ εc,

and so 2b + εc < εη. This inequality implies that b < η (bear in mind that ε< 1) and
that c < η. Consequently,

|z − z1|
(3.4)
= |(a− 1)z1 − bz2 + c((1− ε)u+ εv)|
= |−b(z1 + z2) + c((1− ε)u+ εv − z1)|
≤ b|z1|+ b|z2|+ c

∣∣(1− ε)u+ εv
∣∣+ c|z1|

(?)

≤ 2b+ 2c < 4η,

where inequality (?) follows from the fact that z 1, z 2 and (1 − ε)u + εv belong to B =
B(Z,|·|). Hence, |z − z1| < 4η.
We can write z1 = (x, 0) for some x ∈ conv(A). Then limx = −1 and for each

i ∈ {1, . . . , n}, we have

e∗∅ai(x) = (e∗∅ai, 0)(z1) ≥ (e∗∅ai, 0)(z)− |(e∗∅ai, 0)|Z∗ |z − z1| >
2

n
− 1− 5η

because z ∈ U and |(e∗∅ai, 0)|Z∗ ≤ ‖(e∗∅ai, 0)‖Z∗ = 1 (by Equation (3.1)). This implies,

with the notation of Lemma 3.2, that x ∈ Wn,ρ (recall that η = 2
5ρ). Therefore, the

conclusion of the Claim holds taking z′ = z1.

https://doi.org/10.1017/S0013091523000536 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000536
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Finally, let w1, w2 ∈ U and fix s > 0. Since U is relatively open in B, we can find
v1, v2 ∈ V such that |w1 − v1| ≤ s and |w2 − v2| ≤ s. By the Claim above, there exist
v′1, v

′
2 ∈ Wn,ρ × {0} such that |v1 − v′1| < 4η and |v2 − v′2| < 4η. Then

|v′1 − v′2|
(3.1)

≤ 1

1− ε
‖v′1 − v′2‖Z

(3.2)

≤ 1

1− ε
diam(Wn,ρ)

(3.3)

≤ θ

2

and so

|w1 − w2| < 2s+ 8η +
θ

2

(3.3)

≤ 2s+ θ.

As w1, w2 ∈ U and s > 0 are arbitrary, we conclude that diam|·|(U) ≤ θ.

Proof of (iii). We will show that (Z, |·|) is (r, s)-SQ for any 0 < r, s < 1−ε
1+ε with the help

of Lemma 3.4. Let H be the norm dense subset of Bc0
consisting of all finitely supported

functions from N to [−1, 1]. Then the set

S := S(Z,|·|) ∩ conv
(
(A× {0}) ∪ (−A× {0}) ∪

(
(1− ε)(Bc(Nω) ×H) + εBc0(Nω) × {0}

))
is norm dense in S(Z,|·|). Fix 0 < r, s < 1−ε

1+ε and take finitely many z1, . . . , zm ∈ S. By
Lemma 3.3, each zi can be written as

zi = ai(x
1
i , 0) + bi(−x2

i , 0) + ci
(
(1− ε)(xi, yi) + ε(x3

i , 0)
)

for some ai, bi, ci ≥ 0 with ai + bi + ci = 1 and

x1
i , x

2
i ∈ conv(A), xi ∈ Bc(Nω), yi ∈ H and x3

i ∈ Bc0(N<ω).

Let (en)n∈N be the usual basis of c0 and choose n ∈ N large enough such that ‖yi±en‖∞ ≤
1 for all i ∈ {1, . . . ,m}.
Observe that for each i ∈ {1, . . . ,m}, we have

zi ± (0, en) = ai(x
1
i ,±en) + bi(−x2

i ,±en) + ci
(
(1− ε)(xi, yi ± en) + ε(x3

i ,±en)
)
,

thus

‖zi ± (0, en)‖Z ≤ ai‖(x1
i ,±en)‖Z + bi‖(x2

i ,±en)‖Z + ci
(
(1− ε)‖(xi, yi ± en)‖Z + ε‖

(x3
i ,±en)‖Z

)
≤ ai + bi + ci((1− ε) + ε)) = 1,

which combined with Equation (3.1) yields

|zi ± (0, en)| ≤
1

1− ε
. (3.5)
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Another appeal to Equation (3.1) gives 1 = ‖(0, en)‖Z ≤ |(0, en)| ≤ 1
1−ε and, therefore,

the vector z := 1
|(0,en)| (0, en) ∈ S(Z,|·|) satisfies

|(0, en)− z| =
∣∣∣∣(1− 1

|(0, en)|

)
(0, en)

∣∣∣∣ = |(0, en)| − 1 ≤ 1

1− ε
− 1 =

ε

1− ε
.

This inequality and Equation (3.5) give

|zi ± z| ≤ 1

1− ε
+

ε

1− ε
=

1 + ε

1− ε
for every i ∈ {1, . . . ,m}.

Since r, s ≤ 1−ε
1+ε , we can apply [9, Lemma 6.3] to conclude that

|rzi ± sz| ≤ 1 for every i ∈ {1, . . . ,m}.

From Lemma 3.4, it follows that (Z, | · |) is (r, s)-SQ for all 0 < r, s < 1−ε
1+ε . The proof is

completed. �

We can now prove Theorem 1.2 in full generality.

Proof of Theorem 1.2. Let Z and W be subspaces of X such that Z is isomorphic
to c0 and X = Z ⊕ W . Fix 0 < ε < 1 and let | · |Z be an equivalent norm on Z like
in Theorem 3.5. Since any Banach space admits an equivalent norm for which the unit
ball has slices of arbitrarily small diameter (see, e.g., [22, Lemma 2.1]), we can take an
equivalent norm | · |W on W satisfying that property. Let | · | be the equivalent norm on X
defined by |z + w| := max{|z|Z , |w|W } for every z ∈ Z and for every w ∈ W . We claim
that (X, | · |) satisfies all the requirements.
(i) The `∞-sum of two Banach spaces has the slice-D2P whenever one of the factors

has the slice-D2P (see, e.g., [32, Theorem 2.29]). Since (Z, | · |Z) has the slice-D2P, we
conclude that the same holds for (X, | · |).
(ii) Let us prove that B(X,|·|) contains non-empty relatively weakly open subsets of

arbitrarily small diameter. Fix η > 0. Then there exists a non-empty relatively weakly
open set U ⊆ B(Z,|·|Z ) with diam|·|Z (U) < η. Now, take a slice S of B(W,|·|W ) with
diam|·|W (S) < η. Since the map ϕ : B(Z,|·|Z ) ×B(W,|·|W ) → B(X,|·|) given by

ϕ(z, w) := z + w for all (z, w) ∈ B(Z,|·|Z ) ×B(W,|·|W )

is a homeomorphism when each of the balls is equipped with the restriction of the weak
topology, it follows that V := ϕ(U × S) is a relatively weakly open subset of B(X,|·|).
Clearly, V 6= ∅ and diam|·|(V ) < η, as desired.

(iii) The space (X, | · |) is (r, s)-SQ for arbitrary 0 < r, s < 1−ε
1+ε because so is (Z, | · |Z),

and the `∞-sum of two Banach spaces is (r, s)-SQ whenever one of the factors is (r, s)-SQ
(see [9, Proposition 6.6]). �
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(23) J. B. Guerrero, G. López-Pérez and A. R. Zoca, Diametral diameter two properties in
Banach spaces, J. Convex Anal. 25(3) (2018), 817–840.

(24) R. Haller, J. Langemets, V. Lima and R. Nadel, Symmetric strong diameter two property,
Mediterr. J. Math. 16(2) (2019), 35.
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