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Abstract: Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide.
In parallel, Alzheimer’s disease (AD) and vascular dementia (VaD) are the two leading causes of
dementia in an increasingly long-living Western society. Numerous epidemiological studies support
the role of T2D as a risk factor for the development of dementia. However, few basic science studies
have focused on the possible mechanisms involved in this relationship. On the other hand, this
review of the literature also aims to explore the relationship between T2D, AD and VaD. The data
found show that there are several alterations in the central nervous system that may be promoting
the development of T2D. In addition, there are some mechanisms by which T2D may contribute to
the development of neurodegenerative diseases such as AD or VaD.
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1. Introduction

Diabetes mellitus (DM) is a chronic disease characterized by elevated blood glucose levels
due to the body’s inability to produce sufficient insulin or use it efficiently. Although there are
different types of DM, the most common are type 1 diabetes (T1D) and type 2 diabetes (T2D) [1].

According to the International Diabetes Federation (IDF, 2021), diabetes is the fifth leading
cause of death in the world. In 2021, 537 million people were suffering from the disease, and
it is estimated that by 2030, 783 million people will be affected (see evolution and prevalence
forecasts in Figure 1). In 2021 alone, 6.7 million people died from diabetes, 1 every 5 s [2].

Neurol. Int. 2023, 15, FOR PEER REVIEW  2 
 

 

 
Figure 1. Global prevalence of diabetes and global prevalence predictions (adapted from 10th edi-
tion of IFD diabetes Atlas) [2]. 
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On the other hand, dementia is a syndrome that encompasses a heterogeneous group
of diseases of the central nervous system (CNS), characterized by cognitive impairment [3].
In terms of incidence, the main types of dementia are Alzheimer’s disease (AD), vascu-
lar dementia (VaD), dementia with Lewy bodies and frontotemporal lobar dementia [4].
According to a WHO report, dementia currently affects around 50 million people, mostly
from low- and middle-income countries, and about 10 million cases are registered every
year [5]. It is estimated that by 2030, 82 million people will have dementia [5], and this
number will increase to 130 million by 2050 [6].

AD is a neurodegenerative disease of the central nervous system and is characterized
by a progressive deterioration of higher brain functions, affecting the ability to make
decisions and execute them [7,8]. AD patients survive an average of 7 years, and slightly
less than 3% of those affected live more than 14 years after diagnosis [9]. In terms of
epidemiology, AD is the leading cause of dementia and occurs most frequently in people
over 65 years of age (with a 10% prevalence), representing between 60% and 75% of
all dementia cases [10,11]. The major risk factor for AD is age, and as life expectancy
progressively increases, so does the number of people affected by this disease. Currently,
more than 50 million people worldwide suffer from AD, with an associated economic cost
of 30,000 EUR/year/patient in developed countries [12]. Projections for 2050 suggest that
the number of people affected could exceed 107 million [10]. These rates represent an
unbearable economic and social drain.

After AD, VaD is the second most common cause of cognitive impairment (20–30%)
affecting 1 in 20 people over 65 years of age [3,13,14]. However, both diseases can coex-
ist [15]. VaD incidence does not follow a homogeneous pattern geographically. Thus, in
North America and Europe, it accounts for 15–20% of all dementias, while in Asia and
developing countries, it is 30% [14]. As with all other dementias, the main risk factor is
age, with the probability of developing dementia doubling every 5.3 years [16]. VaD occurs
due to reduced blood flow to the brain, causing damage to different brain structures. This
decrease may be caused by cerebrovascular accidents or diseases affecting the blood vessels
of the brain, such as arteriosclerosis. Impairment of cognitive functions may vary depend-
ing on the location and extent of brain damage caused by reduced blood flow. Although
impairment of cognitive functions may vary depending on the location and extent of brain
damage, the most common include processing speed, attention, memory, language and
communication, as well as executive functioning [17]. Prevention and control of vascular
risk factors, such as high blood pressure, DM and high cholesterol, can help reduce the risk
of VaD [15].

1.1. Historical Development of Diabetes Mellitus

Society has been affected by DM since ancient times. The first record of its existence
dates back to the 15th century AC when the disease was described in Ebers papyrus, found
in Egypt. In the 2nd century AC, Aretaeus gave the name diabetes (Greek for “to pass
through”) to this ailment because of the polyuria suffered by the patients. But it was not
until 1679 that Thomas Willis made a masterly description of the disease, attributing the
second name of mellitus (honey flavor) to the disease, given the sweet taste of the urine
of sufferers. In the early 19th century, the French clinician Bouchardat associated DM
with obesity and a sedentary lifestyle. Paul Langerhans gave a major impetus to basic
diabetes research in 1869, when he published his doctoral thesis on the histology of the
pancreas where he described the pancreatic beta cells, which formed isolated islets in the
pancreas, to which he gave his name, and attributed the ability to synthesize the hormone
responsible for the regulation of blood sugar levels. Shortly afterward, in 1889, the surgeons
Von Mering and Minkowsky observed that, after removing the pancreas from animals,
they became diabetic. All the evidence suggested that the pancreas produced a substance
that was released into the blood, the absence of which was responsible for diabetes. This
substance was not found or described until 1921 by Frederick Grant Banting and John
James Richard Macleod, who succeeded in isolating insulin. They discovered that insulin is
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produced in the pancreas, in beta cells located in the islets of Langerhans, and demonstrated
its hypoglycemic effect. A year later, they described the beneficial effect of treating diabetic
patients with pancreatic extracts [18] and received the Novel Prize in Medicine in 1923
for their discoveries. Pig pancreatic extracts were used to treat diabetes until recombinant
human insulin was commercialized in 1982.

1.2. Pathophysiological Characteristics of Diabetes Mellitus

As mentioned above, DM is broadly subdivided into two main types: T1D and T2D,
with the latter accounting for 90% of all diabetes cases [19]. Although there is a deficiency
of insulin production by pancreatic beta cells in both forms, the two types have different
histopathological characteristics.

Thus, T1D is an autoimmune disease in which up to 99% of pancreatic islets are
eliminated [20], with a consequent lack of insulin leading to a metabolic decompensation
called ketoacidosis. T1D usually develops at an early age, while T2D usually occurs from
the age of 40 years onward. However, due to the increasing prevalence of obesity, T2D
has also been observed in younger people [21–23]. The last form of the disease also has
insufficient insulin production, similar to T1D, although to a lower magnitude. Thus, the
loss of beta mass in T2D is estimated to be approximately 40% (25–60%) [24], whereas in
T1D, this loss may affect 90% of beta cells.

T2D is a chronic disease characterized by defects in insulin action (insulin resistance)
and secretion [25]. As a result, glucose accumulates in the bloodstream instead of entering
the cells, leading to elevated blood sugar levels [2]. The sequence of events that occur in
the development of T2D can be observed in Figure 2, which depicts the normal insulin
and glucose levels one hour after a meal at the different stages of this disease. The first
event in the sequence of processes leading to T2D is insulin resistance, which leads to
increased insulin synthesis and secretion and compensatory hyperinsulinemia. This allows
metabolic homeostasis to be maintained in the early stages of the disease; this compensatory
insulin phase is called prediabetes and can last for years [26]. Once the balance between
insulin resistance and secretion is disrupted, biochemical expression (glucose intolerance)
and subsequent clinical diabetes begin. Patients with impaired glucose tolerance and
short-standing diabetics have hyperinsulinemia, which is a common component of insulin
resistance or metabolic syndrome. The loss of β-cells in DM implies that insulin secretion
could be restored and hyperglycemia (but not hyperinsulinemia) normalized through the
replacement or regeneration of the islets of Langerhans [27]. In fact, it has long been known
that hyperglycemia in T1D and T2D can be reversed by pancreas transplantation [28] and
the transplantation of isolated islets [29]. However, the number of transplantable pancreases
is insufficient for the ever-increasing number of patients with DM, which impedes the
widespread application of this intervention and promotes the continued search for other
possible therapies for the treatment of this disease.
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Other components of this syndrome that are related to insulin resistance and/or
hyperinsulinemia are hypertension, dyslipidemia, obesity, gout, increased prothrombotic
factors, fibrinolysis defects, atherosclerosis and dementia. Thus, individuals with T2D are
at an increased risk of developing cardiovascular disease. These risks have been extensively
studied in clinical and epidemiological research [30–35] as well as in basic research [36–40].

1.3. Historical Development of Dementias: Alzheimer’s Disease

The first historical allusion to the term dementia is found in the poem “De rerum
natura” by Titus Lucretius in the 1st century BC and in the essay “De Senectute” by
Cicero in which dementia is presented as a memory loss contracted with age. In this
era, the average life expectancy was around 30 years, so it can be inferred that the term
dementia encompasses other pathologies that affect psychiatric disorders. Etiologically,
the word dementia means “absent mind” [41]. For centuries, the word dementia has
encompassed a heterogeneous set of pathologies that present with memory loss and/or
cognitive impairment. It was not until the 17th century that the definitions of dementia
and cognitive decline became more precise, distinguishing between mental retardation
and age-related cognitive impairment syndromes [41]. By the 19th century, the concept of
dementia had acquired the current meaning found in medical literature. The Diagnostic
and Statistical Manual of Mental Disorders defines dementia as a syndrome that includes
memory loss and the loss of cognitive functions, which incapacitate those who suffer from
it to lead a normal work, social and family life [42].

In 1906, German scientist Alois Alzheimer published the results of a study on Auguste
Deter, a 52-year-old patient whose husband had brought her to the hospital after detecting
changes in her behavior consistent with dementia. This study describes neurofibrillary
tangles and senile plaques as markers of AD. Over the next 100 years, the disease has
become increasingly frequent owing to increased life expectancy. Its neuropathological
markers include the accumulation of beta-amyloid plaques and tau pathology. Currently,
the amyloid cascade hypothesis is accepted, in which the first event of the disease is the
deposition of amyloid-beta (Aβ), followed by synaptic loss, formation of neurofibrillary
tangles and neuronal death (for a review, see [7,8]).

1.4. Alzheimer’s Disease Physiopathology

The pathophysiology of AD involves changes at the brain level, including the accumu-
lation of two proteins: Aβ and hyperphosphorylated tau protein [43]. AD currently has no
unequivocal premortem diagnosis and can only be diagnosed histologically postmortem
in the presence of (1) the deposition of senile plaques, (2) neurofibrillary tangles and
(3) neuronal death [7].

Senile plaques are characteristic alterations of AD, quite common in the brains of
patients with dementia, and are possibly the origin of the denervation of the disease. Senile
plaques result from progressive accumulation of parenchymal Aβ [7]. Aβ is a 39–43 amino
acid peptide derived from progressive processing of the beta-amyloid precursor protein
(APP) by β- and γ-secretase complexes, where presenilin (PS) is the catalytic component [44].
Aβ is derived from the proteolytic cleavage of the APP protein, which, when processed by β-
and γ-secretases, results in three products, including Aβ, and favors the formation of senile
plaques. In contrast, when α-secretase acts, APP is cleaved such that its products do not
enter the amyloidogenic pathway [7]. Among the possible Aβ isoforms, Aβ40 and Aβ42 are
the most common, with Aβ42 being the most fibrillogenic. Accumulation of Aβ aggregates
as soluble oligomers and senile plaques plays a relevant role in the pathogenesis of AD [45].
The accumulation of senile plaques can cause interference with neuronal communication,
triggering an inflammatory response in the brain, generating oxidative stress at the brain
level, activating toxic processes that interfere with normal cellular processes, altering
synaptic function and causing neuronal degeneration [43,46]. The pathology and dynamics
of senile plaque formation and remodeling, as well as the precise involvement of amyloid
deposition, are not fully understood, although senile plaques remain the main therapeutic
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targets in the development of new alternatives to prevent or reverse the disease [7,8,47].
Aβ peptides in their different aggregation states and compact senile plaques are neurotoxic
both in AD and in experimental models [48] and have been associated with synaptic loss
and the development of neuritic dystrophies [49–51]. Compact senile plaques have also
been associated with abnormal curvature of nearby neurites [52–54] and may alter cortical
synaptic integration [55,56]. In addition, senile plaques tend to accumulate in regions such
as the cortex, hippocampus and cortical associative areas. This accumulation of plaques
has a significant impact on cognitive functioning, including impairments in attention and
concentration, language and communication difficulties, memory impairment and deficits
in executive function [46].

1.5. Vascular Dementia Physiopathology

After AD, which is responsible for about 50–75% of all dementia cases [4], VaD is
the second cause of dementia. VaD is a clinical cognitive disorder of cerebral vascular
origin caused by stroke. The main cause of VaD is cerebrovascular disease, especially
cerebrovascular accidents or strokes [57]. This leads to the degeneration of the affected area,
usually the cortex, white matter or both, due to hypoxia. Oxygen deprivation preceded by
hypoperfusion can be caused by different vascular aetiologies [58,59]. Broadly speaking,
there are two types of strokes: (a) ischemic and (b) hemorrhagic. The main cause of VaD
is ischemic stroke, which is caused by vascular collapse that impedes blood circulation,
resulting in cerebral hypoperfusion. This deprivation of blood supply can be acute or
progressive, depending on the degree of hypoperfusion [60]. VaD from hemorrhagic stroke
is caused by vascular rupture, which results in blood contents spilling into the extracellular
space (see Figure 3) [61]. Hemorrhagic strokes account for approximately 15% of all strokes,
increasing the probability of dementia [60].
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VaD is composed of a cumulative stroke process that encompasses a heterogeneous
pathology of multiple microinfarcts, ischemic small vessel disease, microvascular dam-
age [62] or even the deposition of Aβ in the form of amyloid angiopathy around the cerebral
vessels [63]. This heterogeneity of VaD contributes to the presence of numerous clinical
phenotypes causing difficulties and controversies in its diagnosis and classification [64–67].

The pattern of cognitive impairment observed in VaD is variable and can be difficult to
distinguish from progressive cognitive decline, especially in the early stages when episodic
memory is affected, and it can also be found in the early stages of AD [65]. However,
whereas age-related cognitive decline is usually slower, in VaD, it occurs more abruptly
and fluctuatingly [68]. Executive function is affected early in VaD to a greater degree than
in other dementias, possibly due to the disruption of frontal connections [69]. Similar to
AD, mood swings and personality alterations are very pronounced in VaD [67,70]. Another
characteristic is decreased serotonin metabolism and a deficit of cholinergic markers, like
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that described in AD [71,72]. Lesions in white substances can directly affect cholinergic
projections. Preclinical and clinical evidence suggests that the cholinergic system may also
be involved in VaD [73–75]. On the other hand, cognitive impairment associated with
subcortical vascular damage may be the result of cortical atrophy of the hippocampus, and
although the cause of diffuse cortical atrophy is not well understood, it can be partially
correlated with the severity of white matter lesions [75,76].

VaD and AD coexist, and it is possible that vascular pathology contributes to cognitive
decline. Thus, it has been speculated that vascular damage may promote AD development.
In this sense, blood–brain barrier (BBB) dysfunction could affect the Aβ brain–periphery
balance and thus contribute to parenchymal and vascular Aβ deposition [77–79]. Fur-
thermore, the pathology of AD can cause vascular damage, such as when Aβ deposition
induces inflammation and endothelial damage. The pathological process resulting from
vascular damage is associated with alterations in functional markers, such as increased
oxidative stress, elevated proinflammatory cytokines or increased activity of matrix met-
alloproteinases in vessel walls [80,81]. These processes have been linked to neuronal
death [82,83] responsible for dementia.

The ultimate triggering cause of VaD is not fully known, although a multitude of
studies have been conducted on the relationship between metabolic disorders, lifestyle and
vascular dementia [84,85]. In the 1990s, the link between DM and some dementias, such
as AD and DaV, was already discussed [86]. The literature suggests that insulin resistance
associated with T2D promotes cerebrovascular dysfunction, which would provide a favor-
able environment for the development of VaD and AD [84,85,87,88]. This review aimed to
explore the underlying relationship between T2D, AD and VaD.

2. Link between Diabetes Mellitus, Alzheimer’s Disease and Vascular Dementia

Over the last 15 years, the relationship between T2D, AD and VaD has been extensively
studied. Based on published studies, the data suggest that T2D, among other metabolic
pathologies, could contribute to the development of a neurodegenerative process that
would be a precursor to the development of dementia. Following this idea, DM seems to
play a role at this level. The bibliography shows that the incidence of both pathologies
increases with age, and it is common to find them coexisting. In fact, some authors claim
that 45% of people with T2D suffer from mild cognitive impairment [89], raising the chance
of developing dementia by 1.5–2.5 times [90]. In contrast, people with established dementia
show insulin disturbances, with altered fasting glucose levels [91].

It also appears that the risk of dementia increases as patients develop other risk factors,
including heart disease, hyperlipidemia, hypercholesterolemia or smoking, although T2D
is important for its synergistic capacity [34,84,90]. In this relationship, insulin levels and
insulin resistance are best correlated with the severity and progression of VaD [92,93].
Furthermore, it seems that DM promotes vascular damage caused by high levels of glucose
in the blood, which is accentuated if it coexists with other pathologies that affect blood
vessels, such as arteriosclerosis and hypertension [32,94].

The relationship between T2D and VaD can be based on processes that converge
between the two pathologies, described below.

2.1. Insulin Receptors in Central Nervous System

Insulin receptors at the central level are located in astrocytes and neuronal synapses
and are very abundant in regions of the basal forebrain, such as the septum (origin of
cortical and hippocampal cholinergic innervation) [95], and areas particularly relevant
for learning and memory processes, such as the cortex and the hippocampus [96]. This
wide distribution of insulin receptors explains the involvement of insulin in cognitive pro-
cesses [97], probably mediated by relevant neurotransmitters in AD, such as norepinephrine
and acetylcholine [98,99]. Insulin also contributes to synaptic plasticity mediated by insulin
receptors [100]. Similarly, insulin regulates glucose metabolism as the main nutrient of
the CNS, directly involved in learning and memory processes [101,102]. In fact, the acute
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administration of insulin to humans and rodents produces an improvement in cognitive pro-
cesses and memory [103–107] as well as an increase in the expression of insulin receptors in
the dentate gyrus, leading to better performance in spatial memory tests [106,108]. Indeed,
some authors have postulated that insulin could counterbalance AD pathology [109].

2.2. Type 2 Diabetes Progression Correlated with Pancreatic Amilin Deposition as Brain Aβ
Deposition Correlated with Alzheimer’s Disease Progression

The progression of T2D is correlated with pancreatic amylin deposition, which is
similar to that of brain Aβ. In addition, insulin, amylin and Aβ are degraded peripherally
by the insulin-degrading enzyme (IDE) [110]. This suggests that these substrates may
compete at this level [111]. It has been postulated that substrate imbalance may influence
the pathogenesis of AD and T2D [112].

From another point of view, insulin resistance detected in AD patients could be medi-
ated by a decrease in the activity of the enzymes responsible for its degradation. Both the
insulin-degrading enzyme (IDE) and neprelisine (NEP) are involved in insulin degradation
as well as Aβ and amylin degradation [113]. Accordingly, it has been postulated that an
imbalance of substrates can affect the degradation rate of other substrates and possibly
influence the pathogenesis of T2D and AD [112,114–116]. A decrease in IDE expression
may result in reduced insulin and Aβ degradation in the brain [115,117]. Consequently, it
is conceivable that actions promoted by elevated insulin levels, or its deficiency, may also
be a link between T2D and AD.

2.3. Insulin-Like Growth Factor

Insulin and the insulin-like growth factor (IGF) have similar structures and play a
significant role in the regulation of aging. IGF acts as a cellular growth factor but also plays
a hormonal role in regulating growth and metabolism at the systemic level [118]. IGF is
the main prenatal and postnatal growth factor. This is why low levels of insulin during
gestation can lead to slower growth and low height and weight of the offspring [107,119].
In contrast, an increase in insulin levels at an early stage, as occurs in maternal T2D, leads
to large and overweight children, among other complications [120].

In this context, insulin plays a crucial role in the development of neuronal complexity, as
well as in neurogenesis in early neonatal development. In this sense, insulin deprivation during
early life may result in reduced neural network development, whereas exogenous administration
of insulin may promote increased neural development and complexity [107,121]. A more
complex neural network is a protective factor against the development of dementia [122].
Based on the aforementioned, a gestational environment with altered insulin levels could
condition the possible development of dementia in the later stages of life [123,124].

Additionally, plasma inulin can cross the BBB in a soluble form and gain access to
neurons, microvasculature and even immature neuronal bodies [125]. Insulin plays a key
role as a growth-regulating hormone during the early stages of life. In animal models,
it has been shown that an imbalance in insulin levels also impairs neurogenesis in early
life [107], as well as in more mature and long-lived phases [37]. In addition, the coexistence
of T2D with AD pathology reduces neurogenesis and thus neuronal replacement from
stages prior to cognitive decline [126]. Insulin is also involved in the regulation of neuronal
and synaptic functions in the hippocampus, cortex and cerebellum, protecting neurons
from neurodegeneration and cell death [127–130].

2.4. Insulin Promotes Typical Features of Alzheimer’s Disease

Tau pathology is one of the main features of AD, and many studies have reported the
impact of insulin dysfunction and diabetes on it [131–133]. Indeed, high insulin levels in
the brain, induced by prediabetes or T2D, may increase the hyperphosphorylation of tau
protein [134]. It is feasible that higher levels of phosphorylated tau observed in hyperin-
sulinemia and T2D states could be mediated by insulin receptors at the central level [132].
Additionally, T1D hypoinsulinemia may increase tau hyperphosphorylation [135]. In this
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regard, a clinical phase I study with the drug SCR-1693 showed a reduction in tau protein
phosphorylation levels associated with an improvement in cognitive and central insulin
resistance [136].

Inflammation of the CNS is increasingly regarded to play a role in cognitive disorders
such as dementia [137]. Insulin promotes the expression of proinflammatory cytokines
such as α-TNF and IL6 [138], which are the most important proinflammatory cytokines.
Moreover, these cytokines negatively affect the metabolism of Aβ oligomers [139]. Similarly,
a proinflammatory state, in concomitance with amyloid pathology, leads to the activation
of microglia and astrocytes in the SNC [140]. A recent study in several models of diabetes
combined with a classical AD model, such as the APP/PS1 mouse, concludes from the cy-
tokine profiles exhibited in each pathology that neuroinflammation may be the mechanism
by which diabetes affects the pathology of AD [80].

On the other hand, one of the mechanisms proposed to link insulin to cognitive
impairment is its role in Aβ metabolism [111,115]. In this regard, insulin promotes the
amyloidogenic pathway by modulating β and γ-secretases [114,141,142]. Additionally,
insulin inhibits or hinders the passage of Aβ through the BBB [143]. Following this idea,
insulin would prevent the clearance of Aβ and promote its accumulation in the brain [144].
In return, Aβ interferes with insulin signaling in the CNS; in fact, soluble Aβ oligomers may
disrupt insulin signaling in hippocampus neuronal cultures [145]. Furthermore, insulin
promotes Aβ deposition in the brain in a similar way to amylin deposition in the pancreas
of T2D patients. Amylin, like Aβ, is a toxic species involved in the apoptosis of pancreatic
cells and neurons [146,147]. Moreover, amylin and Aβ aggregates alter cellular function
by similar mechanisms: mitochondrial dysfunction and the formation of reactive oxygen
species [148].

2.5. Role of Prediabetes and Diabetes Mechanism in the Neurodegenerative Process of Alzheimer’s
Disease and Vascular Dementia

Previous epidemiological and clinical studies support a close relationship between
T2D and AD [148,149]; however, the underlying linking mechanisms are not yet fully
understood. It also remains unclear whether hyperinsulinemia and insulin resistance,
indicative of a prediabetic state prior to T2D, may induce or accelerate central pathology in
AD, in a similar manner to that induced by T2D. Indeed, glucose and insulin play a crucial
role in maintaining normal brain activity, and alterations of insulin-dependent functions
could be associated with central pathological conditions observed in AD [139,148,150].

The available scientific evidence on this relationship supports that the first pathological
event in the DM disorder, as a promoter of dementia, is insulin resistance in the CNS [92,125,151].
Insulin plays an important role in cell growth and differentiation, as well as in protein
synthesis [125,152]. Additionally, insulin inhibits catabolic processes such as glycolysis,
lipolysis and proteolysis [152]. The wide distribution of insulin receptors throughout the
CNS underscores its importance in central glucose homeostasis processes and its role in
cognitive processes and neuronal development [125]. In this sense, it has been described
that alterations in insulin balance in the CNS accelerate the brain aging process, increasing
vascular damage and primarily affecting synaptic plasticity [50,152,153]. Vascular damage
is often one of the first central events in diabetes [154], even in the prediabetic stages, and
compensatory high insulin levels are sufficient to cause this damage [39]. Simultaneously
with vascular damage, brain aging occurs, which is translated into reduced neuronal
arborization and synaptic density. The loss of neuronal and synaptic density has been
proposed as one of the best pathological markers for the assessment of AD. There is
ample scientific evidence that different states of Aβ aggregation, from the most soluble
forms to the formation of senile plaques, are neurotoxic [155–157]. It has been reported
that synaptic loss promotes cell dedifferentiation and ultimately neuronal death [158].
Studies in animal models have shown that T2D conditions decrease synaptic density at
the cortical level [38]. This decline is exacerbated when prediabetes and T2D coexist with
AD, with greater involvement observed in regions close to senile plaques than in areas
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away from them [50]. One plausible explanation for this increased involvement is that
diabetes, by some yet unknown mechanism, may be promoting soluble and more toxic
forms of Aβ [78,79], which would allow for a more extensive distribution and involvement
of the brain [159]. However, this effect has been observed in both T1D and T2D animal
models [78,79]. The overproduction and absence of insulin produced in T2D and T1D,
respectively, lead to vascular damage and a chronic proinflammatory state [38,80]. T1D
promotes vascular changes, such as impaired regulation of vascular tone and dysfunction
in neovascularization and vasoregression, leading to a blood–brain barrier disruption (for
a review, see [160]). T2D can also promote vascular dysfunction and inflammation (for
a review, see [161]). Both factors may contribute to a lower capacity to eliminate excess
Aβ vascularly or through microglia. This situation promotes its accumulation in a soluble
form. In fact, in our murine models of AD-T2D and AD-T1D, the levels of serum Aβ were
reduced, indicating the inability to expel peptides from the CNS across the blood–brain
barrier, while intracerebral soluble Aβ levels were increased [78,79]. In fact, the higher
levels of soluble Aβ40 and 42 in the CNS observed in T1D and T2D are also in agreement
with large synaptic loss and neuronal death observations [79,81,162–166]. It is feasible that
the shift toward more toxic soluble species might contribute to the observed progressive
synapse reduction in prediabetic and diabetic AD mice [50,167] and an in silico study [168].
In addition, prediabetes and T2D promote an increased accumulation of Aβ in the form
of amyloid angiopathy (AAC) around blood vessels [81], which is associated with an
increased risk of vascular rupture [169]. On the other hand, Aβ clearance might also be
affected. In this regard, some studies support that Aβ pathology, in combination with
hyperinsulinemia, promotes higher levels of Aβ because IDE is much more selective for
insulin than for Aβ [115,170]. In addition, the lack of insulin in T1D seems to be associated
with lower levels of enzymatic activity (for a review, see [171]). Additionally, previous
studies have shown that the activity of IDE and NEP could be intrinsically altered in AD or
DM [163,172,173]. Likewise, vascular damage observed in prediabetic-AD and T2D-AD
mice could affect Aβ clearance by altering the BBB, in accordance with previous models
showing reduced amyloid clearance along interstitial fluid drainage pathways [174,175],
by damage of the artery feeding a particular brain territory.

In the second stage, we propose that the sequence of events involves the inflammatory
process and glial activation. It has been suggested that the insulin resistance typical of predia-
betes and T2D may exacerbate the inflammatory process when it interacts with the presence of
Aβ [139]. Previous studies report that the presence of Aβ is sufficient to promote microglial
activation and the inflammatory process [176,177]. Vascular damage and the T2D-induced
imbalance of Aβ pathology toward more soluble forms have been shown to induce an increase
in cytotoxic and pro-inflammatory cytokines and increase microglial activity [80,178]. This
inflammatory process would increase oxidative molecular species, generating a harmful
environment that would promote neurodegenerative processes [179]. Microglial cells,
faced with vascular damage and the accumulation of toxic substances such as Aβ, begin
to produce proinflammatory cytokines (IL-1β, IL-6, IL-18 and tumor necrosis factor-α
(TNF-α)), chemokines (CCL1, CCL5, CXCL1), small messenger molecules (prostaglandins,
NO) and ROS [180]. Although most cells involved in this process of neuroinflamma-
tion are microglia and astrocytes, capillary endothelial cells are also involved, as well as
some infiltrating blood cells, which are more frequent when there is tissue damage in
the BBB [180,181]. This pro-inflammatory ecosystem could lead to synaptic dysfunction,
neuronal death and inhibition of neurogenesis [80,126,182]. Similarly, it has been shown
that the increase in prostaglandin 2 by the damaged vascular endothelium increases the
production of IL-1β, which is associated with synaptic loss through the activation of the
postsynaptic N-methyl-D-aspartate receptor [182]. Under these circumstances, activation of
the complement system, which promotes phagocytosis by microglia, may also be involved
in the process of synaptic loss [183]. The described mechanism involves neuronal death by
TNF-α-mediated caspase-8 recruitment and TNF receptor type 1 [184].
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The following event would affect one of the classic AD pathologies: the hyperphospho-
rylation of the tau protein [7], which can also be found in other neurodegenerative diseases
such as VaD. Previous studies have shown early tau phosphorylation in diabetic mouse
models [185], whereas other studies support the idea that this pathology only appears
in the latest phases of diabetes [38]. This apparent discrepancy may be explained by the
fact that tau phosphorylation is highly dependent on the specific phosphorylated residues
studied [185,186]. Altogether, these data support the step-through role of early prediabetes
and consolidated T1D and T2D at the central level, which seem to preferentially affect the
cortex and spread to the hippocampus as the disease progresses [39,78,79,187–189].

Described central alterations ultimately lead to learning and memory dysfunction.
Prediabetes or early diabetes does not affect learning or memory [38,39]. However, late
diabetes is related to poor cognitive preservation, and episodic and spatial memories
are affected in animal models [38]. A similar outcome was observed in patients with
T2D [190,191] and T1D [192], with lower levels of global cognition and episodic or working
memory. In fact, a recent study supports that low levels of cognition in aging people are
associated with body fat and higher body max index, which are risk factors for suffering AD,
VaD and T2D [193]. Metabolic parameters are correlated with CNS alterations in animal
models; a study supports that glucose levels, insulin levels and body weight are good
predictors of cortical atrophy and impaired cortical and hippocampal cell proliferation,
suggesting the role of the diabetic process at the central level [37]. In accordance with
this, human studies have also shown significant associations between insulin levels in T2D
patients and brain alterations detected by magnetic resonance imaging (MRI) [189,194,195].
Curiously, whereas worse metabolic conditions correlate with lower rates of central cell
proliferation, affected metabolism also predicts increased neurogenesis rates, suggesting
that as the pathology progresses, the overall cellular production is impaired, and the system
tries to compensate for this by generating new neurons [37].

3. Future Perspectives

Growing evidence suggests that T2D may increase the risk of developing AD. Several
studies have found that insulin resistance and metabolic dysfunction associated with T2D
negatively affect the brain and increase the accumulation of Aβ. Also, T2D promotes
chronic inflammation, oxidative stress and vascular dysfunction in the brain which links
T2D with AD and VaD.

Understanding the relationship between DM and AD is essential to prevent the
development of AD through metabolic control. Likewise, knowledge of the involvement of
DM in the progress and development of AD can help us address new therapeutic strategies
for its treatment. In this sense, treatment to control T2D, such as metformin, has shown a
beneficial effect, like neuroprotective, anti-inflammatory and antioxidant action in animal
models [196–198]. However, limited studies in humans have shown a more discrete positive
relationship with the use of metformin as a treatment for AD [199]. The possible beneficial
effects of metformin as a treatment for Alzheimer’s disease are still being studied and are a
hot topic (for a review, see [200]).

Another emerging candidate for a therapeutic approach to AD an VaD is the appli-
cation of intranasal insulin. This treatment has been shown to have beneficial effects in
reducing inflammation and improving immune function. In addition, intranasal insulin
improves cognitive status and helps to maintain cognitive abilities [201,202]. Other stud-
ies have shown that intranasal insulin as a treatment for AD has neuroprotective effects,
and its use can maintain the insulin brain signaling to improve cognitive health [203] by
reducing the P-tau/Aβ42 ratio [204] and preserving the white matter volume in deep and
frontal regions, which correlates with AD progression [205]. However, recent long-term
studies in humans have shown limited efficacy of intranasal insulin as a treatment for
AD [204,206]. The current disagreement in the literature shows the need to carry out
studies that demonstrate the usefulness of this treatment in the control of AD.
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Finally, as the understanding of the relationship between T2D, AD and VaD increases, there
are new opportunities for prevention and treatment. Improving glycemic control and promoting
healthy lifestyles should be explored further. Thus, early attention to risk factors associated with
dementia, such as T2D, may play a crucial role in preventing or delaying dementia.

4. Conclusions

The findings of this review clarify the underlying relationship between AD, T2D
and VaD. Thus, early hyperinsulinemia, without clinically established T2D, is sufficient
to worsen AD pathology. T2D promotes vascular damage and increases inflammatory
processes at the central level. Moreover, both T2D and T1D accelerate AD pathological
features, increasing more toxic Aβ species and resulting in a more severe version of AD
(Figure 4). Increased levels of soluble Aβ and phosphotau may contribute to synaptic loss,
neuronal death, brain atrophy and final cognitive impairment. Altogether, T2D promotes
an early and more severe version of AD and VaD pathology. Published evidence provides a
relevant tool to further explore the relationship between T2D, AD and vascular implications,
offering the possibility to assess therapeutic approaches that can delay or prevent AD and
VaD pathology by improving metabolic control.
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