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Abstract: In this paper, AlGaN/GaN high-electron-mobility transistors (HEMTs) with ohmic etch-
ing patterns (OEPs) “fabricated to improve device radio frequency (RF) performance for Ka-band
applications” are reported. The fabricated AlGaN/GaN HEMTs with OEP structures were used to
reduce the source and drain resistances (Rs and Rd) for RF performance improvements. Within the
proposed study using 1 µm hole, 3 µm hole, 1 µm line, and 3 µm line OEP HEMTs with 2 × 25 µm
gate widths, the small signal performance, large signal performance, and minimum noise figure
(NFmin) with optimized values were measured for 1 µm line OEP HEMTs. The cut-off frequency (fT)
and maximum oscillation frequency (fmax) value of the 1 µm line OEP device exhibited optimized
values of 36.4 GHz and 158.29 GHz, respectively. The load–pull results show that the 1 µm line OEP
HEMTs exhibited an optimized maximum output power density (Pout, max) of 1.94 W/mm at 28 GHz.
The 1 µm line OEP HEMTs also exhibited an optimized NFmin of 1.75 dB at 28 GHz. The increase
in the contact area between the ohmic metal and the AlGaN barrier layer was used to reduce the
contact resistance of the OEP HEMTs, and the results show that the 1 µm line OEP HEMT could be
fabricated, producing the best improvement in RF performance for Ka-band applications.

Keywords: aluminum gallium nitride; etching; HEMTs; large signal; noise figure; ohmic contacts;
radio frequency; small signal

1. Introduction

With the growth of the Internet of Things (IoTs), artificial intelligence (AI), and the
increasing demand for high-speed consumer electronics such as smart phones, smart
homes, and unmanned aerial vehicles (UAV), lower-frequency system bandwidths for data
transmission have become congested [1–4]. As a result, Ka-band systems have emerged in
fifth-generation (5G) and beyond 5G (B5G) systems to increase spectrum allocations and
data rates, and to reduce antenna sizes [5]. Power amplifiers (PAs) and low noise amplifiers
(LNAs) in wireless communication circuits and their transistors are especially crucial when
it comes to enhancing efficiency, gaining flatness, and lowering noise over a wide-frequency
band [6]. Silicon-based transistors, such as complementary metal–oxide semiconductor
field-effect transistors (CMOS FETs), can be used in radio frequency (RF) transceiver
circuits given their low costs and high yield, but they suffer from low power gain, a
short channel effect, and saturation effects due to scaling [7,8]. III–V-based transistors,
such as AlGaAs/GaAs and AlGaN/GaN high-electron-mobility transistors (HEMTs), are
also used in high-frequency PAs and LNAs, but GaAs-based HEMTs suffer from low
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voltage operation, low power per unit, and low power efficiency due to the small energy
bandgap and low breakdown voltage [9–11]. On the other hand, GaN-based HEMTs have
demonstrated stronger frequency response, higher power-added efficiency (PAE), and
better power performance, so are suitable for 5G and B5G systems, ranging from sub-6 GHz
to Ka band, due to the high breakdown voltage, high saturation current, and low-frequency
noise characteristics [12–17].

Nevertheless, parasitic resistance builds up at ultra-high frequencies for GaN HEMTs
due to their high operation voltages, which reduces the overall device performance, such as
current density, RF power, and PAE. Solutions have been proposed to reduce the parasitic
influences of GaN-based HEMTs through barrier layer recessing, ohmic regrowth, and
n-type doping to lower the source and drain resistances (Rs and Rd) for direct current (DC)
characteristic improvements [18,19]. In advance, researchers have reported simulated and
experimental results regarding contact resistivity improvements using several ohmic re-
cessing patterns to increase the current paths and device saturation current density [20–27].

This study further compared the DC, RF small signal, RF large signal, and RF noise
performance of different ohmic etching patterns (OEPs) for Ka-band applications and
to design an optimized OEP structure with lower source and drain resistances, higher
saturation current density, better RF power performance, and a lower high-frequency
noise. The optimized OEP device with a 1 µm line pattern demonstrated the lowest contact
resistance, highest small signal and large signal performance, and the smallest minimum
noise figure (NFmin) at the Ka band among the four OEP structures designed in this study.

2. Materials and Methods

The AlGaN/GaN HEMTs were fabricated on a 4 inch GaN on SiC substrate. The
epitaxial wafer was grown with a metal–organic chemical vapor deposition (MOCVD)
system and consisted of an i-GaN buffer layer, a 0.9 µm unintentionally doped GaN channel
layer, a 25 nm Al0.25Ga0.75N barrier layer, and a 2 nm GaN cap layer, as shown in Figure 1a.
The device structure consisted of two gate fingers (red), one gate pad, two source pads,
and one drain pad, as shown in Figure 1b. The epitaxial wafer was measured via Hall
measurement at room temperature and showed an electron mobility of 1500 cm2/V·s, a
sheet resistance of 280 Ω/sq, and a sheet carrier density of 1 × 1013/cm2.

Micromachines 2024, 15, x FOR PEER REVIEW 2 of 13 
 

 

(HEMTs), are also used in high-frequency PAs and LNAs, but GaAs-based HEMTs suffer 
from low voltage operation, low power per unit, and low power efficiency due to the small 
energy bandgap and low breakdown voltage [9–11]. On the other hand, GaN-based 
HEMTs have demonstrated stronger frequency response, higher power-added efficiency 
(PAE), and better power performance, so are suitable for 5G and B5G systems, ranging 
from sub-6 GHz to Ka band, due to the high breakdown voltage, high saturation current, 
and low-frequency noise characteristics [12–17]. 

Nevertheless, parasitic resistance builds up at ultra-high frequencies for GaN HEMTs 
due to their high operation voltages, which reduces the overall device performance, such 
as current density, RF power, and PAE. Solutions have been proposed to reduce the par-
asitic influences of GaN-based HEMTs through barrier layer recessing, ohmic regrowth, 
and n-type doping to lower the source and drain resistances (Rs and Rd) for direct current 
(DC) characteristic improvements [18,19]. In advance, researchers have reported simu-
lated and experimental results regarding contact resistivity improvements using several 
ohmic recessing patterns to increase the current paths and device saturation current den-
sity [20–27]. 

This study further compared the DC, RF small signal, RF large signal, and RF noise 
performance of different ohmic etching patterns (OEPs) for Ka-band applications and to 
design an optimized OEP structure with lower source and drain resistances, higher satu-
ration current density, better RF power performance, and a lower high-frequency noise. 
The optimized OEP device with a 1 µm line pattern demonstrated the lowest contact re-
sistance, highest small signal and large signal performance, and the smallest minimum 
noise figure (NFmin) at the Ka band among the four OEP structures designed in this study. 

2. Materials and Methods 
The AlGaN/GaN HEMTs were fabricated on a 4 inch GaN on SiC substrate. The epi-

taxial wafer was grown with a metal–organic chemical vapor deposition (MOCVD) sys-
tem and consisted of an i-GaN buffer layer, a 0.9 µm unintentionally doped GaN channel 
layer, a 25 nm Al0.25Ga0.75N barrier layer, and a 2 nm GaN cap layer, as shown in Figure 1a. 
The device structure consisted of two gate fingers (red), one gate pad, two source pads, 
and one drain pad, as shown in Figure 1b. The epitaxial wafer was measured via Hall 
measurement at room temperature and showed an electron mobility of 1500 cm2/V·s, a 
sheet resistance of 280 Ω/sq, and a sheet carrier density of 1 × 1013/cm2. 

  

(a) (b) 
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patterns. The defined line patterns are parallel to the current flow and have widths of 1 

Figure 1. Schematic graph of the OEP AlGaN/GaN HEMT with the (a) cross-section view and the
(b) top view.

Alignment marks were fabricated first on the epitaxial wafer during the OEP process.
Four different OEPs of 1 µm lines, 3 µm lines, 1 µm holes, and 3 µm holes, respectively,
were then defined and transferred to the wafer by the stepper photolithography system
(stepper) [12]. There are two shapes among the four OEPs, the line patterns and the hole
patterns. The defined line patterns are parallel to the current flow and have widths of 1 µm
or 3 µm, with lengths equal to the source and drain active area, and separations of 2 µm
between the pattern edges. The defined hole patterns have diameters of 1 µm or 3 µm, for
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the 1 µm holes and 3 µm holes, respectively, and the hole patterns are distributed uniformly
over the source and drain active area with a 2 µm separation between the pattern edges.
The optical micrographs of the developed OEP structures on the epitaxial wafer with 1 µm
lines, 3 µm lines, 1 µm holes, and 3 µm holes are shown in Figure 2a,b,c,d, respectively.
The schematic position of the OEP structures are shown in Figure 1a with the hole pattern
rather than the line pattern for clarity.
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Figure 2. Optical microscope pictures of the developed OEPs with (a) 1 µm lines, (b) 3 µm lines,
(c) 1 µm holes, and (d) 3 µm holes.

To form OEPs at the source and drain the ohmic contact area, the inductively coupled
plasma-reactive ion etching (ICP-RIE) system is then used to dry etch the GaN cap layer
and the AlGaN barrier layer with Cl2/BCl3 plasma. The OEPs were etched to around
10 nm above the 2-dimensional-electron-gas (2DEG) channel, which etch-stopped at the
AlGaN barrier layer. The recessed depths were chosen only above 2DEG, due to the higher
contact resistances measured for the devices with recessed depth below 2DEG, as shown
in previous research [28]. After wafer cleaning with a diluted hydrochloric acid (HCl)
solution to remove the native oxide layer [29], an ohmic metal stack of Ti/Al/Ni/Au was
deposited with the e-beam evaporation system (E-gun) and annealed by the rapid thermal
annealing system (RTA) at 850 ◦C for 30 s in N2 ambient. The RTA process was followed by
the B11+ ion implantation to define the active region of the devices. After the gate length
(Lg) definition of 0.15 µm by the stepper using the 2-step photolithography process [12],
the wafer was also uniformly dipped in a diluted HCl solution to remove native oxide
layers before gate metal deposition [29]. Ni/Au was then deposited as the gate metal stack
for Schottky contact formation and a 100 nm SiNX passivation layer was deposited using
the plasma enhanced chemical vapor deposition (PECVD) for moisture protection [30].
After via-opening of the SiNX layer on the contact metal pads with the ICP system, thick
metallization of a 2 µm Ti/Au metal stack was deposited using an E-gun after a wafer
cleaning process using diluted HCl solution.

3. Results and Discussion
3.1. DC Characteristics

Transmission line modeling (TLM) was used in this study to determine the specific
contact resistivity (ρc) and the contact resistance (Rc) of the epitaxial wafer with the four
designed OEP structures and the results are shown in Table 1 [25,26].
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Table 1. Contact resistivity and contact resistance results of different OEP structures obtained with
the TLM method.

Ohmic Etching Patterns ρc (Ω·cm2) Rc (Ω·mm)

1 µm line 4.04 × 10−7 0.154
3 µm line 7.80 × 10−7 0.212
1 µm hole 6.01 × 10−7 0.191
3 µm hole 7.68 × 10−7 0.199
w/o OEPs 2.73 × 10−6 0.429

The ρc has been improved from 2.73 × 10−6 Ω·cm2 to 4.04 × 10−7 Ω·cm2 and the
Rc has been improved from 0.429 Ω·mm to 0.154 Ω·mm applying the 1 µm line OEP
structure, which is the lowest value among the fabricated TLM structures with the four
designed OEPs.

AlGaN/GaN HEMTs with the four designed OEPs were also fabricated on the same
epitaxial wafer. The IDS−VGS and Gm−VGS curves for the four fabricated OEP AlGaN/GaN
HEMTs are shown in Figure 3. The gate width and source-to-drain spacing (LSD) for the
OEP GaN HEMTs are 2 × 25 µm and 2 µm, respectively. The gate-to-drain spacing (LGD)
of 1.25 µm, and a gate-to-source spacing (LGS) of 0.6 µm were designed for the devices.
The peak extrinsic transconductance (Gm, peak) of 403 mS/mm and the drain-to-source
saturation current (IDSS) of 999 mA/mm were measured from the OEP GaN HEMT with
the 1 µm line patterns at VDS = 10 V, which both demonstrated the highest value among the
four OEP HEMTs, as shown in Table 2. The IDSS is defined as the drain-to-source current
(IDS) when the gate-to-source voltage (VGS) equals zero and the Gm, peak is defined as the
peak extrinsic transconductance value of the device with a VGS swept from −4 V to 0 V.
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Table 2. Ron, Gm, peak, IDSS, minimum noise figure at 28 GHz, and associated gain at 28 GHz of the
2 × 25 µm AlGaN/GaN HEMT devices with different OEP structures.

Ohmic Etching
Patterns

Ron
(Ω·mm)

Gm, peak
(mS/mm)

IDSS
(mA/mm) NFmin at 28 GHz (dB) Gain at 28 GHz

(dB)

1 µm line 1.61 403 999 1.75 5.98
3 µm line 2.24 374 855 2.00 6.14
1 µm hole 1.63 393 932 1.85 5.80
3 µm hole 1.81 385 880 1.87 6.09

The IDS−VDS curves of the four OEP HEMTs with VGS equals to 0 V and VDS sweeping
from 0 V to 5 V and their on-resistance (Ron) values were also measured and calculated,
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respectively, as shown in Figure 4 and Table 2. The HEMT devices with the 1 µm line OEP
structure has the Ron of 1.61 Ω·mm, which shows the lowest Ron among the four designed
OEP HEMTs.
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The measured DC characteristics of the four OEP HEMTs shown in Figure 3, Figure 4,
Table 1, and Table 2 exhibit improvements in the device performance. The improvement
of ρc from 2.73 × 10−6 Ω·cm2 to 4.04 × 10−7 Ω·cm2 and the improvement of Rc from
0.429 Ω·mm to 0.154 Ω·mm using the 1 µm line OEP structure is attributed to the increase
of contact area at the interface between the ohmic metal stack and the semiconductor layer,
forming more TiNX layers and nitride vacancies, the inclusion of fringing effects, and the
removal of irregular surface oxide layers [20,23,31]. Moreover, the increase in electron
tunneling effect at the interface under the ohmic metal stack also stands a crucial role in the
improvement of the ρc and Rc values and could be explained by the increase in N vacancies,
increasing donor doping concentration and electric field, and thus increasing tunneling
current [23]. A benchmark has been made to compare the lowest Rc in this work with
well-known publications that also fabricated OEP GaN-based HEMTs, demonstrating the
low Rc of the designed OEP HEMT in this study, as shown in Figure 5.
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The trend of the Gm, peak and IDSS are also analyzed for the four OEP HEMTs, showing
that 1 µm line OEP HEMTs exhibit the highest values among the four designed structures,
followed by the OEP HEMTs with the 1 µm holes, the 3 µm holes, and the 3 µm lines, in
descending sequence. This is attributed to the larger contact area at the interface of the
1 µm line OEP HEMTs and that the 1 µm line OEP HEMTs still obtain enough AlGaN
barrier layer to form enough 2DEG. Ron values of the four designed OEP HEMTs were also
analyzed and demonstrated a similar trend to that of the IDSS value. The trend of the Ron
improvement for OEP HEMTs compared to non-OEP HEMTs was also found in previous
research [32].

3.2. RF Characteristics
3.2.1. Small Signal Performance

All the designed AlGaN/GaN OEP devices were measured with a E8361C PNA
network analyzer and a 4142B DC supplier to obtain the S parameter results for small signal
performance analysis. The small-signal equivalent circuit model for the OEP AlGaN/GaN
HEMTs was used, as shown in Figure 6. The small signal impedance matching system
was calibrated with a short-open-load-thru (SOLT) calibration with an accuracy of less
than ±0.01 dB for both the S21 and S12 values and less than −45 dB for both the S11
and S22 values within the measured frequency range [33]. The measured S parameters
were first de-embedded and the current gain (H21), maximum stable power gain (MSG),
and maximum available gain (MAG) were calculated using the Microwave Office 2000
software. After extrapolating the H21 (dB) to frequency (log scale) curves and MSG/MAG
to frequency (log scale) curves with the slope of −20 dB/decade, the cut-off frequency (fT)
and maximum oscillation frequency (fmax) values of the OEP devices were obtained, as
shown in Figure 7a,b.
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The de-embedded fT values of the designed 1 µm line, 3 µm line, 1 µm hole, and 3 µm
hole OEP HEMTs are 36.40 GHz, 30.90 GHz, 33.10 GHz, and 32.60 GHz, respectively, as
shown in Table 3. The de-embedded fmax values of the designed 1 µm line, 3 µm line, 1 µm
hole, and 3 µm hole OEP HEMTs are 158.29 GHz, 145.50 GHz, 150.05 GHz, and 146.80 GHz,
respectively, as shown in Table 3. Among the four designed OEP HEMTs with the gate
width of 2 × 25 µm, the fT and fmax value of the 1 µm line OEP device exhibit the largest
value of 36.4 GHz and 158.29 GHz, respectively.
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Table 3. fT, fmax, and extracted small signal parameters of the 2 × 25 µm AlGaN/GaN HEMT devices
with different OEP structures.

Ohmic Etching Patterns fT (GHz) fmax (GHz) Rs (Ω) Rd (Ω) Cgs (fF) Cgd (fF)

1 µm line 36.40 158.29 4.35 2.73 91.03 9.76
3 µm line 30.90 145.50 5.04 3.43 94.84 10.82
1 µm hole 33.10 150.05 4.53 2.81 91.30 10.15
3 µm hole 32.60 146.80 4.75 2.93 93.42 10.56

The parasitic source resistance (Rs), parasitic drain resistance (Rd), parasitic gate-to-
source capacitance (Cgs), and parasitic gate-to-drain capacitance (Cgd) of the four designed
OEP HEMTs were also extracted from the S parameter results, as shown in Table 3. The
1 µm line OEP device exhibit the lowest Rs, Rd, Cgs, and Cgd of 4.35 Ω, 2.73 Ω, 91.03 fF, and
9.76 fF, respectively, among the four designed OEP HEMTs. The small signal results show
that the 1 µm line OEP HEMTs exhibit the best small signal performance among the four
designed structures, followed by the OEP HEMTs with the 1 µm holes, the 3 µm holes, and
the 3 µm lines, in descending sequence.

The measured small signal characteristics of the four OEP HEMTs are shown in
Figure 7 and Table 3. The results show that the 1 µm line OEP HEMT exhibited the
highest fT and fmax among other OEP HEMTs, which could be attrbuted to the reduction
in parasitic resistances and parasitic capacitances. The equations showing the correlation
between fT, fmax, and the extracted parameters of Rs, Rd, Cgs, and Cgd are shown below in
Equations (1) and (2) [34].

fT =
gm

2π
(

Cgs + Cgd

)
[1 + (Rs + Rd)go] + gmCgd(Rs + Rd)

(1)

fmax =
fT

2
√

go
(

Rg + Ri + Rs
)
+ 2π fT RgCgd

(2)

Equations (1) and (2) show that the fT and fmax value are inversely proportional to the
parasitic components of Rs, Rd, Cgs, and Cgd.
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The Rs, Rd, Cgs, and Cgd values of the four designed OEP HEMTs were analyzed
and a similar ascending trend was found. The lowest parasitic values among the four
designed structures were extracted from the 1 µm line OEP HEMTs, followed by the OEP
HEMTs with the 1 µm holes, the 3 µm holes, and the 3 µm lines, in ascending sequence.
This correlates to the trend of the fT and fmax value measured from the four designed OEP
HEMTs. The extracted Cgs and Cgd values of both the 3 µm hole and 3 µm line OEP HEMT
are larger than the extracted Cgs and Cgd values of both the 1 µm hole and 1 µm line OEP
HEMT, which shows that the increment in the size of the patterns from 1 µm to 3 µm
increases the Cgs and Cgd values. The extracted Cgs and Cgd values of the hole OEP HEMTs
also show larger values than the line OEP HEMTs, which is due to the increased separated
ohmic metal arrays formed by the hole patterns. The increase in the contact area between
the ohmic metal and the AlGaN barrier layer were used to reduce the contact resistance of
the OEP HEMTs, and the results show that the 1 µm line OEP HEMT could be fabricated
with the best improvement in small signal performance at the Ka band.

3.2.2. Large Signal Performance

Load–pull measurements at 28 GHz operation frequency for RF power and PAE
analysis were also conducted for the four designed OEP devices with a gate width of
2 × 25 µm. The power sweep curves of the load–pull measurement with input power set
from −7.5 dBm to 20 dBm for the four designed OEP device structures with 1 µm lines,
3 µm lines, 1 µm holes, and 3 µm holes are shown in Figure 8a,b,c,d, respectively.
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The peak PAE, the power gain, and the maximum output power density (Pout, max) in
units of dBm and W/mm of the four OEP HEMTs are shown in Table 4. The peak PAE
of the 1 µm line, 3 µm line, 1 µm hole, and 3 µm hole HEMTs are 29.01%, 21.44%, 28.70%,
and 25.03%, respectively. The power gain of the 1 µm line, 3 µm line, 1 µm hole, and 3 µm
hole HEMTs are 9.52 dB, 8.60 dB, 9.12 dB, and 8.87 dB, respectively. The Pout, max (dBm)
of the 1 µm line, 3 µm line, 1 µm hole, and 3 µm hole HEMTs are 19.86 dBm, 18.31 dBm,
19.36 dBm, and 18.60 dBm, respectively. The Pout, max (W/mm) of the 1 µm line, 3 µm
line, 1 µm hole, and 3 µm hole HEMTs are 1.94 W/mm, 1.36 W/mm, 1.73 W/mm, and
1.45 W/mm, respectively. The load–pull results show that the 1 µm line OEP HEMTs exhibit
the best large signal performance among the four designed structures, followed by the OEP
HEMTs with the 1 µm holes, the 3 µm holes, and the 3 µm lines, in descending sequence.

Table 4. RF large signal load-pull measurement results of the 2 × 25 µm AlGaN/GaN HEMT devices
with different OEP structures.

Ohmic Etching
Patterns PAE Peak (%) Gain (dB) Pout, max (dBm) Pout, max (W/mm)

1 µm line 29.01 9.52 19.86 1.94
3 µm line 21.44 8.60 18.31 1.36
1 µm hole 28.70 9.12 19.36 1.73
3 µm hole 25.03 8.87 18.60 1.45

The measured large signal characteristics of the four OEP HEMTs are shown in Figure 8
and Table 4. The 1 µm line OEP HEMTs exhibit the largest gain, PAE, and Pout, max among
the four designed OEP HEMTs, followed by the OEP HEMTs with the 1 µm holes, the 3 µm
holes, and the 3 µm lines, in descending sequence. The descending trend obtained from
the large signal performance shown in Table 4 matches that of the DC characteristics and
the small signal performances shown in Tables 2 and 3, respectively. This could be due to
the good thermal dissipation from the SiC substrate and low surface trapping of the OEP
HEMTs with well deposited passivation layer [35]. The increase in the contact area between
the ohmic metal and the AlGaN barrier layer was used to reduce the contact resistance and
increase the saturation current of the OEP HEMTs, and the results show that the 1 µm line
OEP HEMT could be fabricated with the best improvement in large signal performance at
the Ka band.

3.2.3. Noise Figure

The noise figure measurement at the Ka band was carried out for all four OEP devices
with a gate width of 2 × 25 µm. The frequency sweep for the noise figure measurement
was set from 18 GHz to 41 GHz. The gain to NFmin graphs of the line-etched and hole-
etched devices are shown in Figure 9a,b, respectively. At 28 GHz, NFmin of 1.75 dB with
an associated gain of 5.98 dB and NFmin of 2.00 dB with an associated gain of 6.14 dB were
measured for the 1 µm line and 3 µm line OEP devices, respectively, as shown in Figure 9a
and Table 2. At 28 GHz, NFmin of 1.85 dB with an associated gain of 5.80 dB and NFmin of
1.87 dB with an associated gain of 6.09 dB were measured for the 1 µm hole and 3 µm hole
OEP devices, respectively, as shown in Figure 9b and Table 2. The results show that the
OEP devices etched with 1 µm lines exhibit the lowest NFmin among the fabricated devices
with comparable associated gain.

The measured noise figure characteristics of the four OEP HEMTs are shown in Figure 9
and Table 2. The 1 µm line OEP HEMTs exhibit the smallest NFmin among the four designed
OEP HEMTs at 28 GHz, followed by the OEP HEMTs with the 1 µm holes, the 3 µm holes,
and the 3 µm lines, in ascending sequence. The lowered NFmin is due to the reduction of
access resistance achieved from the thinned barrier layer at the ohmic patterns and the
increased contact area at the ohmic metal and semiconductor interface, which reduce Rs
and Rd [19]. However, larger areas of the etched-away barrier layers in the 3 µm line OEP
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devices cause larger depletion of the 2DEG and reduction in IDS, which further increase Rs
and Rd [20]. The increased Rs and Rd in the 3 µm line OEP devices may also be the reason
for the higher NFmin, as shown in Equation (3). On the other hand, the parasitic Cgs of
the HEMT devices also plays an important role in determining the device NFmin during
high frequency noise figure measurement, as shown in Equation (3) [36]. The parasitic Cgs
values of the four designed OEP HEMTs are extracted, as shown in Table 3, and show a
similar ascending trend to that of the ascending trend found in the measured NFmin values
of the four designed OEP HEMTs, as shown in Table 2.

NFmin = 1 + 2π f K f Cgs

√(
Rg + Rs

)
gm

(3)

The increase in the contact area between the ohmic metal and the AlGaN barrier layer
was used to reduce the Rs and Rd of the OEP HEMTs, and the results show that the 1 µm
line OEP HEMT could be fabricated with the best improvement in noise figure performance
at the Ka band.

Further analysis comparing the device performance of GaN HEMTs with and without
the 1 µm OEP structure could be pursued as future work. This analysis might involve
exploring various ohmic etching depths to optimize contact resistivity.
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4. Conclusions

The design and fabrication of AlGaN/GaN HEMTs with four different OEPs to op-
timize the Ka-band performances were discussed in this study. The 1 µm line, 3 µm line,
1 µm hole, and 3 µm hole OEP AlGaN/GaN HEMTs were analyzed with regard to DC
and RF characteristics. Low ρc of 4.04 × 10−7 Ω·cm2 was also measured for the 1 µm line
OEP HEMTs. Optimized Gm of 403 mS/mm and the IDSS of 999 mA/mm were measured
for the 1 µm line OEP HEMT. The small signal and large signal results of the OEP HEMTs
were measured and the optimized performance achieved with the 1 µm line OEP HEMT.
Moreover, the lowest NFmin of 1.75 dB among four OEP HEMTs was achieved with the
fabricated 1 µm line OEP HEMTs, showing improvement in the RF noise figure character-
istics. Overall, the increase in the contact area between the ohmic metal and the AlGaN
barrier layer were used to reduce the contact resistance of the OEP HEMTs, and the results
show that the 1 µm line OEP HEMT could be fabricated with the best improvement in RF
performance for future 5G and B5G system applications at the Ka-band.
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