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KEY MESSAGE
Seminal plasma biomarkers show potential for predicting assisted reproductive technology outcomes. This
comprehensive review identifies 32 molecules, including IL-18 and TGF-b1/IL-18 ratio, as promising biomarkers. Further
research is needed to explore their predictive ability and to develop non-invasive diagnostic tools for infertility
investigation and assisted reproduction.

ABSTRACT
The diverse nature and high molecule concentration of seminal plasma (SP) makes this fluid a good potential source for a
potential biomarker that could predict assisted reproductive technology (ART) outcomes. Currently, semen quality
parameters cannot accurately predict ART outcomes. A systematic literature search was conducted to identify human SP
biomarkers with potential predictive ability for the outcomes of IVF and intracytoplasmic sperm injection. Observational
cohort and case-control studies describing the association between biomarkers in human SP and the outcome of infertile
men attending for ART were included. Forty-three studies were selected, reporting on 89 potential SP biomarkers
(grouped as oxidative stress, proteins glycoproteins, metabolites, immune system components, metals and trace elements
and nucleic acids). The present review supports 32 molecules in SP as potentially relevant biomarkers for predicting
ART outcomes; 23 molecules were reported once and nine molecules were reported in more than one study; IL-18 and
TGF-b1�IL-18 ratio were confirmed in distinct studies. This review presents the most comprehensive overview of relevant
SP biomarkers to predict ART outcomes to date, which is of clinical interest for infertility investigations and assisted
reproduction; nevertheless, its potential is under-exploited. This review could serve as starting point for designing an all-
encompassing study for biomarkers in SP and their predictive ability for ART outcomes, and for developing a non-invasive
diagnostic tool.
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INTRODUCTION
A ll 8 billion people on earth have
one thing in common: the start
of life; the fusion of one sperm
cell with one oocyte.

Approximately 250 babies are born each
minute; however, not all babies are
conceived via natural conception. Global
infertility prevalence is increasing and
currently affects around 15�20% of all
couples (Chandra et al., 2013; Rezaeiyeh
et al., 2022). Infertility is defined by the
World Health Organization as the ‘failure
to achieve pregnancy after 12 months of
regular unprotected sexual intercourse’.
Assisted reproductive technology (ART)
programmes have helped millions of
couples to become pregnant; however,
the results of these techniques are still
unsatisfactory. Approximately one-third of
the IVF and intracytoplasmic sperm
injection (ICSI) transfers result in live birth
(DeGeyter et al., 2020; Sunderam et al.,
2022). Unfortunately, recurrent ART
failure is often caused by unexplained
infertility. The prevalence of male
unexplained infertility among men with
infertility is about 15% and is accompanied
by normal semen analysis without any
physical and endocrine abnormalities
(Hamada et al., 2012). To date, no
biomarkers can accurately predict ART
success (Wang and Swerdloff, 2014).

An important male factor for successful
pregnancy, which is often neglected, is the
whole semen omitted from spermatozoa,
defined as seminal plasma (SP). Seminal
plasma is a combination of secretions from
the testis, epididymis and accessory sex
glands, i.e. seminal vesicles, prostate and
bulbourethral glands, and comprises
approximately 90�95% of semen volume
(Samanta et al., 2018; Anamthathmakula
et al., 2020). Seminal plasma has a
complex and diverse nature and contains
high concentrations of molecules,
including proteins (antioxidative) enzymes,
nucleic acids, metabolites, inorganic ions,
microbes and hormones (Juyena and
Stelletta, 2012; Altm€ae et al., 2019).
Seminal plasma was always considered to
be a passive transport vector for
spermatozoa. During ejaculation, however,
spermatozoa come into contact with SP
components, which triggers a maturation
process that confers sperm motility and
fertilization capacity (Rodríguez-Martínez
et al., 2011;Milardi et al., 2012). Therefore,
it has been suggested that SP factors have
the ability to either stimulate or inhibit
sperm viability, motility and fertilization
capacity before insemination (Rodríguez-
Martínez et al., 2011;Mei et al., 2019).
To emphasize the importance of SP on
pregnancy, clinical studies have shown that
intravaginal SP insemination during ART
yields higher implantation rates and clinical
pregnancy compared with women who do
not receive intravaginal SP insemination
(Chicea et al., 2013; Friedler et al., 2013;
Nikolaeva et al., 2016). The presence of
SP, however, is considered non-essential
for fertilization, as proven by successful
fertilization using washed ejaculated
spermatozoa in ART procedures
(Rodríguez-Martínez et al., 2011;
Kanannejad and Gharesi-Fard, 2019).

Before removing SP during ART, SP factors
can already execute their function on
spermatozoa by altering functionality and
quality, indirectly affecting IVF and ICSI
outcomes. Because of these important
functions, the easy accessibility of SP
during ART treatment and the high
concentration of diverse molecules makes
SP an interesting source for biomarkers
predicting ART outcomes. Therefore, the
aim of this systematic review was to
describe potential biomarkers in SP and
their ability to predict ART outcomes. To
the best of our knowledge, this systematic
review is the first to report solely the
relationship between biomarkers in SP and
the potential predictive ability of ART
outcomes. Identifying novel molecular
biomarkers in SP may give insight into
unexplained male infertility and recurrent
ART failure. It could also serve as a non-
invasive diagnostic tool during fertility
treatment.
MATERIALS AND METHODS

The search strategy was conducted in
accordance with the Preferred Reporting
Items For Systematic Reviews and Meta-
Analyses (PRISMA) 2020 guidelines (Page
et al., 2021). The review protocol has been
registered in the International Prospective
Register of Systematic Reviews
(PROSPERO; CRD42023404113).

Data sources and search strategy
A systematic search was conducted using
two online databases:MEDLINE-PubMed
and EMBASE. The search strategy
combined ‘seminal plasma’, ‘ART’ and
‘biomarker’ related words, using keywords
and medical subject heading (MeSH)
terms. No language, geographic,
demographic, time-specific or other
inclusion filters were applied. The search in
both databases was conducted on 22
February 2023. Output of the databases
included studies up to February 2023. The
exactMEDLINE-PubMed and EMBASE
search query is presented in
Supplementary Table 1. Additional sources
were identified from citations of retrieved
studies.
Study selection
Studies were selected independently by
two investigators (JSB and NMM) and
discrepancies were discussed and solved
by involving a third independent
researcher (GS). Articles were initially
screened by title and abstract, and
irrelevant articles subsequently removed.
Full-text screening of the remaining articles
was then conducted. The primary
outcome of this review was to identify
biomarkers in SP with the potential ability
to predict IVF and ICSI outcomes.
Observational cohort and case-control
studies describing the association between
SP biomarkers in infertile men, and the
outcomes of ART, were evaluated.
Exclusion criteria were identified as follows:
review articles, editorials and opinions,
case reports, abstracts and posters, animal
studies, studies evaluating biomarker in
something other than SP, e.g. whole
semen, spermatozoa, blood, blood plasma,
or studies evaluating SP from men not
attending an ART programme.

Following systematic search and article
selection, additional records were
retrieved using the snowballing technique
and evaluated in the same way as articles
retrieved from the systematic search. This
method helps to ensure that all relevant
studies have been identified. The
reference lists of review articles and
relevant studies were hand-searched to
identify other potentially eligible studies.
Outcome measures
At least one of the following ART outcomes
must have been reported in association
with a SP biomarker: biochemical
pregnancy (defined as positive b-HCG
measurement 2 weeks after embryo
transfer), clinical pregnancy (defined as
visible pregnancy using an ultrasound after
12 weeks of gestation), undefined
pregnancy (defined as biochemical or
clinical pregnancy), fertilization rate
(defined as the percentage of fertilized
oocytes), fertilization failure (defined as
failure of fertilization in all oocytes), time to
pregnancy (defined as the number of IVF
or ICSI cycles until successful pregnancy)
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or live birth (defined as the birth of a live
child after 24 weeks’ gestation).

Data extraction and synthesis
Data from articles were manually
extrapolated by one investigator (JSB). For
every eligible study, the following data were
extracted: reference information, study
design, study population (number of
participants, subgroups, age, body mass
index [BMI], country), SP biomarker,
biomarker measurement technique, ART
outcome and all relevant results (P-values,
conclusion). Subsequently, SP biomarkers
were categorized, and all extracted data
were tabulated based on biomarker
category (TABLE 1).

Quality assessment
To evaluate the quality and possible bias of
the selected articles, two investigators (JSB
and NMM) independently scored each
included work using the Quality
Assessment Tool from the National Heart,
Lung, and Blood Institute-National Institute
of Health (NHLBI-NIH, 2021). Possible
inconsistencies were resolved through
common agreement. Observational
cohort studies were scored on 14 criteria
using the ‘Quality Assessment Tool for
observational cohort and Cross-Sectional
studies’, and quality was categorized as
poor quality (<5 points), fair quality (5�8
points), or good quality (>8 points). Case-
control studies were scored on 12 criteria
using the ‘Quality Assessment of Case-
Control studies’, and the quality was
categorized as follows: poor (<4 points),
fair (4�7 points), or good (>7 points). All
studies were included in this review
regardless of the quality score.
RESULTS

Identification and selection of articles
The PRISMA flowchart of the search
strategy, identification and selection
process is presented in FIGURE 1. Initial
MEDLINE-PubMed (n= 1020) and
EMBASE (n= 271) searches identified a
total of 1291 articles, including 94
duplicates, which were removed using
Mendeley Desktop version 1.19.8 and
Rayyan (Ouzzani et al., 2016). The
remaining 1197 articles were screened for
title and abstract; 1161 records were
instantly excluded, and 36 articles were
selected for full-text evaluation. Five
records identified as abstracts or posters
could not be retrieved and were
subsequently excluded. Six articles were
excluded based on inclusion and exclusion
criteria: incorrect outcome parameters
(n= 5) and incorrect semen fraction
(n= 1). Twenty-five articles met the
inclusion criteria and were selected via the
systematic search. Additional records were
included using snowballing method
(n= 18). Eventually, 43 studies were
included and classified into seven
categories: oxidative stress (n= 8), proteins
(n= 7), glycoproteins (n= 6), metabolites
(n= 2), immune system components
(n= 13), metals and trace elements (n= 5)
and nucleic acids (n= 3) (FIGURE 2). One
study reported biomarkers belonging to
oxidative stress and the immune system
component categories. In total, 43 studies
reported on 89 potential SP biomarkers.

The quality assessment of observational
cohort- and case-control studies is
presented in FIGURE 3. The complete quality
assessment is available in Supplementary
Table 2. Overall, the quality of the studies
identified in this systematic literature
search was fair. One of the 43 studies was
categorized as poor quality, 34 studies
were categorized as fair quality and eight
studies were good quality. Information,
such as inclusion criteria, sample size
justification, and whether the outcome
assessment was carried out blind, was
unaccounted in 36, 40 and 37 studies,
respectively.

Primary outcome: potential biomarkers

Oxidative stress
Oxidative stress (OS) is defined as the
imbalance between the formation of
oxidants (reactive oxygen species [ROS])
and (non)enzymatic antioxidants.
Currently, OS is suggested to be one of
the major causes of male infertility by
altering sperm function and quality.
Indeed, around 40% of men with infertility
have shown elevated ROS levels in their SP
(Lanzafame et al., 2009;Mahfouz et al.,
2009). A total of eight studies reporting 10
potential OS biomarkers in SP were
identified (TABLE 1). Noteworthy, two
publications reported identical data and
study population, but nothing about
potential duplication was disclosed (Al-
Saleh et al., 2019; 2021). Two studies
evaluated the relationship between SP
ROS levels and IVF/ICSI outcomes (Zorn
et al., 2003; Hammadeh et al., 2008).
Hammadeh et al. (2008) reported a non-
significant correlation between SP ROS
levels and IVF and ICSI fertilization rates
(n= 36, P=0.187; and n= 22, P= 0.280,
respectively) and pregnancy rate (n= 36;
P= 0.976 and n= 22; P= 0.683,
respectively). Surprisingly, a significant
negative correlation between SP ROS
levels and fertilization rate was established
when IVF and ICSI groups were combined
(n= 58; P= 0.045), but this was not
observed for pregnancy rate (n= 58,
P= 0.730) (Hammadeh et al., 2008).

Contrary to the continuous analysis by
Hammadeh et al. (2008), Zorn et al.
(2003) analysed the fertilization rate as a
categorical variable. Participating men
were categorized according to fertilization
rate (<25% or >25%). A significant
association between high SP ROS
concentration and low fertilization rates in
IVF was reported (n= 41; P=0.031), but
not in ICSI (n= 106; P-value not reported).
Additionally, ROS levels were significantly
lower in SP of men whose partner achieved
successful clinical pregnancy compared
with unsuccessful pregnancy after IVF
(n= 41, P= 0.041), but no discrepancies
were observed after ICSI (n= 106,
P= 0.718). Noteworthy, the IVF and ICSI
groups did not contain identical
populations, as the IVF group included
men diagnosed with normospermia,
whereas the ICSI group comprised men
diagnosed with oligoasthenospermia (Zorn
et al., 2003).

Among the generated ROS is H2O2

analysed by two studies by Al-Saleh et al.
(2019; 2021) who reported identical data
concerning the association between SP
H2O2 levels and IVF outcomes (n= 599).
No statistically significant associations were
identified between H2O2 and fertilization
(P= 0.802), biochemical pregnancy
(P= 0.757), clinical pregnancy (P= 0.545)
and live birth rates (P= 0.494).

Oxidative DNA damage is related to the
pathogenesis of numerous diseases and is
particularly destructive for the sperm
genome and consequently an important
cause of male infertility (Tunc and
Tremellen, 2009). DNA damage caused by
OS results in single and double-strand
DNA breaks as well as oxidative
nucleotides (Hegde et al., 2012). One of
these oxidative nucleotides is 8-hydroxy-2’-
deoxyguanosine (8-OHdG), which can
subsequently be used as a biomarker for
measuring oxidative DNA damage (Cambi
et al., 2013). Three studies have evaluated
the relationship between SP 8-OHdG
levels and IVF/ICSI outcomes (Ahelik et al.,
2015; Al-Saleh et al., 2019; 2021). Both
studies by Al-Saleh et al. (2019; 2021)
reported identical non-statistical
associations between 8-OHdG and



TABLE 1 COMPREHENSIVE OVERVIEW OF DATA EXTRACTED FROM ALL SELECTED ARTICLES IN THIS SYSTEMATIC REVIEW

Reference Population (n) Country; age; BMI Seminal plasma
biomarker

Measurement
technique

Outcome Main conclusion

Oxidative stress

Ahelik et al. (2015) IVF (58)
ICSI (21)

Estonia: 36.3 § 6.3; 26.6 § 2.9 8-OHdG ELISA BP, CP No conclusion can be drawn owing to lack of
well-defined results.

Al-Saleh et al. (2019) IVF (599) Saudi Arabia: 32.8; 29,8 8-OHdG, H2O2, CAT,
TAC

ELISA FR, BP, CP, LB No significant correlations between 8-OHdG,
H2O2, CAT, TAC and IVF outcomes.

Al-Saleh et al. (2021) IVF (599) Saudi Arabia: 37.9 § 7.4; 29.8 § 6.1 8-OHdG, H2O2, CAT,
TAC, MDA

ELISA
MDA: HPLC

FR, BP, CP, LB No significant correlations between 8-OHdG,
H2O2, CAT, TAC, MDA and IVF outcomes.

Crisol et al. (2012) IVF (71)
ICSI (181)
IVF/ICSI (48)

Spain: IVF: 36.6 § 3.7; NR
ICSI: 37.3 § 4.6; NR

GPX Spectrophotometry FR, PR No significant correlations between GPX activity
and fertilization and pregnancy rates.

Hammadeh et al. (2008) IVF (36)
ICSI (22)

Germany: NR; NR ROS, TAC Colorimetric assay FR, PR Significant correlation between ROS and fertili-
zation rate of IVF and ICSI combined. No signif-
icant correlation with TAC.

Jȩdrzejczak et al. (2005) IVF (79) Poland: successful: 33.3 § 3.9; NR
Unsuccessful: 35 § 4.9; NR

MDA Colorimetric assay FR Significant negative correlation between MDA
and fertilization rate.

Yeung et al. (1998) IVF (89) Germany: 35.2; NR GPX, GRD, SOD, cata-
lase like

Spectrophotometer FR, PR No significant correlations between GPX, GRD,
SOD, and catalase like activity with fertilization
and pregnancy rates

Zorn et al. (2003) IVF (41)
ICSI (106)

Slovenia: IVF: 35.2 § 6.1; NR
ICSI: 34.1 § 6.0; NR

ROS Colorimetric assay FR, CP Significantly higher ROS level in fertilization
rates <25% versus >25% after IVF. Significant
lower ROS level in successful pregnancy versus
unsuccessful pregnancy after IVF.

Proteins

Kanannejad and
Gharesi-Fard, (2019)

IVF (13):
Successful (5)
Unsuccessful (8)

Iran: successful: 33.8 § 3.7; NR
Unsuccessful: 34 § 3.9; NR

Clusterin, NPC2, PSA 2D-PAGE, mass spectrometry BP Clusterin and NPC2 significantly overexpressed
while PSA was significantly downregulated in
successful pregnancy versus unsuccessful preg-
nancy.

Koistinen et al. (2002) IVF (96) Finland: NR; NR Semenogelin, PSA Immunofluorometric assay FR No significant correlation between semenogelin
and PSA with fertilization rate.

Martinez-Soto et al. (2018) ICSI (22) Spain: 36.41 § 0.42; NR UPA ELISA CP Significantly higher total UPA level in successful
pregnancy versus unsuccessful pregnancy.

Mei et al. (2019) IVF (97) China: NR; NR Galectin-3 ELISA FR Significant positive correlation between fertiliza-
tion rate and galectin-3 concentration in semi-
nal plasma derived extracellular vesicles.

Rolf et al. (1998) IVF (73) Germany: NR; NR Creatine kinase Spectrophotometry PR No significant difference in creatine kinase
between successful and unsuccessful preg-
nancy.

(continued on next page)
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TABLE 1 (Continued)

Reference Population (n) Country; age; BMI Seminal plasma
biomarker

Measurement
technique

Outco Main conclusion

Spiessens et al. (1998) IVF (125) Belgium: NR; NR a-glycosidase Spectrophotometry FR, PR No significant difference in a-glycosidase level
between successful and unsuccessful preg-
nancy.

Xu et al. (2019) IVF (166) China: median 32; 23.51 Prosaposin ELISA FR Significant positive correlation between prosa-
posin and fertilization rate

Glycoproteins

Chen et al. (2021) IVF (63) China: 32.9 § 4; NR Soluble CD147 ELISA FR, PR Significant positive correlation between soluble
CD147 with fertilization rate. Significant higher
CD147 level in pregnancy versus non-pregnancy
group.

Geva et al. (1997) ICSI (50):
Infertile (25)
fertile (25)

Israel: infertile: 27.8 § 5.6; NR
fertile: 28.2 § 4.3; NR

CA-125 Enzyme immune assay FR, PR No significant correlations between CA-125 and
fertilization and pregnancy rates.

Koistinen et al. (2000) IVF (112) Norway: NR; NR Glycodelin-A Immunofluorometric assay FR Significantly higher glycodelin-A in fertilization
rates <25% versus >25%. No continuous cor-
relation between glycodelin-A and fertilization
rate

Matorras et al. (1995) IVF (46) Spain: 34.5 § 5.4; NR CA-19.9, CA-125, CA-
195

Immunoradiometric assay FR, PR Significantly higher CA-19.9 and CA-195 levels
in fertilization rates �66% versus <66%. No sig-
nificant correlations with fertilization rate as
continuous variable.

Meisser et al. (1996) IVF (97) Switzerland: 26�64; NR CA-125 Immunoradiometric assay FR, PR No significant correlations between CA-125 and
fertilization and pregnancy rates.

Ovayolu et al. (2016) IVF (113):
Successful (42)
Unsuccessful (71)

Turkey: successful: 33.5 § 4.8; NR
unsuccessful: 34.3 § 7.6; NR

Soluble CD14 Chemiluminescence
immune assay

BP, LB Significantly higher soluble CD14 level in suc-
cessful pregnancy and live birth versus unsuc-
cessful pregnancy.

Metabolites

Allahkarami et al. (2017) ICSI (50) Iran: 25-40; NR Ammonia, urea, uric
acid, creatinine

Spectrophotometry,
diacetyl monoxime,
enzyme assay

FR Significant negative correlations between uric
acid and urea with fertilization rate.

Lay et al. (2001) IVF (24) USA: 33.9 § 4.8; NR Fructose, lactic acid,
citric acid,
carnitine

HPLC FR No significant correlations between fructose,
lactic acid, citric acid, and carnitine with fertili-
zation rate

Immune system components

Dahl et al. (2014) ART (54) Denmark NR; NR sHLA-G ELISA PR No significant difference in sHLA-G levels
between pregnancy and non-pregnancy group.

El-Halawaty et al. (2011) ICSI (33) Egypt:NR; NR AMH ELISA FR No significant correlations between AMH and
fertilization rates.

(continued on next page)
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TABLE 1 (Continued)

Reference Population (n) Country; age; BMI Seminal plasma
biomarker

Measurement
technique

Outcome Main conclusion

El-Sherbiny et al. (2021) ICSI (184) Egypt: NR; NR ASA ELISA FR, PR No significant differences in fertilization and
pregnancy rates between couples with positive
and negative ASA in seminal plasma.

Ford et al. (1996) IVF (63) UK: NR; NR ASA Immunobead assay FR Suggested a decrease in fertilization rate as ASA
IgA or IgG concentration increased.

Jȩdrzejczak et al. (2005) IVF (79) Poland: successful: 33.3 § 3.9; NR;
unsuccessful: 35 § 4.9; NR

IL-8 enzyme immunoassay FR No significant correlations between IL8 and fer-
tilization rates.

Li et al. (2021) IVF (102)
R-ICSI (58)

China: IVF: 32.9 § 4.8; 23.3 § 1.7;
R-ICSI: 33.1 § 4.1; 23.2 § 1.5

AMH, INHB ELISA FR Significantly higher AMH and INHB levels in fer-
tilization rates >30% versus <30%.

Nikolaeva et al. (2016) IVF (40), ICSI (31):
successful (32);
unsuccessful (39)

Russia: successful: median 35.6; NR;
unsuccessful: median 34.2; NR

TGF-b1, IL-18, TGF-b1/
IL-18 ratio

Flow cytometry CP Significantly lower IL-18 level in successful preg-
nancy versus unsuccessful pregnancy. Signifi-
cantly higher TGF-b1/IL-18 ratio in successful
pregnancy versus unsuccessful pregnancy.

Nikolaeva et al. (2019) IVF (20), ICSI (9):
successful (14);
unsuccessful (15)

Russia: successful: median 34.5; NR;
unsuccessful: median 34; NR

TGF-b1, IL-18, TGF-b1/
IL-18 ratio

Flow cytometry CP Significantly lower IL-18 level in successful preg-
nancy versus unsuccessful pregnancy. Signifi-
cantly higher TGF-b1-IL/18 ratio in successful
pregnancy versus unsuccessful pregnancy.

Nilsson et al. (2020) IVF/ICSI (126) Denmark: 33; NR sHLA-G, TGF-b1,2,3 ELISA TTP No significant correlations between sHLA-G
and TGF-b1,2,3 with TTP.

Schallmoser et al. (2019) IVF/ICSI (106) Germany: 36.9; NR sHLA-G ELISA CP No significant difference in sHLA-G between
successful and unsuccessful pregnancy.

Seshadri et al. (2011) IVF (36) UK: median 34; NR IL-6, IL-8, IL-10, IL-11, IL-
12, IFN-g, TNF-a

ELISA FR Significantly higher IL-11 level in fertilization rates
>60% versus <35%. No significant correlation
with fertilization rate as continuous variable

Seshadri et al. (2012) IVF (36) UK: median 34; NR T cells, macrophages/
monocytes,
granulocytes, B cells,
pan leucocytes,
natural killer cells, acti-
vated T and B cells,

Immunohistochemical
staining

FR Significantly elevated macrophage and mono-
cyte (CD14) concentration in fertilization rates
>60% versus <35%. No significant correlation
with fertilization rate as continuous variable.

Zorn et al. (2004) IVF (104) Slovenia: median 35; NR elastase inhibitor
complex

Immunoassay FR, PR No significant correlations between elastase
inhibitor complex and fertilization and preg-
nancy rates.

Metals and trace elements

Benoff et al. (2003) IVF (78)
ICSI (18)

USA: NR; NR Pb Atomic absorption
spectrometer

FR Significant negative correlation between Pb and
fertilization rate.

Benoff et al. (2009) IVF (96) USA: NR; NR Cd Atomic absorption
spectrometer

FR No significant correlation between Cd and fer-
tilization rate.

(continued on next page)
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TABLE 1 (Continued)

Reference Population (n) Country; age; BMI Seminal plasma
biomarker

Measurement
technique

Outco Main conclusion

Kim et al. (2014) IVF (30) USA: median 37; NR Cd, Pb, Hg Mass spectrometry FR, CP, No significant correlations between Cd, Hg, and
Pb with either fertilization, pregnancy or live
birth rates.

Rodríguez-Díaz et al. (2022) IVF/ICSI (92) Spain: pathological: 38.0 § 5.4;
25.8 § 3.5; normal: 38.0 § 6.2;
27.3 § 5.2

Al, B, Ba, Ca, Cd, Co,
Cr, Cu, Fe, K,
Li, Mg, Mn, Mo, Na, Ni,
Pb, Si, Sn,
Sr, V, Zn

Optical emission
spectrophotometry

FR, CP, Significantly lower V level in fertilization rates
�75% versus <75%. Significantly higher Zn, Ca,
K, and Mg levels in successful pregnancy versus
unsuccessful pregnancy.

Zhou et al. (2021) IVF (195) China: 31.6 § 3.6; 24.1 § 3.8 As, Ba, Cd, Cr, Cu, Hg,
Mn, Mo, Ni,
Pb, Tl, V, Zn

IPC-MS FR, CP, No significant correlations between metals and
trace elements with IVF outcomes.

Nucleic acids

Bounartzi et al. (2016) IVF/ICSI (55) Greece: 38.2 § 0.6; 27.6 § 0.5 f-spDNA RT-PCR FR, CP No significant correlations between f-spDNA
and fertilization and pregnancy rates.

Grosso et al. (2021) ICSI (56) Argentina: NR; NR 5’tRF-Glu-CTC, 5’tRF-
Lys-CTT,
5’tRF-Gly-GCC

qRT-PCR PR Significant elevated 5’tRF-Glu-CTC and 5’tRF-
Lys-CTT levels in unsuccessful pregnancy ver-
sus successful pregnancy.

Sukhikh et al. (2012) IVF (79):
successful (13);
unsuccessful (66)

Russia: NR; NR PRM1, PRM2, ADAM-2
mRNA

Reverse qPCR CP, BP, ailure ADAM-2 significantly overexpressed whereas
PRM1 and PRM2 significantly downregulated in
successful pregnancy versus unsuccessful preg-
nancy.

Al, aluminium; AMH, anti-M€ullerian hormone; ART, assisted reproductive technology; As, arsenic; ASA, anti-sperm antibodies; B, boron; Ba, barium; BP, biochemical pregnancy , catalase; Cd, cadmium; Co, cobolt; f-spDNA, free-sperm

plasma DNA; Ca, calcium; Cd, cadmium; CP, clinical pregnancy; Cr, chromium; Cu, copper; ELISA, enzyme-linked immunosorbent assay; Fe, iron; FR, fertilization rate; GPX, g ione peroxidase; GRD, glutathione reductase; Hg, mercury;

HPLC, high-performance liquid chromatography; ICSI, intracytoplasmic sperm injection; INHB, inhibin B; IPC-MS, inductively coupled plasma mass spectrometry; K, potassium ive birth; Li, lithium; MDA, malondialdehyde; Mg, magnesium;

Mn, manganese; Mo, Molybdenum; Na, sodium; Ni, nickel; NPC2, epididymal secretory protein E1; NR, not reported; Pb, lead; PR, undefined pregnancy rate, i.e. it can be bioc al or clinical; PSA, prostate specific antigen; qRT-PCR,

quantitative reverse transcription polymerase chain reaction; ROS, reactive oxygen species; RT-PCR, reverse transcription polymerase chain reaction; sHLA-G, serum human le te antigen G; Si, silicon; Sn, tin; SOD, superoxide dismutase;

Sr, strontium; TAC, total antioxidant capacity; Tl, thallium; TTP, time to pregnancy; UPA, urokinase-type plasminogen activator, V, vanadium; Zn zinc; 8-OHdG, 8-hydroxy-2’-de anosine.
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FIGURE 1 The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram of the systematic literature search. Study
identification, screening, and eligibility. Included studies were classified into seven groups: oxidative stress (n = 8), proteins (n = 7), glycoproteins (n = 6),
metabolites (n = 2), immune system (n = 13), metals and trace elements (n =5) and nucleic acids (n = 3). One article reported biomarkers belonging to
both oxidative stress and immune system categories.

FIGURE 2 Visual representation of potential seminal plasma biomarkers and their categories. AMH, anti-M€ullerian hormone; ASA, anti-sperm
antibodies; Ca, calcium; CA, carcinoma antigen; CAT, catalase; Cd, cadmium; CD, cluster of differentiation; E1, epididymal secretory protein; Fe, iron;
GPX, glutathione peroxidase; IL, interleukin; MDA, malondialdehyde; Pb, lead; PSA, prostate specific antigen; ROS, reactive oxygen species; TAC, total
antioxidant capacity; TGFb, transforming growth factor b; tRFs, tRNA-derived fragments; Zn, zinc; 8-hydroxy-2’-deoxyguanosine (8-OHdG). Figure
created with BioRender.
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FIGURE 3 Quality assessment of observational cohort studies and case-control studies. Yes
(green), no (red), cannot determine (blue), not applicable (grey), not reported (yellow). Quality
score observational cohort studies: � Poor (<5), �� Fair (5-8), ���Good (>8). Quality score case-
control studies: � Poor (<4), �� Fair (4-7), ���Good (>7). Figure created with BioRender.
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fertilization (P= 0.625), biochemical
pregnancy (P= 0.054), clinical pregnancy
(P=0.055) and live birth rates (P= 0.105)
(n= 599). In the third study, 8-OHdG was
tested in parallel with lipid peroxidation
marker 8-iso prostaglandin F2a (8-EPI), a
urinary OS marker (Ahelik et al., 2015).
Ahelik et al. (2015) reported a significant
association between OS in the male
partners and pregnancy rate (P= 0.022);
however, the OS marker (8-OHdG or 8-
EPI) is not specified as well as the source of
the marker (seminal plasma or urine) and
the ART programme (IVF or ICSI). In
addition, a significant association between
urinary 8-EPI and pregnancy was reported
(n= not reported, P= 0.049) (Ahelik et al.,
2015). Ultimately, because of the lack of
well-defined results, no clear conclusion
regarding the SP OS marker 8-OHdG can
be drawn.

Besides oxidative DNA damage, OS can
induce cell membrane damage in
spermatozoa. Specifically, ROS induces
lipid peroxidation in the sperm membrane,
which can reduce membrane fluidity and
hinder sperm�oocyte fusion (Aitken et al.,
1989; De Lamirande et al., 1993). A
quantitative end-product of lipid
peroxidation is malondialdehyde (MDA),
which can subsequently be used as an OS
marker (Requena et al., 1996). Two studies
evaluated MDA levels in SP and IVF
outcomes (Jȩdrzejczak et al., 2005; Al-
Saleh et al., 2021). Al-Saleh et al. (2021)
observed no significant association
between MDA levels and fertilization
(P= 0.288), biochemical pregnancy
(P= 0.851), clinical pregnancy (P= 0.552)
and live birth rates (P= 0.38) (n= 599).
When Jȩdrzejczak et al. (2005) compared
SP MDA levels between successful and
unsuccessful fertilization, no discrepancies
were observed (P > 0.05).

Contrary to this, analysing fertilization rate
as a continuous variable, a statistically
negative correlation between seminal
MDA levels and the percentage of fertilized
oocytes was observed (n= 79; r=�0.27;
P < 0.05). This negative correlation
enhanced when the proportion of
successfully fertilized oocytes increased
(>10%; r=�0.36, >20%; r=�0.44,
>30%; r=�0.49; P < 0.05 for all
correlations) (Jȩdrzejczak et al., 2005).

Opposed to the above-described SP
factors related to ROS, multiple studies
have evaluated elements in SP that are
known to provide protection against OS:
enzymatic and non-enzymatic antioxidants.
Interestingly, men with infertility have
shown impaired non-enzymatic antioxidant
capacity in their SP compared with fertile
men (Hammadeh et al., 2008). The total
antioxidant capacity (TAC) provides
information about the status of all
antioxidants in biological samples. Three
studies have evaluated the relationship
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between SP TAC levels and IVF/ICSI
outcomes. Both studies of Al-Saleh et al.
(2019; 2021) reported identical data: non-
significant associations between TAC and
IVF fertilization (P=0.823), biochemical
(P=0.815), clinical pregnancy (P= 0.834)
and live birth rates (P=0.743) (n= 599).
Hammadeh et al. (2008) observed no
correlations between SP TAC levels and
fertilization- or pregnancy rate after IVF
(n= 36, P= 0.881 and P= 0.98,
respectively) and ICSI (n= 22, P= 0.412
and P= 0.859, respectively).

During sperm maturation and transport,
cytoplasmatic enzymes, such as protective
antioxidant enzymes, are lost (Hwangbo et
al., 2016). Accordingly, SP enzymatic
oxidants need to create a protective
environment for spermatozoa, e.g. by
preventing the formation of reactive
oxidants or by interfering with radical chain
reactions and thereby scavenging free
radicals) (Huang et al., 2005). Antioxidant
enzymes were found to be excreted by
epididymal principal cells and include
catalase (CAT), catalase-like, superoxide
dismutase (SOD), glutathione peroxidase
(GPX), and glutathione reductase (Yeung
et al., 1998;Mahfouz et al., 2009). Al-Saleh
et al. (2019; 2021) reported the lack of
associations between SP CAT levels with
fertilization (P= 0.536), biochemical
pregnancy (P= 0.218), clinical pregnancy
(P=0.218) and live birth rates (P= 0.534)
(n= 599). Yeung et al. (1998) reported no
statistically significant correlations between
SP catalase-like activity, SOD, GPX and
glutathione reductase with IVF fertilization
rate (P-values not reported). The
relationship between SP GPX activity and
IVF outcomes was also evaluated by Crisol
et al. (2012). Here, also no correlation
between GPX activity in SP and fertilization
failure after IVF and ICSI was observed
(n= 252, P= 0.55), along with no GPX
activity discrepancies between successful
and unsuccessful pregnancy (n= 252,
P= 0.44).

Enzymatic antioxidants, such as CAT and
SOD, are dependent on co-factors:
calcium, iron and zinc. Live birth was
associated with significantly elevated levels
of zinc and calcium in SP, whereas no
correlation with iron was observed (n= 92,
P= 0.004, P= 0.013 and P-value not
reported, respectively) (Rodríguez-Díaz et
al., 2022). Contrary to this, Zhou et al.
(2021) did not detect any correlations
between zinc and fertilization, clinical
pregnancy or live birth rates (P-values not
reported). A more comprehensive analysis
of trace elements is described in the
section ‘Metals and trace elements’.
Proteins
Seminal plasma contains a high protein
concentration with a comprehensive range
of action. The proteins are involved in
sperm maturation, capacitation, acrosome
reaction, modulation of the immune
response and providing a protective
environment for spermatozoa (Rodríguez-
Martínez et al., 2011). A total of seven
studies reported on nine proteins as
potential SP biomarkers. Kanannejad and
Gharesi-Fard (2019) examined differential
SP protein expression in association with a
biochemical pregnancy test after IVF. Mass
spectrometry was used to identify three
differentially expressed proteins: clusterin,
epididymal secretory protein E1 (NPC2)
and prostate-specific antigen (PSA).
Clusterin is one of the most abundant
glycoproteins in semen and is associated
with sperm quality, sperm maturation and
protecting spermatozoa against oxidative
damage (Salehi et al., 2013; Janiszewska et
al., 2022). The pregnancy group presented
significantly higher clusterin expression
(P= 0.04) (Kanannejad and Gharesi-Fard,
2019). Similar to clusterin, NPC2, which is
associated with cholesterol regulation in
spermatozoa and sperm cell stabilization
(Sullivan et al., 2011), was significantly
overexpressed in the pregnancy group
(n= 13, P=0.02) (Kanannejad and
Gharesi-Fard, 2019). The third identified
protein, PSA, is explicitly produced by the
prostate and plays a key role in semen
liquefaction by degrading fibronectin and
semenogelin (Lilja et al., 1987). High PSA
levels have been an early prostate cancer
diagnostic marker as well as an indicator
for benign prostate hyperplasia (Catalona
et al., 1994; Nadler et al., 1995).
Kanannejad and Gharesi-Fard (2019)
observed a significant overexpression of
PSA in the non-pregnant group (n= 13,
P= 0.003); however, another study found
no significant correlation between PSA
levels and IVF fertilization rates (n= 13,
P= 0.42) (Koistinen et al., 2002). Koistinen
et al. (2002) evaluated the correlation
between PSA and semenogelin with IVF
fertilization rates. Semenogelin is a gel
matrix protein preventing sperm
capacitation and motility. Semenogelin
expression is most abundant in seminal
vesicles (Lilja et al., 1989). An inverse
correlation between the semenogelin and
PSA concentration in SP was observed
(n= 96, P= 0.015). Nonetheless, no
correlation between SP semenogelin levels
and IVF fertilization rates was observed
(n= 96, P= 0.25).

Seminal plasma extracellular vesicles (EV)
expressed galectin-3 mediates
spermatozoa-zona pellucida binding
during fertilization (Deschildre et al.,
2007).Mei et al. (2019) assessed the
relationship of galectin-3 in EV-free SP and
galectin-3 bound to seminal plasma-
derived EV with IVF fertilization rate. No
significant correlations between the
galectin-3 concentration in EV-free SP and
fertilization rate was observed (n= 97,
P= 0.127) Interestingly, a significant
positive correlation between IVF
fertilization rate and galectin-3 bound to
SP-derived EV was detected (n= 97;
P= 0.0083) (Mei et al., 2019).

Urokinase-type plasminogen activator
(UPA) is crucial for activating the
plasminogen system, which operates as an
extracellular protease system, and has
been implicated in the male reproductive
function (Gunnarsson et al., 1999;
Castellino and Ploplis, 2005). Animal
studies have shown the necessity of UPA
for normal male fertility: downregulation of
UPA in mice resulted in decreased fertility
and sperm motility (Qin et al., 2015; Zhao
et al., 2017). An association of UPA with
sperm capacitation and acrosome reaction
has also been suggested (Martinez-Soto et
al., 2018). A study evaluated total UPA and
active UPA levels in SP and its association
with clinical pregnancy outcome after ICSI,
revealing that total UPA levels were
significantly higher in the pregnancy group
compared with the non-pregnancy group
(n= 22, P= 0.01); however, no significant
differences in active UPA were observed
(n= 22, P= 0.38) (Martinez-Soto et al.,
2018).

Ultimately, three SP proteins were
evaluated in three distinct studies:
prosaposin (Xu et al., 2019), creatine kinase
(Rolf et al., 1998) and a-glucosidase
(Spiessens et al., 1998). No statistically
significant differences in SP creatine kinase
and a-glucosidase levels between the men
whose partners achieved pregnancy and
those who did not achieve pregnancy after
IVF were observed (n= 73 and n= 125,
respectively; P-values not reported) (Rolf et
al., 1998; Spiessens et al., 1998). Mice
studies showed that prosaposin, a
lysosomal protein identified in Sertoli cells
and the epididymis, is involved in
sperm�oocyte binding and fertilization
(Magargee et al., 2000). Xu et al. (2019)
showed a significantly positive correlation
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between SP prosaposin levels and IVF
fertilization rate (n= 166; P= 0.005).

Glycoproteins
Seminal plasma is rich in glycosylated
proteins, which are indispensable during
spermatogenesis, sperm maturation,
capacitation and fertilization (Sepp€al€a et
al., 2007; Cheon and Kim, 2015;Maric et
al., 2021). A total of six studies reporting on
six glycoproteins as potential biomarkers
for the prediction of ART outcomes were
identified. Koistinen et al. (2000) evaluated
the glycoprotein glycodelin-A in SP, which
is produced in seminal vesicles (Koistinen
et al., 1997). Glycodelin is suggested to
reduce cholesterol influx and maintaining
spermatozoa in incapacitated state (Yeung
et al., 2009). No linear correlation
between SP glycodelin-A levels and IVF
fertilization rate was observed (n= 112;
P= 0.14) (Koistinen et al., 2000). When
categorizing men based on fertilization rate
(<25% or >25%), however, significantly
higher glycodelin-A levels were observed in
men with lower fertilization rates (n= 112;
P= 0.010). Additionally, total SP protein
concentration was significantly higher in
men with high fertilization rates (n= 112;
P= 0.015) (Koistinen et al., 2000).

Carcinoma antigens (CA), commonly
known as tumour markers, are not strictly
associated with cancer. They can form
structural units of glycoproteins and have
been identified in SP (Hanisch et al., 1985).
The relationship between SP CA-125 levels
and IVF/ICSI outcomes was reported in
three studies (Matorras et al., 1995;
Meisser et al., 1996;Geva et al., 1997).
Geva et al. (1997) compared men
diagnosed with severe
oligoasthenospermia and fertile men with
normospermia. Although the SP CA-125
levels were significantly higher in patients
with severe oligoasthenospermia (n= 50, P
< 0.04), no direct correlations between
CA-125 and fertilization and clinical
pregnancy rates were reported. In
agreement withGeva et al. (1997) both
Matorras et al. (1995) andMeisser et al.
(1996) reported no significant correlations
between SP CA-125 and fertilization, and
pregnancy outcomes (n= 46 and n= 97,
respectively; P-values not reported).
Matorras et al. (1995) also evaluated SP
CA-19.9 and CA-195 levels; however, no
correlations with fertilization and
pregnancy rates were observed.
Nonetheless, a statistically significant
association was found when categorizing
men based on fertilization rate (<66% or
�66%); higher CA-19.9 and CA-195 levels
were observed in men with fertilization
rates 66% or above (n= 97, P=0.02 and
n= 97, P=0.01, respectively) (Matorras et
al., 1995).

Cluster of differentiation (CD)
glycoproteins belong to the
immunoglobulin (Ig) superfamily and are
generally found on the membrane of
immune cells. Aside from membrane-
bound expression, for some CDs, a soluble
isoform has been identified (Ovayolu et al.,
2016;Chen et al., 2021). Levels of a
subtype of soluble CD14 (sCD14-ST), also
known as presepsin, increase during
inflammation (Yaegashi et al., 2005).
Ovayolu et al. (2016) assessed, in a case-
control study, the relationship between SP
presepsin and clinical pregnancy after
ICSI. Seminal plasma presepsin levels were
significantly higher in the pregnancy group
compared with the non-pregnancy group,
in terms of successful pregnancy and live
birth (n= 113, P= 0.004; and n= 113,
P= 0.037, respectively). As for
biochemical pregnancy, SP presepsin
levels were non-significantly higher in the
pregnancy group (n= 113; P= 0.060)
(Ovayolu et al., 2016).

Another soluble CD is CD147. On the
basis of reports on CD147 in the mice
female reproductive tract, a role in
fertilization of CD147 expressed in the
cumulus cell has been suggested (Kuno et
al., 1998). CD147 are present in mice
spermatozoa and may be involved in
sperm motility and acrosome reaction
(Chen et al., 2012). The relationship
between soluble CD147 levels in SP and
IVF fertilization rate and pregnancy
outcome was evaluated by Chen et al.
(2021). Seminal plasma soluble CD147 was
significantly positively correlated with
fertilization rate (n= 63; P= 0.0023).
Additionally, soluble CD147 levels were
significantly lower in the SP of men whose
partners did not achieve pregnancy after
IVF (n= 63; P=0.045).

Metabolites
Metabolites in SP are associated with
sperm energy metabolism, metabolic
activity and motility (Luiza et al., 2018). Two
studies evaluated eight potential
metabolites as SP biomarker. Lay et al.
(2001) evaluated the association between
fructose, lactic acid, carnitine, citric acid
and total protein concentration with IVF
fertilization rates. Fructose is suggested to
be the primary energy source for sperm
motility, and related to anaerobic fructose
catabolism is lactic acid (Mann and
Lutwak-Mann, 1948; Tsujii et al., 2006).
Citric acid has been associated with semen
liquefaction (Huggins and Neal, 1942) and
macronutrient metabolism (Toragall et al.,
2019), whereas carnitine is involved in
metabolic processes like fatty acid
transportation into mitochondria and
acetylated co-enzyme A storage (Ruiz-
Pesini et al., 2001). No associations
between these SP metabolites and
fertilization rate were found, using
continuous and categorical analysis
(n= 24; fertilization rate <30%, 31�70%,
and �71%) (Lay et al., 2001).

Non-protein nitrogenous compounds
(NPN), such as uric acid, urea, ammonia
and creatinine, are produced during
protein and nucleic acid catabolism
(Dimski, 1994). Allahkarami et al. (2017)
evaluated the correlation between these
NPN and ICSI fertilization rates. Significant
negative correlations between SP uric acid
and urea levels with fertilization rate were
reported (n= 50, P=0.043 and n= 50,
P= 0.03, respectively). Contrary, no
significant correlations between SP
ammonia and creatinine with fertilization
rate were established (n= 50; P-values not
reported) (Allahkarami et al., 2017).

Immune system components
Seminal plasma contains immune system
components, such as cytokines, immune
cells and antigens (Samanta et al., 2018).
During natural conception, these
components may be responsible for
conditioning the female immune system
for allogenic spermatozoa and embryos
(Ahmadi et al., 2022). A total of 13 studies
reported on 24 potential SP biomarkers
related to the immune system. An increase
in the number of white blood cells in
semen is referred to as leukocytospermia
and can be a sign of infection or
inflammation (WHO, 2021).
Leukocytospermia has been associated
with infertility, reduced sperm motility,
fertilization and pregnancy rate in ART
(Yilmaz et al., 2005). Seshadri et al. (2012)
studied the effect of SP leukocytes and its
subpopulations on IVF fertilization rates,
whereas evaluating fertilization rate,
participating men were categorized based
on fertilization rate (<35% or >60%),
excluding cases falling between these
categories (Seshadri et al., 2012).
Immunohistochemistry was used to detect
leukocytes and subpopulations in SP, and
the immune cells were identified by
membrane-bound CD glycoproteins. SP
CD14, as a marker of monocytes and
macrophages, was significantly higher in
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the high fertilization group compared with
the low fertilization group (n= 36; P <

0.05) (Seshadri et al., 2012). Therefore,
monocytes and macrophages were
significantly elevated in the high
fertilization group. A non-significant
reduction of CD69 (activated T- and B
cells) was observed in the higher
fertilization rate group (n= 36; P= 0.06).
Ultimately, no significant differences
between T cells (CD3, CD4, CD8),
granulocytes (CD16), B cells (CD20), pan
leukocytes (CD45) and natural killer cells
(CD56) were observed (n= 36; P > 0.15).
Additionally, when analysing fertilization
rate as a continuous variable, none of the
immune cells presented significant
correlations with fertilization rates (P-
values not reported) (Seshadri et al., 2012).

Inverse relationships of SP cytokine levels
with sperm motility and migration have
been described, showing high cytokine
levels in men with infertility and
leukocytospermia (Seshadri et al., 2011).
Pro- and anti-inflammatory cytokines are
produced by various immune-competent
cells in the male reproductive tract (Hill et
al., 1987). Three studies reported on the
anti-inflammatory cytokine transforming
growth factor b (TGF-b) isoform 1 in SP
(Nikolaeva et al., 2016; 2019; Nilsson et al.,
2020). Both studies by Nikolaeva et al.
(2016; 2019) reported no significant
difference in SP TGF-b1 concentration
between successful and unsuccessful
pregnancy in women exposed to seminal
plasma during IVF/ICSI treatment (2016:
n= 71; P-value not reported; 2019: n= 29;
P= 0.077). Additionally, Nikolaeva et al.
(2016) reported no significant difference in
TGF-b1 between successful and
unsuccessful pregnancy groups in terms of
live birth rate (P-value not reported).
Noteworthy, the results of Nikolaeva et al.
(2016; 2019) are exceedingly similar: the
2016 study population consisted of 71
couples, the 2019 study included 29
couples. As the time frame of study
population recruitment and demographic
information are not reported, there could
be an overlap in study population. Nilsson
et al. (2020) evaluated the relationships
between SP levels of three TGF-b isoforms
(1, 2 and 3) with time to pregnancy. All
three isoforms, TGF-b1, 2 and 3, had no
significant effect on time to pregnancy
after IVF/ICSI (n= 126, P= 0.60, P= 0.18
and P= 0.85, respectively). In addition to
the three TGF-b isoforms, two other
members of the TGF-b family were
evaluated: anti-M€ullerian hormone (AMH)
and inhibin B (INHB) (El-Halawaty et al.,
2011; Li et al., 2021). Anti-M€ullerian
hormone and INHB, besides cytokines, are
also classified as protein hormones. Both
AMH and INHB are produced by the
Sertoli cells in the testis and have been
associated with semen quality and
spermatogenesis (Fujisawa et al., 2002;
Barbotin et al., 2015). Li et al. (2021)
categorized men based on fertilization
rate; when the fertilization rate was less
than 30%, couples would undergo rescue
ICSI (n= 58), and when the fertilization
rate was more than 30%, conventional IVF
(n= 102) was carried out. The SP of men
undergoing IVF, which had a good
fertilizing capacity, contained significantly
higher AMH and INHB levels compared
with men undergoing rescue ICSI
(P= 0.000 and P= 0.000, respectively) (Li
et al., 2021). When analysing AMH with
fertilization rate as continuous variable, El-
Halawaty et al. (2011) observed no
significant correlation between SP AMH
levels and ICSI fertilization rate (n= 33;
P= 0.08). Furthermore, no significant
difference in AMH levels between males
with infertility and fertile males attending
for ICSI were reported (n= 33, P= 0.21).

Besides TGF-b1, both studies by Nikolaeva
et al. (2016; 2019) compared pro-
inflammatory interleukin-18 (IL-18) levels
between the SP of men whose partner
achieved a pregnancy and those who did
not achieve a pregnancy. Both studies
reported significantly lower SP IL-18 levels
in the pregnancy group (2016: n= 71,
P= 0.018; 2019: n= 29, P= 0.02).
Regardless of the non-significant difference
in SP TGF-b1 levels between the successful
and unsuccessful pregnancy groups, a
significantly higher TGF-b1/IL-18 ratio was
found in the successful pregnancy group
(2016: n= 71, P= 0.026; 2019: n= 29,
P= 0.033) (Nikolaeva et al. 2016; 2016).

Seshadri et al. (2011), evaluated the
relationship between SP pro- and anti-
inflammatory cytokines and IVF fertilization
rate. The following cytokines were
analysed: pro-inflammatory (IL-8, IL-12,
interferon gamma; INF-g, and tumour
necrosis factor alpha; TNF-a), anti-
inflammatory (IL-10) and both pro- and
anti-inflammatory (IL-6 and IL-11). None of
these SP cytokines correlated with
continuous IVF fertilization rates.
Nonetheless, when categorizing the
participating men based on fertilization
rate (<35% or �60%), SP IL-11 levels
seemed to be significantly higher in the
high fertilization group (n= 36; P � 0.05)
(Seshadri et al., 2011).
An antigen identified in SP is the soluble
form of human leukocyte antigen-G (sHLA-
G), which is expressed by the epididymis,
testis and prostate gland (Larsen et al.,
2011). The sHLA-G has mostly been
investigated in the female reproductive
system where it is associated with
pregnancy complications and
immunomodulation of the fetal�maternal
niche (Ishitani et al., 2003). Moreover, the
homozygous HLA-G genotype is
associated with reduced fertility and
unsuccessful ART outcomes (Hviid et al.,
2004; Dahl et al., 2014). Three studies
evaluated SP sHLA-G with ART outcome
(Dahl et al., 2014; Schallmoser et al., 2019;
Nilsson et al., 2020). Dahl et al. (2014)
divided men based on normal or reduced
semen quality parameters. For both
categories, no significant difference in SP
sHLA-G concentration between men
whose partner achieved pregnancy and
those who did not was observed (n= 17;
P= 0.740 and n= 21; P= 0.161,
respectively). Similarly, Schallmoser et al.
(2019) reported no difference in SP sHLA-
G concentration between the pregnancy
and non-pregnancy groups (n= 106;
P= 0.484), regardless of the males semen
parameters. In addition, Nilsson et al.
(2020) reported no association between
SP sHLA-G concentration and time to
pregnancy after IVF/ICSI (n= 80;
P= 0.484).

Spermatozoa are considered to be
antigenic and present sperm-specific
surface antigens on their membrane
(Bohring and Krause, 2003). By
unfortunate events, sperm surface
antigens can be recognized as foreign by
immune competent cells, resulting in the
production of anti-sperm antibodies (ASA).
The ASA have been identified in SP and
may affect sperm quality, motility and
capacitation (Vickram et al., 2019). El-
Sherbiny et al. (2021) evaluated the
differences in fertilization rate and
successful clinical pregnancy after ICSI
between men positive or negative for ASA
in their SP. Nineteen per cent of included
men proved positive for SP ASA. A non-
significant trend of lower fertilization rate
in ASA-positive men (n= 35) compared
with ASA-negative men (n= 149) was
observed (P= 0.091), whereas successful
pregnancy rate was almost identical
between both groups (P= 0.98) (El-
Sherbiny et al., 2021). Moreover, Ford
et al. (1996) evaluated the relationship
between SP ASA isoform IgA and IgG
levels with IVF fertilization rate. It was
reported that the percentage of fertilized
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oocytes tended to decrease as ASA IgA or
IgG increased; however, no concrete data
or P-values were reported (Ford et al.,
1996).

Polymorphonuclear neutrophils in SP
secrete elastase (Korkmaz et al., 2010).
In SP, elastase is bound to an inhibitor,
forming an elastase-inhibitor complex
(s-EI) (Remold-O’Donnell et al., 1989). High
levels of s-EI are a marker for genital tract
inflammation and are more regularly
associated with infertile men rather than
fertile men (Wolff and Anderson, 1988).
While increased s-EI levels were
significantly associated with reduced
blastocyst development and increased
embryo arrest, no significant correlations
between SP s-EI levels and fertilization and
pregnancy rates were observed (n= 104;
P-values not reported) (Zorn et al., 2004).

Metals and trace elements
As a result of increasing environmental
pollution, exposure to toxic heavy metals,
such as cadmium (Cd), mercury (Hg) and
lead (Pb) via inhalation, digestion and
dermal contact has increased (Jaishankar
et al., 2014;Witkowska et al., 2021). These
metals may interfere with endocrine
function, spermatogenesis, sperm quality
and fertilization capacity (Ng et al., 1991;
L�opez-Botella et al., 2021). Besides heavy
metals, trace elements like magnesium
(Mg), iron (Fe), and zinc (Zn) are
reportedly associated with male
reproduction (Chyra-Jach et al., 2020). A
total of five studies reported 25 heavy
metals or trace elements as potential
biomarkers for ART outcomes.

Four studies reported on the relationship
between SP Pb and IVF outcomes (Benoff
et al., 2003; Kim et al., 2014; Zhou et al.,
2021; Rodríguez-Díaz et al., 2022). Benoff
et al. (2009) reported a significant negative
correlation between SP Pb and IVF
fertilization rate (n= 78 P < 0.0001). In
contrast, Kim et al. (2014) (n= 30),
Rodríguez-Díaz et al. (2022) (n= 92), and
Zhou et al. (2021) (n= 195) evaluated SP Pb
with fertilization, clinical pregnancy and live
birth rates, and did not establish any
significant relationship (P-values not
reported). Noteworthy, although Benoff et
al. (2009), Kim et al. (2014) and Zhou et al.
(2021) analysed fertilization rate as a
continuous variable, Rodríguez-Díaz et al.
(2022) categorized men based on
fertilization rate (<75% or �75%). The
relationships between SP Cd, another
toxic metal, and IVF outcomes were also
evaluated in four studies (Benoff et al.,
2009; Kim et al., 2014; Zhou et al., 2021;
Rodríguez-Díaz et al., 2022). Benoff et al.
(2009) reported no significant correlation
between Cd and fertilization rate (n= 96;
P= 0.455). Moreover, Rodríguez-Díaz et
al. (2022) and Zhou et al. (2021) reported
no relationships with fertilization, clinical
pregnancy or live birth rates (P-values not
reported). Interestingly, Kim et al. (2014)
suggested a negative association between
Cd and clinical pregnancy; however, this
association seemed to be non-significant
(P-value not reported). A third toxic metal,
Hg, was assessed by Kim et al. (2014) and
Zhou et al (2021); both studies reported no
significant relationship between SP Hg
levels and fertilization, clinical pregnancy
or live birth rates (P-values not reported)
(Kim et al., 2014; Zhou et al., 2021).

Rodríguez-Díaz et al. (2022) conducted a
comprehensive analysis. Besides the
previously described Pb and Cd, the
following metals and trace elements in SP
were evaluated: aluminium (Al), boron (B),
barium (Ba), calcium (Ca), cobalt (Co),
chrome (Cr), copper (Cu), Fe, potassium
(K), lithium (Li), Mg, manganese (Mn),
molybdenum (Mo), natrium (Na), nickel
(Ni), silica (Si), tin (Sn), strontium (Sr),
vanadium (V), Zn. When categorizing
fertilization rate, a significantly lower V
concentration in the group with high
fertilization rate was observed (P=0.039).
Furthermore, live birth was associated with
significantly elevated levels of Zn, Ca, K,
and Mg in SP (P= 0.004, P= 0.013,
P= 0.002, P= 0.009, respectively)
(Rodríguez-Díaz et al., 2022). Interestingly,
Zhou et al. (2021) reported no significant
continuous correlation between SP V and
Zn levels with fertilization, clinical
pregnancy or live birth rates (P-values not
reported) (Zhou et al., 2021).

In addition to the preceding mentioned
metals and trace elements, Zhou et al.
(2021) analysed arsenic (As), Ba, Cr, Cu,
Hg, Mn, Mo, Ni, and thallium (Tl). No
significant correlations for either of these
metals and trace elements with
fertilization, clinical pregnancy or live birth
rates were established (P-values not
reported). Statistically significant
relationship of these elements was only
observed regarding blastocyst formation
and quality (Zhou et al., 2021).

Nucleic acids
A total of three studies reported on seven
nucleic acids in SP as potential biomarkers
for ART outcomes. Bounartzi et al. (2016)
studied the relationship between SP-free
sperm DNA (f-spDNA) and IVF/ICSI
outcome. Semifinal plasm free sperm DNA
may be associated with sperm apoptosis,
lysis or active secretion. No significant
correlations between SP f-spDNA and
fertilization (n= 55; P > 0.05) or clinical
pregnancy rates (n= 55; P > 0.05) have
been established (Bounartzi et al., 2016).

It has been demonstrated that SP contains
numerous mRNAs, including protamines 1
and 2 (PRM1, PRM2) mRNA and fertillin- b
(ADAM-2) mRNA (Sukhikh et al., 2012).
Although PRM transcripts quantity relates
to sperm motility and fertilization capacity
(Depa-martyn�ow et al., 2007), no such
relation for ADAM-2 transcripts has been
described. Sukhikh et al. (2012) evaluated
discrepancies of SP PRM1, PRM2, and
ADAM-2mRNA levels of men whose
partner achieved clinical pregnancy
(n= 13) with SP of men whose partner did
not achieve pregnancy (n= 66). The latter
was categorized into three groups:
spontaneous miscarriage before week 11
(n= 10), only biochemical pregnancy
(n= 19) and IVF failure (n= 37). PRM1,
PRM2 and ADAM-2 levels were not
significantly different between clinical
pregnancy group and the miscarriage
group (P=0.73, P= 0.92 and P=0.077,
respectively). ADAM-2 expression was
significantly decreased in both the
biochemical pregnancy and IVF failure
group (P=0.002 and P=0.012,
respectively). Additionally, PRM1 and PRM2
mRNA expression were significantly
decreased in the biochemical pregnancy
group (P=0.023 and P= 0.008,
respectively), but no statistically significant
difference with the IVF failure group was
established (P= 0.13 and P=0.15,
respectively) (Sukhikh et al., 2012).

Small non-coding RNAs (sRNA) are
particularly involved in gene expression
regulation, through, for example, RNA
modification and interference (Raina et al.,
2018;Grosso et al., 2021). Small non-
coding RNAs include transfer RNAs
(tRNAs), which are involved in protein
transcription. By cleavage of the anticodon
loop of a tRNA, tRNA-derived fragments
(tRF) are produced (Odonoghue et al.,
2018). Mice experiments showed the
involvement of tRF in post-testicular
spermatozoa regulation (Sharma et al.,
2016). tRNA-derived fragments have been
detected in SP, although their function
remains unclear.Grosso et al. (2021)
evaluated the difference of three SP tRFs
(5’tRF Glu-CTC, 5’tRF Lys-CTT, and 5’tRF
Gly-GCC) between men whose partner
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achieved a pregnancy and those who did
not. SP 5’tRF Glu-CTC and 5’tRF Lys-CTT
levels were significantly higher when
pregnancy was not achieved (n= 56; P <

0.05, n= 56; P < 0.05, respectively)
(Grosso et al., 2021).

Significant seminal plasma biomarkers
and their outcome
In total, 26 studies reported a significant
relationship for 32 SP biomarkers with at
least one ART associated outcome
(TABLE 2). Twenty-three biomarkers were
evaluated once, whereas nine biomarkers
were assessed in more than one study. For
two out of these nine biomarkers a
significant relationship was reported in
both studies (IL-18 and TGF-b1/IL-18 ratio),
TABLE 2 STATISTICALLY SIGNIFICANT BIO

Biomarker Reference

Oxidative stress

MDA Jȩdrzejczak et al. (2005)

Al-Saleh et al. (2021)

ROS Zorn et al. (2003)

Hammadeh et al. (2008)

Proteins

Clusterin Kanannejad and Gharesi-

Galectin-3 Mei et al. (2019)

NPC2 Kanannejad and Gharesi-

Prosaposin Xu et al. (2019)

PSA Kanannejad and Gharesi-

Koistinen et al. (2002)

UPA Martinez-Soto et al. (2018)

Glycoproteins

CA-19.9 Matorras et al. (1995)

CA-195 Matorras et al. (1995)

Glycodelin-A Koistinen et al. (2000)
whereas the other seven were not
supported by other studies. Both studies
by Nikolaeva et al. (2016; 2019), however,
reported a significant relationship between
IL-18 and TGF-b1/IL-18 ratio with
pregnancy rate; the data of these studies
are most likely partially overlapping.
DISCUSSION

This is the first comprehensive
systematic review of observational
cohort- and case-control studies
describing potential biomarkers in
seminal plasma (SP) of men attending
assisted reproductive technology (ART)
programmes, aligned with the predictive
MARKERS IDENTIFIED IN THE SYSTEMATI

IVF/ICSI Outcome P-value

IVF FR <0.05a

IVF FR 0.288

BP, CP, LB NS

IVF FR 0.031a

CP 0.041a

ICSI FR NS

CP 0.718

IVF FR 0.187

PR 0.976

ICSI FR 0.280

PR 0.683

IVF/ICSI FR 0.045a

PR 0.730

Fard (2019) IVF BP 0.04a

IVF FR 0.0083a

Fard (2019) IVF BP 0.02a

IVF FR 0.005a

Fard (2019) IVF BP 0.00 a

IVF FR 0.42

ICSI CP 0.01a

IVF FR 0.02a

FR NS

IVF FR 0.01a

FR NS

IVF FR 0.010a

FR .0.14
ability of these biomarkers on ART
outcomes. A comprehensive analysis
yielded a total of 43 studies reporting on
88 potential SP biomarkers. Here, we
described evidence for 32 potential
biomarkers in SP, whereas no statistically
significant evidence was reported for 56
molecules. Of these 32 biomarkers, 23
were evaluated in a single study (5’tRF
Glu-CTC, 5’tRF Lys-CTT, ADAM-2
mRNA, Ca, CA-19.9, CA-195, Clusterin,
Galectin-3, glycodelin-A, IL-11, INHB, K,
macrophages/monocytes, Mg, NPC2,
PRM1 mRNA, PRM2 mRNA, prosaposin,
soluble CD14, soluble CD147, uPA, urea,
and uric acid), whereas nine biomarkers
were evaluated in more than one study
(AMH, IL-18, MDA, Pb, PSA, ROS, TGF-
C REVIEW

Variable

Continuous and categorical: >10%; >20%; >30%

Continuous

Continuous

Categorical: <25% versus >25%

Categorical: P versus NP

Categorical: <25% versus >25%

Categorical: P versus NP

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Categorical: P versus NP

Continuous

Categorical: P versus NP

Continuous

Categorical: P versus NP

Continuous

Categorical: P versus NP

Categorical: <66% versus �66%
Continuous

Categorical: <66% versus �66%
Continuous

Categorical: <25% versus >25%

Continuous

(continued on next page)



TABLE 2 (Continued)

Biomarker Reference IVF/ICSI Outcome P-value Variable

Soluble CD14 Ovayolu et al. (2016) ICSI FR 0.004a Categorical: P versus NP

LB 0.037 Categorical: P versus NP

Soluble CD147 Chen et al. (2021) IVF FR 0.0023a Continuous

PR 0.045a Categorical: P versus NP

Metabolites

Urea Allahkarami et al. (2017) ICSI FR 0.03a Continuous

Uric acid Allahkarami et al. (2017) ICSI FR 0.043a Continuous

Immune system components

AMH Li et al. (2021) IVF/R-ICSI FR 0.000a Categorical: <30% versus >30%

El-Halawaty et al. (2011) ICSI FR 0.08 Continuous

IL-11 Seshadri et al. (2011) IVF FR � 0.05a Categorical: <35% versus >60%

FR NS Continuous

IL-18b Nikolaeva et al. (2016) IVF/ICSI CP 0.018a Categorical: P versus NP

Nikolaeva et al. (2019) IVF/ICSI CP 0.02a Categorical: P versus NP

INHB Li et al. (2021) IVF/R-ICSI FR 0.000a Categorical: <30% versus >30%

Macrophage/monocyte Seshadri et al. (2012) IVF FR <0.05a Categorical: <35% vs >60%

FR NS Continuous

TGF-b1�IL-18 ratiob Nikolaeva et al. (2016) IVF/ICSI CP 0.026a Categorical: P versus NP

Nikolaeva et al. (2019) IVF/ICSI CP 0.033a Categorical: P versus NP

Metals and trace elements

Ca Rodríguez-Díaz et al. (2022) IVF/ICSI FR 0.013a Categorical: <75% versus �75%
Pb Benoff et al. (2003) IVF FR <0.0001a Continuous

Kim et al. (2014) IVF FR, CP, LB NS Continuous

Zhou et al. (2021) IVF FR, CP, LB NS Continuous

Rodríguez-Díaz et al. (2022) IVF/ICSI FR, CP NS Categorical: <75% versus �75%
Mg Rodríguez-Díaz et al. (2022) IVF/ICSI FR 0.009a Categorical: <75% versus �75%
K Rodríguez-Díaz et al. (2022) IVF/ICSI FR 0.002a Categorical: <75% versus �75%
V Rodríguez-Díaz et al. (2022) IVF/ICSI FR 0.039a Categorical: <75% versus �75%

Zhou et al. (2021) IVF FR, CP, LB NS Continuous

Zn Rodríguez-Díaz et al. (2022) IVF/ICSI FR 0.004a Categorical: <75% versus �75%
Zhou et al. (2021) IVF FR, CP, LB NS Continuous

Nucleic acids

5’tRF Glu-CTC Grosso et al. (2021) ICSI PR <0.05a Categorical: P versus NP

5’tRF Lys-CTT Grosso et al. (2021) ICSI PR <0.05a Categorical: P versus NP

ADAM-2mRNA Sukhikh et al. (2012) IVF BP 0.002a Categorical: P versus NP

IVF failure 0.012a Categorical: P versus NP

PRM1mRNA Sukhikh et al. (2012) IVF BP 0.023a Categorical: P versus NP

PRM2mRNA Sukhikh et al. (2012) IVF BP 0.008a Categorical: P versus NP
a Statistically significant.
b Biomarkers analysed more than once with consistent results.

ADAM, fertillin-b; AMH, anti-M€ullerian hormone; BP, biochemical pregnancy rate; Ca, calcium; CP, clinical pregnancy rate; FR, fertilization rate; ICSI, intracytoplasmic sperm

injection; INHB, inhibin B; K, potassium; LB, live birth; MDA, malondialdehyde; Mg, magnesium; NP, not pregnant; NPC2, epididymal secretory protein E1; NP, not pregnant; NS,

not significant; P, pregnant; PB, lead; PRM, protamine; PSA, prostate-specific antigen; ROS, reactive oxygen species; PR, undefined pregnancy rate, i.e. it can be biochemical or

clinical; UPA, urokinase-type plasminogen activator; V, vanadium; Zn, zinc.
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b/IL-18 ratio, V, and Zn). Except for IL-18
and TGF-b/IL-18 ratio, different studies
presented conflicting results.

Two studies reported significantly higher
SP TGF-b/IL-18 ratio in the group that
achieved clinical pregnancy (Nikolaeva et
al., 2016; 2019). Nikolaeva et al. (2019)
suggested the necessity of TGF-b1 levels
exceeding IL-18 levels for IVF/ICSI success.
It is necessary, however, to draw attention
to the possible overlap in the study
population for these two studies, resulting
in a high probability of duplication of the
results instead of confirmation (Nikolaeva
et al., 2016; 2019). IL-18 and TGF-b have
also been associated with fertility in other
studies. IL-18 in uterine luminal secretions
has been described to be essential for
endometrial angiogenesis and blastocyst
implantation (L�ed�ee-Bataille et al., 2004).
Excess IL-18 levels in the uterine lumen,
however, may be detrimental for
implantation (L�ed�ee-Bataille et al., 2004;
2005). This could potentially relate to the
significantly higher SP IL-18 levels in the
non-pregnancy group (Nikolaeva et al.,
2016; 2019). Additionally, high IL-18 levels
have been associated with urogenital
infections and leukocytospermia
(Matalliotakis et al., 2006); however, men
with either diagnoses were excluded from
both studies (Nikolaeva et al., 2016; 2019).
Furthermore, excess IL-18 levels may
interfere with TGF-b1 signalling, which is
indispensable for regulating the
fetal�maternal immune tolerance (Yang et
al., 2021). Taken together, the cytokines IL-
18 and TGF- b1 may play a role in
reproductive outcome and might serve as
a potential biomarker for pregnancy
success. It is not yet clear, however,
whether the SP IL-18/ TGF- b1 levels affect
the fertilization capacity or have a direct
influence on the female endometrium, as
patients were exposed to SP before
treatment in the studies by Nikolaeva et al.
(2016; 2019). Furthermore, more insight
into the mechanism should be gained as
well as confirmation of other well-designed
studies before these cytokines can be
considered as biomarkers.

Several biomarkers have only been
reported once, but, in some cases,
these findings can be strengthened by
findings in animal or in-vitro studies. A
significant positive correlation between
IVF fertilization rate and galectin-3
bound to SP-derived EVs was found by
Mei et al. (2019). Interestingly, a study in
a domestic cat model showed that the
inhibition of galectin-3 before IVF
resulted in poor fertilization capacity
(Rowlison and Comizzoli, 2023). Another
potential biomarker verified in an animal
model is urea, where SP urea levels
negatively affected the development of
bovine oocyte and blastocyst after IVF
(Kowsar et al., 2021), confirming the
negative correlation between SP urea
levels and fertilization rates described by
Allahkarami et al. (2017). Prosaposin was
found to positively correlate with IVF
fertilization rates (Xu et al., 2019), which
has been described in sperm�oocyte
binding in chickens (Amann et al., 1999)
and mice (Magargee et al., 2000).
Contrary to prosaposin, an inhibitory
effect on the sperm�oocyte conjugation
by glycodelin-A was reported by
Koistinen et al. (2003), substantiating
their previous study reporting higher SP
glycodelin-A levels in couples with lower
fertilization rates (Koistinen et al., 2000).

In many studies, complementary results
are lacking, which may be explained by
substantial heterogeneity among studies
concerning study population, sample size,
ART procedure, methodology, and, most
importantly, analysis method. One of the
main analysis discrepancies is the outcome
assessment: the different outcomes are
analysed as either continuous or
categorical variables. For instance,
fertilization rates were either analysed
based on a cut of value, e.g.more or less
than 63% fertilization rate, or as
continuous correlation. It is known that
categorizing variables increases the chance
for statistical significance (Naggara et al.,
2011), as can be seen in the studies of
Matorras et al. (1995) and Seshadri et al.
(2011; 2012). All three studies reported no
significant correlation between the
biomarker and IVF fertilization rate as
continuous variable; however, significance
was established when the fertilization rate
was transformed from continuous variable
to categorial variable. In addition, statistical
significance was established for V, Zn, Ca,
K, and Mg based on categorizing
fertilization rate (Rodríguez-Díaz et al.,
2022), whereas, as continuous analysis, no
significant difference was established
(Zhou et al., 2021). This phenomenon is
also seen with PSA (Koistinen et al., 2002;
Kanannejad and Gharesi-Fard, 2019),
AMH (El-Halawaty et al., 2011; Li et al.,
2021) and reactive oxygen species (Zorn et
al., 2003; Hammadeh et al., 2008).
Categorizing is indispensable for
dichotomous outcomes, such as
pregnancy: either successful or
unsuccessful. Categorizing outcomes such
as fertilization percentages may lead to
misinterpretation of the results as the
percentage is presented in a certain
context. In contrast, when fertilization
rates are analysed as continuous variable,
the association between the percentage
and potential biomarker can be analysed
free of any established structure (Lazic,
2008; Naggara et al., 2011).

In addition to the analysis method,
variability in biomarker measurement was
observed. For example, two independent
studies evaluated the biomarker MDA
using the same ART programme and
outcome analysis (Jȩdrzejczak et al., 2005;
Al-Saleh et al., 2021), yet only Jȩdrzejczak
et al. (2005) reported a significant
relationship between MDA and fertilization
rate. Significance could be biased (seven
times smaller in the sample size of the
study by Jȩdrzejczak et al. [2005]), and the
discrepancy could also be caused by the
methods of MDA measurement.
Jȩdrzejczak et al. (2005) assessed MDA via
colorimetric assay, whereas Al-Saleh et al.
(2021)measured MDA via HPLC. A study
compared MDA measurement using
colorimetric assay and HPLC in urinary
samples, revealed that colorimetric is
more sensitive compared with HPLC, and
a better choice as MDA assay (Yalcin,
2010). This emphasizes the necessity of
uniformly designed studies.

The above-described limitations imply the
difficulties of comparing distinct studies
and to draw conclusions that also hinder
the meta-analysis and subsequently
sensitivity and certainty analysis.
Regardless of the extensive literature
search, a limited number of clinical studies
linked factors in SP with ART outcomes.
Accordingly, all records, regardless of the
quality score, were included. Most of the
studies lacked important quality
assessment criteria, including inclusion
and exclusion criteria and sample size
justification. It needs to be mentioned that
the assessment includes low- and high-
quality scored research, but crucial data
are missing. Some studies lacked concrete
data such as P-values, e.g. Al-Saleh et al.
(2019) scored nine out of 14 lacking P-
values and Ford et al., (1996) scored eight
out of 14 while lacking both concrete
fertilization rate values and P-values.
Interestingly, concrete data are not
considered a criterion in the quality
assessment.

Currently, conventional semen quality
analysis does not provide sufficient
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information to predict ART outcome. As
SP factors can still execute their function
on spermatozoa regardless of the removal
of SP during ART procedures (Martínez et
al., 2011; Rodríguez- Szczykutowicz et al.,
2019; Chen et al., 2021), SP molecular
biomarkers could potentially be
incorporated in a non-invasive, cost-
effective diagnostic tool. Moreover, a
reliable SP biomarker can provide insight
into factors that are fundamentally
essential for fertilization or which factors
negatively intervene with fertilization. This
can subsequently be used as fertility
enhancers to improve IVF/ICSI
procedures. Therefore, a reliable SP
biomarker is of great interest for the
implementation in a clinical setting. For
now, however, the translation of SP
biomarkers to assisted reproduction clinics
remains improbable, and well-defined
future studies are required to determine
the efficacy and clinical significance of
these potential biomarkers. Broad
spectrum analysis, such as omics analyses,
e.g. genomics, transcriptomics,
proteomics and metabolomics), using
adequately powered sample sizes and
homogenous methodologies should be
used to reveal highly accurate biomarkers.
As SP contains a high molecule
concentration of diverse nature, which can
interact with spermatozoa, oocyte,
endometrium and more cell types of the
female reproductive system, it is of great
importance to define correct outcome
measures for a reliable SP biomarker to be
established. It is difficult to establish a
direct correlation with SP biomarkers and
complex events like implantation,
pregnancy, and live birth that are affected
by high variety of factors. For instance,
increased levels of the SP components
clusterin (Moulton et al., 1996; Tapia et al.,
2008), IL-11 (George et al., 2020), and
galectin-3 (Yang et al., 2011) have been
associated with increased endometrial
receptivity. This could influence the IVF/
ICSI pregnancy and live birth outcome,
but not fertilization rates.

The primary outcome of a future study
should focus on the continuous correlation
between fertilization rate and SP
biomarkers; pregnancy, i.e. biochemical
and clinical, and live birth can be included
as a secondary outcome measurement. A
few studies have already been conducted,
showing conflicting results; some report
beneficial effects of SP exposure (Chicea
et al., 2013; Friedler et al., 2013), whereas
another study detected no significant
effect (von Wolff et al., 2013). This may be
explained by patient-specific variation in SP
composition and, therefore, should be
included as factors that can influence the
clinical outcome in future studies.

This review presents the most
comprehensive overview of relevant SP
biomarkers that may predict or explain
ART outcome to date and might be of
clinical interest in infertility investigation
and assisted reproduction. Although a firm
conclusion cannot be drawn and clearly
the potential of SP in biomarker research is
under-exploited, this review could serve as
a starting point to design an all-
encompassing study for biomarkers in SP
and their predictive ability for ART
outcomes and to develop a non-invasive
diagnostic tool or new approaches for
optimising ART. More insight into the
effect of SP molecules on reproductive
success would benefit fundamental
knowledge on the role of SP and its
components in reproduction and could
ultimately lead to new fertility enhancing
approaches to IVF/ICSI and natural
conception.
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