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A B S T R A C T   

Generating chemical element maps of paintings from X-ray fluorescence (XRF) data is a very valuable tool for the 
scientific community of conservators and art historians. Hand-held XRF scanners are cheap and easily portable 
but their use provides scans with a few data, so additional analytical tools are needed to obtain reliable chemical 
element maps from them. Recently, the software tool SmART_Scan was released, which uses an algorithm based 
on the minimum hypercube distance (MHD) to compute this kind of maps. In this paper, we propose a new 
methodology to address this problem by using machine learning algorithms for regression as alternative and 
more accurate techniques than MHD. We tested MHD versus eight machine learning regression algorithms on 
two paintings with different features. Our results showed that machine learning algorithms Random Forest and 
kNN significantly outperformed MHD in Mean Squared Error (MSE) and coefficient of determination (R2) for all 
the experiments. When using experts’ data and a hold-out validation, kNN was the best-ranked algorithm. 
Random Forest was the best-ranked algorithm when cross-validation was used. We did not find significant dif
ferences in average MSE nor in R2 between kNN and Random Forest, so we can conclude that Random Forest is 
the best-suited algorithm for computing chemical element maps of paintings from XRF data.   

1. Introduction 

X-ray fluorescence (XRF) scanners are very valuable tools for 
analyzing the distribution of pigments on paintings, among many other 
applications [1]. These scanners are very useful for the scientific com
munity of conservators and art historians because analyzing the pig
ments used in a painting allow them to date the work, identify previous 
restorations and perform conservation techniques [2]. An XRF scan on a 
certain point of a painting returns an energy spectrum whose peaks 
correspond to the XRF emissions of chemical elements. As the charac
teristic energy of each chemical element is known, it is possible to 
identify the elements present in that point from the XRF spectrum [2]. 

XRF scanners can be grouped into two main families: MacroXRF and 
hand-held scanners. MacroXRF scanners produce very precise results 
allowing the users to scan thousands of samples on the painting, but they 
are much more expensive and difficult to transport than hand-held 
portable scanners. These are the reasons why the development of 

efficient and accurate data analysis tools for those less expensive and less 
complex hand-held scanners is an important focus of study nowadays 
[1]. 

In this line of work, Martin-Ramos et al. presented SmART_Scan [3], a 
computer program for generating chemical element maps showing the 
distribution of chemical elements in the painting. These maps are 
generated using as inputs an RGB image of the painting and a limited 
number of XRF scanned points selected by an expert. SmART_Scan ob
tains the maps by combining the data through a method called Minimum 
Hypercube Distance (MHD). The short processing time and the quality of 
the maps generated position SmART_Scan as a valuable alternative 
approach to analyzing data obtained with MacroXRF scanners. To the 
best of our knowledge, MHD is the only published method for obtaining 
chemical element maps from scattered XRF data. 

The MHD algorithm in SmART_Scan has been successfully used in 
several recent studies such as [4], where it was used to analyze two 
mural paintings located in the archaeological site of Pompeii (Italy); [5], 
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where the pigments and materials in a copy of The Transfiguration 
painting by Raphael were characterized; and [6,7], two studies on the 
constituent materials and the execution techniques of scenes painted on 
antique vases by the Phiale Painter and from the Centuripe area, 
respectively. 

Recently, several authors applied classification algorithms based on 
convolutional neural networks (CNN) for identifying pigments in 

paintings [8–11], which allowed them to predict the class of pigment. 
The algorithms described in these works generated a pigment map for 
the painting from the input data (XRF data or hyperspectral images) 
once the CNN has been trained with other paintings, preferably from the 
same epoch or author. However, these machine learning classification 
algorithms cannot be applied for extracting chemical element maps 
because they obtain a single label with the pigment in each point but not 

Fig. 1. Paintings used to test the accuracy of the algorithms: (A) The Transfiguration; (B) Locations of the 165 scanned points for The Transfiguration; (C) Man, a 
piece of the scroll The Miraculous Interventions of Jizō Bosatsu; and (D) Locations of the 1314 scanned points for Man. 
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the quantities of the chemical elements in that point. This means that 
these approaches cannot be directly applied to regression problems 
where classes are not available. Nevertheless, generating a chemical 
element map can be considered as a regression problem [12], i.e. a 
problem where a continuous response variable is estimated from a set of 
predictors. In the case of the generation of a chemical element map, the 
data from the scanned points in the painting would be the predictors, 
and the amount of each chemical element in every position of the map 
would be the response variable to estimate. 

In the past two decades, machine learning has become a very useful 
tool for regression problems [13]. Machine learning algorithms solve a 
regression problem by constructing a model from a set of data, which are 
the predictors or input variables. Then, this model is used to estimate the 

value of the numerical response variable or output variable. A large 
number of machine learning algorithms have been proposed in the 
literature for solving regression problems [14]. These algorithms can be 
grouped into families according to the data structure or main principles 
on which they are based. Some relevant families which we could 
mention are Linear Regressions, Neural Networks, Support Vector Ma
chines, Regression Trees, Rule-Based Methods, Random Forests and 
Nearest Neighbours, among many others [15]. 

The chemical element maps generated from XRF data obtained with 
portable devices allow the experts to better understand a painting, and 
their use has increased in recent years. In the present study we aim to 
improve the accuracy obtained with the MHD algorithm in generating 
these chemical element maps using machine learning regression 

Fig. 2. Locations (circled points) of the preferred scanned points in The Transfiguration selected by Expert #1 (A) and Expert #2 (B).  

Fig. 3. Chemical element maps generated with the MHD algorithm for Pb on The Transfiguration and Hg on Man. The sizes of the maps are 4456 (height) × 3020 
(width) pixels and 357 (height) × 204 (width) pixels, respectively; the same sizes as the RGB images of the paintings. 
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algorithms instead. Our proposal is not about how to detect the chemical 
elements at the scanned points; our goal is to provide better methods 
than MHD to obtain chemical elements maps from previously scanned 
points on the paintings, where the identification of the amount of each 
chemical element at each scanned position is already performed. We are 
interested not only in improving the performance of the MHD algorithm, 
but also in providing a methodology based on standard machine 
learning algorithms which require no special configuration or partic
ularization in order to be applied to different paintings. For this purpose, 
we first selected a set of standard and well-known machine learning 
algorithms easily available in common statistical packages. Then we 

compared the performance of all these algorithms against MHD using 
two paintings with different features in both the painting itself and the 
XRF scanning process used. Moreover, the validation of the algorithms 
was performed in two scenarios: 1) using the data provided by the ex
perts with the selection of scanned points to be used as inputs; and 2) 
using randomized cross-validation. In this way, we could also assess the 
effectiveness of the methodology from a statistically solid point of view. 

The novelty of our study is twofold: 1) we found methods more ac
curate than MHD in generating chemical element maps from scattered 
XRF data of paintings; and 2) we provide solutions based on standard 
machine learning regression algorithms without requiring special 

Table 1 
Average MSE and R2 (mean ± standard deviation) achieved on the test data by each algorithm for The Transfiguration using experts’ information to select the training 
data in a hold-out validation.   

Expert #1 Expert #2 

Number of training points 46 63 
Number of test points 119 102   

MSE R2 MSE R2 

MHD 0.037 ± 0.016 0.001 ± 0.004 0.037 ± 0.019 0.007 ± 0.020 
Linear Regression 0.028 ± 0.014 0.025 ± 0.044 0.028 ± 0.015 0.032 ± 0.064 
Polynomial Regression 0.029 ± 0.014 0.030 ± 0.054 0.026 ± 0.011 0.065 ± 0.112 
Random Forest 0.029 ± 0.015 0.049 ± 0.066 0.027 ± 0.014 0.102 ± 0.106 
Gradient Boosted Trees 0.033 ± 0.013 0.018 ± 0.037 0.040 ± 0.020 0.043 ± 0.084 
M5 0.029 ± 0.016 0.010 ± 0.030 0.028 ± 0.016 0.031 ± 0.061 
ML Perceptron 0.041 ± 0.024 0.002 ± 0.007 0.053 ± 0.045 0.000 ± 0.000 
SVM 0.033 ± 0.012 0.000 ± 0.000 0.033 ± 0.014 0.000 ± 0.000 
kNN 0.026 ± 0.014 0.107 ± 0.113 0.026 ± 0.014 0.071 ± 0.119  

Fig. 4. MSE for MHD and kNN algorithms when performing a hold-out validation for The Transfiguration using as training data the points selected by the experts (A). 
R2 for MHD, kNN (expert #1) and Random Forest (expert #2) when performing a hold-out validation for The Transfiguration using as training data the points selected 
by the experts (B). 
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configurations in order to be applied to different paintings. Therefore, 
our results can be easily reproduced by other researchers in their own 
studies. 

The remainder of the paper is organized as follows: first we describe 
the paintings used as test data and the different techniques to be 
compared: MHD and machine learning algorithms. Then we detail the 
experimental design of our study and the statistical analysis performed 
to compare the performance of the algorithms. Next we show the results 
obtained, and finally, we discuss these results and present the conclu
sions of the study. 

2. Material and methods 

2.1. Test paintings and data acquisition 

Two different paintings were used to test the accuracy of the algo
rithms: a copy of The Transfiguration, by Raphael, and a piece of the 
scroll The Miraculous Interventions of Jizō Bosatsu, by an unknown artist 
(see Fig. 1A and Fig. 1. C). These two paintings were dated in different 
periods, elaborated in geographic regions very distanced from each 
other, and sampled using two different XRF scanners. 

The Transfiguration is the last painting by Raphael [16]. The copy of 
The Transfiguration which we used in this study is an oil painting on 
canvas belonging to a private collection [5]. In order to process the 
painting, we used an RGB image of it with dimensions 4456 (height) ×
3020 (width) pixels, the canvas size being 93 × 63 cm (see Fig. 1A). The 
image and the XRF data for a grid of 165 sampled points were provided 

by the authors of [5]. These data were acquired with a hand-held XRF 
spectrometer Niton XL3t GOLDD+ (Thermo Fisher Scientific, Waltham, 
MA, USA) with a silver anode (50 kV, 200 μA) [17]. The analyzer was 
fitted with a camera and with a suitably equipped Small Spot analyzer, 
with which the analysis could be restricted to a small area of the camera 
angle (3 mm). The data for each point consisted of its pixel coordinates 
and the scanned amounts of the chemical elements As, Ba, Ca, Cd, Co, 
Cr, Cu, Fe, Hg, K, Mn, Ni, Pb, Sb, Se, Sn, Ti and Zn. The locations of the 
165 scanned points are shown in Fig. 1B. 

Additionally, Expert #1 (Giacomo Chiari, retired ChiefScientist at 
the Getty Conservation Institute, Los Angeles, USA) and Expert #2 
(author M.R. Blanc) selected two subsets with their preferred points, 
respectively. These preferred points were the locations of the painting 
which would have been scanned by the experts in the usual processing 
methodology, as described next in Section 2.2. The locations selected by 
the experts are shown in Fig. 2. 

The Miraculous Interventions of Jizō Bosatsu is a Japanese handsc
roll by an unknown artist dated to the mid-thirteenth century [18]. This 
scroll is exhibited in the Freer Gallery of Art (Smithsonian Institution) in 
Washington D.C. (USA). The dimensions of the scroll are approximately 
14 m length and 30 cm width. In this study we used a piece of the whole 
scroll, what we call Man, a scene showing a man wearing garments. The 
RGB image of Man was of dimensions 357 (height) × 204 (width) pixels 
(see Fig. 1C). The RGB image and the XRF data of the 1314 sampled 
points were provided as part of the supplementary material of a previous 
study performed by K.L Rowberg et al. [19]. This data was acquired with 
a Bruker Tracer 5 g XRF where the Rh anode was set to 40 kV and the 
anode current at 70 mA. The scanning assay mode was in a continuous 
cycle collection on an XY-motorized stage [20]. The distance of the 
device to the surface of the scroll was in a range of 5 ± 3 mm. The data 
for each point consisted of its pixel coordinates and the scanned amounts 
of the chemical elements Al, Ar, As, Ca, Cl, Cu, Fe, Hg, K, Mn, Ni, P, Pb, S, 
Si, Sr, Ti and Zn. The locations of the 1314 scanned points are shown in 
Fig. 1D. Data from experts with the selection of preferred points is not 
available for Man. 

2.2. Creating chemical element maps using the minimum hyperplane 
distance (MHD) algorithm 

Since its release, SmART_Scan [3] has rapidly become a very useful 
tool with many applications in the cultural heritage field [4–7]. The 
main reason behind this success is that the MHD algorithm in 
SmART_Scan allows the users to obtain very reliable chemical element 
maps of paintings from a reduced number of scanned points acquired 
with hand-held devices. In this way, the need of using expensive and not 
easily transportable MacroXRF scanners is avoided. 

The data needed by MHD consists of an RGB image of the painting 
and n scanned points Ps

i . Each scanned point Ps
i is represented by six 

values: the position of the point in the RGB image, (xs
i , ys

i ); its RGB color, 

Table 2 
Rankings of the algorithms obtained by the Friedman’s test in average MSE and R2 for The Transfiguration using experts’ selections as training data in a hold-out 
validation.  

Expert #1 Expert #2 

MSE R2 MSE R2 

Algorithm Ranking Algorithm Ranking Algorithm Ranking Algorithm Ranking 

kNN 2.81 kNN 7.61 kNN 3.69 Random Forest 6.78 
Linear Regression 4.39 Random Forest 6.00 M5 4.28 kNN 6.06 
Random Forest 4.86 Polynomial Regression 5.47 Polynomial Regression 4.72 Polynomial Regression 5.81 
M5 5.14 Linear Regression 5.22 Random Forest 4.94 Linear Regression 5.11 
Polynomial Regression 6.22 Gradient Boosted Trees 4.56 Linear Regression 5.06 Gradient Boosted Trees 5.03 
Gradient Boosted Trees 7.69 MHD 4.22 MHD 8.17 M5 4.86 
SVM 8.72 M5 4.17 Gradient Boosted Trees 8.22 MHD 4.03 
MHD 9.86 ML Perceptron 3.99 SVM 8.69 ML Perceptron 3.67 
ML Perceptron 10.72 SVM 3.75 ML Perceptron 10.86 SVM 3.67  

Table 3 
Adjusted p-values (Apv) using Holm’s test. MHD versus machine learning al
gorithms on average MSE and R2 for The Transfiguration using experts’ selections 
as training data in a hold-out validation. NS: no significant.  

Expert #1 Expert #2 

Algorithms 
Comparison 

Apv Algorithms 
Comparison 

Apv 

MES R2 MES R2 

kNN vs MHD p <
0.001 

p <
0.01 

kNN vs MHD p <
0.01 

p <
0.05 

Linear Regression 
vs MHD 

p <
0.001 

NS M5 vs MHD p <
0.05 

NS 

Random Forest vs 
MHD 

p <
0.01 

p <
0.05 

Polynomial 
Regression vs MHD 

p <
0.05 

p <
0.05 

M5 vs MHD p <
0.01 

NS Random Forest vs 
MHD 

p <
0.05 

p <
0.01 

Polynomial 
Regression vs 
MHD 

p <
0.05 

NS Linear Regression 
vs MHD 

p <
0.05 

NS 

Gradient Boosted 
Trees 

NS NS Gradient Boosted 
Trees 

NS NS 

ML Perceptron NS NS ML Perceptron NS NS 
SVM NS NS SVM NS NS  
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(Rs
i , Gs

i , Bs
i ); and the amount of the chemical element scanned in that 

position, Cs
i . A chemical element map represents the distribution of an 

element along the painting, so a different map is generated for each 
chemical element available in the scanning process. 

For each point P of the remaining pixels in the RGB image, its posi
tion (x, y) and its RGB color (R, G, B) are known. The amount of the 
chemical element in that point, C, is the only unknown to be calculated. 
MHD computes C by calculating the Euclidean distance, di, between P 
and the n scanned points Ps

i as follows: di =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − xs
i )

2
+ (y − ys

i )
2
+ (R − Rs

i )
2
+ (G − Gs

i )
2
+ (B − Bs

i )
2

√

. 
And then the value assigned to C at the point P is the amount of 

chemical element of the scanned point with the minimum of those n 
computed di values. The map is finally generated by repeating this 
process for every pixel in the RGB image. As an example, Fig. 3 shows 
the resulting chemical element maps generated with the MHD algorithm 
for the chemical elements Pb on The Transfiguration and Hg on Man. 

2.3. Machine learning regression algorithms 

Many machine learning algorithms have been proposed for solving 
regression problems [14,15]. Usually these algorithms focus on specific 
areas or problems, with custom processing and configurations. One goal 
of our study is to provide a methodology based on standard and easily 
accessible algorithms. This is the reason why our approach is based on a 
selection of eight algorithms chosen among the most well-known ma
chine learning techniques which are available in standard statistical 
tools. We also selected the algorithms belonging to different classical 
families of machine learning techniques in order to cover a wide range of 
methodologies. Based on these criteria, the algorithms used in our study 
were Linear Regression [21], Polynomial Regression [22], Random 
Forest [23], Gradient Boosted Trees [24], M5 [25], Multi Layer (ML) 
Perceptron [26], Support Vector Machine (SVN) [27] and k-nearest 

neighbour (kNN) [28]. All these algorithms are standard and very well 
known among the scientific community. Nevertheless, the reader who 
needs more details on these techniques can consult the 
previously-referred papers for each algorithm or general references in 
data mining such as [15]. 

The statistical software tool used in our study was KNIME [29]. We 
selected KNIME because it is a visual software tool which allows the user 
to perform machine learning analysis easily by creating the processing 
pipeline visually through predefined modules. Next, we briefly describe 
the parameters configuration in KNIME for each algorithm.  

• Linear Regression. No parameter configuration is available in KNIME. 
Simple linear regression using least squares was performed.  

• Polynomial Regression. The algorithm was configured in KNIME to 
perform polynomial regression of order two.  

• Random Forest. The algorithm was configured in KNIME with the 
default parameters provided by the tool: no limit for tree depth, no 
minimum node size and generation of 100 models. Five different 
seeds were used to avoid biases due to the random process in the 
generation of the models.  

• Gradient Boosted Trees. The default configuration in KNIME was used: 
tree depth limited to four levels, learning rate of 0.1 and generation 
of 100 models. 

• M5. The M5 algorithm was configured with the default values pro
vided by KNIME: minimum number of instances set to 4, pruning tree 
and smoothing predictions.  

• ML Perceptron. The default parameters used were: 0.3 for learning 
rate, 0.2 for momentum, training time of 500 epochs, 0% of valida
tion set size, validation threshold of 20 times, and a value of number 
of attributes/2 for the number of hidden layers. 

• SVM. The default parameters in KNIME for the SVM regression al
gorithm were: radial basis kernel with a gamma value of 0.0, 1.0 for 

Fig. 5. Chemical element maps for Pb generated with all the algorithms on The Transfiguration using expert #2 data for training (63 points). The size of the maps is 
4456 (height) × 3020 (width) pixels, the same size as the RGB image of the painting. 

J. Ruiz de Miras et al.                                                                                                                                                                                                                         



Chemometrics and Intelligent Laboratory Systems 248 (2024) 105116

7

the cost parameter, an epsilon value of 0.001 for the tolerance of the 
termination criterion, and an epsilon value of 0.1 for the loss 
function. 

• kNN. We used the default parameter in KNIME for the search algo
rithm, a linear search based on the Euclidean distance. The value of k 
was manually set to 10 because the default value provided by KNIME 
is 1, which is a non-useful value in our case for performing 
regression. 

Our goal is to obtain a methodology based on automatic processing 
without expert intervention and regardless of the painting, so we used 
the default parameters of the algorithms in KNIME because adjusting 
them is not a trivial task and would depend on the painting being 
studied. We know that algorithms such as ML Perceptron or SVM would 
obtain better results if a fine selection of the parameters were performed 

carefully. But, as mentioned before, this would imply the need of 
additional experts in machine learning and to perform changes in the 
configurations depending on the painting. 

2.4. Experimental design and statistical analysis 

We compared MHD versus machine learning algorithms in three 
different experiment configurations.  

1) The Transfiguration using information from the experts and a hold-out 
validation: In this experiment we tested the capability of machine 
learning algorithms to obtain accurate maps by using as training data 
the same information provided by experts in the MHD algorithm. The 
data provided by the experts are very reduced in number, a non- 
desirable situation when training machine learning models. The 
validation was performed by using hold-out [30] because it re
produces the way in which the data selected by the experts is used to 
obtain the map. The selected points are used to interpolate the 
remainder points of the map in MHD. In our hold-out validation, the 
training data are the expert-selected points, and the test data are the 
remainder of the scanned points. 

Note that MHD is not a machine learning technique but an interpo
lation algorithm, so the terms “train data” and “predicting” make no 
sense for this algorithm; “inputs” and “interpolating”, respectively 
should be used instead. In any case, for the sake of simplicity, we will use 
these terms for both machine learning algorithms and MHD equally 
throughout the text. 

2) The Transfiguration without using experts’ information and vali
dating through cross-validation: With this experiment we wanted to 
demonstrate the usefulness of our methodology using well-known 

Fig. 6. Chemical element maps for Ca generated with all the algorithms on The Transfiguration using expert #2 data for training (63 points). The size of the maps is 
4456 (height) × 3020 (width) pixels, the same size as the RGB image of the painting. 

Table 4 
Average MSE and R2 (mean ± standard deviation) achieved in the test data for 
each algorithm on The Transfiguration using a 5-fold cross-validation.  

Number of training points 132 *5 

Number of test points 33 * 5  

MSE R2 

MHD 0.034 ± 0.011 0.015 ± 0.035 
Linear Regression 0.026 ± 0.011 0.117 ± 0.122 
Polynomial Regression 0.023 ± 0.007 0.170 ± 0.166 
Random Forest 0.021 ± 0.007 0.234 ± 0.195 
sGradient Boosted Trees 0.024 ± 0.008 0.190 ± 0.176 
M5 0.027 ± 0.010 0.111 ± 0.128 
ML Perceptron 0.035 ± 0.017 0.034 ± 0.068 
SVM 0.034 ± 0.012 0.000 ± 0.000 
kNN 0.024 ± 0.008 0.159 ± 0.156  
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statistical techniques used to estimate how accurately a predictive 
model will perform in practice. In this way MHD and machine 
learning algorithms were validated through a 5-fold cross-validation 
[31], where exactly the same randomly-generated folds were used 
for testing all the algorithms, including MHD. We used 5-fold 
cross-validation, instead of the more typical 10-fold 
cross-validation used in classification, trying to avoid the problem 
of overfitting in regression [14,32]. For the case of Random Forest, 
we tested the algorithm five times using different seeds in the gen
eration of each tree in order to avoid biases due to a specific seed 
selection. The final results for Random Forest were the mean of these 
five executions.  

3) Man with cross-validation: Once we studied the effectiveness of the 
proposed methodology in a painting for which experts’ information 

is available, the next step was to test how the methodology worked in 
another painting with two differentiating features regarding The 
Transfiguration: 1) a much larger dataset of scanned points, and 2) no 
experts’ information available for deciding whether certain scanned 
points are relevant or not. Following the same reasoning as previ
ously explained, the accuracy of all the methods was performed 
using a 5-fold cross-validation. 

The goal of these three experiments was to prove the effectiveness of 
the methodology not only in paintings where expert input is available, 
but also in paintings where the only information provided is the pigment 
at several sampled locations. To the best of our knowledge, this is a new 
solution for the problem of generating chemical element maps of 
paintings. 

Fig. 7. MSE (A) and R2 (B) for MHD and Random Forest algorithms when performing a 5-fold cross-validation for The Transfiguration.  

Table 5 
Rankings of the algorithms obtained by Friedman’s test on average MSE and R2 

in the test data for The Transfiguration using a 5-fold cross-validation.  

MSE R2 

Algorithm Ranking Algorithm Ranking 

Random Forest 2.166 Random Forest 7.472 
Polynomial Regression 3.750 Polynomial Regression 6.888 
Gradient Boosted Trees 4.666 Gradient Boosted Trees 6.055 
kNN 4.805 kNN 5.805 
Linear Regression 4.888 Linear Regression 5.583 
M5 5.944 M5 4.416 
MHD 9.666 ML Perceptron 3.166 
SVM 10.083 MHD 2.972 
ML Perceptron 10.333 SVM 2.638  

Table 6 
Adjusted p-values (Apv) using Holm’s test. MHD versus machine learning al
gorithms on average MSE and R2 for The Transfiguration using a 5-fold cross- 
validation. NS: no significant.  

Algorithms Comparison Apv 

MSE R2 

Random Forest vs MHD p < 0.001 p < 0.001 
Polynomial Regression vs MHD p < 0.001 p < 0.001 
Gradient Boosted Trees vs MHD p < 0.01 p < 0.05 
kNN vs MHD p < 0.01 p < 0.05 
Linear Regression vs MHD p < 0.01 NS 
M5 vs MHD p < 0.05 NS 
ML Perceptron vs MHD NS NS 
SVM vs MHD NS NS  
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Two different and complementary metrics have been used in order to 
measure the accuracy of the algorithms: mean squared error (MSE) and 
coefficient of determination (R2). MSE is calculated as follows: 

MSE =
1
N

∑N

i=1
(pred C(xi, yi,Ri,Gi,Bi) − Ci)

2  

where N is the number of test points, pred C(xi, yi,Ri,Gi,Bi) is the pre
diction of the chemical element obtained from the model generated by 
the algorithm for the test point i, and Ci is the known value of the 
chemical element for the point i. 

Since the value of each chemical element in each scanned point was 
normalized between 0 and 1, then the MSE values obtained were also 
between 0 and 1, which makes these results easily interpretable. 

On the other hand, the coefficient of determination, R2, is defined as: R2 = 1 −
SSres

SStot 

Table 7 
Average MSE and R2 (mean ± standard deviation) achieved in the test data for 
each algorithm on Man using a 5-fold cross-validation.  

Number of train points 1051 *5 

Number of test points 263 * 5  

MSE R2 

MHD 0.022 ± 0.020 0.251 ± 0.324 
Linear Regression 0.017 ± 0.011 0.199 ± 0.208 
Polynomial Regression 0.016 ± 0.010 0.239 ± 0.229 
Random Forest 0.013 ± 0.011 0.388 ± 0.314 
Gradient Boosted Trees 0.013 ± 0.011 0.351 ± 0.322 
M5 0.014 ± 0.009 0.310 ± 0.270 
ML Perceptron 0.018 ± 0.012 0.183 ± 0.259 
SVM 0.025 ± 0.013 0.000 ± 0.000 
kNN 0.013 ± 0.010 0.353 ± 0.300  

Fig. 8. MSE (A) and R2 (B) for MHD and Random Forest algorithms when performing a 5-fold cross-validation for Man.  

Table 8 
Rankings of the algorithms obtained by the Friedman test on Man using a 5-fold 
cross-validation.  

MSE R2 

Algorithm Ranking Algorithm Ranking 

Random Forest 2.722 Random Forest 7.333 
kNN 3.638 Gradient Boosted Trees 6.583 
M5 3.638 kNN 6.416 
Gradient Boosted Trees 3.777 M5 6.333 
Polynomial Regression 4.361 Polynomial Regression 5.333 
Linear Regression 5.444 Linear Regression 4.416 
ML Perceptron 6.805 MHD 3.805 
MHD 6.888 ML Perceptron 3.000 
SVM 7.722 SVM 1.777  

Table 9 
Adjusted p-values (Apv) using Holm’s test. MHD versus machine learning al
gorithms on MSE for Man using a 5-fold cross-validation. NS: no significant.  

Algorithms Comparison Apv 

MSE R2 

Random Forest vs MHD p < 0.001 p < 0.001 
kNN vs MHD p < 0.001 p < 0.01 
M5 vs MHD p < 0.001 p < 0.05 
Gradient Boosted Trees vs MHD p < 0.01 p < 0.01 
Polynomial Regression vs MHD p < 0.05 NS 
Linear Regression vs MHD NS NS 
ML Perceptron vs MHD NS NS 
SVM vs MHD NS NS  
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where SSres =
∑N

i=1(pred C(xi, yi,Ri,Gi,Bi), − Ci)
2 and SStot =

∑N
i=1(Ci − C)2, being C the mean of the values Ci. R2 measures the 

proportion of the variation in the prediction (the amount of chemical 
element) that can be explained from the predictors (position and color). 
R2 ranges between 0 and 1, where 1 means a perfect prediction. 

Statistically significant differences in average MSE and R2 between 
algorithms were computed by using, jointly, the non-parametric Fried
man’s and Holm’s tests [33,34]. First, we computed the ranking of each 
algorithm using the Friedman’s test [35], and then a post-hoc Holm’s 
test [36] was applied to obtain the adjusted p-values counting for mul
tiple pairwise algorithm comparisons. 

3. Results 

In the next three sections we show the results of the analysis per
formed for each proposed experiment. 

3.1. Results for The Transfiguration using experts’ information 

Table 1 shows the average MSE and R2 values obtained for each al
gorithm when using a hold-out validation where the training data are 
the points selected by the experts. These average MSE and R2 values 
correspond to the mean of the MSE and R2 values obtained by predicting 
the amount of each one of the 18 chemical elements present in the 
remaining scanned points of the painting. 

Fig. 4 shows the graphical comparison of individual MSE and R2 

obtained for MHD versus the best machine learning algorithm in each 
experiment (kNN for Expert #1 and Random Forest for Expert #2) for all 
chemical elements in the painting. 

Table 2 shows the rankings using Friedman’s test in average MSE and 
R2 for all the algorithms in both experiments. The kNN algorithm ob
tained the best ranking except for R2 when trained by expert #2, where 
Random Forest is the best ranked algorithm. Several machine learning 
algorithms outperformed the MHD algorithm in both experiments. 

Finally, Table 3 shows the adjusted p-values obtained using Holm’s 
test when comparing the machine learning methods versus MHD in 
average MSE and R2. Significant differences, compared to MHD, were 
found in MSE for kNN, Linear Regression, Random Forest, M5 and 
Polynomial Regression in both experiments. In the case of R2, significant 
differences were found for kNN (experts #1 and #2), Random Forest 
(experts #1 and #2) and Polynomial Regression (only expert #2). 

These results show that kNN and Random Forest significantly 
outperform MHD in both MES and R2 when trained with data selected by 
experts. Figs. 5 and 6 show examples of the generated maps with all the 
algorithms for two of the main chemical elements present on The 
Transfiguration, Pb and Ca, respectively. Pb (white lead) is present in 
white and light colors, such as clouds and light clothes in the painting. 
On the other hand, Ca (bone black) is present in dark zones, such as the 
background without characters of the lower half of the painting. These 
maps were generated using as training data the points selected by expert 
#2 (63 points). A visual inspection of the obtained maps confirms that 
R2 is a reliable metric for discarding algorithms that, even obtaining low 
average MSE scores, produce useless maps, such as the case of SVM (R2 

Fig. 9. Chemical element maps for Hg generated with all the algorithms on Man using as training data the points of the first fold in cross-validation (1051 points). 
The size of the maps is 357 (height) × 204 (width) pixels, the same size as the RGB image of the painting. 
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= 0.000 ± 0.000). 

3.2. Results for The Transfiguration using cross-validation 

Table 4 shows the average MSE and R2 values obtained for each al
gorithm when using a 5-fold cross-validation, i.e. we randomly split the 
dataset of scanned points into five folds, each containing 20% of the 
points of the dataset, where four folds were used for training and one for 
testing. Note that results for Random Forest are shown as the average 
value for five executions with different seeds. 

Fig. 7 shows the graphical comparison of individual MSE and R2 

obtained for MHD versus the best machine learning algorithm, Random 
Forest, for all chemical elements in The Transfiguration. 

Table 5 shows the rankings using Friedman’s test in average MSE and 
R2 for all the algorithms. The Random Forest algorithm obtained the best 
ranking, and again several machine learning algorithms outperformed 
the MHD algorithm. 

Table 6 shows the adjusted p-values obtained using Holm’s test when 
comparing the machine learning methods versus MHD in average MSE 
and R2. 

Fig. 10. Chemical element maps for Cu generated with all the algorithms on Man using as training data the points of the first fold in cross-validation (1051 points). 
The size of the maps is 357 (height) × 204 (width) pixels, the same size as the RGB image of the painting. 

Table 10 
Times, in seconds, for training and predicting a chemical element map (Zn). Training times are the average time obtained in the corresponding 5-fold cross-validation.   

The Transfiguration Man 

Training points 132 1051 
Prediction points 13,457,120 72,828   

Training (s) Prediction (s) Training (s) Prediction (s) 

MHD – 19.853 – 0.988 
Linear Regression 0.039 22,591.649 0.097 11.104 
Polynomial Regression 0.020 18,105.943 0.033 5.925 
Random Forest 0.215 30,625.142 0.760 78.366 
Gradient Boosted Trees 0.181 14,068.807 0.397 17.085 
M5 0.141 10,072.450 0.368 6.341 
ML Perceptron 0.230 9256.867 0.878 3.987 
SVM 0.074 13,742.574 0.297 25.863 
kNN 0.023 12,682.316 0.028 29.186  
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These results show that Random Forest, Polynomial Regression, 
Gradient Boosted Trees and kNN significantly outperform MHD in both 
MSE and R2 when a cross-validation was used. 

3.3. Results for man 

Table 7 shows the average MSE and R2 values obtained for each al
gorithm when using a 5-fold cross-validation in predicting the amounts 
of the chemical elements in Man. Results for Random Forest are the 
average value for five executions with different seeds. 

Fig. 8 shows the graphical comparison of individual MSE and R2 

obtained for MHD versus the best machine learning algorithm, Random 
Forest, for all chemical elements in Man. 

Table 8 shows the rankings using Friedman’s test in average MSE and 
R2 for all the algorithms. The Random Forest algorithm obtained the best 
ranking, as in the case of The Transfiguration with 5-fold cross- 
validation. Also, all machine learning algorithms except SVM and ML 
Perceptron outperformed the MHD algorithm. 

The adjusted p-values obtained using Holm’s test when comparing 
the machine learning methods versus MHD in average MSE and R2 are 
shown in Table 9. 

These results show that Random Forest, M5, kNN and Gradient 
Boosted Trees outperformed MHD in both MSE and R2 when predicting 
the amounts of the chemical elements in Man using cross-validation. 
Figs. 9 and 10 show examples of the generated maps with all the algo
rithms for two of the key chemical elements present on Man, Hg and Cu, 
respectively. Hg (Vermilion or Cinnabar) is present in the red orange 
zones of the dress in the painting, while Cu (Azurite and/or Malachite) is 
present in the blue areas of the dress. These maps were generated using 
as training data the points included in the first fold used in the cross- 
validation (1051 points). As in the case of The Transfiguration (see 
Figs. 5 and 6), algorithms with very low R2, such as SVM (R2 = 0.000 ±
0.000), produce maps which provide no useful information. 

3.4. Performance analysis 

We also assessed the performance of all algorithms regarding the 
execution time of both training and predicting (generating) a chemical 
element map. Table 10 shows the timing for both paintings, The Trans
figuration and Man. Training times correspond to the average time ob
tained for the 5 training processes in the 5-fold cross-validation. 
Prediction times are the total times in generating a chemical element 
map (Zn) from the corresponding trained model, that is, predicting the 
quantity of Zn in each point (pixel) of the painting. These times were 
obtained in a laptop equipped with a CPU Intel Celeron N4020 at 2.8 
GHz with two cores, accompanied by 8 GB RAM memory and a GPU 
Intel UHD 600 with 3 GB of RAM memory and 12 execution units. MHD 
is an interpolation algorithm, so no training time is needed because the 
training points are used directly as input in the interpolation process. 

Results shows that MHD is much faster than machine learning al
gorithms when large chemical element maps are generated (around 20 s 
for MHD vs. 2.5–8.5 h for machine learning algorithms for the case of 
The Transfiguration). This high difference in processing time has a simple 
explanation: the implementation of the MHD algorithm that we used 
was optimized for using GPU acceleration, while the implementation of 
the machine learning algorithms in KNIME did not allow us to use 
hardware acceleration. However, other software packages, such as cuML 
[37], implement machine learning algorithms to run on GPU. So, using 
this kind of optimized machine learning algorithms could greatly 
improve the performance in a final production scenario. 

Nevertheless, the most relevant result is the very fast training times 
achieved for most machine learning algorithms. All training times are 
below 1 s, which are insignificant compared to prediction times. This 
result is of great relevance because it means that the retraining process 
needed when analyzing a new painting is completely inexpensive 
compared to the time for generating the chemical element maps. 

4. Discussion 

In this study we have assessed the ability of standard machine 
learning regression algorithms to improve the accuracy in generating 
chemical element maps of paintings compared to the MHD algorithm. 
This algorithm is used by experts who must select a set of scanned points 
to interpolate the amounts of chemical elements in the remaining points 
of the map. We wanted to remove the necessity of expert intervention for 
setting the machine learning algorithms, so we chose well-known al
gorithms with their default configuration in widely used statistical tools 
such as KNIME. Standard statistical techniques such as hold-out and 
cross-validation were used to compare the accuracy of the algorithms in 
two complementary metrics: MSE and R2. We used non-parametric tests 
for the statistical comparisons of the algorithms: Friedman’s test for 
ranking the algorithms and a post-hoc Holm’s test to find the pairwise 
comparisons producing significant differences. Below we discuss the 
results obtained for each experiment. 

4.1. MHD versus machine learning algorithms when experts’ information 
is provided and used as training data 

Results in Section 3.1. showed that kNN and Random Forest per
formed significantly better than MHD when the accuracy of the pre
dictions, in terms of MSE and R2, was tested using a hold-out validation 
in which the training data was the points selected by the two experts. 
These results are remarkable because a very limited number of points 
were used as training data (46 and 63, respectively), such a reduced 
number of points being a typical limiting factor in machine learning 
algorithms. 

The lowest average MSE values for both experiments were obtained 
by the kNN algorithm, a classical algorithm which searches for mini
mum distances among the neighbours. Recent surveys on machine 
learning algorithms for regression [14] showed that, in general terms, 
the best methods would be Random Forest or M5. Nevertheless, kNN 
outperformed those algorithms in MSE mainly because the training data 
were very limited in number. R2 analysis showed that Random Forest 
achieved the best score when training data was provided by expert #2. 
This result is in line with the previous hypothesis since the number of 
points selected by expert #2 is greater than the number for expert #1. 

4.2. MHD versus machine learning algorithms with cross-validation: The 
Transfiguration 

Results in Section 3.2. showed that Random Forest, Polynomial 
Regression, Gradient Boosted Trees and kNN performed significantly 
better than MHD in MSE and R2 when the accuracy of the predictions 
was tested using a 5-fold cross-validation. These results indicate that 
those machine learning algorithms were able to achieve lower errors and 
higher R2 values than MHD when tested using randomized positions as 
training data. This is a key goal in our proposal, since we want to provide 
methods which perform well from a solid statistical point of view. 

The lowest average MSE value and greater R2 score were achieved by 
the Random Forest algorithm, which is a result in line with recent 
rankings of machine learning algorithms for regression [14]. Random 
Forest also achieved very low deviations in the MSE values, a very 
desirable feature proving the good performance of the algorithm for 
almost all chemical elements. 

R2 scores for randomized cross-validation were better than those 
obtained when the machine learning algorithms were trained with data 
provided by the experts in a hold-out validation (see Tables 1 and 5, and 
Figs. 4 and 7). The reason is that training data was much larger when 
cross-validation was used (132 points) than in the experiment with ex
pert’s data (46 points for expert #1, and 63 points for expert #2). 
Therefore, even when a randomized selection of training points was 
performed with cross-validation, as the number of training points is 
high, these points covered the positions with the most relevant 
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information about colors and chemical elements of the painting. How
ever, MHD algorithm did not improve the R2 score so clearly when the 
number of training points increased when using cross-validation. The 
reason behind this situation is that the values of the chemical element 
estimated by MHD for generating the map (values at test points) are 
values of the chemical element contained in the positions of the training 
points (see Section 2.2 and generated maps with MHD in Figs. 5 and 6). 
Therefore, for obtaining high R2 scores, MHD needs a number of scanned 
positions which covers well the range of possible values of the chemical 
elements present on the painting. 

4.3. MHD versus machine learning algorithms with cross-validation: man 

Results in Section 3.3. have proved that four machine learning al
gorithms, Random Forest M5, kNN and Gradient Boosted Trees, also 
significantly improved the accuracy in predicting the amount of chem
ical elements for each point of Man compared to MHD. This fact con
firms the good results obtained for The Transfiguration, but now in a very 
different scenario where many more scanned points are available for 
training and testing, selected in a randomized way through cross- 
validation. As a result, we can conclude that those machine learning 
algorithms allowed us to obtain significantly more accurate chemical 
element maps than MHD. 

As shown in Fig. 8, R2 scores for MHD and Random Forest on Man, 
although statistically different in average, are much closer than in the 
case of The Transfiguration (see Fig. 7). Cross-validation in Man used 
training sets of 1051 points. This much larger amount of training points 
together with a less range of different colors in Man compared to The 
Transfiguration caused that MHD performed better, although still worse 
than Random Forest. 

Random Forest has clearly achieved the best results for both The 
Transfiguration and Man when tested using cross-validation. Therefore, 
Random Forest would be positioned, in general, as the preferred algo
rithm for generating the chemical element maps. In case a low number of 
scanned positions provided by the experts were available, doubts 
regarding which algorithm should be used could arise, since kNN ob
tained the best results for The Transfiguration in both experiments in 
which the training data was selected by experts. Nevertheless, the 
Holm’s tests comparing kNN versus Random Forest on average MSE and 
R2 provided non-significant p-values in both experiments, so no signif
icant differences in accuracy were found between both algorithms. 

4.4. Qualitative assessment of generated maps 

Figs. 5 and 6 showed the generated maps with all the algorithms for 
two main chemical elements present in The Transfiguration, Pb and Ca, 
respectively. According to a visual assessment of the maps, and in 
concordance with the MSE and R2 scores obtained by the algorithms, 
kNN and Random Forest showed better results than MHD. Pb (white 
lead) is present in white and light colors, such as clouds and light clothes 
in the painting. The map generated with MHD (see Fig. 5) showed no 
presence of Pb in some light zones, as in the case of the arm of the 
character in the lower-left area of the painting. Also, some dark zones of 
the painting, such as the lower-central area, should present less amount 
of Pb than that showed in the map generated with MHD. Since the MHD 
algorithm assigns to generated points only values contained in the 
training data, several zones have maximum values of Pb (red zoned in 
the map) which appears to be not correct: Jesus Christ’s hair, boy’s skirt, 
the central character’s sleeve and above the little tree on the right edge 
of the painting. Ca (bone black) is present in dark zones, such as the 
background without characters of the lower half of the painting. In this 
case (see Fig. 6), Random Forest map appears to represent better than 
MHD those dark zones of the lower-left zones of the painting. 

Nevertheless, visual inspection of generated maps for Man shown in 
Figs. 9 and 10 reveals that MHD produced better results than Random 
Forest, kNN. Hg (orange red areas with vermilion) and Cu (blue zones 

with azurite) are more clearly delimited in the maps generated with 
MHD. In fact, the only case in which the R2 score is better for MHD than 
Random Forest occurs when generating the map for Hg (see Fig. 8). 
These good results of MHD in both R2 scores and visual assessment are 
caused by the high number of training points used to generate the maps 
(1051 scanned points), which increases widely the range of values 
available by the algorithm for assigning the new positions of the map. 
Unfortunately, counting with that large amount of scanned XRF posi
tions is very difficult and not common when using portable devices for 
analysing paintings. Therefore, when a limited number of scanned po
sitions are available, our results suggest that the machine learning al
gorithms Random Forest and kNN are the best choices. 

5. Conclusions 

Our results suggest that several machine learning regression algo
rithms significantly improved the MHD algorithm. Random Forest and 
kNN performed significantly better than MHD when the training data 
were the points selected by the experts. Moreover, Random Forest and 
kNN were able to learn and achieve significantly lower average errors 
and greater R2 values than MHD when randomized cross-validations 
were performed in both paintings. The execution time of the training 
process is insignificant compared to the time for generating the chemical 
element maps, what allow us to retrain very fast the machine-learning 
models for a new painting, avoiding the use of complex deep-learning 
models based on large training datasets of paintings. We can conclude 
that, in general terms and specially when a limited number of scanned 
points is available, Random Forest would be the best suited algorithm 
for computing chemical element maps of paintings from XRF data. 
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