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Abstract: With the significant increase in cyber-attacks and attempts to gain unauthorised access
to systems and information, Network Intrusion-Detection Systems (NIDSs) have become essential
detection tools. Anomaly-based systems use machine learning techniques to distinguish between
normal and anomalous traffic. They do this by using training datasets that have been previously
gathered and labelled, allowing them to learn to detect anomalies in future data. However, such
datasets can be accidentally or deliberately contaminated, compromising the performance of NIDS.
This has been the case of the UGR’16 dataset, in which, during the labelling process, botnet-type
attacks were not identified in the subset intended for training. This paper addresses the mislabelling
problem of real network traffic datasets by introducing a novel methodology that (i) allows analysing
the quality of a network traffic dataset by identifying possible hidden or unidentified anomalies and
(ii) selects the ideal subset of data to optimise the performance of the anomaly detection model even in
the presence of hidden attacks erroneously labelled as normal network traffic. To this end, a two-step
process that makes incremental use of the training dataset is proposed. Experiments conducted on the
contaminated UGR’16 dataset in conjunction with the state-of-the-art NIDS, Kitsune, conclude with
the feasibility of the approach to reveal observations of hidden botnet-based attacks on this dataset.

Keywords: anomaly detection; NIDS; deep learning; autoencoders; methodology; real network
datasets; data quality

1. Introduction

Network Intrusion-Detection Systems (NIDSs) represent a primary cybersecurity
mechanism for identifying potential attacks on a communication network. To accomplish
this goal, they analyse the network traffic passing through the system, regardless of whether
it is internally generated or originated from external entities targeting the network. Detect-
ing intrusions allows network administrators to become aware of system vulnerabilities
and to make quick decisions to abort or mitigate attacks. Additionally, NIDSs allow them
to implement measures to strengthen the system in the future [1].

NIDSs can be categorised into various typologies based on two fundamental principles:
architecture and techniques employed. Focusing on the architecture, NIDS can be classified
as host-based, network-based, and collaborative approaches between different components.
According to the detection technique, the classification may be signature-based, Stateful
Protocol Analysis-based, or anomaly detection-based NIDSs [2].

Signature-based NIDSs possess a repository of network patterns representing preva-
lent network attacks. Their operating mode is to match the network sequence they examine
with their knowledge base to detect potential attacks [3].
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Alternatively, Stateful Protocol Analysis-based NIDSs rely on their comprehensive
understanding of the monitored protocol. They analyse all interactions to identify a
sequence of actions that might result in a vulnerability or insecurity [3].

In contrast, anomaly-detection-based NIDSs employ mechanisms to detect abnormal
network traffic behaviour. These anomalous activities typically correspond to network
traffic patterns that have a significantly low likelihood of occurring or are markedly mis-
aligned with normal traffic. Acutely objective, anomaly detection allows for the handling
of novel or previously unknown attacks (zero days). This is because such attacks generate
traffic patterns that have not been found before, and this type of NIDS often relies on the
use of machine learning techniques to carry out anomaly detection. When this approach is
followed, the subjective evaluation of attacks is effectively circumvented.

Different strategies have been employed to detect anomalies in NIDS through various
machine learning techniques [4,5], including statistical techniques like Principal Compo-
nent Analysis (PCA) [6] or Markov models [7,8]; classification techniques like Artificial
Neural Networks (ANNs) [9–12], Support Vector Machines (SVMs) [6], deep learning
models [13,14] including Autoencoders [9,15], or Decision Trees including Random Forest [16];
and clustering like outlier detection [17]. Using these techniques requires a multi-perspective
approach to tackling the problem, which can be categorised as supervised, semi-supervised,
or unsupervised, depending on the specific technique chosen [18].

Regardless of the technique used for anomaly detection in NIDS, the underlying
models must be trained to distinguish normal traffic from anomalous traffic. This training
process utilises datasets comprising real, synthetic, or a combination of both network traffic.
To be more concise,
• Synthetic traffic datasets are created by generating traffic in a controlled environment

that emulates a real-world setting. The generated traffic may include traffic related
to known attacks, providing enough samples for machine learning models to com-
petently identify and detect such anomalies. This enables the optimisation of the
dataset regarding the size and balance between regular and irregular traffic samples.
It also ensures the correct labelling of each observation as it has been intentionally
and deliberately generated. Such observations can be, for instance, the traffic flows
seen in the network. However, a potential issue is that it may not accurately reflect the
network traffic patterns observed in a genuine environment.

• Real traffic datasets capture all network communications within a real productive
environment. This implies access to the patterns of network traffic consumption and
usage that take place in an actual scenario and potentially any cyber-attacks that may
occur. Unlike synthetic datasets, real traffic samples may be biased or imbalanced,
with the presence of anomalous traffic often being minimal or completely absent. It is
necessary to carry out a subsequent process to assign a normality or attack label to
each flow for its use in machine learning models during training phases.

• Composite datasets are the ones generated by combining real environment data and
synthetic traffic to introduce attack patterns.
Regardless of the AI model used in a NIDS, the dataset’s labelling accuracy is crucial

to maintaining high model performance. This principle applies equally to supervised and
unsupervised learning. In supervised learning, labelling is necessary to enable models
to learn how to identify anomalous traffic. In contrast, unsupervised learning generally
assumes that the training dataset consists of normal traffic only and is, therefore, free
of anomalies.

An example of such a dilemma can be observed in the present traffic dataset UGR’16,
where irregularities such as botnet-type attacks were detected in the training set, which
remained unlabelled for several months [19,20]. Consequently, the detection performance
the authors claim when using this dataset can be called into question.

This work presents a methodology for detecting potentially hidden anomalies to
prevent the mislabelling of a real traffic dataset. Mislabelling can occur accidentally or
intentionally, as in the case of UGR’16, and can undermine or poison the artificial intelli-
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gence models trained on it. The primary aim of this framework is to enhance the reliability
of dataset labelling, specifically within the training subset, by preventing unidentified
anomalies from adversely affecting the efficacy of models trained on the data. This is
achieved by providing a mechanism to increase confidence in the labelling. In addition, as
a complement to this objective, the methodology can also be applied to select a subset of
data from the full training set to optimise anomaly detection results.

The main contributions of this study are therefore as follows:
1. The proposal of a methodology to identify concealed anomalies or contamination in

real network traffic data.
2. This technique allows for minimising the size of the training data set while maximising

the efficiency of inference in artificial intelligence models.
3. The methodology integrates Kitsune, a state-of-the-art NIDS, as a fundamental step to

analyse the corrupted UGR’16 dataset, showcasing its efficacy.

Motivation
Advances in communications, such as the Internet of Things (IoT), edge computing,

or cloud computing, as well as the evolution of customer–supplier or employer–employee
relationship models, are placing computer networks at the centre and making them the key
element underpinning this ecosystem. As an unintended consequence, computer networks
are also becoming the target of many cyber-attacks or the tools to carry them out. The
revolution of IoT devices and their exponential growth is amplifying the nature of attacks,
with IoT devices being used as instruments to carry out attacks with previously unknown
capabilities [21], such as the well-known Mirai attack in 2016 [22].

One of the measures to deal with these possible security breaches is to detect the
attacks in order to be able to act against them, using elements such as NIDSs, whose
purpose is to determine whether the network traffic observed corresponds to an attack
or not. The objective of NIDSs is therefore to be able to classify each traffic flow detected
as benign or malicious in a binary manner [23]. Machine-learning-based techniques are
commonly used to implement them [24].

Therefore, NIDSs play a crucial and increasingly important role, as they can be the first
line of defence against cyber-attacks. Our work pursues the robustness of NIDSs through a
methodology that allows for better training of the underlying AI models that perform the
classification of network flows and ensures that the data used for such training is error-free.
Our work is therefore in line with the current challenges:
1. Cybersecurity and AI: The application of AI in the field of cybersecurity requires

progress in its own protection because protecting the protectors is needed.
2. Data quality: The generation of datasets, both real and synthetic, in the field of

network traffic, is a complex process on which detection and prevention processes
and tools depend on, so it is necessary to work on maximising their quality by
reducing potential errors.
The article is structured as follows. Section 2 discusses related work on intrusion detec-

tion and datasets. In Section 3, methods and materials are introduced. Section 4 describes
the proposed methodology, while Section 5 delves into the implementation of the method-
ology in one use case and the obtained results. In Section 6, those results are discussed,
and, finally, Section 7 summarises the findings and suggests possible future research.

2. Related Works

2.1. Datasets for Network Security Purposes
To effectively train any AI model, especially those constituting NIDSs based on

anomaly detection, a prerequisite is a comprehensive dataset. This dataset should en-
compass a sufficient number of samples that represent all the various classes or patterns,
whether benign or malicious. This foundational dataset enables the model to learn and
predict accurately during subsequent training phases. In the specific case of NIDSs, a large
and correctly labelled dataset is assumed [23]. The quality of the trained models depends
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to some extent on the quality of the data on which they were trained [25], so it is important
to make a thorough analysis of the typology of datasets available in the NIDS domain.

Before reviewing the different datasets available in the field of cybersecurity, it is
necessary to define the criteria according to which these datasets will be analysed:
• Availability: Understood as free access (Public) to the dataset or, on the contrary, of

reserved access, by means of payment or explicit request (Protected).
• Collected data: Some datasets collect traffic packet for each packet (e.g., PCAP files),

others collect information associated with traffic flows between devices (e.g., NetFlow),
and others extract features from the flows by combining them with data extracted
from the packets.

• Labelling: This refers to whether each observation in the dataset has been identified as
normal, anomalous, or even belonging to a known attack. Or, conversely, no labelling
is available, in which case they are intended for unsupervised learning models.

• Type: The nature of a dataset may be synthetic, where the process and environment
in which the dataset is generated are controlled, or it may be the result of capturing
traffic in a real environment.

• Duration: Network traffic datasets consist of network traffic recorded over a specific
time interval, which may range from hours to days, months, or even years.

• Size: the depth of the dataset in terms of the number of records or the physical size
and their distribution across the different classes.

• Freshness: It is also important to consider the year in which the dataset was created,
as the evolution of attacks and network usage patterns may not be reflected in older
datasets, thus compromising their validity in addressing current issues.
A summary of the datasets analysed according to the characteristics described above

is shown in Table 1.

Table 1. Overview of available network datasets.

Dataset Availability
Collected

Data
Labeled Type Duration * Size ** Year Freshness Balanced

DARPA [26] Public packets yes synthetic 7 weeks 6.5TB 1998–1999 questioned no
NSL-KDD [27] Public features yes synthetic N.S. 5M o. 1998–1999 questioned yes
Kyoto 2006+ [28] Public features yes real 9 years 93M o. 2006–2015 yes yes
Botnet [29] Public packets yes synthetic N.S. 14GB p. 2010–2014 yes yes
UNSW-NB15 [30] Public features yes synthetic 31 hours 2.5M o. 2015 yes no
UGR’16 [31] Public flows yes real 6 months 17B f. 2016 yes no
CICIDS2017 [32] Protected flows yes synthetic 5 days 3.1M f. 2017 yes no
IDS2018 [33] Protected features yes synthetic 10 days 1M o. 2018 yes no
NF-UQ-NIDS [34] Public flows yes synthetic N.S. 12M f. 2021 yes no

* N.S. means not specified. ** Expressed in flows (f.), observations (o.), or packets (p.). An observation denotes a
data point with all specified features.

2.1.1. DARPA Datasets
Created by MIT’s Lincoln Laboratory, the DARPA datasets, with KDD datasets, are

perhaps the most widely used in the field of intrusion-detection systems [35]. There are
two versions, one created in 1998 and the other in 1999. Both collect synthetically generated
network packets in controlled network environments simulating network traffic patterns
previously observed in production environments. In the case of the 1998 version, the
duration of the training subset is seven weeks of data, while in the 1999 version, the
training subset consists of only three weeks of observations. In both cases, two weeks
of observed network traffic is reserved for validation. All observations are labelled and
contain a total of 200 observations of up to 58 attacks of different typologies, including
different versions of denial of service (DoS), port scanning, and user-to-root (U2R) or
remote-to-local attacks (R2L) [26].

These datasets, despite the year they were built, are still used today in various scenarios
and their usefulness seems to be proven [36], although there are some studies that question
their reliability [37].
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2.1.2. KDD Dataset
KDD99 [27] is a dataset created for the Third International Knowledge Discovery and

Data Mining Tools Competition based on the DARPA dataset. Unlike the latter, KDD99 is a
dataset whose format is based on the extraction of features (up to 41 [38]) from network
flows rather than the recording of raw observed data. It is a synthetic dataset but takes into
account the actual traffic observed in military network environments. Access to the dataset
is open, and, despite its longevity, it is still available. In terms of size, the dataset contains
almost 5 million observations, including the same typology of attacks as DARPA, i.e., DoS,
port scanning and privilege escalation attacks.

Similar to DARPA, although it is a widely employed dataset, criticisms have emerged
regarding its usability. Specifically, concerns have been raised about the lack of consistency
between the number of attack types in the training subset and those available in the
validation subset [39]. Additionally, the dataset is deemed outdated in the context of
contemporary world communications.

2.1.3. NSL-KDD Dataset
In 2009, to reduce the original DARPA and KDD problems, Tavallaee et al. [28] created

a new version of KDD called NSL-KDD [28]. In this version, the authors removed all
redundant records and added new synthetic ones based on the correctly labelled records of
the original dataset, so that those record types with a lower presence in the original dataset
had a higher presence in the new dataset and vice versa. As for the test dataset, it was
completely regenerated. The result is a public dataset that is slightly more balanced, but
with a very significant reduction in size, with just over 125 K observations in the training
and 22.5 K in the testing set.

Even with the revision of the KDD dataset and the application of techniques to
rebalance and address consistency issues, it continues to share the problems of its KDD and
DARPA predecessors. Specifically, it relies on 1998 network traffic, rendering it outdated in
the context of modern network communications and contemporary cyber-attacks.

2.1.4. Kyoto 2006+ Dataset
Given the shortcomings of datasets such as DARPA and KDD with their variants

related to the longevity of their data, in 2006, Song et al. [40] published a new dataset
called Kyoto 2006+, the result of recording real traffic from 32 honeypots with different
characteristics from November 2006 to August 2009 (almost three years), totalling more
than 93 million observations [40]. Since its initial publication, the authors have expanded
the dataset to cover a total of nine years of traffic (up to 2015), adding more honeypots
to reach the final figure of 348, including DNS servers to generate benign traffic. Each
record in the dataset provides a total of 24 features associated with the captured network
traffic flows, of which a total of 14 are present in datasets such as DARPA or KDD, while
the remaining 10 are new additions, including the labelling of the records, as well as the
typology of the detected attack. This dataset is probably the public dataset of real traffic
with the greatest historical depth on record, but, in spite of this, it is still quite balanced.

2.1.5. Botnet Dataset
Biglar Beigi et al. [29] have developed a public dataset focused on botnet attacks, as

they believed that this type of attack is currently the most challenging [29]. This dataset
contains a total of 16 different botnet attack typologies, covering both centralised and
decentralised attack strategies. In order to construct this synthetic dataset, the authors
analysed different datasets by combining subsets of three different datasets (ISOT [41],
ISCX 2012 IDS dataset [42], and Botnet Traffic Generated by the Malware Capture Facility Project
or CTU-13 [43]) using the overlay methodology described in [44] that ensures the cohesion
of the resulting data. The result is a dataset of tagged network packets with a total of almost
14 GB of information and a balance between normal and anomalous traffic of almost 55%
and 45%, respectively, which is quite balanced.
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2.1.6. UNSW-NB15
The Cyber Range Lab at the Australian Centre for Cyber Security generated the syn-

thetic UNSW-NB15 [30] dataset in 2015 using the IXIA Perfect Storm traffic generator. The
simulation environment used to generate the samples consists of three servers, two of
which generate benign traffic, while the third is used to generate traffic associated with
various attacks such as DoS, exploits, and rootkits. The dataset size is reduced, reaching
a total of 31 h in two subsets of 16 and 15 h, respectively, with just under 2.5 million
observations, 12% of which correspond to anomalies or attacks. Labels are available for
each flow, indicating whether it is normal or not, as well as the attack category to which it
belongs. Finally, the data are available in packet format (PCAP) as a version of 49 features
extracted from the captured flows.

2.1.7. UGR’16
The UGR’16 dataset [31] was created by the University of Granada in 2016 as a result

of capturing the real network traffic of a medium-sized ISP between March and June 2016.
Subsequently, during the months of July and August, different attacks such as DoS, botnet,
or port scanning were deliberately generated on the same ISP to capture all the traffic so
that this subset could be used as a test. The dataset consists of NetFlow traffic flows with
almost 17 billion different connections, of which more than 98% were normal traffic, making
it very imbalanced. After the traffic was captured, state-of-the-art anomaly detection and
network attack identification techniques were employed to tag the dataset. This involved
assigning each record a label indicating the type of attack to which it belonged. Given the
size of the dataset and its temporal proximity, it is an updated and current dataset for use
in building or training AI and NIDS models.

As will be seen in more detail in Section 3.3, this dataset presents labelling problems,
making it a good candidate to benefit from the methodology proposed in this paper.

2.1.8. CIC Datasets
The Canadian Institute for Cybersecurity (CIC) has generated several datasets to

validate the performance of NIDS or to train the models underlying these NIDS. Among
the various datasets available, the following should be highlighted:
• CICIDS2017 [32]: Generated in 2017, it is a synthetic network traffic dataset generated

in a controlled environment for a total of 5 days, available on request (it is protected).
The captured data are in packet and flow formats, although they are also available in
extracted feature format with a total of 80 different features. The captured traffic is
tagged, and the different attacks that each record corresponds to, including DoS, SSH,
and botnet attacks, are marked in the tag.

• CSE-CIC-IDS2018 [33]: This is a synthetic dataset generated in 2018 specifically based
on network traffic intrusion criteria. It includes DoS attacks, web attacks, and net-
work infiltration, among others, recorded on more than 400 different hosts. As with
CICIDS2017, the data are in packet and flow formatw but with a version contain-
ing 80 extracted features, and access requires a prior request (protected). Unlike
CICIDS2017, it is modifiable and extensible.

2.1.9. NF-UQ-NIDS
Sarhan et al. [34] have created a synthetic dataset specifically created for machine

learning-based NIDSs [34]. This dataset is the result of combining four datasets used in the
NIDS domain but transformed into a netflow version. Two of the datasets used have been
analysed previously in this work (UNSW-NB15 [30] and CSE-CIC-IDS2018 [33]), while the
other two (BoT-IoT [45] and ToN-IoT [46]) are datasets generated by the Cyber Range Lab
of the Australian Centre for Cyber Security (ACCS). The result is a dataset that contains
flows from different networks with different configurations, making it more universal than
the datasets of which it is composed. The original dataset to which each flow belongs
is available, allowing us to know under which scenario or network a NIDS trained with
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NF-UQ-NIDS can be more or less effective. The dataset contains almost 12 M records,
76.77% of which correspond to normal traffic, while the remaining 23.33% correspond to
the 20 types of attacks it contains, making it an imbalanced dataset. It was published in
2021, so it is a dataset that can be considered up-to-date and incorporates the latest types
of attacks.

2.2. Dealing with Labelling Problems in Datasets and the Techniques to Address Them
Classification problems, whether supervised or unsupervised learning, require a

sufficiently large dataset that is correctly labelled. In the case of supervised learning, the
labelling is used so that the model learns to distinguish the different classes that make up the
universe being treated. However, when the problem is approached from an unsupervised
learning perspective, such as anomaly detection, the training dataset is expected to belong
to the same class. This setup enables the model to learn to identify anomalies by recognizing
deviations from the patterns present in the training set. The process of creating a dataset is
therefore very important, as it determines the potential success of the machine learning
models that will use it.

The processes of tagging the data that make up a dataset involve the application
of automated techniques, as well as manual processes, which together can be subject to
error [47]. To mitigate this problem, some papers present methods or techniques to reduce
the mislabelling that occurs. For example, Kremer et al. [48] propose a model that tries to
detect the noise in the labelling based on loss functions that are insensitive to noise and
at the same time tries to infer the possible noise in the labelling and in the classification
itself [48]. On the other hand, Zhang et al. [49] propose a framework called Adaptive
Voting Noise Correction (AVNC), which aims to identify and correct incorrect labelling [49].
However, even the application of these techniques does not guarantee the correct labelling
of the dataset.

When the labelling of the data that make up a dataset is performed manually, there is
a risk of unintentional bias that is intrinsic to the observed data. To address this scenario, a
methodology is proposed in [50], whose aim is to relabel the data, eliminating the possible
bias of the initial labelling, achieving good results in a computational perception problem
on galaxy detection.

The impact of noise on labelling in artificial intelligence models has also been analysed
in several works in a way that relativises its impact. For example, Natarajan et al. [51]
propose in [51] a simple loss estimator that is unbiased and minimises the risk of the
presence of mislabelled data. Another approach, as proposed by Patrini et al. [52], focuses
on tackling the issue of noise in labelling, particularly in scenarios involving deep learning
models, including recurrent neural networks. The authors suggest two procedures to
correct the loss function in instances of mislabelled data [52]. More recent is the work of
Wei et al. [53], who this problem and propose two datasets with noise in the labelling to
serve as a benchmark to measure how robust the models or techniques are to errors in the
labelling [53].

Of particular relevance is the work of Northcutt et al. [47], which analyses the quality
of labelling in test subsets of 10 datasets, as opposed to the work presented above, which
focuses on the quality of labelling of the training data. This approach is particularly
interesting as the test subsets are assumed to be perfectly labelled, as they are the test and
evaluation mechanism by which the models are tested and validated [47]. Labelling errors
in such a dataset can destabilise the performance of machine learning models. The datasets
tested are those commonly used in the field of computational perception (such as MNIST
or ImageNet), in the field of language processing (such as IMDB or Amazon Reviews), and
finally in the field of audio processing (AudioSet). The results obtained show that there are
labelling errors that, in some cases, reach up to 10% of the labelling error.

Confident Learning (CL) is a subfield of machine learning between supervised and
semi-supervised learning that focuses on characterising noise in the labelling to find and
correct errors in the labelling in order to train robust models. To achieve this, they use data-
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pruning techniques to clean the dataset before training the models. In [54], a generalised CL
strategy is proposed that is able to find the errors in the labelling by estimating the correct
distribution of correct and incorrect labels. Furthermore, it is tested on image datasets,
yielding models with higher performance than some of the best state-of-the-art models.

Müller and Markert [55] propose a tool to detect errors in the labelling of image,
text and numerical datasets [55]. As a result of the application of this tool, the set of
observations of the dataset with a high probability of being mislabelled is obtained. This
method has been tested on a total of 29 different datasets, both real and synthetic and,
according to its authors, has been able to find mislabelling in some of them that had not
been detected before.

The application of computational perception techniques in medicine is also subject to
the risks associated with mislabelling, especially when the goal is to detect the presence of
possible tumours. In [56], the authors addressed this problem by proposing a methodology
to identify labelling errors in images associated with the presence of breast cancer. To
achieve this, they propose a function that measures the deviation between the prediction
made by the model and the real value of the sample (called Cross-Entropy loss). Addi-
tionally, they put forward another function that assesses the model’s dependence on the
dataset, known as the Influence function. The method is evaluated on a set of 10,500 images
in which up to 98% of labelling errors are detected.

Another methodology in the field of image processing is proposed in [57], where the
aim is to train a deep learning model with a dataset where there is no confidence in the
labelling of the data. To do this, the model adjusts the internal parameters of the neural
network while learning the distribution of noise in the labelling and testing it against
classical back-propagation models where the goodness of the labelling is assumed.

In the specific area of datasets aimed at addressing cybersecurity or network traffic
problems, previous work is more limited, as the generation of these datasets has additional
complications with respect to the more general use cases. In [58], Cordero et al. [58] the
problem is reviewed through a comprehensive analysis of various datasets intended for
NIDS. The authors put forth an enhancement to the Intrusion-Detection Dataset Toolkit
(ID2T) dataset generation methodology. Subsequently, they evaluate the effectiveness of
the proposed ID2T improvement by assessing datasets generated after its application.

The problem of labelling in the field of network traffic is more complex, since it requires
specific low-level knowledge of the traffic in order to be able to correctly classify each flow.
In [59], an analysis of the methods used for labelling this type of dataset, both automatic
and manual, is carried out, identifying the weaknesses of each of the techniques along with
their advantages and disadvantages.

Finally, to conclude this analysis of the state of the art in dataset quality, in [60], an
approach to measuring the quality of a network traffic dataset is presented. This quality is
used to compare two datasets, to decide if they are equivalent, or if a better quality dataset
is found, whether or not it is appropriate to retrain the machine learning models. The
proposal for measuring the quality of a dataset is based on the criteria: (i) completeness as
the probability that a dataset record can occur in the domain of the machine learning model
to be built and (ii) reliability as the probability of occurrence of misclassified or mislabelled
data for each possible class. Based on these two criteria, the applicability of a network
traffic dataset to a particular problem can be determined.

3. Materials and Methods

3.1. Kitsune NIDS
Kitsune [9] is a particular case of autoencoder applied to network intrusion detection.

According to its authors, it is a NIDS designed to efficiently detect anomalous network
traffic, computationally simple, and feasible to be deployed on any router for real-time
detection. These features allow Kitsune to be used in experimental scenarios where the
number of simulations is high, reducing execution times and computational cost.
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The architecture of Kitsune, shown in Figure 1, is composed of five entities or compo-
nents:

• Packet Capturer: This is not an integral part of the Kitsune solution but rather a
third-party library or application that captures network packets in pcap format.

• Packet Parser: Like the capturer, this module also corresponds to a third-party li-
brary (e.g., tshark or Packet++ [61]), and its function is to extract metadata from
raw network packets, for instance, the packet’s source and destination IP addresses,
timestamp, ports involved, and packet size.

• Feature Extractor: This is the first component that is part of Kitsune. Its purpose is to
extract a set of n numeric features that accurately represent the channel status through
which the packet was received and maintain a set of statistical data representing
the traffic patterns collected so far, thus linking the time sequence of traffic to the
detection process.

• Feature Mapper: In this component, dimensionality reduction is executed to transfer
each observation from a set of n features to a smaller and more concise set of m features
while preserving the correlation between n and m. To accomplish this, segmentation
or clustering techniques are adopted to categorize the features into k groups, each
with no more than m traits. These groups will be employed in each autoencoder that
makes up the anomaly detector.

• Anomaly Detector: The final step is to assess whether each observation constitutes an
anomalous packet or not.

· · ·

· · ·

· · ·

· · ·

Packet
capturer

Packet
parser

Feature
Extractor 

(FE)

Feature
Mapper

(FM)

Anomaly
Detector 

(AD)

Ensemble of
autoencoders

Output layer

External libraries Kitsune

Figure 1. Kitsune’s architecture [9].

The Anomaly Detector, referred to by its authors as KitNET [62] (Kitsune NETwork),
can be used independently as an anomaly detector if data are available in the form of
continuous feature vectors.

KitNET is an unsupervised learning neural network designed for real-time anomaly
detection. To carry out this task, its architecture is divided into two clearly differentiated
elements:

1. Ensemble of Autoencoders: This is a set of k identical autoencoders, formed by three
layers whose input has m neurons corresponding to the m characteristics chosen
by the feature mapper. The objective of this ensemble is to measure the degree of
anomaly that each observation has independently. To do this, the root-mean-squared
error or RMSE (Equation (1)) of the observation is calculated at the output of each
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autoencoder. All observations go through all autoencoders, although only a subset of
m characteristics of the observation is used in each one of them.

RMSE =

r
Ân

i=1(predictedi � actuali)2

n
(1)

2. Output Layer: This is also a three-layer autoencoder that receives as input the output
of the entire previous ensemble (the RMSE generated by each autoencoder) and whose
output is also an RMSE that is transformed into a probability by applying a logarith-
mic distribution. This probability indicates the degree to which the observation is
considered to be anomalous traffic.

From the perspective of KitNET operation, the execution sequence is divided into
four phases:
1. Initialisation: Based on a set of observations, the model calculates the number of

autoencoders that will form the ensemble and the features that will be used in each
of them.

2. Training: Using a new set of observations, the internal parameters of each autoencoder
are adjusted to reduce the RMSE generated in their output layers. This phase is
subdivided into the following:
(a) Calibration: The weights and internal parameters of the neural networks of

the autoencoders are adjusted using a subset of the provided training data.
(b) Testing: After the previous process, the remaining data in the training set are

used to generate a probability distribution from which to choose the threshold
that will distinguish a normal observation from an anomalous one.

3. Detection: Once the internal parameters of the autoencoders are fixed, each new ob-
servation that passes through the architecture generates an RMSE in each autoencoder
of the ensemble. All these values serve as input to the output layer of the model.

4. Labeling: The final result that KitNET produces is the calculation of the probability
that the observation is anomalous. Using the threshold obtained during training, it is
determined whether that probability makes the considered observation anomalous
or not.
Finally, it is important to highlight that KitNET (and therefore Kitsune) assumes that

the data used for the initialisation and training phases are observations of normal traffic,
that is, free of anomalies.

3.2. Feature as a Counter
Captured network traffic generally consists of a large number of files in binary format

with diverse information that cannot be directly used in machine learning algorithms [63].
Therefore, an aggregation process is necessary to obtain a universe of data that can be
handled as a dataset.

Camacho et al. propose in [64] a technique called Feature as a Counter (FaaC). The
primary objective of FaaC is to convert a dataset related to network traffic, specifically
network flows, into a singular observation matrix. This matrix is designed to be suitable for
multivariate analysis or as input for machine learning algorithms in a customized manner.
With this tool, captured network traffic flows from different sources can be flexibly com-
bined and aggregated such that new observations are formed from new counting variables
of certain values present in the original variables. For example, it may be interesting to
know the total number of connections per minute directed to ports 80 and 443 of a web
server, so that if a very high number is recorded in a certain time window (one minute by
default), it could be a symptom of a Denial of Service (DoS) attack. To do this, FaaC allows
converting the raw data of all captured network flows (timestamp, source and destination
IP address, source and destination ports, packet size, flags, etc.) into a dataset in which, for
each minute, the number of flows using port 80, 443, 22, etc., is counted.
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A specific implementation of FaaC can be found in a library called FCParser [65],
which has been applied to calculate minute-aggregated counters for all available obser-
vations in UGR’16. In this aggregation, a total of 134 new counting variables or features
are determined for each minute, including the different most common ports of both origin
and destination (FTP, SSH, SMTP, HTTP, etc.), the different protocols involved (TCP, UDP,
ICMP, etc.), the different flags of TCP packets (ACK, RST, etc.), the priority and size of the
packets, and the total flows of each type of anomaly.

3.3. UGR’16 Dataset
UGR’16 is a dataset presented and analysed by Maciá-Fernández et al. in [31]. It is

divided into the following subsets:
• Training set (calibration): Real traffic data observed in an Internet Service Provider

(ISP) during the four months from March to June 2016.
• Test set: Real traffic data observed in the same ISP and synthetically generated attack

traffic during the two months of July and August 2016.
Since the data source is the traffic collected from the ISP’s facilities, the heterogeneity

of the captured records is high. These records encompass data associated with a wide
variety of communication protocols (HTTP, FTP, DNS, etc.) and originate from various user
types. Importantly, the data are not confined to a specific set of actors belonging to a single
company, university, or laboratory, contributing to the overall diversity of the dataset.

For the synthetic attack data, simulated Denial of Service (DoS) attacks, port scanning,
and attacks caused by malware (specifically, botnet attacks) are included. These attacks are
concentrated to run on specific days between July and August, using two strategies: (i) fixed
execution dates and times, and (ii) random attack time (see [31] for more information).

As an additional feature of UGR’16, anomalies were detected in the dataset related to
SPAM campaigns, SSH port scanning, and UDP port scanning. Both synthetically generated
attacks and detected anomalies were properly labelled in the dataset using state-of-the-art
techniques. Additionally, traffic belonging to IP addresses on blacklists was also labelled.

An inherent problem with the capture of real traffic is that it is possible that real
attack traffic flows may already be present in the training data but have gone unnoticed
and have been erroneously labelled as normal or background traffic. This can introduce
noise into the dataset and degradate its quality, as it may be computing traffic flows as
normal that actually are not, thereby hindering the detection methods being built. In fact,
García Fuentes, M., in his doctoral thesis “Multivariate Statistical Network Monitoring for
Network Security based on Principal Component Analysis” [19], identifies in the UGR’16
dataset, specifically in the calibration part of June, an undetected botnet related attack. This
makes anomalous traffic appear as normal traffic.

In [20], Medina-Arco et al. confirmed the existence of a labelling error in UGR’16
in June using KitNET. They further identified a labeling problem due to the botnet attack
that started in the last days of May, revealing hidden anomalies that had not previously
been identified. These findings stem from investigations into KitNET and UGR’16. Various
scenarios were set up to investigate the incremental use of calibration dataset data. These
were (i) training with March data and validation against July and August data; (ii) training
with March and April data compared to July and August test data; and (iii) training with
March, April, and May data compared to July and August test data.

Table 2 presents the traditional performance metrics achieved by applying KitNET
in all scenarios. It is worth noting a decline in the values of the third scenario as the
month of May was included in the training. It is particularly noteworthy that the recall
and F1-measure values both drop. Recall drops to 23%, while F1-measure drops to 36%.
Table 3 displays the detection rates by attack type. It is clear that the inclusion of May results
in a decrease in the detection capacities for all attack types. This decrease is particularly
significant in the case of botnet attacks, where only 1% of them couold be detected compared
to the 74% detected in the previous scenario.
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Table 2. Detection results of applying KitNET over UGR’16 [20].

Scenario Training Data * Class Precision Recall F1-Measure Accuracy

Scenario 1 March Normal 0.99 1 0.99 0.97Anomalous 0.75 0.17 0.27

Scenario 2 March to April Normal 0.98 1 0.99 0.99Anomalous 0.9 0.66 0.76

Scenario 3 March to May Normal 0.98 1 0.99 0.98Anomalous 0.87 0.23 0.36

* Months considered as training (Mar. for March, Apr. for April).

Table 3. Detection ratios by attack type of applying KitNET over UGR’16 [20].

Attack Scenario 1 Scenario 2 Scenario 3

DOS 34% 64% 56%
SCAN11 1% 1% 1%
SCAN44 51% 72% 57%
BOTNET 4% 74% 1%

UDPSCAN 0% 0% 0%

Total 16% 65% 22%

Figure 2 shows the ROC curves for the three scenarios. Notably, the scenario including
May in the training exhibits inferior behaviour compared to the previous scenarios, with
an AUC (area under the curve) that is much lower (0.89) compared to the other two (both
around 0.95).

Figure 2. ROC curves corresponding to the experimental scenarios [20].

Finally, the analysis of network traffic linked to botnet-style attacks associated with
the IRC protocol (presented in Figure 3) indicates a considerable rise from the final days of
May to the middle of June (dashed green square in the figure). This increase suggests that
the attack, which was not detected by the UGR’16 labelling process, probably took place
during this time.
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Figure 3. IRC traffic (blue line) registered in the UGR’16 calibration set.

4. Proposed Methodology

In this section, we outline the main procedures of the proposed methodology aimed
at identifying hidden anomalies or tainted data in the training data used in a machine
learning model in the field of NIDS. The Figure 4 represents the proposed methodology,
which will be detailed below.

Training model with 
a subset of data 
and validating 

against test data

Performance

Compute f1-score 
and AUC

Extend data 
subset Optimal size

Optimal size is 
associated to the 
best f1-score and 

AUC 

If all training 
dataset is used or
f1-score and AUC is
not improved

Finding optimal 
window

Training model with a 
subset of data with 

optimal size and 
validating against test 

data

Finding optimal 
size

Optimal training 
subset

Optimal training window 
is associated to the best 

f1-score and AUC 

Moving training window until
dataset end

Step 1: Finding the optimal number of observations for training Step 2: Finding the optimal data training window

Figure 4. Proposed methodology workflow.

First, it is necessary to estimate the optimal number of observations in the entire
training dataset that is ideal for training an AI model. It is then necessary to identify the
subset of training data of that size which maximise the model’s performance while enabling
the potential discovery of hidden anomalies within the dataset. To achieve this, metrics are
established to measure the quality of each data subset. The stopping mechanisms for the
proposed process will then be determined based on these metrics.
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Searching for the optimal window size is separated from the search for the optimal
window to minimize the total number of scenarios to be evaluated. This approach makes
the overall process more efficient while preserving the temporal sequence of the data
recorded in the dataset. In the second step, the entire training dataset is analyzed to search
for the optimal subset of training data which allow the discovery of potentially hidden
anomalies. Considering n as the number of blocks into which the dataset is divided (hours,
days, weeks, etc.), the maximum number of scenarios needed for evaluation with this
strategy is 2n. Therefore, the computational complexity is linear (O(n)).

At the end of this section, we also propose an alternative method for performing an
exhaustive search for the optimal window in the training dataset.

4.1. Performance Metrics
Among the most frequent measures for assessing the efficacy of a binary classification

model, like an anomaly detector, are precision, recall, accuracy, and F1-score. These metrics
are obtained by deriving the observable indicators from a classifier’s predictions on test
records and counting the number of true and false positives and negatives (True Positive
(TP), True Negative (TN), False Positive (FP), False Negative (FN)).

Among these indicators, the most relevant one in cases where the dataset is highly
imbalanced, as is typically the case for datasets utilised in the NIDS domain, is the
F1-score [66]. This indicator is a combined measurement of precision and recall, which
is defined by Equation (2). Precision quantifies the proportion of positive predictions that
are correct, whereas recall measures the fraction of positive observations that the model has
detected with respect to the total positive observations in the dataset. In datasets wherein
the number of positive samples is considerably smaller in comparison to the total number
of negative samples, these metrics may not adequately measure the quality of a model. For
instance, imagine a dataset with 90 samples of class A and 10 samples of class B. If a model
solely predicts elements of class A, it will have an accuracy of 90%. However, its perfor-
mance would be incorrect since it cannot detect any instances of class B. Meanwhile, recall
would achieve a result of 100%, yet this does not demonstrate the model’s effectiveness.
F1-score aims to address this issue by presenting a harmonic mean between precision and
recall. This means that the higher the F1-score, the higher the precision and recall are, jointly
decreasing the impacts resulting from an imbalanced dataset.

f 1 =
2TP

2TP + FP + FN
(2)

Another useful metric for selecting the best model or algorithm for classification
problems is the AUC value (Area Under the ROC Curve), which compares the true positive
and false positive ratios. The ROC curve (Receiver Operating Characteristics) associated
with this value determines the overall probability of classifier success for both classes [67],
as shown before in Figure 2. The AUC value positively correlates with the likelihood of
accurate predictions made by the model in any of the problem’s classes, namely normal
traffic or anomalous traffic.

Both the F1-score and AUC are utilised in the proposed methodology to evaluate the
efficacy of the diverse models produced at every phase of the procedure.

4.2. Optimal Number of Observations for Training
As discussed in Section 2.1, actual network traffic datasets are generally vast, cap-

turing a wide variety of traffic in order to identify all patterns associated with normal
and anomalous usage in a given environment. The datasets are intended to capture the
maximum amount of traffic of all possible types. The result is a training set that could
potentially be remarkably large, but as demonstrated in the specific case of UGR’16 (see
Section 3.3), there is no guarantee that a greater number of observations in a training set
will produce superior results in an artificial-intelligence-based model. Therefore, it seems
reasonable to ask what the optimal number of training data is, in terms of the number of
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observations, for a particular dataset in order to maximise the performance of a model
trained on that dataset. Moreover, refining the number of records utilized for training leads
to enhanced efficiency in the training process. This results in computational ease and faster
execution of the process.

In the realm of network traffic, unlike other artificial intelligence problems where it
may be feasible, and even recommended, to implement random data selection techniques
within the training set for the purpose of training a machine learning model, the traffic
sequence plays a critical role [68]. Indeed, it is this temporal sequence that records the
patterns of behaviour and network usage. Changing the order of events could affect model
performance to varying degrees, but it would fundamentally alter the essence of the actual
traffic that exists in genuine traffic datasets. This, in turn, leads to the emergence of patterns
that could not exist in a production environment due to their lack of logical coherence.
Randomly selecting network packets from a genuine traffic dataset would, for example,
disrupt the established sequence of a TCP conversation flow.

Due to the inherent specificity of network traffic and the goal of acquiring an optimal
set of records to train an anomaly-detection model, the first step of the proposed method is
to identify the optimal size of a training data sequence, referred to as the training window.

4.2.1. Finding the Best Size for the Training Window
To determine the ideal training window size, the proposed method utilises a process

of iterative training. In each iteration, the number of records used increases progressively,
starting from the first record of the dataset subset designated for training. At the end of
training in each iteration, the resulting model is tested on the designated test dataset, with
an evaluation of the F1-score and AUC indicators.

Figure 5 presents an example of how this process can be applied. It is important to
note that each identified unit is equivalent to, for instance, a recorded day of data in the
dataset. Therefore, during the first iteration, the model will be trained solely using data
collected on the first day of the training dataset. The model is validated using the full set
of test data available. From these results, we will derive the F1-score and AUC values. In
the second iteration, the model will be trained using the initial two days of training data
and subsequently retested with the complete test dataset to obtain the F1-score and AUC
values again. We then repeat this process iteratively until training has been carried out on
the entire set of training data.

Test dataTraining Data

Step 1
Step 2
Step 3
Step 4

Step n
. . . . . . 

Figure 5. Finding the best size for the training window. Considering blue blocks as training data;
grey ones as not used data and green blocks for validation.

The optimal size of training window will be determined by the iteration that yields
the highest F1-score and AUC values.
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4.2.2. Early Stopping
Early stopping conditions can be implemented in this iterative and incremental train-

ing process to decrease the time required to search for the optimal window size for training.
To achieve this, it is enough to set improvement thresholds for certain indicators used to
measure the quality of each iteration (such as F1-score and/or AUC), similar to how it is
measured in training machine learning models. If these indicators do not improve beyond
the defined threshold within a specific number of iterations, it indicates that the model
might be at a local minimum of the gradient descent [69]. If, after a certain number of
iterations, the values of the F1-score and AUC do not surpass the maximum values obtained
so far, the algorithm will stop, and the optimal scenario will be identified as the one that
achieved those maximum values. This avoids further iterations until the entire training set
has been used.

The sole risk related to utilizing early stopping criteria is that the process may halt at
a local minimum, rather than the global minimum. As a result, it might overlook a more
significant window size that yields superior results. Nevertheless, the second step of the
proposed process remedies this problem by sliding the window, thereby covering the entire
training dataset.

A potential approach to implement this step utilizing early stopping is demonstrated
in Algorithm 1.

Algorithm 1 Step 1: Finding the optimal number of observations for training

Require: Training dataset, Test dataset and incremental unit (number or flows/pactkets,
hours, days, weeks, ...)

Ensure: The (pseudo) optimal window size
max_ f 1_score, max_auc, optimal_windows_size 0
unimproved_scenarios 0
early_stopping 10
stop f alse
current_size incremental_unit
while stop 6= true do

model_train(training_data(begin, current_size))
f 1, auc model_predict(test_data)
if f 1 � max_ f 1_score or auc � max_auc then

max_auc auc
max_ f 1_score f 1
optimal_windows_size current_size
current_size current_size + incremental_unit
unimproved_scenarios 0

else

unimproved_scenarios unimproved_scenarios + 1
end if

if unimproved_scenarios � early_stopping or current_size � last_dataset_date then

stop true
end if

end while

4.3. Optimal Data Window Size for Training: A Sliding Window Approach
After completing the previous step, a training window is obtained. This window yields

optimal results when applied from the beginning of the training dataset. Nevertheless, it
cannot be guaranteed that it is the best window to maximize the performance of a machine
learning model of a NIDS that employs this dataset for training. It is important to consider
that the aim of this study is to identify hidden anomalies in a genuine traffic dataset.
Therefore, the outcome from the previous phase may not adequately fulfil this objective. If
unreported or unlabeled anomalies are present in the initial training entries, what impact
would it have on the analysis? The findings of the previous step suggest that increasing the
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window size may dilute the impact of labelling errors caused by a larger training sample
size. However, it would still not eliminate the contamination and insensitivity of the model
towards attacks caused by hidden or mislabelled anomalies.

To address this issue, the proposed methodology presents a secondary step that
intends to achieve two objectives:
1. Identify the ideal training data window or sequence from the training dataset to

maximise model performance. This dataset will be used to train any machine learning
model-based NIDS that uses it.

2. Analyse the performance of different models trained on each subset of the training set
to uncover hidden anomalies in the dataset.
This second stage of the proposed methodology involves sliding the training data

window across the entire dataset to assess the goodness of fit of the training dataset.

4.3.1. Finding the Optimal Data Training Window
After determining the optimal training data window size based on the preceding step,

the proposed approach utilises a repeated training process, whereby the data window
used for training is shifted through the entire training dataset during each iteration. At
the conclusion of each cycle, the resulting model is evaluated using the test dataset, with
performance indicators including F1-score and AUC. The ideal training data timeframe is
the one that delivers the maximum F1-score and AUC values.

Figure 6 graphically illustrates the proposed process. Given that the optimal training
window is, for instance, of five units (e.g., days), the following steps should be followed:
• Step 1: The model is first trained using the training data from the initial 5 days of the

dataset. The model is then re-validated against the test data to generate the F1-score
and AUC values.

• Step 2: In the second step, the model is trained with the training data obtained from
the subsequent 5 days of the dataset (day 1 to day 6), by sliding the window by one
day. Afterwards, it is validated against the complete test dataset, and the resulting
F1-score and AUC performance indicators are obtained.

• Step n: These steps are repeated for all subsequent iterations (n). The training window
is shifted successively until it occupies the final 5 days of the training dataset. The
F1-score and AUC are calculated as in other iterations.
After analysing the results of all iterations, the subset of data used for training that

performed best is considered optimal for training an anomaly-based NIDS.

Test dataTraining Data

Step 1
Step 2
Step 3
Step 4

Step n
. . . . . . 

Figure 6. Step 2: Finding the optimal data training window. Considering blue blocks as training data;
grey ones as not used data and green blocks for validation.



Sensors 2024, 24, 479 18 of 27

4.3.2. Hidden Anomaly Detection
As an additional result to the search for the optimal window of training data with

which to train the model of a NIDS, a tool is obtained that allows analysing the existence of
possible errors in the labelling or the presence of unidentified anomalies in the dataset.

Under normal conditions, where the labeling of a network traffic dataset is correct,
an artificial intelligence model is expected to exhibit equivalent results when trained with
subsets of data that are similar in size, even if they comprise different days of that set. This
is because the model’s strength lies in its capacity to generalize the data, enabling it to
infer the knowledge necessary for detecting whether a future record is normal or not. This
would imply that the F1-score and AUC results for each of these possible subsets should be,
to some degree, similar.

However, when unlabelled data are present and a model is trained on these data, it
is likely that the F1-score and AUC results obtained when confronted with the test data
will be drastically worse, as it will not be able to detect some of the anomalies. This effect
is produced by the fact that the model has inferred that a certain correlation of data and
patterns is considered normal when in fact it is not.

Therefore, the analysis of the evolution of the F1-score and AUC metrics can help
to detect possible sections of the dataset that contain potential labelling problems and,
therefore, facilitate the task of analysis by subject matter specialists to determine the source
of potential quality problems in the dataset.

A potential approach to implement the Step 2 can be found in Algorithm 2.

Algorithm 2 Step 2: Finding the optimal data window for training

Require: Training dataset, Test dataset and window size (number or flows/pactkets, hours,
days, weeks, ...)

Ensure: The optimal training window
max_ f 1_score, max_auc 0
start_window, end_window 0
optimal_start_window, optimal_end_window 0
iteration 0
while end_window 6= end_training do

start_window start_training + iteration
end_window start_training + window_size + iteration
model_train(training_data(start_window, end_window))
f 1, auc model_predict(test_data)
if f 1 � max_ f 1_score or auc � max_auc then

max_auc auc
max_ f 1_score f 1
optimal_start_window start_window
optimal_end_window end_window

end if

iteration iteration + 1
end while

4.4. Exhaustive Search for Optimal Window
The use of early stopping techniques, as described in Section 4.2.2, can locate a window

that corresponds to a local minimum and is, therefore, a sub-optimal solution. To ensure
that the optimal solution is located, it is necessary to perform an exhaustive search that
combines the start of the window at every possible location in the dataset with all possible
window sizes.

Figure 7 shows an example of how this exhaustive search could be performed. Con-
sider, for example, n as the total number of days contained in a dataset. In the first iteration,
the starting point of the window is considered to be the first day of the dataset and has a
depth of only one day. This window is used to train the model and validate it against the
test dataset. As a result, the F1-score and AUC metrics are obtained. In the next iteration,
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the start of the window is maintained and the depth of the window is increased in one
day to repeat the exercise. The process is repeated until the end of the window is reached,
which corresponds to the last day of the dataset.

The next step is to shift the start of the window by one day and repeat all iterations
until the entire remaining dataset is used. This process will be repeated until the start and
end of the window coincides with the last available day of the dataset.

The combination of window start and window depth with the best F1-score and AUC
results represents the optimal training data subset that maximises model performance.

The total number of scenarios required to run the optimal window search is as defined
in Equation (3), so its computational complexity is O(n2). It is therefore computationally
worse than the two-step search strategy, which was linear.

1
2

n(n + 1) (3)

Test dataTraining Data

Step
Step
Step
Step

. . . . . . 

Step
Step
Step
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. . . . . . 
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Figure 7. Exhaustive searching for the optimal data training window. Considering blue blocks as
training data; grey ones as not used data and green blocks for validation.

A potential approach to implement this exhaustive search is demonstrated in Algorithm 3.
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Algorithm 3 Exhaustive search for the optimal data training window

Require: Training dataset, Test dataset and window size (number or flows/pactkets, hours,
days, weeks, ...)

Ensure: The optimal training window
max_ f 1_score, max_auc 0
start_window, end_window 0
optimal_start_window, optimal_end_window 0
iteration 0
for i 1 to n do

for j i to n do

start_window start_training + i
end_window start_training + j
model_train(training_data(start_window, end_window))
f 1, auc model_predict(test_data)
if f 1 � max_ f 1_score or auc � max_auc then

max_auc auc
max_ f 1_score f 1
optimal_start_window start_window
optimal_end_window end_window

end if

end for

end for

5. Results

The current section tests the previously proposed methodology in a scenario that
combines a dataset with the presence of hidden anomalies, such as UGR’16, and the state-
of-the-art NIDS Kitsune. To accomplish this, the experimental scenario is first defined,
followed by a demonstration of the obtained results.

5.1. Description of the Validation Scenario
The application of the proposed methodology in a real use case to validate its applica-

bility and to be able to analyse the results obtained has been carried out with the following
considerations:
• Instead of using UGR’16 packets, the data are represented by numerical features

derived from the Feature as a Counter method, as explained in Section 3.2.
• Out of the entire UGR’16 dataset that was allocated for training, any observations

corresponding to attacks were removed. This was performed in order to create a
training dataset that is free of anomalies, which is a requirement for KitNET.

• The state-of-the-art NIDS applied in this experimentation scenario is Kitsune
(Section 3.1), although its application is reduced to the use of the Anomaly Detector
(KitNET) together with the features extracted from UGR’16.

• The specific configuration parameters for the KitNET model are as follows:
– The maximum size of each autoencoder in the internal ensemble is empirically

set to 10 neurons in the hidden layer.
– The number of instances from each scenario’s training dataset used for the initial-

isation phase of KitNET is empirically set to 2000.
– The proportion of instances from every training dataset scenario used for Kit-

NET’s training sub-phase is set to 70%.
– The proportion of instances used for the KitNET validation sub-phase, therefore,

is 30%.
– A uniform value for the threshold or tolerance threshold for anomaly detection

has been utilized in all cases—the standard deviation added to the mean of the
probabilities detected during the training phase. Values above this threshold are
considered anomalous.
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• Since we have defined for KitNET 2000 observations for the initialisation phase, the
initial window must be at least 2 days long.

• In each iteration, the window for the first step of the methodology is 1 day.
• Instead of using the exhaustive search in order to minimise the computational cost,

an early stopping mechanism is implemented based on a total of 10 iterations, which
improves neither the F1-score nor the maximum AUC found so far.

5.2. Experiment Results
5.2.1. Step 1—Looking for the Window Size

After 50 iterations, the search for the most appropriate training window size for
UGR’16 was completed. The early stopping mechanism was ultimately activated when
there was no further improvement in the results obtained so far.

The findings from the performance metrics of the KitNET model with UGR’16 for
varying training window sizes are showcased in Figure 8. Accuracy, Precision, Recall, F1-
score, and AUC values can be reviewed. The window size that maximizes the F1-score and
AUC values is indicated by a blue dotted line, as well as the maximum values of F1-score
and AUC.

Figure 8. Performance metrics for iterations looking for the training window size.

5.2.2. Step 2—Looking for the Optimal Training Window
After determining the optimal size of the window (40 days in this example), the second

step of the methodology is initiated, which comprises 58 iterations. During each iteration,
the model is trained using 40-day blocks of training data, starting from the next day in
each iteration and sliding one day at a time until the last 40 days of data are used in the
training dataset.

Figure 9 displays the results acquired for the AUC and F1-score metrics for every
iteration, indicating the iteration with the highest AUC and F1-score values, and the max-
imum values achieved by them are delineated with a blue dotted line. The value on the
x-axis indicates each iteration, which in turn represents the number of days the window
has been shifted from the origin. It should be noted that when the iteration’s value is 0,
the dataset used for training covers the first day of the data in the training dataset up to
40 days later (where 40 days is the optimal window size obtained in the previous step of
the methodology).
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Figure 9. Performance metrics for iterations looking for the training window size.

6. Discussion

Upon completion of the proposed experimental case methodology, examination and
discussion of the acquired results can take place. The goal is to confirm the efficacy of the
procedure proposed in this study. However, as anticipated in Section 2.2, there are no other
references in the literature aimed at finding the optimal subset of data for training while
searching for hidden anomalies.

6.1. Results on Looking for the Training Window Size
Firstly, we address the initial step of the methodology, which seeks to find an ideal

window size for training an anomaly detection model in a NIDS, as shown in Figure 8.
The accuracy values are very close to 100%, but this does not necessarily mean that

the model is optimal overall. This is because the UGR’16 dataset is heavily imbalanced,
with only 2% of the observations corresponding to attacks. As a result, high accuracy
rates are only achieved by having a high hit rate in the normal traffic class. However, the
main objective of a NIDS is to detect the anomalous traffic representing 2%. Therefore, this
indicator cannot be considered as a measure of model quality.

In the initial iterations, there is significant oscillation in the remaining performance
metrics. This phenomenon could stem from inadequate training, namely the insufficiency
of the available data to enable the model to deduce all probable cases. Consequently, its
aptitude to generalize correlations between data, to make predictions in the future, is still
in its early stages. This is supported by iteration 8 onwards, where the model received over
8 days of normal traffic. This resulted in the stabilization of performance metrics.

After 20 days of training, the model showed a qualitative leap in all performance
indicators. This suggests that generalization is consolidated and the model could correctly
classify 80% of the observations, as indicated by the AUC.

At this point, the model has shown marginal improvement in performance, suggesting
that it may have achieved the maximum level of generalisation for this data set, having
peaked at iteration 40.

Just after this point, when the training window reaches 3 May 2016, the performance
significantly drops following the same pattern in all performance metrics. The effectiveness
decreases by more than 15%, indicating that something anomalous is occurring on those
days. The drop could result from a traffic pattern that, although normal, is unlikely to occur
frequently or it might be due to an undetected attack, which is then to be considered as
part of the normal traffic.
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In the subsequent iterations, despite a minor rebound, the model does not exhibit any
improvement from the earlier data and ultimately ceases the process by implementing the
early stop criteria.

6.2. Results on Looking for the Optimal Training Window
Once the optimal window size has been determined, the next step is to establish the

most fitting sequence of that size in the training dataset. Iterations are then performed
throughout the training dataset.

In Figure 9, the evolution of the F1-score indicates that the optimal window covers
the initial 40 days of the UGR’16 training dataset. This is due to a significant decrease
in the indicator as the window is shifted within the dataset. However, the AUC remains
relatively stable in the initial iterations. This could be explained by the imbalanced nature
of the dataset.

In iteration 18, which covers the training data from 6 April 2016 to 19 May 2016, a 50%
decrease in the F1-score is observed, resulting in a value of 0.32. This decrease suggests that
the model is struggling to predict anomalous traffic and its ability to accurately predict
normal traffic is decreasing. This is supported by the drop in AUC values during the same
period. The cause of this behaviour may be the presence of observations or records in the
training dataset, which create confusion for the model. As a result, the model is unable to
accurately classify with quality. This indicates the potential for misclassified data to emerge
starting on May 19, coinciding with the onset of botnet attack activity as depicted in Figure 3.

This pattern continues until the lowest level of performance is achieved globally on
the twenty-ninth iteration. The training data utilized in this case cover the period from
16 April 2016, to 29 May 2016. The trained model is only able to achieve an F1-score
value of 0.08 when evaluated with this dataset, rendering it almost entirely incapable of
identifying anomalous traffic. It appears that the largest number of mislabelled records
or undetected anomalies can be found during this time period, as the model struggles
to identify anomalous traffic despite being trained on these data. As a result, there is a
noticeable impact on the AUC, with its ratio decreasing to 0.8.

Subsequent iterations show a slight improvement over the global minimum detected.
However, performance remains significantly low. Consequently, models trained with these
subsets of data would not be appropriate for use in a production NIDS. These scenarios
span the entire month of June and coincide with the appearance of an unidentified botnet
attack, which could provide an explanation for the poor performance detected.

The most recent scenarios exhibit a noteworthy enhancement, although they are still
incapable of recuperating from the initial performance drop. This is attributable to the
window size employed, which encompasses the unlabelled June botnet attack observances
as part of the training. Nevertheless, considering the trend displayed in Figure 9, it is
probable that the system’s performance can recover to the peak levels achieved in the
preliminary scenarios if the dataset contained more samples beyond June.

To further analyse of the results obtained in this phase of the methodology, Figure 10
shows the evolution of the total F1-score metric, as well as the F1-score metric solely for
botnet-related attacks. Based on the given information, it seems that the decline in the
F1-score of the model corresponds to the significant decrease in the F1-score related to botnet
attacks. This implies that there are hints of botnet attacks present in the training set of
UGR’16 by 19th May 2016 that remain undetected.
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Figure 10. F1-score global vs F1-score for Botnet attacks.

7. Conclusions

In this paper, we present a methodology for detecting contaminated data in actual
source network traffic datasets for training NIDS-based anomaly detection. This methodol-
ogy has three primary aims: (i) first, to determine the optimal size of the training dataset
subset, which enables the NIDS model to perform best regarding anomaly detection;
(ii) second, to choose the data subset from the training dataset that attains maximal perfor-
mance for the machine learning model of the NIDS used for anomaly detection; (iii) third,
to examine the dataset quality and identify potential labeling problems or polluted data by
searching for the aforementioned training subset.

The UGR’16 contaminated dataset was tested with the NIDS Kitsune using this
methodology, resulting in the identification of the ideal data subset to improve the ef-
ficiency of Kitsune. Additionally, potential botnet attacks were discovered in May that
were previously undetected, and labeling errors in June were confirmed.

Future work will tackle the application of this methodology to some other real network
traffic datasets and in combination with other state-of-the-art NIDSs. Altogether, it will
contribute to probing the suitability of our proposal in searching for optimal subsets of data
to robust anomaly detectors. Jointly optimizing both the window size and location in the
dataset using well-known metaheuristics such as Particle Swarm Optimization (PSO), could
be a viable approach for analysis. It might also be interesting to validate the applicability
of this methodology in the face of poisoning-type adversary attack scenarios where the
data have been intentionally altered in order to measure its effectiveness and to be able to
propose possible evolutions that make it robust in these situations.
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