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Abstract: Melatonin, a tryptophan-derived neurohormone found in animals, plants, and mi-
crobes, participates in various biological and physiological functions. Among other properties, numerous in 
vitro or in vivo studies have reported its therapeutic potential against many parasites, bacteria and viruses. In 
this concern, melatonin was found to be effective against many parasites such as Plasmodium, Toxoplasma 
gondii, and Trypansoma cruzi, via various mechanisms such as modulation of calcium level and/or host im-
mune system. Likewise, a recent investigation has reported in vitro activity of melatonin against Leishmania 
infantum promastigotes which is the causative agent of fascinating visceral Leishmaniasis. This review was 
initially undertaken to summarize some facts about certain physiological and therapeutic effects of melatonin. 
It also reviews the effects and action mechanisms of melatonin in bacterial and viral infection besides biology 
of different parasites which may provide a promising strategy for control of many diseases of public health 
importance. 
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1. MELATONIN SYNTHESIS, MAMMALIAN 
SUBTYPES, PRECURSORS AND THEIR ROLE 
IN CELL BIOLOGY 

Melatonin, N-acetyl-5-methoxytryptamine, is an in-
doleamine released by the pineal gland with peak con-
centrations at night and is thought to participate in 
regulation of circadian rhythms in many eukaryotes, 
including vertebrates, invertebrates, higher plants and 
dinoflagellates [1, 2]. Taken into account, the secretion 
of this natural hormone is not confined exclusively to  
 

*Address correspondence to these authors at the Department of 
Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag Univer-
sity, Sohag, Egypt; E-mail: anasehab2010@gmail.com; and De-
partment of Pharmacology and Neuroscience Institute, Faculty of 
Medicine, University of Granada, Granada, Spain;  
Fax:  +34958243537; E-mail: aagil@ugr.es 

the pineal gland, but other peripheral organs and tissues 
including retina, gastrointestinal tract, Harderian gland, 
skin, leukocytes, thymus and bone marrow cells also 
produce melatonin but not extrapineal melatonin re-
tains the chronobiotic properties [3, 4].  

Melatonin is synthesized from tryptophan and con-
verted into serotonin in the circulatory system [5]. Se-
rotonin is transformed into N-acetylserotonin via ary-
lalkylamine-N-acetyl transferase enzyme which is then 
metabolized into melatonin by hydroxyindole-O-
methyltransferase enzyme [5]. Melatonin is released 
immediately into the blood capillaries and rapidly dis-
tributed throughout the body tissues with high affinity 
in the cerebrospinal fluid [6], due to its amphiphilic 
nature which enables it to cross all biologic barriers 
and gets free access to all cellular compartments, espe-
cially nucleus and mitochondria [7].  
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To our knowledge, there are two mammalian sub-
types of G protein-coupled receptor (GPCR) binds to 
melatonin receptors; MT1 (Mel1a) and MT2 (Mel1b), 
which mediate most of the regulatory functions of 
melatonin [8-10]. Though these receptors mainly ex-
pressed in central nervous system (CNS), they also pre-
sent in peripheral organs [11]. Taken into account, both 
MT1 (Mel1a) and MT2 receptors are of similar binding 
properties, however, human MT2 receptor has shown a 
lower affinity to melatonin versus human MT1 receptor 
[12]. The previously mentioned receptors (MT1 and 
MT2) seem to be extremely important in regulation of 
cell cycle in some infectious agents like parasites [13, 
14]. Also, melatonin binds to other cellular targets such 
as calmodulin (CaM), calreticulin, quinone reductase 2 
(MT3 binding site), and tubulin, explaining that some 
effects of melatonin are independent of the activation 
of membrane-bound receptors [15, 16].  

Besides its great role in circadian rhythm, melatonin 
been implicated in a wide array on the plethora of 
processes of cell biology and physiological functions in 
many infectious agents [17-24]. Importantly, the under-
lying mechanisms of these effects are various and may 
involve intracellular antioxidant enzymes, receptor-
mediated and receptor-independent actions [25]. The 
following explanation will discuss some physiological 
and therapeutic implications of melatonin and their po-
tential relevance against some infectious agents (Fig. 
1). 

2. PHYSIOLOGICAL AND THERAPEUTIC EF-
FECTS OF MELATONIN  

2.1. Effects of Melatonin on Immune System 

Melatonin has been recognized as neuroendocrine–
immunological network modulator due to its affinity to 
T-lymphocytes (CD4+) and innate immunity [26-29]. 
Several previous studies have reported the immuno-
modulatory effect in both animals and humans as it 
enhances innate and acquired immunity through activa-
tion of natural killer (NK) cells and antibody-
dependent cell-mediated cytotoxicity and subsequently 
increases T cells proliferation and production of cyto-
kines [26, 30-33]. This may justify the immunothera-
peutic potential of melatonin which counteracts the 
induced-immunosuppression by acute stress, ageing, 
bacterial and viral infections [27, 34, 35].  

As previously mentioned, leukocytes, bone marrow 
cells, thymocytes and epithelial cells have been re-
ported to produce melatonin [3, 36, 37]. Even more, 
cultured human lymphocytes were able to release large 
amount of melatonin which has autocrine, endocrine, 

intracrine, and/or paracrine effects, and therefore coor-
dinates immune response [31]. The presence of mela-
tonin’s receptors (especially MT1) in different immune 
cells of thymus and spleen also implicates the modula-
tory and anti-inflammatory effects of melatonin [7, 38]. 
These effects are mainly mediated through its effect on 
certain receptors in immune organs and immunocom-
petent cells of many mammals, as well as human [39-
41]. The involvement of receptors MT2 in melatonin’s 
modulatory effects have been explored in mice through 
enhanced splenocyte and lymphocytes proliferation, 
while this effect was blocked by the MT2 antagonist 
luzindole [26, 37, 42-44].  

Melatonin also regulates hematopoiesis indirectly 
through its action on certain receptors located on bone 
marrow cells and via the induction of T-helper-cell-
derived opioid cytokines [45], or directly through its 
action on some progenitor cells such as NK cells, pre-B 
cells, and monocytes [46, 47]. Hence, the anticancer 
action of melatonin may be attributed to activation of 
lymphocytes, monocytes and macrophages which also 
prevents tumor development [48, 49]. Likewise, activa-
tion of melatonin receptors has been reported to en-
hance the secretion of cytokines by T-helper cell Type 
1 (Th1), like interleukin-2 (IL-2) and gamma-interferon 
(IFNc) [30, 37, 45]. Interestingly, activation of T-
helper cells type 1, monocytes, and/or monocyte-
derived cells by melatonin was found to enhance the 
production IL-1, IL-6, IL-12, IFN-γ, and macrophage-
colony stimulating factor (M-CSF), which together act 
through binding to nuclear RZR/ROR receptors sub-
family belongs retinoic acid receptor and membrane 
MT1 and MT2 receptors [9, 46, 50-52]. These previ-
ously mentioned cytokines may counteract stress-
induced immunosuppression in several infectious cases 
[46], besides their role in immunomodulation process 
[28].  

Melatonin also promotes the expression of major 
histocompatibility complex (MHC) class II and trans-
forming growth factor (TGF)-β in antigen-presenting 
cells (APC) [30, 53]. In addition to promotion or sup-
pression of Th-2 responses in some cases, melatonin 
involved in down-regulation of cyclooxygenase ex-
pression in macrophages and 5-lipoxygenase which 
antagonizes prostaglandin synthesis [3, 27, 34, 35].  

On the other hand, the role of melatonin in other 
autoimmune diseases is still controversial and the 
mechanism of action is poorly understood, however, 
some studies related such effects to the balance be-
tween Th1/Th2 and others suggest its contribution to 
the immune system homeostasis [46, 54]. In this re-
gard, this compound has pro-inflammatory action in 
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rheumatoid arthritis patients where a high plasma level 
of melatonin was found and the synovial macrophages 
of the patients respond to exogenous melatonin with an 
increased production of IL-12 and nitric oxide (NO) 
[53, 55]. Hence, melatonin   antagonists   may achieve 
therapeutic effects in such cases and further studies are 
necessary to understand the underlying mechanisms of 
action [54]. 

2.2. Antioxidant Action of Melatonin 

Oxidative stress is a common term refers to the dis-
turbance in the balance between the reactive oxygen 
species (ROS) and the antioxidant defense [56] which 
accompanied several pathological conditions such as 
parasitic infection and aging [57, 58]. Based upon sev-
eral published works, melatonin has shown a potential 
antioxidant effect resulted from both hydrophilic and 
hydrophobic features of this indolamine that allow it to 
cross several body barriers [59]. Also, melatonin indi-
rectly regularizes the activity of several antioxidant 
enzymes, increases the efficiency of mitochondrial bio-
energetics, and reduces the electron leakage from the 
mitochondria, which in turns lowers the free radical 
generation and augments the efficiency of other anti-
oxidants [60-62]. Additionally, melatonin has a great 
scavenging activity for the free radicals, including hy-

droxyl radicals like hydroperoxyl radical, NO, singlet 
oxygen or peroxynitrite anion (ONOO−), which ex-
plains the role of melatonin as a potent scavenger of 
mutagenic and carcinogenic hydroxyl radical (OH-•) [7, 
60]. Interestingly, this anti-inflammatory action of 
melatonin results from its inhibitory effect on inducible 
nitric oxide synthase (NO synthase), which conse-
quently reduces the oxidative damage and protects 
from NO-mediated mitochondrial blockade under acute 
or chronic conditions [36, 37, 63-65]. Hence, some 
clinical trials suggested that melatonin can contribute 
efficiently to several metabolic functions [66].  

2.3. Role of Melatonin in Bacterial and Viral Infec-
tion  

Several published works have reported the benefi-
cial effect of melatonin in bacterial and viral infections 
[29, 34, 67, 68]. Indeed, administration of melatonin 
was found to be effective in controlling chlamydial and 
bacterial infection caused by Mycobacterium tubercu-
losis, Helicobacter pylori, and Dichelobacter nodosus, 
in addition to many viral infections such as Equine en-
cephalomyelitis virus and Ebola virus disease [34, 68-
74]. The activity of melatonin in these cases is mainly 
attributed to its free radical scavenger activity, regula-
tion of bacterial growth, depletion of some intracellular 

 
Fig. (1). Summarize the physiological and therapeutic implications of melatonin and their potential relevance against some 
infectious agents [14, 19, 30, 32, 34, 35, 37, 46, 50, 52, 59, 60, 61, 135, 142, 144, 165, 180, 197]. 
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substrates like iron, and/or immunomodulatory-
adjuvant activities [72, 75-77].  

2.4. Melatonin and Parasites 

General remarks about role of calcium homeo-
stasis in biology of some parasites and its relation to 
the anti- parasitic effects of melatonin. 

In fact, the cell function in parasites is coordinated 
using a second messenger signaling cascades involving 
cyclic adenosine monophosphate (cAMP) and calcium 
(Ca2+) [78-88], which control many critical events in-
cluding host cell invasion, gliding motility, parasite 
differentiation and egress [89-97]. Even more, calcium 
binding proteins such as CaM and calcium-dependent 
protein kinase (CDPK) genes play critical roles in pro-
tein secretion, host cell invasion and parasite differen-
tiation [94, 98]. Calmodulin (CaM), the ubiquitous in-
tracellular calcium binding natural regulator, has been 
identified in American and African trypanosomes, 
Leishmania braziliensis, Leishmania mexicana and 
Leishmania donovani [99-101]. It shared 99% amino 
acid sequence identity between trypanosomatids [99-
101] and related to various functions in trypanosomat-
ids like cAMP-dependent phosphodiestherase stimula-
tion in Trypanosoma cruzi (T. cruzi) [102-104], 
Ca2+/calmodulin (Ca2+/CaM)-dependent protein kinase 
(TcCaM K) [105, 106], and transduction mechanisms 
of the cGMP-nitric oxide pathway in T. cruzi [107-
109]. These events allowed CaM to act as: a mediator 
of Ca2+ functions, calcium sensor, and signal transducer 
to many proteins which are able to bind to CaM and 
unable to bind calcium [110].  

Moreover, some scientists have reported other im-
portant functions of Ca2+ in regulation of cellular dif-
ferentiation, cAMP levels in T. brucei [111-113], and 
cAMP phosphodiesterase in T. cruzi [103, 114]. It was 
also proposed that inositol 1, 4, 5-trisphosphate 
(InsP3)- dependent calcium response in Plasmodium 
species (spp.) and T. gondii [115]. Calcium is also con-
sidered the main controller of protein secretion, inva-
sion, motility, and egress of Toxoplasma [116, 117], 
while it is very critical for developmental regulation 
and cyclic nucleotide signaling in Plasmodium with 
involvement of many stages of invasion and motility of 
the parasite including erythrocyte invasion stage by 
merozoites [118], besides its important role in the sex-
ual multiplication in the mosquito vector [119-124].  

Similar to eukaryotic cells, intracellular Ca2+ is 
finely regulated in trypanosomatids by various organ-
elles [90, 109, 125], including mitochondria, endo-
plasmic reticulum, Golgi and acidocalcisomes which 

are known as major calcium storage sites [109, 126]. 
Moreover, trypanosomatids possess acidocalcisomes 
which involved in bioenergetics besides a single mito-
chondrion which represents 12% of the parasite volume 
and capable for accumulation large amounts of poly-
phosphates together with Ca2+ ions [127-129]. Accord-
ingly, any fluctuations in cytosolic Ca2+ level ([Ca2+]i) 
could control many cellular functions in such organ-
isms [91, 94]. In this regard, many of available antipro-
tozoal agents exert their effects through alteration of 
Ca2+ homeostasis in the parasite and/or through im-
pairment of the activity some mitochondrial parameters 
[130, 131].  

According to the latest publications, melatonin has 
shown a wide range of activity against various parasites 
[68, 132]. To our knowledge, the signal transduction 
mechanisms of melatonin for its receptors are different 
among the various tissues and cell types [23, 133, 134]. 
It has been reported that melatonin exerted its effects in 
such pathological conditions through its influence on 
some intracellular proteins like CaM [135, 136], cal-
reticulin [137], or tubulin [138], antagonizing the bind-
ing of Ca2+ to CaM [139]. As mentioned above, there 
are two mammalian subtypes of G protein coupled het-
erodimers participate in signaling pathways, leading to 
downstream effects on Ca2+ channels, Ca2+ signaling 
and changes in extracellular-signal-regulated kinases 
which give melatonin and its derivatives a pleiotropic 
nature [3, 140, 141]. MT1 melatonin receptor could 
also mediate adenylyl cyclase inhibition and phosphol-
ipase C beta (β) activation through its coupling to dif-
ferent G proteins. Therefore, activation of MT1 recep-
tor may activate a large variety of G proteins which 
inhibit the cyclic adenosine monophosphate (cAMP) 
signal transduction cascade and their accumulation de-
crease the activity of protein kinase A and cAMP re-
sponse element binding CREB) [142-144]. Melatonin 
(MT1) receptors also regulate ion fluxes besides their 
influence   on   calcium-activated   potassium   chan-
nels [145-147]. Likewise, several studies have reported 
a numerous safeguarding mitochondrial effects of 
melatonin, which is mainly attributed to its role on res-
piratory electron flux [7, 31] or through its unique ef-
fect in alteration of Ca2+-induced mitochondrial perme-
ability transition pore (mPTP), which is found to be a 
gatekeeper of apoptotic and necrotic cell death [3, 14].  

Taken together, these previous events have a strong 
influence on the control of some infectious agents, es-
pecially the parasitic type, since disruption of Ca2+ ho-
meostasis may result in cell death [137], however, it 
should be borne in mind that the suggested mechanisms 
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underlying this activity seem to be different among 
these parasites (Fig. 2). The following section will 
highlight several facts about the potential activity of 
melatonin against several global infectious diseases 
caused by a group of parasites.  

2.4.1. Melatonin and Apicomplexa 
2.4.1.1. Melatonin and Malaria  

Malaria is mosquito-borne infectious disease of hu-
mans and other animals caused by protozoan of genus 
Plasmodium and mainly transmitted via the bites of 
infected mosquitoes [148]. More than 220 million cases 
of malarial infections are reported every year, and the 
disease kills between 473,000 and 789,000 people 
worldwide, mainly in Africa [50, 148, 149]. Plasmo-
dium falciparum (P. falciparum), Plasmodium ma-
lariae (P. malariae), Plasmodium vivax (P. vivax), 
Plasmodium knowlesi (P. knowlesi) and Plasmodium 
ovale (P. ovale) are the main causative species [148, 
149]. The parasite multiplies in the liver of human, and 
then infects red blood cells (RBCs); this stage (erythro-
cytic) occurs after 48 hours in P. falciparum and con-
sists of ring, trophozoite, schizonts and ultimately give 
rise to merozoites that release into the blood stream at a 
specific time of the day-night cycle [51].  

Melatonin and its precursors are widely known as a 
nocturnal signal can regulate the cell physiology of the 
parasite, besides their critical role in the synchroniza-
tion of maturation of the parasite and its survival in the 
host [20, 36, 52, 150, 151]. In this regard, several stud-
ies have reported that melatonin drives a temporal 
regulation in some species of Plasmodium either in 
vivo or in vitro [14, 152]. Importantly, melatonin drives 
as a second messenger through modulation of Ca2+ and 
cyclic-AMP pathways, besides its role in activation of 
Protein kinase A (PKA), a class of cAMP-dependent 
enzymes which modulates the cell cycle [151, 153]. 
The level of extracellular calcium is a critical event for 
the invasion of the parasite into RBCs, exflagellation 
process as a step of sexual stage of the life cycle, and 
Plasmodium kinases [154-156]. Indeed, melatonin and 
its derivatives promote [Ca2+]i increase by mobilizing it 
from internal stores either by direct uncaging (Photo-
lytically) of InsP3 within the intraerythrocytic stage of 
the parasite or by increasing parasite inositol phosphate 
formation, which subsequently modulate the P. falcipa-
rum cell cycle [24, 157, 158]. Therefore, they could 
regulate and modulate the life cycle of human malaria 
parasite, P. chabaudi and P. falciparum, in vivo and in 
vitro [24, 151], by mobilization of Ca2+ from internal 

Ca2+ pools of parasite trophozoite, augmenting the pro-
portion of schizonts and cytosolic free Ca2 [150]. 

Furthermore, recent studies have revealed that mela-
tonin up regulates the genes related to ubiquitin-
proteosome-protein system (UPS) which involved in 
specific functions related to pathogenesis and virulence 
of P. falciparum [22, 159]. It should be also pointed 
out that exogenous melatonin remarkably prevents de-
velopment of mitochondrial pathology and mitochon-
drial oxidative stress in hepatocytes, which in turns 
prevents hepatic cell damage resulting from malaria 
infection [151, 160, 161].  

On the other hand, melatonin is known as a potent 
antioxidant agent protects malarial parasites from ROS 
attacks in the oxygen rich environment at erythrocytic 
stage [161, 162]. Arguably, the blockade of mela-
tonin’s nocturnal action on malaria parasite growth or 
the circadian changes in the melatonin levels of the 
host using common melatonin antagonists or some de-
rivatives seems extremely important in combating this 
disease [129, 158]. Taken these facts together, mela-
tonin and its derivatives exhibit potent antimalarial ef-
fects. 

2.4.1.2. Melatonin and Toxoplasmosis 

Toxoplasmosis is a worldwide parasitic zoonotic 
disease caused by protozoan of genus Toxoplasma 
gondii, which is considered a causative agent of death 
in the United States [163]. Most warm-blooded animals 
can be infected, including humans, but the primary host 
is family Felidae [163].  

Several studies have investigated the effect 
of artificial supplementation of melatonin and/or zinc 
on the response of immune system to T. gondii. Mela-
tonin has shown an important role in activation of cel-
lular immunity by stimulating CD4+ and CD8+ produc-
tion [68, 164-166]. Furthermore, NO levels increase in 
Toxoplasma infection, particularly in the chronic phase 
of the infection in Sprague-Dawley rats, which in-
creases in melatonin deficiency. Hence, melatonin re-
duces the activity inducible nitric oxide synthase 
(iNOS) activity which enhance the immune system by 
the activation of Astrocytes and HUVEC cells, result-
ing in NO release in the presence of the parasite and 
the later might be beneficial to the host, as it normal-
izes nitrites (NO2

−) levels [167, 168]. Taken together, 
melatonin could be an adjunctive therapy for treatment 
of Toxoplasma retinochoroiditis, especially in immuno-
suppressed individuals. 



Relevance of Melatonin Against Infectious Agents Current Medicinal Chemistry, 2015, Vol. 22, No. 33    3853 

2.4.2. Melatonin and Trypanosomasis 

Trypanosomiasis is a group of parasitic diseases of 
vertebrates, mainly caused by protozoan parasite of 
genus Trypanosoma. The parasite has three different 
stages: trypomastigote, amastigote, and epimastigote 
[169]; the transformation of epimastigote form into the 
metacyclic trypomastigotes is mainly occurred during 
darkness period [170].  

There are two main forms of Trypanosomiasis; 
Human African Trypanosomiasis which is common 
disease in 36 countries of sub-Saharan Africa with 
more than 60 million people at risk [171] and is caused 
by Trypanosoma bruceigambiense or Trypanosoma 
bruceirhodesiense while tsetse flies are responsible for 
transmission of the disease to human [172]. The other 
form, American trypanosomiasis (Chagas disease), is 
caused by Trypanosoma cruzi (T. cruzi) and transmit- 
ted mostly by insects known as Triatominae [173], re-
sulting in 21,000 cases of deaths annually, mainly in 
Latin America  [173]. Sudden death in acute patients 
may be resulted from congestive heart failure associ-
ated with myocarditis or meningoencephalitis [174], 

while most of the patients develop the chronic form of 
the disease [175].  

Several studies have reported the significant contri-
bution of melatonin in controlling T. cruzi multiplica-
tion in vivo and in vitro [176-178]. In this regard, mela-
tonin treatment (5 mg/kg orally), prior to experimental 
infection or during the infection, resulted in reduction 
of the levels of IL-10, IL- 4, tumor growth factor-β and 
NO, while it increased the number of macrophages and 
enhance the release of IL-12, IL-2, TNF-α and IFN-γ 
[19, 179-181]. In such cases, melatonin up-regulates 
Th-1 immune response and suppressed Th-2 response 
[19, 182, 183], which promotes a reduction in blood 
and tissue parasites, and therefore reduce the para-
sitemia combined with the blockade of prostaglandin 
E2 synthesis [21, 184].  

Administration of melatonin during the acute phase 
of infection with the parasite may possess a dual effect 
(promoting and inhibitory) on T. Cruzi life cycle, based 
upon the period of exposure and the concentration used 
[184, 185]. In this regard, melatonin administered dur-
ing the acute phase of T. cruzi infection resulted in re-
duction of the parasitemia [178], inhibition of parasite 

 
Fig. (2). Summarize the action of melatonin with Plasmodium, Toxoplasma gondii, Trypansoma cruzi, Entamoeba histolytica, 
and Leishmania infantum promastigotes [19, 22, 24, 68, 150, 151, 153, 157, 168, 179, 183, 185, 186, 200, 210]. 
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propagation or killing the parasite through its action on 
the immune system, as it activated the macrophages as 
a result of enhanced NO production. This later product 
is considered the major effectors’ molecule of T. cruzi 
intracellular amastigote killing [176, 186, 187]. It has 
also been proposed that ROS and oxidative stress play 
an important role in expansion of the systemic compli-
cations of Chagas, especially cardiomyopathy [188-
191]. As consequences, mitochondrial functional de-
cline, combined with loss of the scavenger activity for 
ROS, resulting in sustained oxidative stress during in-
fection [189, 190]. Furthermore, NO accumulation was 
found to slow down the electron transport chain, which 
inhibits the production of Adenosine triphosphate 
(ATP), higher ROS production, and in turn increases 
the susceptibility of cell death [192]. Indeed, melatonin 
could protect mitochondria by counteracting the oxida-
tive damage and prevent the development of heart 
damage [193].  

During the chronic phase of the disease, melatonin 
could be beneficial for combating the disease progres-
sion [189, 194]. It could reduce the oxidative stress 
accompanying the myocardial damage, which repre-
sented by reduction in the number of trypomastigotes, 
fewer amastigote carriage, lower tissue disorganization 
in the heart, and higher number of leucocytes resulted 
from activation of Th-1 inflammatory response [19, 
178, 185]. Therefore, administration of melatonin ago-
nist like the MT1/MT2 agonist (ramelteon) in Chagas´ 
disease during the acute phase may enhance the im-
mune response without impairment in NO production, 
while high doses of melatonin during the chronic 
course of the disease lowers the oxidative stress, pre-
serves the mitochondria and prevents the development 
of cardiomyopathy [194]. These findings prove that 
melatonin either alone or in association with other 
drugs such as meloxicam could be helpful therapy in 
American trypanosomiasis [19, 178]. 

2.4.3. Melatonin and Schistosomiasis 

Schistosomiasis (Bilharzia) is neglected disease 
caused by parasitic worms of genus Schistosoma [195]. 
The disease affects almost 210 million people world-
wide [195] and is considered the second devastating 
parasitic disease after malaria, especially in poor socie-
ties with unclean water and inadequate sanitation [196].  

Melatonin enhanced the protective immune re-
sponse against Schistosoma mansoni in hamster in-
fected with Schistosoma mansoni using cercarial and 
soluble worm antigens [18]. Indeed, melatonin has 
been postulated to be protective against the pathologi-

cal changes in Schistosoma mansoni-infected mice, 
which may be resulted from its antioxidant and free 
radical scavenging activity that reduces the oxidative 
damage and increases the survival rate [197].  

2.4.4. Melatonin and Amoebiasis  

Amebiasis is a parasitic infection of the large intes-
tine, sometimes involving the liver caused 
by Entamoeba histolytica, and estimated to cause 
70,000-100,000 deaths per year worldwide [198, 199]. 
França-Botelho and co-authors have studied the effect 
of melatonin administration (15 mg/kg body weight 
subcutaneously) in experimental amoebiasis (in vivo 
and in vitro) and on the relationship between trophozoi-
tes of the virulent strain HM1-IMSS of E. histolytica 
and human blood cells [200]. They have noticed a 
marked decrease in the amoebic necrotic areas in liver 
infiltrated with large quantities of mononuclear in-
flammatory cells, which explains the enhanced adher-
ence of the parasite trophozoites to mononuclear and 
polymorph nuclear leukocytes (PMN) [68, 200]. There-
fore, melatonin  administration  resulted in induction of 
Th1 responses and could establish its role as an adju-
vant therapeutic agent in amebiasis [68, 200]. 

2.4.5. Melatonin and Leishmaniasis  

Leishmaniasis is a group of neglected diseases, 
caused by infection by flagellate protozoa of the genus 
Leishmania and present in all inhabited continents with 
a clear endemicity in tropic and subtropics areas [153, 
201]. Transmission of the infection to human occurs 
through a biological vector (Insecta, phlebotomine sand 
fly) and the parasite has two different stages; an ex-
tracellular form (promastigotes) in the insect midgut 
and an intracellular form (amastigotes) inside the in-
fected macrophages. The last years have witnessed ex-
traordinary expansion of the disease to be endemic in 
98 countries around the world and 60.000 mortality 
cases every year [201, 202]. There are three forms of 
human Leishmaniasis: (i) Cutaneous Leishmaniasis 
(CL), (ii) Mucocutaneous Leishmaniasis (MCL), and 
(iii) Visceral Leishmaniasis (VL) [162, 203, 204]. VL 
caused by Leishmania donovani complex (L. donovani) 
in Africa, India, and Asia; by Leishmania chagasi in 
America; and by Leishmania infantum in Europe [204, 
205].  

Despite several leishmanial researches, a limited 
number of effective and less toxic antileishmanial 
agents are available which is mainly encountered by 
the development of drug resistance [206, 207]. As pre-
viously mentioned, Leishmania is a member of the try-
panosomatidae family possess a large mitochondrion 
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which represents 12% of the parasite volume and can 
accumulate large amounts of Ca2+ [129], besides its 
role as in important target for many of the available 
antileishmanial agents [130, 208, 209]. Recently, mela-
tonin has shown antileishmanial activity against the 
promastigote phase of Leishmania infantum, together 
with marked alteration in parasite mitochondrial cal-
cium level and significant alteration in some mitochon-
drial parameters, and therefore target parasite survival 
[210]. 

CONCLUSION 

Melatonin is a naturally occurring compound can 
participate in various biological and physiological 
functions. It has also been proposed not only in alterna-
tive medicine for treatment many degenerative and in-
flammatory diseases but also as an adjuvant candidate 
with a good pharmacological safety profile in many 
infectious diseases. Among other parasites, melatonin 
has shown inhibitory effect against Plasmodium falci-
parum, Trypansoma cruzi, Schistosoma mansoni, 
Toxoplasma gondii, Entamoeba histolytica, and re-
cently Leishmania infantum promastigotes. The activity 
of melatonin against these parasites is mainly attribut-
able to its immunomodulatory effect, antioxidant effect 
and/or regulation of ion fluxes mainly calcium, potenti-
ated by its receptors in different organs. Further future 
research is warranted to elucidate the other effects of 
melatonin either alone and/or in association with the 
other available antiparasitic agents. Employing these 
effects in clinical trials for treating infected patients 
could be promising not only for the patients infested 
with the disease but also in prevention of these dis-
eases. 
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