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Abstract

Satellite DNA (satDNA) is an abundant class of tandemly repeated noncoding sequences, showing high rate of change in sequence,

abundance, and physical location. However, the mechanisms promoting these changes are still controversial. The library model was

put forward toexplain the conservationof somesatDNAs for long periods, predicting that related species share acommoncollection

of satDNAs, which mostly experience quantitative changes. Here, we tested the library model by analyzing three satDNAs in ten

species of Schistocerca grasshoppers. This group represents a valuable material because it diversified during the last 7.9 Myr across

the American continent from the African desert locust (Schistocerca gregaria), and this thus illuminates the direction of evolutionary

changes. By combining bioinformatic and cytogenetic, we tested whether these three satDNA families found in S. gregaria are also

present innineAmerican species, andwhetherdifferential gains and/or losseshaveoccurred in the lineages.We found that the three

satDNAs are present in all species but display remarkable interspecies differences in their abundance and sequences while being

highly consistent with genus phylogeny. The number of chromosomal loci where satDNA is present was also consistent with

phylogeny for two satDNA families but not for the other. Our results suggest eminently chance events for satDNA evolution.

Several evolutionary trends clearly imply either massive amplifications or contractions, thus closely fitting the library model prediction

that changes are mostly quantitative. Finally, we found that satDNA amplifications or contractions may influence the evolution of

monomer consensus sequences and by chance playing a major role in driftlike dynamics.
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Introduction

Satellite DNA (satDNA) is a heterogeneous collection of non-

coding nuclear sequences that exists in hundreds to thou-

sands of copies tandemly arranged at one or more

chromosomal loci. Across eukaryotes, it is often located

within the gene-poor heterochromatin of centromeres and

telomeres, albeit satDNAs have also been reported on

euchromatin in some species (see Charlesworth et al. 1994;

Ugarkovi�c and Plohl 2002; Larracuente 2014; Ruiz-Ruano

et al. 2016; Garrido-Ramos 2017). SatDNA generally shows

a concerted pattern of evolution implying higher similarity for

repeats within species than between species at intra- and in-

ter-chromosomal levels (Dover 1982; Ugarkovi�c and Plohl

2002; Plohl et al. 2008; Garrido-Ramos 2017). Unequal
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crossing over, intrastrand homologous recombination, gene

conversion, slippage rolling-circle replication, and transposi-

tion are the main factors driving the gradual turnover of

satDNA variants produced by mutation, within and between

loci, causing homogenization (Smith 1976; Dover 1982,

2002; Walsh 1987; Shi et al. 2010). Out of these mechanisms,

only those changing copy number (e.g., unequal crossing

over) can yield changes in satDNA abundance, either gains

(amplification) or losses (contraction) (Lower et al. 2018).

The high sequence divergence observed for satDNA at in-

terspecific level is a consequence of relaxed evolutionary con-

straints, in most cases due to lack of apparent function, so

that changes in copy number and sequence variants are likely

neutral (Lower et al. 2018). Therefore, satDNA sequences

change so fast that they fade away after long evolutionary

times. For instance, Ruiz-Ruano et al. (2016, 2017, 2018)

reported the satellitomes in three grasshopper species belong-

ing to three orthopteran families (Pyrgomorphidae,

Pamphagidae, and Acrididae) dating back about 140, 111

and 73 Ma, respectively (Song et al. 2015), and none of the

165 satDNA families found showed interspecific homology,

apart from the telomeric repeat. However, at shorter evolu-

tionary scale, it is still possible to find homologous satDNAs

between species. There are many cases of satDNA homology

between species along short periods. This is the case, for in-

stance, of baleen whales (Arnason et al. 1992), the Drosophila

obscura group (Bachmann and Sperlich 1993), or the

Peromyscus genus (Smalec et al. 2019), all comprising evolu-

tionary periods shorter than 5 Myr. However, there are also

exceptional cases of extremely long duration, such as, for in-

stance, the 15–20 Myr in Bovidae (Escudeiro et al. 2019), 74–

80 Myr in ants (Lorite et al. 2017), or 540 Myr in moluscs

(Plohl et al. 2010).

The library model (Salser et al. 1976; Fry and Salser 1977)

states that related species share a collection of satDNA

sequences that may contract or expand, in one or another

species, during evolution. After speciation events, indepen-

dent reproduction is expected to force the evolution of

species-specific profiles of satDNA sequence variants (Ferree

and Barbash 2009; Ferree and Prasad 2012; Gallach 2014).

The finding of homologous satDNA at such a variety of evo-

lutionary times makes it very complex to visualize the satDNA

library beyond some partial glimpses by analyzing one or more

satDNAs on groups of species with higher or lower relative-

ness (e.g., Mestrovi�c et al. 1998; Silva et al. 2017; Utsunomia

et al. 2017; �Satovi�c and Plohl 2018; Smalec et al. 2019).

The genus Schistocerca (Orthoptera, Acrididae,

Cyrtacanthacridinae) includes some of the most damaging

swarming locust species, including the African desert locust

(S. gregaria), the Central American locust (S. piceifrons), and

the South American locust (S. cancellata) (Harvey 1981; Song

et al. 2017). These species exhibit an extreme form of density-

dependent phenotypic plasticity, commonly referred to as lo-

cust phase polyphenism in which cryptically colored, shy

individuals can transform into conspicuously colored, gregar-

ious individuals in response to increases in population density

(Uvarov 1966; Pener 1983; Simpson and Sword 2009). Most

of what we know about locust phase polyphenism comes

from decades of research on S. gregaria (Pener and

Simpson 2009; Cullen et al. 2017). The genus Schistocerca

includes about 50 species, most of which are nonswarming

sedentary species, and thus the genus has been considered an

excellent system to study the evolution of phenotypic plasticity

(Song and Wenzel 2008; Song et al. 2017). The genus also

shows a peculiar biogeographical distribution in which only

the desert locust S. gregaria is found in the Old World (Africa

and the Middle East), whereas the other species are distrib-

uted throughout America (Lovejoy et al. 2006; Song et al.

2013, 2017). Recent phylogenetic hypotheses about

Schistocerca evolution, based on molecular data (Lovejoy

et al. 2006; Song et al. 2013, 2017), have consistently shown

that the desert locust is the earliest diverging lineage within

the genus, supporting the hypothesis of an Old World origin

for the genus (Kevan 1989; Ritchie and Pedgley 1989). It has

been hypothesized that the ancestral Schistocerca colonized

the New World through westward transatlantic flight about 6

Ma (Song et al. 2017), where it radiated and gave rise to the

current diversity of species in the New World. Although the

evolution of phenotypic plasticity in Schistocerca is an active

area of research (Cullen et al. 2017), little is known about

genome and chromosome evolution in this genus, and cur-

rently there is no reference genome sequenced for any

Schistocerca species. So far, chromosomal information is lim-

ited to six species which display the typical karyotype for

Acridid grasshoppers, with 2n ¼ 22 þ X0#/XX$ acro-

telocentric chromosomes (White 1934; Mesa et al. 1982;

Souza and Mello 2007; Milani et al. 2018). In addition, chro-

mosomal mapping of repetitive DNA is even more limited, as

only a few sequences in three species are currently known

(Souza and Mello 2007; Camacho et al. 2015; Milani et al.

2018). Therefore, there is a clear need to study the molecular

composition of chromosomes in Schistocerca, which could be

useful for understanding genome organization and evolution

in the genus.

Grasshopper genomes are very large (Gregory 2019) and

contain high amounts of repetitive DNA (Wang et al. 2014),

which makes them a good model for analysis of satDNAs

evolution. Here, we analyze the SG1, SG2, and SG3 satDNA

families in S. gregaria and in nine American species to find out

if they have experienced changes in copy number and se-

quence during species radiation in America, by combining

high-throughput sequencing, bioinformatic mining, and fluo-

rescence in situ hybridization (FISH) mapping. The knowledge

that S. gregaria is basal in the Schistocerca phylogeny (see

above) constitutes a privileged situation to analyze evolution-

ary changes in the satDNA library since these species diversi-

fication, 7.9 Ma, as it allows inferring change direction. We

found that the three satDNA families are still present in all
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species, with high interspecific differences in abundance, se-

quence, and chromosome location, which are explained by

massive gains and/or losses of satDNA in some species. This

confirms that satDNA mainly evolves through quantitative

changes in abundance due to local amplifications or contrac-

tions. In addition, sequence evolution of satDNA closely

resembles the species phylogeny, with higher similarity be-

tween closely related species, a fact also predicted by the

library model.

Materials and Methods

Species Sampling, Chromosome Spreading, C-Banding,
and DNA Extraction

Male and female adult grasshoppers were collected at the

following localities: Schistocerca serialis cubense (SSEC),

S. americana (SAME), S. damnifica (SDAM), S. ceratiola

(SCER), and S. rubiginosa (SRUB) (Florida, USA),

S. caribbeana (SCAR) (St. John, US Virgin Islands), S. pallens

(SPAL) (~Nu Pyah�u, Argentina), S. cancellata (SCAN) (Caucete,

Argentina), and S. flavofasciata (SFLA) (Rio Claro, S~ao Paulo,

Brazil). Shistocerca gregaria (SGRE) information was obtained

from Camacho et al. (2015). To visualize meiotic chromo-

somes, testes were dissected and fixed in modified Carnoy’s

solution (3:1, 100% ethanol:glacial acetic acid). For mitotic

chromosomes, female gastric ceca were removed and proc-

essed as described elsewhere (Castillo et al. 2011). All animal

bodies were stored in absolute ethanol until DNA extraction

by the traditional phenol:chloroform method (Sambrook and

Russel 2001). We analyzed general chromosome features us-

ing Giemsa stained (5%) preparations. C-banding was per-

formed according to Sumner (1972).

Illumina Sequencing and Computational Analysis of SG1,
SG2, and SG3 satDNAs in Schistocerca

We used the genomic DNA sequencing reads from

Schistocerca species previously generated by Song et al.

(2017). Paired-end Illumina reads were preprocessed to check

quality by FASTQC (Andrews 2010) and they were quality-

trimmed using Trim Galore (https://github.com/FelixKrueger/

TrimGalore/, last accessed March 18, 2019). The trimmed

paired-end reads were joined by using the “fastq-join” soft-

ware of the FASTX-Toolkit suit (Gordon and Hannon 2010),

with default options.

We used three approaches to search for satDNA sequences

across Schistocerca species. First, we performed graph-based

clustering and de novo assembly of these sequences using the

RepeatExplorer pipeline (Nov�ak et al. 2010, 2013), setting

default options using as input 500,00 reads. Then, we used

BlastN to search for satDNAs in every final RepeatExplorer

contig output, using the SGRE SG1 (KJ649466), SG2

(HG965751–HG965758), and SG3 (KJ649467) satDNA con-

sensus sequences as query. Second, if no BlastN hit was

retrieved by means of the previous methodology, we applied

NOVOPlasty (https://github.com/ndierckx/NOVOPlasty/, last

accessed April 13, 2019) to perform de novo assembling using

SG1, SG2, and SG3 sequences as seed input and k-mer 21–23

as parameters. This second strategy was used for SG1 of

SDAM for SG2 of SSEC, SPAL, SRUB, SDAM, SFLA, and

SCAR. Third, we used RepeatMasker (Smit et al. 2013–

2015) to map the Illumina reads on the consensus SG1–

SG3 sequences, in order to estimate the abundance and di-

vergence of each satDNA in each species. We then expressed

abundance as the proportion of nucleotides mapped with the

reference sequence in respect to total library size. All three

reference sequences consisted in a dimer of the satDNA con-

sensus sequence. We used 4 million random raw read pairs (2

million of each library), obtained by the seqtk tool (https://

github.com/lh3/seqtk/, last accessed April 13, 2019), to esti-

mate satDNA abundance and divergence with RepeatMasker.

To determine the fraction of reads showing similarity with a

given target satDNA, we used -s -inv -a -nolow -no_is -e

rmblast and a custom library containing the three satDNA

sequences, as parameters in RepeatMasker. Using the gener-

ated files, we estimated the Kimura 2-parameter (K2P) dis-

tances of each satDNA fragment against the reference

consensus sequence, using the calcDivergenceFromAlign.pl

script from the RepeatMasker utilities. A so-called satDNA

landscape that depicts the relative abundance of repeat ele-

ments on the y axis and the K2P distance (i.e., satDNA diver-

gence) on the x axis was made to visualize the changes in

abundance for satDNA variants showing different degree of

divergence. Finally, the reads mapped for every satDNA, by

RepeatMasker, were collected and assembled using the CAP3

assembly software (Huang and Madan 1999).

The contigs identified as the three target satDNAs (i.e., SG1,

SG2, and SG3), by our three assembly approaches, were sub-

mitted to the dotplot graphic alignment tool implemented in

Dotlet (Junier and Pagni 2000) to identify the exact start and

end of tandem monomer repeats, and to the Tandem Repeat

Finder (TRF) algorithm (Benson 1999) to identify sequences

with maximized alignment scores between the different tan-

demly repeated monomers. Tandem Repeat Finder alignment

parameters used were 2, 3, and 5 for match, mismatch, and

indels, respectively, and a minimum alignment score of 50.

We used Muscle (Edgar 2004), implemented in the

MEGA5 software (Tamura et al. 2011), to perform multiple

sequence intra/interspecific alignments, and to estimate Aþ T

content and repeat lengths of the monomer’s copy recovered

in the assembly. Phylogenetic reconstruction of the satDNA

sequences was inferred by maximum likelihood (ML) trees

using the K2P model distance implemented in MEGA5

(Tamura et al. 2011). To examine satDNA polymorphism

within and between species, the aligned copies were sub-

jected to an analysis using DnaSP v.5.10.01 (Librado and

Rozas 2009) to compute the basic sequence statistics.

Satellite consensus sequences have been deposited to
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GenBank under the MK948933–MK948959 access numbers.

Satellite alignments are available upon request to the authors.

To analyze satDNA changes in these species, in an evolu-

tionary context, we traced satDNA abundance on a molecular

phylogeny previously built by Song et al. (2017). It covers al-

most 8 Myr of evolutionary history for the genus Schistocerca

and includes all ten species analyzed here (supplementary fig.

1, Supplementary Material online), with SGRE being the an-

cestor of all American species, and the nine remaining species

analyzed here placed at four different clades. Clade 1 in-

cluded SFLA and SCAR, clade 2 included SPAL and SCAN,

clade 3 included SSEC and SAME along with other species

not analyzed here, and clade 4 included SDAM, SCER, and

SRUB. Whereas clades 1 and 2 each comprised pairs of sister

species, and clades 3 and 4 were more complex by also in-

cluding some species not analyzed here.

To find out possible tendency directions in satDNA change

among species, we calculated z-score standardized values for

abundance (zs-abun) and divergence (zs-div) as the difference

between the species value and the mean for all species, di-

vided by the standard deviation of the former mean. This

allows expressing changes as gains or losses, in respect to

the average values for these ten species.

To analyze changes in DNA sequence for SG1–SG3 during

the 7.9 Myr radiation of the genus Schistocerca, we used the

consensus sequence for the monomer of each satDNA in each

species and then calculated pairwise distance (D) by means of

p distance in MEGA5, which expresses the proportion of dif-

fering nucleotide sites. As molecular phylogenetic analysis in-

dicated that American species derived from a common

radiation event in which SGRE is basal, we finally got an es-

timate of substitution rate for each satDNA in each species by

dividing the p distance in respect to SGRE by twice the time

since the radiation (15.8 Myr).

Polymerase Chain Reaction Amplification of satDNAs and
FISH

We used polymerase chain reaction (PCR) to amplify each

satDNA in each species and to test its presence and generate

DNA probes for FISH. We performed PCR using the SG1 and

SG2 primers described in Camacho et al. (2015). The SG3

sequences showed higher variation among species, for which

reason we used the assembled sequences to design four sets

of primers: set A (F: 50GAGGGATGCAGTAAAGAAGG, R:

50GCTCCCTCACATTGACGAAT), set B (F: 50AGCGTTGC

AGTAAGGAACGA, R: 50CGCTCCCTCACATTGACGA), set

C (F: 50GCGAGGGATGCACTAAAGAA, R: 50TCCCGCAC

ACTGACGAATTA), and set D (F: 50-CGCAGGATAC

AGTAAAGAAG, R: CACCCTCACATTGACGATTT). We used

theAset primers for PCR reactions inSCER,SDAM,SRUB,and

SSEC, the B set in SAME, the C set in SCAN and SPAL, and the

D set in SFLA and SCAR. PCR was performed using 10� PCR

Rxn Buffer, 0.2 mM MgCl2, 0.16 mM dNTPs, 2 mM each

primer, 1 U of Platinum Taq DNA Polymerase (Invitrogen,

San Diego, CA) and 50–100 ng/ll template DNA. The condi-

tions were as follows: initial denaturation at 94 �C for 5 min

and 30 cycles at 94 �C (30 s), 55 �C (30 s), and 72 �C (80 s),

plus a final extension at 72 �C for 5 min. The obtained frag-

ments were separated by electrophoresis on 1% agarose gel.

Themonomerbandswerecutoutof thegelandpurifiedusing

the Zymoclean Gel DNA Recovery Kit (Zymo Research Corp.,

The Epigenetics Company, USA) according to manufacturer’s

recommendations. These products were used for reamplifi-

cation through PCR using the same conditions mentioned

above.MonomerswerepurifiedusingExoSAP-ITPCRproduct

cleanup reagent (Thermo Fischer) and sequenced by the

Sanger method in both directions using the Macrogen Inc.

service (Korea) to confirm the identity of the desired

sequences.

We performed single FISH mapping to detect the chromo-

somal location of satDNAs, according to the protocol pub-

lished elsewhere (Cabral-de-Mello et al. 2010), and using the

satDNA monomers obtained for each species as probes. FISH

data for SGRE were obtained from Camacho et al. (2015).

Probes were labeled through nick translation using biotin-14-

dATP (Invitrogen) or digoxigenin-11-dUTP (Roche,

Mannheim, Germany). The probes labeled with digoxigenin-

11-dUTP were detected using anti-digoxigenin-rhodamine

(Roche), whereas the probes labeled with biotin-14-dATP

were detected using Streptavidin, Alexa Fluor 488-conjugated

(Invitrogen). Preparations were counterstained using 40,6-dia-

midine-20-phenylindole and mounted in VECTASHIELD

(Vector, Burlingame, CA). The chromosomes and hybridiza-

tion signals were observed using an Olympus microscope

BX61 equipped with a fluorescent lamp and appropriate fil-

ters. Fluorescent images were recorded using a DP71 cooled

digital camera in gray scale. The images were pseudocolored

in blue (chromosomes) and red (hybridization signals),

merged, and optimized for brightness and contrast using

Adobe Photoshop CS6. We classified the FISH signals on

the chromosomes as proximal, interstitial, or distal to the

centromere.

Results

Karyotypes and Heterochromatin

All ten species studied here showed the typical karyotype

reported for Schistocerca and Acrididae grasshoppers (see

the Introduction section). Constitutive heterochromatin

(revealed by the presence of dark bands on chromosomes

after C-banding) was present on pericentromeric regions of

all chromosomes in all species (fig. 1 and supplementary fig.

2, Supplementary Material online) and also on terminal

regions of autosome 9 in SFLA (in consistency with previous

reports by Souza and Mello 2007) and autosomes 9–11 in

SGRE (Camacho et al. 2015). In SCER (supplementary fig. 2,
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Supplementary Material online) and SRUB, all C-bands were

smaller than those in the remaining species (see Milani et al.

2018). Finally, SRUB carried an additional B chromosome

showing a large pericentromeric heterochromatin block

(Milani et al. 2018).

Satellite DNA Detection and Sequence Analysis

Our bioinformatic analyses by means of RepeatExplorer,

BlastN, NOVOPlasty, and RepeatMasker revealed the pres-

ence of the SG1, SG2 and SG3 satDNA families in the nine

American Schistocerca species. Consistently, PCR amplifica-

tion of the three satDNAs on genomic DNA showed, in all

nine species, the ladder-type patterns typical for satDNAs, but

they were not amplified in AAGE. The monomeric satDNA

bands were extracted from the gel, sequenced, and aligned to

the SGRE satDNA sequences, and this confirmed their homol-

ogy. The main features observed for the SG1, SG2, and SG3

satDNA families in the ten Schistocerca species are summa-

rized in table 1. The two sequence-dependent characteristics

of these satDNAs (i.e., monomer size and Aþ T) showed very

scarce variation among species (CV< 6% in all cases). In con-

trast, SG1 showed higher average abundance and divergence

than SG2 and SG3, but these two features showed extensive

variation among species (CV between 33.2% and 193.7%),

although SG2 was the satDNA showing the highest CV

(193.7% for abundance and 52.7% for intraspecific K2P di-

vergence). Remarkably, the latter parameter was, on average,

lower than interspecific K2P for all three satDNAs (see table 1),

as expected from concerted evolution.

We built repeat landscapes for SG1–SG3 in each species,

which showed the abundance of the different genomic var-

iants displaying different values of divergence. Assuming that

satDNA sequence evolution mainly depends on point muta-

tion (which increases sequence divergence) and homogeniz-

ing amplification (which decreases intraspecific divergence), it

is logical to infer that the repeat landscape for a given satDNA

displays temporal changes in abundance. Remarkably, figure 2

shows that repeat landscapes were more similar within clades

rather than between clades, suggesting that evolutionary

changes in satDNA closely reflect the evolutionary history of

the species, as predicted by the library hypothesis (Fry and

Salser 1977).

The analysis of z-score standardized values of abundance

and divergence (zs-abun and zs-div) per species revealed in-

teresting tendencies of satDNA evolution in these species.

Supplementary figure 3, Supplementary Material online,

shows high similarity between species within clades, in con-

sistency with the repeat landscapes shown in figure 2. In ad-

dition, it shows that SG1 and SG2 are overabundant (i.e., zs-

abun � 0) in S. gregaria (with >2.5 standard deviations

higher than the ten species average), in both cases with large

decreases in divergence (zs-div� 0). We infer that this com-

bination of positive zs-abun and negative zs-div values indi-

cates recent amplification of both satDNAs in this species, so

that the decrease in intraspecific divergence (i.e., homogeni-

zation) caused by amplification has not yet been counteracted

by the increase in divergence caused by point mutation, as the

latter is expected to be proportional to the time lapse since the

last amplification.

Fig. 1.—C-banding revealing the heterochromatin location in Schistocerca species. (a) Ideogram showing heterochromatin distribution (C-positive

blocks) in the haploid chromosome complement of Schistocerca species. The black dots are the centromeric heterochromatin, and the black distal block in

chromosome 9 of SFLA as well as chromosome 9–11 of SGRE corresponds to the extra C-positive bands. (b) Representative C-banding in Diplotene

chromosome spreads from SAME showing the pericentromeric location (most common location) of C-positive block (dark band) in Schistocerca. Bar in (b)

corresponds to 5lm.
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The recent amplification of SG1 and SG2 in SGRE indicates

that the library in this species has changed very much in re-

spect to the ancestor library (i.e., that in the individuals which

colonized America 7.9 Ma). Similar massive amplifications for

a satDNA and an endogenous retrovirus in Pan and Gorilla,

which were absent in Homo and Pongo, distorted the phylo-

genetic signal of genomic repeat abundance in the analysis of

hominid phylogeny (Mart�ın-Peci~na et al. 2019). A way to solve

this problem in Schistocerca is recalculating the zs-abun and

zs-div values by discarding SGRE and assuming that the aver-

age for the nine American species represents the abundance

probably present in the ancestral satDNA library of the

American colonizers. A way to see the impact of this assump-

tion is that it allowed detecting satDNA amplifications in some

American species that had remained obscured by the huge

amplifications in SGRE. For instance, the SG1 zs-abun values

for SFLA and SCAR were negative when SGRE was included

(supplementary fig. 3a, Supplementary Material online) but

positive when it was excluded (fig. 3a). The new zs-abun

values thus revealed SG1 amplification in clade 1 species prior

to their separation, about 1.5 Ma (see also supplementary fig.

1, Supplementary Material online). These two species also

Table 1

Main Features of SG1, SG2, and SG3 satDNAs Locus Repeat Families in Schistocerca Species Analyzed by DNA-seq Data

Repeat

Family

Species Monomer Size

(bp)

A 1 T% Abundance

(% Genome)

Copy

Number

Intraspecific

Kimura Divergence (%)

Interspecific

Kimura Divergence (%)

SG1 S. gregaria - SGRE 171 55 6.7 161,077 8.97

S. flavofasciata - SFLA 178 56.7 1.5 72,503 13.25

S. caribbeana - SCAR 175 56.6 1.6 78,458 14.57

S. pallens - SPAL 173 61.3 2.84 133,314 17.47

S. cancellata - SCAN 170 51.2 1.74 96,748 23.55

S. serialis cubense - SSEC 170 58.8 0.47 21,338 14.96

S. americana - SAME 170 60 0.55 2,540 10.66

S. damnifica - SDAM 170 56.3 0.47 29,448 27.29

S. ceratiola - SCER 170 60 0.07 3,624 27.93

S. rubiginosa - SRUB 171 60.2 0.1 7,761 19.54

Average 172 57.6 1.6 60,681 17.8 27.5

SD 3 3.1 2.0 56,834 6.6

CV (%) 1.6 5.3 124.4 93.7 37.3

SG2 S. gregaria - SGRE 350 57 4.17 94,563 6.66

S. flavofasciata - SFLA 352 55.7 0.38 17,282 6.19

S. caribbeana - SCAR 352 55.5 0.27 12,210 8.92

S. pallens - SPAL 352 57.1 0.09 4,093 24.1

S. cancellata - SCAN 352 57.1 0.3 13,667 20.82

S. serialis cubense - SSEC 342 59.6 0.07 3,219 10.7

S. americana - SAME 336 62.2 0.01 62 21.92

S. damnifica - SDAM 341 59.8 0.01 248 12.65

S. ceratiola - SCER 353 56.4 0.03 748 13.61

S. rubiginosa - SRUB 343 58.6 1.35 59,827 5.49

Average 347 57.9 0.7 20,592 13.1 26.4

SD 6 2.1 1.3 31,523 6.9

CV (%) 1.8 3.7 193.7 153.1 52.7

SG3 S. gregaria - SGRE 170 52.9 0.29 7,243 7.52

S. flavofasciata - SFLA 169 56.8 0.57 27,828 12.17

S. caribbeana - SCAR 169 56.8 0.61 29,558 12.56

S. pallens - SPAL 168 57.6 1.41 66,005 13.58

S. cancellata - SCAN 170 57.6 1.08 51,109 13.02

S. serialis cubense - SSEC 172 58.8 0.98 61,898 21.81

S. americana - SAME 170 59.4 0.77 4,335 24.6

S. damnifica - SDAM 171 58.5 0.18 9,111 13.83

S. ceratiola - SCER 170 58.6 0.35 10,323 13.67

S. rubiginosa - SRUB 170 57.6 0.47 22,606 15.41

Average 170 57.5 0.7 29,002 14.8 22.5

SD 1 1.8 0.4 23,116 4.9

CV (%) 0.6 3.2 58.0 79.7 33.2

NOTE.—SD, standard deviation; CV, coefficient of variation.
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showed highly similar abundance for SG3 (table 1), but it was

lower than average (fig. 3c), thus pointing to an ancestral

contraction of this satDNA. For SG2, however, these sister

species showed abundance differences (fig. 3b), due to recent

independent amplification in SFLA.

Following the same rationale, the two sister species

included in clade 2 (SPAL and SCAN), which shared a

common ancestor about 2 Ma (see supplementary fig.

1, Supplementary Material online), showed amplification

for SG1 (which was larger and more recent in SPAL) and

some contraction for SG2 (only in SPAL), whereas SG3

showed recent amplification in both species. Likewise,

clade 3 species (SSEC and SAME) showed about the

same patterns of change, with loss for SG1 and SG2

and gain for SG3. Finally, clade 4 species showed loss

for all three satDNAs except in SRUB where a recent mas-

sive amplification for SG2 probably occurred in the B

chromosome (fig. 3).

The ML trees built for SG1–SG3 (fig. 4) evidenced the ex-

istence of high sequence similarity between satDNA variants

in different species, reflecting in the low branch supports.

However, the SGRE sequences always appeared separated

and basal mainly for SG1 and SG2, in consistency with its

outgroup nature in the mitochondrial phylogenetic tree of

the Schistocerca genus (Song et al. 2017). Although high sim-

ilarity between satDNA variants of different species indepen-

dent of their phylogenetic relationship was observed,

interspecific groups from species belonging to the same clade

were noticed, as for all clades of SG1; clades 1, 2, and 4 for

SG2; and clades 1 and 2 for SG3 (fig. 4).

Sequence diversification between species, indicated by

pairwise p distance (supplementary table 1, Supplementary

Material online), was lower within rather than between clades

for SG1 (Student t¼ 2.09, df ¼ 34, P¼ 0.044) and SG3

(t¼ 4.25, df ¼ 34, P¼ 0.00016), but not for SG2 (t¼ 0.67,

df ¼ 34, P¼ 0.51). This indicates that sequence changes in

FIG. 2.—SatDNA landscapes depicting the temporal accumulation of satDNAs in Schistocerca species. We created satDNA landscape plots depicting the

repeat element divergence in K2P model distance to consensus on one axis and the satDNA abundance in logarithm scale on the other axis. Note we

quantified repeats with a wide range of relative ages across the genomes.
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SG1 and SG3 were consistent with species phylogeny, but not

those in SG2, perhaps due to the higher between species

variation for abundance and intraspecific K2P divergence in

the case of SG2. The substitution rates estimated from p

distance were 2.1% (substitutions per million year) for SG1,

1.3% for SG2, and 1.5% for SG3. To test whether sequence

changes are related with abundance changes, we compared

within-clade distances with the zs-abun values (see fig. 3). In

FIG. 3.—z-Score standardized abundance (blue) and divergence (red) for SG1–SG3 in the nine American Schistocerca species. Pairwise distances (D),

measured as p distance, are depicted for each phylogenetic clade.
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SG1, we found usually high within-clade consistency for

abundance and distance for clades 1 and 3, and also between

SCER and SRUB within clade 4. Remarkably, these two latter

species have conserved very high sequence identity for SG1

(D¼ 0.03) in spite of the extreme contraction of this satDNA,

as it represents 0.03% and 0.01% of the genome, respec-

tively (table 1 and fig. 3a). However, clade 2 and clade 4

(SDAM in respect to SCER and SRUB) showed high sequence

divergence (D¼ 0.29 and about 0.40, respectively) after a

recent amplification in SPAL (clade 2) and contraction in clade

4 species (fig. 3a). On the other hand, SG2 showed scarce

sequence diversification within clades 1 and 2 but it was much

higher in clades 3 (due to higher K2P divergence in SAME

than in SSEC) and 4 (due to the recent amplification in

SRUB) (fig. 3b). Finally, in SG3, all distances were remarkably

low (<0.1) indicating high sequence conservation for this

satDNA, irrespectively of whether abundance figures indi-

cated amplification (clades 2 and 3) or contraction (clades 1

and 4) (fig. 3c).

Chromosomal Distribution of satDNAs

FISH mapping of SG1–SG3 satDNAs showed their presence in

the ten Schistocerca species (figs. 5 and 6 and supplementary

figs. 5–7, Supplementary Material online). SG1 always

showed pericentromeric location, whereas SG2 and SG3

were also found at interstitial and distal locations (see also

supplementary table 2, Supplementary Material online).

When the FISH patterns were compared on a phylogenetic

basis, SG1 showed 12 loci per haploid genome in all species

except SCER and SRUB within clade 4, which only showed 1

and 3 loci, respectively (fig. 6). This was highly consistent with

the extremely low abundance of this satDNA in these two

species (see table 1 and fig. 3a).

In the case of SG2, clade 1 species displayed some differ-

ences for this satDNA location because SFLA showed pericen-

tromeric loci on chromosomes 1, 10, and X, and distal bands

on pairs 9 and 11, whereas, in SCAR, the bands were restrict

to pairs 9–11 and all were distal (fig. 6 and supplementary

table 2, Supplementary Material online). However, clade 2

species coincided in showing distal loci on autosomes 10

and 11, whereas clade 3 species coincided for an interstitial

locus on the X chromosome (fig. 6 and supplementary table

2, Supplementary Material online). Finally, clade 4 species

showed the highest differences, as they only coincided in

the presence of an interstitial locus on the X chromosome

of SDAM and SRUB, the remaining locations being distal

and species specific (fig. 6 and supplementary table 2,

Supplementary Material online).

On the other hand, the SG3 satDNA showed a complex

pattern of coincidences and differences between species, with

poor phylogenetic correspondence, except that distal FISH bands

were observed only in species from clades 3 and 4 (fig. 6 and

supplementary table 2, Supplementary Material online).

Spearman rank correlation analysis between satDNA abun-

dance estimated bioinformatically (table 1) and the number of

loci observed by FISH (supplementary table 2, Supplementary

Material online) indicated positive correlation for SG1 (q ¼
0.70, t¼ 2.79, P¼ 0.023) and SG2 (q ¼ 0.87, t¼ 5.07,

P¼ 0.001), but not for SG3 (q ¼ 0.10, t¼ 0.28, P¼ 0.787).

A possible explanation for this difference is that locus size

appears to be more heterogeneous for SG3 (supplementary

FIG. 4.—ML tree showing the sequences relationship of the SG1, SG2, and SG3 assembled copies in Schistocerca. Note that in all cases the sequences

from S. gregaria are in basal placement, which is in concordance with phylogenetic mitochondrial data that stated SGRE as the earliest divergent lineage.

Occurrence of grouped sequences from more related species (belonging to the same clade) were observed as indicated by numbers 1–4. The nodal supports

were calculated following 1,000 bootstrap replicates. The bootstrap support � 90 are shown in supplementary figure 4, Supplementary Material online.
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fig. 7, Supplementary Material online) rather than for SG1 and

SG2 (supplementary figs. 5 and 6, Supplementary Material

online).

A final comment merits the presence of satDNA on C-pos-

itive heterochromatic blocks. In general, we observed the

presence of one or more satDNAs on pericentromeric regions,

in coincidence with the pericentromeric C-bands. The excep-

tions were SCER and SRUB in which 8 and 6 chromosomes,

respectively, lacked the three satDNAs on pericentromeric

locations (fig. 6 and supplementary table 2, Supplementary

Material online). In addition, the distal C-bands observed in

SGRE (autosomes 9–11) contained the SG2 satDNA (fig. 1

and supplementary table 2, Supplementary Material online).

However, our results clearly show the presence of satDNA

outside any C-positive heterochromatic block, such as the

SG2 loci at distal location on autosomes 9–11 in SCAR, auto-

somes 11 in SFLA, autosomes 10 and 11 in SPAL and SCAN,

autosome 9 in SRUB, or autosome 11 in SCER. Furthermore,

none of the interstitial loci for SG2 mapped on the X chro-

mosome of SSEC, SAME, SDAM, and SRUB coincided with a

heterochromatin block detectable by C-banding. Likewise,

we observed that all interstitial and distal loci for SG3 on

the autosomes S9–S11 and L1–M7 of several species (fig. 3)

reside outside the heterochromatin defined by C-banding

(fig. 1 and supplementary table 2, Supplementary Material

online).

FIG. 5.—FISH mapping (red signals) of SG1, SG2, and SG3 satDNAs on chromosomes counterstained with 40,6-diamidine-20-phenylindole (blue) in

representatives of the four Schistocerca clades studied here. The FISH mapping confirms that C-positive heterochromatic blocks in Schistocerca species carry

satDNAs, besides occurrence of some euchromatic blocks. FISH results for all species are presented in supplementary figures 5–7, Supplementary Material

online. Chromosome names are indicated when signals show up in a few chromosomes.
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Finally, the presence of the three satDNA families on the B

chromosome found in SRUB supports the hypothesis by

Milani et al. (2018) claiming that the B chromosome arose

from the S9 autosome, as this is the only A chromosome

carrying the three satDNAs like the B chromosome (supple-

mentary table 2, Supplementary Material online).

Discussion

Our combined approach of low-coverage high-throughput

sequencing and FISH mapping in ten grasshopper species be-

longing to the genus Schistocerca has revealed that the three

satDNA families analyzed are conserved in the ten species,

indicating that these satDNAs were part of the “library” pre-

sent almost 8 Ma in the ancestor. During this time, the three

satDNA families have displayed several amplifications, con-

tractions, and point mutations across species, as evidenced

by species differences in satDNA abundance and intraspecific

K2P divergence, analyzed in combination with the number of

FISH loci and the existing Schistocerca molecular phylogeny.

First, repeat landscapes (see fig. 2) and z-score abundance

and divergence values (fig. 3) showed high similarity between

species within clades, indicating that in this specific case, evo-

lutionary changes in satDNA abundance and divergence

closely reflect species phylogeny. Second, changes at se-

quence level also reflected species phylogeny, because the

ML trees built with satDNA sequence variants grouped to-

gether the sequences coming from the species sharing a

same phylogenetic clade (see fig. 4).

It means that between species the differences in satDNA

abundance and nucleotide sequence are proportional to the

time because they shared their last common ancestor. In fact,

the two pairs of sister species included in clades 1 and 2

showed higher similitude in abundance–divergence patterns

rather than those in clades 3 and 4, in which phylogenetic

relationships were more complex. Our results have shown

that during the 7.9 Myr since the origin of the genus

Schistocerca, estimated by Song et al. (2017), the satDNA

library has experienced both gains and losses in abundance

in different evolutionary lineages, the largest being noticed for

SG1 and SG2 in the African species, SGRE. With the available

information, it is impossible to know the precise figures for

these satDNAs in the ancestor that colonized America, but it is

likely that it might be close to the average found by us for the

nine American species. Bearing this in mind, several evolution-

ary trends were observed for each of these three satDNAs.

First, the high average K2P divergence values observed in all

species (17.8% for SG1, 13.1% for SG2, and 14.8% for SG3)

suggest that all three satDNAs are quite old in the genome of

these grasshoppers. In fact, the rates of nucleotide substitu-

tion estimated here (2.1%, 1.5%, and 1.3%, respectively) are

proportional to K2P values. These rates are slightly higher than

those previously reported, for instance, in Iberolacerta lacer-

tids (Rojo et al. 2015), sturgeons (Robles et al. 2004), and

cetacean (Arnason et al. 1992).

Second, the SG1 family showed massive amplification in

the African SGRE lineage reaching 6.7% of genome propor-

tion. The other remarkable evolutionary trend for this satDNA

was its contraction in clades 3 and 4, with extreme outcomes

in SCER and SRUB in which it represented only 0.07% and

0.10% of the genome (see table 1). FISH mapping showed

the presence of SG1 on pericentromeric regions of all chro-

mosomes in all species with abundances close to 0.50% or

higher, that is, all species except these two in which it was

FIG. 6.—Plots showing the satDNA location on chromosomes of Schistocerca species and their abundances. Data obtained from FISH mapping

(chromosomal location) and RepeatMasker analysis (abundance). Note some concordance of distribution in distinct clades. Chromosomal location for

SG3 was obtained from Camacho et al. (2015). SG1, red; SG2, black; SG3, blue.
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located only on the M6 chromosome pair (in SCER) or the M4,

S9, and X (in SRUB). The Schistocerca phylogeny (see supple-

mentary fig. 1, Supplementary Material online) indicates that

this took place during the last 2 Myr. At least in SRUB, it is

known that SG1 contraction has been paralleled by the pres-

ence of a more abundant nonhomologous satDNA, named

SruSat02-170, on pericentromeric regions of all chromo-

somes (Milani et al. 2018). We also found this satDNA in

the African SGRE genome (representing 0.428% of its ge-

nome), suggesting that it was also present in the ancestral

Schistocerca that colonized America, like in other American

species with variable abundance. It is well known that relaxed

evolutionary constraints on satDNA lead to high rates of se-

quence turnover, even for those involved in centromeric func-

tion (Walsh 1987; Dover 2002; Ugarkovi�c and Plohl 2002;

Garrido-Ramos 2017). The loss of the SG1 family in SCER

and SRUB and its replacement by a different pericentromeric

satDNA (SruSat02-170 in the latter species) thus illustrate the

turnover principle of the satDNA library. Interestingly, SG1 in

SCER and SRUB shows highly remarkable conservation

(D¼ 0.03) in spite of large contraction (0.07% and 0.1% of

genome proportion, respectively). Although this high se-

quence similarity might be due to chance, we cannot rule

out the possibility that this satDNA has been recruited for

some function in these species genomes, as suggested for

other organisms (revised by Garrido-Ramos [2017]).

Third, the SG2 satDNA family experienced massive ampli-

fication in SGRE yielding large distal blocks on the S9–S11

chromosome pairs (see Camacho et al. 2015 and supplemen-

tary table 2, Supplementary Material online). This satDNA thus

reached 4.17% of the genome in this species, whereas it only

surpassed 1% in SRUB but presumably on a B chromosome

(see above). Abundance thus ranged from 0.01% to 0.38%

(average ¼ 0.15%) in the eight other American species, indi-

cating large contractions in SSEC (0.07%), SAME (0.01%),

SDAM (0.01%), and SCER (0.03%) (see table 1), that is, the

only species showing a single SG2 locus (see fig. 6 and sup-

plementary table 2, Supplementary Material online). For

SAME, interestingly sequences existing only in one chromo-

somal loci of X chromosome probably had undergone old

amplification events (high K2P, that is not observed in the

other three species with one SG2 locus) harboring now an

excess of sequences differences between copies, which

reflected as subgroups of nonhomogenized sequences.

The presence of loci on small chromosomes in clade 1

species, which is the second most basal in the American

species, suggests that they were already present in the

ancestral Schistocerca. In this case, we can infer that

most distal loci on small chromosomes have been lost in

clades 3 and 4 after their separation, about 4 Ma (see

supplementary fig. 1, Supplementary Material online),

from clade 2 species (which show distal loci on two small

chromosomes). On the other hand, most species in clades

3 and 4 carried interstitial loci for SG2 on the X

chromosome (see supplementary table 2, Supplementary

Material online). This difference between the two groups

of American species is also apparent for the zs-abun values

(see fig. 3b), perhaps because loci on the small autosomes

tend to be larger than those on the X chromosome (see

supplementary fig. 6, Supplementary Material online). On

the other hand, the absence of the X chromosome locus in

SGRE and clade 1 species would be consistent with its

ancestral absence, but its absence in clade 2 is more prob-

lematic. A way to explain it would be that it emerged after

clade 1 separation (about 5 Ma) but was lost in clade 2

after its separation from clade 3. Alternatively, on the basis

of satDNA dissemination hypothesis (Ruiz-Ruano et al.

2016), which claims that satDNAs are disseminated across

genomes in the form of short arrays which may amplify on

one chromosome site or another, the presence or absence

of the loci on small autosomes, and X chromosome for

SG2 might be the result of local amplifications or contrac-

tions. As the possible mechanisms for these events are

mostly unknown, although many have been suggested

(for a recent review, see Lower et al. [2018]), it is currently

impossible to ascertain which of the two alternative

explanations is more parsimonious.

Fourth, in the case of SG3, the main evolutionary changes

were amplification in clades 2 and 3 and contraction on

S. gregaria and clades 1 and 4. The present results show

that there is no any correlation between abundances changes

and loci number detected by FISH for SG3, perhaps due to

locus-size heterogeneity. The SG3 repeat showed the highest

variability in loci number and in chromosomal distribution

and, as evidenced by FISH mapping, it was highly amplified

in the orthologous chromosomes S9 in SCAR and SSEC across

their whole length. Furthermore, interstitial loci for SG3 on

one or two S-chromosomes were apparent in SGRE, SSEC,

SCAR, SAME, and SRUB, presumably indicating its presence in

the ancestral Schistocerca that colonized America and its loss

in the five other species (see fig. 6). Finally, SG3 showed an-

other trend for distal location on L and M chromosomes in a

clade 3 species (SAME) and all clade 4 species.

Summing up, the analysis of sequence changes suggests

that satDNA amplification usually tends to decrease intraspe-

cific divergence (see SG1 and SG2 K2P values for SGRE, SG1

ones for clade 1 in table 1, or SG2 ones for SRUB). However,

careful inspection at interspecific level (fig. 3) reveals that ei-

ther sequence conservation or divergence was associated

with both amplification or contraction for SG1 and SG2,

but only sequence conservation for SG3 irrespectively of

whether it had undergone amplification (clades 2 and 3) or

contraction (clades 1 and 4) (table 2). This suggests that se-

quence evolution of a given satDNA is influenced by its history

of amplifications and/or contractions in each species, with

chance playing a major role in some cases (e.g., SG1 and

SG2) and functional constrains possibly also acting in others

(e.g., SG3, as it showed very low D values in all cases). This
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indicates that the evolution of satDNA abundance and se-

quence is mostly neutral but perhaps shaped by natural selec-

tion in some cases (Lower et al. 2018).

Taken together, our results indicate that interspecies

changes in satDNA abundance in Schistocerca show higher

consistency with species phylogeny rather than those on chro-

mosome satDNA location. This is especially apparent in the

case of SG3 in which the level of local amplification seems to

show higher heterogeneity between loci. Perhaps the nature

of amplification mechanisms combined with the availability of

short arrays acting as seeds for amplification (sensu Ruiz-

Ruano et al. 2016) might help to explain the observed differ-

ences between SG1–SG2 and SG3 satDNA evolutionary path-

ways. Experimental and theoretical work indicated that de

novo formation of satDNA repeats through unequal crossing

over is relatively easy, and that, once formed, the arrays tend

to persist (Southern 1970; Smith 1976), although they may

also be lost (Charlesworth et al. 1986). However, Fry and

Salser (1977) found results in rodents which were incompat-

ible with the former models, for which reason they proposed

the “library model,” by which the genomes of a group of

species share a common collection of satDNAs in which inter-

species differences are mostly quantitative. This includes the

notion that a given satDNA may undergo differential amplifi-

cations or contractions among species, such as those reported

here in Schistocerca. In contrast, in Drosophila, the immense

majority of interspecific differences for simple satDNA were

gains, with very few losses, and most lineage-specific gains

occurred at terminal branches (Wei et al. 2018). The gains

observed by us in Schistocerca also included some terminal

branches, such as SG1 and SG2 in SGRE, SG1 in SPAL, or SG2

in SRUB, but others involved full phylogenetic clades by oc-

curring in an ancestor species, such as SG1 in clade 1 species.

Our present results have revealed that K2P divergence was

lower at intra- than inter-specific level for all three satDNAs

analyzed here (see table 1) within nine Schistocerca species

engaged in a rapid radiation throughout the American conti-

nent during the last 7.9 Myr (Song et al. 2017). This concerted

pattern is consistent with the library model expectations (Fry

and Salser 1977) as sequence diversification is boosted by

reproductive isolation yielding species-specific satDNA se-

quence variants. Our results have allowed us to look at the

evolution of a satDNA library from the early Pleistocene to the

present, and the ML trees have shown high identity at species

and clade levels. Given that our analysis only included three

satDNA families, and because grasshoppers usually have tens

of different satDNA families in their satellitomes (see Ruiz-

Ruano et al. 2016, 2017, 2018), it is presumable that a com-

parative analysis of the full satellitomes in these ten species

would shed interesting light on whether some satDNA fam-

ilies have appeared de novo in some of these genomes in such

a short time, as predicted by Southern (1970), or else these

species show coincident satellitomes, as predicted by the li-

brary model (Fry and Salser 1977).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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