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ABSTRACT
Although it is usual to find collinearity in econometric models, it is commonly disre-
garded. An extended solution is to eliminate the variable causing the problem but,
in some cases, this decision may affect to the goal of the research. Alternatively, the
residualization not only allows to mitigate the collinearity, but it also provides an
alternative interpretation of the coefficients isolating the effect of the residualized
variable. This paper develops completely the residualization and justifies its appli-
cation not only to deal with multicollinearity but also to separate the individual
effects of the regressor variables. This contribution is illustrated by two econometric
models with financial and ecological data, although it can also be extended to many
different fields.
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1. Introduction

Explanatory variables of an econometric model can present strong collinearity and
consequently the variance of the ordinary least squares (OLS) estimators may be
large compared to the values of the estimated parameters that can be insignificant
or have the wrong sing. Even when collinearity diagnostic measures consider that the
collinearity is not worrying, it is possible that the individual effects of the variables
cannot be separated or displayed clearly. This idea resembles the objective of Shapley
value regression, [57], which presents an entirely different strategy for assessing the
contribution of regressor variables to the dependent variable. It owes its origin to the
theory of cooperative games. The value of R2 obtained by fitting a linear regression
model is regarded as the value of a cooperative game played by the independent
variables (each variable is a member) against the dependent variable (explaining it).
The analyst does not have sufficient information to disentangle the contributions made
by the individual members; only their joint contribution R2 is known. The Shapley
value decomposition imputes the most likely contribution of each individual member.
On the other hand, [3] proposed an alternative methodology to OLS based on ordered
variable regression (OVR), originally presented by [64], which entirely resolves the issue
of related predictors by creating and using predictors that are perfectly unrelated.

These antecedents lead to residualization that is a procedure applied in numerous
research published in relevant social science journals in many different fields, such as
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linguistics ([1, 8, 26, 34–36]), environmental issues ([28–30]) or economic development
and policies ([4, 6, 32, 38, 62]), for example. This method has been also applied in
previous research by the name of regression with orthogonal variables (see [44, 53]).
However, this method has not been developed completely in prior works and we con-
sider that this lack of specification leads to different criticisms as the one in [66].
[65] also concluded that “residualization of predictor variables is not the hoped-for
panacea [to collinearity]”. We consider that the key point not taken into considera-
tion until now, is that this methodology provides an alternative interpretation for the
estimated parameters, apart from the mitigation of collinearity. This could be seen as
a limitation since the methodology is not always applicable but it can be also seen
as an opportunity to obtain new interpretation not possible from the initial model.
To briefly explain the general concept of the method, it might be say that by resid-
ualizing one of the explanatory variables, its effect is being isolated from the rest of
the variables of the model, so we are including the part of this variable that has no
relationship with the rest of independent variables, and thus we are introducing new
interpretations of the residualized variable. Thus, this paper develops completely the
residualization and justifies its application not only to deal with multicollinearity but
also to separate the individual effects of the regressor variables. Main properties and
inference are also presented together to the variance inflation factor and the condition
number that allow to check if the collinearity has been mitigated after the application
of residualization.

The structure of this paper is as follows: Section 2 presents the estimation and
main properties of residualization showing that the estimation of the variance of the
random disturbance, the global significance test, the individual significance test of the
residualized variable and the goodness of fit obtained by the residualization will be
similar to that of the original model. Section 3 analyzes how residualization mitigates
collinearity. Section 4 compares the residualization with OLS and others well
known techniques, such as ridge regression, principal component regression
or partial least squares regression. Section 5 presents the successive residualiza-
tion. Finally, Section 6 illustrates the contribution of this paper with two econometric
models: the first one shows the application of the method when the main goal of the
researcher is to mitigate collinearity, and the second one shows the application of the
method when the purpose of the study is to obtain new interpretations of the vari-
ables. The two empirical examples belong to different fields: the first is a financial
model, while the second is usually applied in ecological studies. Main conclusions are
summarized in Section 7.

2. Estimation and properties

Consider the following general linear regression model for p exogenous variables and
n observations:

Y = Xβ + u, (1)

where the first column of X corresponds to the independent term and the random
disturbance, u, is spherical.

The first step is to define the following auxiliary regression:

Xi = X−iα+ v, i = 2, . . . , p, (2)
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where X−i is the result obtained after eliminating column (variable) i from matrix X
and Xi represent the variable i. That is, X = (X−i Xi).

By Ordinary Least Squares (OLS) estimation of (2), it will be obtained the corre-
spondent estimated residuals, ei. They will represent the part of variable i that has
no relation with any other exogenous variable of model (1) since the residuals ei are
orthogonal to X−i (that is, etiX−i = 0, with 0 being a vector of zeros with appropriate
dimensions).

Taking into account the previous, this method involves replacing the variable Xi by
the estimated residuals of model (2), ei, in the original model (1). Thus, the residual-
ization is obtained from the following expression:

Y = XOγ + w, (3)

where XO = (X−i ei).
Once the basic procedure is explained, lets compare the results of model (1) and

model (3).

2.1. Estimation

From X = (X−i Xi), the OLS estimator for model (1), β̂, will be:

β̂ =
(
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iXi
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·
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taking into account that:
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where α̂ and etiei are, respectively, the OLS estimator and the sum of the square of
the residuals of the auxiliary regression (2).

Likewise, since etiX−i = 0, the OLS estimation of model (3), γ̂, is given by:

γ̂ =
(
Xt
OXO

)−1
Xt
OY =

(
Xt

−iX−i Xt
−iei

etiX−i etiei

)−1

·
(

Xt
−iY

etiY

)
=

( (
Xt

−iX−i
)−1

Xt
−iY
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=

(
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)
. (5)

Thus, it is possible to compare the OLS estimators, expression (5), of the residu-
alized model (3) with the OLS estimators of model (1), expression (4), obtaining the
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following conclusions:

• The estimate of the coefficient of the residualized variable does not change in
model (3), that is, β̂i = γ̂i. However, the interpretation is different: the variation
produced in dependent variable, Y, given an increase in ei, that is to say, the
part of the independent variable Xi that is not related to the rest of indepen-
dent variables, X−i. Hence, due to the new interpretation of the residualized
variable, the residualization could be applied to obtain conclusions that would
not otherwise be possible.
• The orthogonality of ei with X−i verifies the ceteris paribus assumption, that is

to say, when this variable increases, the other variables remain constant.
• The estimation of the non-residualized variables in model (3) differs:

β̂−i = γ̂−i − α̂ ·
etiY

etiei
. (6)

However, the interpretation will be the same as in model (1).

In addition, it is interesting to take into consideration that:

• For convenience purposes, see Section 3, all of the independent variables in model
(1) have been included in the auxiliary regression (2). However, it will be possible
to include only some of the independent variables, depending on the interest of
the researcher (for example, trying to obtain interpretable residuals). In this
case, the estimations of explanatory variables which are not included in the
auxiliary regression will not change their value also. Furthermore, if the constant
is included in the auxiliary regression, nonessential collinearity will be mitigated
because the residuals will be orthogonal to the constant. See Section 3 for details
on distinguishing among the different types of collinearity.
• The estimate of the non-residualized variables in model (3) coincides with the

estimate obtained from model Y = X−iδ + ϑ. That is, the estimation and
interpretation of the non-residualized variables will be the same as that obtained
in a regression in which the residualized variable is eliminated. Nevertheless, this
coincidence only occurs when we introduce in the auxiliary regression all the rest
of explanatory variables of the original model. Furthermore, since the two models
have different residuals, the inference associated with these coefficients will be
different.

Remark 1. Another interesting question is how to select the variable to residualize.
Throughout the work, we present different criteria that can be applied, or a combination
of them, depending to the goal of the research.

If the goal is to look for new interpretations, the variable to residualize will be
the one that leads to the new interpretation desired by the researcher since the only
interpretation that changes is that of the residualized variable. In this case, in the
auxiliary regression (2), it will be possible to use all the independent variables or only
some of them.

It is also interesting to rank the independent variables in model (1) according to their
relevance to avoid residualizing variables considered to be relevant to avoid changing
the interpretation of their coefficients. This fact was already been proposed in [3] with
the use of ordered variable regression models.
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2.2. Goodness of fit, estimation of the variance of the random
disturbance and joint significance

The estimated residuals of original model (1) will be given by:

e = Y − Ŷ = Y −X · β̂ = Y − (X−i Xi) ·

( (
Xt

−iX−i
)−1

Xt
−iY − α̂ ·

et
iY

et
iei

et
iY

et
iei

)

= Y −X−i
(
Xt

−iX−i
)−1

Xt
−iY + X−iα̂ ·
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etiei
−Xi

etiY

etiei

= Y −X−i
(
Xt

−iX−i
)−1

Xt
−iY − ei

etiY

etiei
, (7)

since ei are the residuals of the auxiliary regression (2), it is verified that ei = Xi −
X−iα̂.

And those of the residualized model (3) are:

e = Y − ŶO = Y −XO · γ̂ = Y −X−i
(
Xt

−iX−i
)−1

Xt
−iY − ei

etiY

etiei
. (8)

It is evident that expression (8) coincides with (7), that is to say, the residuals of the
original (1) and residualized (3) models coincide. Therefore, it is possible to conclude
the following:

• It is evident that the squared sums of the residuals of the two models coincide
and, consequently, that both models yield the same estimate of the variance of
the random disturbance.
• Since the two models employ the same dependent variable, the total sum of

squares will be also the same, and consequently, the coefficients of determination
will also coincide.
• Since the F statistic of the global significance test can be expressed as a function

of the coefficient of determination, it is evident that the global significance tests
of both models will also be the same.
• It is clear that Ŷ = ŶO, it is to say, that the original model and the resid-

ualized one provide the same prediction. Recall that if the goal is simply to
predict Y from a set of variables X, then multicollinearity is not a problem be-
cause the predictions will still be accurate [25]. Thus, residualization mitigates
multicollinearity but maintains the same prediction.

2.3. Individual inference

Since the random disturbances are spherical, the individual inference will be given by

the main diagonal of matrix
(
XtX

)−1
, that is to say (see expression (4)), by:( (

Xt
−iX−i

)−1
+
(
etiei

)−1 · α̂α̂t −α̂ ·
(
etiei

)−1

−α̂t ·
(
etiei

)−1 (
etiei

)−1

)
. (9)
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Taking into account the following expression:

(
Xt
OXO

)−1
=

( (
Xt

−iX−i
)−1

0

0
(
etiei

)−1

)
, (10)

it is evident that the main diagonal of both matrices are different, except for the i
element. Since the estimation of the variance of the random disturbance is the same,
considering the estimation of the coefficients, it is possible to conclude the following:

• The inference related to the individual significance (t-Student test) of the un-
changed variables differs between models (1) and (3).
• The inference related to the individual significance (t-Student test) of the resid-

ualized variable coincides in models (1) and (3).

Consequently, the residualization of the initial model does not affect the estimation
of the variance of the random disturbance, the coefficient of determination, the global
significance test, or the individual significance test of the residualized variable. It only
changes the individual significance of unaltered variables.

Remark 2. Another option is to residualize a variable with a coefficient that is sig-
nificantly different from zero in the original model since the individual significance test
of the residualized variable is maintained in the residualized model.

3. Collinearity

As mentioned in the introductory Section, multicollinearity consists of the presence
of interdependency between explanatory variables ([19]), distinguishing between two
principal types of multicollinearity: perfect collinearity and near-collinearity [43, 47,
58]. The first type occurs when the interdependency between variables is exact, and
the second occurs when it is approximate. Near-collinearity, also known as imperfect
or approximate collinearity, may be divided into essential and nonessential collinearity
([39, 40, 59]). The former concerns the relationship between explanatory variables,
excluding the intercept, while the latter involves the relationship between the intercept
and at least one of the remaining independent variables of the model.

In addition to the new interpretation of the coefficient of the residualized variable,
another result of interest in the residualized model is the effect on the linear relation-
ship between the independent variables of the initial model. To verify that collinearity
is mitigated after the residualization of the initial model, in the residualized model
we analyze, in the residualized model, the estimated variances of the estimated coef-
ficients, the Variance Inflation Factor (VIF) and the Condition Number (CN).

3.1. Decrease in estimated standard variance

Considering that the estimation of the random disturbance variance is the same in
the original and the residualized model, the estimated variances of the coefficients

will be determined by the main diagonal of the matrices
(
XtX

)−1
and

(
Xt
OXO

)−1
.

As noted above, the element corresponding to the residualized variable is the same
in both matrices, and thus, the estimated variance will be also the same. That is,
̂

V ar
(
β̂i

)
= ̂V ar (γ̂i).
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For the rest of the variables, given expressions (9) and (10), we obtain the following:

̂
V ar

(
β̂j

)
= σ̂2 ·

(
wjj + (etiei)

−1αjj
)
, ̂V ar (γ̂j) = σ̂2 · wjj , j = 1, . . . , p, j 6= i,

where wjj y αjj = α2
j are the elements (j, j) of the matrices

(
Xt

−iX−i
)−1

and α̂α̂t.

Since (etiei)
−1α2

j ≥ 0, it is verified that
̂

V ar
(
β̂j

)
≥ ̂V ar (γ̂j) for j = 1, . . . , p, with

j 6= i. In consequence, the estimated variances of the residualized model will be always
less than or equal to those in the original model.

This result is relevant since it demonstrates that the residualization implies a de-
crease in the estimated variances of the estimated coefficients (which are assumed to
be inflated due to the presence of collinearity). Note that this result is contrary to the
conclusions presented by [7].

Remark 3. The linear relationship on the coefficients of the model (1) given in (6)
can also be used to reduce the variance of the estimated coefficients only estimating
model by restricted least-squares estimator. In this case the residualization could be
used to mitigate one of the consequences of the existence of severe collinearity in the
multiple linear regression model.

3.2. Variance Inflation Factor

Each explanatory variable of model (1) has an associated VIF given by:

VIFi =
1

1−R2
i

, i = 2, . . . , p, (11)

where R2
i is the coefficient of determination of model (2). It is generally accepted that

values of VIF higher than 10 indicate severe collinearity, [31].
Applying this definition in the residualized model (3) and being ei the dependent

variable of the auxiliary regression, its coefficient of determination will be zero and
the associated VIF will be one (the minimum value possible). In other case, R2

j will
be obtained from the following auxiliary regression:

Xj = XO−j
ξ + ε, j = 2, . . . , p, j 6= i, (12)

where XO−j
is the result obtained after eliminating column (variable) j from matrix

XO.
Due to the orthogonality of ei with X−i,−j (matrix X without columns (variables)

i and j), the residuals of (12) coincide1 with the residuals of the following model:

Xj = X−i,−j η + ε, i, j = 2, . . . , p, i 6= j. (13)

1With e1 being the residuals of the auxiliary regression (12) and e2 being the residuals of regression (13) and
given that ei is orthogonal to Xj and X−i,−j , we obtain that

e1 = Xj − (X−i,−j ei) ξ̂ = Xj − (X−i,−j ei) ·
( (

Xt
−i,−jX−i,−j

)−1
Xt

−i,−jXj

0

)
= Xj −X−i,−j

(
Xt

−i,−jX−i,−j

)−1
Xt

−i,−jXj = Xj −X−i,−j η̂ = e2.
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Then, models (12) and (13) have the same coefficient of determination since the de-
pendent variable is the same in both models.

However, the coefficient of determination of model (13) will be lower than that of
model:

Xj = X−jθ + ω, i, j = 2, . . . , p, i 6= j, (14)

since this latter model contains an additional independent variable, Xi. Then, the
coefficient of determination of model (12) is lower than that of model (14).

Thus, since the VIF associated with variable j in the original model (1) is obtained
from the coefficient of determination of the auxiliary regression given by (14) and in
the residualized model (3) from the coefficient of determination of model (12), it is
clear that the VIF is decreased after residualizing the model. That is, the collinearity
present in the model has been diminished.

Remark 4. If the goal is to mitigate the collinearity in the model, we suggest residu-
alizing the variable with the highest Variance Inflation Factor because, after the resid-
ualization, the VIF will be equal to 1. In this case, all independent variables have to be
included in the auxiliary regression (2) to mitigate the collinearity in the most efficient
way.

3.3. Condition Number

Given the model (1), the condition number (CN) is given by:

K(X̃tX̃) =

√
µmax
µmin

,

where µmin and µmax are, respectively, the minimum and maximum eigenvalue of
XtX. Note that previously the matrix X should be transformed to be unit length
by columns, it is to say, data should be divided by the square root of the sum of its
squared elements (see [5]). This author stated that values of CN between 20 and 30
indicate moderated collinearity and values higher than 30 indicate high collinearity.

Then, the CN associated to model (3) is obtained as follows:

K(X̃t
OX̃O) =

√
λmax
λmin

,

where λmin and λmax are, respectively, the minimum and maximum eigenvalue of
X̃t
OX̃O, where:

X̃O =

(
X1

||X1||
· · · Xi−1

||Xi−1||
Xi+1

||Xi+1||
· · · Xp

||Xp||
ei
||ei||

)
=

(
X̃−i

ei
||ei||

)
,

being ||Xk|| =
√

n∑
j=1

X2
kj for k = 1, . . . , i− 1, i+ 1, . . . , p and ||ei|| =

√
n∑
j=1

e2
ij . Then:

X̃t
OX̃O =

(
X̃t

−iX̃−i 0
0 1

)
.
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Thus, one of the p eigenvalues of X̃t
OX̃O will be equal to one and the rest will

coincide with the eigenvalues of matrix X̃t
−iX̃−i. Supposing that the eigenvalue equal

to one is the first one, λ1 = 1, it is verified that:

• If this is the minimum eigenvalue of X̃t
OX̃O, the rest of eigenvalues will be equal

or higher than one (λi ≥ 1, i = 2, . . . , p), and, consequently, its sum will be equal

or higher than p− 1

(
p∑
i=2

λi ≥ p− 1

)
. However, this sum will be equal to p− 1

(since the trace of X̃t
−iX̃−i is equal to p − 1). Then, all the eigenvalues will be

equal to one (λi = 1 with i = 1, 2, . . . , p), it is to say, X̃t
OX̃O will be the identity

matrix and, then, all the variables will be considered orthogonal between them.
• If this is the maximum eigenvalue of X̃t

OX̃O, the rest of eigenvalues will be equal
or lesser than one (λi ≤ 1, i = 2, . . . , p), and, consequently, its sum will be equal

or lesser than p − 1

(
p∑
i=2

λi ≤ p− 1

)
. However, it was justified that this sum

is equal to p − 1. Then, all the eigenvalues will be equal to one (λi = 1 with
i = 1, 2, . . . , p). Thus, as before, all the variables will be considered orthogonal
between them.

If the eigenvalue equal to one can not be the minimum or maximum eigenvalue of
X̃t
OX̃O, they have to be found on the rest of the eigenvalues of X̃t

−iX̃−i. Thus, the
CN of model (3) coincides with that of the auxiliary regression (2):

K(X̃t
OX̃O) = K(X̃t

−iX̃−i).

On the other hand, according to the Cauchy’s Interlace Theorem for Eigenvalues of
Hermitian Matrices2, since X̃t

−iX̃−i is a submatrix of order p − 1 of X̃tX̃ is evident
that it has to be verified that:

K(X̃t
OX̃O) = K(X̃t

−iX̃−i) ≤ K(X̃tX̃).

Thus, the condition number or the residualization (3) has to be equal or lesser than
the condition number of the original model (1).

Remark 5. If the goal is to mitigate the collinearity in the model, we suggest to resid-
ualize the variable i whose auxiliary regression (where the variable i is the dependent
one) presents the lowest CN since it will coincides with the CN of the residualized
model that will be always equal or lesser than the CN of the original model.

4. Comparision of the residualization method with other existing methods

El objetivo de la presente sección es el de comparar mediante a Monte
Carlo simulation the residualization method con otros métodos existentes
para mitigar la multicolinealidad such as ridge regression (RR), principal
component regression (PCR) and partial least squares regression (PLSR).
Dicha comparación se realizará mediante el cálculo del mean square er-

2Given a matrix A with order p and eigenvalues ξ1 ≤ ξ2 ≤ · · · ≤ ξp and given its submatrix B with order p−1
and eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µp−1 it is verified that ξ1 ≤ µ1 ≤ ξ2 ≤ µ2 ≤ ξ3 ≤ · · · ≤ ξp−1 ≤ µp−1 ≤ ξp.
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ror (MSE) y de los errores de predicción de las técnicas anteriores, del
residualization method and OLS estimation.

Aśı, a continuación se muestra cómo calcular el MSE for the residual-
ization method y cómo compararlo con el MSE de OLS y se presentarán
las métricas que se van a usar para medir la capacidad predictiva de cada
técnica.

4.1. Mean Square Error

Note that the original model is different from the residualized model, and for this
reason, both models should be analyzed separately and the comparison may not be
convenient. However, some publications have not considered this divergence (see, for
example, [66]). For this reason, since γ̂ is a biased estimator of β:

γ̂ = (XOXO)−1 ·Xt
OY = (XOXO)−1 ·Xt

OX · β + (XOXO)−1 ·Xt
O · u

E[γ̂] = (XOXO)−1 ·Xt
OX · β 6= β since Xt

O 6= X,

it could be interesting to calculate the MSE of residualization and to compare it with
the MSE of the OLS estimator.

Given an estimator β̃ of β, its MSE is expressed as:

MSE
(
β̃
)

= trace
(
var

(
β̃
))

+
(
E
[
β̃
]
− β

)t (
E
[
β̃
]
− β

)
.

In the case of the OLS estimator, β̂ is an unbiased estimator, where E
[
β̂
]

= β,

and it is verified in the following:

MSE
(
β̂
)

= trace
(
var

(
β̂
))

= σ2 ·
[
trace

(
Xt

−iX−i
)−1

+ (etiei)
−1 · trace

(
α̂α̂t

)
+ (etiei)

−1
]
,(15)

taking into account expression (9).
For the estimator γ̂, starting from (10), it is verified that:

MSE (γ̂) = trace (var (γ̂)) + (E [γ̂]− β)t (E [γ̂]− β)

= σ2 ·
[
trace

(
Xt

−iX−i
)−1

+ (etiei)
−1
]

+ βi · α̂tα̂ · βi, (16)

Based on expressions (4), (5) and (6), we could say that γ̂ = β̂ + s, where:

s =

(
α̂ · e

t
iY

et
iei

0

)
.

Thus, as:

etiY = etiXβ + etiu = [0 etiXi] · β + etiu = etiXiβi + etiu = etieiβi + etiu,
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we have that:

E [γ̂] = E
[
β̂
]

+ E [s] = β +

(
α̂ · βi

0

)
⇒ (E [γ̂]− β)t (E [γ̂]− β) = β2

i · α̂
tα̂.

From expressions (15) and (16), it is clear that:

MSE (γ̂) = MSE
(
β̂
)
− σ2 · (etiei)−1 · trace

(
α̂α̂t

)
+ β2

i · α̂
tα̂,

so γ̂ has a lower MSE than β̂ if:

β2
i · α̂

tα̂ < σ2 · (etiei)−1 · trace
(
α̂α̂t

)
. (17)

4.2. Metrics

Para medir la capacidad de ajuste de cada modelo se usarán the root
mean squared error (RMSE) and the mean absolute error (MAE), mientras
que para la capacidad predictiva the root mean squared prediction error
(RMSPE) and the mean absolute prediction error (MAPE).

Dada una muestra de tamano n, supongamos que se divide en dos partes,
una de tamano m y otra de tamano h de forma que m+h = n). Entonces, se
usa la primera de ellas para aplicar cada una de los métodos de estimación
comentados y calcular RMSE, mientras que en la segunda se evalúa su
capacidad predictiva mediante la obtención de RMSPE y MAPE. Esto es:

RMSE =

√√√√ 1

m
·
m∑
i=1

(Yi − Ŷi)2, MAE =
1

m

m∑
i=1

|Yi − Ŷi|,

RMSPE =

√√√√1

h
·

n∑
i=m+1

(Yi − Ŷi)2, MAPE =
1

h
·

n∑
i=m+1

|Yi − Ŷi|.

4.3. Simulation

A continuación se describe la simulación realizada para conseguir los obje-
tivos mencionados al inicio de la presente sección.

Given the model Y = β1 +β2 ·X2 +β3 ·X3 +u, the following simulation is performed
in order to establish the behavior of condition (17):

1. It is considered that µ2×1 = (µ1, µ2)t with µ1, µ2 ∈ {−10,−9,−8, . . . , 8, 9, 10}.
2. It is also considered that a1, a2 ∈ {0, 1, 2, 3, 4} and b1, b2 ∈
{0.1, 0.2, 0.3, . . . , 1.9, 2}, so ci5×1 ∼ N(ai, b

2
i ) is generated. Thus, given ma-

trix C = [c1 c2], a symmetric positive-definite matrix, Σ2×2 = CtC, is
built.

3. X2 and X3 are generated from N2

(
µ2×1,Σ2×2

)
.
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Table 1. Simulation results for MSE.

n 25 50 75 100 125 150 Mean

Cond. (17)
Resid. variable: X2 8.13% 6.96% 7.15% 6.69% 6.96% 7.00%

7.159%
Resid. variable: X3 8.42% 7.15% 7.12% 6.71% 6.77% 6.84%

min cor(X2,X3) -0.9862 -0.9747 -0.9883 -0.9973 -0.9934 -0.9915
0.4877

max cor(X2,X3) 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999

min CV(X2) 0.00958 0.00935 0.00911 0.0111296 0.00628 0.01072
6.6665

max CV(X2) 30222.48 12359.03 3249.84 3426.69 31001.38 1498.77

min CV(X3) 0.0107 0.0116 0.00791 0.00682 0.0108 0.0114
5.7096

max CV(X3) 9763.29 37893.3 5199.45 2718.18 2655.24 3586.79

4. The random perturbance, u, is generated as u ∼ N(0, d2), where d ∈ {1, 2, 3, 4},
from which is calculated Y = β1 + β2 · X2 + β3 · X3 + u, where βi ∈
{−5,−4, . . . , 4, 5}.

5. Once the previous model and the corresponding auxiliary regressions are esti-
mated, condition (17) is calculated from the obtained estimations of βi, σ

2 and
α.

A comparison of both models (OLS and residualization) is conducted with different
sample sizes, n ∈ {25, 50, 75, 100, 125, 150}, such that 60000 simulations are performed
in this experiment.

First, in Table 1, it can be observed that there are two types of situations: one
where essential collinearity does not imply strong collinearity problems (the mean
correlation is equal to 0.4877, which leads to a VIF value of 1.31208) and another
where essential collinearity implies strong collinearity problems (the maximum and
minimum correlations lead to VIF values of approximately 50.2512). It can also be
observed that there are two types of situations in relation to nonessential collinearity:
one where it is not worrisome (the mean value of the coefficient of variation (CV) is
approximately 6, which implies the data have enough variability) and another where
nonessential collinearity is worrisome (the minimum values of CV for each variable are
close to zero, which implies slight variability of the data and indicates that the data
may be considered almost constant and hence related to the intercept).

The first and second rows of Table 1 show the percentage of cases in which

MSE (γ̂) < MSE
(
β̂
)

(condition (17) is verified), considering that variables X2 and

X3 are residualized. Note that both results are similar and that there are no mate-
rial differences for different sample sizes. The results (see Table 1) show that in only

7.159% of the cases, the condition MSE (γ̂) < MSE
(
β̂
)

is verified.

Second, si se realizan otras 60000 simulations dividiendo la muestra tal
y como se indica en la subsection 4.2 teniendo en cuenta que h = 0.15 ·
n se obtienen los valores mostrados in Table 2. Para obtener los valores
referentes a PCR y PLSR se ha usado the R’s package pls. En el caso de
la RR se ha obtenido el valor del estimador β̂(k) considerando aquel valor
de k que ha mitigado el grado de multicolinealidad, entendiendo que esta
situacin se alcanza cuando el valor del CN, calculado tal y como se muestra
en [54], queda por debajo del umbral establecido como preocupante, 20.
Esta forma de trabajar ya ha sido usada por [21] trabajando with the VIF
en lugar del CN (trabajar en este caso con el VIF se debe a que en [52]
se muestra que el VIF ignora la multicolinealidad aproximada del tipo no-
esencial).
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Table 2. Simulation results for RMSE, MAE, RMSPE and MAPE.

Metric OLS Resid. variable: X2 Resid. variable: X3 RR PCR PLSR

RMSE 2.635103 2.635103 2.635103 2.637032 8.810389 6.182757
MAE 1.960508 1.960508 1.960508 1.961239 8.507369 6.266333

RMSPE 2.725054 19.73536 19.64029 2.721985 2.725054 2.725054
MAPE 2.087758 17.56701 17.48688 2.084665 2.087758 2.087758

Atendiendo a los resultados obtenidos en la primera muestra, se tiene que
the residualization method and OLS conducen a los mismos resultados para
RMSE and MAE tal y como se adelantaba in subsection 2.2 al verificarse
que Ŷ = ŶO. Además, estos valores son inferiores a los de las demás tcnicas
(levemente inferiores en el caso de RR).

Observando los resultados de RMSPE y MAPE en la segunda muestra,
se tiene que the residualization method tiene peor capacidad predictiva
que las dems técnicas. Sin embargo, el hecho de que las demás no mejoren
sustancialmente los resultados proporcionados por OLS indican que en el
caso de que el interés resida únicamente en la predicción, quizás, la mejor
opción sea no hacer nada. Estos resultados concuerdan con las aprecia-
ciones dadas por [25] ya comentadas: if the goal is simply to predict, then
multicollinearity is not a problem because the predictions will still be ac-
curate.

5. Successive residualization

It is possible that the goal of the researcher (to mitigate collinearity or obtain a new
interpretation for the estimated coefficients) has not been achieved after residualizing
the first variable. Then, it is necessary to residualize a second variable. In this case,
the doubly residualized model will be given by

Y = XOOλ+ ς, (18)

where XOO = (X−i,−j ei ej) with ej being the residuals of the auxiliary regression
(13).

The goal of this Section is not to obtain the estimated inference of this model (18)
but to highlight that successive residualization may be interesting, and in this case,
the residuals ei y ej will be orthogonal since it is verified that:

etiej = eti (Xj −X−i,−jη̂) = etiXj − etiX−i,−jη̂ = 0.

This relationship between the residuals will still hold if more variables are residu-
alized; that is, the degree of multicollinearity will continue decreasing. Note that if
the process is repeated p − 1 times, all the variables of the model will be orthogo-
nal between them. Interested readers should consult [53] for further information on
successive residualization.
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6. Empirical application

The methodology proposed herein is applied to two different models in relation to
economic-financial and ecological data sets. The first example is focused on the ap-
plication of residualization when the main goal of the researcher is mitigation of the
collinearity and also presents a new interpretation of the modified variable. The sec-
ond example shows the application of residualization when the major purpose of the
study is to obtain new interpretations of the variables. The use of different models
from different fields is motivated by the challenge of demonstrating the relevance and
application of the method in real-world examples across a wide range of disciplines.

6.1. The economic-financial model

The first empirical application is based on a model developed by Wooldridge ([63])
with interest rate data from the market yields published by Salomon Brothers in An
Analytical Record of Yields and Yield Spreads in the 1990s but modified in this paper
for the period June 2008 to April 2019 (end-of-month data) by using a dataset from
the U.S. Department of the Treasury:

c52 = β1 + β2 c13 + β3 c26 + u, (19)

where u is the random disturbance, which is spherical, and c13, c26 and c52 repre-
sent the coupon equivalents for different maturity tranches: 13 weeks, 26 weeks, and
52 weeks, respectively. The coupon equivalent, also called the bound equivalent or
the investment yield, is the bill’s yield based on the purchase price, discount, and
a 365/366-day year. The coupon equivalent can be used to compare the yield on a
discount bill to the yield on a nominal coupon bond that pays semiannual interest.

The following matrix represents the correlation between the variables:

c52 c13 c26( )
c52 1.000
c13 0.981 1.000
c26 0.995 0.993 1.000

.

From this matrix, it is observed that all explanatory variables are positively related
to the dependent variable. In addition, the coefficient of correlation between explana-
tory variables c13 and c26 is equal to 0.993, which can serve as a first indication of
the dependence between them. From this coefficient of correlation, it is determined
that the VIF is equal to 71.516, while the condition number is equal to 23.233. Both
measures confirm the existence of worrisome near-collinearity in this model. In rela-
tion to nonessential collinearity, the coefficients of variation (CV(c13) = 1.486997 and
CV(c26) = 1.280229) are higher than the threshold established by [56], and conse-
quently, it is possible to conclude that there is no relation between the intercept and
any of the independent variables.

Table 3 presents the results of the estimation by ordinary least squares (OLS), ridge
regression and residualization. As seen from the OLS results, the negative values of
the estimated parameter β̂2 do not make economic sense, particularly when taking
into account the matrix of correlation previously presented that suggests the existence
of a direct relation between the explanatory and the dependent variables.
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Table 3. Results of Wooldridge model.

OLS Ridge Residualization

Intercept
β̂1 0.050 ** 0.058 0.183 **
(s.d.) (0.008) n/a (0.007)

c13
β̂2 -0.557 ** -0.464 1.067 **
(s.d.) (0.065) n/a (0.008)

c26
β̂3 1.562 ** 1.473
(s.d.) (0.063) n/a

ec26
β̂30 1.562 **
(s.d.) (0.063)

R2 0.9935 n/a 0.9935
F statistic 9794 n/a 9794
p-value (of F ) < 2.2 · 10−16 n/a < 2.2 · 10−16

**, * mean the coefficient is statistically significant at 0.01 (99% level of confidence) and at 0.05 (95% level of

confidence), respectively.

Table 4. Results of Wooldridge model: Shapley values.

c13 c26 R2

Shapley value (OLS) 0.4828 0.5107 0.9935
Share (% of R2) 48.594% 51.406% 100%

This nonexpected sign can be a consequence of the presence of collinearity. For this
reason, other methodologies of estimation will be applied.

To apply residualization, the first step will be to select the variable to be residual-
ized. In this case, it is possible to consider that the medium term, c26, includes in some
way the short term, c13. From the Shapley values (Table 4), it can also be seen that it
contributes more to the R2 of the model. Additionally, the residuals obtained from the
auxiliary regression between c26 and c13 will be the part of c26 that is not explained
by c13. That is, the residuals will represent the second 13-week period. This fact could
indicate that the variable selected to be residualized is c26. Note that residualization
provides a new interpretation that is not possible to obtain from the initial model.

When residualization is applied, the value of the estimated parameter for c13 be-
comes positive. Additionally, all the estimated coefficients are individually significant
with a level of confidence of 99%, the coefficient of determination of the original model
is maintained, and the essential near-collinearity problem is mitigated (the lowest pos-
sible value for the VIF, 1.000, is obtained). In this case, the condition number is equal
to 1.878, which indicates the relationship between c13 and the intercept, reflecting
that this relationship is not worrisome. Finally, it is important to remark that the
estimated variances of the estimators have been diminished, except in the case of the
residualized variable, which remains constant.

It may be interesting to compare these results with the results obtained from ridge
regression, which is widely applied to estimate models with collinearity. For this, a
value of k was selected that results in a VIFvalue less than 10 (VIF = 9.948, calculated
by following [55]), which is k = 0.047; see Table 3. Note that in this case, the signs
obtained are not the expected ones. Furthermore, ridge regression does not allow
drawing any conclusion about the global characteristics of the model, the individual
significance, the inference or the analysis of the isolated effect of both variables, c13

and c26.
In addition, Figure 1 compares the estimations in terms of essential near-collinearity

(the nonessential collinearity is not analyzed since it is not worrisome in this model),
showing that the VIF value for ridge regression for different values of k is always lower
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than that of the OLS estimation but higher than the VIF obtained by residualization.

Figure 1. VIF values obtained by ridge regression of the Wooldridge model (monthly data). k in steps of

0.001.

6.2. The ecological model

The second example is based on the STIRPAT model that is usually applied in envi-
ronmental economics to observe the influence of some social and economic variables
on the atmospheric impact of a country or a group of countries. It can be defined as
the stochastic version of the IPAT identity ([11, 12]), which identifies the impact on
the atmosphere as a function of the population, the affluence measured from the gross
domestic product (GDP), and some technology variable(s) (usually some variable(s)
related to industries; see, for example, [41] or [42]). Ehrlich and Holdren, who were
the first researchers to study the IPAT identity ([15–17]), were aware of the prob-
lem of the relationship between variables in this identity, and although collinearity is
likely to appear, most STIRPAT applications have disregarded it (see, for example,
[2, 9, 10, 13, 24, 33, 42, 45, 46, 48–50, 60]). However, there have been some efforts to
address collinearity in STIRPAT models (see [14, 18, 20, 27, 37, 41, 51, 61]).

This paper applies the STIRPAT model to data from China (1990-2014), the most
pollutant country in the world, as revealed by the World Bank, with a CO2 emissions
value of 10291926.878 kilotonnes (kt) in 2014. The traditional specification of the
STIRPAT model is:

I = β1 + β2 P + β3 Apc + β4 T + u, (20)

where u is the random disturbance, which is spherical; I represents CO2 emissions;
P the total of population (billions); variable Apc is the per capita GDP (expressed
in trillion constant 2010 US$); and finally, T is industrialization (% of GDP). The
dataset has been extracted from the World Bank. However, in this paper, the following
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specification is proposed:

I = β1 + β2 P + β3 eA + β4 T + u, (21)

where A is the GDP (expressed in trillion constant 2010 US$) and eA are the residuals
of the following auxiliary regression:

A = α1 + α2 P + α3 T + v. (22)

The use of model (21) instead of model (20) intends to overcome the following
disadvantages:

• Traditionally, per capita GDP has been used to avoid the existing dependency
between the GDP and the population. However, as the reader will see with the
following correlation matrix, the linear relationship between per capita GDP and
population is higher than the relationship between GDP and population. This
means that the linear relationship is not mitigated but increased.

I P Apc A T


I 1.0000
P 0.8896 1.0000

Apc 0.9910 0.9111 1.0000
A 0.9905 0.9081 0.9999 1.0000
T −0.5464 −0.6194 −0.6296 −0.6320 1.0000

• In STIRPAT studies, Apc (per capita GDP) is usually taken as the variable that
represents affluence. However, the use of Apc presents a disadvantage. From an
interpretative point of view, a very important issue of the economy is ignored
when using the per capita GDP (the ratio between GDP and population) since
the distribution of income and the level of development of each region of the
country are disregarded when all people are considered equal in terms of earnings.
An increase in the per capita GDP does not necessarily mean the country is
more developed; it may also indicate that the richest people in the country have
increased their income.

In the residualization procedure, on the one hand, the relationship between GDP
and population is deleted (in this case, the relationship between GDP and industri-
alization, variable T, is also deleted), and, on the other hand, it is assumed that all
people have the same income. Indeed, eA coincides with the part of GDP that has
no relationship with population and industrialization, as has been discussed. If Apc

could be interpreted as a tool to measure the enrichment of the people and not the
enrichment of the country, eA would be interpreted as a tool that measures whether
the countries, and not the people, are richer in economic terms that are unrelated to
industrialization.

Furthermore, in model (21), nonessential collinearity represents a formidable issue
for this empirical example (see [56]) since CV(P) = 0.053 and CV(T) = 0.026. To
mitigate the nonessential collinearity, the variables population and technology will be
centered. Thus, the following model is proposed:

I = β1 + β2 P∗ + β3 eA + β4 T∗ + u, (23)
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Table 5. Results of STIRPAT models (20) and (23).

Model (20) Model (23)

Intercept -10287191 * Intercept 5405875 ***
(3667784) (53166)

P -1790259 P∗ 35883988 ***
(1861596) (1004251)

Apc 1837647 eA 1300875 ***
(77813) (57278)

T 409211 *** T∗ 24250
(80784) (82153)

R2 0.9924 0.9918
F statistic 918.2 851.2
p-value (of F ) < 2.2 · 10−16 < 2.2 · 10−16

***, **, * mean the coefficient is statistically significant at 0.001 (99.9% level of confidence), at 0.01 (99% level

of confidence) and at 0.05 (95% level of confidence), respectively.

where P∗ = P−P and T∗ = T−T.
With this model, it is verified that the values of VIF (VIFP = 1.622, VIFeA

= 1.000
and VIFT = 1.622) are lower than the threshold of 10 (strong collinearity), and the
same is true for CN, whose value is 2.063 (which is lower than 30). This means that
the degree of the existing near-multicollinearity is not worrisome.

The results obtained by using OLS estimation of models (20) and (23) are shown
in Table (5). The reader will observe the following:

• In model (20), the intercept has a coefficient that is significantly different from
zero and has a negative value. This means that if population and GDP were null,
the CO2 emissions would be negative. This situation is corrected with model (23).
• In model (20), the estimated coefficient for population is not significantly dif-

ferent from zero; by contrast, in model (23), the coefficient is significant, and it
has a positive value. This means that when the population increases, the CO2

emissions also increase. This is in line with economic theory and the correlation
matrix.
• In models (20) and (23), the GDP coefficient (obtained from Apc and eA, re-

spectively) is significantly different from zero and has a positive value. However,
the interpretations of the two estimated coefficients are different. Thus, in model
(23), the conclusion is that the increase in the wealth of the country when the
production of goods and services is unrelated to industrialization supposes an
increase in the CO2 emissions.
• In model (20), the estimated coefficient for industrialization is significant and

has a positive value. It is contrary to the sign expected by observing the corre-
lation matrix; however, this situation is corrected by model (23), in which this
coefficient is not significantly different from zero.

7. Conclusions

The estimation and inference of the multiple linear regression model estimated by
residualization procedure is exhaustively developed in this paper and the results are
compared with those of the original model. In this sense, it is important to point out
that the application of residualization leads to conclusions about a model different
to the original even though they have several identical characteristics (such as the
variance estimation of the random perturbation, the coefficient of determination or
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the significance statistic).
The main contributions when applying this technique are:

• The new interpretations of the coefficients. The residualized model can answer
questions that could not be answered with the initial model.
• The possibility of reducing the degree of collinearity in the initial model.

This paper proposes different criteria to select the variable to be residualized and it is
also revealed the option of a successive residualization.

Finally, it is relevant to note that residualization is not always applicable because
the interpretations of the new estimated coefficients are not always simple. For this
reason, recommendations can be made to apply other well known techniques, such
as ridge regression, principal component regression or partial least squares
regression. En este sentido se ha comprobado mediante a Monte Carlo
simulation que dichas técnicas tienen una mejor capacidad predictiva que
the residualization method, si bien hay que tener en cuenta que la inter-
pretación de los coeficientes en estas técnicas alternativas es más controver-
tida si cabe que en the residualization method (PONER REFERENCIAS).
Por tal motivo, se podŕıa usar otra técnica alternativa como raise regression
(see [22] and [23]).
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