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Abstract. Fuzzy rule-based systems constitute a very spread tool for
classification problems, but several proposals may decrease its perfor-
mance when dealing with multi-class problems. Among existing approaches,
the FARC-HD algorithm has excelled as it has shown to achieve accu-
rate and compact classifiers, even in the context of multi-class problems.
In this work, we aim to go one step further to improve the behavior of
the former algorithm by means of a ”divide-and-conquer” approach, via
binarization in a one-vs-one scheme. Besides, we will contextualize each
binary classifier by adapting the data base for each subproblem by means
of a granularity learning process to adapt the number of fuzzy labels per
variable. Our experimental study, using several data-sets from KEEL
data-set repository, shows the goodness of the proposed methodology.
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1 Introduction

Fuzzy rule-based systems is a commonly used tool for classification problems.
An advantage of fuzzy systems is the interpretability of the generated model,
especially when fuzzy sets are represented by linguistic labels [12]. We will make
use of linguistic fuzzy association rule-based classification systems, being one of
the most robust method proposed in this field the FARC-HD algorithm (Fuzzy
Association Rule-based Classification model for High Dimensional problems)
[1], that obtains models with high prediction ability and low complexity. This
method is based on fuzzy association rules for classification, where the antecedent
of the rule is a combination of fuzzy labels and the consequent is a class label. The
possible values for the antecedents are sets of fuzzy labels of linguistic partitions
defined over the attribute’s universe of discourse. FARC-HD considers a fuzzy
Data Base (DB) with a fixed number of labels for all fuzzy partitions. In the
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last step of the algorithm the DB definition is adjusted by a lateral tuning, but
maintaining the predefined granularity level for variable. This is the usual way to
proceed in the majority of fuzzy systems learning methods, i.e. it is necessary to
select a priori a number of labels for all fuzzy partitions. However, the granularity
level has a significant influence on the Fuzzy Systems performance as it has been
analyzed in [7]. Some learning methods proposed in fuzzy modeling and fuzzy
classification include the granularity level learning [8, 22].

Classification problems with more than two classes (multi-class problems)
are known to present more difficulties than binary-class problems. A robust
solution to cope with the former problem is to use a decomposition approach
[13]. Its main strategy is to reduce the multi-class problem to several binary-class
problems [3], where the One-vs-One (OVO) technique is widely used [16]. This
method divides the original problem by confronting all pairs of classes against
them. Then, an independent classifier is built for each pair of classes and it is
necessary to combine the outputs of these classifiers to obtain the final predicted
class label for a given instance [13, 14].

The main purpose of this contribution is to improve the performance of
FARC-HD in multi-class problems, using an OVO scheme built with fuzzy asso-
ciation classifiers generated by learning an appropriate granularity level for each
attribute in the FARC-HD method. We think that the optimal granularity level
for learning each pair of classes will be different and so, looking for a good num-
ber of labels for each binary classifier can contribute to obtain better prediction
ability in this decomposition scheme (OVO) for multi-class problems. To do so,
we employ an approach to derive the Fuzzy classifier that involves the use of
two different (and independent) learning processes, in which a DB definition
process wraps the FARC-HD algorithm. We use a Genetic Algorithm (GA) for
the granularity learning. A similar learning scheme was performed in [22] to
design Fuzzy Rule-Based Classification Systems for binary-class problems with
imbalanced data-sets.

In order to illustrate the good performance of the proposed scheme of an OVO
strategy with the learning process mentioned for FARC-HD, we will contrast
the obtained results with the FARC-HD algorithm with the application of an
OVO decomposition using the Cohen’s kappa measure, that equilibrates the
performance in each individual class, independently of the number of examples
of every class. We have selected a collection of multi-class data-sets from KEEL
data-set repository [2] for developing our experimental analysis. Furthermore,
we will perform a statistical analysis using non-parametric tests [15] to find
significant differences among the obtained results.

This paper is organized as follows. First, Section 2 introduces the preliminary
concepts used in this paper. Next, in Section 3 we will describe our proposal,
an OVO strategy for FARC-HD designed using a GA for granularity learning.
Then, Section 4 describes the experimental study. Finally, in Section 5, some
conclusions will be pointed out.
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2 Preliminaries

This section provides a description of the working procedure of FARC-HD joint
with some basic concepts about fuzzy association rules (Section 2.1). Next, a
brief introduction of the OVO scheme is given (Section 2.2). Finally, we present
the metric of performance used in this paper, i.e. the kappa metric (Section 2.3).

2.1 FARC-HD learning method

In this paper we have make use of a robust fuzzy model known as FARC-HD [1].
This algorithm is based on association discovery, a commonly used technique in
data mining for extract interesting knowledge from large data-sets by means of
finding relationships between the different items in a database. The integration
between association discovery and classification leads to precise and interpretable
models. FARC-HD is aimed at obtaining an accurate and compact fuzzy rule-
based classifier with a low computational cost.

The usual data set of classification examples used for learning a Classifier
consists of m training patterns xp = (xp1, . . . , xpn), p = 1, 2, . . . ,m from M
classes where xpi is the ith attribute value (i = 1, 2, . . . , n) of the p-th training
pattern. In this work we use the Fuzzy Association rules used in FARC-HD:
Ri : If A then Class = Ck, where Ri is the label of the ith rule, A is a
set of labels of the attribute’s fuzzy partitions and Ck is a class label. We use
triangular membership functions as antecedent fuzzy sets as it is used in FARC-
HD. In short, this method is based on the following three stages:

Stage 1. Fuzzy association rule extraction for classification: A search tree is
employed to list all possible frequent fuzzy item sets and to generate fuzzy
association rules for classification, limiting the depth of the branches in order
to find a small number of short (i.e., simple) fuzzy rules.
Stage 2. Candidate rule pre-screening : Afterwards the rule generation, the
size of the rule set can be too large to be interpretable by the end user.
Therefore, a pre-selection of the most interesting rules is carried out by
means of a “subgroup discovery” mechanism based on an improved weighted
relative accuracy measure (wWRAcc’).
Stage 3. Genetic rule selection and lateral tuning : Finally, in order to obtain
a compact and accurate set of rules within the context of each problem, an
evolutionary process will be carried out in a combination for the selection of
the rules with a tuning of membership function.

2.2 One-vs-One decomposition

The most common approaches for decomposition a multi-class problem into a
binary-class problem are OVO [16] and OVA (One-vs-All) [5]. The former learns
a binary classifier for each possible pair of classes, whereas the latter constructs a
binary classifier considering each single class and all the other classes joined. OVA
approaches are easier to apply and they have shown to be an interesting scheme
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for one-class classifiers [9, 18]. However, in a general framework the goodness of
the OVO scheme versus the former have been experimentally proven [13]. OVO
divides a m-class problem into m(m− 1)/2 independent binary subproblems by
contrasting all classes among them, each of which is learnt by a single classifier.
In the classification stage, the input instance is presented to all classifiers, so
that each one of them outputs a confidence degree rij and rji ∈ [0, 1] in favor of
their couple of classes Ci and Cj (usually rji = 1− rij). Then, these confidence
degrees are set within a score-matrix:

R =


− r12 · · · r1m
r21 − · · · r2m
.
.
.

.

.

.
rm1 rm2 · · · −

 (1)

It is necessary an additional phase to combine the confidence degrees of each
single classifier. Different aggregation methods have been proposed in order to
determine the final class [13]. The simplest aggregation is the voting strategy,
where each classifier contributes with a vote for its predicted class. However, in
our case we aim to benefit from the characteristics of fuzzy classifiers to make
use of the framework of fuzzy preference relations for classification [17] as it will
be explained in section 3.2.

2.3 Performance metric: Cohen’s kappa index

Cohen’s kappa is an alternative measure to classification rate, since it compen-
sates for random hits [6, 4]. In contrast to classification rate, kappa evaluates the
portion of hits that can be attributed to the classifier itself (i.e., not to mere
chance), relative to all the classifications that cannot be attributed to chance
alone. An easy way of computing Cohen’s kappa is by making use of the resul-
ting confusion matrix (Table 1) in a classification task. With the expression (2),
we can obtain Cohen’s kappa:

Table 1. Confusion Matrix for an n-class problem

Correct Class Predicted Class
C1 C2 . . . Cm Total

C1 h11 h12 . . . h1m Tr1

C2 h12 h22 . . . h2m Tr2

.

.

.
. . .

.

.

.
Cm h1m h2m . . . hmm Trm

Total Tc1 Tc2 . . . Tcm T

kappa =
n
∑m

i=1 hii −
∑m

i=1 TriTci

n2 −
∑m

i=1 TriTci
, (2)

where hii is the cell count in the main diagonal (the number of true positives
for each class), n is the number of examples, m is the number of class labels, and
Tri, Tci are the rows’ and columns’ total counts, respectively (Tri =

∑m
j=1 hij ,
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Tci =
∑m

j=1 hji). Cohen’s kappa ranges from −1 (total disagreement) through 0
(random classification) to 1 (perfect agreement). Being a scalar, it is less expre-
ssive than the ROC curves applied to binary-class cases. However, for multi-class
problems, kappa is a very useful, yet simple, meter for measuring a classifier’s
classification rate while compensating for random successes.

3 OVO strategy using FARC-HD with granularity
learning: GL-FARCHD-OVO

In this section, we describe the proposed method for learning the Fuzzy asso-
ciation rule-based model of each binary classifier that form the set of classifiers
of the OVO scheme and the aggregation method used for compute the final
class prediction. We denote our proposal as GL-FARCHD-OVO (Granularity
Learning for FARC-HD in an OVO scheme).

3.1 Genetic Algorithm for granularity learning in FARC-HD

Any optimization/search algorithm can be used for our learning approach. In
our case, we have considered a GA, and more specifically, a integer-coded CHC
algorithm [10] as a robust model in accordance with its tradeoff between explo-
ration and exploitation. The individuals of the GA codify the granularity level of
each feature. For evaluating every individual, first, the fuzzy partitions are built
considering the number of labels codified in the chromosome. Uniform partitions
with triangular membership functions are chosen as in FARC-HD.

As we employ a GA for determining a good granularity level for variable, we
need to run the FARC-HD algorithm in the evaluation of each chromosome, that
also includes a GA in the last tuning stage. In order to decrease the computa-
tional cost of the proposed method, only the two first two stages of FARC-HD
are executed in the chromosome evaluation. The last stage of FARC-HD is exe-
cuted once, over the best granularity level configuration found by the GA of our
proposal. Next, we describe the components of the GA for granularity learning.

Coding scheme. An integer coding approach is considered, with a chromosome
length equal to the number of features in the data set. Each value stands for the
number of fuzzy partitions to be used in each input variable. In this contribution,
the possible values considered are taken from the set {2, . . . , 7}. If gi is the value
that represents the granularity of variable i, a graphical representation of the
chromosome is: C = (g1, g2, . . . , gN )

Initial Gene Pool. The initial population is composed of two parts. In the
first group all the chromosomes have the same granularity in all its variables.
This group is composed of v chromosomes, with v being the cardinality of the
significant term set, in our case v = 6, corresponding to the six possibilities for
the number of labels, {2 . . . 7}. For these six possible granularity levels, one indi-
vidual is created. The second part is composed for the remaining chromosomes,
and all of their components are randomly selected among the possible values.
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Evaluation of the chromosome, composed of three steps:

1. Define the DB using the granularity level encoded in the chromosome. For all
the features, a uniform fuzzy partition with triangular membership functions
is built considering the specific number of labels of the variable (gi).

2. Generate the fuzzy association rules by running the FARC-HD method using
the DB obtained. We must remark that only the two first stages of FARC-HD
are executed, providing a rule base composed of “interesting” rules.

3. Calculate the fitness value, that it is the kappa index of the rule base obtained
in the previous step over the training data set.

Selection. This GA makes use of a mechanism of “Selection of Populations”.
M parents (population size) and their corresponding offspring are put together
to select the best M individuals to take part in the next population.

Crossover This operator combines two chromosomes of the population to ge-
nerate their offspring. The standard crossover operator in one point is applied,
which works as follows. A crossover point p is randomly generated (the possible
values for p are {2, . . . , N}) and the two parents are crossed at the p-th variable.

Incest prevention. It promotes diversity among solutions (which is important
to properly search the whole search space). Two parents are crossed if their
distance divided by 2 is above a predetermined threshold T , which is initially
computed as N/4, being N the length of the chromosome. If no individuals are
recombined, then the threshold value is reduced by one. If C1 and C2 are the
two chromosome to recombine: C1 = (g1, g2, . . . , gN ) , C2 = (h1, h2, . . . , hN ),
the distance measure used in this paper (Dist) is calculated by:

Dist =
∑

abs(gi − hi) i : 1..N

Restarting approach. The mutation operator is replaced by this mechanism
in order to get away from local optima. When the threshold value T is zero, the
best chromosome is maintained and used as a template from generate at random
new chromosomes by randomly changing the 35% of the genes.

3.2 Aggregation method for the OVO decomposition

As mentioned in the previous section, we make use of the fuzzy preference re-
lations for aggregating the outputs of each binary classifier. In this scheme, the
classification problem is translated into a decision making problem for deter-
mining the final predicted class among all predictions for the binary classifiers.
Specifically, in this paper we consider the use of a maximal Non-Dominance Cri-
terion (ND) [11] for the final decision process. This method predicts the class
which is less dominated by all the remaining classes:

Class = arg max
i=1,...,m

{
1− sup

j∈C
r
′
ji

}
(3)

where r′ji corresponds to the normalized and strict score-matrix.



7

4 Experimental Study

We have used twenty multi-class data-sets from KEEL data-set repository4 [2].
In order to correct the data-set shift [20], situation in which the training data
set and the test data set do not follow the same distribution, we do not use the
commonly used cross-validation scheme. We will employ a recently published
partitioning procedure called Distribution Optimally Balanced Cross Validation
[19] with five different partitions for each data-set. Table 2 summarizes the cha-
racteristics of these data-sets: number of examples, number of attributes and
number of classes. There are different imbalance ratios, from totally balanced
data-sets to highly imbalanced ones, besides the different number of classes.
Some of the largest data-sets (page-blocks, penbased, satimage, shuttle and thy-
roid) were stratified sampled at 10% in order to reduce the computational time
required for training. In the case of missing values (autos and cleveland), we
removed those instances from the data-set before doing the partitions.

Table 2. Summary description of data-sets.

Data-set #Ex. #Atts. #Cl. Data-set #Ex. #Atts. #Cl.
balance 625 4 3 page-blocks 548 10 5
contraceptive 1473 9 3 autos 159 25 6
hayes-roth 132 4 3 shuttle 5800 9 7
iris 150 4 3 glass 214 9 7
newThyroid 215 5 3 satimage 643 36 7
tae 151 5 3 segment 2310 19 7
thyroid 720 21 3 ecoli 336 7 8
wine 178 13 3 penbased 1100 16 10
vehicle 846 18 4 yeast 1484 8 10
cleveland 297 13 5 vowel 990 13 11

We will analyze the influence of granularity learning by means of a compari-
son between the performance of GL-FARCHD-OVO and the original FARC-HD
method used in an OVO strategy. The original fitness function of the GA per-
formed in the third stage of FARC-HD has been modified changing the accuracy
rate for the kappa index. The configuration and parameters for FARC-HD are
the ones suggested in its seminal paper [1] and they are presented in Table 3
being “Conjuction operator” the operator used to compute the compatibility
degree of the example with the antecedent of the rule. FARC-HD needs also
a predefined number of labels for all the fuzzy partitions, we have used 5 as
granularity level, as suggested in [1]. In the execution of the two first stages of
FARC-HD performed in the GA for learning the granularity level, we have used
the same parameters except the depth of the trees, that it reduced to 2, in order
to go down the computational cost of the GA proposed. We remark that the

4 http://www.keel.es/dataset.php
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final step of GL-FARCHD-OVO is the execution of the stage 3 of FARC-HD
over the best individual found by the GA.

Table 3. Parameters of FARC-HD

Conjunction operator: Product T-norm Parameter K of the prescreening: 2
Fuzzy Reasoning Method: Additive combination Maximum evaluations: 15000
Minimum Support: 0.05 Population size: 50
Maximum Confidence: 0.8 Parameter alpha: 0.15
Depth of the trees: 3 Bits per gen: 30

The specific parameters setting for the GA of GL-FARCHD-OVO are 60 in-
dividuals and 100 ·N number of evaluations, being N the number of variables. In
order to carry out the comparison of the classifiers appropriately, non-parametric
tests should be considered, according to the recommendations made in [15]. We
will use the Wilcoxon paired signed-rank test [21] to perform comparisons be-
tween the two algorithms executed.

Table 4 shows the results in performance (using the performance metric) for
GL-FARCHD-OVO and FARCHD-OVO, being tra the kappa index over the
training data-set and tst the kappa index over the test data-set. The highest
performance value for each test data-set is stressed in boldface. As it can be ob-
served, the values obtained by GL-FARCHD-OVO are higher than the obtained
for FACHD-OVO, showing the influence of the granularity level in the beha-
vior of the classifier regarding to the classical way to proceed (with a predefined
number of labels, the same for all the attributes).

Table 4. Experimental results in training and test with the kappa metric

FARCHD-OVO GL-FARCHD-OVO FARCHD-OVO GL-FARCHD-OVO
Dataset tra tst tra tst Dataset tra tst tra tst
balance 0.846 0.682 0.808 0.710 page-blocks 0.774 0.554 0.787 0.563
contraceptive 0.468 0.268 0.425 0.287 autos 0.986 0.708 0.984 0.737
hayes 0.826 0.663 0.868 0.672 shuttle 0.827 0.824 0.994 0.990
iris 0.975 0.920 0.988 0.930 glass 0.850 0.571 0.830 0.560
newthyroid 0.993 0.861 0.998 0.900 satimage 0.832 0.717 0.849 0.751
tae 0.697 0.337 0.680 0.344 segment 0.941 0.920 0.959 0.936
thyroid 0.530 0.368 0.485 0.401 ecoli 0.921 0.771 0.926 0.769
wine 1.000 0.906 1.000 0.932 penbased 0.990 0.899 0.989 0.903
vehicle 0.811 0.636 0.820 0.600 yeast 0.590 0.478 0.585 0.484
cleveland 0.936 0.325 0.858 0.311 vowel 0.979 0.918 0.988 0.924

FARCHD-OVO GL-FARCHD-OVO
Average tra tst tra tst

0.839 0.666 0.841 0.685

In order to validate these results, we show the ranking on precision of the
different models. Table 4 presents the results obtained in by applying Wilcoxon
test. The p-value obtained shows significative differences between our proposed
method (GL-FARCHD-OVO) and FARCHD-OVO.
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Table 5. Results obtained by the Wilcoxon test for algorithm GL-FARCHD-OVO

VS R+ R− p-value Hypothesis

FARCHD-OVO 172.0 38.0 0.010688 Rejected for GL-FARCHD-OVO

5 Conclusions

This contribution has described a learning process for multi-class problems follo-
wing the OVO decomposition strategy that aggregates the outputs of the binary
classifiers obtained for each pair of classes. We have used FARC-HD as lear-
ning method to build the classifiers. A stationary GA based on the well-known
CHC algorithm is used for granularity learning. Our proposal uses a divide-and-
conquer strategy and aims at finding a good granularity level for each pair of
classes that outperform the prediction ability of the classifier and it is compared
with an OVO scheme using the original FARC-HD algorithm, that is, conside-
ring a fixed granularity level. The proposed method obtains better results in
performance rate in the majority of data-sets considered, showing significative
differences according the non-parametric statistical test. In future works, we will
try to adjust the learning process in order to improve the results and to decrease
the computational time of the GA.
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