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Abstract

Structural Health Monitoring (SHM) based on Automated Operational Modal Analysis (A-OMA) has gained in-
creasing importance in the conservation of heritage structures over recent decades. In this context, finite element
model updating techniques using modal data constitute a commonly used approach for damage identification.
Nevertheless, the large number of simulations usually involved in the associated minimization problem hinders the
application to real-time condition assessment. This is specially critical for historic buildings, where the modelling
of complex geometries involves large computational burdens. Alternatively, surrogate models offer an efficient
solution to replace computationally demanding numerical models and so perform continuous model updating. In
this light, this paper presents a surrogate-based model updating approach for online assessment of historic build-
ings and its application to a medieval masonry tower, the Sciri Tower in Perugia (Italy). Using modal properties
identified by A-OMA, the proposed approach allows the continuous fitting of certain damage-sensitive parameters
of the structure. To do so, three different surrogate models are considered, including the quadratic response surface
method, Kriging, and Random Sampling High Dimensional Model Representation, and their effectiveness is com-
pared from an SHM perspective. The reported results demonstrate the suitability of the proposed methodology for
tracking temperature-dependent intrinsic properties of the tower.

Keywords: Damage Identification, Historic buildings, Operational Modal Analysis, Sciri Tower, Structural
health monitoring, Surrogate models

1. Introduction1

The vulnerability of cultural heritage buildings to ageing deterioration, climate change and extreme natural2

events, as well as their manifold cultural and economic values, make the use of non-destructive testing and pre-3

ventive conservation a major concern for citizens and policy-makers in the European Union. In particular, masonry4

towers constitute specially vulnerable assets due to their high slenderness and mass, therefore their seismic risk5

assessment poses a priority issue [1]. Proof of this are the numerous collapses occurred during recent seismic6

events in Italy such as the 2009 Mw 6.3 L’Aquila earthquake [2], 2012 Mw 5.9 Emilia Romagna earthquake [3], or7

the 2016 Mw 6.5 Norcia earthquake [4]. In this context, SHM techniques based on OMA have proved to provide8

an efficient solution to interrogate the integrity of structures, along with damage identification tools suitable for9

condition-based maintenance and decision making [5, 6]. These techniques exploit ambient vibration records dur-10

ing in-service conditions to extract the modal features of the system, namely the natural frequencies, mode shapes,11

and damping ratios (see e.g. [7–10]). Given that these quantities depend upon the mass and stiffness distribution of12

the structure, the modal features can be tracked in time through long-term SHM systems and, thereby, damage can13

be related to their permanent variations. Furthermore, such systems can be scaled to building ensembles where14

several structures are simultaneously monitored in order to perform regional seismic risk assessment. In this way,15

after a seismic event, inspection and retrofit activities can be expeditiously scheduled prioritizing those buildings16

where damage poses a more severe risk to safety.17

Vibration-based SHM techniques are eminently efficient for damage detection and, to some extent, damage18

quantification in the form of permanent variations in natural frequencies [11, 12]. Nevertheless, damage local-19

ization usually requires the inverse calibration of a finite element model (FEM) of the structure, also called FEM20

updating. This procedure aims to minimize the mismatch between the FEM response and certain experimental21

measurements (typically natural frequencies and mode shapes) by the calibration of the model parameters (e.g. ma-22

terial properties, connectivity, or boundary conditions). Thus, alterations of the modal features can be related to23
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damage-induced variations in the mechanical parameters of the structure and so identify the damage [13, 14].24

Nonetheless, given the complexity that characterizes the geometry of most historic buildings, along with the large25

number of simulations that are usually required in the minimization problem associated with the FEM updating,26

the computational burden poses a major limitation in practice. This is particularly critical in masonry towers,27

which are usually surrounded by adjacent buildings conditioning their modal properties. While some research28

works report the successful application of simplified models of tower-building aggregate interactions through sets29

of elastic springs (see e.g. [15, 16]), such simplifications result inaccurate in many cases so that the adjoining30

buildings have to be included in the modelling. Alternatively, the use of computationally efficient surrogate mod-31

els offers great potential to bypass time demanding numerical models when performing damage localization or32

continuous model updating. In this way, the surrogate model can be trained using a fully detailed FEM in a33

preliminary stage and, on this basis, the model updating procedure for damage identification can be conducted34

in a computationally inexpensive way. While some promising results have been reported in the realm of civil or35

aircraft structures, application studies to historic masonry structures are sorely lacking.36

Model updating algorithms can be divided into two categories [17]: direct methods and iterative techniques.37

Direct methods update the mass and stiffness matrices directly based on the equations of motion of the system and38

the orthogonality of the mode shapes. While computationally inexpensive, these techniques cannot guarantee the39

symmetry and positive definiteness of the matrices, what hinders their physical description. On the other hand,40

iterative techniques progressively reduce the mismatch between the experimental and numerical responses until41

the updating parameters converge or the error function drops below a tolerance level [18]. These methods are42

further divided into two types [17], including gradient-based methods and evolutionary algorithms (i.e. genetic43

algorithms, particle swarm optimization, bees algorithms, etc). Despite being computationally demanding, evolu-44

tionary algorithms have superior capabilities to find global extrema under the presence of non-linearities, damping,45

measurement errors, as well as a large number of updating parameters [19]. Some application examples of these46

techniques to historic masonry structures can be found in the literature. For instance, Cavalagli et al. [20] used a47

derivative-free pattern search algorithm for the updating of a three-dimensional FEM of the San Pietro bell-tower48

in Perugia, Italy. Their results showed that the updated FEM on the basis of ambient-vibration tests (AVTs) could49

reproduce the damage experienced by the tower during the 2016 Central Italy seismic sequence. It is also worth50

noting the work by Gentile and Gallino [21] who updated a FEM of a historic suspension footbridge in Varallo51

Sesia (Italy) on the basis of an AVT and a gradient-based optimization technique. Ramos et al. [22] investigated52

the Mogadouro Clock Tower in Portugal and the effects of consolidation works carried out in 2005. By using two53

dynamic modal identification tests before and after the structural rehabilitation, those authors could identify the54

presence of severe damage in central parts of the south, east and west faades and at the upper part of the tower55

through a FEM updating process. Altunişik et al. [23] reported an automated FEM updating of an armory building56

located in Trabzon (Turkey) based upon the minimization of the differences between experimental and numerical57

natural frequencies. Pachón and co-authors [24] conducted the model updating of a three-dimensional FEM of58

the historical E. Torroja’s bridge in the city of Córdoba (Spain) on the basis of experimentally identified modal59

properties and a genetic optimization algorithm.60

As previously mentioned, the main drawback of evolutionary algorithms refers to the large number of func-61

tion evaluations that are required to reach convergence and, given the complexity often involved in the modelling62

of masonry structures, this results in large computational costs. As a solution, surrogate-assisted evolutionary63

strategies propose the use of efficient models, such as response surface models (RSMs) [25], high-polynomial64

functions [26], or Kriging models [27] to approximate the objective function. Such meta-models explicitly de-65

scribe the relationship between FEM responses and structural parameters in a computationally efficient way. In66

this line, only a few experiences can be found in the literature on the application to model updating of historical67

structures. It is worth noting the work by Cabboi et al. [25] who conducted an automated surrogate-based model68

updating of the San Vittore bell-tower in Milan (Italy). On the basis of continuous OMA, those authors used the69

RSM for the real-time updating of a 3D FEM of the tower. Similarly, Torres et al. [28] proposed a RSM-based70

FEM updating of the Metropolitan Cathedral of Santiago (Chile). Using an AVT and a gradient-based optimiza-71

tion method, those authors fitted the elastic parameters of a FEM by minimizing the differences between the72

experimental and numerical natural frequencies. The model updating approach based upon the combination of the73

RSM and a differential evolution algorithm proposed by Vincenzi and Savoia [26] was used by Bassoli et al. [29]74

for the model updating of a FEM of the San Felice sul Panaro medieval fortress in Modena (Italy). Their results75

demonstrated the capability of the surrogate-based model updating approach for the identification of the damage76

patterns experienced by the structure during the Emilia earthquake in 2012 in the shape of localized variations in77

the elastic parameters of the FEM.78

This paper proposes an innovative surrogate-based model updating approach for real-time structural assess-79

ment of historical buildings. Using experimentally identified modal properties through A-OMA, the proposed80

methodology allows the continuous fitting and tracking of certain damage-sensitive parameters of the structure.81
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The Sciri Tower located in the city of Perugia (Italy) is used as a validation case study. The tower is inserted into a82

complex building ensemble with strong constraints on its modal properties, thereby the FE modelling requires the83

incorporation of the neighbouring buildings and a large mesh density. Therefore, this case study exemplifies the84

need for computationally efficient surrogate models for FEM updating applications. Firstly, the training popula-85

tion used for the construction of the surrogate models is generated through Monte Carlo simulations using a fully86

detailed 3D FEM. To do so, the FEM has been parametrized by dividing the geometry into four macro-elements87

with parametric elastic properties. Based upon this parametrization, three different surrogate models are built,88

including the RSM, Kriging, and Random Sampling High Dimensional Model Representation (RS-HDMR), and89

their effectiveness is evaluated by comparing their estimates of the modal features (resonant frequencies and mode90

shapes) against those obtained with the 3D FEM. Finally, the capability of the surrogate models to continuously91

assess the condition of the tower has been also analysed. To this aim, a continuous AVT has been conducted since92

13th February until 10th March 2019 in order to identify the modal features of the tower and the environmental93

temperature. Then, the design parameters have been continuously fitted by minimizing the mismatch between the94

identified modal features and the estimates of the surrogate models. The results demonstrate the capability of the95

proposed approach to accurately reproduce the positive correlation of the stiffness of the structure with temper-96

ature. In addition, the Kriging model is shown superior for reproducing low temperature sensitivities although97

moderate or large training sample sizes are required. Conversely, while less accurate for small sensitivities, the98

RSM and RS-HDMR surrogate models are reported to provide computationally efficient tools with great potential99

for conducting rapid structural assessment.100

The remaining of this paper is organized as follows. Section 2 concisely overviews the three studied surro-101

gate models. Section 3 presents the proposed surrogate-based model updating approach for continuous damage102

assessment of historic structures. Section 4 reports the validation case study and discussion and, finally, Section 5103

concludes the paper.104

2. Theoretical background: surrogate modelling105

In this section, the three considered surrogate models are concisely overviewed, namely the RSM, Kriging,106

and RS-HDMR models. In general, the purpose of a surrogate model is to bypass in a cost-effective way the107

Input/Output relationship of a computationally demanding model. Let us define m damage-sensitive parameters,108

xi ∈ R, i = 1, ...,m, determining the response y of a FEM. A surrogate model has to provide a black-box represen-109

tation of the response of the main model as y(x), with x being the vector of design parameters x = [x1, ..., xm]T.110

To do so, it is often necessary to obtain a training population. This consists of a set of N input-output samples111

obtained by direct Monte Carlo simulations using the main FEM in order to map the output y and the design112

space of the input parameters xi. In formal terms, a training population is defined by the matrix of design sites113

X=[x1, . . . , xN] with dimensions m×N, and the observation vector Y=[y1, . . . , yN]T, with yi ∈ R being the system’s114

response to the input xi. In this work, the modal properties obtained by a linear modal analysis of the FEM are115

assumed as outputs. Therefore, a different surrogate model must be constructed for each natural frequency and116

modal amplitude of all the vibration modes considered in the analysis. Specifically, if l modes of vibration are117

selected and ndo f degrees of freedom are used to sample the mode shapes, a total of l (1 + ndo f ) surrogate models118

must be constructed, including l models to represent the resonant frequencies, and l · ndo f to reproduce the modal119

amplitudes.120

2.1. Response Surface Method (RSM)121

The RSM is a collection of statistical techniques used for fitting empirical models and so reduce the com-122

putational effort in iterative processes [30]. In this work, a second-order quadratic version of the RSM is used123

as [31]:124

y(x) = α0 +

m∑
j=1

α jx j +

m∑
j=1

α j jx2
j +

m∑
j=1

m∑
i≥ j

α jix jxi + ε, (1)

with coefficients α0, α j, α j j and α ji being the intercept, linear, quadratic, and interaction coefficients, respectively.125

The term ε accounts for all those variability sources not included in the fitting, such as measurement error in126

the response, background noise, non-considered variables, etc. Typically, ε is treated as a statistical error, often127

assuming it to be normally distributed with zero mean, independent and identically distributed at each observation.128

The model in terms of the observations included in the training population of N individuals can be written in matrix129

notation as:130

Y = X̂A + ε, (2)
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where X̂ is a N × (m + 1)(m + 2)/2 matrix collecting components [1, x j, x2
j , x jxi] for each individual in the training131

population, A is the (m + 1)(m + 2)/2 vector of coefficients α0, α j, α j j and α ji, and ε is a (m + 1)(m + 2)/2 vector of132

random errors. The meta-model is constructed by obtaining the coefficients vector A, which is usually determined133

by its least squares estimator as [32]:134

A =

(
X̂TX̂

)−1
X̂TY, (3)

whereby the fitted regression model reads:135

Y = X̂A. (4)

2.2. Kriging model136

The Kriging model, with origin in Geostatistics [33], is a commonly used technique of interpolation for spatial137

data. The Kriging interpolator conceives the function of interest y(x) as the sum of a regression model yr(x) and a138

random function F (x) with zero mean as follows [34]:139

y(x) = yr(x) + F (x). (5)

It can be understood that yr(x) globally approximates the design space, whilst F (x) introduces localized devi-140

ations. The regression function yr(x) depends upon p regression parameters β=
[
β1, . . . , βp

]
, and given functions141

f(x)=
[
f1(x), . . . , fp(x)

]
with fi : Rm → R, as [34]:142

yr(β, x) = fT(x)β. (6)

The covariance matrix of F (x) between any two of the N-sampled data points xi and x j reads:143

Cov
[
F (xi)F (x j)

]
= σ2R

[
r(θ, xi, x j)

]
, (7)

where σ2 stands for the variance of F (x), and r(θ, xi, x j) is a given spatial correlation function between xi and x j144

and dependent on θ correlation parameters. Finally, the term R is a N ×N symmetric, positive definite matrix with145

components Ri j = r(θ, xi, x j).146

The relation between the interpolated values ŷ(x) of the response y(x) at an arbitrary design site x is defined147

by the Kriging predictor as follows:148

ŷ(x) = fT(x)β + r(x)TR−1
[
Y − fT(x)β

]
, (8)

where r(x) is a vector containing the correlations between the design sites and x as:149

r(x)T = [r(θ, x1, x), . . . , r(θ, xm, x)]T . (9)

Hence, once the regression model and the correlation function are chosen, the Kriging interpolator is con-150

structed by selecting adequate regression parameters β and correlation parameters θ. In this work, Gaussian151

correlation functions and zero-th order regression functions are selected.152

2.3. Random Sampling High-Dimensional Model Representation (RS-HDMR)153

Random sampling high dimensional model representation (RS-HDMR) constitutes a set of tools originally154

proposed by Rabitz et al. [35] for approximating high-dimensional input-output systems based on a linear com-155

bination of basis functions with increasing order [36]. In this method, all the input variables are rescaled in the156

range [0, 1], thereby the output function is defined in a unit hypercube Km = { (x1, . . . , xm)| 0 ≤ xi ≤ 1, i = 1, ,m}.157

The relationship between the input x and the output y(x) variables can be expressed by HDMR as [36]:158

y(x) = f0 +

m∑
i=1

fi(xi) +
∑

1≤i< j≤m

fi j(xi, x j) + . . . + f12...m(x1, x2, . . . , xm), (10)

here, the term f0 is a scalar function relating the mean contribution of all the inputs to the output y(x). Functions159

fi(xi) are first-order terms giving the effect of variable xi acting independently upon the output, and fi j(xi, x j)160

are second-order terms describing the cooperative effects of two input variables xi and x j. Higher order terms161

can be successively defined accounting for the cooperative effect of an increasing number of input variables on162

y(x). Nonetheless terms up to second-order suffice to provide accurate results in most cases [36]. The last term163

f(12...m)(x1, x2, . . . , xm) stands for the residual m-th order contribution of all the input variables, and it is evaluated164
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as the difference between f (x) and all the other component functions. The component functions in Eq. (10) are165

determined through an averaging process as follows [37]:166

f0 =

∫
Km

y(x) dx ≈ 1
N

N∑
s=1

y(xs), (11a)

fi(xi) =

∫
Km−1

y(x) dxi − f0, (11b)

fi j(xi, x j) =

∫
Km−2

y(x) dxi j − fi(xi) − f0, (11c)

where dxi stands for the product dx1 dx2 . . . dxn without dxi, whereas dxi j denotes the same product without dxi167

and dx j. The component functions can be further approximated by orthonormal basis functions ϕr (xi), ϕp (xi),168

and ϕq

(
x j

)
as:169

fi(xi) ≈
o1∑

r=1

αi
r ϕr(xi), (12a)

fi j(xi, x j) ≈
o2∑

p=1

o3∑
q=1

β
i j
pq ϕp(xi)ϕq(x j), (12b)

where o1, o2, and o3 represent the orders of the functions ϕr (xi), ϕp (xi), and ϕq

(
x j

)
. The expressions of the170

orthonormal polynomials are determined by the conditions of zero mean, unit norm and orthogonality in the171

domain [0, 1]. For more specific information in this regard, readers can refer to reference [38]. The expansion172

coefficients αi
r and βi j

pq are scalars to be determined. To do so, the integrals in Eq. (11) can be approximated by173

Monte Carlo summations over the training population, leading to:174

αi
r ≈

1
N

N∑
s=1

y(xs)ϕr

(
xs

i

)
, (13a)

β
i j
pq ≈ 1

N

N∑
s=1

y(xs)ϕp

(
xs

i

)
ϕq

(
xs

j

)
, (13b)

and the final expression of the RS-HDMR model with component functions up to second-order takes the form:175

y(x) = f0 +

m∑
i=1

o1∑
r=1

αi
rϕr(xi) +

∑
1≤i< j≤m

o2∑
p=1

o3∑
q=1

β
i j
pqϕp(xi)ϕq(x j). (14)

The accuracy of the fitting is determined by the Monte Carlo integration used for the estimation of the ex-176

pansion coefficients αi
r and βi j

pq. Variance reduction methods such as the correlation [39] and ratio control variate177

[40] methods are often used to improve the accuracy of the integration. In both cases, the determination of the178

expansion coefficients is conducted in an iterative way and requires a reference function similar to y(x), which is179

usually approximated as a truncated RS-HDMR expansion [37]. In this work, the GUI-HDMR toolbox for Matlab180

developed by Ziehn and Tomlin [36] is used. This toolbox implements an optimization method based on the least181

squares method to determine the best polynomial order for each of the component functions. In the subsequent182

results reported in Section 4, first and second order component functions are used with orthonormal polynomials183

up to second order, as well as the correlation method to improve the accuracy of the Monte Carlo integration.184

3. Surrogate-based continuous assessment of historic structures185

The proposed surrogate-based continuous model updating approach for the structural assessment of historic186

masonry buildings is sketched in Fig. 1. The procedure comprises five consecutive steps:187

(A) Identification of damage-sensitive parameters of the FEM of the structure. These parameters constitute the188

design variables of the model updating, so that the parameter selection must be capable of reproducing the189

expected damage-induced stiffness variations.190
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(B) Sampling of the design space. On the basis of the previously selected parameters, the design space is191

uniformly sampled to generate a representative input data set.192

(C) Generation of the training population. Considering the previously defined design space, the modal features193

of the structure are estimated by the FEM through Monte Carlo Simulations (MCS). This creates a mapping194

between the design variables and the numerical modal features of the structure that serves as the training195

data sample to construct the surrogate models.196

(D) Construction of the surrogate model. The training population is used to estimate the parameters defining197

the selected surrogate model according to what described in previous section.198

(E) Continuous surrogate-based model updating. Based upon the previously constructed surrogate model, the199

design variables are continuously fitted through a model updating approach. To do so, an optimization200

problem is set up to minimize the differences between experimentally and numerically identified modal201

features. Dividing the monitoring period into consecutive time steps, this process is defined in an iterative202

way, and the tracking of the fitted design variables provides a continuous assessment of the structure.203

OMA

fj , φj

X=[x1, x2, ...,xj]

J(x)=∑[α εi(x)+β δi(x)]+η Θ(x)
i=1

l

Surrogate-based model updating

SSI

Build 
Surrogate 

model

Mapping modal features 
corresponding to sample random 

input points

Design variables
x = [x1, x2, ..., xm] 

Training data

MCS ∣ FEM Code

   δi(x)=1-MACii (x)

Sampling of design space
X = [x1, x2, ..., xN]

(A)

(B)

(C)

(D)

(E)

εi(x)= fi      (x)
surr

fi

exp ,

j=j+1

Start
j=1

xj=arg min J(x)
x∈�

Model parameters tracking

T

fi

exp
-1

Figure 1: Flowchart of the proposed surrogate-based continuous structural assessment of historic buildings.

In this work, the design variables xi are allowed to vary only within a certain range [ai, bi], i.e. ai ≤ xi ≤204

bi. Therefore, the vector of design variables x is defined in an m-dimensional space x ∈ D defined as D =205

{x ∈ Rm : ai ≤ xi ≤ bi}. Diverse variables xi can be chosen such as the elastic properties and/or connectivity of206

some elements, boundary conditions or even topological parameters. The elastic moduli of certain parts of the207

FEM are selected herein as design variables as later explained in Section 4.3. Let us recall that a number of l208

natural frequencies and mode shapes are considered in the model updating, thence an objective function J (x)209

including the differences between the experimental modal features and the predictions of the surrogate model can210

be introduced in step (E) as follows:211

J (x) =

l∑
i=1

[
αεi (x) + βδi (x)

]
+ ηΘ (x) , (15)

with212
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εi (x) =

∣∣∣ f exp
i − f surr

i (x)
∣∣∣

f exp
i

, δi (x) = 1 − MACii (x) , (16)

and α and β weighting coefficients that modulate the importance of the first two terms of the objective function.213

The terms f exp
i and f surr

i (x) stand for the i-th resonant frequencies obtained by OMA and the surrogate model,214

respectively. In addition, the terms MACii are the Modal Assurance Criterion (MAC) coefficients between the i-th215

experimental ϕexp
i and numerical ϕsurr

i (x) mode shapes. Therefore, the model updating procedure is defined as the216

following constrained non-linear minimization problem:217

x = arg min
x∈D

J (x) . (17)

The term Θ (x) in Eq. (15) stands for a regularization term used to reduce ill-conditioning limitations in the218

optimization. Such limitations imply that design variables at distinct locations of the search space may produce219

the same response and, hence, the solution cannot be affirmed as unique. In this work, a simple regularization220

term is incorporated as follows:221

Θ (x) =
1
m

m∑
i=1

(
xi − x0

i

)2

bi − ai
, (18)

along with a trade-off parameter η to modulate the relevance of the regularization in the cost function in Eq. (15).222

The implemented regularization term imposes the solution to remain close to a reference vector of design variables223

x0 =
[
x0

1, ..., x
0
m

]T
or an undamaged condition. For small values of η, the design variables are almost unrestricted224

and the optimization resembles the original ill-posed problem. Conversely, too large values of η may lead to225

over-constricted conditions and large disagreements between the experimental and numerical modal features. The226

selection of η depends upon the complexity of the structure and the chosen fitting parameters, thereby a tailored227

sensitivity analysis must be performed for each specific case. In this work, sensitivity analyses showed that a value228

of η=0.3 provides reasonably good solutions for the present case study of the Sciri Tower.229

The modal features of the structure are experimentally obtained by A-OMA at consecutive time steps j. There-230

fore, the model updating procedure in Eq. (17) is iteratively performed, and the fitted design variables are collected231

in matrix form as X =
[
x1, ..., x j

]
. This provides a continuous assessment of the structure based on the tracking of232

the selected design variables, thereby the appearance of damage can be inferred in the shape of anomalies in the233

matrix X.234

4. Validation case study and discussion235

This section reports the validation of the previously introduced surrogate-based model updating approach with236

a case study of the Sciri Tower. Specifically, Section 4.1 describes the validation case study. Section 4.2 presents237

the ambient vibration testing and A-OMA conducted on the tower with the aim of continuously identifying its238

modal features. Afterwards, Section 4.3 details the FE modelling of the tower and its parametrization through239

damage-sensitive parameters. Finally, Sections 4.4 and 4.5 report the comparison of the considered surrogate240

models and their application for continuous structural assessment of the Sciri Tower, respectively.241

4.1. The Sciri Tower242

The proposed surrogate-based continuous model updating approach is validated with a case study of the 41 m243

high civic tower located in the historical centre of Perugia (Italy), named Torre degli Sciri (see Fig. 2 (a)). The Sciri244

Tower was erected in the late 13th century for defensive purposes and, nowadays, it is the only remaining medieval245

tower in a good state of preservation in the city of Perugia. The Sciri Tower forms part of a building ensemble246

with approximate plan dimensions of 22 × 25 m (see Fig. 2 (b)). Three façades of the tower are connected to the247

adjacent masonry buildings up to a height of 17 m, while the fourth one remains exposed. The tower has a hollow248

rectangular cross-section of 7.15 × 7.35 m and can be ideally divided into two structural portions. The lower part249

has wall thicknesses of 1.68 m and 2.1 m and rises up to 8.4 m. In this part, there are some small openings and a250

stone masonry vault standing above an old chapel. On the other hand, the upper part has slender continuous walls251

(with thickness varying in height from 1.6 m to 1.4 m), with four 1.5 m wide masonry vaulted slabs at different252

heights. A brick masonry ceiling vault completes the tower, and a 0.5 m thick parapet extends up to a total height253

of 41 m. The masonry of the tower consists of homogeneous and regular squared white limestone blocks.254
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Figure 2: A photograph of the Sciri Tower (a), and elevation and plan views (b).

4.2. Ambient vibration testing and operational modal analysis255

With the aim of identifying the modal features of the Sciri Tower, a continuous ambient vibration testing was256

performed for three weeks, since 13th February until 10th March 2019. To this end, a total of 12 high sensitivity (10257

V/g) uniaxial PCB 393B12 accelerometers were installed at four different heights of the tower, namely z = 40.5258

m, z = 33.5 m, z = 24.0 m and z = 8.4 m, as shown in Figure 3. The ambient vibrations induced by traffic,259

human and wind actions in operational conditions were recorded at a sampling frequency of 1652 Hz and later260

downsampled to 40 Hz. In addition, two K-type thermocouples were also installed at the level z = 40.5 m (indoor261

and outdoor) and temperature was recorded at a sampling frequency of 0.4 Hz. Field data were acquired using262

a multi-channel data acquisition system (DAQ) model NI CompactDAQ-9184 located at the level z = 36.7 m,263

equipped with NI 9234 data acquisition modules for accelerometers (24-bit resolution, 102 dB dynamic range264

and anti-aliasing filters) and NI 9219 modules for thermocouples (24-bit resolution, ±60 V range, 100 S/s). A265

LabView toolkit was implemented for data acquisition and preliminary real-time processing, including amplitude266

and spectral plots for quality-control inspections. Data were recorded in separate files containing 30-min long267

acceleration and temperature time series, and transferred in real-time through Wi-Fi connection to the Laboratory268

of Structural Dynamics of the University of Perugia, 2.5 km far from the tower. Here, data were stored and269

processed with the purpose of extracting the dynamic characteristics of the tower.270
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Figure 3: Sensors layout for continuous monitoring of the Sciri Tower.

The modal features of the tower have been identified by the Covariance driven Stochastic Subspace Identi-271
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fication (COV-SSI) method [41]. By means of a self-developed fully automated implementation in Matlab en-272

vironment, the modal features have been continuously extracted from every 30-min long records. The modal273

features obtained from the first measurements, taken on 13th February 2019 at 14:00 UTC, have been used for an274

initial tuning of the FEM of the tower as shown later in Section 4.3. In particular, six vibration modes have been275

identified in the range between 0 and 10 Hz as shown in Fig 4, including two flexural modes in NW direction276

(x-direction, denoted as Fx1 and Fx2, respectively), two flexural modes in SW direction (y-direction, denoted as277

Fy1 and Fy2, respectively), one torsional mode, Tz1, and one higher order flexural mode, Fx3. Figure 5 shows278

the first four singular values of the power spectral density matrix of the acceleration records, where six resonant279

peaks are clearly identified. The obtained mode shapes are depicted in Fig. 4. In this figure, the identified mode280

shapes are also plotted in the polar plane, where each arrow represents a component of the mode shape vector.281

Normal (real) mode shapes have components with phases of 0 or 180◦, while scatters in the complexity plot in-282

dicate complex mode shapes. Experimental mode shapes can be complex for a number of reasons: limitations in283

the identification of low-excited modes, modelling errors, or non-classically (proportionally) damped modes. It is284

noted in Fig. 4 that modes Fx1, Fy1, Tz1, and Fx3 are identified as real modes, while some scatter can be observed285

in the remaining modes, particularly in mode Fy2. The natural frequencies and damping ratios of the identified286

modes are reported in Table 1. In addition, in order to quantify the complexity of the modes, the Modal Phase287

Collinearity (MPC) [42] values are also reported. Values of MPC close to 100% indicate perfect mode shape288

collinearity, while lower values indicate increasingly complex modes. It is noted that the MPC of all the modes289

are above 95%, except for modes Fx2 and Fy2 where values of 84.9% and 80.2% are obtained, respectively. These290

results evidence that the comparison between the experimental and numerical (undamped) mode shapes for the291

vibration modes Fx2 and Fy2 may yield considerable discrepancies.292
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Figure 4: Experimentally identified mode shapes estimated through COV-SSI on 13th February 2019 at 14:00 UTC.
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Figure 5: First four singular values (SV) of the power spectral density matrix obtained from the ambient vibrations recorded
on 13th February 2019 at 14:00 UTC.

Table 1: Experimentally identified natural frequencies f exp
i , damping ratios ζi and Modal Phase Collinearity (MPC) estimated

through COV-SSI on 13th February 2019 at 14:00 UTC.

Mode f exp
i [Hz] ζi [%] MPCi [%]

Fx1 1.692 0.918 99.8
Fy1 1.891 0.779 99.4
Fx2 5.539 3.066 84.9
Fy2 5.829 2.175 80.2
Tz1 8.205 1.783 99.8
Fx3 9.795 1.365 98.9

4.3. Finite Element Modelling293

In order to generate a training population for building the surrogate models, a 3D FEM of the Sciri Tower and294

the surrounding buildings has been built using the commercial software ABAQUS 6.10 (see Fig. 6). The geometry295

of the model has been defined using available structural drawings and in-situ inspections, partitioning it into296

different regions to facilitate the materials assignment. Given that the FEM is used only to conduct linear modal297

analyses, all the materials in the model have been considered as elastic isotropic. The soil-structure interaction298

has been assumed negligible, thereby fixed boundary conditions have been defined at the ground level. Ten-node299

tetrahedral elements C3D10 have been used for meshing the geometry with mean element size of about 50 cm.300

This brings to 245149 and 411140 the total number of elements and nodes, respectively, what justifies the use301

of a surrogate model to limit the computational burden involved in the subsequent model updating procedure. It302

is important to note that the use of simplified spring elements to simulate the restrains imposed by the adjoining303

buildings did not properly reproduce the experimentally identified modes of vibration, specially the torsional304

mode, whereby a detailed modelling of the neighbouring buildings became imperative.305
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Figure 6: Finite element model of the Sciri Tower and the adjoining building, and division into macro-elements M1, M2, M3

and M4.

The initial mechanical parameters of the model have been defined according to the Italian technical standard306

code for square stone masonry, including the Young’s modulus E = 4.03 GPa, shear modulus G = 1.61 GPa,307

Poisson’s ratio ν = 0.25, and mass density w = 2.20 t/m3. Afterwards, in order to obtain consistent modal estimates308

with the experimental ones previously reported in Section 4.2, a thorough model calibration has been carried out309

through a sensitivity analysis. Specifically, eighteen different materials have been considered in the modelling,310

including the tower, as well as ten masonry walls, four floors, and three parts of the roof of the building aggregate.311

Table 2 shows the mechanical parameters of the tower before and after calibration. On this basis, Table 3 reports312

the comparison between the experimental and numerical modal features, and Fig. 7 shows the numerical mode313

shapes obtained from the linear modal analysis of the tuned FEM. Good agreements can be observed for modes314

Fx1, Fy1, Fx2, Tz1, and Fx3 with relative differences in terms of resonant frequencies below 5% and MAC values315

above 0.8. Conversely, larger discrepancies are noted for mode Fy2 with a relative difference in resonant frequency316

of 5.577%. The MAC values are also small in this case with a value of 0.108. In this particular mode of vibration,317

the low MAC value is ascribed to the high complexity of the experimental mode shape as previously reported in318

Fig. 4. The reported discrepancies may be also due to structural aspects disregarded in the modelling, such as the319

soil-structure interaction [43]. Nonetheless, further detailing of the FEM falls out the scope of this paper, and the320

accuracy achieved in Table 3 is considered sufficient for the purpose of the present investigation.321

Table 2: Mechanical parameters of the FEM of the tower before and after calibration.

Youngs’ modulus Shear modulus Poisson’s ratio Mass density
E [kN/m2] G [kN/m2] ν [-] w [t/m3]

Before calibration 4.03e+06 1.61e+06 0.25 2.20
After calibration 5.77e+06 2.31e+06 0.23 2.20

Table 3: Comparison between experimental and numerical modal parameters after calibration.

Mode f exp
i [Hz] f FEM

i [Hz]
(

f exp
i − f FEM

i

)
/ f exp

i [%] MAC [-]

Fx1 1.692 1.753 -3.655 0.972
Fy1 1.891 1.966 -3.970 0.960
Fx2 5.539 5.706 -3.019 0.802
Fy2 5.830 6.155 -5.577 0.108
Tz1 8.205 7.993 2.584 0.866
Fx3 9.795 9.822 -0.271 0.913

With the purpose of parametrizing the FEM for the proposed surrogate-based model updating approach, the322

elastic properties of certain regions of the structure have been defined as design variables. To do so, the tuned FEM323

has been subdivided into four macro-elements Mi, i = 1, ..., 4, as illustrated in Fig. 6. Macro-element M1 includes324
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the adjoining building and a portion of the tower up to the top height of the roof of the building aggregate (0-18.9325

m). Macro-elements M2, M3 and M4 comprise the portions of the tower located between heights of 18.9-26.8 m,326

26.8-33.8 m, and 33.8-41.0 m, respectively. According to this partition, the Young’s modulus Ei of the elements327

contained in a generic macro-element Mi has been defined as a random variable as:328

Ei = E0
i (1 + ki) , (19)

with E0
i being the nominal value of the Young’s modulus of the i-th macro-element. Note that E0

1 defines the329

nominal Young’s modulus of the first section of the tower, as well as the moduli of the different partitions of the330

adjoining building (see Fig. 6). The parameters ki are random linear proportionality coefficients of the elastic mod-331

uli of macro-elements Mi, and represent the design variables x = [k1, k2, k3, k4]T in the model updating approach332

previously introduced in Eq. (17). On this basis, larger permanent reductions in one component of x with respect333

to the others would indicate the presence of damage in the corresponding macro-element. Additionally, as shown334

below in Section 4.5, this parametrization is also suitable for accounting for environmental effects, specifically the335

influence of temperature on the stiffness distribution of the structure.336
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FEM FEM FEM

FEM FEM

Figure 7: Numerical mode shapes obtained by linear modal analysis of the tuned FEM of the Sciri Tower.

12



4.4. Comparison of surrogate models337

In order to compare the accuracy of the surrogate models previously introduced in Section 2, the training338

population must be generated on the basis of the numerical FEM. To this end, the design space must be uniformly339

sampled in the first place. Following the parametrization of the FEM into macro-elements, the stiffness coefficients340

ki, i = 1, ..., 4, have been defined as random variables with upper/lower limits of ±15%. Therefore, the design space341

D in Eq. (17) takes the form of:342

D =
{
x ∈ R4 : −0.15 ≤ ki ≤ 0.15

}
. (20)

The quality of the sampling of the design space governs the accuracy of the surrogate models. In this work,343

random samples have been drawn uniformly over D using the quasi-random sequence of Sobol [44]. In order to344

select the size of the training population, a convergence analysis is carried out in Fig. 9. In particular, five different345

sample sizes have been selected, including N = 64, 128, 256, 512 and 1024 individuals. For comparison purposes,346

the largest population of 1024 samples is assumed as reference. The statistical analysis of the reference population347

is depicted in Figure 8. Specifically, Fig. 8 (a) presents the sampled data points of the design variables k1 and k2.348

It is noted in this figure that, in virtue of the quasi-random sequence of Sobol, the domain of definition of these349

variables is uniformly sampled. The analysis is further extended in Fig. 8 (b) where the histograms of the data350

samples ki, i = 1, ..., 4, are presented. In all the cases, the histograms are almost flat, which proves the uniformity351

of the data sampling. On this basis, the first six natural frequencies and mode shapes have been obtained for all352

the training population sizes by the FEM of the Sciri Tower. Figures 8 (c) and (d) depict the probability density353

functions (PDF) and cumulative density functions (CDF) of the target natural frequencies, respectively.354
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Figure 8: (a) Sampled data points of the design variables k1 and k2. (b) Histograms of the data samples ki, i = 1, ..., 4. (c)
Probability density functions (PDF) and Gaussian approximations, and (d) cumulative density functions (CDF) of the first six
natural frequencies obtained with the FEM of the Sciri Tower (reference population of 1024 samples).

The comparison between the studied surrogate models is performed in Fig. 9 through the mean value of the355

cost function in Eq. (15) J defined as:356
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J =
1
N

N∑
i=1

J(xi), (21)

where the data points xi correspond to the reference population (N = 1024 individuals), and the terms εi and357

δi in Eq. (16) are obtained by comparing the FEM estimates and the surrogate models for increasing training358

population sizes. Therefore, a value of J = 0 indicates a perfect fitting of the estimates of the FEM by the359

surrogate model, while larger values of J evidence disagreements between their estimates. It is important to note360

that the regularization term in Eq. (15) has been omitted in this analysis (η = 0). In addition, in order to deepen361

into the comparison analysis, a second parameter variation range of ±100% has been also considered (variation362

ranges are denoted as quantities in parentheses in Fig. 9). Note that, although such a wide variation range results363

impractical for model updating applications, it provides a limit case to delve into the comparison of the surrogate364

models. The comparison between the surrogate models is conducted for different combinations of the weighting365

coefficients α and β, including solely the contribution of natural frequencies (α=1 and β=0 in Figs. 9 (a) and (d)),366

mode shapes (α=0 and β=1 in Figs. 9 (b) and (e)), and their combined contribution (α=1 and β=1 in Figs. 9367

(c) and (f)). Let us first focus on the small parameter variation range of ±15% ((a), (b) and (c)). It is observed368

that the errors related to the MAC values dominate over the objective function (see Fig. (b)). This fact evidences369

that, for small variations in the parameters as it is the case of environmental effects or early-stage damage, the370

accurate fitting of variations in the mode shapes plays a dominant role in the structural assessment. With regard371

to the comparison between the surrogate models, the Kriging, RSM and RS-HDMR models are shown to provide372

approximations in decreasing order of accuracy. In particular, the RS-HDMR model provides unstable solutions373

for small training population sizes due to errors stemming from the Monte Carlo integration of the component374

functions (see Eq. (13)). In the case of the RSM model, little improvements are noted for increasing population375

sizes. This fact indicates that, for a low range of parameter variation, the response surfaces of the structure can be376

accurately captured by a quadratic expansion and, therefore, a low number of training samples suffice to build an377

accurate meta-model. Finally, it is noted that the accuracy of the Kriging model monotonically increases with the378

training population size. Specifically, it is noted that J reaches zero at the reference population. This behaviour379

can be explained by the definition of the Kriging predictor in Eq. (5), where the regression term yr(x) forces the380

model to exactly reproduce all the sampled data.381

Some differences can be observed for the large parameter variation range in Figs. 9 (c), (d) and (f). Firstly, it382

is noted that the errors stemming from the modelling of the frequencies and mode shapes are similar. In light of383

the previous analysis, it can be concluded that model updating approaches only considering resonant frequency384

shifts can be used to identify large stiffness variations, while their applicability to identify low damage levels may385

be limited. With regard to the comparison between the surrogate models, the Kriging, RS-HDMR, and RSM386

models are shown to provide approximations in decreasing order of accuracy. A closer inspection reveals that387

the RSM reaches an asymptotic value at 512 individuals from which no more improvements are found. The388

tendency of the RS-HDMR model is similar, although it exhibits faster convergence rates and an asymptotic limit389

at larger sampling sizes. These similarities result from the fact that both models are based upon a polynomial390

expansion of the response. In addition, given that the RS-HDMR considers orthonormal polynomials with higher391

order, the asymptotic limit is reached in this case at a larger sampling size. Finally, the Kriging model initially392

exhibits slower convergence rates (see e.g. Fig. 9 (d)), although its accuracy for moderate and large sampling sizes393

outperforms that of the other two surrogate models. In view of these results, a training population size of 512394

individuals is selected in all the subsequent analyses.395
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Figure 9: Mean value of the objective function (J) versus training population size (reference population of 1024 samples).

Figure 10 shows a scatter plot describing the relationship between the original FEM and the surrogate models396

for the first natural frequency. In the case of a low parameter variation range of ±15% (Figs. 10 (a), (b) and (c)), the397

low scatter of the points around the diagonal line corroborates that the surrogate models are formed with accuracy.398

Conversely, in the case of a large parameter variation range of ±100% (Figs. 10 (d), (e) and (f)), the notable scatter399

around the diagonal line indicates the existence of considerable discrepancies between the models. Tables 4 and 5400

present the comparative study between the direct MCS and the surrogate models for max/min values, mean values,401

standard deviation (σ) and coefficient of determination (R2) for the first three natural frequencies, considering402

parameter variation ranges of ±15% and ±100%, respectively. Firstly, it is observed in Table 4 that, despite the403

differences previously reported in Fig. 9, all the surrogate models yield estimates very proximate to the MCS with404

coefficients of determination very close to one. On the other hand, larger discrepancies can be observed in Table 5405

for the case of a large parameter variation range of ±100%. Specifically, large disagreements are found in all the406

surrogate models for minimum frequency values (severe damage) as also evidenced by the scatters in Figure 10.407

It is concluded from this analysis that the training population size and the surrogate models must be properly408

tailored according to the expected damage level. In particular, and in light of the previously reported results in409

Figs. 9 (a), (b) and (c), the order of the polynomial expansion involved in the RSM and the RS-HDMR models410

must be adequately selected according to the desired variability of the parameters. That is to say, wider definition411

domains of the parameters require polynomial functions with increasing orders and larger training population412

sizes. Conversely, the Kriging model offers a more flexible solution in the sense that its capability to approach413

wider variability domains is directly determined by the size of the training population.414

15



1.6 1.65 1.7 1.75 1.8 1.85 1.9
1.6

1.65

1.7

1.75

1.8

1.85

1.9

FEM model f1 [Hz]

Su
rr

og
at

e
m

od
el

f 1
[H

z]
(a) RSM (±15%)

1.6 1.65 1.7 1.75 1.8 1.85 1.9
1.6

1.65

1.7

1.75

1.8

1.85

1.9

FEM model f1 [Hz]

Su
rr

og
at

e
m

od
el

f 1
[H

z]

(b) Kriging (±15%)

1.6 1.65 1.7 1.75 1.8 1.85 1.9
1.6

1.65

1.7

1.75

1.8

1.85

1.9

FEM model f1 [Hz]

Su
rr

og
at

e
m

od
el

f 1
[H

z]

(c) RS-HDMR (±15%)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

FEM model f1 [Hz]

Su
rr

og
at

e
m

od
el

f 1
[H

z]

(d) RSM (±100%)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

FEM model f1 [Hz]

Su
rr

og
at

e
m

od
el

f 1
[H

z]
(e) Kriging (±100%)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

FEM model f1 [Hz]
Su

rr
og

at
e

m
od

el
f 1

[H
z]

(f) RS-HDMR (±100%)

R2=0.99 R2=0.99 R2=0.99

R2=0.95 R2=0.96 R2=0.97

Figure 10: Scatter plot of RSM (a,d), Kriging (b,e) and RS-HDMR (c,f) surrogate models with respect to the 3D FEM of the
Sciri Tower for the first natural frequency ( f1) (training population of 512 samples and reference population of 1024 samples).

Table 4: Comparative study between MCS (1024 samples) and RSM, Kriging, and RS-HDMR models (512 samples) for
maximum/minimum values, standard deviations (σ), and coefficients of determination (R2) for the first three natural frequencies
and ±15% parameter variation.

Mode 1

MC RSM Kriging RS-HDMR Diff [%]
Min. Val. [Hz] 1.6248 1.6248 1.6248 1.6247 -0.0030 \ -0.0029 \ 0.0044
Max. Val. [Hz] 1.8748 1.8747 1.8747 1.8746 0.0044 \ 0.0028 \ 0.0123

Mean [Hz] 1.7502 1.7502 1.7502 1.7502 -0.0001 \ -0.0002 \ -0.0001
SD [Hz] (σ) 0.0640 0.0640 0.0640 0.0640 -0.0024 \ -0.0050 \ -0.0019

R2 - 0.9990 0.9990 0.9990 -

Mode 2

MC RSM Kriging RS-HDMR Diff [%]
Min. Val. [Hz] 1.8237 1.8238 1.8237 1.8241 -0.0029 \ 0.0019 \ -0.0246
Max. Val. [Hz] 2.1009 2.1009 2.1010 2.1007 0.0004 \ -0.0029 \ 0.0088

Mean [Hz] 1.9620 1.9620 1.9620 1.9620 0.0000 \ -0.0001 \ 0.0000
SD [Hz] (σ) 0.0687 0.0687 0.0687 0.0687 0.0011 \ -0.0029 \ 0.0027

R2 - 0.9990 0.9990 0.9990 -

Mode 3

MC RSM Kriging RS-HDMR Diff [%]
Min. Val. [Hz] 5.2936 5.2941 5.2935 5.2938 -0.0102 \ 0.0017 \ -0.0045
Max. Val. [Hz] 6.0975 6.0972 6.0975 6.0970 0.0042 \ -0.0002 \ 0.0079

Mean [Hz] 5.6966 5.6966 5.6966 5.6966 0.0000 \ -0.0001 \ 0.0000
SD [Hz] (σ) 0.2104 0.2104 0.2105 0.2104 0.0003 \ -0.0021 \ 0.0006

R2 - 0.9990 0.9990 0.9990 -
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Table 5: Comparative study between MCS (1024 samples) and RSM, Kriging, and RS-HDMR models (512 samples) for
maximum/minimum values, standard deviations (σ), and coefficients of determination (R2) for the first three natural frequencies
and ±100% parameter variation.

Mode 1

MC RSM Kriging RS-HDMR Diff [%]
Min. Val. [Hz] 0.016 0.245 0.285 -0.451 -1432.206 \ -1683.563 \ 2925.280
Max. Val. [Hz] 2.447 2.415 2.431 2.284 1.327 \ 0.667 \ 6.680

Mean [Hz] 1.508 1.505 1.509 1.505 0.191 \ -0.081 \ 0.197
SD [Hz] (σ) 0.529 0.503 0.506 0.521 4.861 \ 4.351 \ 1.455

R2 - 0.951 0.963 0.967 -

Mode 2

MC RSM Kriging RS-HDMR Diff [%]
Min. Val. [Hz] 0.018 0.269 0.313 -0.462 -1360.629 \ -1600.225 \ 2613.861
Max. Val. [Hz] 2.737 2.705 2.723 2.638 1.168 \ 0.514 \ 3.616

Mean [Hz] 1.671 1.668 1.673 1.668 0.165 \ -0.107 \ 0.172
SD [Hz] (σ) 0.586 0.557 0.559 0.578 5.012 \ 4.582 \ 1.429

R2 - 0.949 0.962 0.966 -

Mode 3

MC RSM Kriging RS-HDMR Diff [%]
Min. Val. [Hz] 0.052 0.753 0.915 -2.276 -1356.476 \ -1671.808 \ 4504.251
Max. Val. [Hz] 7.934 7.895 7.953 7.337 0.490 \ -0.246 \ 7.522

Mean [Hz] 4.825 4.817 4.830 4.817 0.162 \ -0.096 \ 0.169
SD [Hz] (σ) 1.739 1.622 1.635 1.714 6.686 \ 5.944 \ 1.413

R2 - 0.929 0.947 0.958 -

Finally, it is important to compare the surrogate models in terms of computational times. While the mean415

computational time needed to perform a modal analysis of the 3D FEM amounts to about 7 minutes, the evaluation416

times of the RSM, Kriging and RS-HDMR models are about 3.2 ms, 7.2 ms, and 142 ms, respectively. These417

reductions provide an efficient and affordable solution to conduct the multiple function evaluations involved in418

most heuristic optimization algorithms. Specifically, in the case of long-term continuous SHM applications, the419

computation time involved in the system identification and model updating cannot exceed the signal acquisition420

times for real-time structural assessment. In the case of complex historic structures, the limited computing capacity421

of most current computers makes the use of surrogate models the only feasible solution for that purpose.422

4.5. Surrogate-based continuous structural assessment of the Sciri Tower423

In this section, the surrogate-based continuous structural assessment approach previously presented in Sec-424

tion 3 is applied to the case study of the Sciri Tower. In particular, the analyses focus on the capability of the425

studied surrogate models to assess the sensibility of the elastic properties of the macro-elements Mi, i = 1, ..., 4, to426

environmental temperature fluctuations. Figure 11 shows the time histories of the natural frequencies of the first427

six modes of the tower continuously identified by A-OMA and tracked throughout the monitoring period since428

13th February until 10th March 2019. In this figure, the temperature time series recorded by the two thermocouples429

(indoor and outdoor) are also shown. It is clearly noted that the identified natural frequencies exhibit a positive430

correlation with temperature, that is, increases in temperature lead to increasing natural frequencies. This effect431

is frequently observed in masonry structures, where the thermal expansion of masonry originates the closure of432

superficial cracks or micro-cracks, as well as minor discontinuities in the structure (see e.g. [8, 9, 12, 45]).433
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Figure 11: Temperature time series and frequency tracking in the Sciri Tower since 13th February until 10th March 2019.

Based upon the system identification results in Fig. 11, the surrogate-based model updating has been solved434

continuously for each set of identified modal data (30 min). In this case, the regularization term in Eq. (15) has435

been included (η = 0.3). To do so, the reference vector of design variables x0 has been defined as x0 = [0, 0, 0, 0]T
436

(ki = 0, i = 1, ..., 4), that is the nominal values of the Young’s moduli of the macro-elements Mi. Moreover, in order437

to accurately capture the small stiffness variations induced by temperature effects, a parameter variation range of438

±15% has been considered. The resulting non-linear minimization problem in Eq. (17) has been iteratively solved439

using a Particle Swarm optimization algorithm and weighting parameters α = β = 1. In addition, the mode shapes440

of modes Fx2 and Fy2 have been excluded from the objective function J(X) because of their high complexity441

level as previously shown in Fig. 4. Figure 12 shows the time series of the identified Young’s moduli Ei of the442

sections of the tower included in the macro-elements Mi by using the RSM, Kriging and RS-HDMR meta-models.443

Let us recall that the building aggregate is constituted by different materials, all of them affected by the stiffness444

coefficient k1. Nevertheless, for clarity purposes, only the elastic moduli corresponding to the tower are reported445

herein. In order to further investigate the sensitivity of Ei to environmental temperature, Fig. 13 depicts Ei versus446

mean environmental temperature (indoor and outdoor). It is noted that all the surrogate models report lower447

stiffness in the first two macro-elements (M1 and M2), and a stiffness value about 7% larger in the last two macro-448

elements (M3 and M4). Furthermore, it is clearly observed that the temperature sensitivities decrease with height.449

This behaviour can be ascribed to the closure of micro-cracks induced by thermal expansion, which presumably450

causes a stronger effect on those regions of the structure where expansion is more constrained, that is close to451

the base, and where the material is more heterogeneous. Conversely, the macro-elements of the upper part of the452

tower are more free to expand and the contribution of crack closure to the effective stiffness is less influential. It453

is interesting to note that, despite the similarities between the surrogate models for a parameter variation range of454

±15% reported in the previous section, some differences are noticeable. In particular, it is observed that the elastic455

modulus of the top macro-element M4 identified by the RSM and the HD-RSMR models has almost no sensitivity456

to temperature variations (see Fig. 13 (a) and (c)). This is not the case of the results obtained by the Kriging model457

which do show some small temperature sensibility in the macro-element M4 (Fig. 13 (b)).458
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Figure 12: Time series of updated Young’s moduli Ei of the sections of the Sciri Tower included in the macro-elements Mi,
i = 1, ..., 4, using the RSM, Kriging and RS-HDMR meta-models.
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Figure 13: Updated Young’s moduli Ei of the sections of the Sciri Tower included in the macro-elements Mi, i = 1, ..., 4, versus
mean environmental temperature using the RSM, Kriging and RS-HDMR meta-models.

Finally, Fig. 14 and Table 6 evaluate the fitness of the studied surrogate models in terms of fitness of the natural459

frequencies and mode shapes. With regard to the modelling of the natural frequencies, it is observed in Fig. 14460

that the errors (∆ fi = f exp
i − f FEM

i ) exhibit an approximately constant mean. This fact evidences some modelling461

limitations of the FEM to accurately reproduce the experimental data, specially the resonant frequencies of high462

order models such as Fy2, Tz1 and Fx3. It is also interesting to note that the differences between experimental463

and numerical values exhibit oscillations related to daily temperature variations. This indicates that some of the464

sensitivity of the structure to temperature fluctuations is not well captured by the surrogate models. This may465

be due to errors related to the accuracy of the surrogate models, as well as intrinsic limitations of the selected466

FEM parametrization. For instance, the cooling and heating cycles of the structure are chiefly related to the sun’s467

trajectory, which may not be accurately represented by variations of the elastic moduli of the defined macro-468

elements. With regard to the MAC values between the experimental and numerical mode shapes, quite stable469

values above 0.8 are noted in Fig. 14. The results reported in Table 6 offer a global evaluation of the fitness of470

the surrogate models. While only limited differences are found as expected from the analyses of the previous471

section, it is noted that the Kriging model provides better results for modes Tz1 and Fx3. This explains the better472
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performance of this model for representing the temperature sensitivity of the top macro-element as previously473

shown in Fig. 13. All things considered, it is concluded that the Kriging model features a superior capacity for the474

continuous surrogate-based model updating of historic structures, followed by the RSM and RS-HDMR models475

in decreasing order of accuracy.476
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Figure 14: Analysis of the fitness of the RSM, Kriging and RS-HDMR surrogate models in terms of natural frequencies and
mode shapes throughout the monitoring period since 13th February until 10th March 2019 (∆ fi = f exp

i − f surr
i ).

Table 6: Comparison of the RSM, Kriging and RS-HDMR surrogate models in terms of mean differences between experimental
and numerical natural frequencies and mode shapes throughout the monitoring period since 13th February until 10th March
2019.

RSM Kriging RS-HDMR

Mode
∣∣∣ f exp

i − f surr
i

∣∣∣
f exp
i

[%] MACi

∣∣∣ f exp
i − f surr

i

∣∣∣
f exp
i

[%] MACi

∣∣∣ f exp
i − f surr

i

∣∣∣
f exp
i

[%] MACi

Fx1 0.475 0.971 0.453 0.971 0.483 0.971
Fy1 0.938 0.962 0.974 0.962 0.969 0.962
Fx2 0.102 - 0.158 - 0.095 -
Fy2 2.504 - 2.560 - 2.514 -
Tz1 4.758 0.863 4.581 0.860 4.680 0.863
Fx3 0.722 0.899 0.600 0.910 0.670 0.890

Mean 1.583 0.924 1.554 0.926 1.569 0.921

5. Conclusions477

This paper has presented an innovative surrogate-based model updating approach for real-time structural as-478

sessment of historical buildings. The methodology has been validated considering the case study of the Sciri Tower479

located in the city of Perugia (Italy). Three different surrogate models have been considered, namely the RSM,480

Kriging, and RS-HDMR models, and their effectiveness has been compared from an SHM perspective through481

regression analysis of their estimates of the modal features against those obtained by a numerical model. To do482

so, a fully detailed 3D FEM of the tower and the adjoining building has been built and parametrized through four483

macro-elements with parametric elastic properties. On this basis, different training populations with increasing484

sizes have been generated by Monte Carlo simulations in order to evaluate the robustness and accuracy of the485
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considered surrogate models. Finally, their capability to continuously assess the condition of the Sciri Tower has486

been also analysed. With this purpose, a continuous AVT has been conducted since 13th February until 10th March487

2019 and the modal features of the structure have been identified by A-OMA. Afterwards, the design parameters488

(equivalent elastic properties of macro-elements) have been continuously fitted by minimizing the mismatch be-489

tween the identified modal features and the estimates of the surrogate models. The key findings of this work can490

be summarized as follows:491

• Cost functions in the model updating involving both natural frequencies and mode shapes are essential to492

determine small stiffness variations related to environmental effects or early-stage damage.493

• The studied surrogate models offer efficient and affordable solutions for real-time surrogate-based structural494

assessment of historic structures. Specifically, the mean computational time needed to perform a modal495

analysis of the 3D FEM of the Sciri Tower amounts to about 7 minutes, while the evaluation computational496

times of the RSM, Kriging and RS-HDMR models drop to about 3.2 ms, 7.2 ms, and 142 ms, respectively.497

• The temperature sensitivity of the Sciri Tower can be modelled by means of localized variations in the498

elastic moduli of macro-elements discretizing the FEM.499

• The temperature sensitivity of equivalent elastic parameters of the tower decreases with height. This be-500

haviour has been ascribed to the closure of micro-cracks induced by thermal expansion, which may cause a501

stronger effect on those regions of the structure where masonry is more heterogeneous and has larger width,502

or where volume expansion is more constrained, that is, close to the base.503

• The presented results have demonstrated that the surrogate models can accurately reproduce the positive504

correlation of the resonant frequencies of the tower with the environmental temperature. Furthermore, the505

Kriging model has proved to be superior for reproducing the low temperature sensitivities of macro-elements506

located in the uppermost part of the tower.507
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