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Abstract Graphics Processing Units (GPUs) have proven to be a powerful
accelerator for intensive numerical computations. The massive parallelism of
these platforms makes it possible to achieve dramatic runtime reductions over
a standard CPU in many numerical applications at a very affordable price.
Moreover, several programming environments, such as NVIDIA’s Compute
Unified Device Architecture (CUDA) have shown a high efectiveness in the
mapping of numerical algorithms to GPUs. These notes provide an introduc-
tion to the development of CUDA programs for numerical simulation using
CUDA C/C++, the most popular GPU programming toolkit. An overview of
CUDA programming will be illustrated through the CUDA implementation
of simple numerical examples for PDEs. These CUDA implementations will
be studied and run on modern GPU-based platforms.
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1 Introduction to GPU computing

A graphics processing unit (GPU) is a programmable single-chip processor
which is used primarily for things such as: rendering of 3D graphics scenes, 3D
object processing and 3D motion. All these tasks are computing-intensive and
highly parallel. A GPU performs arithmetic operations in parallel on multiple
data to render images. Generally, GPUs are embedded in stand-alone cards
which include their own memory. In order to use them, these cards must be
connected to the motherboard of a CPU-based computer system, by using the
suitable high speed connection (Peripheral Component Interconnect Express
bus, PCI-Express [11]).

Modern GPUs are highly programmable and can be used for non-graphics
applications. They offer hundreds or thousands of processing units optimized
for massively performing floating-point operations in parallel. In fact, they
can be a cost-effective way to obtain a substantially higher performance in
computationally intensive tasks [5, 25,26,28].

In many compute-intensive applications, there is a large performance gap
between GPUs and multicore CPUs [28]. Nowadays the peak performance of
a modern and powerful GPU is approximately seven times the peak perfor-
mance of a corresponding CPU in single precision and close to five times in
double precision [5, 21]. This is mainly due to two reasons:

• While CPUs are designed to minimize the execution latency of a single
task (latency-oriented platforms), the design goal of GPUs is to maximize
the total execution throughput of a large number of parallel tasks (they
are massively parallel throughput-oriented computing platforms).
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Fig. 1 GPU Cards

• The graphics chip memories are usually much faster than the correspond-
ing CPU chip memories.

Moreover, since massively parallel GPUs are easily accessible in compar-
ison with huge cluster-based parallel machines, GPU-based platforms have
made it possible to increase the use and spread of the high performance
computing in scientific and engineering environments.

GPU computing consists of using GPUs together with CPUs to accelerate
the solution of compute-intensive science, engineering and enterprise prob-
lems. Since the numerical simulation based on Partial Differential Equations
(PDEs) exhibits a lot of exploitable parallelism, there has been an increasing
interest in the acceleration of these simulations by using GPU-based com-
puter systems.

Initially, graphics-specific programming languages and interfaces [8, 9, 14,
16, 26, 27] were used to program GPUs. However, the use of these languages
complicates the programming of GPUs in scientific applications, and the code
obtained is difficult to understand and maintain. Later, NVIDIA developed
the CUDA programming toolkit [21] which includes an extension of the C
language which facilitates the programming of GPUs for general purpose
applications [10] by preventing the programmer to deal with the graphics
details of the GPU. Additionally, several languages and interfaces such as
OpenCL [7,12], OpenACC [24] or Thrust [4], have been developed and spread
to make the GPU computing easier.

There is a widespread use of CUDA-based platforms to accelerate numeri-
cal solvers for PDEs [1–3,6]. For this reason, these notes intend for making it
easier the exploitation of CUDA-enabled platforms to accelerate PDE-based
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numerical simulations, by providing the suitable CUDA C programming foun-
dations.

2 CUDA Introduction

The CUDA (Compute Unified Device Architecture) framework [21] is a hard-
ware and software platform that makes it possible to exploit efficiently the
potential of NVIDIA GPUs to accelerate the solution of many costly compu-
tational problems. This framework includes a unified architectural view of the
GPU and a multithreaded programming model which uses an extension to
the C programming language (called CUDA C) to implement general-purpose
applications on NVIDIA GPUs. Other languages are also supported [21] for
CUDA programming (C++, Fortran, Java, etc.).

Fig. 2 GPU system (device) as a coprocessor of the CPU system (host)

According to the CUDA framework, a GPU is viewed as a computing
device which works as a coprocessor for the main CPU (host). Both the
CPU and the GPU maintain their own Dynamic Random Access Memory
(DRAM) (see Figure 2) and it is possible to copy data from CPU memory
to GPU memory and vice versa.

3 Brief Introduction to the CUDA hardware model

In the CUDA framework, we consider that a CUDA enabled GPU is formed
by N multiprocessors (N depends on the particular GPU), each one having
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Fig. 3 Execution of multiple CUDA Threads (associated with the same function)

M processors or cores (see Figure 4) where the value of M also depends on
the specific GPU architecture (it can be 8, 32, 192, . . . ). At any clock cycle,
each core of the multiprocessor executes the same instruction, but operates on
different data. The multiprocessors of the GPU are specialized in the parallel
execution of multiple CUDA threads. A CUDA thread represents a sequential
computational task which executes an instance of a function. Each CUDA
thread is executed logically in parallel with respect to other CUDA threads
(associated to the same function but operating on different data) on the cores
of a GPU multiprocessor (see Figure. 3).

3.1 CUDA Memory Model

A CUDA thread that runs on a multiprocessor of the GPU has access to the
following memory spaces (see Figure 4):

• On-chip memories:

– Registers: Each thread has its own readable and writeable registers.
Each GPU model has a particular number of registers per multiproces-
sor, which are split and assigned to the threads that run concurrently
on that multiprocessor.

– Shared memory: Each multiprocessor includes a small memory (between
16 and 48 KB) called shared memory. This memory is readable and
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Fig. 4 CUDA hardware model

writeable only from the CUDA threads running on the particular mul-
tiprocessor of the GPU and is much faster than global memory.

• Off-chip memories (in DRAM memory): These spaces are not resident
in the GPU chip and they are shared by all CUDA threads which are being
executed on the GPU (on several multiprocessors).

– Global memory: This memory is readable and writeable from CPU and
GPU. It is slow in comparison with the shared memory due to its high
latency (500 times slower approximately).

– Constant memory: It is readable from GPU and writeable from CPU.
It is cached, making it faster than global memory if the data is in cache.

– Texture memory: It is readable from GPU and writeable from CPU.
Under several circumstances, the use of the texture memory can provide
performance benefits because it is cached (there is a small texture cache
memory for each multiprocessor) and optimized for 2D spatial locality.
Texture cache size varies between 6 and 8 KB per multiprocessor.
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Fig. 5 Thread array for a naive CUDA kernel

4 CUDA Programming Model

4.1 CUDA kernels and Threads

In order to specify the function to be executed by each thread on the GPU,
CUDA C allows the programmer to define special C functions, called CUDA
kernels. A CUDA kernel function is called from the CPU and is executed N
times on the GPU by an array of N CUDA threads (see Figure 5).

CUDA Threads are extremely light because they exhibit a very fast cre-
ation and context switching. As a consequence, it is recommendable to use
fine-grain parallel decompositions (running very many thousands of CUDA
threads) to obtain high efficiency.

Every thread executes the same code (the kernel function) but the specific
action (and the data subdomain which is processed) to be performed depends
on the thread identifier. The thread identifier can be obtained from the built-
in variable threadIdx and is used to compute memory addresses and take
control decisions (see Figure 5).

Listing 1 shows a naive CUDA program which includes the declaration of
a straightforward kernel and the corresponding kernel launch statement. The
kernel (VecAdd) is used to add two vectors (with N floating point elements),
A and B, obtaining the result in a vector C. As can be seen, a kernel function
is declared using the modifier __global__ and it must return void type. We
can see that each thread of the kernel computes one element of the output
vector C. In order to launch a kernel, the programmer must specify several
parameters which determine, in particular, the number of CUDA threads
which are to be created to execute it. In this example, the kernel invocation
code indicates that an array ofN threads (one for each element of the vectors)
is launched on the GPU. The number and organization of the threads used
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...
__global__ void VecAdd(float* A, float* B, float* C)
{ int i = threadIdx.x;

C[i] = A[i] + B[i]; }
...
int main()
{

...
// Kernel call with N Threads
VecAdd <<<1, N>>> (A, B, C);

}� �
Listing 1 Outline of a naive one-block CUDA program to add two vectors

to execute a kernel is given by several parameters between <<< and >>> as
we will see later.

4.2 CUDA Thread Organization. Grids and Blocks

The set of CUDA threads which are created in a kernel launch is organized
forming a grid of thread blocks that run logically in parallel [21].

CUDA Thread Blocks

Each thread is identified with a (1D, 2D or 3D) thread Index (stored in the
predefined variable threadIdx) in a thread block. A CUDA block is the unit
used to map threads to multiprocessors. Each thread block runs on a single
multiprocessor of the GPU.

Each multiprocessor can process a maximum number of blocks and each
block can include a maximum number of threads. It depends on the so-called
Compute Capability of the GPU. The predefined variable blockDim, with
type dim3, stores the block dimensions for a kernel (see Figure 6). The dim3
type is a struct with 3 unsigned integer fields (x, y and z).

The threads of a block can communicate among themselves using the
shared memory of the multiprocessors assigned to that block.

As can be seen in the naive code of Listing 1, that kernel is designed
to launch only one thread block. Consequently the size of the vectors (N)
can not be greater than the maximum number of threads per block (which
depends on the particular GPU architecture).
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Fig. 6 Structure of 1D and 2D Blocks of CUDA threads

Grid of Blocks

As we have seen, several CUDA threads which will be executed on the same
multiprocessor, are organized forming a ( 1D, 2D or 3D) matrix of threads
called block. In a similar way, all the blocks which are created in a kernel
launch are organized as a (1D, 2D or 3D) matrix called grid (see Figure 7).
In general, the grid is a 3D array of blocks but the programmer can choose
to use fewer dimensions

The number of threads per block and the number of blocks per grid used
to launch a kernel are specified with the following syntax:

<<< blocks_per_grid, threads_per_block >>>

The first parameter gives the number of thread blocks in the grid. The
second gives the number of threads in each thread block. In the program of
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Fig. 7 Grid of thread blocks

Listing 1, we run one grid with only one block of N threads. This program
would only exploit one multiprocessor of the GPU. A more practical CUDA
program to add vectors is given in Listing 2, where a one-dimensional grid
with d N256e one-dimensional blocks with 256 threads is used (see Figure 8).

� �
#define BSIZE 256
__global__ void VecAdd(float* A, float* B, float* C, int N)

{ int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i<N) C[i] = A[i] + B[i];

}
...
int main()
{
...
// Kernel call with N Threads using 256 threads 1D-blocks
VecAdd <<<ceil((float)N/BSIZE), BSIZE>>> (A,B,C,N);
...

}� �
Listing 2 A more general CUDA program to add vectors

In order to identify several parameters of a particular thread (to distinguish
it among the others), programmers can use the following predefined variables
within the kernel function:

• uint3 blockIdx: identifies the coordinates of a particular block in the
grid. The uint3 type has the same structure as dim3 (blockIdx.x,
blockIdx.y, blockIdx.z).
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Fig. 8 Mapping of a vector to one-dimensional blocks

• dim3 blockDim: identifies the dimensions of the block.
• dim3 gridDim: maintains the grid dimensions.

Using these spatial indices (including threadIdx), the programmer can
specify what particular data subdomain will be operated by each CUDA
thread. In Listing 2, these indices are used to identify what elements of the
input and output vectors are processed by a particular thread. Since not
all threads will compute elements of the output vector, a conditional if
statement is needed to test if the global index values of a thread are within
the valid range (if i ≥ N nothing is computed).

The grid and block dimensions for a kernel must be chosen by the pro-
grammer depending on the nature of the data in order to maximize ef-
ficiency. For example, to add two 2D matrices of float elements, it can
be convenient to use a 2D grid which consists of 2D blocks of threads,
where each thread computes one element of the output matrix. Figure 9
shows this type of 2D mapping to compute the addition of 45 × 45 ma-
trices. In this figure, it is assumed that we are using 16 × 16 2D-blocks
(blockDim.x = blockDim.y = 16, blockDim.z = 1). As can be seen, we
need a 3 × 3 grid of blocks (gridDim.x = gridDim.y = 3, gridDim.z = 1).
Note that we have three extra threads in the x and y directions.

Listing 3 shows an outline of a CUDA program to add N ×N matrices. In
the MatAdd kernel, we initially compute the position of the current thread in
the horizontal and vertical directions, using the built-in variables blockIdx
and threadIdx (see Figure 9). These position values (i and j) are used to
derive the global 1D index for the input and output matrices. This 1D index
is used to compute the corresponding element of matrix C if the previously
computed position values (i and j) of the thread are within the valid range.

4.3 Transparent Scalability

A CUDA thread block can be executed independently with respect the rest of
CUDA blocks of a kernel. Therefore the execution of several blocks can follow
any relative execution order. Taking into account that the thread blocks are
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Fig. 9 Mapping of a 2D grid of 16 × 16 blocks to a 45 × 45 matrix

automatically mapped onto multiprocessors by the CUDA runtime system,
this flexibility in the execution order enables the automatic adaptation of
a kernel execution to the number of multiprocessors of the available GPU
(see Figure 10). This is called transparent scalability, because the blocks are
mapped to the specific number of multiprocessors of a particular GPU in an
efficient way without any intervention from the user.

4.4 CUDA program Structure

A CUDA C program must include the code for the CPU which includes the
calls to several CUDA kernels and the specification of these kernel functions
using the suitable C extensions (see Figure 11). A kernel can only start on a
GPU when the previous CUDA function call has returned.

The qualifiers for functions which run on GPU are the following:

• The qualifier __global__ introduces a function (a kernel) which runs on
GPU (device) but is called from the host:
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...
__global__ void MatAdd (float *A, float *B, float * C, int N)

{
// Compute row index in A, B, and C
int j = blockIdx.x * blockDim.x + threadIdx.x;
// Compute column index in A, B, and C
int i = blockIdx.y * blockDim.y + threadIdx.y;
// Compute global 1D index in A, B, and C
int index=i*N+j;
// Thread computes C element if within valid range
if (i < N && j < N)

C[index] = A[index] + B[index];
}

int main()
{ .......
// Kernel Launch code
dim3 threadsPerBlock (16, 16);
dim3 numBlocks( ceil ((float)(N)/threadsPerBlock.x),

ceil ((float)(N)/threadsPerBlock.y) );
MatAdd <<<numBlocks, threadsPerBlock>>> (A, B, C, N);
}� �

Listing 3 CUDA program to add matrices

Fig. 10 Transparent scalability for CUDA Programs

� �
__global__ void Kernel_name (...) {.....}� �

• The qualifier __device__ introduces a function which runs on GPU and
is called from the GPU (device):� �
__device__ int Function_name (...) {.....}� �
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These device functions are invoked in the the kernel function.

Fig. 11 Structure of a CUDA Program

4.5 Memory Organization and variable declarations

As we introduced in 3.1, CUDA supports several types of memory. Each
memory type has usage constraints and can be used by programmers declar-
ing suitably the variables in the CUDA program. The adequate use of the
available memory types is very important to obtain a good performance in a
kernel execution. Each type of memory has different characteristics that we
can denote by:

• Functionality: it is the intended use of the memory space.
• Size: it is measured in number of Kbytes.
• Average access speed: it indicates the global efficiency in accessing data

which are allocated in the particular memory space.
• Variable declaration: it specifies how we must declare the variables

which are resident in that memory space.
• Scope: it identifies the group of threads which can access a variable which

is resident in that memory space.
• Lifetime: it denotes the phase of the program execution where the variable

(resident in that memory space) is available for use.
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Fig. 12 Memory Organization in a CUDA Program

Now we present the properties of the multiple memory spaces where CUDA
threads can access data during the execution of a CUDA program (see Figure
12):

• Registers: This memory space is used to hold variables which are fre-
quently accessed by each thread in a kernel function. Each CUDA thread
has its own private registers. The speed access to registers is extremely
high. While the capacity of the register storage is not exceeded, all scalar
variables (not arrays) declared (without qualifiers) in kernel and device
functions are placed into registers. The scope of these variables is the sin-
gle owner thread (when the thread finishes its execution, these variables
are also terminated). The number of 32-bit registers per thread and mul-
tiprocessors for several modern GPU architectures is shown in Table 1.

• Local memory: Array variables declared (without qualifiers) in a kernel
and several scalar variables (also declared without qualifiers) which exceed
the limited capacity of the register storage are not stored in registers. These
variables have the same scope and lifetime as register variables but they
are not stored into the registers (they are usually stored in DRAM device
memory). Therefore, the speed access to local memory could be very low
and this can generate long access delays.

• Shared memory: Shared memory is part of the memory space which
resides on the processor chip. This implies that the access speed is also
very high (in comparison with the access to variables resident in global
memory) but lower than accessing directly to registers. The variables res-
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ident in shared memory (shared memory variables) are accessible, to read
and write, for all the threads within the same block (the threads of the
block share that space memory) and only last for the thread block activity
period. They provide an excellent means by which threads within a block
can communicate and collaborate efficiently on computations.
In order to declare a shared memory variable in a kernel or device function,
we use the qualifier __shared__. Hence, for example, the following code
can be used to declare a shared memory vector of 32 float values in a
kernel code:� �
__shared__ float vector[32];� �

• Global memory: Variables in global memory can be written and read by
the host by calling API functions as we will see in 5.4. These variables are
located off the processor chip, into the so-called device DRAM memory
(as the local memory variables). Since the DRAM technology is used to
implement this memory, the speed access is much lower than in on-chip
memories (registers and shared memory).
The lifetime of a variable resident in global memory is the duration of the
entire CUDA application (it is shared and available for all kernels in the
application).
The __device__ qualifier is used to declare device variables which are
resident in global memory. These variables are accessible from all threads
through the entire CUDA application.� �
__device__ float Global_A[32];� �
Global memory variables can be used to implement the thread block col-
laboration in a kernel call, but the main goal of these variables is providing
a way to communicate data between different CUDA grids associated to
different kernel calls (see Figure 12).
We can define pointers to global memory data in CUDA. Thus, the pro-
grammer can declare a pointer variable in a host function (for example,
in the main function) and then to use the function cudaMalloc to allo-
cate global device memory for that pointer. For example, to declare and
allocate a pointer to a vector of 1024 integers in global memory, we can
write:� �
int numbytes = 1024*sizeof(int);
int *a_d;
cudaMalloc( (void**)&a_d, numbytes );� �
This pointer can be passed to a kernel function as a parameter. For exam-
ple, the parameters A, B and C of the kernels shown in Listings 1, 2 and 3
are samples of this class of pointers. Listing 4 shows the declaration, allo-
cation, usage in a kernel and freeing of several pointers to global memory
data.
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• Constant memory: The constant variables are global variable decla-
rations which should be outside any function in the source file. The
__constant__ qualifier is used to declare device variables in constant
memory. The following code declares a constant vector of 64 float values:� �
__constant__ float A[64];� �
These variables are accessible from all threads in a CUDA application but
only to be read. They last for the entire CUDA application. These variables
are also stored in the device DRAM memory but they are cached (using
a small cache memory) and this makes it possible to obtain high speed
access if the patterns to read the data are suitable.
These variables are used to provide input values (they will not change
during the execution) to a kernel function.

4.5.1 Global memory in modern CUDA-enabled GPUs

It is important to note that in modern CUDA-enabled GPUs, there exists an
on-chip space memory that can be partially dedicated to cache memory for
each kernel call (see Figure 13). This cache memory might reduce the global
memory access cost and avoids the explicit control of the programmer [17].

Fig. 13 Memory hierarchy in modern CUDA-enabled GPUs
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4.6 CUDA Thread Scheduling

Each active block resulting from a kernel launch is divided into warps to be
executed on the assigned multiprocessor. A warp is a group of 32 threads
(see Table 1) with consecutive indices (the thread ordering depends on
ThreadIdx) that run physically in parallel on a multiprocessor. All threads
in a warp execute the same instruction of the kernel simultaneously, following
the Single Instruction Multiple Data (SIMD) execution model.

Fig. 14 Execution of a thread block by generating several warps

When a block is assigned to a multiprocessor of the GPU, the block is split
into warps and periodically a scheduler of the multiprocessor switches from
one warp to another (without penalties). This allows to hide the high latency
when accessing the GPU device memory, since some threads can continue
their execution while other threads are waiting. Therefore, the definition of
a high number of threads when launching a kernel improves the efficiency in
the kernel execution because makes it possible to hide the latency.

The decomposition of a thread block into warps is based on thread in-
dices (the threadIdx field values). When only threadIdx.x is used (1D
blocks), the threads of a warp and its ordering is imposed by the values of
threadIdx.x. So, for example, for the CUDA program of Listing 2 (the block
size is 256 threads), the arrangement of the threads would be (Ti denotes the
thread with threadIdx.x = i):
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First warp: T0, . . . . . . . . , T31.

Second warp: T32, . . . . . . . , T63.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Last warp (8th): T224, . . . . . . , T255.

When the block size is not a multiple of 32, the last warp will be completed
with additional threads. For that reason it is usual to define a block size that
is a multiple of 32.

For a 2D or 3D block, the dimensions are mapped to a linear 1D arrange-
ment in order to decompose the block into warps. This linear order is obtained
by advancing forward firstly the x-dimension, secondly the y-dimension and
finally the z-dimension. For instance, in Listing 3, where 2D 16 × 16 blocks
are used, we would have the following arrangement (Ti,j denotes the thread
with threadIdx.x = i and threadIdx.y = j) :

First warp: T0,0, T1,0, . . . . . . , T15,0, T0,1, T1,1, . . . . . . , T15,1.

Second warp: T0,2, T1,2, . . . . . . , T15,2, T0,3, T1,3, . . . . . . , T15,3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Last warp (8th): T0,14, T1,14, . . . . . . , T15,14, T0,15, T1,15, . . . . . . , T15,15.

We can check that the mapping of threads to elements of the input and
output matrices in Listing 3 implies that the threads of a warp access to
matrix elements with are located contiguously in the global memory. This way
of mapping threads to data is very important to obtain a good performance
because makes it possible to take advantage of the on-chip cache for the
global memory space which is available in modern GPUs.

4.7 Block Thread Synchronization

Although there are no synchronization constraints between the CUDA blocks
of a kernel, CUDA provides a mechanism to coordinate the execution of the
threads in the same block, provoking a barrier-type synchronization. The
following function� �
void __syncthreads();� �
can be used to synchronize all the threads in the same block of a kernel launch.
It establishes a synchronization barrier for all the threads in a block. When
this function is called in a particular point of a kernel function, all threads in
each generated block will wait until the rest of threads also reaches the same
execution point in the kernel.
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It is used to prevent the threads from accessing variables before these have
been written by other threads, as will be seen later. This function should only
be called in a conditional code when the condition has the same evaluation
for all threads in the block.

5 CUDA C/C++ programming Interface

CUDA C/C++ is a minimal extension of C to define kernels as C++ func-
tions. In order to program with a high abstraction level in CUDA C, one
must use the CUDA runtime API [19], which provides functions to perform
the following tasks:
• To query the properties of multiple devices.
• To allocate and free device memory.
• To transfer data between host memory and device memory.

The CUDA Runtime API requires the usage of the compiler driver nvcc.
It is also possible develop CUDA programs using the CUDA driver API [18]

but it is harder to program with this interface.

5.1 Querying GPU properties

The CUDA Runtime API provides functions to find out the available re-
sources and capabilities of the underlying GPU hardware. The CUDA run-
time system numbers all the available GPUs in the system from 0 to
num_GPUs− 1.

The cudaGetDeviceCount function makes it possible to know the number
of available CUDA GPUs in a particular computer system. Thus, for instance,
to obtain the number of GPUs into an integer variable, we write:� �
int num_GPUs;
cudaGetDeviceCount ( &num_GPUs );� �

In order to know the characteristics of a particular GPU, CUDA Runtime
API provides the built-in type cudaDeviceProp which is a C structure with
fields representing different properties of a CUDA GPU. Using this type, the
function cudaGetDeviceProperties can be used to query the characteristics
of a GPU in the system. For example, this code piece:� �
cudaDeviceProp GPU_prop; int dev_id=...;
cudaGetDeviceProperties ( &GPU_prop, dev_id);� �
returns the properties of the GPU which has the number dev_id in the
GPU_prop variable. Some of the properties we can query in GPU_prop are:
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• GPU_prop.totalGlobalMem: Global memory available on device in bytes.
• GPU_prop.sharedMemPerMultiprocessor: Shared memory available per

multiprocessor in bytes.
• GPU_prop.maxThreadsPerBlock: maximal number of threads allowed in a

block (512, 1024,. . . ).
• GPU_prop.multiProcessorCount: number of multiprocessors.
• GPU_prop.maxThreadsDim[dim_id]: maximal number of threads allowed

along dimension dim_id of a block.
• dev_prop.maxGridSize [dim_id]: maximal number of blocks allowed

along dimension dim_id of a grid.
• dev_prop.warpSize: Number of threads in a warp (unit of thread schedul-

ing in multiprocessors).

The CUDA Compute Capability (CCC) indicates the architecture and fea-
tures of the particular GPU. It is defined by a major revision number and
a minor revision number X.X. Devices with the same major revision number
denote the same core architecture. Table 1 shows some features of modern
GPU architectures (Fermi, Kepler and first generation of Maxwell architec-
ture) with different CCC.

Table 1 CUDA Compute Capability of Fermi, Kepler and Maxwell GPUs

Fermi Fermi Kepler Kepler Maxwell
GF100 GF104 GK104 GK110 GM107

Compute Capability 2.0 2.1 3.0 3.5 5.0
Threads/Warp 32 32 32 32 32
Max Warps/Multiprocessor 48 48 64 64 64
Max Threads/Multiprocessor 1536 1536 2048 2048 2048

Max Blocks/Multiprocessor 8 8 16 16 16
32-bit registers/Multiprocessor 32768 32768 65536 65536 65536
Max numb. registers/Thread 63 63 63 255 255
Max numb. Threads/Block 1024 1024 1024 1024 1024

Shared memory config. 16K 16K 16K 16K 16K
48K 48K 48K 48K 48K

32K 32K 32K

5.2 Reporting errors

All CUDA API calls return an error code (with built-in type cudaError_t).
This error can be caused by:
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• Error in the API call itself. For example:� �
cudaError_t err; err=cudaGetDevice(&devID);
if (err!=cudaSuccess) {cout<<"ERROR!!"<<endl;}� �

• Error in an earlier asynchronous operation (for example in a kernel call):� �
kernel<<<blocksPerGrid,threadsPerBlock >>>(a,b,c);
err = cudaGetLastError();
if (err != cudaSuccess) {...}� �
We can get a string which describes the particular error by using the

following code piece:� �
char *cudaGetErrorString(cudaError_t)
printf("%s\n", cudaGetErrorString(cudaGetLastError()));� �
5.3 Compiling CUDA code

The CUDA compilation includes two stages [22]:

• Independent on GPU (Virtual): It generates a code written in a lower level
intermediate language called PTX code (Parallel Thread eXecution) [23].

• Physical: It generates object code for a particular GPU.

The CUDA Toolkit includes a compilation tool called nvcc, which is the
compiler driver. It performs the calls to the required compilers and tools:
cudac, g++,etc. This tool decouples CPU and GPU code. The CPU C code
must be compiled by another tool. PTX object code must be adapted to a
particular GPU architecture and CUDA Capability.

In order to execute code on devices of an specific CUDA Compute Capa-
bility, it is necessary to load code that is compatible with this CCC. Which
PTX and binary code gets embedded in a CUDA C application is controlled
by the -arch and -code compiler options or, more concisely, by using the
-gencode compiler option.

• -arch=<compute_xy>: it generates PTX code for capability x.y.
• -code=<sm\_xy>: it generate binary code for capability x.y, by default

same as -arch.

Example:� �
nvcc filename.cu -gencode arch=compute_35,

code=sm_35 -o filename� �
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This command generates binary and PTX code compatible with CCC 3.5.
Host code is generated to automatically select at runtime the most appro-

priate code.
In order to ensure 64-bit or 32-bit compatibility, we can use the following

switches:

• m64: compile device code in 64-bit mode.
• m32: compile device code in 32-bit mode.

5.4 Device Memory Management

CPU and GPU have separated memory spaces. To enable the data manage-
ment and the communication, there are runtime functions to:

• allocate and free DRAM device global memory,
• set a value in several positions of device global memory and
• transfer data between global (device) memory and host memory.

Fig. 15 Host-device memory transfer

We can use the function cudaMalloc to allocate memory device with the
following syntax:

cudaMalloc(void ** pointer, size_t numbytes)
The size_t type is an unsigned integer type used to represent the sizes of

data objects as a number of bytes.
We use cudaFree to free memory device:
cudaFree(void* pointer)
The function cudaMemset makes it possible to set a particular value in

linear device memory:
cudaMemset(void * pointer, int value, size_t nbytes)
Example: Reset all elements of a vector with 1024 integers
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int numbytes = 1024*sizeof(int);
int *a_d;
cudaMalloc( (void**)&a_d, numbytes );
cudaMemset( a_d, 0, nbytes);

...

...
cudaFree(a_d); // Free a_d when it is not needed� �

The function CudaMemcpy is used to transfer data between global memory
and host memory:� �
CudaMemcpy (void *dest, void *source, size_t nbytes,

enum cudaMemcpyKind direction);� �
This function copies nbytes bytes from the memory area pointed to by

source to the memory area pointed to by dest, where the location (host or
device) for dest and source is given by direction:

– cudaMemcpyHostToDevice: From host to device.
– cudaMemcpyDeviceToHost: From device to host.
– cudaMemcpyDeviceToDevice: Between memory global positions in device.

The invocation of this function blocks the CPU thread and only returns
when the data copy has been completed. The data transfer does not begin if
any previous CUDA call have not returned.

The program in Listing 4 shows the CUDA calls which are necessary in
order to execute the vector addition kernel. After initializing vectors A and B
(stored in a memory area pointed to by h_A and h_B), the area for the input
and output vectors in device memory is allocated using cudaMalloc (pointers
d_A, d_B and d_C). Then input vectors are transferred to the memory area
pointed to by d_A and d_B before the kernel launch. After the kernel exe-
cution, the resultant value of C, obtained in device global memory (pointed
to by d_C), must be copied to the host memory. Finally, the device memory
area pointed to by d_A, d_B and d_C is freed. Figure 16 illustrates the main
steps of this program.

5.5 CUDA Samples

To assist in the development of CUDA software, the CUDA Samples [20]
provides several examples with source code which can be useful to build a
wide range of interesting applications.
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__global__ void VecAdd(float* A, float* B, float* C,int N){ ... }
...
int main()
{ int N = ...; int size = N * sizeof(float);
float* h_A = (float*) malloc(size); float* h_B = (float*) malloc(size);
float* h_C = (float*) malloc(size);
Initialize(h_A, h_B, N);
float* d_A; float* d_B;float* d_C; cudaMalloc((void**)&d_C, size);
cudaMalloc((void**)&d_A, size); cudaMalloc((void**)&d_B, size);

// Step 1
cudaMemcpy (d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy (d_B, h_B, size, cudaMemcpyHostToDevice);

// Step 2
VecAdd <<<(ceil((float) N/BLOCKSIZE), BLOCKSIZE>>> (d_A, d_B, d_C, N);

// Step 3
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A);cudaFree(d_B); cudaFree(d_C);}� �
Listing 4 CUDA program with host-device data transfers

Fig. 16 Description of Data Transfers and Kernel Launch in a CUDA program

6 Solving the 1D Linear Advection Equation in CUDA

6.1 1D Linear Advection

The 1D advection equation [15] is the simplest hyperbolic equation and can
be written as:

∂φ

∂t
+ u

∂φ

∂x
= 0, (1)

where φ = φ(x, t) is a real function with x ∈ [a, b] and t > 0. The scalar u ∈ R
represents the speed at which information propagates along the x-direction
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and is assumed to be constant. The initial state for this equation is specified
as

φ(x, 0) = φ0(x),

and we assume periodic boundary conditions.
We can verify that the exact solution for this equation is given by

φ(x, t) = φ0(x− ut).

6.2 The Lax-Friedrichs method

We discretize the spatial and time domain using uniform grids which consist
of:

• n+ 1 spatial grid points:

xi, i = 0, . . . , n, where xi = a+ i∆x, with ∆x = b− a
n

.

• M time steps:

t1, t2, . . . , tM with a constant ∆t, (tk+1 = tk +∆t).

Now, we can define the Lax-Friedrichs finite difference scheme to approx-
imate the solution of equation (1) as follows (see [15]):

φk+1
i = 1

2
(
φki−1 + φki+1 − C(φki−1 − φki+1)

)
, (2)

C = u∆t

∆x
, i = 0, . . . , n, k = 1, . . . ,M.

In the previous scheme φ(xi, tk) denotes φki .
The boundary conditions are imposed by defining:

φk−1 = φkn, φkn+1 = φk0 .

This method is linearly stable and convergent under the usual CFL con-
dition provided |C| ≤ 1 (see [15]).

6.3 A sequential C program to implement the method

Listing 5 shows a sequential C program to approximate the 1D linear ad-
vection equation using the Lax-Friedrichs scheme on a uniform grid. As we
can see, at each time step, each data element of the output vector phi_new
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...
void swap_pointers(float * *a, float * *b)

{float * tmp=*a;*a=*b;*b=tmp;}
...
int main(int argc, char* argv[]){

// Define Delta x, Delta t and velocity (u)
int n= ... ;float dx = ...;float dt=..; float u=...
// Compute the Courant number
float cu = u*dt/dx;
//Declare the initial and final state vectors
float * phi =new float[n+3]; float * phi_new=new float[n+3];
..
Initialize(phi); // Set phi values at t=0
// Time steps
for(int k=1; k <= M; k++)
{// Impose Homogeneous Neumann Boundary Conditions
phi[index(-1)] =phi[index(n)];
phi[index(n+1)]=phi[index(0)];

//Lax-Friedrichs Update
for(int i=0;i<=n;i++)

phi_new[index(i)]=0.5*((phi[index(i+1)]+phi[index(i-1)])
-cu*(phi[index(i+1)]-phi[index(i-1)]));

swap_pointers (&phi,&phi_new);
}

...� �
Listing 5 Sequential C program which implements the Lax-Friedrichs scheme

is computed from two neighbouring input elements of vector phi. Figure 17
shows graphically the data dependencies between the input and output vec-
tors at each time step. Vector phi includes elements at the edges to store the
ghost values needed to perform the stencil computation.

After each state vector update the pointers, phi and phi_new, must be
swapped (using the swap_pointers function), because the state vector com-
puted in a time step will be the previous state vector in the next time step.

Fig. 17 2-point stencil of the Lax-Friedrichs method
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6.4 A CUDA Linear Advection solver

Since the calculation of all output elements of phi_new for a time step can
be done in parallel (see Listing 5), we can assign a different thread to the
computation of each element of phi_new at each time step. We will need to
use at least n + 1 threads and the body of each thread is given by a kernel
function with four arguments:

• a pointer to array, d_phi, denoting the initial state vector (φk in Equation
(2)),

• a pointer to array, d_phi_new, denoting the new state vector φk+1,
• an integer cu representing the value of the Courant number (cu = u∆t

∆x ),
• the integer value n, which denotes the value of n in Equation (2)).

The definition of this kernel function is given in Listing 6.

� �
__global__ void FD_kernel1(float * d_phi,

float * d_phi_new,
float cu, int n)

int i=threadIdx.x+blockDim.x*blockIdx.x+1;

// Lax-Friedichs Stencil
if (i<n+2)

d_phi_new[i]=0.5*((d_phi[i+1]+d_phi[i-1])
-cu*(d_phi[i+1]-d_phi[i-1]));

// Impose Boundary Conditions
if (i==1) d_phi_new[0]=d_phi_new[n+1];
if (i==n+1) d_phi_new[n+2]=d_phi_new[1];� �

Listing 6 CUDA kernel to apply the Lax-Friedrichs method stencil

As can be seen in Listing 6, we follow a similar approach as the vector
addition kernel (see Listing 2). All threads read two elements of the same
input vector except for two threads which read an additional element to
impose the boundary conditions. The work of threads which are not assigned
to elements of d_phi_new is avoided (threads verifying that i ≥ n+ 2). The
same threads which have computed the values close to the edges of d_phi_new
(positions 1 and n+1) impose the boundary conditions by assigning values on
the edges of d_phi_new.

Listing 7 shows a CUDA C program to implement the Lax-Friedrichs
scheme using the previously introduced kernel (FD_kernel1). Before launch-
ing the kernel, the memory of the input and output state vectors (d_phi and
d_phi_new) must be allocated on the device using calls to cudaMalloc().
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Using cudaMemcpy(), the initial values of the state vector (computed by call-
ing a initialization function) are copied to the device memory. Then, at each
time step, we launch the FD_kernel from the host code by using blocks of
256 threads. After each kernel launch the memory device pointers, d_phi
and d_phi_new, must be swapped. Finally, when the time integration loop
has finished, the final state vector is copied from device memory to the host
memory.

� �
#define BLOCKSIZE 256

... //FD_kernel function definition

int main(int argc, char* argv[]){
int size=(n+3)*sizeof(float);
float * d_phi=NULL; float * d_phi_new=NULL;
cudaMalloc((void **) &d_phi, size);
cudaMalloc((void **) &d_phi_new, size);

Initialize(phi); // Set phi values at t=0

cudaMemcpy(d_phi,phi,size,cudaMemcpyHostToDevice);
// Time Steps
for(int k=1; k <= M ;k++)
{

int blocksPerGrid =(int) ceil((float)(n+1)/BLOCKSIZE);

// ********* CUDA Kernel Launch ************************************
FD_kernel1<<<blocksPerGrid, BLOCKSIZE >>> (d_phi, d_phi_new, cu, n);

swap_pointers (&d_phi,&d_phi_new);
}

cudaMemcpy(phi_GPU, d_phi, size, cudaMemcpyDeviceToHost);
...

}� �
Listing 7 CUDA program to implement the Lax-Friedrichs method

6.5 A tiled CUDA Advection solver

In the kernel of Listing 6, the ratio of floating-point calculations regarding
with the global memory accesses is low. This prevents us from achieving high
performance. One approach that could improve the performance consists of
managing the shared memory which is much faster than global memory. This
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involves to replace global memory accesses with shared memory accesses (into
each block). This approach frequently involves a reorganization of the code
to enable the reuse of data which are placed in shared memory.

The typical approach to use shared memory in order to reduce the traffic
to global memory consists of two steps:

1. The input data elements are organized in small pieces, called tiles.
2. Threads of a thread block collaborate to load a tile into shared memory

before the threads use these elements.
3. Once the threads of the same block have loaded its corresponding tile,

they re-use the elements by accessing the shared memory.

In these so-called tiled algorithms [13], the size of the tiles must be chosen
to fit into the shared memory (which is quite small).

In order to apply this approach to the Lax-Friedrichs kernel of Listing 6,
we can load all input elements of d_phi, which are needed to compute all
output elements of d_phi_new for a thread block, into the shared memory.
The number of elements to be loaded must be equal to BLOCKSIZE + 2 be-
cause we need two additional elements at the edges to compute BLOCKSIZE
elements of d_phi_new. Listing 8 shows the tiled kernel which implements
this computation.

Initially, a shared memory array with BLOCKSIZE + 2 elements, s_phi,
is declared to hold all elements to be loaded in order to compute the corre-
sponding BLOCKSIZE elements of d_phi_new. Then the tile is loaded in shared
memory in two phases (see figure 18):

a) All threads in the block load in parallel the internal elements of the input
tile (without taking into account the elements on the edges).

b) The first and last threads in the block loads the elements at the edges of
the tile (the halo elements).

After loading the tile in shared memory, it is necessary to make sure
that all threads in a block have finalized the load before using the tile to
compute the output data elements. This is done by invoking the function
__syncthreads() .

When the tile is completely loaded for the particular thread block, we can
compute the output BLOCKSIZE elements of d_phi_new reading only elements
of s_phi.

Finally, the boundary conditions are imposed in a similar way as in List-
ing 6,
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