
Thesis

Automatic Text Categorization of

documents in the High Energy Physics

domain

Dr. Luis Alfonso Ureña-López (supervisor)
Dr. Ralf Steinberger (supervisor)

Arturo Montejo-Ráez (author)

15 December, 2005

2

USER
Editor: Editorial de la Universidad de GranadaAutor: Arturo Montejo RáezD.L.: Gr. 285- 2005ISBN: 84-338-3718-4

Contents

Contents 3

List of Figures 9

List of Tables 13

1 Preface 15

1.1 Acknowledgements . 15

1.2 Content overview . 16

2 CERN and the assignment problem 19

2.1 The paradigm: High Energy Physics research 19

2.1.1 The European Laboratory for Particle Physics 19

2.1.2 The CERN Document Server 20

2.2 The problem: Keyword assignment process 21

2.2.1 Subject keys in traditional information systems 22

2.2.2 Thesauri . 24

2.2.3 DESY’s thesaurus . 27

2.3 The approach: supervised text categorization 28

3 Text Categorization and Machine Learning 31

3.1 Notation and definitions . 33

3.2 Architecture for a text categorization system 36

4 Feature extraction 41

4.1 Feature identification . 41

3

4 CONTENTS

4.1.1 Bag of words (BOW) . 42

4.1.2 Multi-word recognition . 43

4.1.3 Summarization based . 45

4.2 Feature weighting . 46

4.2.1 TF.IDF weighting . 47

4.2.2 Entropy weighting . 47

4.2.3 Other weighting measures 48

5 Dimensionality reduction 49

5.1 DR by feature selection . 49

5.1.1 Summarization for feature selection 50

5.1.2 Information Gain . 51

5.1.3 Other techniques . 55

5.2 DR by feature transformation . 55

5.2.1 Term clustering . 56

5.2.2 Latent Semantic Indexing 56

6 Classifiers 59

6.1 Classification using binary classifiers 60

6.2 Classifiers overview . 62

6.3 Bounding the error . 64

6.4 Näıve Bayes . 65

6.5 Linear classifiers . 66

6.5.1 Basic classifiers . 67

6.5.2 Logistic regression . 69

6.5.3 Support vector machines 69

6.5.4 Perceptron learning algorithm with uneven margins . . . 71

6.6 Boosting algorithms . 72

6.7 Thresholding . 74

7 Evaluation 77

7.1 Computing global measures . 79

7.1.1 Macro-averaging . 79

CONTENTS 5

7.1.2 Cross validation . 80

7.2 Statistical tests . 80

7.3 Final considerations . 81

8 Applications of key word assignment 83

8.1 Human manipulation of key words 84

8.1.1 Browsing . 84

8.1.2 Searching . 85

8.2 Using key words for automated computer-based manipulation . . 86

9 Current working systems 89

9.1 Approaches . 89

9.1.1 BIOSIS . 90

9.1.2 MeSH . 90

9.1.3 NASA MAI System . 91

9.1.4 Eurovoc . 92

9.1.5 Others . 93

9.2 The High Energy Physics domain 94

9.2.1 The AIR/PHYS System 94

9.2.2 Citometer . 95

9.2.3 SPIRES-HEP . 95

9.2.4 Sokrates . 96

9.2.5 HEPindexer . 97

9.3 Some remarks . 99

10 TECAT: the Text Categorization Toolkit 101

10.1 Introduction . 101

10.2 Architecture . 102

10.3 Collection preparation . 103

10.4 Document representation . 104

10.5 Classifiers learning . 105

10.5.1 Specifying base binary classifiers 106

10.5.2 Specifying selection measures 106

6 CONTENTS

10.5.3 Computing the S-Cut threshold 107

10.6 Testing/classification . 107

10.7 Parameters overview . 109

11 The HEP collection 113

11.1 Overview . 113

11.2 Data format . 114

11.3 HEP-EX partition . 121

12 Experiments 123

12.1 EXP 12.1 - Establishing the evaluation framework 123

12.1.1 Configuration . 123

12.1.2 Results with Rocchio . 125

12.1.3 Results with PLAUM . 126

12.1.4 Results with SVM . 127

12.1.5 Analysis of results . 127

12.2 EXP 12.2 - Comparing different base classifiers 133

12.2.1 Configuration . 133

12.2.2 Results . 134

12.2.3 Analysis of results . 136

12.3 EXP 12.3 - Use of bigrams detection 137

12.3.1 Configuration . 137

12.3.2 Results . 140

12.3.3 Analysis of results . 140

12.4 EXP 12.4 - Stemming and stop words removal 142

12.4.1 Configuration . 142

12.4.2 Results . 143

12.4.3 Analysis of results . 144

12.5 EXP 12.5 - Dimensionality reduction 145

12.5.1 Configuration . 145

12.5.2 Results . 146

12.5.3 Analysis of results . 150

12.6 EXP 12.6 Evaluating weighting schemes 150

CONTENTS 7

12.6.1 Configuration . 151

12.6.2 Results . 154

12.6.3 Analysis of results . 156

12.7 EXP 12.7 - Dealing with Imbalance 156

12.7.1 The class imbalance problem 156

12.7.2 Balance weighting and classifier filtering 159

12.7.3 Configuration . 161

12.7.4 Results . 162

12.7.5 Analysis . 163

12.7.6 Conclusions and future work 166

12.8 EXP 12.8 - Integrating meta-data information 167

12.8.1 Configuration . 167

12.8.2 Results . 170

12.8.3 Analysis of results . 172

12.9 EXP 12.9 - Selection: Ranking versus Boolean 174

12.9.1 Configuration . 174

12.9.2 Results . 175

12.9.3 Analysis of results . 177

12.10EXP 12.10 - Tests over additional HEP corpora 178

12.10.1Configuration . 178

12.10.2Results . 179

12.10.3Analysis of results . 181

12.11EXP 12.11 - Real-time multi-labeling 181

12.11.1Configuration . 181

12.11.2Results . 182

12.11.3Analysis . 183

12.12EXP 12.12 - TECAT on EUROVOC data 184

12.12.1The corpus . 184

12.12.2Configuration . 185

12.12.3Results . 186

12.12.4Analysis . 186

13 Conclusions and future work 189

8 CONTENTS

13.1 HEP collection: a new and challenging corpus for multi-labeled
text categorization research . 190

13.2 Adaptive selection of base classifiers 191

13.3 Metadata records: an informationally rich source 191

13.4 Practical product result: TECAT software 192

13.5 Open issues and future research 194

Bibliography 197

A The DESY thesaurus 209

B TECAT command line usage 215

C The Wilcoxon test 221

Index 225

List of Figures

2.1 The manual indexing process: an expert is responsible of reading
the text and selecting those topics from the thesaurus that best
represent the content of the document. 22

2.2 Average number of papers weekly submitted to CDS per year . . 23

2.3 Excerpt from Eurovoc thesaurus 26

2.4 Excerpt from DESY thesaurus 27

3.1 Paradigms in text categorization: binary, multi-class and multi-
label cases. 32

3.2 Architecture for a text classification system. 38

4.1 Some bigrams with their mutual information value MI(x, y) and
their frequencies. 45

6.1 Two possible margins that linearly separate positive and negative
samples. σi would be preferred since it represents better the
distinction between classes (widest margin). 70

6.2 The PLAUM learning algorithm 72

6.3 AdaBoost algorithm . 73

9.1 Examples of associative patterns in an APD 96

10.1 Training process in TECAT. 103

10.2 Classification process in TECAT. 108

10.3 Sample output of TECAT test results 108

10.4 Sample parametrization of TECAT for a potential experiment . . 111

11.1 Sample for a High Energy Physics document. 114

9

10 LIST OF FIGURES

11.2 Sample for meta-data information in XML format. 116

11.3 Sample for metadata information in XML MARC format. 118

11.4 Basic data flow within TECAT 119

11.5 Distribution of classes across documents in the hep-ex partition. 119

11.6 The ten most frequent main key words in the hep-ex partition . . 120

12.1 Number of folds Vs. standard deviation in cross-validation for
Rocchio algorithm . 126

12.2 Number of folds Vs. range in cross-validation for Rocchio algorithm127

12.3 Number of folds Vs. standard deviation in cross-validation for
PLAUM algorithm . 128

12.4 Number of folds Vs. range in cross-validation for PLAUM algorithm129

12.5 Number of folds Vs. standard deviation in cross-validation for
SVM algorithm . 130

12.6 Number of folds Vs. range in cross-validation for SVM algorithm 130

12.7 Number of folds Vs. range in cross-validation for SVM algorithm 131

12.8 Number of folds Vs. standard deviation of precision in cross-
validation for Rocchio, PLAUM and SVM algorithms 131

12.9 Number of folds Vs. standard deviation of recall in cross-validation
for Rocchio, PLAUM and SVM algorithms 132

12.10Performance of different strategies for base classifier candidates . 136

12.11Influence of multi-word detection on abstracts corpus for the
Rocchio algorithm using (a) mutual information ranked list, or
(b) frequency ranked list . 141

12.12Influence of multi-word detection on abstracts corpus for the
PLAUM algorithm using (a) mutual information ranked list,
or (b) frequency ranked list . 141

12.13Influence of multi-word detection on full-text corpus for the PLAUM
algorithm using (a) mutual information ranked list, or (b) fre-
quency ranked list . 142

12.14Influence of (a) document frequency and (b) information gain
filters on abstracts corpus using PLAUM learning algorithm . 147

12.15Influence of (a) document frequency and (b) information gain
filters on abstracts corpus using Rocchio learning algorithm . . 148

12.16Influence of (a) document frequency and (b) information gain
filters on fulltext corpus using PLAUM learning algorithm . . 149

LIST OF FIGURES 11

12.17Influence of (a) document frequency and (b) information gain
filters on fulltext corpus using Rocchio learning algorithm . . . 149

12.18Influence of cosine normalization on performance (F1 measure) . 156

12.19The linear ’imbalance degree’ function 158

12.20Imbalance degree of classes in the hep-ex partition 158

12.21The one-against-all learning algorithm with classifier filtering . . 160

12.22Influence of filtering on multi-weighted SVM with S-cut thresh-
olding . 164

12.23Influence of filtering on auto-weighted with S-cut thresholding 164

12.24Influence of the frequency of use of a class on the performance
obtained for that class . 165

12.25Sample for metadata information in XML DC format. 168

12.26Comparison of sorted measures for each source over precision,
recall, F1 and accuracy . 173

12.27Rank strategy results for PLAUM algorithm 176

12.28Rank strategy results for Rocchio algorithm 177

12.29(a) Number of classes trained and tested and (b) number of docs
for each collection . 180

12.30Performance measures obtained by TECAT over each collection . 180

12.31Classification steps within TECAT 182

12.32Inner imbalance degree for 200 most frequent classes 184

13.1 Sample for metadata information in XML DC format. 193

13.2 Main DESY key words manually assigned to sample at figure 13.1 193

13.3 Main DESY key words automatically assigned by TECAT to sam-
ple at figure 12.25. They are preceded by their associated Clas-
sification Status Value (in this sample, returned by the PLAUM
algorithm). 193

12 LIST OF FIGURES

List of Tables

4.1 Some bigrams candidates with their part of speech (POS) tags
and the decision taken. 44

12.1 Parametrization of TECAT for experiment 12.1 124

12.2 Number of folds assigned to each subset depending on the total
number of folds considered. 125

12.3 Parametrization of TECAT for experiment 12.2 134

12.4 Base classifiers configuration . 135

12.5 Results of experiments with different configurations 135

12.6 Classification speeds (in seconds) for TECAT using PLAUM on
the hep-ex partition . 135

12.7 Parametrization of TECAT for experiment 12.3 138

12.8 Results in experiment 12.3 using abstracts corpus 139

12.9 Results in experiment 12.3 using full-text corpus 139

12.10Parametrization of TECAT for experiment 12.4 143

12.11Results in experiment 12.4 using Widrow-Hoff algorithm 143

12.12Results in experiment 12.4 using Rocchio algorithm 144

12.13Results in experiment 12.4 using PLAUM algorithm 144

12.14Parametrization of TECAT for experiment 12.5 145

12.15Different values tried for both abstracts and fulltext corpora . . . 146

12.16Parametrization of TECAT for experiment 12.6 153

12.17Results for various weighting schemes in experiment 12.6 using
Widrow-Hoff algorithm . 154

12.18Results for various weighting schemes in experiment 12.6 using
Rocchio algorithm . 155

13

14 LIST OF TABLES

12.19Results for various weighting schemes in experiment 12.6 using
PLAUM algorithm . 155

12.20Parametrization of TECAT for experiment 12.4 161

12.21Results of experiments using SVM without filtering 162

12.22Results of experiments using multi-weighted SVM with filtering 162

12.23Results of experiments using auto-weighted S-Cut threshold-
ing SVM with filtering . 163

12.24Parametrization of TECAT for experiment 12.8 169

12.25Ten most frequent categories . 170

12.26Tailored Wilcoxon test over precision 170

12.27Tailored Wilcoxon test over recall 171

12.28Tailored Wilcoxon test over F1 171

12.29Tailored Wilcoxon test over accuracy 171

12.30Macroaveraged measures for all classes in presented experiments 172

12.31Parametrization of TECAT for experiment 12.9 175

12.32Performance measures registered for PLAUM and Rocchio algo-
rithms using ranking strategy . 176

12.33Parametrization of TECAT for experiment 12.10 179

12.34Relation of classes and documents by corpus 179

12.35Parametrization of TECAT for experiment 12.11 183

12.36Global statistics for hep-ex corpus classification 183

12.37Inner imbalance degree (IID) for ten most frequent classes in the
EUROVOC corpus . 185

12.38Parametrization of TECAT for experiment 12.12 186

12.39Classification results for ten most frequent key words using EU-
ROVOC collection . 187

C.1 Wilcoxon procedure example . 222

C.2 Critical values for W statistic for the Wilcoxon Signed-Ranks
test for different numbers of subsets n at significance p=0.05.
For significance, W must be less than or equal to the critical value.223

Chapter 1

Preface

“Necesaria es la experiencia para saber cualquier cosa”

El Libro de Oro, Séneca

This research aims studying the possibility of an automatic method for key
word assignment from a controlled vocabulary to documents in the domain of
High Energy Physics, and proposing a real solution as result of such study. The
problem was detected to be a text categorization problem, where key words are
the considered categories. During the development of this work, done mostly at
CERN, the European Organization for Nuclear Research1, the document col-
lection presented several problems not covered by the literature. This expressed
the need of a solution that could not be just a prototype used for testing the
hypothesis proposed along this work.

The results of the final and implemented solution as product of the research
have turned into a wide range of applications, giving me the pleasant impres-
sion of usability we may lack in pure research. The reader will find in this text
how exciting this task was, but something that cannot be included here is the
personal enrichment acquired by working in an international environment to-
gether with a team focused on bringing top computer-based techniques to the
user community of the CERN library.

1.1 Acknowledgements

This research was started at the European Laboratory for Particle Physics, when
I received an scholarship from the Spanish Ministry of Science and Technology,
within the programme “Becas de Formación para Personal Investigador en el
Extranjero” (FPIE). After this two year period I continued my work at CERN

1Also known as European Laboratory for Particle Physics

15

16 CHAPTER 1. PREFACE

under the Doctoral Student Programme. I am also member of the SINAI2

group at the Department of Computer Science of the University of Jaén, who
is partially supported by Spanish Government (MCYT) with grant TIC2003-
07158-C04-04.

If working at CERN has been very pragmatical, being distanced from my
PhD directors has been a main drawback. The continuous interchange of ideas
and results, the track of development and experiments has suffered from such
reality and, although it did not block the process, certain delays were introduced
as consequence. But the enthusiasm by which both of them believed in my work
pushed me towards the right direction in many times. I have to start, therefore,
giving my acknowledgements to Lúıs Alfonso Ureña López (University of Jaén,
Spain) and Ralf Steinberger (Joint Research Center, European Commission,
Ispra, Italy) for being the experts behind the novice.

The support of the CERN Document Service team has being enormous,
funding me for more than two years. I have to mention here Jens Vigen, CERN
Library leader and Jean-Yves Le Meur, CERN Document Service leader both
for supervising this work from the practical and technical point of view. Also my
thanks to David Dallman, Tibor Simko and Corrado Pettenati for their sincere
interest in the project. I would like to give my acknowledgements to Robert
Cailliau, leader of the Web Public Education group, and Juan Antonio Rubio,
leader of Education and Technology Transfer division (ETT), for hiring me in
their team allowing this research to be completed at CERN.

In addition to this people, my thanks to the Department of Computer Science
in the University of Jaén and specially the rest of the SINAI group. This
fantastic team will produce some of the best advances in Information Retrieval
in the future, I am certainly sure about that.

A special and beloved mention to my wife, Cristina, who has being close to
me and has given me all her strength for staying in Switzerland and finishing
this work successfully. She has suffered this research even more than me. I will
never forget her support and how much she has believed in me even during the
most difficult periods.

Finally, I dedicate this dissertation to my father, who left us during the
development of this research. He will not be able to be proud of me as he used
to be no matter what I do, so I will be forever proud of him and proud of
my mother for having worked hard all their life to give me the opportunity of
becoming what I wanted to be.

1.2 Content overview

The text is organized in a classical manner, introducing the problem with its
paradigms, current system and theoretical analysis, and proposing later a set of

2http://sinai.ujaen.es

1.2. CONTENT OVERVIEW 17

experiments to validate the offered approach.

This work focuses on the problem of automatic indexing of electronic versions
of documents in a multi-label way (several classes per document). It deals
mainly with a collection of High Energy Physics (HEP) related papers taken
as samples from the vast digital library of CERN. This collection shows certain
properties which deserved the special attention that motivated present research.

In chapter 2 a detailed introduction to the framework where this research
takes place is provided, describing CERN and its documentary issues and prob-
lems. Also a general overview of the human indexing process based on the
use of thesauri is presented. In chapter 3 the reader will find an overview of
the research area facing the problem of automatic categorization of text docu-
ments, along with notational conventions and the architecture that represents
our proposal for text categorization of multi-labeled collections with high class
imbalance degree.

Unveiling the different techniques involved in automatic text classification by
using supervised learning algorithms will take chapter 3. Chapter 4 introduces
some feature extraction approaches. Chapter 5 provides different strategies for
reducing the number of features used to represent a text document. Finally,
chapter 6 explains how the multi-label classifier is built up from known base
classifiers.

In chapter 7, evaluation issues and related discussion are proposed. Chap-
ter 8 analyzes in detail all the current and potential practical applications of
these automated systems, exploring the wide range of possibilities offered by
computer based categorization. Later on, in chapter 9, an historical review of
existing solutions and systems in production follows, pointing out their major
benefits and drawbacks.

The second part of the text really defines the proposed solution to the prob-
lem of multi-label assignment. It starts at chapter 10, where our system is de-
composed to ease describing every single process involved. The data handled is
introduced and its properties detailed at chapter 11. At this point, we are ready
to being with chapter 12, containing the huge experimental work performed on
the former data, to study the feasibility of the general model proposed. These
experiments (from section 12.1 to section 12.11) are intended to treat almost
every single aspect involved in the empirical definition of our approach. Last
documented experiment (section 12.12) studies the behaviour of our system on a
totally different set of data, not related to High Energy Physics (HEP) research.

Finally, chapter 13 summarizes main conclusions stated during the whole
text, and establishes possible future trends and open issues for multi-label au-
tomatic categorization of documents. The work ends with the bibliography
followed during the our research and a set of appendices with further additional
information of aspects of this work that we have considered were worth detailing
to enhance the clarity of the text.

18 CHAPTER 1. PREFACE

Chapter 2

CERN and the assignment
problem

2.1 The paradigm: High Energy Physics research

2.1.1 The European Laboratory for Particle Physics

In 1951, a provisional body was created called the “Conseil Européen pour la
Recherche Nucléaire” (CERN). This was a council: a body of people. In 1953
the Council decided to build a central laboratory near Geneva. At that time,
pure physics research concentrated on understanding the inside of the atom,
hence the word “nuclear”.

The official name of the laboratory is European Organization for Nuclear
Research. It is the largest particle physics centre in the world. At this cen-
tre physicists come to explore what matter is made of and what forces hold it
together. It exists primarily to provide them with the necessary tools: accel-
erators. These machines accelerate particles to almost the speed of light and
detectors to make the particles visible. The accelerator complex at CERN is
a succession of machines with increasingly higher energies, injecting the beam
each time into the next one, which takes over to bring the beam to an energy
even higher, and so on. The flagship of the complex will be the Large Hadron
Collider.

The scientific and technical staff designs and builds the laboratory’s intricate
machinery and ensures its smooth operation. It also helps prepare, run, analyse
and interpret the complex scientific experiments. Some 6500 visiting scientists,
half of the world’s particle physicists, come to CERN for their research. They
represent 500 universities and over 80 nationalities. CERN was founded thanks
to the joint efforts of 12 European States. Nowadays, thanks to this venture,

19

20 CHAPTER 2. CERN AND THE ASSIGNMENT PROBLEM

most of the European countries have the chance to participate in the world’s
most advanced physics experiments without consuming an unacceptable fraction
of their national science budget.

Founded in 1954, the laboratory was one of Europe’s first joint ventures and
includes now 20 Member States. CERN employs just under 3000 people, repre-
sentatives of a wide range of skills - physicists, engineers, technicians, craftsmen,
administrators, secretaries, workmen, and more. The central role is played by
researchers from all around the world working in basic science exploring the
basic components of the Universe. For these reasons the scientific production of
CERN is huge.

2.1.2 The CERN Document Server

Actually the CERN Document Server (CDS)1 is a reference catalogue, repos-
itory and digital library for High Energy Physics (HEP) publications. Its
database contains more than 660,000 records and 320,000 full-text documents
organized into more than 500 different collections covering pre-prints, articles,
books, journals, photographs, and much more.

The main services offered by CDS are:

1. Search. Permits to search through bibliographic information and full-text
documents stored in CDS databases. Offers personal baskets, email alerts,
and more.

2. Submissions. Permits the electronic submission of documents from inside
and outside of CERN.

3. Conversion. Offers a possibility to convert user-uploaded documents to
different document formats (PDF, Microsoft Word, etc.).

4. Scanning. Offers a possibility to have your paper-based documents scanned.
(CERN Intranet only).

5. Agenda. Offers resources to plan meetings and workshops, to store pre-
sentations and minutes.

6. Webcasting. Archived videos of presentations done at CERN as well as a
real-time webcasting of events.

7. Bulletin. Electronic version of the CERN Weekly Bulletin.

The data stored in the CDS server is a massive collection of multimedia
information including pictures, full-text documents, videos, presentations, and
other information. All this data is indexed within the catalogue and accessible

1http://cds.cern.ch/

2.2. THE PROBLEM: KEYWORD ASSIGNMENT PROCESS 21

from a common interface. Searching and browsing by the user is independent
of the nature of the document. Due to the amount of data available, we can
understand why they are interested to profit from such an enriched database to
even to the point of performing data-mining operations (clustering, text classi-
fication, ranked searches, and so on).

Almost the totality of software used to build up CDS is based on Open
Source solutions. The CDS team releases the software used under the CDSware
package. The CERN Document Server Software (CDSware) is the software
developed by, maintained by, and used at, the CERN Document Server. It
allows you to run your own electronic pre-print server, your own on-line library
catalogue or a document system on the web. It complies with the Open Archives
Initiative meta-data2 harvesting protocol (OAI-PMH) and uses MARC 21 as its
underlying bibliographic standard. The CDSware is free software, licensed under
GNU General Public Licence (GPL)3.

2.2 The problem: Keyword assignment process

In the HEP environment many papers are written, they come under the form
of final articles or pre-prints. The problem of their storage is resolved in several
ways: storing a new record on paper with meta-data about the item, or using
a large database. Relational databases deal with such a problem efficiently.
The searching for a document turns to be a problem implying a more complex
solution. How to reach a document among thousands, even millions? If we are
looking for an exact item, that is, we know perfectly what we want, then the
database system should be more than enough to retrieve for you the desired
document. But if we do not know exactly which documents can be the answer
to our information needs, then it is not so easy to retrieve a good set of relevant
documents.

Traditionally at libraries, indexes and categories are used to “label” docu-
ments in such a way a user can try to search using this added meta-data in
order to find items more or less related to some premises. For example, a user
could need documents talking about technical tips on motors and cars. Using a
subject tree, that is, a hierarchy of categories, he could follow a path in the tree
of categories until reach a branch with a limited set of documents where he can
start a deeper search. Users may follow the Universal Decimal Classification.
It is an indexing and retrieval language in the form of a classification for the
whole of recorded knowledge, in which subjects are symbolized by a code based
on Arabic numerals. He could limit his search to the category 68 (assembled
articles and precision mechanisms, under the category 6, technology).

Even a very small space of searching with few documents can require hard
work to review each item in it. To address this problem more meta-data is

2More info at http://www.openarchives.org/
3Details at http://www.gnu.org/licenses/gpl.html

22 CHAPTER 2. CERN AND THE ASSIGNMENT PROBLEM

Figure 2.1: The manual indexing process: an expert is responsible of reading
the text and selecting those topics from the thesaurus that best represent the
content of the document.

added to items in order to facilitate the task of “over-viewing” because often
the title is not enough to determinate if an item is relevant or not. A common
way to do this is to attach some “key words” to the document. These key words
try to synthesize the content of the document in few words (from ten to twenty
key words usually).

2.2.1 Subject keys in traditional information systems

If we had to organize our personal library, what sort of ideas we would try
in order to achieve well organized shelves? Maybe one of the first ideas is to
group books by theme, then to label them and put those references in a kind
of index. Later on we might find we have so many books that it is better to
arrange them by size (actually, large repositories do so). Anyhow, at the end,
we will have to index them, in one way or another. Now the question must
be: which indexes should I use?. It is not an easy task to define them, because
several considerations must be taken into account. Vickery already emphasizes
this reality ([122]):

The problem of subject representation is therefore far less straight-
forward than other aspects of document description.

2.2. THE PROBLEM: KEYWORD ASSIGNMENT PROCESS 23

Figure 2.2: Average number of papers weekly submitted to CDS per year

In the beginning, the use of key words in information storage and retrieval
was due to two major needs: the need for classification and the need for retrieval.
The former one had a double benefit: first, it let librarians organize physical
volumes into logical clusters; second, the possibility of search within a defined
cluster was regarded as a way to speed up the searching for information (as
pointed by the so called cluster hypothesis of Rijsbergen [118]).

Hence, two major goals of key-word assignment are:

1. Select records in a file that deal with a specific topic

2. Group in proximity in a file records of similar subjects

The use of alphabetical terminologies and classification structures (known as
thesauri) were invented as tools to improve the two main measures in informa-
tion retrieval: precision and recall. They refer to quality of retrieved documents.
Precision is the number of relevant documents retrieved over the total number of
documents retrieved. Recall is the number of relevant documents retrieved over
the total number of relevant documents in the collection. These two measures
show the problem of an antagonistic relationship: usually, if we try to improve
one of them the other will decay. For example, if we retrieve the whole collection
as answer for a given query, our recall will be 100% of course, but our precision
will be so low that the result will be untreatable. The challenge resides then in
finding a method which shows a good performance for both measures.

In earlier retrieval systems, the use of some techniques aim to improve these
two values for a defined retrieval system; i.e. the implementation of these tech-
niques must be oriented to the purpose and content of the retrieval system. The
techniques traditionally used rely on setting relationships between words in a
controlled vocabulary. Using those relations we can operate on a given query to

24 CHAPTER 2. CERN AND THE ASSIGNMENT PROBLEM

improve recall (by expanding to related terms) or precision (by narrowing with
less generic terms). These are the reasons for the use of thesauri.

2.2.2 Thesauri

Definition

There are several definitions for the word thesaurus. The classic one is (taken
from Webster’s Revised Unabridged Dictionary):

“A treasury or storehouse (from Greek); hence, a repository, espe-
cially of knowledge; often applied to a comprehensive work, like a
dictionary or encyclopedia”

There is another definition closer to our idea in information retrieval paradigms:

“A book of words or of information about a particular field or set of
concepts; especially: a book of words and their synonyms or a list
of subject headings or descriptors usually a cross-reference system
for use in the organization of a collection of documents for reference
and retrieval.”

As we can see, this last one is quite complete, covering both the purpose
and structure of a thesaurus. Already in this definition we find words like
concept , subject, descriptor . More forms are used to specify thesaurus’s entries,
e.g. topic, key-word, theme, class... We will refer to these entries, from now
onwards, using the expression “key word”.

In an old work of Vickery [122] we find a definition of thesaurus which
summarizes in few words the rationale associate with it:

“The thesaurus is a display of the terms in a retrieval language
showing semantic relations between them.”

Here, Vickery shows on the one hand the main purpose of a thesaurus: it
defines a retrieval language, whatever the retrieval method might be. On the
other hand, he does not set the kind of relationships between entries (synonymy,
broader terms...), specifying only that a set of semantic relations is defined. We
will see that this brief definition fits perfectly with any type of existing thesaurus.

Evolution of thesauri

Leibniz attempted the classification of concepts as preliminary to invent a Uni-
versal Language [92] (which was composed by symbols rather than words as it
was supposed to be universally understood).

2.2. THE PROBLEM: KEYWORD ASSIGNMENT PROCESS 25

One of the earliest thesauri (and maybe the most famous one) is Roget’s
Thesaurus [70]. The main idea of Dr. Peter Mark Roget behind this compilation
was to offer a system which would offer words to express a given meaning, while
traditional dictionaries offer meanings for a given word. This would help writers
to express their concepts in most suitable expression form. These kind of users
had the thesaurus as a reference book in the generation of texts. Thus, it was
mostly intended to be useful in the phase of generation of documents.

The power of reducing a language to its basic concepts has become more and
more useful, even more when such “semantic network” arises in electronic form.
WordNet ([44]) is an on-line reference system (as their authors claim). English
nouns, verbs, adverbs and adjectives are organized into synonym sets (also called
synsets), each representing one underlying lexical concept. Nowadays we can
assure that almost every thesaurus (specialized or not) is available in electronic
form.

There is even a multilingual thesaurus based on WordNet called EuroWord-
Net ([123]), which maps synsets between different European languages. This
work represents a main milestone in multilinguistic information retrieval. This
thesaurus is so rich that it is usually seen not as a traditional thesaurus, but as
a complete lexical database.

Both WordNet and Roget’s Thesaurus are general references, i.e. they don’t
focus on specialized terminologies. But the particular areas where thesauri
become useful tools are in specialized domains (Law, Medicine, Material Science,
Physics, Astronomy...). One example is the INSPEC thesaurus ([6]), focused on
technical literature; or the ASIS thesaurus, specialized in Information Science
([1]). Also NASA, the European Union and other organizations produce their
own specialized thesauri (like the multilingual EUROVOC thesaurus [2]).

Structure

Each thesaurus has its own organization, according to the purpose to accom-
plish. But we can split any of them into the following components:

Terms this is the set of items in the thesaurus. They are usually referred to
as descriptors, index terms, key words, key phrases, topics, concepts or
themes. We will use “key word” to name them, being our categories,
classes or labels, as we progress in the present text.

Meanings this is the set of subsets of the set of terms. Each subset in the set is
a group of terms which are interrelated by the synonymy relationship (i.e.
words with the same meaning). This relation is very important because
the resulting subsets are elements in other relations.

Relationships this is a set of relations term to term, term to meaning, meaning
to term and meaning to meaning.

26 CHAPTER 2. CERN AND THE ASSIGNMENT PROBLEM

penalty

NT1 alternative sentence

NT1 carrying out of sentence

NT2 barring of penalties by limitation

NT2 reduction of sentence

RT repentance

RT terrorism (0431)

NT2 release on licence

NT2 suspension of sentence

NT1 conditional discharge

NT1 confiscation of property

RT seizure of goods (1221)

NT1 criminal record

NT1 death penalty

NT1 deprivation of rights

RT civil rights (1236)

Figure 2.3: Excerpt from Eurovoc thesaurus

There are several relations which are commonly used among existing the-
sauri:

• Hyponomy. This is a relationship between meanings. We say that x is a
hyponomy of y if x is a kind of y ; for instance, orchid is an hyponomy of
flower. This relation is reflexive, anti-symmetric and transitive, therefore
it establishes a partial order between meanings. The symmetric relation is
called specialization and also defines a partial order over the set of terms.

• Meronymy. This can be split into three different (but closer) relation-
ships:

1. x is part of y, e.g. branch is part of tree

2. x is a member of y, e.g. citizen is member of society

3. x is constituent material of y, e.g. iron is constituent material of knife

Of course, depending on the purpose of the thesaurus, some of these rela-
tions may be ignored. Also new relations could happen. WordNet, for example,
includes all relations above. INSPEC and EUROVOC thesauri condense meron-
omy relations into the “related” one (see figure 2.3, RT means “related terms”).
Synonymy is implemented by the application of the “USE” statement.

Usually in specialized thesauri either the synonymy is neglected or a pre-
ferred word form as representative of the meaning is given, since the purpose
of them is to provide a list of controlled terms (and that “control” refers to the

2.2. THE PROBLEM: KEYWORD ASSIGNMENT PROCESS 27

*coherent interaction

coherent state (for quantum mechanical states)

cohomology

*coil

-coincidence (’fast logic’ or ’trigger’ or ’associated production’)

-Coleman-Glashow formula (baryon, mass difference)

-Coleman-Weinberg instability (symmetry breaking)

*collective (used only in connection with accelerators)

*collective phenomena (’field theory, collective phenomena’ or

’nuclear physics, collective phenomena’ or ’nuclear matter,

collective phenomena’)

-collider (’storage ring’ or ’linear collider’)

colliding beam detector (use only in instrumental papers)

*colliding beams (for accelerator use ’storage ring’ or

’linear collider’)

color (for colored partons)

colored particle

communications

Figure 2.4: Excerpt from DESY thesaurus

use of just one word form for a given meaning). Nevertheless, is also true that
most of them includes synonymy in one way or another.

There are, however, some special cases of thesauri where there are more than
just terms and relations. In some cases the thesaurus is a complex reference of
specific relations, with specially defined rules to build a document’s key words.
This is the case of the DESY [32] thesaurus, specialized in High Energy Physics
literature. With the entries given we construct particle combinations, reaction
equations and energy declarations among other things. Practical issues take
us to the conclusion of Vickery about the need of tight relation between the
thesaurus and its domain of retrieval.

2.2.3 DESY’s thesaurus

At the library of CERN hundreds of new papers arrive every day. And this
arrival is increasing its size year by year, as we can see in figure 2.2. The task of
indexing is performed mainly by indexers working at the Deutsche Elektronen-
Synchrotron (DESY), the German laboratory. They have developed a thesaurus,
to control the vocabulary used in the key-wording process. Due to the growth in
the production of HEP related papers a new approach to manual key-wording
is required. Since full computer-based indexers are still far away from a real
solution, at least a computer-based help tool for indexing should be supplied in
order to decrease the charge of work on human indexers.

28 CHAPTER 2. CERN AND THE ASSIGNMENT PROBLEM

The DESY Documentation group in Hamburg developed the HEPI (High
Energy Physics Information) system from 1963 onwards. In this scheme all
documents in the HEP field are indexed by subject specialists who read the
entire articles. The thesaurus used contains approximately 2500 terms and has
in general been updated every 1-2 years.

The DESY key words have been included with every article in the SLAC HEP
database since this database started in mid 1970s. These key words serve the
following purposes: they allow the generation of a subject index for the biweekly
periodical High Energy Physics Index, they are important for computerized
information retrieval and SDI (Selective Dissemination of Information) service
at DESY and other high-energy physics centers. The total key words assigned
to a paper may also be useful as a sort of abstract.

There are three types of key words in the thesaurus:

1. main key words

2. descriptive (secondary) key words

3. non-key words

Keywords may be used singly or coupled by comma and blank (for example:
’field theory’ (single) and ’field theory, nonabelian’ (coupled)). While the first
term is generally a main key word, the second term may be another main key
word, a descriptive key word or a non key word. Non key words which are
frequently used are standardized.

For our actual purposes, only main DESY key words are used. The reason
is that already most of the main key words appear seldom, so we believe it is
not feasible to work with the secondary key words without first studying the
distribution of secondary key words across the collection, which is far outside
the scope of this work.

For more information about the use of key words by human indexers, please
read appendix A.

2.3 The approach: supervised text categoriza-
tion

Automatic Text Categorization (TC) is a prominent research area within Infor-
mation Retrieval, and will be introduced it in chapter 3. This discipline studies
the problem of classifying automatically (i.e. computer-based) a text document
in electronic format into a set of predefined categories. During the discourse
of this document, a method for automatic text categorization of documents in
multi-label domains is introduced, proposing an approach for assigning multiple
possible categories to every single text document at once.

2.3. THE APPROACH: SUPERVISED TEXT CATEGORIZATION 29

We will adapt such techniques and define a method for resolving the problem
of automatic labeling at CERN, facing all the arising problems that the High
Energy Papers and the DESY thesaurus may establish. Two main results are
expected from this research: the proposal of a innovative method for multi-
label text categorization within certain constraints, and the definition of a new
benchmark collection. Not additional attention to the definition of the approach
is provided here, as later chapters will cover it extensively.

The corpus we worked with is in the English language, but the statistical
methods are, of course, language-independent. Nevertheless, the DESY the-
saurus has been used to label non-English texts, though in our current research
we have not paid attention to additional languages. Some experimental results
depending on certain linguistic resources, like stemming or multi-word recogni-
tion, may differ when applying our method to other languages. This could be
considered as matter for further research, not covered in the present work.

30 CHAPTER 2. CERN AND THE ASSIGNMENT PROBLEM

Chapter 3

Text Categorization and
Machine Learning

The automatic assignment of key words to documents using full-text data has
been enclosed inside the growing area of Text Categorization, an area where In-
formation Retrieval techniques and Machine Learning algorithms meet, offering
solutions to problems with real world collections.

Text Categorization (TC) is a discipline responsible for the automatic clas-
sification of text documents under predefined categories or classes (see [19] for
an introduction). The Text Categorization task lies under the Automatic Clas-
sification (also known as Pattern Recognition) problem in Machine Learning.
If we perform an unsupervised classification, then, there is no clue about the
possible final classes. Thus, we use unsupervised learning techniques to find
possible groups or classes, i.e. Document Clustering. If we have a predefined
class or classes, then we will likely use supervised techniques (whenever a train-
ing collection is also available) to achieve an approximation to the solution of
the problem. The latter is what is commonly known as Text Categorization,
leaving Document Clustering as a different discipline.

We can easily identify three paradigms in text categorization, as shown in
figure 3.1: the binary case, the multi-class case and the multi-label case.

• In the binary case a sample belongs to exactly one of two given classes.
Thus, the classifier has to determine to which of the two sets the sample
goes.

• In the multi-class case a sample belongs to just one class of a set of m
classes.

• Finally, in the multi-label case, a sample may belongs to several classes at
the same time, that is, classes may overlap through documents.

31

32 CHAPTER 3. TEXT CATEGORIZATION AND MACHINE LEARNING

Figure 3.1: Paradigms in text categorization: binary, multi-class and multi-label
cases.

In binary classification a classifier is trained, by means of supervised algo-
rithms, to assign a sample document to one of two possible sets. These two sets
are usually referred to as belonging samples (positive) and not belonging sam-
ples (negative) respectively (the one-against-all approach), or to two disjoint
classes (the one-against-one approach). For this we can select among a wide
range of algorithms, being Näıve Bayes, Linear Regression, Support Vector Ma-
chines (SVM) [52] and LVQ [77] the main candidates for binary classification
(with a prominent relevancy of SVM in performance). The binary case has been
set as a base case from which the two other cases can be built. In multi-class
and multi-label assignment, the traditional approach consists on training a bi-
nary classifier for every class, and then, whenever the binary base case returns a
measure of confidence on the classification, assigning either the top ranked one
(multi-class assignment) or a given number of the top ranked ones (multi-label
assignment). More details about these three paradigms can be found in [7],
where Allwein and others propose a common framework to reduce any multi-
class problem into a binary approach for margin based classifiers. We will refer
to the ranking approach as the battery strategy, because no consideration of
inter-dependency is considered.

Another approach for multi-labeling consists on returning all those classes
whose binary classifiers provide a positive answer for the sample. It has the
advantage of allowing different binary classifiers through classes, as inter-class
scores do not need to be coherent (since there is no ranking afterwards). Better
results when applying one-against-one in multi-class classification have been
reported [7], but in our multi-label case this cannot be followed because, in
principle, any class may appear along with any other class, it being difficult to
establish disjoint assignments. This is the reason why one-against-all deserves
our attention in the present work.

Although much research is taking place (see [112]), some topics demand more
attention than what has been given to them so far. In particular, multi-label

3.1. NOTATION AND DEFINITIONS 33

problems still demand more work, but due to the lack of available resources
(mainly collections) progress in this area is slower compared to other evolving
research domains. Furthermore, multi-label assignment should not be studied
simply as a more general multi-class problem (which, itself is a more general
problem than the binary case), but also as a special case with additional re-
quirements. In multi-label assignment we cannot oversee the fact that some
classes are inter-related, that usually the imbalance degree is radically differ-
ent among classes, that some classes may vary their relevance in the assignment
(some classes may be more important for a document than the others) and that,
in performance aspects, the need of comparing a sample to every classifier is a
waste of resources.

Summarizing, our architecture will define a multi-label document classifier
based on binary classifiers. The wide range of choices at each component will
drive our experiments in finding a performing system.

3.1 Notation and definitions

In this section a formal definition of the elements involved in a text categoriza-
tion process is given. This terminology and notation will serve us as basis for
describing some aspects of these systems, and which are the key components
in them. Unfourtunately, formal models are and on-going discussion in IR re-
search, as shown by the contributions in the SIGIR workshop Formal Models
for Information Retrieval [34]. Since the retrieval of documents and its auto-
matic manipulation presents a vaste range of applications, the abscence of an
agreement in mathematical notation is actually surprising. Some attempts have
been made, for example, to stablish notations in a certain subject, like for key
word assignment, which is, indeed, a Text Categorization matter (see [85]).

We have revised some of the notations and adapted them to the purpose of
this text, in the aim of clarifying the text categorization task and setting a base
terminology for further discussion. Therefore, the notation and conventions
exposed in this section are the result of some consolidation of the most used
formalisms we can find in TC literature.

Given

• a collection of documents X = x1, ...,xi, ...,xN, and

• a set of classes C = c1, ..., cj , ..., cM

we define that

• A binary classifier is a function Φb : X → {true, false} that maps docu-
ments to assignment assessment.

34 CHAPTER 3. TEXT CATEGORIZATION AND MACHINE LEARNING

• A m-class classifier is a function Φmc : X → C that maps documents to
classes.

• A m-label classifier is a function Φml : X → 2C where 2C is the power set
of C such that 2C ⊆ C

Therefore, a binary classifier assigns a true or false to each document; a
m-class classifier assigns a class from the set of classes to a document; and a
m-label classifier assigns a subset of the set of classes to a document, that is, it
assigns more than just on class to a document.

These are the functions we want to find. In our case, the last one mainly
concerns the present work. But both the multi-class (m-class) and the multi-
label (m-label) classifiers can be built from binary classifiers if those classifiers
are approximated by a function as follows:

Φ̂b−real : X → < (3.1)

and then, we return true if Φ̂(x) > δ, where δ ∈ < is known as the decision
threshold. The Φ̂ function will allow us to approximate any of the functions Φb,
Φmc and Φml defined above by applying any of the following strategies:

• Φ̂b can be obtained using the function given at equation 3.1 as follows:

Φ̂b(x) =

{

true if Φ̂b−real(x) > δ

false otherwise
(3.2)

• Φ̂mc would be the function that returns the class with the maximum clas-
sification value. If we define a classifier Φ̂ci

b−real for each class ci, then:

Φ̂mc(x) = arg max
ci

{Φ̂ci

b−real(x),∀ci ∈ C} (3.3)

• Φ̂ml must return a set of classes, so the formula could be:

Φ̂ml(x) = {ci ∈ C : Φ̂ci

b−real(x) > δ,∀ci ∈ C} (3.4)

In this case we could propose another variant: rank classes according to the
classification value and then return the l top ranked ones. Furthermore,
we may consider even to define a different δi for each class.

The main task would be to determine the base classifiers Φ̂ci

b−real from which

we construct a multi-label classifier Φ̂ml that will be the approximation of the
target classifier Φml.

This formalism defines the basic paradigm for the current work. As we de-
scribed in previous chapters, obtaining the base classifiers Φ̂ci

b−real is achieved

3.1. NOTATION AND DEFINITIONS 35

by means of a combination of information retrieval and machine learning tech-
niques: IR for converting documents into weighted lists of attributes and ML
for training the base binary classifiers.

There are more notations and proposals for describing this paradigm for-
mally. Allwein, Schapire and Singer propose a common model for handling any
multi-class problem using binary classifiers [7]. Their model is more general
than ours for the multi-class case, since they propose also a common model for
describing both one-against-one and one-against-all learning approaches. But
in our case, one-against-one is a very difficult approach, since our classes could
appear, in principle, along with any other class. Therefore, we keep the given
proposal, even if the one-against-all learning strategy is not explicitly involved
in the model.

To conclude, we define an multi-label classification system as the algebraic
structure:

〈X,C,Φml〉 (3.5)

where

X collection of documents
C set of classes

Φml multi-label assignment function

And we already have seen how this last function can be approximated by
using real-value based binary classifiers (one per class) (as defined in 3.4). We
could propose other variants for this approximation, like the use of boosting
algorithms [110] or other voting algorithms [12]. But there is extensive research
on those subjects and, even when selecting a different algorithm could lead
to some improvement in performance, we are more interested in other topics,
like the integration of different sources of data for defining the attributes of a
document sample.

The algebraic system defined now is based on the one proposed in [85]. A
multi-label classifier is represented by the tuple:

〈W,D, ρ〉 (3.6)

where

W is a set of classes
D is a set of documents
ρ is the assignment function. This function is a mapping

ρ : D → 2W ; di 7→ ρ(di) = ρi ∈ 2W

That is, ρ takes a document as argument and produces a set
of key words belonging to the controlled vocabulary (thesaurus)
W .

Note that the thesaurus has been simplified by omitting relations like gen-

36 CHAPTER 3. TEXT CATEGORIZATION AND MACHINE LEARNING

eralization, synonymy, etc. Here we consider the thesaurus nothing but a list of
controlled terms. Therefore, we may consider it a controlled vocabulary rather
than a real thesaurus. However, the model could be extended to exhibit those
relationships, but with the given description we can already modelize classical
models as described briefly in next section. We keep calling it “thesaurus”,
because in many situations, such information derives from existing ones.

So, the question is how to define the ρ function. As we will see in the
following sections, supervised learning based methods are the most common
techniques for guessing this function. In fact, many of the methods described
work in the way of finding a function that fits with the results, but instead of
applying analytical methods, numerical algorithms are designed with this goal.

The machine learning algorithms used will be based on documents repre-
sented on a feature space, that is, text will be transformed using linguistic and
statistical methods into a list of weighted attributes as follows:

F = {f1, f2, ..., fk, ..., fT } (3.7)

Where F is the set of all possible features in the corpus. In other words, T
is the dimensionality for document vectors. Of course, this may generate very
sparse vectors that are better implemented using lists, but from the theoretical
point of view the vector space model will ease the understanding of further
processing.

To represent the values of features in a document xi we will use the tuple:

xi = (wi,1, wi,2, · · · , wi,k, · · · , wi,l) (3.8)

where wi,k is the value (weight) of feature fk in document xi.

3.2 Architecture for a text categorization sys-
tem

There are several variants to the scheme we will show here, but they are minor
deviations from our common design. A text categorization system may be built
up from the following components (see figure 3.2):

1. Feature extraction. Text documents in plain format (ASCII) must be
processed and indexed. Two steps are given:

(a) Feature identification. We have to identify which are the features
to keep: words, bigrams, stemmed terms, entities or any other item
that we belive should be considered as a representative component of
the original document. This phase usually encompasses techniques

3.2. ARCHITECTURE FOR A TEXT CATEGORIZATION SYSTEM 37

related to natural language processing and statistical information
retrieval.

(b) Feature weighting . Once features are selected, we have to calculate
a weight which measures how relevant they are to the document.
Again, many possible approaches are available.

The bag-of-words approach is the most common, since it simplifies the
processing in a traditional IR way.

2. Dimensionality reduction (DR). Information retrieval in general and
text categorization in particular suffer from a very high number of dis-
tinctive features (hundreds of thousands or even more), due to the fact
that each word present in the text is a potential feature. Even though
stemming and other lemmatization techniques reduce this number, it has
been always an important drawback for applying Machine Learning (ML)
techniques to TC. Therefore, some methods have been proposed in order
to reduce the dimensionality of the set of features based on a ranking of the
ability for a term to be a good indicator for both documents and classes.
Thus, measures like mutual information, information gain, Chi square or
the simpler document frequency (see [130]) can provide useful information
for discarding terms. But not only by discarding (also know as term se-
lection we can decrease the dimensionality of the feature space, another
approach not incompatible with previous one is feature transformation
(also known as term extraction). In this case, we try to replace our terms
by other entities that may enclose the existing stems or words, grouping
them into semantic sets, where groups of terms point to a unique global
concept for each set. For that, clustering techniques (like the supervised
clustering method proposed by McCallum [79]) and the latent semantic
indexing ([11, 31, 71]) are solutions in this direction, as discussed later in
this chapter.

Both, feature extraction and dimensionality reduction, will transform text
documents to samples that can be handled by later learning algorithms.

3. Classifier training. This is the core of the system, here we use known
machine learning methods [81] to build up an autonomous classifier by us-
ing supervised learning algorithms. Due to the wide range of classification
approaches (statistical, probabilistic, neural networks, fuzzy logic, and so
on) proved in thousands of problems (mainly pattern recognition and all
its variants) we cannot avoid to feel overwhelmed by the vast range of
algorithms. Fortunately, plenty of research has been done comparing dif-
ferent classifiers for text categorization (see [67, 129] , so the right choice
may lie in few possible approaches like Näıve Bayes, Support Vector Ma-
chines [52], LVQ [77], Boosting [110] or perceptrons like PLAUM [127].
As documents have been converted in former stages into list of features,
these algorithms can work as they would do on any other type of data
different from text.

38 CHAPTER 3. TEXT CATEGORIZATION AND MACHINE LEARNING

4. Thresholding. If we need “hard” classification (yes/no answers) and our
classifier outputs a value of matching between a document and a class, we
can decide whether to assign the document to the category by applying
a threshold to the value returned by the classifier. In approaches like the
S-Cut , the R-Cut or the P-Cut ([128]) the threshold is a fixed value used
as decision boundary. Another approach is to apply the limit not on the
classification status value (that is the reason to also call the previous cut-
based approaches CVS thresholding), but rather on the number of classes
assigned to a document. In this case, a fixed number of classes will be
attached to each document ([18, 86, 128]).

Figure 3.2: Architecture for a text classification system.

Summarizing, we have to convert the document into a set of features that
can be handled by the classification algorithm. Since we are in a multi-label
case, we will use the one-against-all approach, therefore a classifier per class
will be, in principle, available. As result a list of pairs <class, CSV > will be
thresholded to obtain the final labels for the document.

The learning process will depend on the algorithms used as building blocks
of the proposed architecture. In general, a training collection split into learning
and validation sets is used. For HEP many documents are available but the
size of the controlled vocabulary while labels are selected and the distribution
of them across the collection raises additional problems that have been faced,
discussed and solved partially in the present work. The algorithms involved
may differ from one system to another, but we believe that, in general, this
is a very valid and common architecture for most text classification problems.
We can easily identify the given blocks, though the complexity of them and the
techniques used for feature identification, selection, filtering and transformation

3.2. ARCHITECTURE FOR A TEXT CATEGORIZATION SYSTEM 39

may differ radically from one system to another (or not even be present at all).

40 CHAPTER 3. TEXT CATEGORIZATION AND MACHINE LEARNING

Chapter 4

Feature extraction

A text is a raw sequence of symbols that may appear under different formats in
digital environments, some of them are mainly for document distribution, like
Portable Document Format (PDF) and PostScript format (PS), where others
are determined by the text processing tool used in its writing like Microsoft
Word format (DOC), OpenOffice.org format (SXW), LATEX and many others.
In general, we will convert from all these formats into plain-text ones, with
encodings like ASCII or Unicode. The main goal of feature extraction is to
transform a document from one of these formats into a list of items (the features)
easier to be processed by machine learning algorithms.

4.1 Feature identification

A feature is any item that can be considered an attribute of a sample by a clas-
sifier. It is important to identify which items will be features for the document.
Human language complexity turns our identification into a very difficult task:
a word can represent different concepts due to language ambiguity [109, 117],
concepts may be represented by pairs of words or even larger combinations
(word n-grams), some words are meaningless, depending of the part-of-speech of
a word we may consider it in a different manner, and so on. To overcome these
obstacles plenty of algorithms and techniques have been developed during the
last years (as we can see, in the review of indexing schemes by Arampatzis [9]).
It is important to note here that methods described have as goal to determine
which parts of the text are likely to be features, not to decided if those parts
should be considered as final features or not, since the goodness of a feature
and their filtering are part of the dimensionality reduction phase (also known
as feature selection).

Most common schemes for feature identification are:

41

42 CHAPTER 4. FEATURE EXTRACTION

• Bag of words. We enclose here all those schemes that consider each word
as a potential feature with no further inter-dependency. This approach
uses to be combined with stemming or lemmatization algorithms. Here,
the dimensionality reduction becomes very important due to the large set
of resulting features.

• Word n-grams. Also know as multi-word recognition. Short sequences of
words are also considered to be potential features, e.g. Cherenkov radia-
tion or Big bang.

• Summarization based . One of the most sophisticated approaches for fea-
ture identification consists in applying summarization techniques to iden-
tify as features relevant fragments of text that best comprise the content
topics.

A more detailed review of each of these frameworks is provided, emphasizing
those techniques applied on our system. Of course, some other approaches could
have been mentioned here. Anyhow the schemes above are considered not only
the more frequent but defined in an increasing level of complexity. At each
scheme, more complex linguistic techniques are involved.

4.1.1 Bag of words (BOW)

This is, maybe, the simplest approach we can find for feature identification.
Here, every word can be considered as a candidate to be one attribute of the
final document representation. This approach considers the minimal linguistic
processing and it has been described as the fully statistical approach: a docu-
ment is considered as a unordered set of words, only their frequency is taken as
attribute for them. Anyhow, nowadays, there is no single approach that should
be called fully statistical or fully linguistic, since almost any system applies
both philosophies to a certain extent. For example, traditionally in the BOW
approach, words that are too common in the language are filtered out since they
tend to be meaningless terms: determiners, prepositions, auxiliaries, and so on.
These words are known as stop words. In the English language, the probability
of encountering the rth most common word is given roughly by P (r) = 0.1

r

for r up to 1000 or so, this is the so called Zipf’s Law [91]. Words like “the”,
“of” and “to” appear so often in a text that we can discard them along with
many very frequent terms. The BOW approach tends to safeguard those words
that are more relevant for the semantic content of the document, so effective
weighting for them is important [23]. Also some form of lemmatization or stem-
ming [49] is applied, as a cheap method for using word base forms rather than
word inflexions as representative features. Thus, we profit from some linguistics
characteristics to enhance the effectiveness of the BOW model. We can see and
example of these text processing techniques. If we had the following text:

4.1. FEATURE IDENTIFICATION 43

New experimental results on the

production of ϕ and $f_2’(1525)$

mesons in the annihilation of stopped

antiprotons are discussed. The explanation

of these facts in the framework of the

polarized strangeness model is considered.

After applying stop-words removal and Porter’s stemming algorithm [93] we
would end up with the following set of features:

new experimental result

production ϕ $f_2’(1525)$

meson annihilation stop

antiproton discuss explanation

fact framework

polarize strangeness model consider

4.1.2 Multi-word recognition

Another approach is to make one step forward: some ordering information is
considered between certain words whenever they could be potentially represent-
ing a unique concept in the form of a fixed sequence, that is, the features will not
only be just words alone, but also certain detected word n-grams [25, 55]. For
example, pairs “top quark” or “Higgs boson” are referring to particle names.
Some good results are achieved by selecting candidate multi-words using the
Part Of the Speech (POS) information, i.e. compositions of words according to
certain POS patterns (as a verb, as a noun plus as an adjective, and so on) are
identified and selected if a certain co-occurrence index (like Mutual Informa-
tion) is higher than a given threshold. In our case the patterns to be used will
be the following pairs:

• noun-noun and

• adjective-noun

These two possible combinations of words will be detected after a POS tag-
ging parsing and then marked as multi-words candidates. In table 4.1 some
examples of possible pairs are given with their selection decision as candidate
depending on the pattern identified1.

Once we have selected the candidates they are ranked by their mutual in-
formation value, computed as follows:

MI(x, y) = log2
p(x, y)

p(x)p(y)
(4.1)

1Some pairs may be presented as tri-grams, rather than expected bigrams due to already
existing pairs of words joined by hyphenation; e.g. the the-low-energy entry

44 CHAPTER 4. FEATURE EXTRACTION

bigram POS tags decision
offer-some VB-DT INVALID

potential-advantages JJ-NNS VALID

in-the IN-DT INVALID

the-low-energy DT-NN INVALID

low-background-experiments NN-NNS VALID

a-500 kg DT-SYM INVALID

detector-to NN-TO INVALID

be-placed VB-VBN INVALID

placed-near VBN-IN INVALID

core-of NN-IN INVALID

nuclear-power NP-NP VALID

power-station NP-NP VALID

Table 4.1: Some bigrams candidates with their part of speech (POS) tags and
the decision taken.

where

p(x, y) is the probability for terms x and y to appear together.
This can be computed as the frequency of both terms
as sequence in the whole collection divided by the total
number of possible pairs: p(x, y) = freq(x, y)/Npairs

p(x) and p(y) are the probabilities of terms x and y respectively. This
will be calculated as the frequency of each term over the
total number of terms (not unique terms) in the collec-
tion: p(x) = freq(x)/Nterms; p(y) = freq(y)/Nterms

Nterms is the number of terms (not unique terms, all occur-
rences) present in the corpus

Let {a, b, c} be the set of terms in the whole collection, and let the sequence
“abc” represents the macro-text composed by the joint of all the documents in
the collection. Then, the number of possible pairs is 2, since we can only form
ab or bc as candidates. Thus, the number of pairs Npairs is exactly Nterms − 1,
and due to the high number of terms in any text collection we can assume that
Npairs ' Nterms. Thus, we can rewrite equation 4.1 as:

MI(x, y) = log2
Ntermsfreq(x, y)

freq(x)freq(y)
(4.2)

As Nterms is constant and the MI value is destined to be a comparison
index, we can even remove it from the given equation. One interesting result of
applying this formula is that pairs of seldom used terms get a high MI value.
Thus, bigrams with very low frequency are ranked in the top. A common sense
action is to discard bigrams appearing just once. In that case, table 4.1 shows
the 15 top bigrams generated from the abstracts of the hep-ex partition (see
chapter 11 for details about this corpus).

4.1. FEATURE IDENTIFICATION 45

MI(x,y) freq(x,y) x - y
17.137336409474 2 shunt - impedance

17.137336409474 2 nu-mu/nu-e - ratio-of-ratios

17.137336409474 2 low-noise - viking

17.137336409474 2 gross-llewellyn - smith

17.137336409474 2 g.l. - kane

16.5523739087528 2 roman - pot

16.5523739087528 2 orthopositronium - decay-rate

16.5523739087528 2 blue - leds

16.5523739087528 2 bess - rigidity

16.137336409474 4 paul - scherrer

16.137336409474 4 palo - verde

16.137336409474 3 rectangular - bars

16.137336409474 2 unix - workstations

16.137336409474 2 helium - bags

Figure 4.1: Some bigrams with their mutual information value MI(x, y) and
their frequencies.

Some experiments have been carried out to check if the use of frequent
bigrams as unique features can be an enhancement for the system. Results
found are described in section 12.3.

4.1.3 Summarization based

Text summarization is the process of distilling the most important information
from a source to produce an shorter version for a particular user or task [73].
Summarization techniques are focused in the creation of brief texts that can
condense the content of a longer original text. These techniques can be applied
as feature selection methods in text categorization. Mainly, the result of the
summarization algorithm is a list of key-paragraphs, key-phrases or key-words
that have been considered to be the most relevant ones. Although some methods
are able to generate new sentences from the content, usually it consists in a pure
selection of textual fragments. We can use those fragments as features in the
categorization process.

Summarization is, indeed, a complex task itself, since a wide variety of tech-
niques can be applied in order to condense content information, from pure sta-
tisticall approaches to those using closer analysis of text structure involving
linguistic and heuristic methods (anafora resolution, named entity recognition,
lexical chains, and so on). In fact, many algorithms for feature reduction, fea-
ture transformation, feature weighting, etc. are directly related to this task,
since they already try to select a proper and limited set of items that can be
used as storing the core content of a given text. But the aim of summarization
techniques is to go one step forward, rearranging this information to produce

46 CHAPTER 4. FEATURE EXTRACTION

readable texts, although this processing is still in a very early stage (i.e. go from
extraction to abstraction).

Most of the working systems are based in the selection of a certain number of
sentences found in the text which are considered to express most of the concepts
present in the document. Li and others [68] apply a Näıve Bayes classifier to
extract those terms appearing both in the abstract of the document and in the
body. The probabilistic classifier determines whether the word is relevant or not
for the general content of the document and outputs all these words, that will
be later used as input features for the next level of classifiers that will produce
the final list of classes. Kolcz and others [59] showed that we can profit also
from the fact that the text can be reduced to 10%–15% of the original one, so
they act as reduction algorithms too.

4.2 Feature weighting

Once we know the set of features that will represent our text, we may want
to weight them according to their relative importance for the document in the
collection. In the Vector Space Model [108], the proper weighting of a feature
can improve the performance of a system. A weighting scheme is composed of
three different types of term weighting: local, global, and normalization (see
[24] for a nice comparison among different weighting schemes). The weight of a
term i in a document j implies generally the calculation of:

wij = LijGiNi (4.3)

where

Lij is the local weight of the term i in document j. It is usually based on
the number of occurrences of the term in the document.

Gi is the global weight of the term in the collection of documents. This factor
tends to under-weight those terms that are too common in the collection.

Nj is the normalization factor for term weights in document j. This factor
is used to adjust the vector of the document to its norm, so all the documents
have the same modulus and can be compared no matter the size of the text.

Depending on our choice for these three factors, we can compose a wide
range of weighting schemes. Depending of the specific properties of our col-
lection, some schemes could be worth applying over others. Some weighting
schemes are a combination of probabilistic factors with statistical ones, like the
OKAPI weighting scheme [104] which is reporting very good results in classical
information retrieval tasks. In this work, two weighting schemes were used: the
TF.IDF (term-frequency inverse-document-frequency) and the entropy based
one. Both with cosine normalization.

4.2. FEATURE WEIGHTING 47

4.2.1 TF.IDF weighting

This scheme [106] is one of the most common weighting schemes used. Almost
all the other weighting schemes are variants of it.

In the TF.IDF scheme, we use

• the frequency of the term in the document as local weight,

• the inverse document frequency as global weight, penalizing those
terms too frequent through the documents in the collection; and

• the cosine normalization, which merely implies dividing by the geomet-
ric average.

We can write the definition of the weight of a term as follows:

wij = fij
︸︷︷︸

Lij

log(N/ni)·
︸ ︷︷ ︸

Gi

1
√
∑T

k=1(fkj · log(N/nk))2
︸ ︷︷ ︸

Nj

(4.4)

where

wij is the weight of term i in document j
fij is the frequency of term i in document j
N is the total number of documents in the collection

ni, (nk) is the number of documents in the collection that con-
tain term i, (k)

T is the number of terms in the collection

4.2.2 Entropy weighting

Another weighting scheme applied in our experiments is the entropy based one
[71]. Although the TF.IDF weighting scheme is the preferred method in several
systems, an alternative is always an interesting subject of study. In this work, a
deep analysis of the effect of every variable is intended. Therefore, this second
method has been selected as an additional scheme for feature weighting, in the
aim of opening experimental results to the study of how sensible a system is
to the weighting scheme selected. Of course, for a complete conclusion on this
matter, a wider study of available weighting schemes is needed, but entropy has
been found to work pretty well as a method, hence its explanation here.

This approach basically proposes a global weight factor which is related to
the number of bits we would need to specify that a document contains a given
term i. Taken from the Mathematical Theory of Communication by Shannon
[114], it uses the idea of considering documents, terms and categories as at-
tributes in a message for information exchange.

48 CHAPTER 4. FEATURE EXTRACTION

The formula is:

wij = (1 + log fij)
︸ ︷︷ ︸

Lij

1 +
1

log2(N)

N∑

k=1

fik

Fi

log2

fik

Fi

︸ ︷︷ ︸

H̄(i)

︸ ︷︷ ︸

Gi

1

√
∑T

k=1(Lkj ·Gk)2

︸ ︷︷ ︸

Nj

(4.5)

where

N is the total number of documents in the collection
Fi is the total frequency of term i through the entire collection:

Fi =
∑N

j=1 fij

fij is the frequency of term i in document j
H̄(i) is the average uncertainty or entropy of term i in the collection

T is the number of terms in the collection

4.2.3 Other weighting measures

Since the beginning of the Information Retrieval discipline, plenty of weighting
measures have been proposed. Most of them result as combination of different
indexes focusing on capturing a certain aspect about the relevancy of the term
in the text and its relationship with the collection. Again, we recommend to
read Chisholm & Kolda’s paper [24], which also includes other measures like
Chi-square or log-likehood, these later two applied by Pouliquen and others in
their experiences with the EUROVOC thesaurus [18].

Chapter 5

Dimensionality reduction

When working in the term space, the number of dimensions for document vectors
obtained as result of considering each language component a potential feature
is prohibitive: our current architectures are insufficient to support efficiently
hundreds of thousands of features. The Dimensionality Reduction phase (DR)
is responsible of decreasing such a number. There are two main approaches: to
filter out those features that we consider have low informational importance, or
to transform features from one space into another space projecting them into a
lower dimensionality.

One important aspect of applying feature transformation in our system, is
that it has been reported to be a way to reduce the negative effect of over-
fitting. A system is over-fitted when it is good in classifying documents used for
training but very bad for new incoming documents. This is due to the fact that
the system has been tuned too much in the direction of the current training
data, without generalizing any properties for classification. By reducing the
number of terms, we are forcing the system to work in lower dimensionality, so
only few features are taken into account for finding the proper classes. This will
improve our classifiers speed and robustness.

5.1 DR by feature selection

Feature selection is a very complex task, since it has to do with meanings and
relative importance of features in a document. The goal of this process is to dig
into the document components, and determine those that better represent the
document. We expect to get in return those terms or sentences that the content
cannot be without. Adam Kilgariff [54] has nice studies on these matters, and
he already identifies how hard it is to know the distinctiveness of a very common
word versus a rare one. Many methods have been proposed, from simple ones
based on easy computations of a measure to rank the excellence of each word,

49

50 CHAPTER 5. DIMENSIONALITY REDUCTION

to complex transformations with intense linguistic processing.

In any case, when dealing with text categorization, two main paradigms can
be considered in order to set the frame wherein all these techniques will be
applied:

• Locally. We reduce the number of features to be taken into account for
each category or/and document.

• Globally. We reduce the number of features in the whole collection.

In our work, we have considered a global approach, due to the large number
of possible classes in the studied corpus.

We will give a brief overview on summarization techniques, since it is the
most complex one, and a more extended description of the information gain
measure, since it has been considered in our experiments as the main feature
selection approach.

5.1.1 Summarization for feature selection

The experiment elaborated by Kolcz et al. [59] shows that using summariza-
tion techniques has a similar performance as selection techniques like Mutual
Information (MI).

In their work, seven methods for summarization were used to produce a
minimal text which would be used as a reduced version of the original one,
performing in this manner both feature selection and dimensionality reduction.
The methods for summarization tested on the Reuters-21578 collection were:

• Title of the story

• First paragraph in the story

• Paragraph of the story with most title words

• Paragraph of the story with most key words

• First two paragraphs of the story

• First and last paragraphs

• Best sentence (that one with at least 3 title words and 4 key words)

The classifier was based on Support Vector Machines, training a SVM binary
classifier (one-against-rest) on each class. To compute the value obtained at
Break Even Point (BEP), they micro-averaged the results of all the binary SVM
classifiers generated. Each method was compared to MI and similar values of
precision and recall at the BEP reached. Their results seem promising, but are
not considered in our work. This issue remains as a pending topic for further
research.

5.1. DR BY FEATURE SELECTION 51

5.1.2 Information Gain

How do we measure information? This has been a undefined matter until the
arrival of Information Theory , establishing the basis for a mathematical study
of information processing five decades ago ([114]). Shannon defined the infor-
mation contained in a system in terms of bits. The information is measured
then as the number of bits needed to represent all possible states of a system.
It is like the number of yes/no questions that we would ask in order to fully
describe the configuration of a system. For example, if we throw a die and want
to represent the state of it, how many bits would we need? The calculation is
performed by looking at all possible states as follows:

I(die) = (p(face = 1), p(face = 2), ..., p(face = 6)) = (5.1)

= −
1

6
log2

1

6
−

1

6
log2

1

6
− ...−

1

6
log2

1

6
= (5.2)

= 2.5 bits (5.3)

where

p(face = x) is the probability for the die to show the face with value x

So, with 2.5 bits we can describe any possible state of the system from an
informational point of view. In practice we would use 3 bits, of course, but this
is more than the minimum needed since with 3 bits we can represent more than
just six possible states (23 = 8 states). The information as we have understood it
is usually called entropy and is represented by H(S), which means the entropy
of a system S. As we can see, the more disordered a given system is (more
entropy), the higher number of bits we will need to describe it. If we already
had some information, some clue, about the state of the system to describe then
we would need a lower number of bits. Knowing the value of an attribute in the
system will decrease the entropy and, as we can imagine, there are attributes
which provide more information than others. Thus, it would be helpful to define
a value to explore it. This is called information gain, and it is crucial in the
construction of some classifiers like the C4.5 decision tree ([81]).

The information gain for a set S knowing the value of a certain attribute A
is defined as follows:

Gain(S,A) ≡ H(S)−
∑

v∈V alues(A)

|Sv|

|S|
H(Sv) (5.4)

where

Sv is the set of elements whose value for attribute A is equal to v
H(x) is the entropy of set x

The entropy of a set S is computed taking the probabilities of every element
in the set as follows:

52 CHAPTER 5. DIMENSIONALITY REDUCTION

H(S) = −
n∑

i=1

pi log2 pi (5.5)

Computing the information gain of a term represents computing a measure of
the discriminative power of the term for classes, i.e. how a given term can reduce
the entropy of classes in the collection. It has been used mainly for constructing
decision trees [81], but its use for filtering features has also reported good results
[21].

The information gain is computed for each term of the training set, and
the terms whose information gain is less than some predetermined threshold, or
those which a rank position by information gain less than a given number, are
removed.

When working in multi-label assignment, we could think on the information
gain in a per class basis: compute the information gained by knowing that
a given class is assigned to the document. This consequent extension of the
information gain value is deployed below and will be useful for use later on.

Now, we want to place equations 5.4 and 5.5 into the domain of our problem.
Since we are in a problem of text categorization, we want to calculate which
is the gain of information to predict a category i knowing that a given term t
appears in the document to be categorized.

Gain(t, C) = H(C)−
∑

x∈{t,t̄}

|Cx|

|C|
H(Cx) =

= H(C)− (
|Ct|

|C|
H(Ct) +

|Ct̄|

|C|
H(Ct̄)) =

= −
M∑

i=1

p(ci) log2 p(ci) +

+ p(t)

M∑

i=1

p(ci|t) log2 p(ci|t) +

+ p(t̄)
M∑

i=1

p(ci|t̄) log2 p(ci|t̄) (5.6)

where

5.1. DR BY FEATURE SELECTION 53

M is the total number of categories: |C| = M
C is the set of all possible categories

{t, t̄} are the considered two possible values of term t, i.e. t is present or
absent

Ct is the set of categories attached to documents containing term t
Ct̄ is the set of categories attached to documents not containing term

t
p(ci) is the probability of class i

We can rewrite this equation using frequencies of terms and categories among
the documents in the collection:

Gain(t, C) = −
M∑

i=1

ni

N
log2

ni

N
+

+
nt

N

M∑

i=1

nit

nt

log2

nit

nt

+

+
N − nt

N

M∑

i=1

ni − nit

N − nt

log2

ni − nit

N − nt

where

N is the total number of documents in the collection
ni is the number of documents labeled with category ci

nt is the number of documents containing term t
nit is the number of documents labeled with category ci and con-

taining term t

Thus, we have set the information gain of a given term t in relation to
class distribution. This is useful, for example, to filter terms in the feature
reduction phase. But we can go further with the information gain value. Since
we face a multi-label problem, we can establish a information gain per class
in a basis of classes themselves, i.e. we can measure how a given class helps
us in predicting more classes. This reasoning could not be achieved outside
the multi-label problem, since classes would be mutually disjoint. The gain of
information to predict a category knowing that the document is labeled with a
given class c would be:

54 CHAPTER 5. DIMENSIONALITY REDUCTION

Gain(c, C) = H(C)−
∑

x∈{c,c̄}

|Cx|

|C|
H(Cx) =

= H(C)− (
|Cc|

|C|
H(Cc) +

|Cc̄|

|C|
H(Cc̄)) =

= −
M∑

i=1

p(ci) log2 p(ci) +

+ p(c)

M∑

i=1

p(ci|c) log2 p(ci|c) +

+ p(c̄)

M∑

i=1

p(ci|c̄) log2 p(ci|c̄) (5.7)

where

M is the total number of categories: |C| = M
C is the set of all possible categories

{c, c̄} are the considered two possible values of the class c, i.e. docu-
ment is labeled with c or not

Cc is the set of categories attached to documents labeled with class
c

Cc̄ is the set of categories attached to documents not labeled with
class c

p(ci) is the probability of class i

We can, again, rewrite this equation using frequencies of categories among
the documents in the collection:

Gain(c, C) = −
M∑

i=1

ni

N
log2

ni

N
+

+
nc

N

M∑

i=1

nic

nc

log2

nic

nc

+

+
N − nc

N

M∑

i=1

ni − nic

N − nc

log2

ni − nic

N − nc

where

N is the total number of documents in the collection
ni is the number of documents labeled with category ci

nc is the number of documents labeled with category c
nic is the number of documents labeled with categories ci and c

5.2. DR BY FEATURE TRANSFORMATION 55

We have carried out some experiments to state the goodness of this filter
(see section 12.5), where clearly a strong reduction in the number of features
had a tiny influence on the performance of the multi-label classifier [88].

5.1.3 Other techniques

There are plenty of factors that can be used to discard features with low score. A
very common one is the document frequency . This factor is used to remove those
features that either appear in too many documents or in too few of them, i.e. if
a term is very rare or too frequent, we discard it. Due to its simplicity, almost
any system implements it, since only by removing those features appearing
in one document we may reduce considerably the feature space (mainly due to
aberrations produced by document conversions to plain text files). On the other
hand, by removing too frequent terms we are applying a similar philosophy as
stated by the use of a stop words list.

Other measures like the DIA association factor, Chi-square (χ), NGL coef-
ficient, Mutual information, Odds ratio, Relevancy score, GSS coefficient, have
been implement in various systems, but since the information gain factor has
shown similar or better behaviour compared to them, we have selected IG and
document frequency as our basic filters. Extensive bibliography about all these
methods can be, again, found in Sebastiani’s overview [112].

5.2 DR by feature transformation

The number of features we are dealing with can also be reduced if we map them
to another feature space of lower dimensionality. These techniques are often
called conceptual indexing [83], since the idea is to related terms with semantic
sets so we will manipulate these “semantic entities” or “concepts” as they were
now the feature space to be applied onto our classifiers. To be exhaustive, we
must say that this is not always a “map” according to its mathematical defini-
tion, due to the fact that some terms may point to more than just one concept.
In fact, our classification goal can be viewed exactly like that: a transformation
from terms to classes and, therefore, a reduction in the dimensionality of the
document, i.e. we want that our set of features F is replaced by a target set F ′,
so that |F ′| ¿ |F |.

Summarizing, our object is to reduce dimensionality by changing the feature
space. This transformation may be many-to-one function or even a many-to-
many relation, the only condition is to have our number of dimensions reduced
effectively without losing too much in semantic content.

We have not implemented in our system any of these techniques. Despite
the benefits of dimensionality reduction by feature transformation, applying IG
filters and document frequency ones were enough for the classifiers selected in

56 CHAPTER 5. DIMENSIONALITY REDUCTION

later phases to work properly. Anyhow, for educational purposes, an overview
of the two main tendencies is given here.

5.2.1 Term clustering

By using term clustering techniques we try to group terms sharing common
properties. In fact, the aim is to group all those terms referring to the same
concept or, at least, related to the same semantic space. Therefore, when certain
terms are strongly interrelated due to their semantic proximity, we will use
the cluster, instead of the terms, as feature. Now, the question is how we
determine the semantic relationship between two terms. It is important to note
that similarity measure must be towards semantic information, since we could
produce clusters of terms based on other properties that may produce worse
results than using just simple terms instead of clusters as found by Lewis [64].

Although there are more positive studies in this sense [69], it is clear that
best approaches are in the direction of supervised algorithms, i.e., use the known
categories associated with the documents to determine term clusters.

The benefits of using term clustering are better described by Baker [10] when
applying a distributional clustering in text categorization tasks: useful semantic
term clustering, higher classification accuracy and, consequently, smaller clas-
sification models. The classification algorithm was based on the Naive Bayes
model and it outperformed other feature reduction algorithms like information
gain of mutual information.

Bekkerman and others [14] compared the former approach to the use of
simple words. Based both on Support Vector Machines classification algorithms,
they found that it is worth using this distributional clustering on terms rather
than the bag of words model only when the complexity of the language used is
high, i.e. when the vocabulary is too general. The conclusions provided by this
last work suggested not to apply it on our collection, since we are dealing in our
case with a very specialized vocabulary and, following such conclusions, no big
improvement in performance should be expected.

5.2.2 Latent Semantic Indexing

One of the better known approaches in feature transformation is the Latent Se-
mantic Indexing (LSI), proposed by Deerwester and others [31]. Correlations
among words according to their usage in documents is the key concept under-
neath this mathematical machinery. LSI is based on the assumption that there
is some underlying or latent structure in the pattern of word usage across doc-
uments, and that statistical techniques can be used to estimate this structure.
LSI uses singular-value decomposition (SVD), a technique based on matrix op-
erations related to eigenvector decomposition and factor analysis. We see now
how SVD works.

5.2. DR BY FEATURE TRANSFORMATION 57

Assume that we have a M × N word-by-document matrix A, where M is
the number of words and N the number of documents. The singular value
decomposition of A is given by:

A = UΣVT (5.8)

where U(M ×R) and V(R×N) have orthonormal columns and Σ(R×R)
is the diagonal matrix of singular values. R ≤ min(M,N) is the rank of A. If
singular values of Σ are ordered by size, the K largest may be kept and the
remaining smaller ones set to zero. The product of the resulting matrices is a
matrix AK which is an approximation to A with rank K.

AK = UKΣKVT
K (5.9)

where ΣK(K ×K) is obtained by deleting the zero rows and columns of Σ,
and UK(M ×K) and VK(N ×K) are obtained by deleting the corresponding
rows and columns of U and V.

AK in one sense captures most of the underlying structure in A, yet at the
same time removes the noise or variability in word usage. Since the number
of dimensions K is much smaller than the number of unique words M , minor
differences in terminology will be ignored. Words which occur in similar doc-
uments may be near each other in the K-dimensional space even if they never
co-occur in the same document. Moreover, documents that do not share any
words with each other, may turn out to be similar.

Some works underline the robust theoretical base of the LSI [11, 71] and its
benefits in information retrieval tasks. But one of the main drawbacks against
this space transformation is the computational cost involved in getting the sin-
gular value decomposition. When dealing with big corpora like ours, the nu-
merical packages implementing solvers for the SVD demand a long computation
time and large memory resources, and including new documents may need to
recompute the whole decomposition. All these inconveniences made us discard
this technique from the final system, although its promising future may bring
us brilliant results in a short time.

58 CHAPTER 5. DIMENSIONALITY REDUCTION

Chapter 6

Classifiers

Up to this point, we have merely converted documents into a list of attributes
(features) that we believe condense the content of the original text. Now that
documents are represented in a format that can be very well managed by learn-
ing algorithms, classifiers can be trained. Here is when we apply Machine Learn-
ing techniques. It is important to note that all these chapters consider a machine
learning approach to text classification, therefore the classifiers built following
the presented architecture need to be trained on a corpus of documents pro-
cessed and converted into the feature space from plain text format.

Machine learning research has produce a very wide range of supervised algo-
rithms to train binary classifiers. This number of possibilities is so huge that a
detailed description of them cannot be given here. We will only describe those
our system is based on and briefly comment some remaining ones.

We recall here the equation 3.2, that defined the binary classifier as a function
Φ̂b−real : X → <. Following our notation given earlier we can describe three
different elements:

1. Documents. The collection of documents is a set X = x1, ...,xi, ..., xN

2. Classes. The set of possible classes for a given document is C = c1, ..., cj , ..., cM .
There is a relation Φ that determines which classes are associated to which
documents. This is the function that we want to approximate by Φ̂breal.

3. Features. Each document xi is considered a vector of real values with a
dimension for every feature in the feature space F = {f1, f2, ..., fk, ..., fT }.

As we can see, features are related to documents and documents are related
to classes. We will see in the next section how a multi-label classifier can be
built up from binary learners.

59

60 CHAPTER 6. CLASSIFIERS

6.1 Classification using binary classifiers

As pointed out in the introduction section of this chapter, we can reduce any
multi-label or multi-class classification to binary problems, where a document
is classified as either relevant or not relevant with respect to a predefined topic
or class. There are two main straightforward approaches to combine binary
decisions to produce a multi-label one:

• By thresholding . Each binary classifier will produce a classification sta-
tus value (CSV). The final set of automatically assigned classes are those
with a CSV over a predefined threshold, i.e. for each classifier, we know if
the class will be assigned to the document or not. This approach has the
benefit of considering each classifier independent from the rest, therefore
we can decide whether to return a label or not as soon as each classifier
finishes its computation. Distributing the described processes feasibly and
the number of resulting classes for a document is only tuned by adjusting
the threshold, but might certainly produce a different number of classes
for each document, desirable in many cases. This threshold can be global
or local, i.e. we may have a unique threshold over all the classifiers or a
different one per class. A global threshold makes sense only when CSVs
are comparable, and that is something that is not always so easy to as-
sert: margin based values are not good indicators of the proximity of a
document to a class and, moreover, we may have a different classification
algorithm per class. All these problems are not present when using local
thresholds.

• By Ranking . If we rank all the resulting CSVs and then select only the
top N classifiers we can control precisely the number of classes assigned to
a document, but we have to wait for all the classifiers to finish to compute
the final assignment. Again, comparable CSVs are needed, so the same
imposed restrictions found in global thresholding are present here.

Allwein and others [7] propose a clean method to reduce any multi-class
problem into multiple binary classification tasks. Even when they focus on
margin based classifiers, we can without much effort apply this method to any
binary classifier. Based on what they call the coding matrix M, a map between
documents and classes can be established in two different ways:

• One-against-all: M is a m×m matrix where

M(i, j) =

{

+1 if i = j

−1 if i 6= j
(6.1)

6.1. CLASSIFICATION USING BINARY CLASSIFIERS 61

+1 −1 −1 · · · −1
−1 +1 −1 · · · −1
−1 −1 +1 · · · −1
· · · · · · · · · · · · · · ·
−1 −1 −1 · · · +1

In this way, we train each binary classifier considering as positive sample
all those documents assigned to the class, and negative samples all the
rest of documents. This has the disadvantage of having maybe many
positive samples compared to negative ones (as noticed by our study in
experiment 12.7).

• All pairs approach: In this case, M ∈ {−1, 0,+1}k×(k

2) in which each
column corresponds to a distinct pair (r1, r2) where M has +1 in row r1,
−1 in row r2 and zeros in all other rows.

+1 −1 0 · · · 0 0
−1 +1 0 · · · 0 0
0 +1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 +1

Now, each classifier is trained over two disjoint classes, and the output
of the classifier will always be a class. The main drawback for this sec-
ond encoding is that it is not applicable on multi-label problems, since in
principle any two classes may appear together as labels for the same doc-
ument. On the other hand, when managing with multi-class collections,
this is a very good approach, since classifiers over disjoint classes seem to
work better than the one-against all approach, even when classification
status values among classes may not be comparable (and that is, again,
another reason to discard this method for multi-labeling classifications).

Using any of the two given definitions, we train k classifiers and each classi-
fier Φ̂s is trained with all pairs (xi,M(yi, s) (they called this multi-call training),
where yi is the class associated with document xi (yi ∈ C). For example, for
class c1 we train Φ̂1 with pairs {(x1,M(y1, 1)), (x2,M(y2, 1)), · · · , (xn,M(yn, 1))}.
We could train just one classifier Φ̂ extending the domain with an additional
dimension carrying the class: Φ̂s(xi) ≡ Φ̂(xi, s) (what they called single-call).
Notice that in the one-against-all we have one classifier per class, while in all-
pairs the number of trained classifiers is

(
k
2

)
, which can be a prohibitive number

of classifiers.

As we can see, what the coding matrix indeed does is to recode document
labels into two possible choices: +1 or −1. But besides this technique for
classifier training, they propose also a way to “decode” the result of the classifiers
to select the final class. Since for each column at M a binary classifier is trained

62 CHAPTER 6. CLASSIFIERS

with documents labeled as the coding matrix states, we will produce a vector of
predictions (a vector of CSVs) φ̂(xi) = {Φ̂1(xi), Φ̂2(xi), ·Φ̂l(xi)} (being l either k
or
(
k
2

)
depending on the selected approach). The final class will be the one whose

row M(r) is “closest” to the vector. To calculate that distance they propose
two possible measures: the hamming decoding and the loss based decoding .

We will not go in further details here, since our problem is multi-label and
that implies:

1. Only the one-against-all approach can be applied

2. The decoding would imply not to select just one single class (the closest
one), but a number of them. So the decoding should be rewritten to allow
this, which is quite simple by applying any of the two methods mentioned
in the beginning of this chapter.

Note that, since for a single classifier a document belongs to a class or not,
we will define yi ∈ {−1,+1} as follows:

yi =

{

+1 if xi belongs to class

−1 if xi does not belong to class
(6.2)

A classifier Φ̂(xi) will try to approximate yi.

6.2 Classifiers overview

Now that we have strongly established how the multi-label classification will be
implemented by means of binary algorithms, an study of these algorithms can
be carried out to select some of them as candidates for our experiments. We
give here an overview on some of them with special focus on those that will play
a main role on our experiments.

• Probabilistic. The use of probabilities to predict a class was one of the
first attempts in text categorization. Näıve Bayes formulas have been
so widely used (not in our case, though) that we will describe them in
section 6.4.

• Decision trees. These algorithms match a document xi against the
successive nodes of a tree to determine whether a class belongs to the
document or not. Usually, the decision taken in a node is based on the
value of a certain feature or by applying a logic decision rule. For example,
we can built a CART tree [17] which grows by finding first which features
best reduce the entropy (i.e. information gain) among possible classes and,
once generated, the tree will be walked split after split until reaching a final

6.2. CLASSIFIERS OVERVIEW 63

node which is associated to a class. Another example is C4.5 [95]. It is
similar to CART, but it produces trees with varying numbers of branches
per node. Both trees have to be pruned once generated in order to reduce
over-fitting, and each one has its own method.

• Linear classifiers. A linear classifier consists of a vector w that acts
as linear separator between two possible values: +1 and -1. In order to
determine whether a document belongs to a class or not, we just compute
the dot product between the vector w and the document xi. The sign
of the resulting product will tell us if the document belongs to the class
(positive) or not (negative). Well known examples of these algorithms are
Widrow-Hoff, Support Vector Machines, Linear Logistic Regression and
Perceptron. They deserve our special attention in section 6.5.

• Decision rule: The use of logic in text categorization systems has not
been as success as more numeric oriented approaches. CPAR (Classifi-
cation based on Predictive Association Rules) by Xiaoxin Yin and Jiawei
Han [47] generates Classification Association Rules (CARs). The result-
ing classifier comprises a linked-list of rules ordered according to Laplace
accuracy of individual rules. CPAR benefits are:

1. uses greedy approach in rule generation, which is much more efficient
than generating all candidate rules,

2. uses a dynamic programming approach to avoid repeated calculation
in rule generation,

3. it selects multiple literals and builds multiple rules simultaneously,
and

4. it uses expected accuracy to evaluate rules, and uses the best k rules
in prediction.

It seems to perform better than any other related classifiers like FOIL [96],
RIPPER [27] or the C4.5 decision tree.

• Sample based: Supervised learning means that we need, before any clas-
sification is performed by the future system, a set of samples that have
been already labeled (generally by human experts). Then, we train a sys-
tem to predict new labels. This later step, the training, is not needed in
general in sample based systems. The K nearest neighbours algorithm is
the best example: we assign the labels of those documents that are closer
to the incoming document. As we can see, only a distance measure is
involved in the process, the problem is that we do not really abstract a
model for classes or infer any rule or hyperplane as for the rest of algo-
rithms. Thus, we have to store all those samples for the K-NN to work
and compute the distance to every document (although this could be op-
timized). Even with its simplicity, the results obtained by applying this
algorithm are competitive, as shown by Yang and Liu [129].

64 CHAPTER 6. CLASSIFIERS

• Neural networks: Neural learning has been used with effectiveness in
natural language processing tasks. The Kohonen LVQ algorithm has been
applied successfully in text categorization tasks [77]. Closely related to
linear learning algorithms, this neural learning competitive algorithm is
yet another available choice for text categorization.

• Boosting algorithms: boosting algorithms like AdaBoost [111] have
shown very effective responses to the text classification task. The con-
struction of a classifier as a linear compound of base classifiers is one of
the most promising areas in Machine Learning.

• Other algorithms: Promising algorithms have appeared during past
years. Among them, the leading ones are the Maximum entropy modeling
[46] and Logistic Regression [45],

6.3 Bounding the error

In the revision of some of these algorithms, some authors make an strong effort
in analyzing error bounds as a mean to study of the theoretical behaviour of the
algorithm. In fact, this analysis is sometimes driven by the algorithm itself, as in
the case of SVM or PLAUM (see Vapnik work [119]), where the determination
of an expression for limiting the expected error of the method allow numerical
methods in order to minimize it, producing as result the way the algorithm
computes the classifier.

For any binary classifier Φ̂α defined by its parameters α we can define ana-
lytically the expected error as:

E[α] =

∫

x

1

2
|y − Φ̂α|dP (x, y) (6.3)

This is nothing but measuring the area with no overlap between the Φ̂α and
yi functions. Since yi moves between {+1,−1} the fraction 1/2 has been added.
Empirically this turns into:

E[α] =
1

2l

l∑

i=1

|yi − Φ̂α(xi, α)| (6.4)

where

1

2
|yi − Φ̂α(xi, α)| (6.5)

is the loss in the classification of xi. Equation 6.4 shows a very impor-
tant measure that leads to the problem known as Empirical Risk Minimization

6.4. NAÏVE BAYES 65

(ERM). This minimization is focused on reducing as much as possible the em-
pirical error. As pointed out before, the minimization of bounds like the given
one has lead to some of the most powerful learning algorithms proposed so far.

6.4 Näıve Bayes

A text classification network based on the Näıve Bayes model is said to be
“näıve” because of the assumption of independence between features. Widely
used due mainly to its simplicity, this classifier has shown good performance
even compared to more sophisticated algorithms [41]. This makes possible to
reduce the computational cost of finding the probability for a document xi to
pertain to a certain class cj by using the equation:

P (cj |xi) =
P (cj)P (xi|cj)

P (xi)
(6.6)

In a corpus, every document has the same probability, so P (xi) is the same
for any i. Being a constant, we can eliminate it from the previous equation.
Because of the independence assumption of features, we can replace P (xi|cj) by
the product:

P (cj |xi) = P (cj)

l∏

k=1

P (fk|cj) (6.7)

An estimate P̂ (cj) for P (cj) can be calculated using the relative frequency
of assignment for the class in the collection:

P̂ (cj) =
nj

n
(6.8)

where

nj is the number of documents assigned to class cj

In the same way, by using frequency of co-occurrence of features and classes
(number of times a feature fk appear in a document labeled by class cj) we can
approximate the probability P (fk|cj) as follows:

P̂ (fk|cj) =
1 + nkj

l +
∑l

h=1 nhj

(6.9)

where nhj is the number of documents assigned to class cj containing feature
fh and l was the total number of distinctive features in our space.

66 CHAPTER 6. CLASSIFIERS

So, finally, we can conclude with an expression for computing the probability
of a class cj to belong to a certain document xi by calculating a formula that
does not need to weight the feature:

P̂ (cj |xi) =
nj

n

l∏

k=1

1 + nkj

l +
∑l

h=1 nhj

(6.10)

Bayesian classifiers have reported good performance despite their simplicity.
It is very desirable because of the low demand in information involved in this
model: no weight for features and just simple computation of co-occurrences
that can be very quickly calculated using bit set structures and the like. But
some improvements in certain paradigms can be obtained by applying varia-
tions to the model shown above (for instance, the multi-variate Bernoulli event
model).

A more sophisticated approach is the multi-nomial model , which captures
also the frequency of a term in a document. This will, inevitably, produce a
more complex model where the formula for the computation of the probability
would be:

P̂ (cj |xi) = P (|xi|)|xi|!
l∏

h=1

P (fh|cj)
freq(fh,xi)

freq(fh,xi)!
(6.11)

where freq(fh,xi) is the frequency of feature fh (generally, a word) in doc-
ument xi.

McCallum and Nigam [78] found, by comparing both models over four differ-
ent corpora, that the multi-nomial model was almost uniformly better than the
multi-variate Bernoulli model. In empirical results on five real-world corpora
they found that the multi-nomial model reduces error by an average of 27%,
and sometimes by more than 50%.

6.5 Linear classifiers

Linear classifiers range from very basic algorithms like Widrow-Hoff, to complex
ones like Support Vector Machines. A linear text classifier consists on a vector
w = (w1, w2, · · · , wl) where each component wi corresponds to a feature in the
feature space. The complexity relies when estimating this vector from sample
data. The classification is performed by testing if the dot product between the
vector w and the document xi is above a certain threshold t and then return
the l top ones:

xi belongs to class if xi ·w > t (6.12)

6.5. LINEAR CLASSIFIERS 67

where

xi ·w =

l∑

k=1

wkxi,k (6.13)

Vector w represents the difference between a good linear classifier and a poor
one. Although the final form of the vector is quite simple, the mathematical
machinery involved in finding the best (w1, w2, · · · , wl) values may involved
expensive algorithms and numerical methods. We will start by describing some
of the simplest ones in order to give a better idea of the way this vector can be
generated and, later on, pass to two of the most performing methods: SVM and
PLAUM.

Different training algorithms can be produced by varying the criterion func-
tion and weights-adjust procedure used. In this way we differentiate between
on-line and batch searches. An on-line algorithm works by updating the vector
weights for a sample document at a time. A weight vector at a given time is
recomputed from the previous one and using document features and document
class (either positive or negative), passing to the next updating for the next doc-
ument in the training collection. This process stops when all the documents are
processed or a certain criterion is satisfied. One of the benefits of this training
is that we can always update the classifier with new incoming samples.

In the other hand, batch algorithms work by generating the final vector using
all the training samples at a time. Therefore, the classifier is computed over the
full set of training samples, no stop criteria is used. They use to provide better
results, compared to on-line algorithms, but we will need to feed the whole
collection to the learning algorithm if we want to consider additonal samples in
the training collection, while this is not the case for on-line algorithms.

6.5.1 Basic classifiers

We will describe here three algorithms for training linear classifiers: Rocchio
algorithm, Widrow-Hoff algorithm and Exponentiated gradient [67].

The Rocchio algorithm computes the weight vector w from an existing
initial vector w1 and the set of training samples. Therefore, this is a batch
algorithm:

wj = αw1,j + β

∑

i+ xi,j

n+
− γ

∑

i− xi,j

n−
(6.14)

where

i+ = {i : yi = +1}; that is, those xi belonging to the class

i− = {i : yi = +1}; that is, those xi not belonging to the class

68 CHAPTER 6. CLASSIFIERS

n+ and n− are the total number of positive samples and negative ones re-
spectively

α, β and γ are parameters that control the relevance of the initial vector,
positive samples and negative samples respectively. When α = 0, β = 1 and
γ = 1, w/|w| is the difference in the mean scores for positive and negative
training instances.

The Widrow-Hoff algorithm of Widrow & Stearns is an on-line algorithm.
Thus, it updates the weight vector at each step. Initially the vector weights are
set to zero. The update formula is:

wi+1,j = wi,j − 2η(wi · xi − yi)xi,j (6.15)

where η is the learning rate and controls the capacity of vector w to change
by the influence of each new sample. Widrow-Hoff algorithm tries to adjust w
towards a local minimal square loss (w · x − y). As final weight vector, it is
considered to be better applying the average of the consecutive weight vectors
generated during the process:

w =
1

n + 1

n+1∑

i=1

wi (6.16)

The exponentiated gradient algorithm of Kivinen & Warmuth is another
on-line algorithm. Similar to Widrow-Hoff algorithm will update the weight
vector at each run of the following formula:

wi+1,j =
wi,jexp(−2η(wi · xi − yi)xi,j)

∑l

k=1 wi,kexp(−2η(wi · xi − yi)xi,k)
(6.17)

Kivinen and Warmuth [56] have studied these two algorithms (WH and EG)
analytically in order to determine their error bounds. The error bound depends
on the learning rate η chosen. If we take η = 1/X2 for WH (the one used by
default in our experiments) the square loss is bounded as follows:

E[(w · x− y)2] ≤ 2

(

E[(u · x− y)2] +
|u|2X2

n + 1

)

(6.18)

We can read in this formula that the expected square loss of w is upper
bounded by twice the expected square loss of the best vector u (the one with
the best fit to the data), plus a term that is quadratic in the norm of u and the
maximum length (X2) of any sample. As conclusions we can state that WH
will have a low bound when the data is homogeneous (low entropy so we can
find a vector u that fits the data well) and the number of training samples is
relatively large.

6.5. LINEAR CLASSIFIERS 69

In the case of EG we have chosen (as Lewis in his review [67]) η = 2/(3R2)
as learning rate, where R is a value that bounds difference between minimal and
maximal feature weights for any sample:

maxjxi,j −minjxi,j ≤ R;∀xi ∈ X (6.19)

Then expected loss is bounded as given by the following expression:

E[(w · x− y)2] ≤
3

2

(

E[(u · x− y)2] +
R2 ln l

n + 1

)

(6.20)

Which can be understood simply that EG works better for large feature
spaces, which is a good point due to the inner nature of text categorization
tasks.

6.5.2 Logistic regression

The linear methods describe from now onwards carry a heavy machinery in
probabilistic and statistical mathematical theory. Therefore, we will only pro-
vide a sight on the surface of these methods at the points we consider more
relevant. Usually, the computational complexity involved to solve them (except
for PLAUM) involves numerical methods of additional complexity.

Logistic regression models the conditional probability of a sample for a class
as [131]:

P (y = 1|x,w) =
1

exp(−wT)
(6.21)

To obtain an estimate of w we can apply the maximum likelihood, thus
obtaining:

ŵ = arg min
w

1

n

n∑

i=1

ln(1 + exp(−wT xiyi)) + λw2 (6.22)

The last component λw2 is an addition to reduce the computational cost of
this minimization.

6.5.3 Support vector machines

Support Vector Machines are also a product of applied complexity theory de-
veloped by Vapnik [119]. Some years ago, Joachims proposed them for text
categorization tasks, to profit from its robustness in high dimensional spaces
[52].

70 CHAPTER 6. CLASSIFIERS

Figure 6.1: Two possible margins that linearly separate positive and negative
samples. σi would be preferred since it represents better the distinction between
classes (widest margin).

As for logistic regression, this is again a problem of optimization (see [20]
for a detailed introduction to SVM). The name of the algorithm is given by
the basic idea behind it: find those samples (support vectors) that delimit the
widest frontier between positive and negative samples in the feature space (see
figure 6.1).

The width of such border is know as the margin hyperplane, and SVM tries
to find the maximal margin by applying constraint quadratic optimization, al-
though every day new algorithms appear to solve this problem. The Empirical
Risk Minimization problem described in section 6.3 is transformed into another
problem by means of what Vapnik calls VC bounds. This new problem is called
Structural Risk Minimization and SVMs are a solution to them.

At the end, what we will get is the hyperplane w+ b with the characteristics
already mentioned. The decision function will be:

Φ̂(x) =

s∑

i=1

αiyiK(x,wi) + b (6.23)

where s is the number of support vectors (samples which define the margin),
αi is a value that makes the algorithm allow a certain error, wi + b is the
hyperplane. We have K as an operator for space transformation known as
kernel function, that can map the space to another one where the separability
between samples may be easier (i.e. for non-linear cases).

Support Vector Machines have been applied successfully in many text clas-
sification tasks due to their principal advantages:

6.5. LINEAR CLASSIFIERS 71

1. They are robust in high dimensional spaces. Over-fitting does not affects
so much the computation of the final decision margin.

2. Any feature is important. Even some features that could be considered as
irrelevant ones have been found to be good when calculating the margin.

3. They are robust when there is a sparsity of samples.

4. Most text categorization problems are linearly separable.

6.5.4 Perceptron learning algorithm with uneven margins

Another linear classifier very close to SVM is the perceptron learning algorithm
with uneven margins (PLAUM) [105, 127]. This algorithm shares with the
previous one its foundations as it also derives from the idea of finding a margin,
and their authors claim that it works better than SVM for text classification
tasks. The classification is done in the same way as for SVM:

Φ̂(x) = x ·w + b (6.24)

But the way w and b are computed is so simple that makes it very easy
to implement compared to the numerical needs of the SVM algorithm. The
algorithm is given in figure 6.2. For non linear cases, PLAUM uses the λ-trick
which consists in rewriting the dot product x · x by:

w · xi =

l∑

j=1

wjxi,j + λwl+i (6.25)

where λ is the value for the ith coordinate and zero elsewhere granting the
separability of samples.

72 CHAPTER 6. CLASSIFIERS

Require:
n linearly separable training samples Xt

A learning rate η ∈ <+

A maximum epochs parameter T
Two margin parameters τ+1, τ−1 ∈ <

Algorithm:
epoch ← 0; i ← 1; update ← m

w← ~0; b ← 0; R← maxxi∈X |xi|
repeat

if yi(w · xi + b) ≤ τyi
then

w← w + ηyixi

b← b + ηyiR
2

updated ← i
end if
i ← i + 1
if (i > n) then

i ← 1
epoch ← epoch + 1

end ifuntil (i = updated) or (epoch ≥ T)
return(w, b)

Figure 6.2: The PLAUM learning algorithm

6.6 Boosting algorithms

Boosting is a technique in machine learning for combining classifiers in an iter-
ative way so that performance is improved. The final classifier is composed by
several weak classifiers, which have been generated through the learning process.
A more formal definition would describe that, basically:

Given:
(x1, y1), · · · , (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1}

For t = 1, · · · , T :
Train weak learner and produce weak hypothesis ht : X → {−1,+1}
Update some weights and parameters

Return final hypothesis H as combination of h1, · · · , hT

AdaBoost is one example of these techniques [111]. It works by maintaining
a distribution of weights (one per sample) that is updated to force weak learn-
ers concentrate on those samples whose classification is “harder”. The generic
AdaBoost algorithm is shown in figure 6.3. As we can see, this algorithm

• increases the weight of miss-classified samples at each round

6.6. BOOSTING ALGORITHMS 73

• the final hypothesis H is a weighted combination of T weak hypothesis ht

in function of their error

Given:
(x1, y1), · · · , (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1}

Initialize D1(i) = 1/m
For t = 1, · · · , T :

· Train weak learner using distribution Dt

· Get weak hypothesis ht : X → {−1,+1} with error:
Et = Pri∼Dt

[ht(xi) 6= yi] =
∑

i:ht(xi)6=yi
Dt(i)

· Let αt = 1
2 ln(1−Et

Et
)

· Update D:

Dt+1(i) = Dt(i)
Zt
×

{

e−αt if ht(xi) = yi,

eαt if ht(xi) 6= yi,
=

= Dt(i)exp(−αtyiht(xi))
Zt

where Zt is a normalization factor so that D is a distribution
· Output final hypothesis:

H(x) = sign(
∑T

t=1 αtht(X))

Figure 6.3: AdaBoost algorithm

The algorithm only focuses on the case of binary valued weak hypothesis
predictions. It is different to previous boosting algorithms in that it is adaptive,
since it depends on error rates of each individual weak hypothesis (hence its
name).

The benefits of this algorithm are due to mathematical properties of the
training error and the generalization error. The first one implies that AdaBoost
does not need a lower bound a priory to work, since it is computed adaptively.
The second one, as proved by Schapire and his colleagues, tells us about the
independence of T from the upper bound of the generalization error, which
makes the algorithm robust against over-fitting.

Boosting is closely related to linear programming and on-line learning. Many
similarities in their formulae can be found between this algorithm and Support
Vector Machines (and some significant differences, though). Two variants of this
algorithm were proposed to deal with multi-class classification: AdaBoost.MH,
defined on the basis of the Hamming loss minimization, and AdaBoost.MR,
which relies on ranking loss minimization. We will not go into further details
about these two variants here, since we did not apply this specific algorithm
in our experiments, but due to its growing relevance in the TC paradigm, this
brief introduction was imposed.

74 CHAPTER 6. CLASSIFIERS

Whether we choose a loss to minimize or another, we have to design how
weak learners are generated. Schapire proposes a very simple one for text clas-
sification, it has the basic form of a one-level decisions tree:

h(x, l) =

{

c0l if w ∈ x

c1l if w /∈ x
(6.26)

where c0l, c1l ∈ <, w being a term and x a sample document. The weak
learner is chosen by computing those values for all terms, then the weak learner
returns the hypothesis (the term) with the lowest score. So, each weak hypoth-
esis just returns a real value when the terms appears and another value if the
term is not present in the document. This value used to be the score Zt in
AdaBoost.MH and an approximation of Zt in AdaBoost.MR (since there is no
analytical solution).

Results shown by Schapire and Singer on the Reuters corpus [111] promoted
AdaBoost.MH outperforming other algorithms like Rocchio, Näıve Bayes and
Sleeping Experts. Unfortunately, in our opinion the Reuters collection is not a
very suitable collection for performing multi-label classification experiments due
to the low number of categories assigned to each document (rather few, two or
three categories per sample in rare cases). Similar results were found by Weiss
et al [124] also using the Reuters collection.

A very interesting point about loss minimization and margin based algo-
rithms like Support Vector Machines is that they are closely related. Some
researchers, including Robert Schapire, state the close similarity between these
minimization algorithms, as also seen by Rätsch et al [102] when designing unsu-
pervised methods. Although more recent boosting algorithms are available, like
SmoothBoost [113] and BrownBoost [40], leveraging approach studies all them
under the same view, linking the basis of these techniques with the Theory of
Optimization [80].

6.7 Thresholding

At this point, we know, how to process a collection of text documents to feed
a learning algorithm in order to generate a model that will allow us to perform
classification tasks. We have already seen the different classification paradigms:
binary, multi-class and multi-label, the last one being the most complex, since
it needs of all the properties of the former two. As seen, we can construct a
multi-label classifier by running a binary classifier for each single class.

The result of the binary classifiers will be a sequence of values (margin
distances, similarity measures, probabilities, etc.), one per class, that will help
us in determining the n most related classes, i.e. the classes that will be the final
output of the multi-label classifier for every given document to be categorized.
The expect result from a binary classifier is just a yes or no answer, and to select

6.7. THRESHOLDING 75

the final choice the resulting measure of the algorithm must be thresholded,
that is, compared to a threshold to establish the discrete goodness of the class
for the document: if the value is under the threshold, the class is discarded.
This threshold is usually called cut . The most well known cuts defined in the
literature are those ones determined empirically, that is, over evaluation samples
to adjust it to the one we hope will provide best performance (Yiming Yang has
a nice review of them [130]):

• R-cut. This is, simply, directly applied when selecting a set of categories.
The t top ranked classes are selected as positive classes, the rest is con-
sidered negative (not assigned).

• P-cut. Here, the focus is on documents, rather than on categories. The
documents are ranked for a given category, and the kj top-ranking docu-
ments are assigned to the class:

kj = P (cj)× x×m (6.27)

where

kj is the number of documents assigned to category cj ,

P (cj) is the prior probability (over the training set) for a document to be
member of class cj ,

m is the total number of classes in the collection, and

x is a real value that must be tuned to get best global performance (its
range is [0, n], being n is the total number of documents in the training
set)

• S-cut. This threshold is fixed per category, setting the cut that produces
the best performance over the training set. The difference with respect to
the former two is that it is optimized per class. It does not guarantee that
the global optimum for the training set will be reached.

Yang observed that S-cut tends to over-fit while P-cut performed well on
rare categories. Nevertheless, P-cut is not applicable in our experiments, since
documents may be classified individually.

In a multi-label environment, we may profit from those measures without
considering thresholding and by using that information in selecting the final set
of classes. Basically, two main approaches can be considered for determining
these top classes: all-positive or most similar. We will not dive into additional
existing and complex approaches, since our main goal is to demonstrate the
feasibility of a multi-label classifier for massive labeled collections like the HEP
collection. The two presented approaches are strongly related to the way binary
classifiers are selected. The output value of a margin based classifier like SVM
is not always a comparable number when weighting a choice of a class against
another one. Therefore, thresholding is not suitable for margin based classifiers
as shown in our experiments.

76 CHAPTER 6. CLASSIFIERS

Chapter 7

Evaluation

The evaluation of a text categorization system is based on test samples that
have been already labeled by human experts. For text categorization systems,
the evaluation strategy used is inherited from traditional Information Retrieval
experience. David D. Lewis has an interesting review on how evaluation is car-
ried out in TC systems [63]. The start point is to compare the matches between
human-assigned key words and computer-assigned ones. We can summarize four
possible situations in the following contingency table:

class ci assigned by expert?
YES NO

assigned by
classifier?

YES TPi FPi

NO FNi TNi

where

TPi True positive. Those assessments where system and human ex-
pert agree for a label assignment.

FPi False positive. Those labels assigned by the system that does
not agree with expert assignment.

FNi False negative. Those labels the system failed to assign as they
were by human expert.

TNi True negative. Those non assigned labels that also were dis-
carded by the expert.

Notice the subscript i at every value. That means that we compute those
numbers for every class by looking the documents it has been assigned to, and
the same could be done for every document by looking at assigned classes. The
consideration about what to consider for final global values (we will see how to
compute them later) depends on whether we want to focus on the quality of the
system assigning classes to documents or the quality of the system for certain

77

78 CHAPTER 7. EVALUATION

classes.

By combining these values some well known measures can be computed:

precision (P) =
TP

TP + FP
(7.1)

recall (R) =
TP

TP + FN
(7.2)

fallout =
FP

FP + TN
(7.3)

accuracy =
TP + TN

TP + FP + FN + TN
(7.4)

error =
FP + FN

TP + FP + FN + TN
(7.5)

F1 =
2PR

P + R
(7.6)

interpolated break-even (IB) =
P + R

2
(7.7)

The precision (7.1) tells us hown well the labels are assigned by our system
(the fraction of assigned labels that are correct). The recall (7.2) measures the
fraction of experts labels found by the system. These two measures are well
known in information retrieval systems ([118]). The balance between these two
values is a difficult task, since usually the improvement in one leads to a decline
in the other. A multi-label text categorization system returning few labels for a
document may have high precision but low recall. On the other hand, a system
returning many labels for the same document will show a low precision but a
higher recall, in general. Since we are looking for systems showing both high
precision and recall, we may want to define an overall measure that will gives us
a notion of the overall performance obtained by the categorization engine. The
two most used measures are the interpolated break-even and the F1 measure
(proposed by Van Rijsbergen [118], pp. 168–176).

The former is nothing but the average between precision and recall, and
some researchers do not consider it a very realistic measure, since it is not
always possible to configure a system so that both precision and recall end up
with a similar value. The use of the F1 measure is more realistic, since this
quotient is more sensitive to low values of precision or recall. Therefore, in our
experiments, the F1 measure will play a central role as indicator of the goodness
of the system.

7.1. COMPUTING GLOBAL MEASURES 79

7.1 Computing global measures

Formulae given before provide nothing but measures for a single class ci. It
is very important to remark that most of the experimental frameworks tradi-
tionally set just focus on classes and average over them all. In our case, this
choice is not trivial: we want to construct a TC for classifying documents with
a considerable possible number of topics (from five to twenty per document
approximately). Therefore, in our opinion, the average should be done over
documents rather than classes. In any case, to obtain global values we can use
two different averaging approaches: micro-averaging and macro-averaging, first
introduced by Lewis [66].

Micro-averaging

This averaging method computes defined measures by adding up all the individ-
ual TPi, TNi, FPi and FNi of every class (or document) to global ones. The
formulas for precision and recall would be:

precisionm =

∑

i

∑

j TPij
∑

i

∑

j TPij +
∑

i

∑

j FPij

(7.8)

recallm =

∑

i

∑

j TPij
∑

i

∑

j TPij +
∑

i

∑

j FNij

(7.9)

where TPij , FPij and FNij are the number of true positives, false positives and
false negatives, respectively, found for the class i in the evaluation document j.

7.1.1 Macro-averaging

When we average by macro-averaging we have to set beforehand on what basis
the averaging will be performed. It works by computing the evaluation measure
first at class or document level, but one of the two must be chosen. Then, all
the measures are averaged into the global ones. Considering the precision and
recall measures we would have:

precisionj =

∑

i TPij
∑

i TPij +
∑

i FPij

(7.10)

recallj =

∑

i TPij
∑

i TPij +
∑

i FNij

(7.11)

precisionM =

∑

j precisionj

n
(7.12)

recallM =

∑

j recallj

n
(7.13)

n being the total number of documents in the collection. Here, we have consid-
ered a macro-averaging in the basis of documents.

80 CHAPTER 7. EVALUATION

7.1.2 Cross validation

A supervised learning algorithm needs labeled data to be trained and labeled
data to be tested. Of course, these two sets must be disjoint to avoid a false
estimation of performance, and this is the reason why multiple runs of the
experiments are usually launched with a different partition at each turn. In our
experiments, data will be split into three different sets: learning, validation and
testing. The first set will be used for generating the samples that will be used
to train classifiers. The evaluation set will determine the best classifier for each
class and its threshold (see previous chapter) when needed. The last set will be
used to compute the evaluation measures described here.

As soon as data has to be split into disjoint sets, one for training and another
for statistical analysis, our results may differ depending on how we have chosen
such partitions. For that, cross validation strategies tend to reduce the possible
bias introduced by this process, by partitioning randomly several times the same
data set and, thus, allowing some items to be in each of the two sets (see [74]
for a broad introduction to cross validation). Thus, several partitions are made
and the final result is an averaged measurement of the experiment over every
partition made.

Stratified n-fold Cross validation [58, 81] consists in dividing the document
collection into sets of equal size. At each turn, one set is used for testing and
the rest for training the system. In our case, 10 disjoint folds are generated. At
each turn, 6 folds will be used for learning, 3 for evaluation and 1 for testing,
in such a way that every subset will be used once for testing purposes. Some
studies, as pointed by Witten and Frank in their book [125], estimate that 10 is
a stable number for assuring a certain statistical independence when computing
the evaluation values from the partitions done on the collection.

We have elaborated our own experiments to justify this decision, and the
results are very interesting (see experiment 12.1).

7.2 Statistical tests

In order to be sure that two distributions are significantly different, we perform
some statistical tests. For any test, we define a “null hypothesis”, which says
that there is no difference between the two populations of interest. In text clas-
sification the two populations may be two learning algorithms to be compared,
two weighting schemes or two lemmatization algorithms, and the values for each
distribution would be the values of a certain measure through all classes. Based
on the way these distributions are generated we can apply different tests, like
the Wilcoxon test for paired comparison if we used a fixed split of training and
test samples.

Many authors used a paired t-test on the results of n-fold cross-validation
experiments with n=5, 10, 20 or 30, or n experiments with random (stratified)

7.3. FINAL CONSIDERATIONS 81

train/test splits. Dietterich [33] reviewed these and other tests and found that
the paired t test often has high type 1 error (i.e. it finds a difference when no
difference exists), especially with random train/test splits. He proposed to use
the 5x2cv test instead. For this test, 2-fold cross-validation with random split is
performed five times and a statistic is measured to verify if the null hypothesis
is rejected (so the differences are significant) or not (so we cannot consider any
improvement of one approach over the other). Another interesting conclusion
is that n-fold cross validation shows a high Type-I error, mainly due to overlap
among different splits.

Alpaydin [8] proposed a variant of the 5x2cv test that combines the results
of the 5x2=10 cross-validation trials in a more robust way, resulting in lower
type 1 error and higher power of the test.

But in our case, the n-fold cross validation is not performed by applying
the test computation that Dietterich proposes for this testing approach: we
compare over averaged values. Therefore, the effects of high variance are lower
(as studied in experiment 12.1). These tests are non-applicable because each
algorithm is tested over different partitioned folds.

7.3 Final considerations

In the literature, evaluation of categorization systems is usually performed by
micro-averaging rather than macro-averaging. We can see that in the case of
micro-averaging is does not matter whether we focus on classes or on documents.
On the other hand, when macro-averaging we have to be very careful in stating
on which basis it has been done, since results may differ drastically. Further-
more, in multi-label classification problems, measures based on macro-averaging
must be considered with caution: if we have classes that are very frequent and
the performance for them is bad, less used classes which are better assigned
can produce good results for both precision and recall when macro-averaging
by class, while the behaviour of the system per document is not that good.
Obviously, this preference in the averaging system used by current TC research
is due to the lack of real multi-labeled corpora, where the described problem
becomes relevant. Lewis [63] emphasizes the importance of development
and release of standard collections.

Another important issue considered in some analysis (see [18]) is the inter-
annotator agreement, that is, even for human experts, the labeling varies. There-
fore, two different experts are very likely to select different sets of labels. This
level of agreement can be used as base for our evaluating against it, e.g. if the
inter-annotator agreement is 80% in recall and our systems reaches that per-
centage, then we would conclude a system recall of 100%, since our system is as
good a manual annotation. In our case we will not take this into consideration,
due to the fact that no precise information about such agreement in labeling
High Energy Physics documents is available.

82 CHAPTER 7. EVALUATION

To conclude this review on evaluation measures, we consider that our system
should be evaluated mainly on the basis of macro-averaging in a per document
basis, since the goal of the system is to be used for labeling documents and we
consider this is the best approach to search for a good system configuration.

Chapter 8

Applications of key word
assignment

Keywords have many applications [87], since they have been useful in the li-
brarian community for centuries. But the feasibility of automated systems is
bringing new ideas not only to this community, but to all the information society.

The construction of hand-crafted thesauri for use in computer applications
dates back to the early 1950s with the work of H. P. Luhn, who developed a
thesaurus for indexing scientific literature at IBM. The number of thesauri and
systems is now growing steadily because manually or automatically key worded
documents have many advantages and offer additional applications compared to
simple documents that do not have the added value of being linked to thesauri.
Depending on whether people or machines make use of key words assigned to
documents, we distinguish different uses depending in the way these key words
are manipulated:

• Human manipulation of key words. Human users mainly use key
words for browsing and searching of document collections.

• Using key words for automated computer-based manipulation.
The fact that key words were traditionally developed for human readers
does not necessarily mean that they can only be used by people. Several
powerful applications have shown that descriptors can well be used to
represent document contents for a number of automatic procedures.

83

84 CHAPTER 8. APPLICATIONS OF KEY WORD ASSIGNMENT

8.1 Human manipulation of key words

8.1.1 Browsing

Keywords can be (actually, they are) used to facilitate the browsing of document
collections. These can either be part of a whole collection or of the small subset
returned by a search operation.

• Use of key words as a document summary. Thesaurus descriptors are
usually a small list of carefully chosen terms that represent the document
contents particularly well. Depending on the thesaurus, they are of a
summarising, conceptual nature. They often do not occur explicitly in text
so that they are of a completely different nature from full text indexes.
Descriptors function as kind of an abstract summary and give users a
quick and rough idea of the document contents. This helps the users to
quickly sieve out the most important or relevant documents out of a large
collection. The use of key words as a means for automatic summarization
is an interesting application already in practice in many digital libraries
and on-line catalogues.

For High Energy Physics documents this can speed up the search process
in specialized collections which grow in hundreds of documents every week
[86].

If the thesaurus is multilingual, this summarising function also works
across languages, i.e. a user will see a list of key words (a summary)
in their own language of a document written in another language [116].

• Use of key words for Document Navigation. If the database containing
full texts and their key words offers hyperlinks based on key words, it
is possible to navigate through the document collection by starting with
one document and searching for similar documents by clicking on one or
more of the key words to see other documents indexed with the same
descriptors.

• Classification of documents. In some search engines the results of a search
are classified “on the fly” into categories so that the browsing of docu-
ments is easier and more self-organized. The user can distinguish faster
between interesting documents and irrelevant ones. Although many of
these systems use words from documents to label automatically generated
categories, others select them from a controlled vocabulary. An example
of such a system is GRACE [5].

However, the use of key words for classification goes beyond the pure re-
trieval domain. The freedesktop.org ([3]) project promotes the use of key
words for icon and menus arrangement (representing application launch-
ers) in the main menu of the desktop where applications are internally
attached to a list of categories. It means that there is not a predefined

8.1. HUMAN MANIPULATION OF KEY WORDS 85

taxonomy to which program launchers are classified. Instead, programs
are labelled with key words from which menus are created in the graphical
interface of an operating system (like the Gnome [4] desktop available for
Linux and other operating systems).

• An interesting feature that will be tested at CERN’s library is the use
of key words to help users in navigating through document references,
allowing them to recognize the subject that is shared by the reference and
the document the reference belongs to.

8.1.2 Searching

Key words are also helpful during the search phase. For example:

• For query expansion. Some authors, like Vassilevskaya [120] among oth-
ers, propose the use of a controlled vocabulary for query expansion. In
the query formulating process, the query is passed to the automatic as-
signment tool and some thesaurus key words are suggested to the user.
These can then either be chosen instead of or in addition to the query.

• For cross-lingual searching. When the thesaurus used for indexing is mul-
tilingual, users can be given the option to use thesaurus descriptors as
search terms. The search can then be carried out using another language
version of the search terms to achieve cross-lingual document search and
retrieval, as achieved by the system developed by Pouliquen et al. [99].

• Conceptual search. Descriptors provided by a thesaurus have a relevant
advantage over terms selected for automatic full-text indexing. Concepts
which can be expressed in several synonymous ways, such as “Chemother-
apy” and “Drug Therapy”, are conflated to only one form (“Drug Ther-
apy”), while phrases can be treated as single concepts (“stage IIIB breast
cancer”, for example). This is one of the conclusions found by using the
MetaMap Indexer for medical documents [62].

• Guided search. When searching in highly specialized domains, key words
can be used as a directory or subject tree for the user who is not able
to make his/her information needs explicit as a set of query terms. If
documents in the collection have been labelled with key words and the
structure of the thesaurus is hierarchical, the user can drill down the cate-
gories narrowing the search space. This could be the electronic equivalent
of browsing the Universal Decimal Code (UDC) when we enter in a library
for the first time. As we can see, this tree can be navigated profiting from
semantic relations between key words, hence we may find related topics,
general topics, and further relationships.

86 CHAPTER 8. APPLICATIONS OF KEY WORD ASSIGNMENT

8.2 Using key words for automated computer-
based manipulation

A computer can use key words to perform certain automated operations. Some
of the most useful ones are:

• Using descriptors from a hierarchically organised thesaurus allows search-
ing by subject field, rather than full text search terms. For example,
searching for “RADIOACTIVE MATERIALS” can automatically be ex-
tended to all individual instances of radioactive elements, such as ’ura-
nium’, ’plutonium’, etc. This form of query expansion is being used for
some domains like High Energy Physics [120].

• Multilingual document similarity calculation. As the list of thesaurus de-
scriptors of a text is a semantic representation of this text, texts can be
compared with each other via these descriptor lists. The idea is that,
the higher the number of content descriptors two documents have in com-
mon, the more similar the documents are. For multilingual thesauri like
Eurovoc ([2]), which currently exists in over twenty languages with one-to-
one translations for each descriptor, the document similarity calculation
is even possible for texts written in different languages. [99] have shown
that the translations of a given document can quite reliably be identified
in a multilingual document collection because they are correctly identified
as the most similar document to the original document.

• Multilingual clustering and multilingual document maps. The same cross-
lingual document similarity measure can be used as input to further mul-
tilingual applications. These include multilingual clustering and classifi-
cation of documents, as well as the visualisation of multilingual document
collections in a single document map ([100]).

• The Semantic Web. Our opinion is that all these technologies will play
a key role in the development of the Semantic Web [15]. Considering
that the whole structure of the semantic web depends on RDF (Resource
Description Framework) and that there are already some projects to use
thesauri like a schema (ontology) defining the terms used to represent the
RDF version of WordNet, we can conclude that this is a promising area
of research. A web of documents can be related via their associations
between key words.

• The Semantic Grid. Not only documents can be linked using key words,
but any type of service (for example, any web service) can be attached with
key words which could be automatically assigned using the description of
the service as basis. The Semantic GRID ([39]) objective can be reached
faster using subject enhancement, i.e. key-wording.

8.2. USING KEY WORDS FOR AUTOMATED COMPUTER-BASED MANIPULATION87

Therefore, we could imagine a scenario where we look for a certain service,
e.g. a database of iron providers. We get the key words of the service which
may have been generated from the content of top web pages in the portal
of this service (the pages which let us access the database via web forms or
any other web based interaction). These key words show us that there is
another database which offers specific iron made toys, since the thesaurus
splits that key word iron manufacturer into the subtopics iron-made toys
manufacturer, naval manufacturer, etc. Thanks to the semantic network
created from key words relationships we are able to find the provider we
need.

There are more areas where multi-label classication may be useful. For
instance, question-answering systems may profit from the techniques developed
in text classification, as we can see in the paper by Garćıa-Cumbreras and others
[29]. Another example is the classification of medical images using small pieces
of information attached to them as found by Mart́ın-Valdivia and others [76].
We are sure that not all possible applications have been introduced here, and
that with time new benefits will be discovered.

88 CHAPTER 8. APPLICATIONS OF KEY WORD ASSIGNMENT

Chapter 9

Current working systems

Nowadays, the use of text categorization covers many different areas, like docu-
ment routing or topic detection and tracking, but we are not aware of operational
production tools which implement multi-label categorization.

Automatic indexing based on word frequency can be traced back to the
1950’s and the work of Luhn [72] and Baxendale [13]. Several works have ap-
peared since then, adding current approaches (conflation algorithms, weight
normalization...). Many approaches have arisen to give an automatic solution
to indexing tasks. But, since wide knowledge is required in this process, we can
assume that there is no full automatic indexing system available at this point of
time (by providing indexes from a controlled vocabulary). Even good systems
must be supervised by experts to control and retouch generated results.

9.1 Approaches

The availability of large collections of documents in full text format has rep-
resented the beginning of a new era in information retrieval. Much research is
being done around natural language processing. Early works of Salton are a
good starting reference [107]. Fields like information extraction, text analysis,
text mining and others are sharing their knowledge to propose solutions in a
new environment. This environment is growing and demanding more and better
tools to be used in text processing. Multi-label classifiers for large numbers of
classes are not yet good good enough to be used fully automatically, although
results obtained so far may be considered enough in certain cases.

In this field many approaches from other areas in information retrieval can
be applied. Automatic key-wording can be related to automatic summarization
(which also tries to generate abstracts from full text documents). In this area
many relevant algorithms have been developed. They range from classic confla-

89

90 CHAPTER 9. CURRENT WORKING SYSTEMS

tion algorithms to reduce the components of a document to its essential items
(see [103]), to those which treat document as a whole, identifying discourse trees
[75] or conceptual phrases [28]. Nevertheless, the algorithms that focuse on text
categorization are the ones based on binary classifiers, margin-based classifiers
and, in general, all those techniques coming from the are of machine learning.
We will describe some of them in the following sections and specify why we
have preferred the use of some of them over others. The number of applied sys-
tems is also wide, and it is not our intention to provide a deep historical review
of all of them. The systems introduced in this chapter have been selected for
historical reasons and for their close (in the data managed or in the approach
implemented) relation to the system this work proposes.

9.1.1 BIOSIS

One of the most sophisticated programs for automatic indexing, developed at
BIOSIS, was discussed by Vleduts-Stokolov [121]. Words appearing in the titles
of journal articles were matched against a Semantic Vocabulary, consisting of
about 15,000 biological terms, and these in turn were mapped to a vocabulary of
600 Concept Headings. Thus, a Concept Heading could be assigned by computer
on the basis of words/phrases occurring in titles. Vleduts-Stokolov reported that
about 61% of the Concept Headings assigned by humans could be assigned by
a computer based on titles alone. If only primary and secondary assignments
are considered (BIOSIS used a three level term assignment scheme: primary,
secondary, and tertiary), about 75% of the assignments could be performed
automatically.

9.1.2 MeSH

Indexers at the National Library of Medicine use the Medical Subject Headings
(MeSH) [90] which currently contains about 18,000 unique subject terms. The
indexers previously used a printed annotated alphabetical list. Increasingly, the
indexers consult the on-line vocabulary. The list includes annotations. The
numbers beside the terms are the MeSH tree numbers. MeSH is arranged into
hierarchies or trees.

The indexers apply about 8-10 terms to each article depending on its length
and how much coordination of terms is needed. MeSH is used first to match
a text word in the title or abstract to the terms in the permuted vocabulary.
Indexers may also look at previously indexed terms in MEDLINE. The indexer
can interact with the MeSH file from within the indexing application. The
indexer can neighbor terms and access the display or tree terms within the
indexing application. Indexers can also display the MeSH annotations and other
relevant information. In addition to the 18,000 terms in the MeSH vocabulary,
there are also 100,000 supplemental chemical terms. These terms are indexed
differently because the file contains a large amount of chemistry information,

9.1. APPROACHES 91

in the areas of drug administration and diseases studied at the molecular and
biochemical level. If the chemical term is not found, an entry is created by
the indexer in the Supplementary Chemical list, rather than adding it into the
MeSH thesaurus itself.

Each indexer produces about four articles per hour. Typically, about 400,000
items per year are indexed from about 4,000 biomedical journals world-wide.
That is work for about 54 indexers full-time.

Important work has been done in producing an automated system for this
manual procedure for the related ADM thesaurus. The system is called No-
mindex and has been developed by Bruno Pouliquen[94]. The vast number of
labels available from the thesaurus are selected for texts in French by a method
composed by different techniques: multi-word detection, document similarity,
document segmentation, etc. Results obtained proved that these kind of systems
can be a valid solution in that context, and that probably could be exported to
other environments, as we have tested in our work.

9.1.3 NASA MAI System

The NASA Center for AeroSpace Information (CASI) is part of the NASA
Scientific and Technical Information (STI) Program. The STI databases contain
over 3 million records. At least 2 million of them are technical reports and
journal articles. The CASI indexers use the full document for abstracting and
indexing with exceptions for cases where the original document is not available.
The NASA MAI system [53] is an aid system, i.e. no final list of key words is
provided by the system, but rather a set of possible key words that the user can
select and browse.

The importance of the system resides in the capability of helping the indexers
to produce more coherent labellings, since human experts are driven by the
system to narrower sets of possible descriptors. Hence, we cannot provide an
automatic evaluation of the system and not very much information is given
about how the list of proposed key words is generated. In any case, we must
mention it to underline the importance of automatic classification systems not
only operating in standalone versions, but helping the human expert in the
search of summarizing topics for complex texts, reducing the work overload of
the expensive indexing task.

NASA CASI has used Machine Aided Indexing (MAI) for many years. The
MAI system does not perform full natural language processing or grammatical
parsing. Instead it uses certain rules which process the text and give results
approximating the results of full grammatical parsing– but without the compu-
tational overhead. The rules have been developed to get at those features of
text that have the most potential for representing index concepts.

MAI uses a large knowledge base (KB) of over 170,000 words and phrases.
Maintenance is ongoing. The KB also contains other types of entries. Some

92 CHAPTER 9. CURRENT WORKING SYSTEMS

entries in the KB function in coordination with the computational rules during
the text analysis process to direct the creation of extended phrases; the KB
plays a role in the parsing of the text; it is not just a list of phrases with a
straight look up.

The values of precision and recall are around 50%. It is a quite good value
due to the wide range of forms of documents processed and fields covered.

9.1.4 Eurovoc

There are very few multilingual thesaursi around, and automatizing one of them
leads to many practical applications. That is the case of the Eurovoc thesaurus
[2], used by about twenty European parliaments, such as the Europen Par-
liament itself, the European Commissions Publications Office (OPOCE), and
several European Union member state parliaments such as the Swedish Riksdag
and the Spanish Congress of Deputies. In all these environments, the thesaurus
is applied for manual indexing of generated documents. As Eurovoc is multi-
lingual with one-to-one translations, we can search documents in one language
and then retrieve related documents in many other languages [99] (up to 190
language pair combinations). Actually, as direct practical use of the automatic
indexing engine, the Spanish Congress of Deputies is currently installing an
interactive version of this system.

The Joint Research Centre has worked on automatic assignment during last
the years [18, 100, 116] and is using the system in its daily news analysis system
NewsExplorer1 to link news articles across languages [98].

Eurovoc has over 6,000 classes (this number varies depending on the version
of the thesaurus), although many descriptors are never or rarely used so that
the system could only be trained for approx. 3,500 descriptors. The system
maps documents onto Eurovoc by carrying our category-ranking classification
using Machine Learning methods. In an inductive process, it builds a profile-
based classifier by observing the manual classification on a training set of doc-
uments with only positive samples. Before the classifier acts, some linguistic
pre-processing is carried out to such lemmatization, stop words removal and
multi-words detection. This preprocessing is strongly linked to the type of lan-
guage being processed, and specilized pre-processing was computed for every
language handled. A detailed description of the process can be found in [18].

The results obtained in a per-document basis for an English and a Spanish
set of parliamentary documents were produced by a manual inspection of the
output from the computer-based indexer. The test collection was composed
by almost 60,000 English texts of different types; this number was smaller for
the Spanish corpus. With an average of 5.65 descriptors per document, we can
consider this as a truly multi-labeled collection. Taking human performance
as benchmark, values of 86% and 80%, repectively, were found. These results

1available publicly at http://press.jrc.it/NewsExplorer

9.1. APPROACHES 93

showed that a system like this performs significantly well for such a complicated
task.

9.1.5 Others

Fall et al [37] have applied multi-class (but not multi-label) text categorization
against a collection of legal documents about patents using different approaches
like k-NN, SVM, Näıve Bayes and SNoW. Already in their study it is clear how
difficult it is to work with collections with a high number of possible classes
(114 different classes with 451 subclasses). It is a pity that they only look at
precision to evaluate the four different approaches, but the conclusion points in
the direction of SVM as best performer.

The indexer of Reginal Ferber [38] is very similar to the solution provided
by HEPindexer: also values term-to-class are built up from term-to-document
and document-to-class relations, using a very simple formula:

wtk(t, k) =
P (t ∧ k)

P (t)P (k)
(9.1)

These probabilities are computed from simple document frequency quotients
as used commonly through the text. Results obtained on the Idis corpus (a
bibliographic database of the British Library for Development Studies) with
more than 80,000 records produce a top performance of 42.5% precision and
50% recall.

Cong Li and others [68] have proposed a mixed solution for m-class classi-
fication (not multi-labeling). In their work a Näıve Bayes network is used to
extract relevant “keys”. These keys are nothing but terms appearing in the
summary (abstract) of the document that are weighted within the text using a
probabilistic network. These keys are the input to a perceptron algorithm with
margins (PAM) (although SVMs were also tested as classifier). Results obtained
for e-mail categorization showed that about 20 to 30 keys produced best classi-
fication results: 63.6% of accuracy when considering only the top ranked class,
and 81.5 % when using SVM and considering top 3 ranked labels). It could be
an interesting model to be applied over large multi-label collections like ours.

B. Lausser and A. Hotho [61] have applied also Support Vector Machines for
multi-label of multilingual documents using the AGROVOC thesaurus. The
multi-label problem is transformed into m independent binary classification
problems that are fed with a traditional tf · idf document vector. After run-
ning the SVMs, all classes with a score greater than a certain threshold were
assigned to the document. Due to the nature of the thesaurus, a two-level cate-
gorization was applied. A break-even-point for precision and recall of 61% was
obtained at 0.6 threshold (although they claimed best results with 0.1 thresh-
old). Unfortunately the low number of documents involved (just 50) and some

94 CHAPTER 9. CURRENT WORKING SYSTEMS

other incongruities found in this article motivate us to take these results with
caution.

It is relevant to point out how SVM scores are used for ranking labels in
the two last works presented. SVM scores are related to margin distance; thus,
this measure is a bad value about the relative proximity of a document to a
certain class. SVM and other margin-based classifiers should not be considered
as proper base classifiers when ranking over classes is applied for producing the
final set of candidates.

9.2 The High Energy Physics domain

9.2.1 The AIR/PHYS System

The old AIR/PHYS system [16] was one of the first multi-label classifiers in pro-
duction for real applications (a database on Physics papers). It is an application
of the AIR/X system [43, 57] and many innovative concepts were implemented
inside it like a basic segmentation with specific relevance calculation, search for
certain relations between terms appearing in different parts of the text (title,
abstract and content) and other techniques. But its complexity makes it diffi-
cult to apply it to other domains. In any case, despite the complexity of the
indexing phase, it brings out the importance of knowledge for building real-
world classifiers. The deep study on the characteristics of the collection where
the classifier will act, along with a wide range of strategies combined for the
classification task are references for the design and implementation of systems
like AIR/PHYS, operating with direct practical application.

We can summarize the data flow in AIR/X in the following steps:

1. Identification of terms (i.e. single words and noun phrases)

2. Calculation of association value z(t, ci) between a term t and a class ci as
z(t, ci) = nti/nt, where nti is the number of documents with term t and
class ci and nt is the number of documents of term t.

3. Apply thresholds c1 and c2 to discard z values that are too high or too
low.

4. Computation of an indexing function a(x) that selects from x (the ranked
list of classes) the appropriate final ones. This is done using a supervised
learning based classifier (ID3 as found in their descriptions).

AIR/PHYS is based on AIR/X, but goes beyond it, adding a more complex
indexing approach (the Darmstadt Indexing Approache or DIA) that consid-
ers some segmentation weighting (whether term appears in title or abstract)
and further specific corrections. An evaluation of the AIR/PHYS system [42]

9.2. THE HIGH ENERGY PHYSICS DOMAIN 95

showed the complexity of finding a good scheme of indexing due to the different
domains involved in Physics. The best scheme produced 68% of recall and 57%
in precision, which are still quite good values today. As a conclusion, we keep
the need of deeper studies depending on the collection/application the system
will work for.

9.2.2 Citometer

Again within the domain of High Energy Physics indexing we can find an in-
teresting proposal for multi-labeling. This work of Ezhela and others [36] can
be summarized in their statement: one can attach to a new text meta-data of
texts being quoted (cited) by it. After reviewing the indexing process for HEP
papers they reached two important conclusions. The first one is that to assign
proper key words not only the text should be used, also the comprehension of
cited texts is relevant to ensure completeness in the labels selected. The second
point is that more precise indexing can be obtained by considering prominent
relevance for articles containing numerical experimental data.

The automatic indexingCitometer works by applying one simple rule: assign
all the labels of cited papers whenever they share with the paper being indexed
further citation co-occurrences. Precision values range from 41% to 77% de-
pending on what level of indexing we consider (they use the PACS thesaurus,
which is a three-level rubricator).

Main issues can be summarized as follows:

1. Citometer idea works sufficiently well but

2. imprecise indexing schemes like PACS and DESY (different levels, many
key words entries very similar) are the main obstacles for optimal perfor-
mance,

3. not all documents showed an uniform way of storing the key words, and

4. not all documents are properly cited

We can consider that this source of information is very interesting and, in
fact, it has inspired some of our approaches, in particular the use of meta-data
for enhancing the classification process with this kind of available knowledge. In
very technical domains like HEP, some works for creating these citation networks
like the citation extractor used by the CERN Document Server [26] may become
crucial resources in text classification tasks.

9.2.3 SPIRES-HEP

Of course, rule based approaches can be found in the literature. These tech-
niques consists in the identification of certain patterns within the text and the

96 CHAPTER 9. CURRENT WORKING SYSTEMS

association of classes to each pattern or to a combination of them. One sys-
tem has been developed for High Energy Physics using a so-called Associative
Patterns Dictionary (APD) for the electronic papers stored in the database
SPIRES-HEP (Stanford Public Information Retrieval System, HEP collection)
[120]. The ADP parses the full-text of a paper to find associative patterns
(chunks of text). When a pattern is matched the program returns the key-
chain. A key-chain is a valid descriptor from the DESY [32] thesaurus and a
pattern can be:

• A single word (astrophysics, axiom, neutrino, ...)

• An abbreviation (GRB, QCD, ...)

• A sequence of words or an entire sentence

Patterns can be restricted to certain parts of the text (which implies that a
basic segmentation is performed) like the title or the abstract. Patterns can also
be “negative” in the sense that instead of activating a certain key-chain, they
can also force to ignore it. In figure 9.1 we have some examples of associative
patterns.

pattern key-chain
neutrino transitions with the
photon and electron-positron pair
creation

=⇒ neutrino, transition

magnetized WDs =⇒ astrophysics, white dwarf

dispersion relation for longitudi-
nal plasmons

=⇒ plasmon, longitudinal

Figure 9.1: Examples of associative patterns in an APD

It is very interesting that they have used almost the same collection of HEP
papers, and exactly the same thesaurus, DESY; but unfortunately no evaluation
of the system has been published, making it difficult to asses its excellence
as automatic key-wording system. The current system does not consider the
possibility of creating associative patterns with logical operators to enrich the
expressiveness of a rule by combining different basic patters (using AND, OR,
etc.). The main criticism for this system is that associative patterns are added
by hand, turning the architecture into a too rigid solution making impossible to
port the program to a domain different from HEP.

9.2.4 Sokrates

SOKRATES stands for Self-organizing Object-oriented Key-term Recognition
And Text-Editing System. It is a set of programs developed by Ivo Steinacker

9.2. THE HIGH ENERGY PHYSICS DOMAIN 97

from Innsbruck (Germany). These system is included here because of the in-
terest CERN showed in it at an early stage [30]. The information about the
system is not very accessible, and most of its architecture and algorithms remain
behind a dark curtain.

There is a first learning phase in which a fair amount of similar text material
is used to train the system, constructing a set of longest possible noun-type
phrases. The SOKRATES program works more or less automatic, and does not
require experts to read the articles to be key worded. So such a system is from
the beginning completely autonomous, it is not intended to be a tool to aid
indexers.

An objective evaluation of the system is difficult, since proposed key words
are compared manually with DESY key words and those similar (or, at least,
considered to be similar) are counted as matches. The value of precision found
was near to 40%, but experiments were, in our opinion, not cleanly performed.

9.2.5 HEPindexer

The HEPindexer project intended to propose a first solution to automatic clas-
sification at CERN, opening a door to research for automatic indexing tools in
the scientific area of HEP. This project has been developed at the ETT divi-
sion of CERN, under the supervision of Jean-Yves Le Meur and Jens Vigen,
by myself. We can consider that HEPindexer is the predecessor of the TECAT
system, the result of this thesis [82].

The goal of the training process is to build the WTK matrix. This matrix
relates two items: key words and terms. These items are related by a common
weight which is calculated from documents in the training set. These weights
are computed from training documents in a purely statistical way. The matrix
is the result of the combination of two previous matrices: WTD and WKD.

The WTD matrix relates terms and documents. Each cell in the matrix
is a weight wtdt,d which establishes a relation for term t to document d. These
values are computed after apply to the document a conflation algorithm. This
algorithm takes the full text document as input and generates a list of stemmed
words which will be ranked in frequency and normalized as is detailed in next
sections. Its values are computed by equation 9.2.

wtdt,d =
freqtdt,d

maxtfreqd

· log
N

Nt

(9.2)

where
wtdt,d weight between term t and document d
freqtdt,d frequency of term t in document d
maxtfreqd maximum frequency of a term in document d
N total number of documents in the collection

98 CHAPTER 9. CURRENT WORKING SYSTEMS

Nt total number of documents containing term t

The WKD matrix comes from a similar process. Here, the list of predefined
key words for the document are processed: primary key words are extracted and
weighted. Its values are computed as detailed in equation 9.3.

wkdk,d =
freqkdk,d

maxkfreqd

(9.3)

where
wkdk,d weight for main key word k in document d
freqkdk,d frequency of main key word k in document d
maxkfreqd maximum frequency of a key word in document d

The calculation to obtain the weight which relates a term and a key word
is quite simple since it is fully based on statistics. Equations 9.4 and 9.5 show
how each value wtkt,k of the WTK matrix is computed from values wtdt,d and
wkdk,d of matrices WTD and WKD respectively.

wtkt,k =

N∑

d=1

wtdt,d · wkdk,d (9.4)

wtkt,k = log
M

Mt

·
N∑

d=1

wtdt,d · wkdk,d (9.5)

where
N number of documents in the training collection
M number of different main key words in the training collection
Mt number of different main key words related to the term t
wkdk,dweight between a key word k and a document d

The equation 9.4 is very simple to compute, but the equation 9.5 should
return better results. The reason we use two different approaches here is because
it is proved that inverse document frequency improves retrieval when used to
compute the weight of terms in documents, but we introduce here a measure
we call inverse key word frequency (IKF). This second option will assign lower
weights to those terms that are related to many key words.

Once the WTK matrix is computed we have, for example, the term acceler
(which is a stemmed word) connected to the key word electron muon with a
weight of 0.34 and the term collision related to same key word with a weight
of 1.76 we can conclude that collision has more to do with electron muon than
acceler. Following this reasoning we can propose key words starting from a

9.3. SOME REMARKS 99

list of terms obtained from a new incoming document. The document must
be preprocessed also, to have the list of its unique stemmed words properly
weighted.

This system is similar to the one proposed by Sheridan and Schuble [115], as
we mainly perform a “dual” operation between two retrieval systems, associating
descriptors (classes) and terms via the document nexus, instead of terms from
two different languages as in the work mentioned.

Best performances are obtained when we use inverse key word frequency
(IKF) combined with the normalization of key word frequency. We can also
find that we can get better results with sort size for the vector of terms for
documents. This also improves retrieval speed (5-10 seconds on a Pentium III
running at 800 megahertz with 128 megabytes of RAM memory). The best
configuration obtained after experiments gave a precision of 52.7% and a recall
value of 58.5%.

9.3 Some remarks

We have started this chapter putting some emphasis on the lack of multi-label
classifiers. As we have seen, relevant work for the MeSH thesaurus has been
carried out, though little or no work has been done in other domains. An
additional crucial point is the handicap imposed by the size of the thesaurus
each system tries to automate: it is not the same to produce three or four labels
for a document from a set of thousands of potential ones than proposing the
same number of labels from a lower cardinality, like few hundreds. Therefore,
we must look at measurements in the light this fact. For instance, the Nomindex
tool introduced for the MeSH thesaurus reached 30% in precision and 31% in
recall. Those final results are very good values, taking into account that more
than 22,500 concepts were handled.

100 CHAPTER 9. CURRENT WORKING SYSTEMS

Chapter 10

TECAT: the Text
Categorization Toolkit

10.1 Introduction

For our experiments, we have built our own classification system as demanded
by the following main requirements at the CERN library:

1. Speed: the system must return an assignment of classes to a document
within less than ten seconds as limit for a “real time” response.

2. Modularity: the system must be able to grow by adding new binary base
classifiers.

3. Experimentation: the system not only must run in a production mode,
but also allow to play with different parameters in order to find the most
suitable configuration for a given corpus.

4. Portability: the system must run on a variety of possible architectures:
Windows, UNIX platforms, etc.

The program is written in ANSI C and makes use of the GNU GLib library.
It is called TECAT.

TECAT stands for TExt CATegorization. It is a tool for creating multi-label
automatic text classifiers. With TECAT you can experiment with different col-
lections and classifiers in order to build a multi-labeled automatic text classifier.

When indexing by assignment we know a priorys the set of indexes that we
can use to label a document. This set is usually known as the controlled vocab-
ulary or thesaurus. The assignment task has been performed traditionally by

101

102 CHAPTER 10. TECAT: THE TEXT CATEGORIZATION TOOLKIT

professional experts who have read the text and selected the most representative
“key words” (also known as “descriptors”, “indexes”, “categories” or “topics”)
for that text.

Indexing by assignment has been studied for automatic computer process-
ing by the Automatic Text Categorization (TC) research community. Within
this area, Information Retrieval (IR) and Machine Learning (ML) techniques
work together to create computer based systems able to achieve this task with
reasonable success.

From Information Retrieval we borrow the document processing (parsing,
stemming, lemmatization, stop words removal, vector space model represen-
tation, similarity measures, feature identification, extraction, transformation
and weighting, performance measures, etc.), and from Machine Learning its
Supervised Learning algorithms (Rocchio, Neural Networks, K-NN, Genetic Al-
gorithms, Support Vector Machines, Bayesian Networks, etc.). All these tech-
niques are combined to end up with a system architecture that will allow a
computer to perform automatic indexing by assignment.

10.2 Architecture

Even though we can find many different systems for text classification, we can
mostly agree that the main phases performed by a TC system are the following,
though the specific implementation of each one may vary:

1. Collection preparation. Since we are in a Supervised Learning approach,
we have to let our system “learn” from training data. Therefore, a collec-
tion of already indexed documents must be provided.

2. Document representation. These documents are then processed and con-
verted into internal models, which are representations that will allow learn-
ing algorithms to work properly. Usually this phase implies many other
transformations (those ones that we have identified as IR techniques). The
result will be a list of pairs <feature, weight> per document.

3. Classifiers learning. For each class we train a binary classifier using docu-
ments labeled with such a class as positive samples and the rest as negative
samples. This is know as the one-against-all approach, the basic approach
used by TECAT. After the training, a classifier per class is ready.

4. Testing/classification. Once the system is trained, we can either perform
an automatic classification of new incoming documents or use an already-
labeled collection to test the performance of the trained system.

How the collection is divided into the three different subsets: training (gener-
ating candidate classifiers), validation (selecting best classifiers and parameters

10.3. COLLECTION PREPARATION 103

Figure 10.1: Training process in TECAT.

adjusting) and testing (computing performance measures) is detailed in chap-
ter 11. In figure 10.1 the steps performed in training the system are shown. As
we can see, the training samples are themselves divided into two disjoint sets
used to train and select base classifiers.

10.3 Collection preparation

TECAT needs a collection of already-labeled documents. These documents must
be organized in two different directories: the one with full text data and the one
where key words are stored. A document is therefore represented by two files
with the same name at these two different directories. So, if we have a training
collection of 1,000 documents, we will have a directory with 1,000 text files and
another one with 1,000 files containing the key words (one per line) related to
the text files.

TECAT will start processing the text and key word documents. In this
phase already some text processing and feature handling is performed:

• Stemming. The Porter Stemmer algorithm is used [93].

• Minimal term frequency filter. Those terms appearing less than a certain
number of times in the document will be discarded.

104 CHAPTER 10. TECAT: THE TEXT CATEGORIZATION TOOLKIT

• Minimal and maximal term lengths. Sometimes, too long words appear
due to corruption in the text file after transformations for producing plain
text version from PDF or PS documents.

• Stop words removal. Words appearing in the specified stop words list
are ignored for later processing (they are just removed from document
representation).

The quality of such methods for our specific collection have been studied in
experiment 12.4

10.4 Document representation

Although, as we have already seen in the previous section, some processing
is performed during collection digestion, additional filtering and weighting the
features are performed in this phase. It is know as the “folding” phase in TECAT
because the tool implements cross-fold validation, and, therefore, the weighting
of features and other operations cannot be performed before knowing the split
of documents into training, validation and test sets:

• Training set : these documents are used for training the classifiers.

• Validation set : these documents are used for discarding invalid classifiers
and/or filter them if their performance is not good enough according to
the specified criteria.

• Test set : these documents are used to compute the final performance of
the system.

Thus, these sets are produced in N different partitions (N being the number
of folders used). At every turn (N in total) of the folding process, just one fold
is used as test set, 1/3 of remaining folds as validation set, and the rest (2/3 of
folds) is used as training set.

Filtering operations performed at this phase are:

• Document frequency feature selection. We can discard those terms appear-
ing in less than a given number of documents in the training set (at least
in one, by default).

• Document frequency class selection. It is clear that when a class is not
represented in the three sets, we cannot train it nor test it. Therefore,
we can discard that class specifying an small threshold. But we can also
make it larger, since rare classes will be difficult to be trained for. The
default value is 1, which means that if the class is not in the training set
it will be ignored for training (but not for testing, since we may want to
see how good the system is considering even discarded classes).

10.5. CLASSIFIERS LEARNING 105

• Information gain filtering (see section 5.1.2). TECAT will take by default
the 50,000 features with the highest information gain value.

We have studied how this filtering affects our collection and which measure
is the best in our case (see section 12.5).

Once terms and classes have been filtered, the next step will assign to terms
(a.k.a features) a weight at every document. There are several weighting schemes
available in the literature. TECAT offers two of them: the entropy weighting
and the TD.IDF weighting [23].

• Entropy weighting . The global weighting is done by using term entropy.
See section 4.2.1 for a detailed description of this weighting scheme.

• TF.IDF . The classical term-frequency · inverse-document-frequency weight-
ing scheme is used. See section 4.2.2 for further details.

Weights can be normalized in the vector using the cosine normalization. It
is performed by default since it has reported usually good performance as it
controls the heterogeneity in document sizes. See experiment 12.6 for a study
on the behaviour of these two weighting schemes in our collection.

The number of folds is set to 10 by default. A value of 10 means that
10 different partitions into train, validation and test sets of the collection of
documents will be done and that, when testing, 10 tests will be launched, one
per fold, averaging final measurements.

10.5 Classifiers learning

This is the most complex phase in the training. Here we will generate a model
for each class. This model will allow us to predict if the class has to be assigned
to a new document or not. In order to do so, we apply for every class a training
process based on binary learning algorithms, using documents belonging to the
class as positive samples and the rest as negative samples. This is known as the
one-against-all approach (see section 6.1).

The training phase is, itself, divided into two sub-phases: training and val-
idation. We can tell TECAT to try with a list of possible algorithms to be
trained with the training set and then select the best one based on a given per-
formance measure over a validation set. TECAT has some classifiers built-in,
but it allows you to plug-in external classifiers easily (provided they understand
TECAT sample format).

When a binary classifier is trained a model is generated for the algorithm
used (usually a vector of weights and a bias value). For a new document vector,
the classifier will return a value as result of a calculation between the document
vector and the class model. This value represents, usually, the proximity of the

106 CHAPTER 10. TECAT: THE TEXT CATEGORIZATION TOOLKIT

document to the class, so in order to decide if the document belongs to the
class or not a threshold is also learned. Values returned above that threshold
are considered positive answers (the document belongs to the class), and values
equal or below that threshold are understood as that the class should not be
assigned to the document.

In figure 10.1 the process is clarified: the training collection is split into
training samples and validation samples. The first subset is used to train k base
classifiers for every class. From those classifiers, by using the validation subset,
only one classifier will be selected as the base classifier for that class. This
kind of voting system (where only one classifier ends with all votes) allows the
system to have a totally different algorithm per class and select it from a set of
candidates according to its performance for that class. At the end, the number
of base classifiers will be less or equal to the number of trained classes (less in
the case none of the candidates is able to produce a minimal performance for
some classes). This adaptive selection of classifiers is tested in experiment 12.2
and is proven to be interesting for large multi-labeling problems as studied in
experiment 12.7, introduced also by [88].

10.5.1 Specifying base binary classifiers

Classifiers implemented built-in are: Rocchio, Widrow-Hoff, Exponentiated Gra-
dient (see [67] for these three methods), LVQ [77] and PLAUM [127]. But also
external classifiers can be specified. For example, in our experiments we have
used the SVM-Light1 [52] package as an external (not built-in) classifier. As
many classifiers as wanted can be used simultaneously: different algorithms
and/or with different parameters.

As a sample of invocation to this complex operation, we show here what
could be a command line syntax of a training in TECAT:

$ tecat --train-by-class \

--selection-threshold=0.1 \

--classifier=method=plaum:pos_tau=2.0:neg_tau=-1.5:iter=100 \

--classifier=method=plaum:pos_tau=1.0:neg_tau=-1.0:iter=10 \

--classifier=method=rocchio \

--classifier=method=rocchio:beta=2.0 \

--compute-scut \

/data/tecat-trained

10.5.2 Specifying selection measures

In the example given above two different classifiers with two different parameter
set each are given, which turn out to be four different classification schemes to

1Available from http://svmlight.joachims.org/

10.6. TESTING/CLASSIFICATION 107

be trained and evaluated. From those, the most performing classifier for the
category will be select. This performance is computed on a certain measure.
TECAT computes precision, recall, F1, F, accuracy, error, fallout and optimal
distance as performance measures (see chapter 7). By default, the F1 measure is
used to select the best classification approach. Also, once one classifier is selected
as the best one, it will be assigned to the class only if it reaches a minimal
threshold on the performance measure selected. By default that threshold is
0.1, so the best one must, at least, reach 0.1 for the F1 value measured. This
threshold is very important since it will allow discarding non-trainable classes
(or, at least, those that are difficult to train) reducing considerably the number
of classifiers taken into account (see experiments 12.7).

10.5.3 Computing the S-Cut threshold

Another threshold to be taken into account is the one that determines whether a
samples is assigned to a class or not based on the value returned by the classifier.
By default this threshold is zero when working with margin based classifiers
(SVM and PLAUM), since negative samples are passed to the learning algorithm
labeled with −1 weight and positive ones with +1 weights. But some distance-
based algorithms like Rocchio and Widrow-Hoff need to tune that threshold to
the value that maximizes the performance of the classifier. Again, the selection
measure is used as value to find that optimal threshold on the validation set. The
algorithm used is the S-Cut approach (see section 6.7). By default, the threshold
remains to zero, so if we want to apply S-Cut to compute that threshold we will
specify it explicitly.

A recommendation is not to use S-Cut when working with margin-based
classifiers like PLAUM or Support Vector Machines. Since these algorithms are
optimized to find the widest margin between positive and negative samples, the
value returned (the margin) is not really a measure of the distance of the sample
to the class. Applying S-Cut does not report significant improvement in general
as found in our experiments (see section 12.7).

10.6 Testing/classification

Once the system has been trained, it can assign labels automatically to new
plain text documents, following the steps shown in figure 10.2.

TECAT produces a lot of verbose output during testing. At each fold, values
for different measures for the most frequent classes are given and the values of
the averaged measures for the fold are shown. At the end, the averaged values
of fold measures are computed. It is important to understand this output, as
they are the data used to establish conclusions in our experiments.

In figure 10.3 we can see an example showing the last fold results and the

108 CHAPTER 10. TECAT: THE TEXT CATEGORIZATION TOOLKIT

Figure 10.2: Classification process in TECAT.

average results over all folds after test processing.

[...]

--- (Fold 3, 79 docs)

BY CLASS TP TN FP FN Precision Recall Accuracy Error Fallout Beta F F1 Opt.Dist. BEP

avg) 340 8245 2060 336 0.141667 0.502959 0.781805 0.218195 0.199903 1.000000 0.221066 0.221066 0.298649 0.322313

AVG) 0 0 0 0 0.112081 0.274848 0.781805 0.218195 0.210595 1.000000 0.102058 0.102058 0.148477 0.193465

BY DOC TP TN FP FN Precision Recall Accuracy Error Fallout Beta F F1 Opt.Dist. BEP

avg) 340 8245 2060 336 0.141667 0.502959 0.781805 0.218195 0.199903 1.000000 0.221066 0.221066 0.298649 0.322313

AVG) 0 0 0 0 0.150311 0.495448 0.781805 0.218195 0.199907 1.000000 0.214758 0.214758 0.287987 0.322880

139 classes tested, 63 classes where successfully trained

10 Most frequent classes:

--------------------- ’experimental results’ (in 161 docs)

49 1 29 0 0.628205 1.000000 0.632911 0.367089 0.966667 1.000000 0.771654 0.771654 0.737101 0.814103

--------------------- ’magnetic detector’ (in 133 docs)

43 8 27 1 0.614286 0.977273 0.645570 0.354430 0.771429 1.000000 0.754386 0.754386 0.726786 0.795779

--------------------- ’electron positron’ (in 87 docs)

10 53 0 16 1.000000 0.384615 0.797468 0.202532 0.000000 1.000000 0.555556 0.555556 0.564857 0.692308

--------------------- ’talk’ (in 58 docs)

16 4 59 0 0.213333 1.000000 0.253165 0.746835 0.936508 1.000000 0.351648 0.351648 0.443743 0.606667

--------------------- ’quark’ (in 45 docs)

15 2 60 2 0.200000 0.882353 0.215190 0.784810 0.967742 1.000000 0.326087 0.326087 0.428230 0.541176

--------------------- ’quantum chromodynamics’ (in 43 docs)

4 66 2 7 0.666667 0.363636 0.886076 0.113924 0.029412 1.000000 0.470588 0.470588 0.492029 0.515152

--------------------- ’anti-p p’ (in 43 docs)

8 52 15 4 0.347826 0.666667 0.759494 0.240506 0.223881 1.000000 0.457143 0.457143 0.482099 0.507246

--------------------- ’jet’ (in 42 docs)

9 49 21 0 0.300000 1.000000 0.734177 0.265823 0.300000 1.000000 0.461538 0.461538 0.505025 0.650000

--------------------- ’DESY HERA Stor’ (in 40 docs)

10 58 4 7 0.714286 0.588235 0.860759 0.139241 0.064516 1.000000 0.645161 0.645161 0.645611 0.651261

--------------------- ’mass spectrum’ (in 38 docs)

13 4 62 0 0.173333 1.000000 0.215190 0.784810 0.939394 1.000000 0.295455 0.295455 0.415458 0.586667

FINAL RESULTS

139.00 classes tested, 60.67 classes where successfully trained

BY CLASS TP TN FP FN Precision Recall Accuracy Error Fallout Beta F F1 Opt.Dist. BEP

avg) 1086 23190 6676 1018 0.139912 0.516160 0.759337 0.240663 0.223532 1.000000 0.220150 0.220150 0.302199 0.328036

AVG) 0 0 0 0 0.106680 0.288463 0.758499 0.241501 0.236860 1.000000 0.095578 0.095578 0.148598 0.197572

BY DOC. TP TN FP FN Precision Recall Accuracy Error Fallout Beta F F1 Opt.Dist. BEP

avg) 1086 23190 6676 1018 0.139912 0.516160 0.759337 0.240663 0.223532 1.000000 0.220150 0.220150 0.302199 0.328036

AVG) 0 0 0 0 0.134365 0.500749 0.758499 0.241501 0.224547 1.000000 0.203454 0.203454 0.281297 0.317557

Figure 10.3: Sample output of TECAT test results

For a better understanding of the evaluation measures involved here, please
refer to chapter 7. Anyhow, we summarise here those measures detailing how
they are represented in the sample output given at figure 10.3:

• The TP, TN, FP and FN are the ’true positive’, ’true negative’, ’false
positive’ and ’false negative’ counts. So, for each decision taken by TECAT
(assign a class or not) we increase one of these counters by comparing to
classes assigned to documents by human experts.

10.7. PARAMETERS OVERVIEW 109

• Each evaluation measure appears, in final results, four times: two when
evaluating by class, and another two when evaluating by document. When
evaluating by class, we are computing TPs, TNs, FPs and FNs for every
document at each class tested. When evaluating by document these values
are computed for every class at each document tested. Macro-averaged
measures (AVG) and micro-averaged measures (avg) are calculated from
those values. We can see that, as stated in chapter 7, micro-averaging is
the same for both evaluation approaches.

• Evaluation measures are: precision, recall, accuracy, error, fall-out, F and
F1 (the last two share the same value in the above example because beta
was set to value of 1), optimal distance and break-even-point (BEP). This
last value is computed by TECAT as a simple mean between precision and
recall:

BEP =
precision + recall

2
(10.1)

• In the training phase, some classes are not trained because the classifier
did not produced good performance (see section 10.5.1). In that case, we
cannot decide whether to assign it or not to a certain document. TECAT
just considers that non-trainable classes should never be assigned, and its
effects are tested counting FPs and FNs for those classes. The number of
tested classes is the number of classes that, after filtering in the indexing
and folding phase, were passed to the learning phase. Thus, in the given
example, 139 different classes were considered in the test, though TECAT
produced a classifier for only 60.67% of classes in average (averaged over
folds).

10.7 Parameters overview

This last section in the chapter describes the convention used for naming dif-
ferent parameters involved in a TECAT experiment. These names will be used
when explaining each experiment configuration in next chapters. Following
there is the name of the parameter along with its meaning organized into the
four phases involved in a TECAT experiment: indexing, folding, learning and
testing.

1. Indexing. This phase corresponds to the processing described at sec-
tion 10.2.

stop-words It determines whether a stop words list has been used to filter
out mean-less words. Its value is, therefore, yes or no.

stemming This flag enables or disables the application of the Porter’s
stemmer. Its values are, also, yes or no.

110 CHAPTER 10. TECAT: THE TEXT CATEGORIZATION TOOLKIT

min. term freq. This is an integer number for filtering those terms
with a frequency higher than the value specified.

min. term length When the number of characters of a term is larger
than this value, the term is not indexed.

max. term length Similarly, terms with less characters than the speci-
fied value are discarded.

2. Folding. This stage corresponds to the process described in section 10.3

DF term filter This integer value is used to filter out those terms ap-
pearing in less than the given number of documents. Thus, a term
must have, at least, the specified document frequency at the three
subsets: training, validation and testing of the cross-validation pro-
cess.

no. folds This is the number of folds to be created for cross validation.

IG filter This is the number of terms with the highest information gain
value that will be kept.

DF class filter This is, as for terms, a filter to discard classes with a
lower document frequency than the given value.

normalization This flag determines whether term weights in a document
vectors will be normalized using the cosine normalization (to force
all vectors having the same norm). Its possible values are yes or no.

term weighting This parameter establishes the weighting scheme to be
used for terms in documents. It can be either TF.IDF for the classical
term−frequency · inverse−document−frequency, or entropy for
using the entropy weighting formula.

3. Learning. This stage corresponds to what is described in sections 10.4,
10.5, 10.5.1 and 10.5.2.

S-cut This is a flag that enables/disables (value yes or no) the compu-
tation of a threshold using the S-cut approach.

measure This is the evaluation measure that will be used to select the
best binary classifier for each class. We usually use F1 as the dis-
criminative measure.

threshold This real parameter in the interval [0,1] determines the min-
imal value that the former measure must reach in order to consider
the classifier as candidate.

methods This is the list of methods (one or more) that will be evaluated
for every class to select most suitable one.

4. Testing. This operation is described in section 10.5.3

10.7. PARAMETERS OVERVIEW 111

mode This parameter just specifies the classification approach used. If its
value is by rank, classification status values will be ranked and the n
top classes will be selected. If the value is by class, then all classes
with positive status value will be assigned.

n-top When using the mode by rank this is the number of classes se-
lected from the top of the ranked list.

An example of configuration is shown in table 10.4. Tables like this one will
be included in the description of every experiment performed. Now that the
parameters have been detailed, we can describe precisely each of the TECAT
runs. In appendix B we can find how these parameters are passed to TECAT
when invoking it from the command line.

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut yes mode by class

measure F1

threshold 0.1

methods rocchio

Figure 10.4: Sample parametrization of TECAT for a potential experiment

112 CHAPTER 10. TECAT: THE TEXT CATEGORIZATION TOOLKIT

Chapter 11

The HEP collection

11.1 Overview

In this thesis, we focus on a collection of High Energy Physics papers1. The
Articles & Preprints collection aims to cover as far as possible the published and
pre-published literature in particle physics and its related technologies. The col-
lection contains something like 400,000 documents, out of which about 50 % can
be accessed electronically. The documents originate from articles published in
journals, preprints, technical reports, conference presentations, scientific com-
mittee documents and theses; all are comprehensively indexed by the CERN
Scientific Information Service. The collection starts, comprising only the most
important documents in the first decennia, from the mid of the 19th century.
The full coverage starts from 1980 onwards. Today, more than 320,000 docu-
ments are available on the CERN Document Server (CDS).

The HEP papers are technical papers that usually contain plenty of graphs,
diagrams, formulas and other specific scientific notations. Their vocabulary
should have, in our opinion, a low degree of ambiguity, due to the specialization
of texts in every area (mainly Astrophysics, Theoretical Physics and Experi-
mental Physics). This is, of course, an important advantage, but it is also true
that the lack of specific resources (lemmatizers, stemmers, stop-word lists, etc.)
will be a main drawback in our system. Therefore, some experiments oriented
toward testing the validity of the resources used have been performed.

1These documents are freely available from the CERN Document Server (CDS) at
http://cds.cern.ch

113

114 CHAPTER 11. THE HEP COLLECTION

11.2 Data format

In figure 11.1 we can see a sample of the first page of a typical HEP paper.
We already identify some special symbols in the title. The collection we have
used in the present work consists on 22,903 labeled documents (6,1 gigabytes)
converted into plain-text using the pdftotext tool included in the xpdf package
(version 2.01)2. The files containing the key words (labels) for that set of papers
represents 112 megabytes of files.

Figure 11.1: Sample for a High Energy Physics document.

No special hardware has been provided for developing the automatic classi-
fier. A Pentium IV with 512 megabytes of RAM has been the hardware used
for implementation and experimentation. It is important to note that the size
of the collection described above and the expected number and variety of exper-
iments performed would have involved prohibitive times, so we considered the
creation of a partition for experimental matters and leave the complete one to
test the final system built up with those algorithms that performed best on the
smaller collection. This collection was obtained by keeping only experimental

2The xpdf package is available from http://www.foolabs.com/xpdf/

11.2. DATA FORMAT 115

HEP papers. We call this collection the hep-ex partition. This partition con-
tains 2967 documents and 2793 main key words (1103 if energy related keys are
removed, and 825 if also without reaction related ones). Full-text papers from
this partition produce more than 300,000 features after stemming is applied and
stop words removed, so we can see that the high dimensionality of the data will
demand a method to decrease this number if our intention is to run supervised
learning algorithms in a reasonable computing time. Another possibility to ac-
celerate the experimentation is to consider, instead of the full-text document,
just the “abstract” of it. Any HEP paper comes with an section where authors
summarize the content of the text, this is the abstract and its size varies from
a few lines to almost one page of text. Some experiments have been carried out
on additional data, like the full-text data of the hep-ex partition and the whole
HEP collection available.

An interesting characteristic of the data stored in the CDS server is its ad-
ditional information: the meta-data. This information plays a main role in the
purpose of our study. Meta-data is data about data, or information known
about the document in order to provide access to the document. Meta-data
Usually includes information about the intellectual content of the document,
digital representation data, and security or rights management information. In-
formation of this kind becomes very important in specialized libraries, since it
can act as an index to documents. Meta-data allows users to browse documents
by author, date, format and further useful information. The meta-data can also
be used as a nexus between documents and whole libraries, it has represented
traditionally the information that can form a query and, now that digital li-
braries are becoming as important as hard-copy based ones, the interoperability
of information and exchange of data can be determined by the compatibility
of meta-data available between two libraries, as the Dublin Core Meta-data
Initiative promotes3.

From CDS we can obtain the meta-data in XML format, either in Dublin
Core format (see figure 11.2) or in MARC format (see figure 11.3. In the HEP
collection we have considered the following fields among all the available meta-
data:

• Creator. The author or list of authors of the document.

• Title. String containing the title of the paper.

• Subject. Area where the paper fits in: Experimental Physics, Theoretical
Physics or Astrophysics.

• Date. Date of publication

3The Dublin Core Meta-data Initiative is an open forum engaged in the development of
interoperable on-line meta-data standards that support a broad range of purposes and business
models. DCMI’s activities include consensus-driven working groups, global conferences and
workshops, standards liaison, and educational efforts to promote widespread acceptance of
meta-data standards and practices

116 CHAPTER 11. THE HEP COLLECTION

• Description. A summary of the content (also known as abstract).

<?xml version="1.0" encoding="UTF-8"?>

<collection>

<dc xmlns="http://purl.org/dc/elements/1.1/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://purl.org/dc/elements/1.1/

http://www.openarchives.org/OAI/1.1/dc.xsd">

<language>eng</language>

<creator>Bassett, B A</creator>

<creator>Liberati, S</creator>

<creator>Molina-Paris, C</creator>

<creator>Visser, M</creator>

<title>Geometrodynamics of Variable-Speed-of-Light Cosmologies</title>

<subject>Astrophysics and Astronomy</subject>

<identifier>http://preprints.cern.ch/id=0001441</identifier>

<description>This paper is dedicated to the memory of Dennis

Sciama. Variable-Speed-of-Light (VSL) cosmologies are

currently attracting great interest as an alternative to

inflation. We investigate the fundamental geometrodynamic

aspects of VSL cosmologies and provide several implementations

which do not explicitly break Lorentz invariance (no ‘‘hard’’

breaking), and answer the question ‘‘VSL with respect to

what?’’. This large class of VSL cosmologies are compatible

with both classical Einstein gravity and low-energy particle

physics. These models solve the ‘‘kinematic’’ puzzles of

cosmology as well as inflation does, but cannot by themselves

solve the flatness problem, since in their purest form no

violation of the strong energy condition occurs. We also

consider a heterotic model (VSL scalar field chi plus inflaton

field phi) which provides a number of observational

implications for the low-redshift universe if chi contributes

to the ‘‘dark energy’’ either as CDM or quintessence. These

implications include modified gravitational lensing,

birefringence, variation of fundamental constants, and

rotation of the plane of polarization of light from distant

sources.</description>

<date>2000-01-26</date>

</dc>

</collection>

Figure 11.2: Sample for meta-data information in XML format.

Some experiments have been already carried out using this collection ([83,
86]), and its interesting distribution of classes allows us to carry out a number
of experiments and to design new approaches. An analysis of the collection has
shown that there is the typical high level of imbalance among classes. If a given
class is rarely represented in a collection, we can intuitively foresee a biased
training that will yield classifiers with a low performance. It is clear that, if the
collection were perfectly balanced, we could expect better categorization results,
due to better learning.

The architecture chosen for the multi-label classifier can be viewed as a
comittee with weighted linear combination of binary classifier where one of the

11.2. DATA FORMAT 117

classifiers has a weight of one and the rest is zero, i.e. at the end, only one
classifier is used for generating the classification status value (CSV), but the
advantage is that we can have a different classifier for each class. In order to
select the best classifier for the class, the training collection has to be divided into
learning and validation subsets: the former to train the classifiers and the latter
to select most performing classifier for each class. Figure 11.4 shows how the
different sets are used at different stages within our classification architecture.

118 CHAPTER 11. THE HEP COLLECTION

<?xml version="1.0" encoding="UTF-8"?>

<collection xmlns="http://www.loc.gov/MARC21/slim">

<record xmlns="http://www.loc.gov/MARC21/slim">

<controlfield tag="001">826204</controlfield>

<controlfield tag="003">SzGeCERN</controlfield>

<datafield tag="037" ind1="" ind2="">

<subfield code="a">cond-mat/0503152</subfield>

</datafield>

<datafield tag="041" ind1="" ind2="">

<subfield code="a">eng</subfield>

</datafield>

<datafield tag="100" ind1="" ind2="">

<subfield code="a">Kitamura, T</subfield>

</datafield>

<datafield tag="245" ind1="" ind2="">

<subfield code="a">Theory of liquid-glass transition in water</subfield>

</datafield>

<datafield tag="260" ind1="" ind2="">

<subfield code="c">2005</subfield>

</datafield>

<datafield tag="269" ind1="" ind2="">

<subfield code="c">7 Mar 2005</subfield>

</datafield>

<datafield tag="300" ind1="" ind2="">

<subfield code="a">26 p</subfield>

</datafield>

<datafield tag="520" ind1="" ind2="">

<subfield code="a">A quantum field theory of the liquid-glass

transition in water based on the two band model in the harmonic

potential approximation is presented by taking into account of the

hydrogen bonding effect and the polarization effect. The sound and

diffusion associated with intra-band density fluctuations, and the

phonons and viscocity associated with inter-band density

fluctuations are calculated. The Kauzmann paradox on the Kauzmann’s

entropy crisis and the Vogel-Tamman-Fulcher (VTF) law on the

relaxation times and the transport coefficients are elucidated from

the sound instability at a reciprocal particle distance

corresponding a hydrogen bond length and at the sound instability

temperature very close to the Kauzmann temperature. The gap of

specific heat at the glass transition temperature and the boson

peaks are also presented.</subfield> </datafield>

<datafield tag="650" ind1="1" ind2="7">

<subfield code="2">SzGeCERN</subfield>

<subfield code="a">Condensed Matter</subfield>

</datafield>

<datafield tag="695" ind1="" ind2="">

<subfield code="9">LANL EDS</subfield>

<subfield code="a">Statistical Mechanics</subfield>

</datafield>

<datafield tag="695" ind1="" ind2="">

<subfield code="9">LANL EDS</subfield>

<subfield code="a">Condensed Matter</subfield>

</datafield>

<datafield tag="856" ind1="4" ind2="">

<subfield code="u">http://documents.cern.ch/[...]id=0503152</subfield>

<subfield code="y">Access to fulltext document</subfield>

</datafield>

[...]

</record>

</collection>

Figure 11.3: Sample for metadata information in XML MARC format.

11.2. DATA FORMAT 119

collection

learning set�

validation set

testing set

��

learning

validation

classifiers
for class 1

classifiers
for class m

.

classifier
for class 1

classifier
for class m

.

evaluation
final results
(evaluation measures)

Figure 11.4: Basic data flow within TECAT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200

n
u
m

b
e
r

o
f
d
o
cu

m
e
n
ts

keyword

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200

n
u
m

b
e
r

o
f
d
o
cu

m
e
n
ts

keyword

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f
d
o
cu

m
e
n
ts

keyword

number of documents
50 documents

100 documents

(a) All classes (b) 100 most frequent

Figure 11.5: Distribution of classes across documents in the hep-ex partition.

120 CHAPTER 11. THE HEP COLLECTION

No. docs. Keyword
1898 (67%) electron positron
1739 (62%) experimental results
1478 (52%) magnetic detector
1190 (42%) quark
1113 (39%) talk
715 (25%) Z0
676 (24%) anti-p p
551 (19%) neutrino
463 (16%) W
458 (16%) jet

Figure 11.6: The ten most frequent main key words in the hep-ex partition

11.3. HEP-EX PARTITION 121

11.3 HEP-EX partition

The hep-ex partition of the HEP collection is composed of 2839 records and
full-text related to experimental high-energy physics that are indexed with 1093
main key words (the categories).4 Figures 11.5a and 11.5b show the distribu-
tion of key words across the collection. As we can see, this partition is very
imbalanced: only 84 classes are represented by more than 100 samples and only
five classes by more than 1000. The uneven use is particularly noticeable for the
ten most frequent key words: In table 11.6 the left column shows the number of
positive samples of a key word and the right column shows the percentage over
the total of samples in the collection.

In some experiments (like 12.10, additional corpora have been used to check
the validity of our approach to different data. For that, two additional corpora
have been set up: astro-ph (with 2,766 documents about Astrophysics), and
hep-th (with 17,270 documents about theoretical Physics).

4We did not consider the key words related to reaction and energy because they are based
on formulae and other specific data that is not easily identifiable in the plain-text version of
a paper.

122 CHAPTER 11. THE HEP COLLECTION

Chapter 12

Experiments

12.1 EXP 12.1 - Establishing the evaluation frame-
work

The amount of data available is enough to consider a k-fold cross validation
methodology in the evaluation of different configurations for the experiments
carried out. As we described in chapter 7, a cross validation (a big part of the
collection for training and the rest for testing) is performed k different times
([81], pp. 112) using a different partitioning at each turn into training and
testing sets. The overall results are computed as an average of the subsequent k
measurements registered. Some studies claim that the number of folds k should
be set to 10, thus having a 10-fold cross-validation scheme to test the system.

We wanted to ensure this choice to really guarantee the robustness of results.
Despite the fact that many research papers do not pay attention to this point for
the selection of the averaging strategy (macro vs. micro averaging), we want to
justify this decision by carrying out the evaluation of some learning algorithms.

12.1.1 Configuration

In table 12.1 we show the configuration used for this experiment. An explanation
of the parameters involved is given in section 10.6. For this set of experiments
the hep-ex partition was used chapter (see chapter 11 for further details).

Three different algorithms have been used: the Rocchio algorithm, the
PLAUM perceptron and Support Vector Machines (SVM). Each algorithm has
been used as unique base binary classifier in its own set of experiments, i.e. the
classifier for each class has not been trained by selecting the best of the three.
We are not interested at this point to test the performance of these algorithms,
but rather to check the fluctuation of measurements when using a different num-

123

124 CHAPTER 12. EXPERIMENTS

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds various

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut yes mode by class

measure F1

threshold 0.1

methods Rocchio,

SVM or

PLAUM

Table 12.1: Parametrization of TECAT for experiment 12.1

ber of folds. Therefore, we have run experiments using n-fold cross-validation
with different values of n.

The Rocchio algorithm has been used with values n={1, 3, 5, 7, 10, 15, 20,
25, 30, 40, 50}. Each cross validation has been run 10 different times. Thus,
2060 experiments have been launched for collecting statistical values that will
inform us about the stability of test results depending on the number of folds. If
runs for a given number of folds show high variance, then we should use another
number of folds. The objective is to determine the minimum number of folds
to use in order to guarantee the validity of our future experimental results.

With the PLAUM algorithm, the series of folds has been n={3, 5, 7, 10,
15, 20, 25, 30, 40, 50}, with 10 runs each. Thus 2050 experiments have been
launched using this perceptron as base classifier. These two former algorithms
are built-in to TECAT, therefore regardless the number of runs, we were able
to execute them in a reasonable period of time (about 54 hours for PLAUM).

For SVM we set n={3, 5, 7, 10, 15}, with 10 runs for each configuration
except the 15-fold runs which were executed only 5 times. This was due to
the computational cost involved in the runs, since the implementation used was
SVM-Light, involving an external command invocation for each learning and
classification process at every class. 325 runs were performed in total using this
algorithm as base binary classifier.

Documents are distributed in a random way but uniformly across folds. The
number of folds assigned to each subset depending on the number of folds in
total is detailed below, in table 12.2. We should keep in mind that we had three

12.1. EXP 12.1 - ESTABLISHING THE EVALUATION FRAMEWORK 125

subsets: one for training base classifiers, one for evaluating and filtering them,
and another one for testing the system.

total training evaluation test
1 1 1 1
3 1 1 1
5 2 2 1
7 4 2 1
10 6 3 1
15 9 5 1
20 12 7 1
25 16 8 1
30 19 10 1
40 26 13 1
50 32 17 1

Table 12.2: Number of folds assigned to each subset depending on the total
number of folds considered.

12.1.2 Results with Rocchio

From the results obtained with Rocchio we have computed two values: the
standard deviation and the range. The standard deviation tells us how variable
the results are for different runs with the same numbe of folds. If a number of
folds shows a higher value than another, then the first one is less stable than
the second one, which should be preferred as number of folds to be used in the
cross-validation process. Figure 12.1 shows the standard deviation obtained for
different values of n. We can see how fast it decreases at the beginning, staying
below 0.004 for almost any measurement. We can also notice a very interesting
behaviour: different measures are sensitive to different folding strategies in dif-
ferent ways. For instance, the precision has reported to be the most sensitive
measurement. Its values are more unstable than for the rest of measurements
which, more or less, show a similar response to the number of folds applied.

The diagram clearly reports a rare behaviour when the number of folds used
is 7, maybe due to the imbalance of the hep-ex partition. The imbalance of the
data makes many classes be sparsely represented across the collection, therefore
being much more sensitive in the way partitions are performed. These would
also explain why the curve mounts over the 0,004 deviation value when using a
number of folds between 15 and 20.

In figure 12.2 the value measured is the “range” in the variation of mea-
surements, that is, the maximum value obtained minus the minimum one. This
gives us the amplitude of the variation in absolute terms (it is not an statistic
number). Despite the fact of its apparent irrelevancy from the statistical point

126 CHAPTER 12. EXPERIMENTS

Figure 12.1: Number of folds Vs. standard deviation in cross-validation for
Rocchio algorithm

of view, we can see how easy these values can jump. Together with the standard
deviation, an idea of the dispersion of possible measurements can be formed de-
pending on the number of folds used to average these evaluation measurements.
From this figure we can see that values vary only about 0,2 % when using 10-fold
cross validation with the Rocchio algorithm.

12.1.3 Results with PLAUM

To avoid basing our decision of the number of folds to be used on only one classi-
fication algorithm, PLAUM experiments with a changing number of folds have
been carried out. The Perceptron Learning Algorithm with Uneven Margins
has been used this time with the same configuration as for Rocchio in the pre-
vious experiments. We can see in figure 12.3 how the standard deviation varies
according to the number of folds used to average the different measurements.
Again we can notice the random behaviour of the precision value, while for other
measurements it seems that a number of folds between 7 and 25 reports more
stable values.

Looking at figure 12.4, we can observe the absolute variation between min-
imum and maximum values obtained for each measure at each of the 10 runs
executed for every possible number of folds. Precision could vary over 1,5 %,
whereas for other measures this is less than 1 %.

12.1. EXP 12.1 - ESTABLISHING THE EVALUATION FRAMEWORK 127

Figure 12.2: Number of folds Vs. range in cross-validation for Rocchio algorithm

12.1.4 Results with SVM

Using Support Vector Machines as base classifier we find a more stable behaviour
of the precision, which now shows even a better response with increasing number
of folds. Though the variation range shown in figure 12.6 for 10-folds is only un-
der 1,2% (which is pretty high), the standard deviation presents approximately
the same values as for other algorithms.

It is noticeable also that the behaviour for SVM is not so random as for
PLAUM. We cannot appreciate any “jump” in the diagrams and the standard
deviation (figure 12.5) reaches a maximum for 7 folds and then begins to de-
crease. Folds number 3 seems to behave even better than 10 (except for preci-
sion), but looking at figure 12.7 gives us a clue on the subject: the precision of
SVM increases very fast when moving from 3 to 7 folds (it is similar for other
evaluation measurements). The reason for this is that SVM is very sensitive
to imbalance. With an increasing number of folds, the training set is bigger
and the test set smaller, therefore SVM finds more robust margins and becomes
more stable.

12.1.5 Analysis of results

Once all these experiments have been run, and with the results described above,
we can justify the validation framework used in experiments described in follow-
ing pages. 3, 5 or 7 fold is not good enough to assure the stability of the results

128 CHAPTER 12. EXPERIMENTS

Figure 12.3: Number of folds Vs. standard deviation in cross-validation for
PLAUM algorithm

and, consequently, our conclusions based on them. 15-fold cross validation is
better for margin based classifiers like PLAUM and SVM, but not that good
for Rocchio, for instance. Another main point against a number of folds beyond
15 is the computational cost that it implies. We can see how the number of
folds affects the three algorithms in precision and recall looking at comparison
diagrams 12.8 and 12.9.

The conclusions obtained from this study reflects that:

• Imbalance affects the stability of experimental results, so a cross validation
is needed with no doubt

• Using 10-fold cross validation is a compromise of stability for margin and
similarity based algorithm

• The standard deviation is lower for PLAUM and SVM, but the range is
wider because margin based algorithms are more sensitive to imbalance

• To guarantee the validity of variations in results we will apply 10-fold cross
validation according to the following table:

algorithm precision recall F1
Rocchio ≥ 0,72 % ≥ 0,84 % ≥ 0,47 %
PLAUM ≥ 1,57 % ≥ 0,90 % ≥ 0,67 %

SVM ≥ 0,88 % ≥ 1,11 % ≥ 1,16 %

12.1. EXP 12.1 - ESTABLISHING THE EVALUATION FRAMEWORK 129

Figure 12.4: Number of folds Vs. range in cross-validation for PLAUM algo-
rithm

Variations of measures for different configurations below given margins will
not be considered as relevant. For example, if using a filter in information
gain of 50000 terms increases the precision of SVM in 0,5 % over a filter
with 20000, we will consider that both filters have same performance and,
therefore, prefer the second one which economizes the number of terms
involved in the representation of a document vector.

130 CHAPTER 12. EXPERIMENTS

Figure 12.5: Number of folds Vs. standard deviation in cross-validation for
SVM algorithm

Figure 12.6: Number of folds Vs. range in cross-validation for SVM algorithm

12.1. EXP 12.1 - ESTABLISHING THE EVALUATION FRAMEWORK 131

Figure 12.7: Number of folds Vs. range in cross-validation for SVM algorithm

Figure 12.8: Number of folds Vs. standard deviation of precision in cross-
validation for Rocchio, PLAUM and SVM algorithms

132 CHAPTER 12. EXPERIMENTS

Figure 12.9: Number of folds Vs. standard deviation of recall in cross-validation
for Rocchio, PLAUM and SVM algorithms

12.2. EXP 12.2 - COMPARING DIFFERENT BASE CLASSIFIERS 133

12.2 EXP 12.2 - Comparing different base clas-
sifiers

When constructing a multi-label classifier using the architecture defined in previ-
ous chapters, the selection of base binary classifiers is very important. We could
say that the performance of the system is mainly dependent on the right use of
a good binary classifiers. Binary classifiers with poor performance will lead to a
non-performing multi-label classifier. In these experiments we have considered
three different base classifiers: Rocchio, PLAUM and SVM (see chapter 6 for a
detailed description of these algorithms).

It is our intention here to study the behaviour of such algorithms within
our experimental framework and determine which of them should be preferred
as base classifiers. TECAT has been designed to allow the use of different
classifiers at the same time. These different classifiers can be variations in the
configuration for the same learning algorithm or truly different approaches. The
system will select the best classifier, by evaluating it over an evaluation subset
of the training set, as the base classifier for the class. This is like a voting
committee where only one classifier receives all votes for a given class. How this
combination of base classifiers affects the final performance is matter of study
at this section.

12.2.1 Configuration

In table 12.3 we show the configuration used for this experiment. An explanation
of the parameters involved is given in section 10.6. For this set of experiments,
again the hep-ex partition was used (see chapter 11 for further details). As we
can see, now the only difference between configurations is given by the set of
base classifiers passed as candidates for the training phase.

In total, seven trained systems have been tested in this set of experiments.
First, three multi-label classifiers base in only one base classifier with a fixed
configuration: Rocchio, PLAUM and SVM as base classifiers respectively for
each multi-label classifier. These trainings correspond to first three entries in
table 12.4 (Rocchio-simple, PLAUM-simple and SVM-simple). The next three
entries (Rocchio-multi, PLAUM-multi and SVM-multi) are multi-label classi-
fiers trained again using a fixed algorithm as before, but in this case a range
of configurations (combinations of parameters) has been provided so that for a
class the best configuration of the given classifier is, in principle, selected. For
example, the Rocchio-multi entry shows that values for α and β parameters are
set from a given set of possible values. We have five possible values for each
parameter, thus, 25 different combinations have been passed to TECAT as can-
didates in the training phase. It is the same for the rest of entries whenever a set
of possible values is provided, all the possible combinations of these values were
tested. As said, 25 configurations of Rocchio were used in the Rocchio-multi

134 CHAPTER 12. EXPERIMENTS

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut see table 12.4 mode by class

measure F1

threshold 0.1

methods see table 12.4

Table 12.3: Parametrization of TECAT for experiment 12.2

experiment, 16 for PLAUM-multi, 5 for SVM-multi and 41 for the Mixed exper-
iments, where both Rocchio and PLAUM are provided under all the variants
proposed before.

12.2.2 Results

Using 10-fold cross-validation, performance measures have been macro-averaged
at each of the 10 rounds in a per-document basis. Final measures shown in
table 12.5 are computed by averaging rounds results. The column titled % of
classes tells us about the percentage of classes that found a valid classifier to
represent them. We can see, for instance, that SVM is the most discriminative
classifier, since few classes get successfully trained under this algorithm. In
figure 12.10 a graphical comparison of obtained performances is shown.

About the speed, we have timed1 how long it takes for the system to clas-
sify a single document. TECAT is optimized to fast testing, since we assign
documents to classes instead of classes to documents. Thus, for timing the real
label assignment to documents, a different experiments has been carried out.
Using again the hep-ex partition, each single abstract was passed to TECAT to
obtain the list of predicted classes associated. Each assignment involves load-
ing class models, vectorization of the plain-text file and running classifiers for
every trained class. This experiment was executed on a DELL dual Intel Xeon
machine at 2.8 GHz per processor, equipped with 1 GB of RAM memory.

As we can see, TECAT assigns about 5 classes per document in far less
than 2 seconds. This can be considered a real time classifier. For the interests

1The time UNIX command was used for this purpose.

12.2. EXP 12.2 - COMPARING DIFFERENT BASE CLASSIFIERS 135

experiment base classifier(s) threshold parameters

Rocchio-simple Rocchio S-Cut α = 1
β = 1

PLAUM-simple PLAUM 0 T = 100
τ+ = 1
τ
−

= −1
η = 1
λ = 0

SVM-simple SVM 0 cost-factor = 1
Rocchio-multi Rocchio S-Cut α = {1, 2, 5, 10, 50}

β = {1, 2, 5, 10, 50}
PLAUM-multi PLAUM 0 T = 100

τ+ = {0, 1, 10, 100}
τ
−

= {−10,−1, 0,−1}
η = 1
λ = 0

SVM-multi SVM 0 cost-factor = {1, 2, 5, 10, 50}
Mixed Rocchio + PLAUM S-Cut For Rocchio as for Rocchio-multi

For PLAUM as for PLAUM-multi

Table 12.4: Base classifiers configuration

precision recall F1 accuracy error % of classes experiment

0.46970 0.54166 0.45971 0.97208 0.02791 87.90 Rocchio-simple

0.69610 0.41221 0.49107 0.98190 0.01809 53.28 PLAUM-simple

0.73508 0.33396 0.43308 0.98208 0.01791 31.57 SVM-simple

0.50024 0.56878 0.50977 0.97605 0.02394 91.12 Rocchio-multi

0.52552 0.52902 0.50734 0.97753 0.02246 68.40 PLAUM-multi

0.70321 0.44066 0.51287 0.98256 0.01744 55.20 SVM-multi

0.51357 0.56465 0.51482 0.97648 0.02351 92.13 Mixed

Table 12.5: Results of experiments with different configurations

measure no. labels real time user time system time

mean 5,29 1,13 1,09 0,04
maximum 17 2,13 2,09 0,07
minimum 0 1,06 1,01 0,03
mode 4 1,1 1,07 0,04
variance 8,2 0,01 0,01 0
standard deviation 2,86 0,11 0,11 0,01

Table 12.6: Classification speeds (in seconds) for TECAT using PLAUM on the
hep-ex partition

136 CHAPTER 12. EXPERIMENTS

Figure 12.10: Performance of different strategies for base classifier candidates

of CERN, the capability of TECAT for proposing labels in that sort time al-
lows researches to generated on the fly classes for their working documents so
they can find related documents already classified and stored in the database.
Experiment 12.11 explores real time classification in a more subject centered
manner.

12.2.3 Analysis of results

The goal of these experiments is to determine whether the configuration of the
base classifier should be different for each class or not. Intuitively, the answer is
yes, since each class may need a different parametrization of the base classifier.
An easy way to allow that is to operate as done by TECAT: by selecting the
classifier from a range of variants according to the observed performance on
a set of samples. The cost of the training is higher, but the final multi-label
classifier is not affected by the number of candidates, since we still have one
classifier per class.

From results we can underline the following points:

1. The Support Vector Machines algorithm is usually not trainable on a large
set of classes, producing a low percentage of trained classes as observed
in the results, and a lower recall compared to other algorithms. The use
of additional configurations for candidates results in a higher recall (from
33% up to 44%) without affecting too much the precision. The value
observed for F1 measure is significant.

2. The approach of adaptive selection of the best classification configura-
tion for each class results is an improvement of performance for any base

12.3. EXP 12.3 - USE OF BIGRAMS DETECTION 137

classifier over an unique parametrization. That is, for a fixed learning
algorithm, it is good to use a validation subset to select best parameters
in an automated mode.

3. In basis of F1 measure as comparison value, the mixed strategy is the
best choice. It is even better than the one with PLAUM with single
configuration, but only slightly.

4. Comparing SVM with multiple configurations versus the mixed strategy,
it is impossible to assert that one strategy outperforms the other one just
by looking at the F1 measure. Nevertheless, it is clear that recall and
precision are more balanced when following mixed strategy, since SVM
tends to prime precision over recall.

In general, we conclude that allowing different algorithms and parameter
adjusting depending on the class leads to better classification results. In multi-
label problems the large number of classes makes it prohibitive to combine
several algorithms for every class, but by applying the described adaptive se-
lection we are not increasing computational cost, because the total number of
classifiers is at most equal to the number of classes. In fact, even by setting the
validation threshold constraint to a low value (0.1 in our experiments) the num-
ber of discarded classifiers and, consequently, classes, can be important without
a significant loss in performance but a significant gain in speed.

12.3 EXP 12.3 - Use of bigrams detection

Normally, the meaning of a word has no sense without the companion of adjacent
words. In some cases the concept is represented by a combination of the so called
multi-words (see subsection 4.1.1). Feature identification can be enhanced by
detecting such cases and forming an unique term from them. We have taken the
whole collection and computed the mutual information between each possible
pair of terms. These pairs have been ranked in two lists: one by this mutual
information value, and another by its frequency of occurrence. When a pair is
very frequent and is “well formed” (without containing stop words and following
a valid part-of-speech, POS, combination) it could be also worth considering.
That is the reason for also experimenting with this second simply method of
multi-word list generation. Thus, for our experiments we have considered only
multi-words of size “two”, that is, bigrams.

12.3.1 Configuration

For these experiments also the Rocchio and PLAUM methods have been tried
out. In table 12.7 we show the standard configuration applied. See section 10.6

138 CHAPTER 12. EXPERIMENTS

to interpret correctly the meaning of each parameter. For this set of experi-
ments, again the hep-ex partition was used (see chapter 11). The variability is
now given not only by the type of base classifier applied, but also for the number
of multi-words detected on the corpus.

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut only for Rocchio mode by class

measure F1

threshold 0.1

methods Rocchio or PLAUM

Table 12.7: Parametrization of TECAT for experiment 12.3

As we have generated two lists of ranked bigrams (one by mutual information
and another one by frequency) with all possible well formed pairs appearing in
the corpus. It is needed to determine which ones of those bigrams will be
detected as multi-words in the corpus. For that, only the top ranked ones have
been considered relevant bigrams. The number of top ranked bigrams tried are
50, 100, 500 and 1000. We have, therefore, 16 different runs as a combination of
base classifiers (Rocchio or PLAUM), list of candidate bigrams (by frequency of
by mutual information) and the number of bigrams considered from the selected
list.

The larger the size of the corpues, the more representative the mutual infor-
mation becomes. For that we have created another sequence of runs based also
on the hep-ex partition, but using full-text documents instead of just abstracts.
It is not the goal of these experiments to establish a judgement between the use
of abstracts or the use of full-text, but to determine whether the identification
of multi-words is worth considering. As final remark, note that bigrams ranked
list are generated from the whole corpus, not only the training partition. This
does not bias results, as mutual information or paired frequencies are measures
independent from classes associated to documents.

12.3. EXP 12.3 - USE OF BIGRAMS DETECTION 139

Precision Recall F1 BEP Accuracy % classes n-top By Algorithm

0.6961 0.4122 0.4910 0.5541 0.9819 53.28 0 nothing PLAUM
0.6921 0.4167 0.4931 0.5544 0.9820 52.58 50 MI PLAUM
0.6925 0.4111 0.4880 0.5518 0.9818 52.50 100 MI PLAUM
0.6860 0.4121 0.4883 0.5490 0.9817 52.15 500 MI PLAUM
0.6890 0.4082 0.4862 0.5486 0.9818 51.50 1000 MI PLAUM
0.6850 0.4101 0.4869 0.5475 0.9818 52.89 50 Freq. PLAUM
0.6911 0.4173 0.4937 0.5542 0.9819 51.94 100 Freq. PLAUM
0.6935 0.4028 0.4821 0.5481 0.9819 51.16 500 Freq. PLAUM
0.6923 0.3952 0.4762 0.5437 0.9818 52.41 1000 Freq. PLAUM
0.4668 0.5410 0.4570 0.5039 0.9720 88.15 50 MI Rocchio
0.4683 0.5420 0.4581 0.5051 0.9719 87.30 100 MI Rocchio
0.4656 0.5367 0.4545 0.5012 0.9717 87.53 500 MI Rocchio
0.4647 0.5390 0.4543 0.5018 0.9716 87.60 1000 MI Rocchio
0.4764 0.5454 0.4648 0.5109 0.9727 88.19 50 Freq. Rocchio
0.4767 0.5487 0.4683 0.5127 0.9727 88.12 100 Freq. Rocchio
0.4721 0.5484 0.4678 0.5103 0.9728 87.84 500 Freq. Rocchio
0.4813 0.5469 0.4706 0.5141 0.9730 89.12 1000 Freq. Rocchio

Table 12.8: Results in experiment 12.3 using abstracts corpus

Precision Recall F1 BEP Accuracy % classes n-top By Algorithm

0.6961 0.4122 0.4910 0.5541 0.9819 53.28 0 nothing PLAUM
0.7114 0.4387 0.5147 0.5751 0.9828 58.90 50 MI PLAUM
0.7081 0.4382 0.5140 0.5732 0.9827 59.80 100 MI PLAUM
0.5565 0.1857 0.2633 0.3711 0.9261 31.35 500 MI PLAUM
0.5723 0.2045 0.2820 0.3884 0.9261 34.14 1000 MI PLAUM
0.7122 0.4395 0.5172 0.5759 0.9828 59.04 50 Freq. PLAUM
0.7051 0.4325 0.5091 0.5688 0.9826 57.82 100 Freq. PLAUM
0.7081 0.4365 0.5123 0.5723 0.9828 58.47 500 Freq. PLAUM
0.7028 0.4347 0.5099 0.5687 0.9825 56.75 1000 Freq. PLAUM
0.4242 0.5223 0.4268 0.4733 0.9699 86.92 50 MI Rocchio
0.4216 0.5199 0.4236 0.4708 0.9693 86.92 100 MI Rocchio
0.3257 0.5128 0.3695 0.4192 0.8750 91.04 500 MI Rocchio
0.3464 0.5143 0.3853 0.4304 0.8783 91.78 1000 MI Rocchio
0.4256 0.5204 0.4261 0.4730 0.9698 85.74 50 Freq. Rocchio
0.4232 0.5188 0.4244 0.4710 0.9696 86.89 100 Freq. Rocchio
0.4310 0.5240 0.4321 0.4775 0.9703 87.44 500 Freq. Rocchio
0.4227 0.5235 0.4307 0.4731 0.9700 86.55 1000 Freq. Rocchio

Table 12.9: Results in experiment 12.3 using full-text corpus

140 CHAPTER 12. EXPERIMENTS

12.3.2 Results

In table 12.8 the measurements for each possible configuration are listed when
using abstracts as corpus. Results for full-text corpus are in table 12.9. These
values are obtained by macro-averaging per document a stratified ten-fold run
(see chapter 7 for a detailed description about it).

For both tables, the measures given are

• precision,

• recall,

• F1,

• break-even-point simply computed as the mean between precision and
recall,

• accuracy,

• the percentage of classes successfully trained,

• the number of top bigrams considered,

• the base of the ranking (MI for mutual information and Freq. for raw
frequency), and

• the base algorithm used.

There are two rows at each table with the measures obtained when no bi-
grams are considered, that is, not multi-word detection is performed. These
rows allow the analysis of the whole multi-word detection technique for our
HEP collection.

12.3.3 Analysis of results

A graphical representation of precision, recall and F1 results is given in figures
12.11a and 12.11b for the Rocchio algorithm on the abstracts corpus, 12.12a
and 12.12b for the PLAUM on the same corpus, and 12.13a and 12.13b for the
PLAUM algorithm on full-text corpus.

From these graphs a simple conclusion is reached: the use of the multi-word
detection technique described above does not report significant improvements.
Moreover, on the full-text corpus it can eventually leads to worse results, as
seen on figure 12.13. These results are coherent with the conclusions reached
by Lewis [65] on his study about feature selection. The use phrases and the
selection features with higher rated mutual information values is not strong
enough to justify its use. Therefore, for text categorization in HEP domain, no
multi-word detection will be used.

12.3. EXP 12.3 - USE OF BIGRAMS DETECTION 141

(a) (b)

Figure 12.11: Influence of multi-word detection on abstracts corpus for the
Rocchio algorithm using (a) mutual information ranked list, or (b) frequency
ranked list

(a) (b)

Figure 12.12: Influence of multi-word detection on abstracts corpus for the
PLAUM algorithm using (a) mutual information ranked list, or (b) frequency
ranked list

142 CHAPTER 12. EXPERIMENTS

(a) (b)

Figure 12.13: Influence of multi-word detection on full-text corpus for the
PLAUM algorithm using (a) mutual information ranked list, or (b) frequency
ranked list

12.4 EXP 12.4 - Stemming and stop words re-
moval

Stemming and stop words removal are two usual steps for feature reduction
in text processing for information retrieval (see section 4.1 for more details).
Stemming is a fast way to strip out the meaningless part of a word (containing
morphological information like gender, number, person, etc.) and obtain the
root of it, which is supposed to represent the core meaning of the word. On the
other hand, stop words removal consists of discarding all those words appear-
ing in a given list. The words in the list are usually words like determinants,
conjunctions or auxiliary verbs, assuming that they lack of relevance for the
document. As we can see, this simplification of the language richness down-to
simple stems is a legacy from the vector space model, where a document is
modeled to be a list of weighted terms. In this case, any semantic contained in
the text is reduced to independent stems.

Despite its drastic simplicity, these two techniques have proven their effec-
tiveness as feature reduction techniques. Our goal in the current set of experi-
ments is to determine whether such hypothesis holds in our problem domain.

12.4.1 Configuration

In table 12.10 parametrization of TECAT is detailed. It is shown how stemming
and stop words removal will be enabled alternatively to explore all possible
combinations. Also we can notice the base binary classifiers that will be used.

12.4. EXP 12.4 - STEMMING AND STOP WORDS REMOVAL 143

indexing folding

stop-words yes|no DF term filter 1

stemming yes|no no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut for Rocchio and mode by class

Widrow-Hoff
measure F1

threshold 0.1

methods Rocchio, PLAUM
or Widrow-Hoff

Table 12.10: Parametrization of TECAT for experiment 12.4

Again, the hep-ex partition has been used as base corpus for experimentation
on the effect of applying or not applying stemmer and/or stop words removal.

Three sets of experiments have been carried out, each one with a different
base classifier (to ensure results do not depend on such choice). Algorithms
used have been Rocchio, Widrow-Hoff and PLAUM, all of them described in
previous chapters.

12.4.2 Results

In tables 12.11, 12.12 and 12.11 the measures for precision, recall and F1 are
given for the algorithms considered. We can see how the combination of use of
the two techniques discussed in this experiment provides different performances.
The highest value for each of the three measures is marked in bold.

Widrow-Hoff Stop words removal
algorithm ON OFF

Stemmer

ON
Precision 0.446720 Precision 0.436516

Recall 0.536308 Recall 0.531219
F1 0.454100 F1 0.446665

OFF
Precision 0.443430 Precision 0.450532

Recall 0.529131 Recall 0.530579
F1 0.448989 F1 0.452681

Table 12.11: Results in experiment 12.4 using Widrow-Hoff algorithm

144 CHAPTER 12. EXPERIMENTS

We can see in table 12.11, that the highest value of precision is obtained
when no stop words removal nor stemming is applied.

Rocchio Stop words removal
algorithm ON OFF

Stemmer

ON
Precision 0.463353 Precision 0.472351

Recall 0.539928 Recall 0.536897
F1 0.454927 F1 0.458039

OFF
Precision 0.472654 Precision 0.476874

Recall 0.540725 Recall 0.537542
F1 0.460108 F1 0.458329

Table 12.12: Results in experiment 12.4 using Rocchio algorithm

PLAUM Stop words removal
algorithm ON OFF

Stemmer

ON
Precision 0.689221 Precision 0.706438

Recall 0.413704 Recall 0.387936
F1 0.490228 F1 0.472011

OFF
Precision 0.700645 Precision 0.700898

Recall 0.390677 Recall 0.390271
F1 0.473383 F1 0.472247

Table 12.13: Results in experiment 12.4 using PLAUM algorithm

12.4.3 Analysis of results

Results shown above may seem to not conclude any final affirmation. It seems
that the system is not very sensitive to the use or not of these two feature re-
duction approaches. Anyhow, despite the behaviour of the Rocchio algorithm,
it could be considered that the combination of both techniques leads to a better
overall performance (in terms of the F1 measure). But the increment in per-
formance is in most cases very tight. Though this fact may make us think of
not using stemming or stop words removal, we have to take into account the
benefits of it: we are drastically reducing the feature space dimensionality. In
our experiments we have not shown how the speed of the system is improved
and how the size of the database is lowered by the combination of both methods.

We conclude that stemming and stop words removal are worth using for
our text classification tasks because they not only tend to produce improvements
in performance, but also an obvious optimization in disk usage and computation
time is experienced.

12.5. EXP 12.5 - DIMENSIONALITY REDUCTION 145

12.5 EXP 12.5 - Dimensionality reduction

When dealing with text documents, the vector space model offers a framework
able to convert them into manageable set of data. This implies the identification
and filtering of features, that are generated from the words found in the text.
As we have seen in the two previous sections, the process which generates these
list of terms, which are weighted afterwards, has mainly two common goals: 1)
select those terms that better represent the content of the text, and 2) filter
out as much as possible in order to reduce the high dimensionality of original
feature space (see chapter 5). That is one of the main problems in text based
machine learning: learning algorithms are not very fast when working on vectors
with thousands of possible features (even when they are very sparse). These
two concepts have the same goal: by filtering we want to keep only the most
meaningful words.

Therefore, additional effort has to be done at this level. In the present set
of experiments, the information gain and document frequency filters are tested
to prove their suitability not only to reduce the feature space but to select most
informational terms.

12.5.1 Configuration

indexing folding

stop-words yes DF term filter {1, 5, 10,

50, 100}
stemming yes no. folds 10

min. term freq. 0 IG filter {1000, 2000,

5000, 10000,

20000, 50000}
min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut for Rocchio mode by class

measure F1

threshold 0.1

methods Rocchio or
PLAUM

Table 12.14: Parametrization of TECAT for experiment 12.5

Experimental documents about High Energy Physics have been used from

146 CHAPTER 12. EXPERIMENTS

two sources: fulltext generated from PDF files and abstracts from record meta-
data, both from the hep-ex partition. In this way we can study how the re-
duction of features affects to large and short documents. Fulltext and abstracts
corpora differ in the tried values for each filter. Table 12.15 show the combina-
tions of values for both filters and on which corpus a certain combination has
been evaluated. We can see that for abstracts corpus the values used to filter
out those features not appearing in more of a certain number of documents are
{0, 1, 5, 10, 50, 100}, whether when using the fulltext corpus the last two values
are not tested (to reduce the number of runs). The maximum dimensionality
of the vector space allowed when applying the selection of features by their
information gain value are {1000, 2000, 5000, 10000, 20000} for both corpora.

Max. DF allowed

0 1 5 10 50 100
1,000 abstracts abstracts

fulltext
abstracts
fulltext

abstracts
fulltext

abstracts abstracts

Top 2,000 abstracts abstracts
fulltext

abstracts
fulltext

abstracts
fulltext

abstracts abstracts

by 5,000 abstracts abstracts
fulltext

abstracts
fulltext

abstracts
fulltext

abstracts abstracts

IG 10,000 abstracts abstracts
fulltext

abstracts
fulltext

abstracts
fulltext

abstracts abstracts

20,000 abstracts abstracts
fulltext

abstracts
fulltext

abstracts
fulltext

abstracts abstracts

Table 12.15: Different values tried for both abstracts and fulltext corpora

In total, 30 different combinations of DF and IG filters have been performed
on the abstracts corpus, and 15 combinations for the fulltext corpus. Thus,
exactly 90 (45 combinations × 2 possible learning algorithms) configurations
have been tried to determine how these two parameters responsible of a feature
reduction may affect the performance of the classification system.

12.5.2 Results

We are not interested in the specific value of performance reached for any of these
combinations, but rather in the improvement expressed by some combinations
over the rest. Four measures have been analyzed: precision, recall, F1 and break-
even point (BEP). These four measures are described in detail in chapter 7.

For each corpus, two pairs of diagrams are drawn, each pair with a differ-
ent learning algorithm: Rocchio (diagrams 12.15a, 12.15b, 12.17a, 12.17b) and
PLAUM (diagrams 12.14a, 12.14b, 12.16a and 12.16b). Each pair is composed
by one diagram showing the effect of the document frequency based filter (dia-
grams 12.15a, 12.14a, 12.17a and 12.16a) and another one exposing the effect of
the filter by information gain (diagrams 12.15b, 12.14b, 12.17b and 12.16b). In
the case of frequency based filter, the X axis indicates the number of documents
a feature must appear to pass the filter. For the information gain filter, this

12.5. EXP 12.5 - DIMENSIONALITY REDUCTION 147

axis shows the number (in thousands) of top ranked features by information
gain value that are preserved by the filter. In this way we can study how each
filter tuning affects performance measures to both proposed corpora (abstracts
and fulltext) on two alternative learning algorithms.

(a)

(b)

Figure 12.14: Influence of (a) document frequency and (b) information gain
filters on abstracts corpus using PLAUM learning algorithm

When using corpus of documents with a reduced set of features (as in ab-
stracts corpus, where we have about 100 words per document) we find that the
filter by document frequency is more or less stable from a value of 1 (that is,
the document frequency filter is worth applying). Nevertheless, starting from a
value of 10 documents, i.e. when the feature has to appear in 10 or more docu-
ments to avoid being discarded, the filtering results in a significant decrease in
performance, as we can see at diagrams 12.15a and 12.14a. The reduction based
on information gain does not affect noticeably the performance of the classifier,
since for the abstract corpus the number of features after stemming and stop
words removal (see experiment 12.4) is just about 1500 features, so only the

148 CHAPTER 12. EXPERIMENTS

(a)

(b)

Figure 12.15: Influence of (a) document frequency and (b) information gain
filters on abstracts corpus using Rocchio learning algorithm

12.5. EXP 12.5 - DIMENSIONALITY REDUCTION 149

value 1000 for the filter may affect it. It is important to note that even when
applying the highest reduction (keeping only 66% of original features) by infor-
mation gain selection the performance is quite stable yet, as shown by diagrams
12.15b and 12.14b.

(a) (b)

Figure 12.16: Influence of (a) document frequency and (b) information gain
filters on fulltext corpus using PLAUM learning algorithm

(a) (b)

Figure 12.17: Influence of (a) document frequency and (b) information gain
filters on fulltext corpus using Rocchio learning algorithm

For documents with large content, which is the case for our fulltext corpus
where a document can contain from 5 to 50 pages, the influence of these two
reduction techniques are somewhat different. Document frequency filter does
not involve a decay in performance, as shown by figures 12.16a and 12.17a. As
for abstracts, we may suppose that at a certain value the classifier should report

150 CHAPTER 12. EXPERIMENTS

worse results, but since the number of features so high (hundreds of thousands
of terms) no influence can be noticed using the values studied.

On the other hand, information gain filtering is noticeable does affect when
applied on fulltext corpus. For the PLAUM algorithm it reports a constant
increase in precision (see figure 12.16b) when more features are kept, while re-
call decreases and F1 gets stable starting from 5,000 features. For Rocchio,
the information gain filter affects negatively the classification at any level (fig-
ure 12.17b).

12.5.3 Analysis of results

Summarizing results given above, we can conclude that:

1. For short documents document frequency filter should be set, at most, to
10, since higher values produce bad results.

2. When using PLAUM as classifier, information gain should keep no less
than 10,000 features, while for Rocchio 20,000 is the minimum suggested
for this filter.

3. In general, the more features we keep, the better the classifier results. But
since this is prohibitive in many cases, we should set this parameter just
to the point where the computational cost is affordable.

Information gain and CHI values were found the best by Yang and Pedersen[130]
for dimensionality reduction. By using another mathematical approach based
on Information Theory, Koller [60] finds that effectively it is possible to reduce
the dimensionality of the feature space without loosing, or even increasing, the
accuracy of a classification system.

Information gain filter can drastically reduce the feature space (from hun-
dred of thousands to few thousands) without a big loss in performance. The
document frequency based filter is a cheap solution to reduce the dimensionality
and, therefore, is also worth considering.

After this study, TECAT has been set to discard all those terms not appear-
ing in, at least, one document at each set (training, evaluation and testing).
For information gain, we have set the maximum number of features to 50,000,
since for our classification purposes the computational cost is within CERN
Document Server constraints.

12.6 EXP 12.6 Evaluating weighting schemes

As described in section 4.2, several weighting schemes have been proposed along
time in order to measure the relevance of a feature for a given document. Global,

12.6. EXP 12.6 EVALUATING WEIGHTING SCHEMES 151

local and normalization calculations are combined for the final feature weight.
The purpose of the present set of experiments is to evaluate such combinations
within a limited range (since evaluating all possible formulae would be outside
the scope of this work).

As combination of local and global weighting we have tested TF.IDF and
entropy weighting schemes. For the normalization, the cosine normalization
has been applied. As an additional global factor, the inverse class frequency is
introduced, to penalize those terms related to too many classes.

12.6.1 Configuration

Five different weighting schemes have been used in these experiments, with
three different learning algorithms: Rocchio, Widrow-Hoff and PLAUM. The
five schemes have been designed using the following formulae:

1. TF.IDF.no-cosine as previous one, but without applying the cosine nor-
malization:

Inverse document frequency (IDF):

idfi = log(N/ni)

TF.IDF :

wij = fij · idfi (12.1)

where

wij is the weight of term i in document j
fij is the frequency of term i in document j
N is the total number of documents in the collection
ni is the number of documents in the collection that con-

tain term i

2. TF.IDF.cosine as in previous scheme, but without inverse class fre-
quency correction; it is one of the most used approaches by the information
retrieval community:

wij =
fij · idfi

√
∑T

k=1 (fkj · idfk)
2

(12.2)

where

T is the number of terms in the collection

3. TF.IDF.ICF.cosine The TF.IDF combined with the inverse class fre-
quency correction and the final cosine normalization.

152 CHAPTER 12. EXPERIMENTS

Inverse class frequency (ICF):

icfi = log(M/mi)

TF.IDF.ICF.cosine:

wij =
fij · idfi · icfi

√
∑T

k=1 (fkj · idfk · icfk)
2

(12.3)

where

M is the total number of classes
mi, (mk) is the number of classes related to term i, (k)

4. entropy has the same formula as above but discarding the inverse class
frequency:

wij =

(1 + log fij)

(

1 +
∑N

k=1

fik
Fi

log2

fik
Fi

log2(N)

)

√

∑T
l=1

(

(1 + log flj)

(

1 +
∑N

k=1

flk
Fl

log2

flk
Fl

log2(N)

))2
(12.4)

where

N is the total number of documents in the collection
Fi is the total frequency of term i through the entire collection:

Fi =
∑N

j=1 fij

fij is the frequency of term i in document j
T is the total number of distinctive terms in the corpus

5. entropy.ICF is the entropy weighting scheme but with the additional
factor of inverse class frequency:

wij =

(1 + log fij)

(

1 +
∑N

k=1

fik
Fi

log2

fik
Fi

log2(N)

)

icfi

√

∑T
l=1

(

(1 + log flj)

(

1 +
∑N

k=1

flk
Fl

log2

flk
Fl

log2(N)

)

icfl

)2
(12.5)

In table 12.16 we can see how TECAT has been parametrized for this set of
experiments. Learning algorithm and weighting scheme are modified for each
set, selecting one of equations described above. It will produce a total of 15
runs. As usual within TECAT framework, each run consists in a 10-fold cross
validation to produce more stable measurements.

12.6. EXP 12.6 EVALUATING WEIGHTING SCHEMES 153

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization (see weighting)
term weighting:

TF.IDF.ICF.cosine,

TF.IDF.cosine,

TF.IDF.no-cosine,

entropy.ICF or

entropy

learning testing

S-cut for Rocchio and
Widrow-Hoff

mode by class

measure F1

threshold 0.1

methods Rocchio,
PLAUM or
Widrow-Hoff

Table 12.16: Parametrization of TECAT for experiment 12.6

154 CHAPTER 12. EXPERIMENTS

12.6.2 Results

In tables 12.17, 12.18 and 12.19 results for each learning algorithm are shown.
Within each table measurements of precision, recall and F1 are given for the
five different weighting schemes under study. The highest values found for these
measures are in bold text to ease the analysis.

weighting scheme measurements

TF.IDF.ICF.cosine Precision 0.418535

equation 12.3
Recall 0.522262

F1 0.427662
TF.IDF.cosine Precision 0.446747

equation 12.2
Recall 0.532222

F1 0.452211
TF.IDF.no-cosine Precision 0.420832

equation 12.1
Recall 0.453551

F1 0.343644
entropy.ICF Precision 0.463947

equation 12.5
Recall 0.550939

F1 0.467335
entropy Precision 0.441417

equation 12.4
Recall 0.531456

F1 0.459666

Table 12.17: Results for various weighting schemes in experiment 12.6 using
Widrow-Hoff algorithm

In table 12.18 it may be surprising to observe that the two highest values
for both precision and recall are not for the same weighting scheme as the one
registering the top F1 measurement. This is due to the fact that F1 is not
computed over the two former values, but rather the result of the averaged F1
values found for each document. It is easy to prove that an averaged F1 value
is not equal to the F1 measure computed from the averaged values of precision
and recall. The reason for not computing a final F1 measure based on the final
averaged measures of precision and recall is because we want to provide a global
measure for the behavior of a multi-label classifier at document level. If for a
document either the precision or the recall are zero, then the F1 value will be
zero for that document labeling. That is, through all the labellings, precision
will be only affected by the values of precision, same for recall; but for F1 a low
(and eventually zero) value for any of the two leads to low F1 measurement.
This is the reason why averaged F1 values use to be lower than if we computed
it with final precision and recall values.

12.6. EXP 12.6 EVALUATING WEIGHTING SCHEMES 155

weighting scheme measurements

TF.IDF.ICF.cosine Precision 0.468962

equation 12.3
Recall 0.553082

F1 0.470537
TF.IDF.cosine Precision 0.469488

equation 12.2
Recall 0.546725

F1 0.461763
TF.IDF.no-cosine Precision 0.450929

equation 12.1
Recall 0.488167

F1 0.391756
entropy.ICF Precision 0.481777

equation 12.5
Recall 0.554461

F1 0.469308
entropy Precision 0.435835

equation 12.4
Recall 0.505913

F1 0.424746

Table 12.18: Results for various weighting schemes in experiment 12.6 using
Rocchio algorithm

weighting scheme measurements

TF.IDF.ICF.cosine Precision 0.671883

equation 12.3
Recall 0.383264

F1 0.459496
TF.IDF.cosine Precision 0.692792

equation 12.2
Recall 0.413311

F1 0.490548
TF.IDF.no-cosine Precision 0.408928

equation 12.1
Recall 0.349825

F1 0.363149
entropy.ICF Precision 0.708065

equation 12.5
Recall 0.418331

F1 0.498932
entropy Precision 0.652432

equation 12.4
Recall 0.419064

F1 0.485063

Table 12.19: Results for various weighting schemes in experiment 12.6 using
PLAUM algorithm

156 CHAPTER 12. EXPERIMENTS

12.6.3 Analysis of results

As for experiment 12.4 differences in results cannot conclude with a solid pref-
erence of one scheme over another. Depending on the learning algorithm used,
the best scheme varies. Though we may think of entropy.ICF as the better
scheme, the difference is less and 1% so such conclusion should be considered
carefully. Entropy involves a more complex computation so its use over TF.IDF
it is not so clear for us.

From all the experiments carried out, only one definitive conclusion arises:
the use of the cosine normalization produces always better results no
matter the learning algorithm chosen. This is graphically shown on figure 12.18.
On the other hand, correction factors like ICF seem no to be so effective for
TECAT as expected, although in other classification approaches it has repre-
sented a significant improvement (like in the HEPindexer classifier, see [86]).

Figure 12.18: Influence of cosine normalization on performance (F1 measure)

As conclusion, the low cost TF.IDF weighting scheme with cosine normal-
ization should be preferred in TECAT for High Energy Physics papers classifi-
cation.

12.7 EXP 12.7 - Dealing with Imbalance

12.7.1 The class imbalance problem

Usually, multi-labeled collections make use of a wide variety of classes, resulting
in an unequal distribution of classes throughout the collection and a high number
of rare classes. This means that there is not only a strong imbalance between
positive and negative samples, but also that some classes are used much more
frequently than other classes. This phenomenon, known as the class imbalance

12.7. EXP 12.7 - DEALING WITH IMBALANCE 157

problem, is especially relevant for algorithms like the C4.5 classification tree
[22, 35] and margin-based classifiers like SVM [50, 101, 126].

Extensive studies have been carried out on this subject as reported by Jap-
kowicz [50], identifying three major issues in the class imbalance problem: con-
cept complexity , training set size and degree of imbalance. Concept complexity
refers to the degree of “sparsity” of a certain class in the feature space (the space
where document vectors are represented). This means that a hypothetical clus-
tering algorithm acting on a class with high concept complexity would establish
many small clusters for the same class. Regarding the second issue, i.e. the lack
of a significantly large training sets, the only possible remedy is the usage of
over-sampling when the amount of available samples is insufficient, and under-
sampling techniques for classes with too many samples, e.g. just using a limited
number of samples for training a SVM, by selecting those positive and negative
samples that are close to each other in the feature space. The validity of these
techniques is also subject to debate [35]. Finally, Japkowicz defines the degree
of imbalance as an index to indicate how much a class is more represented over
another, including both the degree of imbalance between classes (what we call
inter-class imbalance) and between its positive and negative samples (what we
call the inner imbalance degree). Unfortunately, Japkowicz defined these values
for her work towards the generation of an artificial collection and rewrote them
later to fit specific problems regarding fixed parameters and the C5.0 algorithm,
which make them difficult to manipulate. For these reasons, we cannot reuse
her equations and propose here a variant focusing on the multi-label case.

We define the inner imbalance degree of a certain class i as a measure of the
positive samples over the total of samples:

ii = |1− 2ni/n| (12.6)

where

n is the total number of samples and

ni is the total number of samples having the class i in their labels.

Japkowicz’ definition of imbalance degree helps in the generation of artificial
distributions of documents to classes. Its value does not lie within a defined
range, which makes it difficult to manipulate and compare with the degree of
other classes in different partitions. On the contrary, the value proposed in
equation 12.6 is zero for perfectly balanced classes, i.e. when the number of
positive and negative samples are the same. It has a value of 1 when all samples
are either positive or negative for that class. Its linear behavior is shown in
figure 12.19 and, as we can see, it varies within the range [0,1].

We can now study this collection applying the inner imbalance degree mea-
sure defined in equation 12.6. The two graphs in figures 12.20a and 12.20b show
the inner imbalance degree for the main key words in the hep-ex partition. We

158 CHAPTER 12. EXPERIMENTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

im
ba

la
nc

e
de

gr
ee

number of positive samples

Imbalance degree function

Figure 12.19: The linear ’imbalance degree’ function

can notice how fast the imbalance grows to a total imbalance degree of almost
1. When looking at the ten most frequent classes, we can see the effect of our
degree estimation: classes 0 and 1 are more imbalanced than class 2, which
gets the lowest degree of imbalance in the whole set of classes. It is due to the
fact that, as shown by table 11.6, this class has almost the same number of
positive and negative samples. From class 3 onwards, the imbalance then grows
dramatically.

When training binary classifiers for these key words, we realized that the
performance decreases strongly with growing imbalance degree. To correct doc-
ument distribution across classes, we can use over-sampling (or under-sampling)
or tune our classifiers accordingly. For example, for SVM we can set a cost fac-
tor, by which training errors on positive samples out-weights errors on negative
samples [89]. We will use this in our experiments.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200

imbalance degree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

imbalance degree

(a) All classes (b) Ten most frequent

Figure 12.20: Imbalance degree of classes in the hep-ex partition

12.7. EXP 12.7 - DEALING WITH IMBALANCE 159

12.7.2 Balance weighting and classifier filtering

Some algorithms work better when, in the one-against-all approach, the number
of positive samples is similar to the number of negative ones, i.e. when the class
is balanced across the collection. However, multi-label collections are typically
highly imbalanced. This is true for the HEP collection, but also for other known
document sets like the OHSUMED medical collection used in the filtering track
of TREC [48], and for the document collection of the European Institutions
classified according to the EUROVOC thesaurus. This latter collection has
been studied extensively for automatic indexing by Pouliquen et. al. (e.g. [18]),
who exploit a variety of parameters in their attempt to determine whether some
terms refer to one class or to another in the multi-labeled set.

The question now is how to deal with these collections when trying to apply
binary learners that are sensitive to high imbalance degrees. We can use tech-
niques like over-sampling and under-sampling, as pointed out earlier, but this
would lead to an overload of non-informational samples in the former case, and
to the loss of information in the second case. Furthermore, concept complexity
has also its effects on binary classifiers. We have not paid attention to this
fact since it is out of the scope of the present study, but we should consider
this to be yet another drawback for collections indexed with a large number of
non-balanced classes.

In our experiments we basically train a system using the battery strategy,
but (a), we allow tuning the binary classifier for a given class by a balance factor,
and (b) we provide the possibility of choosing the best of a given set of binary
classifiers. At CERN, we intend to apply our classification system to real time
environments so that a gain in classification speed is very important. Therefore,
we have introduced a parameter α in the algorithm, resulting in the algorithm
given in figure 12.21. This value is a threshold for the minimum performance
of a binary classifier during the validation phase in the learning process. If
the performance of a certain classifier is below the value α, meaning that the
classifier performs badly, we discard the classifier and the class completely. By
doing this, we may decrease the recall slightly (since less classes get trained and
assigned), but the advantages of increased computational performance and of
higher precision compensate for it. The effect is similar to that of the SCutFBR
proposed by Yang [128]. We never attempt to return a positive answer for rare
classes. In the following, we show how this filtering saves us considering many
classes without significant loss in performance.

We allow over-weighting of positive samples using the actual fraction of
negative samples over positive ones, that is, the weight for positive samples
(w+) is:

w+ = C−/C+

where

160 CHAPTER 12. EXPERIMENTS

Input:
a set of multi-labeled training documents Dt

a set of validation documents Dv

a threshold α on the evaluation measure
a set of possible label (classes) L,
a set of candidate binary classifiers C

Output :
a set C ′ = {c1, ..., ck, ..., c|L|} of trained binary classifiers

Pseudo code:
C ′ ← ∅
for-each li in L do

T ← ∅
for-each cj in C do

train-classifier(cj , li, Dt)
T ← T ∪ {cj}

end-for-each
cbest ← best-classifier(T , Dv)
if evaluate-classifier(cbest) > α

C ′ ← C ′ ∪ {cbest}
end-if

end-for-each

Figure 12.21: The one-against-all learning algorithm with classifier filtering

C− is the total number of negative samples for the class

C+ is the total number of positive samples for the class

As we can see, the more positive documents we have for a given class, the
lower the over-weight is, which makes sense in order to give more weight only
when few positive samples are found. This method was used by Morik et al.
[89] but they did not report how much it improved the performance of the
classifier over the non-weighted scheme. As we said, this w+ factor was used
in our experiments to over-weight positive samples over negative ones, i.e. the
classification error on a positive sample is higher than that of a negative one.

We also considered the S-cut approach. The assignment of a sample as
positive can be tuned by specifying the decision border. By default it is zero,
but it can be set using the S-Cut algorithm [128]. This algorithm uses as
threshold the one that gives the best performance on an evaluation set. That
is, once the classifier has been trained, we apply it against an evaluation set
using as possible thresholds the classification values (the margin for SVM). The
threshold that reported the best performance (the highest F1 in our case) will
be used.

12.7. EXP 12.7 - DEALING WITH IMBALANCE 161

12.7.3 Configuration

The collection consists of 2967 full-text abstracts linked to 1103 main key words.
Each abstract was processed as follows:

• Punctuation was removed

• Every character was lower-cased

• Stop words were removed

• The Porter stemming algorithm [93] was applied

• Resulting stems were weighted according to the TF.IDF scheme [108]

After processing the collection in this way, we trained the system applying
each strategy using the SVM-Light2 package as the base binary classifier. We
also filtered out classes not appearing in any document either in the training,
validation or test sets, reducing the number of classes to 443.8 on average.
Results are shown at the end of this section. The summary for the TECAT
configuration is given in table 12.20.

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut depends on run mode by class

measure F1

threshold 0.1

methods SVM

Table 12.20: Parametrization of TECAT for experiment 12.4

As usual, for the evaluation of experiments, ten-fold cross validation [58] was
used in order to produce statistically relevant results that do not depend on the
partitioning of the collection into training, evaluation and test sets. Extensive
experiments have shown that this is the best choice to get an accurate estimate.
The measures computed are precision and recall. The F1 measure (introduced

2SVM-Light is available at http://svmlight.joachims.org/

162 CHAPTER 12. EXPERIMENTS

by Rijsbergen [118] a long time ago) is used as an overall indicator based on the
two former ones and is the reference when filtering is applied. Also accuracy and
error measurements are given for later discussion. The final values are computed
using macro-averaging on a per-document basis, rather than the usual micro-
averaging over classes. The reason is, again, the high imbalance in the collection.
If we average by class, rare classes will influence the result as much as the most
frequent ones, which will not provide a good estimate of the performance of
the multi-label classifier over documents. Since the goal of this system is to be
used for automated classification of individual documents, we considered to be
far more useful to concentrate on these measurements for our evaluation of the
system. More details about these concepts can be found in [112], [63] and [129].

12.7.4 Results

Table 12.21 shows the results of ten runs of our multi-label classifier with differ-
ent configurations. The highest values of F1 are reached when the system chose
among fixed values for over-weighting positive samples (2, 5, 10 and 20). These
are the results when applying the algorithm of figure 12.21 with α = 0.0, i.e. no
filtering over classifiers is done.

Experiment Precision Recall F1 Accuracy Error % of classes
No weight 74.07 33.96 43.92 98.23 1.77 33.96
No weight / Scut 74.26 34.44 44.38 98.24 1.76 99.95
Overweight 20 51.47 45.84 46.50 97.71 2.29 57.32
Auto weight 58.10 44.39 48.09 97.94 2.06 58.09
Overw. 2,5,10,20 / Scut 71.74 39.92 48.47 98.25 1.75 100.00
Auto weight / Scut 58.03 45.30 48.56 97.89 2.11 99.82
Overweight 2 70.74 40.45 48.78 98.21 1.79 53.36
Overweight 5 64.56 43.57 49.40 98.11 1.89 57.19
Overweight 10 62.30 45.22 50.14 98.08 1.92 57.30
Overw. 2,5,10,20 65.89 44.59 50.53 98.17 1.83 57.53

Table 12.21: Results of experiments using SVM without filtering

We see that the top recall reached does not imply having more classes
trained. Therefore we may want to study how we can reduce the number of
classes trained to speed up the classification process without loosing too much
in performance. For that purpose, we experimented with different values of α,
as shown in tables 12.22 and 12.23.

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Precision 65.89 70.04 70.41 70.88 71.90 71.96 71.02 67.96
Recall 44.59 44.49 43.95 42.95 40.54 36.65 31.80 23.02
F1 50.53 51.59 51.32 50.77 49.21 46.11 41.70 32.83
Accuracy 98.17 98.25 98.25 98.25 98.24 98.21 98.15 98.03
Error 1.83 1.75 1.75 1.75 1.76 1.79 1.85 1.97
% classes trained 57.53 56.49 50.81 43.20 32.73 23.23 16.00 8.58

Table 12.22: Results of experiments using multi-weighted SVM with filtering

12.7. EXP 12.7 - DEALING WITH IMBALANCE 163

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Precision 58.03 62.47 64.84 67.45 69.47 71.19 71.14 68.24
Recall 45.30 45.04 44.83 44.24 42.76 39.59 34.43 24.88
F1 48.56 49.93 50.47 50.75 50.27 48.37 44.10 34.76
Accuracy 97.89 98.06 98.14 98.20 98.23 98.22 98.17 98.05
Error 2.11 1.94 1.86 1.80 1.77 1.78 1.83 1.95
% classes trained 99.82 85.30 77.10 68.47 55.74 42.34 30.82 16.72

Table 12.23: Results of experiments using auto-weighted S-Cut thresholding
SVM with filtering

12.7.5 Analysis

Interesting conclusions can be drawn from the tables above. The first thing
we notice is that recall is low compared to precision. This is normal if we
consider the existence of rare and, therefore, difficult-to-train classes. When
tuning our multi-label classifier, we see that variations in precision are more
representative than for recall. The F1 measure remains quite stable: throughout
all the experiments with different configurations, the most we gain is 6.61%.
However, a very important result is that, even when some configurations are
able to train up to 100% of the total of classes involved (we can see how the
percentage of classes successfully trained varies widely), it does not influence
that much the overall performance of the classifier. We can conclude that rare
classes are not worth training. This is the reason for the design of our filtering
algorithm. Furthermore, it is not clear that S-Cut and auto-weighting strategies
are so relevant for our data. As we can also notice, accuracy and error are not
very sensitive to the variations of our parameters, but this is again due to
imbalance: most of the classes are rare and for the most frequent ones we get
high precision and recall, even with not very sophisticated configurations.

When discarding classes, we obviously gain in precision and, despite more
classes not being trained, we do not lose that much in recall. The result is a
better F1 than without discarding, as shown by F1 values in 12.21 compared
to those of tables 12.22 and 12.23. We can see how strongly we can reduce the
number of classes without affecting significantly the overall performance of the
multi-label classifier. Figures 12.22 and 12.23 visualize the behavior described.
The bigger our α is, the more classes are discarded. From all the test runs,
the best value of F1 was obtained with an α value of 0.1 and using candidate
classifiers with over-weights 2, 5, 10 and 20 for positive classes. From the graphs
we can see that increasing α yields to a higher precision up to a maximum from
which the threshold will be so restrictive that even good classifiers are discarding
and, therefore, the precision starts to decrease accordingly. Thus, our choice of α
will depend on our preference of precision over recall and our need of reducing
classes for faster classification. If we are able to discard non-relevant (rarely
used) classes, we can almost maintain our performance even classifying against
a lower number of classes.

The frequency of use of a key word determines the capability of the system

164 CHAPTER 12. EXPERIMENTS

Figure 12.22: Influence of filtering on multi-weighted SVM with S-cut thresh-
olding

Figure 12.23: Influence of filtering on auto-weighted with S-cut thresholding

to learn for it. When a class is balanced, that is, when it appears in about 50
% of the documents, then our training data should be enough for the learning
algorithm to produce good classifiers. Of course, the entropy of the class itself
has strong influence on the final classification capability. We have run TECAT

12.7. EXP 12.7 - DEALING WITH IMBALANCE 165

using the PLAUM classifier and calculated average measurements for 100 most
frequent classes (the most used classes for labeling documents). A graph showing
the different performance measures depending on the number of documents a
class belongs to is shown in figure 12.24. Classes has been sorted by number of
documents, so the more we move to the right, the more frequent the class is.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

m
e
a
su

re
m

e
n
t

no. documents per class

precision
recall

accuracy
F1

BEP

Figure 12.24: Influence of the frequency of use of a class on the performance
obtained for that class

From this diagram, whose results were obtained on the hep-ex partition,
with a total number of documents of 2780 after filtering those with non trainable
labels, many interesting aspects can be pointed out:

1. For very infrequent classes, accuracy is always very high, since they are
so rare that not considering them do not report any important loss.

2. When there are few document per class, performances obtained are quite
random: sometimes we can train with good results, sometimes results are
really bad. In general, we cannot ensure a lower bound for performance
when the frequency of use of a class is less than 200 documents. On the
other hand, from a frequency of about 350 documents, all the measures
stay above 50%. This is an obvious observation: we obtain better perfor-
mance when we have more documents labeled for every class, and these
oscillations get more stable, with a higher lower bound when the number
of documents associated to the class grows.

3. In the diagram we can notice an estrange behavior for the class with
a document frequency of about 1050: performance suddenly falls down
(though not dramatically). There is a very easy explanation for such
phenomenon, since it is related to the nature of the class itself. The main
key-word associated is experimental results, and such key-word is very
complex to determine. Human experts assign it depending on the purpose
of the related document. Documents showing experimental results in HEP

166 CHAPTER 12. EXPERIMENTS

for the first time to the scientific community (not for later discussion) are
labeled with such key-word. Therefore, other documents may show the
same number of diagrams, numerical explanations and so on, but they
may not get that label. In this case, another approach could be proposed,
like studying the number of diagrams in a paper or the discourse structure,
for example.

12.7.6 Conclusions and future work

A calculus for measuring the imbalance degree has been proposed, along with a
study of the overweight of positive classes on this collection using SVM and the
application of S-Cut. The results show that this is a relevant issue, and that an
imbalance study of any multi-label collection should be carried out in order to
properly select the base binary classifiers. Another promising issue would be to
work on other aspects of imbalance like concept complexity [51]. We have started
studying this topic by working with “concepts” rather than with terms in order
to reduce the term space. By doing this, we would cover the main drawbacks
of imbalanced collections. S-cuts on SVM increases drastically the number of
classes trained by the system without relevant improvement on performance, bu
a consequent penalization on classification speed and storage requirements, so
it is not recommendable for SVM.

Filtering by classification thresholding is very effective to reduce the number
of classes involved in multi-label classification. Without forcing expensive tuning
of the threshold, we propose to provide a range of α values and let the algorithm
choose the classifier with the best behavior.

One of the disadvantages using the battery approach is its computational
cost, since we have to launch every classifier for a sample. However, SVM is
quite selective, not being trainable in many cases, discarding in this way many
conflicting classes. This reduces the computation without loosing too much in
performance. We have shown that, by increasing the selectivity, we can even
gain significantly in precision without loosing too much in recall.

One multi-label collection issue we have not considered is inter-class de-
pendency. In some preliminary analysis we found that the correlation among
classes is relevant enough to be considered. We could actually benefit from such
a correlation to speed up the classification process, by discarding those classes
not correlated to the ones we have already found relevant. This relation could
probably be used to fight one of the drawbacks found: our recall is very low
compared to the precision. If we were able to select those classes that are highly
correlated with classes assigned with high precision, we might gain in recall.
This will need further investigation.

All these interesting conclusions have been reported to the scientific com-
munity in a publication by Montejo-Ráez, Steinberger and Ureña-López [88].

12.8. EXP 12.8 - INTEGRATING META-DATA INFORMATION 167

12.8 EXP 12.8 - Integrating meta-data informa-
tion

Corpora available tend to be not as accessible and complete as the research
community wishes. Well known collections as Reuters-21578 3, OHSUMED [48]
(used in TREC evaluation forum) or 20 Newsgroups4 show, for each sample,
sort fragments of text. Instead, within EUROVOC related experiments ([18,
99, 100]) full text documents are used as sample data for classifier training.
But, in most of the experiments arranged based on these collections, just plain
text data from main content of the document is used. Words are then stemmed
or lemmatized, counted and weighted following a defined indexing scheme.

But data from digital libraries is much richer than all that: digital libraries
contain metadata, i.e. additional information about every stored document.
Metadata is data about data: author of a document, date of publication, stor-
ing format, identifier in the database, publisher, length and so on. The Dublin
Core Metadata Initiative5 (DCMI) is a open standard for adding information to
documents in digital libraries. The Open Archive Initiative6 (OAI) aims to es-
tablish a standard for document exchange between different digital libraries and
a protocol for harvesting and retrieving of documents from database supporting
it. OAI also support MARC7 format for metadata. DCMI is also used as a
source of entities for the Semantic Web8 project [15]. As we can see, metadata
is something to care about.

For HEP papers stored at CERN, the MARC format is used (although full
accessing through OAI has been recently integrated). A document record sam-
ple is shown in figure 12.25. This sample has been obtained from the CERN
Document Server database. For more information about the HEP collection see
chapter 11.

We can see in those figures the amount of additional data available. The
target of this experiment is to test whether the use of additional data (apart
from content) can improve classification performances. Due to the profusion of
meta-data entries in the records of current digital libraries, a positive answer is
an important clue to build enriched classifiers.

12.8.1 Configuration

In table 12.24 we show the configuration used for this experiment. An ex-
planation of the parameters involved is given in section 10.6. For this set of

3Prepared by David D. Lewis. The collection is freely available from the web page
http://www.research.att.com/~lewis/reuters21578.html

4Available at http://kdd.ics.uci.edu/databases/20newsgroups/20 newsgroups.tar.gz
5http://dublincore.org/
6http://www.openarchives.org
7http://www.loc.gov/marc/
8http://www.w3.org/2001/sw/

168 CHAPTER 12. EXPERIMENTS

<?xml version="1.0" encoding="UTF-8"?>

<collection>

<dc xmlns="http://purl.org/dc/elements/1.1/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://purl.org/dc/elements/1.1/

http://www.openarchives.org/OAI/1.1/dc.xsd">

<language>eng</language>

<creator>Kitamura, T</creator>

<title>Theory of liquid-glass transition in water</title>

<subject>Condensed Matter</subject>

<identifier>http://documents.cern.ch/[...]id=0503152</identifier>

<description>A quantum field theory of the liquid-glass

transition in water based on the two band model in the

harmonic potential approximation is presented by taking into

account of the hydrogen bonding effect and the polarization

effect. The sound and diffusion associated with intra-band

density fluctuations, and the phonons and viscocity associated

with inter-band density fluctuations are calculated. The

Kauzmann paradox on the Kauzmann’s entropy crisis and the

Vogel-Tamman-Fulcher (VTF) law on the relaxation times and the

transport coefficients are elucidated from the sound

instability at a reciprocal particle distance corresponding a

hydrogen bond length and at the sound instability temperature

very close to the Kauzmann temperature. The gap of specific

heat at the glass transition temperature and the boson peaks

are also presented.</description>

<date>2005-03-09</date>

</dc>

</collection>

Figure 12.25: Sample for metadata information in XML DC format.

experiments the hep-ex partition was used.

The configuration passed to TECAT for this experiment is defined in ta-
ble 12.24. Four different algorithms have been taken as base classifiers (but not
simultaneously): Widrow-Hoff, Rocchio, PLAUM and SVM. At each of these
algorithms, a group of corpora of data has been used for learning and test-
ing. These corpora are a combination of full-text information with available
metadata:

• Source A: Abstracts. Experiments with given algorithms have been
carried out on abstracts (the description field in XML DC form).

• Source M: Metadata. Each document is composed by a combination of
plain-text data (abstract and title) with fixed values (date, subject,
creator and language).

• Source F: Full-text. The corpus is composed by the full-text version of
documents (extracted from PDF versions of each paper).

12.8. EXP 12.8 - INTEGRATING META-DATA INFORMATION 169

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut yes|no a mode by class

measure F1

threshold 0.1

methods Rocchio,

Widrow-Hoff,

SVM or

PLAUM

aScut is applied on Widrow-Hoff and Rocchio algorithms, but not active on
PLAUM nor SVM

Table 12.24: Parametrization of TECAT for experiment 12.8

• Source F+M: Full-text and metadata. This is the most complete
corpus, where plain-text data is built up from full-text version, title and
abstract, and combined with fixed fields like date, subject, creator

and language.

It is important to point out that the processing of plain-text data differs from
that applied on fixed fields. These fields have been protected to not be affected
by stopping and stemming procedures. The rest of operations are performed on
these fields, considering each entry as an additional feature.

Four measures have been studied to determine whether a source outperforms
another. These measures are precision, recall, F1 and accuracy. F1 provides
a more general view than precision and recall separately, and the accuracy
provides a even more general measure of the goodness of the method (though not
very preferred in text processing tasks). However, precision and recall has been
studied alone to inspect how a source affects each one of these two important
indicators.

170 CHAPTER 12. EXPERIMENTS

12.8.2 Results

The description of experiments is described as follows: for each source (corpus),
we have run four different experiments. Each of such experiments consists in us-
ing a different unique base classifier as detailed above. As product, we will have
sixteen sets of results. The reason to use different algorithms is to avoid depen-
dencies on the type of learning method applied. Therefore, results from different
algorithms will be considered together and compared to those for experiments
with different corpus used. At each run the selected four measures have been
obtained for each one of the ten most frequent key words (see table 12.25).

experimental results

magnetic detector

talk

electron positron

quark

CERN LEP Stor

anti-p p

Z0

Batavia TEVATRON Coll

mass spectrum

Table 12.25: Ten most frequent categories

We will perform a Wilcoxon Signed Ranked test. This is a non-parametric
test that let us know if two distributions of the same variable are statistically
different (a description of this test is given at appendix C). We have used
Octave9 to compute the p-values returned by the test. In our comparison, we
will consider only p-values under 0.05, that is, the probability for the two given
distributions to differ not by chance is higher than 95%. Since we have run a 10-
fold cross-validation mechanism within TECAT, we have averaged the measured
values of precision, recall, F1 and accuracy for the ten most frequent key words.
Therefore, to compare source A (abstracts) against source F (full-text), we
create two distributions with 40 values each (4 algorithms × 10 measured key
words). Then, we can construct the comparison matrices (one per measure)
with Wilcoxon p-values shown at tables 12.26, 12.27, 12.28 and 12.29.

over precision A M F F+M
A 0.50000000 0.06272324 0.00014218 0.00004588
M 0.93727676 0.50000000 0.07907275 0.02646161
F 0.99985782 0.92092725 0.50000000 0.09387790

F+M 0.99995412 0.97353839 0.90612210 0.50000000

Table 12.26: Tailored Wilcoxon test over precision

9Octave is a high-level language, primarily intended for numerical computation that is
available under the GPL. http://www.octave.org

12.8. EXP 12.8 - INTEGRATING META-DATA INFORMATION 171

over recall A M F F+M
A 0.50000000 0.00000002 0.00184614 0.00000104
M 0.99999998 0.50000000 0.99976274 0.73181109
F 0.99815386 0.00023726 0.50000000 0.00000136

F+M 0.99999896 0.26818891 0.99999864 0.50000000

Table 12.27: Tailored Wilcoxon test over recall

over F1 A M F F+M
A 0.50000000 0.00000011 0.00001842 0.00000008
M 0.99999989 0.50000000 0.97666661 0.22179235
F 0.99998158 0.02333339 0.50000000 0.00000007

F+M 0.99999992 0.77820765 0.99999993 0.50000000

Table 12.28: Tailored Wilcoxon test over F1

Wilcoxon can be one-tailored or two-tailored. For one-tailored test we can
conclude if a difference exists, but we cannot say anything about the direction
of it. It is our interested to find if a certain source of data provides better results
over another source of data. Thus, we are interested in a one-tailored analysis
that will let us know if one source outperforms another source. This is how it
has been computed in the given tables.

The macro-averaged values by document obtained are given in table 12.30,
from which we can see the measured values over all trained classes. At this
table, each row shows the measures of performance for a given algorithm by
using a given source. For example, the entry Rocchio M specifies measured
macro-averaged values by document through classes and cross-validated folds
using as source the metadata based corpus and applying Rocchio algorithm as
base classifier (with S-cut thresholding as detailed previously in configuration
description).

Many classes are just discarded in the filtering process or due to fact that no
possible algorithm can be trained with a minimum performance (the percentage
column provides useful information about it). It is interesting to note how
different algorithms are more “trainable” than others at this point.

over accuracy A M F F+M
A 0.50000000 0.00007519 0.00012807 0.00000665
M 0.99992481 0.50000000 0.66154384 0.04778496
F 0.99987193 0.33845616 0.50000000 0.00000665

F+M 0.99999335 0.95221504 0.99999335 0.50000000

Table 12.29: Tailored Wilcoxon test over accuracy

172 CHAPTER 12. EXPERIMENTS

Precision Recall F1 Accuracy Error % classes Experiment

0,442927 0,540300 0,455324 0,972086 0,027914 84,43 Widrow-Hoff A
0,441282 0,555588 0,464150 0,972381 0,027619 85,00 Widrow-Hoff F
0,455313 0,553409 0,466323 0,972133 0,027867 84,54 Widrow-Hoff M
0,463957 0,571303 0,480547 0,973005 0,026995 87,27 Widrow-Hoff F+M
0,471174 0,542124 0,461181 0,972455 0,027545 88,16 Rocchio A
0,427285 0,523589 0,428148 0,969635 0,030365 86,12 Rocchio F
0,452551 0,560559 0,456976 0,970048 0,029952 86,18 Rocchio M
0,442462 0,541912 0,443245 0,970011 0,029989 87,92 Rocchio F+M
0,691184 0,410466 0,489537 0,981950 0,018050 52,48 PLAUM A
0,710694 0,434822 0,511888 0,982663 0,017337 57,67 PLAUM F
0,720159 0,448690 0,526646 0,982828 0,017172 55,67 PLAUM M
0,725469 0,452998 0,531442 0,983174 0,016826 59,27 PLAUM F+M
0,745852 0,333645 0,434222 0,982223 0,017777 31,14 SVM A
0,754986 0,357410 0,459033 0,982669 0,017331 35,03 SVM F
0,773406 0,351618 0,458678 0,982704 0,017296 32,23 SVM M
0,769740 0,373289 0,477560 0,983198 0,016802 36,62 SVM F+M

Table 12.30: Macroaveraged measures for all classes in presented experiments

12.8.3 Analysis of results

First, we remind the target of these experiments: to study how the use of
different sources of data affects the performance of a multi-label categorization
engine. Not only it is interesting to identify which combination of sources is
best, but also to study whether is worth using one over another. For example,
the computation cost of using full-text documents is much higher than that of
using just small abstracts: the collection is smaller, the trained data demands
lower storage space, and the classification process is accelerated. Thus, it is very
important in our domain to state such facts.

To understand these results let’s take, for example, from table 12.29, the
p-value corresponding to row F and column F+M is very small: 0.00000665.
It says that when using the corpus created as combination of full-text and
metadata, we can be sure (99.9994% sure!) of obtaining more accurated results
than those obtained by feeding the system with corpus based on just full-text
data. P-values show a transitive behavior: let a, b and c, be distinctive sources,
and ’>’ the binary operator to indicate that a source provides better results
than another, then, we can state that:

(a ≥ b) ∧ (b ≥ c) =⇒ a ≥ c (12.7)

At table 12.29 M outperforms A, and F+M outperforms M, therefore, we
can observe how F+M outperforms widely A.

It is possible to illustrate graphically the improvement obtained when using
some sources instead of others. Figure 12.26 shows four diagrams, one per mea-
sure. At each diagram the considered sources are drawn, with their 40 measured
values sorted to ease the visual comparison between sources. In principle, the
use of only the abstract of a document seems to be the worst choice. Actually,
this is not an easy question, as we will argue from Wilconox test results.

12.8. EXP 12.8 - INTEGRATING META-DATA INFORMATION 173

Figure 12.26: Comparison of sorted measures for each source over precision,
recall, F1 and accuracy

174 CHAPTER 12. EXPERIMENTS

As said before, we can notice an increase in performance just having a look
at figure 12.26, but the statistical values contained in tables 12.26, 12.27, 12.28
and 12.29 provide us solid evidences on the studied subject. After reviewing
every table we can conclude with the following points:

1. The combined use of metadata and full-text information is the best choice
in any case (though the most costly).

2. Metadata is also good choice in most cases despite the fact is outperformed
by the combination of full-text and metadata when we are more interested
in precision.

3. It even outperforms corpus based on full-text papers for recall and F1.

4. As main conclusion, the metadata source should be preferred due to
its reduced computational cost and its good behavior against full-text or
the combination of full-text and metadata (except for precision matters).

These interesting results have been recently reported [97]. Therefore, adding
a big full-text content of a document (extracting it from the PDF version) to
the features that can be promptly extracted from the document record stored
in the database is not worthy. This conclusion validates the visual conclusion
obtained from inspecting diagrams shown at figure 12.26, where we can see how
the curve for the metadata source is usually above the rest of curves. This effect
is less clear for precision, as reported by the test.

12.9 EXP 12.9 - Selection: Ranking versus Boolean

In section 6.1 different solutions for multi-labeling by combining base binary
classifiers were introduced. TECAT has been programmed to support two pos-
sible strategies: by rank and by thresholding. The former one consists on the
selection of the top classes ranked by their classification status value (CSV), i.e.
the value returned by the binary classifier for the class. Thresholding, as done
by TECAT, delegates to the binary classifier the decision on whether the class
should be assigned to the document or not. We may think that this second
strategy would provide a high number of labels and force us to loose the control
on the number of classes to be attached to a certain document.

In this set of experiments we have studied the performance of both strategies
over two possible base classifiers: PLAUM and Rocchio.

12.9.1 Configuration

As usual for previous experiments, parameters passed to TECAT for present
experiments are detailed, see table 12.31.

12.9. EXP 12.9 - SELECTION: RANKING VERSUS BOOLEAN 175

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting TF.IDF

learning testing

S-cut for Rocchio mode by class or

by rank

measure F1

threshold 0.1

methods Rocchio or
PLAUM

Table 12.31: Parametrization of TECAT for experiment 12.9

The corpus used was the hep-ex partition of abstracts documents. For the
rank strategy the number of top classes selected was modified to produce 5
different runs over each base algorithm: {5, 10, 15, 20, 20} were set as the
number of classes for each document. Since we wanted to compare it also
against the Boolean strategy where all positive class are returned, we have in
total 12 runs of the multi-label classifier over the corpus. Again, 10-fold cross
validation framework was applied.

12.9.2 Results

We can briefly summarize the results obtained listed in table 12.32 by graphi-
cally presenting them as in figures 12.27 (for PLAUM algorithm) and 12.28 (for
Rocchio algorithm). As we can see at first sight, the behavior strongly depends
on the algorithm used.

It is, again, noticeable the discriminative behavior of PLAUM algorithm
(similar to that of SVM): only 53.74 % of classes were successfully trained by
the PLAUM learning algorithm, while 88.74 % of classes were trained by Rocchio
algorithm.

In general, an increment in the number of classes obtained reports a higher
recall value (obviously), but is punished by a drastic fall of precision. It is
curious how all measures converge when the number of classes is 10, due to
the fact that precisely 10 is the average number of classes per document in the
corpus.

176 CHAPTER 12. EXPERIMENTS

n-top ranked Precision Recall F1 BEP Accuracy Algorithm

all positive 0.472300 0.543758 0.461417 0.508029 0.972009 Rocchio
5 0.255107 0.130831 0.166047 0.192969 0.970028 Rocchio
10 0.219876 0.221002 0.212103 0.220439 0.962849 Rocchio
15 0.196147 0.290238 0.226044 0.243193 0.954855 Rocchio
20 0.175423 0.342289 0.224755 0.258856 0.946054 Rocchio
50 0.107944 0.510858 0.174812 0.309401 0.886364 Rocchio

all positive 0.691092 0.412173 0.489869 0.551632 0,981761 PLAUM
5 0.703932 0.356124 0.457544 0.530028 0.980245 PLAUM
10 0.539713 0.526894 0.516098 0.533304 0.977412 PLAUM
15 0.415165 0.597558 0.475219 0.506362 0.969811 PLAUM
20 0.332678 0.633238 0.424067 0.482958 0.960371 PLAUM
50 0.150648 0.709563 0.244088 0.430106 0.896079 PLAUM

Table 12.32: Performance measures registered for PLAUM and Rocchio algo-
rithms using ranking strategy

Figure 12.27: Rank strategy results for PLAUM algorithm

12.9. EXP 12.9 - SELECTION: RANKING VERSUS BOOLEAN 177

Figure 12.28: Rank strategy results for Rocchio algorithm

12.9.3 Analysis of results

The main conclusion is straightforward: the rank strategy is not a good solution
for merging classifiers results into final set of labels. Although we can control
whether precision should be penalized in favor of a higher recall, specifying a
fixed set of final classes is not a recommended option. This is due to the fact
that we may select classes that were refused by the associated binary classifier,
and symmetrically, some classes found positive by the originator classifier my be
discarded. That is, the rank strategy is a “blind” strategy, since it only consider
the CSV value returned by the classifier, but not the internal threshold that the
classifier may use to determine the suitability of a class for the document.

Moreover, the rank strategy is only applicable when CSV values are com-
parable, and that is a very difficult question to answer: even when using the
same learning algorithm, the classifier obtained after training it for a class may
not be comparable with the same algorithm for another class. Also, some algo-
rithms like margin based ones (SVM and PLAUM, for instance) produce CSVs
that could not be considered as distance measure of the document to the class.
An maximum on F1 measure is observable for PLAUM when taking 1. This
higher F1 value over the one registered when all positive ones are returned is
consequence of the behavior of the PLAUM algorithm, which reports usually
higher values of precision than for recall. By taking top 10 classes always (even
when some of them may be negative) we are penalizing precision in favor of the
recall index, so we register that overall increment in F1 measure.

Therefore, we recommend to return all classes which are result of a posi-

178 CHAPTER 12. EXPERIMENTS

tive evaluation of the classifier, so the number of classes per document is more
dynamic and adjusted to the relative performance of each base algorithm.

12.10 EXP 12.10 - Tests over additional HEP
corpora

Mainly in our experiments, we have used the hep-ex abstracts partition. In
some of them also the full-text file for those documents has been fed into the
system for further studies. Once we know that TECAT can perform well for
the base line hep-ex collection, it is important to report the performance of
the tuned system against different corpora. To do so, two additional partitions
of the originally provided HEP collection have been source of documents for
training and testing: the astro-ph and hep-th10 partitions. Details about both
collections are given in next section.

If we find similar performance of the TECAT system on these two corpora,
we are in a better position to extrapolate the benefits of our system to the full
of HEP digital library.

12.10.1 Configuration

In table 12.33 the basic configuration of the TECAT system is detailed. As we
can see, most of the parameters are the commonly used values for most of the
experiments presented so far. This configuration provides a performing training
of the system in order to execute real-time classification. If there is one param-
eter that may be affected by the size of the collection is the number of features
to be filtered by its information gain value. As we saw in experiment 12.5,
this number affects performance. For these runs, the number of features to be
filtered by this reduction method has been varied according to three possible
values: {10000, 20000, 50000}, referred in our experiments as IG-A, IG-B and
IG-C respectively.

As proved by experiment 12.8, the use of abstracts combined with additional
metadata information significantly improves classification performances. Those
directives have been followed here. Therefore, each corpus has been generated
not only from abstracts, but also incorporating into the content of the document
its title, authors, date of publication, subject and language (though this last one
is irrelevant: all documents are in English).

10These corpora were also provided by the CERN Document Server for its use in these
experiments, so we can use as benchmark document collections related to a different subject
from pure HEP experimental papers. More details about them are given later.

12.10. EXP 12.10 - TESTS OVER ADDITIONAL HEP CORPORA 179

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 10000, 20000

or 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes
term weighting TF.IDF

learning testing

S-cut no mode by class

measure F1

threshold 0.1

methods PLAUM

Table 12.33: Parametrization of TECAT for experiment 12.10

12.10.2 Results

Two of the main differences between different corpora are (a) the number of
documents and (b) the relative number of classes covered by those documents.
As show by figures 12.29a and 12.29b, consequently the more documents are
in a collection, the larger the number of classes covered is. But as we can see
from those figures, this relation is not proportional: hep-th has eight times more
documents than the hep-ex partition (figure 12.29a), but they almost cover the
same number of classes. In table 12.34 these values are presented: the number
of classes tested (that is, the number of classes found in the corpus), the number
of classes trained (classes successfully modeled by a binary classifier), and the
number of documents.

collection classes tested classes trained no. docs
astro-ph 296 124 2766
hep-ex 441 258 2839
hep-th 518 313 17270

Table 12.34: Relation of classes and documents by corpus

Figure 12.30 shows performance measures registered by TECAT tests with
modified number of features allowed by the information gain filter for each
corpus. The most sensitive value is, again, the precision of classification. Also
recall, F1, and break-even-point (BEP, here just a simple mean for precision
and recall) are given to show the effect of varying the filtering parameter.

180 CHAPTER 12. EXPERIMENTS

(a) (b)

Figure 12.29: (a) Number of classes trained and tested and (b) number of docs
for each collection

Figure 12.30: Performance measures obtained by TECAT over each collection

12.11. EXP 12.11 - REAL-TIME MULTI-LABELING 181

12.10.3 Analysis of results

From results described above, we can conclude with three main argumentations:

1. The more classes we have, the more difficult is to find a suitable multi-
label classifier. Mainly due to imbalance causes, these data sets are a real
challenge for researchers.

2. Depending on the number of documents, we have to adjust filters like
the one based on the information gain. As we can see, the performances
found on the hep-th partition increases according to the number of fea-
tures allowed by the filter. This obvious relation need further research
in order to set a dynamic limit for such values depending on the original
dimensionality found in the corpus.

3. Taking into account that most of our experiments have focused on studying
best parameters for multi-labeling in the HEP domain, but using almost
always the hep-ex partition, we find that almost same performances are
registered by astro-ph partition (being this one, an smaller one, i.e. fewer
data available), and also by the hep-th partition. The last one is much
larger, with more classes, but its F1 value is only 3,7% lower than the one
registered for hep-ex corpus.

In our opinion, these results provide strong evidence of the robustness of our
method. Our approach for multi-labeling of High Energy Physics documents
can very well be scaled to the whole of the CERN digital library.

12.11 EXP 12.11 - Real-time multi-labeling

The last set of experiments performed brings up the capabilities of the system
proposed as a multi-label classifier able to process documents in plain-text for-
mat and produce groups of labels in what we can consider a real-time response.

12.11.1 Configuration

A total of 2779 abstracts have been used to measure the time it takes to TECAT,
which implements all our studied approaches, to generate a set of related key
words to every document. Each abstract is in a separate file, in plain text
(ASCII) format. We have programmed an script that will take, one by one,
these files and pass them to TECAT. The TECAT classifier will load, at every
classification, its configuration files (the trained data and class models). Then,
it will process the document and pass it to the series of classifiers in order to
produce final labels. The process is modeled in figure 12.31.

182 CHAPTER 12. EXPERIMENTS

Figure 12.31: Classification steps within TECAT

As we can prove the feasibility of our approach as a real-time classifier, we
have chosen a common server platform to run this benchmark. The machine
used was a Dual (bi-processor) Intel Xeon at 2.8GHz per processor running
SuSE Linux 9.1.

The TECAT configuration used to train the system is as given by table 12.35.
The only algorithm used as base binary classifier was PLAUM, as it performs
reasonably well and is a built-in algorithm in TECAT. The system is intended
more as a framework for multi-labeling research than for a classification produc-
tion resource, but it has been designed to report a good performance in speed,
though. Anyhow, since it is trained usually into a set of “folds” for the n-fold
cross validation testing, the classification of a single document is resolved by us-
ing the learned models from just one single fold, as every fold is ideally trained
over the whole set of possible key words11.

12.11.2 Results

When running the classifier against every abstract to produce their key words,
the time UNIX command has been used to record the duration of the task into
three measurements:

1. Real. It reports, in seconds, the elapsed real time between invocation and
termination of the command (the invocation of the TECAT classifier).

2. User. The user CPU time (the CPU time consumed by the user owner of
the process run).

3. System. The system CPU time (the CPU time consumed by the oper-
ating system to effectively run and complete the process, involving shell
operations).

11We know this is not true due to the high class imbalance registered across the corpus, but
in any case it does not affect the benchmark itself.

12.11. EXP 12.11 - REAL-TIME MULTI-LABELING 183

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting: TF.IDF

learning classification approach

S-cut no mode by class

measure F1

threshold 0.1

methods PLAUM

Table 12.35: Parametrization of TECAT for experiment 12.11

Timings for every document has been computed at classification. A summary
of representative final statistics is detailed in table 12.36. First column, no.
classes, reports the classes returned by the classifier. Next three columns
provide the three measures described above. Last column shows the statistic
computed for each of the four previous values over the whole distribution of
values obtained for proposed corpus.

no. classes real user system statistic
5,29 1,13 1,09 0,04 average

17 2,13 2,09 0,07 maximum
0 1,06 1,01 0,03 minimum
4 1,1 1,07 0,04 mode

8,2 0,01 0,01 0 variance
2,86 0,11 0,11 0,01 standard deviation

Table 12.36: Global statistics for hep-ex corpus classification

12.11.3 Analysis

As we can see, the average classification time taken by TECAT is few more
than a second, so our approach is, indeed, a real time classifier, as reported
by an authored paper [84]. That is an important success of the architecture
for multi-label classification studied along this work. Considering that we are
dealing with a final set containing about 300 classes successfully trained, it is a
valid solution for the CERN Document Server and its huge collection of full-text
papers. It is also important to note that the number of labels proposed for each
document is dynamically controlled by TECAT, returning a reasonable number

184 CHAPTER 12. EXPERIMENTS

within a reasonable range (from nothing to 17 in these experiments).

12.12 EXP 12.12 - TECAT on EUROVOC data

So far, we have applied TECAT just on High Energy Physics corpora. All
our experiments have been focused on relevant issues raised during the study
of a multi-label text classifier when classifying against thousands of classes,
as is in the case of the DESY thesaurus used for HEP papers. But now the
question to be answered is whether our conclusions are applicable over other
collections showing also high imbalance degree of classes across their multi-
labeled documents.

This is the last experiment we have carried out before closing this work,
since the access to EUROVOC data has been traditionally restricted. Anyhow,
extensive research has been done on the database of documents labeled with
EUROVOC descriptors, as described in section 9.1.3. Although the author has
been in close contact with people at the Joint Research Centre, this is the first
time some data is liberated to the research community.

12.12.1 The corpus

Jan Zizka (research visitor at the Joint Research Centre of the European Com-
mission at Ispra, Italy), has prepared a set of documents already labeled using
EUROVOC descriptors. In order to be able to release such data to the public,
it has been anonymized, so features and classes are replaced by simple numbers.
The data we have used in following runs of TECAT is composed by 21,216 doc-
uments (117,434 features), labeled with a total of 2,911 classes (from a set of
4,004 possible descriptors described for this collection). 208 megabytes of data
have been fed into the system.

Figure 12.32: Inner imbalance degree for 200 most frequent classes

The imbalance truly high, as we can observe at figure 12.32, where imbalance

12.12. EXP 12.12 - TECAT ON EUROVOC DATA 185

class no. docs IID
1 1259 0,881316
2 1075 0,898661
3 1050 0,901018
4 1017 0,904129
5 967 0,908842
6 893 0,915818
7 763 0,928073
8 705 0,933541
9 671 0,936746

10 665 0,937311

Table 12.37: Inner imbalance degree (IID) for ten most frequent classes in the
EUROVOC corpus

degree for the 200 most frequent classes is shown graphically. In table 12.37
imbalance degree for ten most frequent classes is also provided. Note that the
classes, since the corpus is anonymized, are named with numbers. None of the
classes included appears in more than 12% of the released documents. When
classifying using one-against-all approach, it implies that the learning algorithm
will have very few positive samples, against a very large set of negative ones.
Thus, our expectations for setting a robust margin decrease as the imbalance
for the class the system is being trained grows.

12.12.2 Configuration

For these runs, we have configured TECAT as shown in table 12.38. This time we
have allowed TECAT to select between two possible binary classifiers: PLAUM
and Rocchio. The rest of parameters remains to the values we have concluded
to be good values for the proposition of a performing multi-label classifier.

This configuration has been, as usual, lead to a 10-fold cross validation.
The training process (distribution of documents across folds, stemming, stop
words removal, feature reduction by document frequency and information gain
value, weighting of features, training of base candidates, and evaluation and
selection for every class of the best of the two algorithms) took about 28 hours.
The testing only took 4 hours. At the end, TECAT was able to classify new
incoming documents in less than 20 seconds. If only PLAUM algorithm had
been used, it could have been down to 4 or 5 seconds, by using a feature of
TECAT able to compact PLAUM models).

186 CHAPTER 12. EXPERIMENTS

indexing folding

stop-words yes DF term filter 1

stemming yes no. folds 10

min. term freq. 0 IG filter 50000

min. term length 0 DF class filter 1

max. term length 40 normalization yes

term weighting: TF.IDF

learning classification approach

S-cut only for Rocchio mode by class

measure F1

threshold 0.1

methods PLAUM and
Rocchio together
as candidates

Table 12.38: Parametrization of TECAT for experiment 12.12

12.12.3 Results

Results obtained are promising. We have tuned the system for optimal perfor-
mance of TECAT, since as we have justified across the present work, that would
imply an in depth study of the corpus and a costly analysis to set best param-
eters. Results for top ten classes are detailed in table 12.39. We can see that,
despite the increasing inner imbalance degree of these top classes, the quality
of results seems to not be according to that fact. In the whole collection, it is,
but it is also true (as pointed by previous experimental results on the HEP col-
lection), that each class may show different difficulties for its correct training.
Maybe, the problem is to establish which is the source of data a certain key
word needs for its proper modeling.

Global results have been obtained in a per-document basis (see chapter 7
for more details). They indicate that, after filtering too low frequent classes,
1424,10 key words where passed to the training phase, and that 1281,0 where
successfully trained (which is a pretty high degree of capacity of learning). Such
global values obtained were 0.511867 of precision, 0.509602 of recall, 0.997018 of
accuracy, 0.002982 of error, 0.476656 for F1, and 0.510734 for the break-even-
point.

12.12.4 Analysis

We have been in contact with researchers at the Joint Research Centre (JRC)
to share our experiences with them. They have found our results very good.
The way we have computed our measures is by only counting exact matched.

12.12. EXP 12.12 - TECAT ON EUROVOC DATA 187

class precision recall accuracy error F1 BEP
1 0.713993 0.702386 0.965497 0.034503 0.705030 0.708189
2 0.639921 0.434601 0.956285 0.043715 0.503703 0.537261
3 0.399299 0.708935 0.930454 0.069546 0.506372 0.554117
4 0.735356 0.686286 0.972810 0.027190 0.706778 0.710821
5 0.475359 0.732636 0.949727 0.050273 0.566215 0.603998
6 0.904384 0.851261 0.989913 0.010087 0.876128 0.877823
7 0.381226 0.212821 0.957133 0.042868 0.258883 0.297024
8 0.653248 0.576640 0.975791 0.024209 0.611103 0.614944
9 0.528606 0.643517 0.970162 0.029838 0.576800 0.586062

10 0.856026 0.741460 0.987846 0.012155 0.792116 0.798743

Table 12.39: Classification results for ten most frequent key words using EU-
ROVOC collection

The system running at the JRC is a ranking based one, so different measures of
precision and recall are computed depending on the number of terms considered
from the final output of the system. In our experiments (though TECAT can
operate in a ranking manner), the list of key words returned is a closed list, the
user does not need to specify how many terms should be taken. When working
on fully automatized environment, the latter is preferred, whether for machined
aided indexing we may want to be provided with a list of candidates ranked
by the confidence found by the system (though TECAT can also work in such
manner). Anyhow, this final returning strategy (ranked or not) will depend on
the final use the system will have. For example, the JRC team found that for
the NewsExplorer application, the ranked strategy was preferable, as it turned
to produce better results (see [98]).

By exact matching the highest value obtained by their system is 0.63 (63%)
for F1 measure, with a precision of 0.58 and a recall of 0.68 (when taking the 10
top ranked descriptors, see [18]). Though our values are lower than these ones,
they report that their system has been optimized through years in order to get
such results, so ours are more than worth considering.

As conclusion, we can fully validate our multi-label classification framework
over the EUROVOC corpus. Therefore, we expect that our conclusions found for
the HEP collection are extensible to other multi-labeled collections of documents
showing a high class imbalance degree.

188 CHAPTER 12. EXPERIMENTS

Chapter 13

Conclusions and future
work

Once all our experiments have been exposed and their results analyzed, and
due mainly to the large variety of them, it is time to summarize key points
found during this research, underlining major issues covered by present work.
It is, of course, agreed that many open issues remain in the horizon, and we will
mention them in the last section of this chapter. Text Categorization research
is a richness area where several computer based techniques meet to propose
a wide variety of solutions. We believe that the success of a system resides
not only on the excellence of proven learning algorithms, or specific natural
language based methods, but also on a closer observation of the matter under
study: the collection of documents. Depending on the characteristics a given
corpus may present, our system will be, of course, differ from that focused on
another document collection with its own particular properties, although some
experiments have reported promising results (see experiment 12.12).

TECAT is not the expected final result of this thesis, but rather an intermedi-
ate product that has provided us with a consistent framework able to face every
single subject of study during the definition and implementation of a real-time
multi-label classifier. Previous implementations using Perl, Java and Python
programming languages have been also fruitful as experimental playgrounds,
but always with the same focus: automatize the classification of documents in
the High Energy Physics field.

The three major points covered in this research are summarized in following
sections as main scientific results of the present work:

1. the new corpus introduced to the research community,

2. the new approach for multi-label classification,

189

190 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

3. and the importance of additional sources of data for effective class assign-
ment.

Finally, as not a scientific result, the TECAT tool is reported aside as a
product of this work, and further topics that remain opened and that demand
additional research effort are listed at the end of this chapter.

13.1 HEP collection: a new and challenging cor-
pus for multi-labeled text categorization re-
search

In chapter 11 a new collection of documents annotated in a multi-labeling fash-
ion is introduced. This collection provides a challenging amount of data with
many properties that make it very interesting for the research community in
Text Categorization. So far, there is no such a rich collection of papers man-
ually indexed with predefined topics. Its high class imbalance has made us
to consider certain design alternatives seldom covered in previous works. This
work has studied this, a priory, disadvantage to propose a solution that has been
extensively analyzed in performed experiments. Thanks to this special distri-
bution of classes across documents we have faced the imbalance and produced
following conclusions:

1. We have defined a new indicator for classes imbalance: the inner imbalance
degree (equation 12.6), which improves previous propositions by providing
a more consistent factor allowing comparisons at this level between non-
related collections.

2. We have detailed this imbalance found in this collection, and analyzed
how we could deal with such characteristic, as result we have proposed
the method described in next section, proven to be valid and consistent
solution to this problem.

3. We have detailed the richness of data available from this collection. In
section 13.2 further details about it are provided.

4. The variability of experiments performed has covered many of the aspects
to be considered in the categorization of text coming from this collec-
tion and offers a base line for future experiments. Processing phases like
feature selection, dimensionality reduction or feature weighting has been
extensively examined, justifying the tuning of the set of parameters in-
volved in the aim of defining a final classification method.

Access to the data is permitted and researchers from all around the world
can test their methods and compare their results with ones encountered by us.

13.2. ADAPTIVE SELECTION OF BASE CLASSIFIERS 191

As pointed several times, the success of a classification system depends on the
capability of the method to fit on the specific nature of the corpus treated. It
has been our contribution to touch many of the variables involved in such “fit”.
Now, coming investigations may explore certain possibilities not covered in the
present work and that may result in an improvement of the classification system.

When a new collection is offered to the research community, it is a double
grace to serve it along with the experimental machinery this thesis may have
offered. It aids in the understanding of the properties of the data and determines
straightforward issues that are worth studying.

13.2 Adaptive selection of base classifiers

The method for dealing with a highly imbalanced multi-labeling framework is
discussed in experiment 12.7. This method consists in the automatic genera-
tion, by supervised learning, of a multi-label classifier that proposes just one
classifier for each class. Classes yielding to non-performing classifiers are dis-
carded. But the system allows the possibility of training among a given list of
candidate algorithms. These candidates may show wide differences among them
in the interpretation of value returned, the approach followed, the mathematical
complexity of the algorithm, or the parametrization passed. After the training
and evaluation of such candidates, the one generating best results is selected
as the classification scheme for the class. At the end, for every class, either a
unique classification model, or the determination of never proposing that class,
is stored in the global classifier model. It has been proven during our experi-
ments that such approach generates a fast multi-label classifier, able to generate
labels in real-time executions, able to integrate in an easy manner additional
base classifiers, and able to be parametrized, through the α threshold, to satisfy
specific requirements.

This method works very well with collections with a large set of possible
classes and it is not difficult to be implemented, due to its conceptual simplic-
ity. It also allows the integration of many possible resources, since the classifi-
cation process is clearly divided into defined processing: feature identification,
feature selection, dimensionality reduction, feature weighting, training of binary
candidate algorithms, and evaluation of them per class.

13.3 Metadata records: an informationally rich
source

Text Categorization research tends to focus on Machine Learning algorithms.
The lack of corpora available generally involves a recursive study of methods
applied to the same collections. It is important to state common sets of data,

192 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

since that is the way to establish a proper benchmark, but when such data
show a lack on certain aspects demanding to be closely study, then additional
collections should be provided. But sometimes we do not consider in depth all
the information provided from a given source, and that may imply ignore some
benefits that were already there. That is the case of the metadata information
related to every document in the digital library of High Energy Physics doc-
uments at CERN. Former research on such documents has either focused on
citations (see subsection 9.2.1 for more details), or on the full-text version of
papers provided by CDS. Human indexers agglomerate a vast knowledge on the
subjects treated on reviewed papers, and there are certain key words that can-
not be assigned without additional information usually out of the scope of the
document content. How can an indexer, by reading an scientific article, know
that the text is the result of a talk, or a survey about a collaboration between
research centers? The metadata attached to records stored in the database may
provide simple answers to that apparently difficult questions.

Some approaches like the AIR/PHYS (see subsection 9.2), are based on the
study of underlying structures inferred from simple document segmentation.
The assignment of a key word is result of the combined computation of features
weights appearing in the title, the abstracts, and the rest of the paper.

In our experiment 12.8 we have analyzed how certain combinations of avail-
able sources effectively yield to performance melioration. That should motivate
the debate of first stating, when constructing a new classifier for a certain do-
main, which is the nature of the data acquired, and find out if further sources
of information could be fed into the system. It is a basic premise: we classify by
analyzing certain information, the richer such information is, the more accurate
our decision should be in return.

13.4 Practical product result: TECAT software

The CERN Document Server has determined the crucial role a system like the
one unveiled during the reading of these pages. This work has, therefore, covered
a dilated spectrum of methods and algorithms, and it could have been even much
bigger. It is so immense the number of possibilities, that we have encountered
many difficult decisions to be taken, like not to explore certain aspects suitable
of been included in the present research. But, in our opinion, this work has
successfully integrated many relevant topics and discovered relevant aspects as
confirmed by our discussions at every work shop and lecture given using results
found in our experiments. Proudly, we have a classification system which is
a production system, a real application now being integrated into the CDS
software. The sample document shown in figure 13.1 has been manually labeled
with key words listed in figure 13.1. TECAT automatically proposed the key
word list of figure 13.3. As we can see, just three key words are selected by the
classifier, with 100% of precision and 50% of recall, though.

13.4. PRACTICAL PRODUCT RESULT: TECAT SOFTWARE 193

<?xml version="1.0" encoding="UTF-8"?>
<collection>

<dc xmlns="http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://purl.org/dc/elements/1.1/
http://www.openarchives.org/OAI/1.1/dc.xsd">

<language>eng</language>

<creator>Albrecht, H</creator>

<title>
Determination of the Michel Parameters ρ, ξ,
and δ in τ-Lepton Decays with $\tau \to
\rho \nu$ Tags

</title>

<subject>
Particle Physics - Experimental Results

</subject>

<identifier>
http://preprints.cern.ch/ ... id=9711022

</identifier>

<description>Using the ARGUS detector at the $e^+
e^-$ storage ring DORIS II, we have measured the
Michel parameters ρ, ξ, and $\xi\delta$
for center of mass energies in the region of the
Υ resonances. Using 0.04 \pm 0.08$,
$\xi_{e}= 1.12 \pm 0.20 \pm 0.09$, $\xi\delta_{e}
= 0.57 \pm 0.14 \pm 0.07$, $\rho_{\mu}= 0.69 \pm
0.06 \pm 0.08$, $\xi_{\mu}= 1.25 \pm 0.27 the
combined ARGUS results on ρ, ξ, and
$\xi\delta$ using this work on previous
measurements.</description>

<date>1997-12-01</date>

</dc>

</collection>

Figure 13.1: Sample for metadata information in XML DC format.

DESY HERA Stor
electron positron
experimental results
magnetic detector
Michel parameter
tau

Figure 13.2: Main DESY key words manually assigned to sample at figure 13.1

1.233175 tau
1.533310 electron positron
0.327726 magnetic detector

Figure 13.3: Main DESY key words automatically assigned by TECAT to sam-
ple at figure 12.25. They are preceded by their associated Classification Status
Value (in this sample, returned by the PLAUM algorithm).

194 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

13.5 Open issues and future research

As commented before, many aspects of the system conform a ground for further
analysis. The amount of parameters and methods involved in a complete solu-
tion would require much longer time to be covered in detail. We list now some
of the main open issues that may drive further research from present work.

• Extending method capabilities to other domains is a research task that has
been briefly unveiled by experiments presented in section 12.12. Results
obtained suggest the robustness and flexibility of the method introduced.

• It is important to recall that we have covered only the first level of the
DESY thesaurus: no secondary key words have been proposed. In our
opinion, it is needed a vast amount of information to consider such study,
since just facing this first level, the imbalance registered let few chances for
success. Imbalance at second level is, consequently, higher and, therefore,
currently untreatable. Though, future approach may bring light to this
difficult problem.

• Physics documents are plentiful of formulae, diagrams and tables. We have
not paid special attention to these important items. The number of tables
or graphs found in document content could represent an relevant aid when
deciding which classes have to be assigned. The nature of certain formulae,
and the values found in them could be used to clarify obviated classes in
this work like energy or reaction related ones. Thus, and wider study
on document content along with its segmentation for a more accurate
weighting of features is imposed in further developments.

• As corollary of previous issue, a deeper analysis of Natural Language Tech-
niques may lead to improvements in system performance. Our light study
of some of these techniques (like multi-word detection) remains untouched
many interesting approaches as document summarization (for condensing
document content and reducing its initial length to speed up later process-
ing), word sense disambiguation (despite HEP language technicality and
consequent possible lack of such problem), semantic indexing (to reduce
the feature space), and so on. In any case, these possible task of re-
search have been discarded by obvious and still valid reasons: the weight
of response-time constraints was high.

• New Machine Learning algorithms appear continuously. Some of the cur-
rent proposals may be promising within our domain. Test boosting al-
gorithms like AdaBoost and other methods like K-NN, Näıve Bayes, EG,
LVQ and Logistic Regression on the HEP corpus could lead to significant
improvements, although one of our main conclusions is the suggestion of
looking for additional sources of data, such as meta-data in document
records or other information outside the content scope. rather than trying
yet another base classification algorithm.

13.5. OPEN ISSUES AND FUTURE RESEARCH 195

As we can assert from results found in experiment 12.12, TECAT is a flexible
system and general enough to be considered as an useful resource for document
classification research. Anyhow, we maintain the hope on new software to come
improving our results for HEP documents.

Benefits coming from the application of automated classifiers have been re-
ported in chapter 8. From that we can do nothing but expect a promising future
for that kind of systems. This work has proven the viability of automatic multi-
labeling for collections with a large associated thesaurus. It has covered many
problems found during the construction of a productive solution and proposed
a coherent architecture through an empirical analysis. The execution of thou-
sands of experiments during the last three years has given in return a complete
analysis to the multi-labeling problem, but has also identified additional topics
as product of the use of a novel corpus for the research community.

196 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] ASIS Thesaurus of Information Science.
http://www.asis.org/Publications/Thesaurus/isframe.htm.

[2] EUROVOC Thesaurus. http://europa.eu.int/celex/eurovoc/.

[3] The freedesktop project. URL: http://freedesktop.org.

[4] The gnome website. URL: http://www.gnome.org.

[5] The grace engine. URL: http://www.grace-ist.org.

[6] INSPEC Thesaurus. http://www.iee.org.uk/publish/inspec/.

[7] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reduc-
ing multiclass to binary: A unifying approach for margin clas-
sifiers. In Proc. 17th International Conf. on Machine Learning,
pages 9–16. Morgan Kaufmann, San Francisco, CA, 2000. URL
citeseer.ist.psu.edu/allwein00reducing.html.

[8] Ethem Alpaydin. Combined 5 x 2 cv f test for comparing supervised
classification learning algorithms. Neural Computation, 11(8):1885–1892,
1999.

[9] A. Arampatzis, T. van der Weide, C. Koster, and P. van Bommel.
An evaluation of linguistically-motivated indexing schemes, 2000. URL
citeseer.ist.psu.edu/article/arampatzis00evaluation.html.

[10] L. Douglas Baker and Andrew Kachites McCallum. Distributional clus-
tering of words for text classification. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in in-
formation retrieval, pages 96–103. ACM Press, 1998. ISBN 1-58113-015-5.

[11] Brain T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Latent Se-
mantic Indexing is an Optimal Special Case of Multidimensional Scaling,
1990.

[12] Eric Bauer and Ron Kohavi. An empirical comparison of voting classi-
fication algorithms: Bagging, boosting, and variants. Machine Learning,
36(1-2):105–13, August 1999.

197

198 BIBLIOGRAPHY

[13] P. Baxendale. Machine-made index for technical literature — an experi-
ment. IBM Journal, pages 354–361, October, 1958.

[14] Ron Bekkerman, Ran El-Yaniv, Naftali Tishby, and Yoad Winter. Distri-
butional word clusters vs. words for text categorization. J. Mach. Learn.
Res., 3:1183–1208, 2003. ISSN 1533-7928.

[15] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):34–43, May 2001. ISSN 0036-8733. URL
http://www.sciam.com/2001/0501issue/0501berners-lee.html.

[16] P. Biebricher, N. Fuhr, G. Lustig, M. Schwantner, and G. Knorz. The
automatic indexing system air/phys - from research to applications. In
Proceedings of the 11th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 333–342. ACM
Press, 1988. ISBN 2-7061-0309-4.

[17] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984. ISBN 0-534-98053-8.

[18] Bruno Pouliquen, Ralf Steinberger, and Camelia Ignat. Automatic Anno-
tation of Multilingual Text Collections with a Conceptual Thesaurus. In
Amalia Todirascu, editor, Proceedings of the workshop ’Ontologies and In-
formation Extraction’ at the EuroLan Summer School ’The Semantic Web
and Language Technology’(EUROLAN’2003), page 8 pages, Bucharest
(Romania), 2003.

[19] M. Buenaga, J.M. Gómez, and B. Dı́az. Using wordnet to complement
training information in text categorization. In Proceedings of Second Inter-
national Conference on Recent Advances in Natural Language Processing
(RANLP), 1997.

[20] Christopher J. C. Burges. A Tutorial on Support Vector Machines for
Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121–
167, 1998. URL citeseer.nj.nec.com/burges98tutorial.html.

[21] Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Sebastiani. A
learner-independent evaluation of the usefulness of statistical phrases for
automated text categorization. pages 78–102, 2001.

[22] Nitesh V. Chawla. C4.5 and imbalanced data sets: Investigating the effect
of sampling method, probabilistic estimate and decision tree structure. In
Workshop on Learning from Imbalanced Datasets II, ICML, Washington
DC, 2003.

[23] E. Chisholm and T. G. Kolda. New term weighting formulas for the
vector space method in information retrieval. Technical report, Oak Ridge
National Laboratory, 1998.

BIBLIOGRAPHY 199

[24] Erica Chisholm and Tamara G. Kolda. New term weighting for-
mulas for the vector space method in information retrieval. URL
citeseer.nj.nec.com/198082.html.

[25] K. W. Church and P. Hanks. Word association norms, mutual information
and lexicography. Computational Linguistics, 16(1):22–29, 1990.

[26] Jean-Blaise Claivaz, Jean-Yves Le Meur, and Nicholas Robinson. From
fulltext documents to structured citations: Cern’s automated solution.
High Energy Physics Library Webzine, (5), November 2001.

[27] William W. Cohen. Fast effective rule induction. In Armand
Prieditis and Stuart Russell, editors, Proc. of the 12th International
Conference on Machine Learning, pages 115–123, Tahoe City, CA,
July 9–12, 1995. Morgan Kaufmann. ISBN 1-55860-377-8. URL
citeseer.ist.psu.edu/cohen95fast.html.

[28] Christopher Culy. An extension of phrase structure rules and its applica-
tion to natural language. Master’s thesis, Stanford University, 1983.

[29] M.A. Garćıa Cumbreras, L.A. Ureña López, A. Montejo Ráez, and
F. Mart́ınez Santiago. Búsqueda de respuestas multilingüe: Clasificación
de preguntas en español basada en aprendizaje. Sociedad Española para
el Procesamiento del Lenguaje Natural, 34:31–40, 2005.

[30] David Dallman and Jean-Yves Le Meur. Automatic keywording of high en-
ergy physics. Technical report, European Laboratory for Particle Physics,
Geneva, Switzerland, October 1999.

[31] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by Latent Semantic Analysis.
Journal of the American Society of Information Science, 41(6):391–407,
1990. URL citeseer.nj.nec.com/deerwester90indexing.html.

[32] DESY. The High Energy Physics Index Keywords, 1996. http://www-
library.desy.de/schlagw2.html.

[33] Thomas G. Dietterich. Approximate statistical tests for comparing su-
pervised classification algorithms. Neural Computation, 10(7):1895–1923,
1998.

[34] Sándor Dominich. Formal foundation of information retrieval. In Proceed-
ings of the ACM SIGIR MF/IR, pages 8–15, 2000.

[35] Chris Drummond and Robert C. Holte. C4.5, class imbalance, and cost
sensitivity: Why under-sampling beats over-sampling. In Workshop on
Learning from Imbalanced Datasets II, ICML, Washington DC, 2003.

[36] V.V. Ezhela et al. Citations as a mean for discovery and automatic index-
ing of the scientific texts with new knowledge for a given subject, 2001.

200 BIBLIOGRAPHY

[37] C. J. Fall, A. Törcsvári, K. Benzineb, and G. Karetka. Automated cate-
gorization in the international patent classification. ACM SIGIR Forum,
37(1):10–25, 2003. ISSN 0163-5840.

[38] Reginald Ferber. Automated indexing with thesaurus descriptors: a
cooccurrence-based approach to multilingual retrieval. In Carol Peters
and Costantino Thanos, editors, Proceedings of ECDL-97, 1st European
Conference on Research and Advanced Technology for Digital Libraries,
pages 233–251, Pisa, IT, 1997. Lecture Notes in Computer Science, num-
ber 1324, Springer Verlag, Heidelberg, DE.

[39] Tony Hey Fran Berman, Geoffrey Fox, editor. Grid Computing: Making
the Global Infrastructure a Reality. Wiley, 2003.

[40] Yoav Freund. An adaptive version of the boost by majority algorithm.
Machine Learning, 3(43):293–318, June 2001.

[41] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network
classifiers. Mach. Learn., 29(2-3):131–163, 1997. ISSN 0885-6125.

[42] N. Fuhr and G. E. Knorz. Retrieval test evaluation of a rule based au-
tomatic indexing (AIR/PHYS). In C. J. van Rijsbergen, editor, Proceed-
ings of the Third Joint BCS and ACM Symposium. Cambridge University
Press, 1984.

[43] Norbert Fuhr, Stephan Hartmann, Gerhard Knorz, Gerhard Lustig,
Michael Schwantner, and Konstadinos Tzeras. AIR/X – a rule-based mul-
tistage indexing system for large subject fields. In André Lichnerowicz,
editor, Proceedings of RIAO-91, 3rd International Conference “Recherche
d’Information Assistee par Ordinateur”, pages 606–623, Barcelona, ES,
1991. Elsevier Science Publishers, Amsterdam, NL.

[44] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross,
and Katherine Miller. Introduction to WordNet: An On-line Lexical
Database, 1993.

[45] Fredric C. Gey. Inferring probability of relevance using the method of logis-
tic regression. In SIGIR ’94: Proceedings of the 17th annual international
ACM SIGIR conference on Research and development in information re-
trieval, pages 222–231, New York, NY, USA, 1994. Springer-Verlag New
York, Inc. ISBN 0-387-19889-X.

[46] Warren R. Greiff and Jay M. Ponte. The maximum entropy approach and
probabilistic ir models. ACM Trans. Inf. Syst., 18(3):246–287, 2000. ISSN
1046-8188.

[47] Jiawei Han and Xiaoxin Yin. CPAR: Classification based on predictive
association rules. 2003.

BIBLIOGRAPHY 201

[48] William Hersh, Chris Buckley, T. J. Leone, and David Hickam. Ohsumed:
an interactive retrieval evaluation and new large test collection for re-
search. In Proceedings of the 17th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 192–
201. Springer-Verlag New York, Inc., 1994. ISBN 0-387-19889-X.

[49] David A. Hull. Stemming algorithms: A case study for detailed evalu-
ation. Journal of the American Society of Information Science, 47(1):
70–84, 1996. URL citeseer.ist.psu.edu/hull96stemming.html.

[50] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic
study. Intelligent Data Analysis Journal, 6(5), November 2002.

[51] Nathalie Japkowicz. Class imbalances: Are we focusing on the right issue?
In Workshop on Learning from Imbalanced Datasets II, ICML, Washing-
ton DC, 2003.

[52] Thorsten Joachims. Text categorization with support vector ma-
chines: learning with many relevant features. In Claire Nédellec
and Céline Rouveirol, editors, Proceedings of ECML-98, 10th Eu-
ropean Conference on Machine Learning, number 1398, pages 137–
142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE. URL
citeseer.ist.psu.edu/joachims97text.html.

[53] Paul H. Klingbie June P. Silvester, Michael T. Genuardi. Machine-Aided
Indexing at NASA, 1994.

[54] Adam Kilgariff. Which words are particularly characteristic of a text? a
survey of statistical approaches. In Proceedings of Language Engineering
for Document Analysis and Recognition, AISB Workshop. Falmer, Sussex,
1996.

[55] Adam Kilgarriff and David Tugwell. WORD SKETCH: Extraction and
display of significant collocations for lexicography. In Proc. Collocations
Workshop, ACL 2001, pages 32–38, 2001.

[56] Jyrki Kivinen and Manfred Warmuth. Exponentiated gradient versus gra-
dient descent for linear predictors. Technical Report UCSC-CRL-94-16,
University of California, Santa Cruz, Jack Baskin School of Engineering,
June 1994.

[57] Gerhard Knorz, Gerhard Lustig, Tzeras Tzeras, Michael Schwantner, Nor-
bert Fuhr, and Stephan Hartmann. Automatic indexing in operation: The
rule-based system AIR/X for large subject fields. Technical report, June 24
1993.

[58] Ron Kohavi. A study of cross-validation and bootstrap for ac-
curacy estimation and model selection. In Proc. of the Four-
teenth International Joint Conference on Artificial Intelligence, pages

202 BIBLIOGRAPHY

1137–1145. Morgan Kaufmann, San Mateo, CA, 1995. URL
citeseer.ist.psu.edu/kohavi95study.html.

[59] Aleksander Kolcz, Vidya Prabakarmurthi, and Jugal Kalita.
Summarization as feature selection for text categorization. In
Proceedings of the Tenth International Conference on Infor-
mation and Knowledge Management (CIKM-01), 2001. URL
citeseer.nj.nec.com/kolcz01summarization.html.

[60] Daphne Koller and Mehran Sahami. Toward optimal feature selection.
In International Conference on Machine Learning, pages 284–292, 1996.
URL citeseer.ist.psu.edu/koller96toward.html.

[61] Boris Lauser and Andreas Hotho. Automatic multi-label subject indexing
in a multilingual environment. In Proc. of the 7th European Conference
in Research and Advanced Technology for Digital Libraries, ECDL 2003,
volume 2769, pages 140–151. Springer.

[62] Alan R. Aronson Lawrence W. Wright, Holly K. Grossetta Nardini and
Thomas C. Rindflesch. Hierarchical concept indexing of full-text docu-
ments in the unified medical language system information sources map.
Journal of the American Society for Information Science, 50(6):514–523,
1999.

[63] D. D. Lewis. Evaluating Text Categorization. In Proceedings of Speech and
Natural Language Workshop, pages 312–318. Morgan Kaufmann, 1991.
URL citeseer.nj.nec.com/lewis91evaluating.html.

[64] D. D. Lewis. An evaluation of phrasal and clustered representations on a
text categorization task. In Proceedings of the 15th annual international
ACM SIGIR conference on Research and development in information re-
trieval, pages 37–50. ACM Press, 1992. ISBN 0-89791-523-2.

[65] D. D. Lewis. Feature Selection and Feature Extraction for Text Cate-
gorization. In Proceedings of Speech and Natural Language Workshop,
pages 212–217, San Mateo, California, 1992. Morgan Kaufmann. URL
citeseer.ist.psu.edu/lewis92feature.html.

[66] D. D. Lewis. Representation and Learning in Information Retrieval. PhD
thesis, Department of Computer and Information Science, University of
Massachusetts, 1992.

[67] D. D. Lewis, Robert E. Schapire, James P. Callan, and Ron Papka. Train-
ing algorithms for linear text classifiers. In Hans-Peter Frei, Donna Har-
man, Peter Schäuble, and Ross Wilkinson, editors, Proceedings of SIGIR-
96, 19th ACM International Conference on Research and Development in
Information Retrieval, pages 298–306, Zürich, CH, 1996. ACM Press, New
York, US. URL citeseer.ist.psu.edu/lewis96training.html.

BIBLIOGRAPHY 203

[68] Cong Li, Ji-Rong Wen, and Hang Li. Text classification using stochastic
keyword generation. In Proceedings of ICML’03, pages 464–471, 2003.

[69] Y.H. Li and A.K. Jain. Classification of text documents. Computer Jour-
nal, 41(8):537–546, 1998.

[70] Susan M. Lloyd, editor. Roget’s Thesaurus. Longman, 1982.

[71] K. E. Lochbaum and L. Streeter. Comparing and combining the effec-
tiveness of latent semantic indexing and the ordinary vector space model
for information retrieval. Information Processing and Management, 25(6):
665–676, 1989.

[72] H. Luhn. A Statistical Approach to Mechanized Encoding and Searching
of Literary Information. IBM Journal of Research and Development 1 (4)
309-317, 1957.

[73] Inderjeet Mani and Mark T. Maybury, editors. Advances in Automatic
Text Summarization. MIT Press, July 1999.

[74] C.D. Manning and H. Schtze. Foundations of Statistical Natural Language
Processing. The MIT Press. Cambridge, Massachusetts, 1999.

[75] Daniel Marcu. Discourse trees are good indicators of importance in text.
Technical report, Information Science Institute, University of Southern
California, 1997.

[76] M. Teresa Mart́ın-Valdivia, Miguel A. Garćıa Cumbreras, Manuel C. Dı́az-
Galiano, L. Alfonso Ureña López, and Arturo Montejo Ráez. Sinai at
image clef 2005: Adhoc and medical tasks. Lecture Notes on Computer
Science (LNCS Series), 2005.

[77] M.T. Mart́ın-Valdivia, M. Garćıa-Vega, and L.A. Ureña-López. LVQ for
text categorization using multilingual linguistic resource. Neurocomputing,
55:665’–679, 2003.

[78] A. McCallum and K. Nigam. A comparison of event models for naive
Bayes text classification. In AAAI/ICML-98 Workshop on Learning for
Text Categorization, pages 41–48. AAAI Press, 1998.

[79] Andrew K. McCallum, Ronald Rosenfeld, Tom M. Mitchell, and An-
drew Y. Ng. Improving text classification by shrinkage in a hierarchy
of classes. In Jude W. Shavlik, editor, Proceedings of ICML-98, 15th
International Conference on Machine Learning, pages 359–367, Madi-
son, US, 1998. Morgan Kaufmann Publishers, San Francisco, US. URL
citeseer.ist.psu.edu/mccallum98improving.html.

[80] R. Meir and G. Rtsch. An introduction to boosting and leveraging, pages
119–184. Advanced Lectures on Machine Learning, LNCS. Springer Ver-
lag, 2003.

204 BIBLIOGRAPHY

[81] Tom M. Mitchell. Machine Learning, chapter Decision tree learning, pages
55–59. McGraw-Hill, New York, 1997.

[82] A. Montejo-Ráez. Proyecto de indexado automático en el campo de la
f́ısica de altas enerǵıas. Sociedad Española para el Procesamiento del
Lenguaje Natural, 27(295-296), 2001.

[83] A. Montejo-Ráez. Towards conceptual indexing using automatic assign-
ment of descriptors. Workshop in Personalization Techniques in Electronic
Publishing on the Web: Trends and Perspectives, Málaga, Spain, May
2002.

[84] A. Montejo-Ráez. Asignación automática de palabras clave en tiempo
real. In II Jornadas de Tratamiento y Recuperación de la Información
(JOTRI 2003), pages 289–291, Leganés, Madrid (Spain), September 2003.
Universidad Carlos III de Madrid.

[85] A. Montejo-Ráez. Formal models for information retrieval. a review and
a proposal for keyword assignment. In Mathematical/Formal Methods in
IR, Workshop in SIGIR 2003, 2003.

[86] A. Montejo-Ráez and D. Dallman. Experiences in automatic keywording of
particle physics literature. High Energy Physics Libraries Webzine, (issue
5), November 2001. URL: http://library.cern.ch/HEPLW/5/papers/3/.

[87] A Montejo-Ráez and R. Steinberger. Why keywording matters. High
Energy Physics Libraries Webzine, (Issue 10), December 2004. URL
http://library.cern.ch/HEPLW/10/papers/2/.

[88] A. Montejo-Ráez, R. Steinberger, and L. A. Ureña-López. Adaptive se-
lection of base classifiers in one-against-all learning for large multi-labeled
collections. (3230):1–12, 2004.

[89] Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Combining
statistical learning with a knowledge-based approach - a case study in
intensive care monitoring. In Proc. 16th International Conf. on Machine
Learning, pages 268–277. Morgan Kaufmann, San Francisco, CA, 1999.
URL citeseer.ist.psu.edu/morik99combining.html.

[90] Medical Subject Headings (MeSH). National Library of Medicine,
Bethesda, US, 1993.

[91] J. R. Pierce. Introduction to Information Theory: Symbols, Signals, and
Noise, pages 86–87 and 238–239. New York: Dover, 2nd edition, 1980.

[92] Olga Pombo. Leibniz and the Problem of a Universal Language. Nodus
Publikationen, 1987.

[93] M. F. Porter. An algorithm for suffix stripping, pages 313–316. Morgan
Kaufmann Publishers Inc., 1997. ISBN 1-55860-454-5.

BIBLIOGRAPHY 205

[94] Bruno Pouliquen. Indexation de textes mdicaux par extraction de concepts.
PhD thesis, Facult de Mdecine, Rennes, France, 2002.

[95] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993. ISBN 1-55860-238-0.

[96] J. Ross Quinlan and R. Mike Cameron-Jones. FOIL: A midterm report. In
Machine Learning: ECML-93, European Conference on Machine Learn-
ing, Proceedings, volume 667, pages 3–20. Springer-Verlag, 1993. URL
citeseer.ist.psu.edu/quinlan93foil.html.

[97] A. Montejo Ráez, L.A. Ureña López, and R. Steinberger. Text catego-
rization using bibliographic records: beyond document content. Sociedad
Española para el Procesamiento del Lenguaje Natural, 35:119–126, 2005.

[98] Steinberger Ralf, Bruno Pouliquen, and Camelia Ignat. Navigating mul-
tilingual news collections using automatically extracted information. In
Proceedings of the 27th International Conference ’Information Technology
Interfaces’ (ITI’2005), Cavtat / Dubrovnik, Croatia, June 20-23 2005.

[99] Ralf Steinberger, Bruno Pouliquen, and Johan Hagman. Cross-lingual
Document Similarity Calculation Using the Multilingual Thesaurus EU-
ROVOC. Third International Conference on Intelligent Text Processing
and Computational Linguistics, 2002.

[100] Ralf Steinberger, Johan Hagman, and Stefan Scheer. Using thesauri for
automatic indexing and for the visualisation of multilingual document
collections. pages 130–141, 2000.

[101] Bhavani Raskutti and Adam Kowalczyk. Extreme re-balancing for svms:
a case study. In Workshop on Learning from Imbalanced Datasets II,
ICML, Washington DC, 2003.

[102] G. Rätsch, B. Schölkopf, S. Mika, , and K.-R. Müller. Svm and boosting:
one class. Technical Report 119, GMD FIRST, Berlin, November 2000.

[103] A. M. Robertson and P. Willett. Evaluation of Techniques for the Con-
flation of Modern and Seventeenth Century English Spelling, April 13–14
1993.

[104] Stephen E. Robertson, Steve Walker, Micheline Hancock-
Beaulieu, Aarron Gull, and Marianna Lau. Okapi at TREC.
In Text REtrieval Conference, pages 21–30, 1992. URL
citeseer.ist.psu.edu/article/robertson96okapi.html.

[105] Robertson S., Walker S., and Zaragoza H. Microsoft cambridge at trec-10:
filtering and web tracks. In Text Retrieval Conference (TREC-10), 2001.

[106] G. Salton and C. Buckley. Term weigthing approaches in automatic text
retrieval. Information Processing and Managemnet, 24(5):513–523, 1988.

206 BIBLIOGRAPHY

[107] Gerard Salton. Automatic Text Analysis. Technical Report TR69-36,
Cornell University, Computer Science Department, 1969.

[108] Gerard Salton, A. Wong, and C. S. Yang. A Vector Space Model for Au-
tomatic Indexing. Technical Report TR74-218, Cornell University, Com-
puter Science Department, July 1974.

[109] Mark Sanderson. Word Sense Disambiguation and Information Retrieval,
1997.

[110] R. Schapire and Y. Singer. BoosTexter: A system for
multi-class multi-label text categorization, 1998. URL
citeseer.nj.nec.com/schapire98boostexter.html.

[111] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based
system for text categorization. Machine Learning, 39(2/3):135–168, 2000.
URL citeseer.ist.psu.edu/schapire00boostexter.html.

[112] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Comput. Surv., 34(1):1–47, 2002. ISSN 0360-0300.

[113] R. Servedio. Smooth boosting and learning with malicious noise. Journal
of Machine Learning Research, pages 633–648, September 2003.

[114] Claude E. Shannon. A mathematical theory of communication. 27(3):
379–423, July 1948. Continued 27(4):623-656, October 1948.

[115] Páraic Sheridan, Martin Braschler, and Peter Schäuble. Cross-
language information retrieval in a multilingual legal domain. In
Carol Peters and Costantino Thanos, editors, Proceedings of ECDL-
97, 1st European Conference on Research and Advanced Technol-
ogy for Digital Libraries, pages 253–268, Pisa, Italy, 1997. URL
citeseer.nj.nec.com/sheridan97crosslanguage.html.

[116] Ralf Steinberger. Cross-lingual Keyword Assignment. In L. Alfonso Ureña
López, editor, Proceedings of the XVII Conference of the Spanish Soci-
ety for Natural Language Processing (SEPLN’2001), pages 273–280, Jaén
(Spain), September 2001.

[117] L. A. Ureña-López, M. Buenaga, and J. M. Gómez. Integrating linguistic
resources in tc through wsd. Computers and the Humanities, 35(2):215–
230, May 2001.

[118] C. J. van Rijsbergen. Information Retrieval. London: Butterworths, 1975.
http://www.dcs.gla.ac.uk/Keith/Preface.html.

[119] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

BIBLIOGRAPHY 207

[120] Lyubov A. Vassilevskaya. An approach to automatic indexing of scientific
publications in high energy physics for database spires-hep. Master’s the-
sis, Fachhochsule Potsdam, Institut fr Information und Dokumentation,
September 2002.

[121] Natasha Vieduts-Stokolo. Concept recognition in an automatic text-
processing system for the life sciences, 1987.

[122] B. C. Vilckery. Information Systems. Butterworth & Co., 1973.

[123] P. Vossen. EuroWordNet: a multilingual database for information re-
trieval, 1997. URL citeseer.nj.nec.com/vossen97eurowordnet.html.

[124] S. M. Weiss, C. Apt’e, D. Damerau, D. E. Johnson, F. J. Oles, T. Goetz,
and T. Hampp. Maximizing text-mining performance. IEEE Intelligent
Systems, 14(4):63–69, 1999.

[125] Ian H. Witten and Eibe Frank. Data Mining. Morgan Kaufmann Pub-
lishers, 2000.

[126] Gang Wu and Edward Y. Chang. Class-boundary alignment for im-
balanced dataset learning. In Workshop on Learning from Imbalanced
Datasets II, ICML, Washington DC, 2003.

[127] Li Y., Zaragoza H., Herbrich R., Shawe-Taylor J., and Kandola J. The
perceptron algorithm with uneven margins. In Proceedings of the Inter-
national Conference of Machine Learning (ICML’2002), 2002.

[128] Yiming Yang. A study on thresholding strategies for text categoriza-
tion. In W. Bruce Croft, David J. Harper, Donald H. Kraft, and Justin
Zobel, editors, Proceedings of SIGIR-01, 24th ACM International Con-
ference on Research and Development in Information Retrieval, pages
137–145, New Orleans, US, 2001. ACM Press, New York, US. URL
citeseer.ist.psu.edu/yang01study.html. Describes RCut, Scut, etc.

[129] Yiming Yang and Xin Liu. A re-examination of text categoriza-
tion methods. In Marti A. Hearst, Fredric Gey, and Richard Tong,
editors, Proceedings of SIGIR-99, 22nd ACM International Confer-
ence on Research and Development in Information Retrieval, pages
42–49, Berkeley, US, 1999. ACM Press, New York, US. URL
citeseer.nj.nec.com/yang99reexamination.html.

[130] Yiming Yang and Jan O. Pedersen. A comparative study on feature selec-
tion in text categorization. In Proceedings of the Fourteenth International
Conference on Machine Learning, pages 412–420. Morgan Kaufmann Pub-
lishers Inc., 1997. ISBN 1-55860-486-3.

[131] Tong Zhang and Frank J. Oles. Text categorization based on regularized
linear classification methods. Inf. Retr., 4(1):5–31, 2001. ISSN 1386-4564.

208 BIBLIOGRAPHY

Appendix A

The DESY thesaurus

The terms in this key word list are used by the DESY Documentation Service
for the indexing of papers on high energy (beam momentum above 400 MeV
(per nucleon)) and particle physics, accelerator and detector technology and
quantum field theory.

Purpose of Keywords Assignment

These key words serve the following purposes: they allow the generation of a
subject index for the biweekly periodical HIGH ENERGY PHYSICS INDEX
(HEPI), they are important for computerized information retrieval and SDI
(Selective Dissemination of Information) service at DESY and other high-energy
physics centers. The total key words assigned to a paper may also be useful as
a sort of abstract. A search by key words is also valuable in SPIRES.

Form of Keyword Assignment

Keywords may be used singly or coupled by comma and blank (for example:
’field theory’ (single) and ’field theory, nonabelian’ (coupled)). While the first
term is generally a regular key word, the second term may be a key word or a
non-key word.

Non-key words which are frequently used are standardized; they are con-
tained in the alphabetical list (see also point 10).

209

210 APPENDIX A. THE DESY THESAURUS

Depth of Indexing

Papers on peripheral topics will usually have fewer key words per paper than
papers on high energy physics. Examples of peripheral topics are quantum
mechanics, statistical mechanics, gravitation, astrophysics, and nuclear physics
with beam energy above 400 MeV/nucleon.

Classification

Beside of indexing the selected papers are classified with 16 topical fields, one
main and any number of secondary fields. For example: Experimental papers
on electroproduction of charmed particles are assigned to the main field ((E))
and the secondary field ((C)); books on field theory are assigned to the main
field ((3)) and the secondary field ((Z)).

The 16 topical fields are the following:

I. Experimental Physics

((A)) general (also cosmic radiation, nuclear physics,

and gravitational radiation)

((B)) weak interactions

((C)) electromagnetic interactions, photoproduction

((D)) strong interactions

((E)) charm, beauty, truth

II. Technology and Techniques in High Energy Physics

((F)) accelerators

((G)) detecting systems, experimental methods and data analysis

methods

III. Theoretical Physics

((T)) general (also relativistic quantum mechanics, mathematics,

statistical mechanics, cosmic radiation,

nuclear physics, and gravitational radiation)

((U)) weak interactions

((V)) electromagnetic interactions, photoproduction

((W)) strong interactions

((X)) charm, beauty, truth

((Y)) symmetry principles (also current algebra)

((Z)) quantum field theory

IV. Monographs and Conference Proceedings

211

((3)) books

((4)) conferences

Two-Particle Initial State

Most of the combinations of any two particles (but not all) in the list are single
regular key words. They are to be used for the description of the initial state
of interactions. The particles are arranged in order of rising masses, in case
of same masses in order of charges: positive particle before negative particle
(except ’electron positron’ and ’anti-p p’).

Particle Spectra and Other Particle Combinations

Particles or particle combinations in final or intermediate states in conjunction
with the key words: angular correlation, angular distribution, bound

state, correlation, coupling, coupling constant, double-beta decay,

energy spectrum, final state, interference, mass difference, mass ratio,

mass spectrum, mixing angle, momentum spectrum, particle identification,

universality, vertex function, yield follow the key word and are listed
in parentheses in the order of decreasing masses, in case of same masses in the
order charge (+ -).

Examples:

angular distribution, (photon)

final state, (n p 0lepton)

bound state, (nucleon 2pi)

mass spectrum, (pi+ pi- pi0)

but:

K0 anti-K0, interference

D0 anti-D0, interference

B0 anti-B0, interference

Reaction Equations

Reactions of two particles or decay modes of a particle are given as in the
following examples:

212 APPENDIX A. THE DESY THESAURUS

anti-p p --> K0 K- pi+

p p --> p anything

Delta(1232)0 --> p pi-

photon deuteron --> 2p pi- (n)pi0 anything0

Particles on the left-hand side are arranged in the order of beam and target,
particles on the right-hand side are arranged in the order of decreasing masses,
in case of equal masses in the order of charge (+ -).

Resonances

Meson and baryon resonances are generally named as in the Particle Data Group
Tables; charge states are indicated only for the rho(770) and the Delta(1232).
Heavy-quark particles are commonly not called resonances.

For new and yet unnamed resonances the mass (in MeV) may be given
in parentheses, e.g. mass enhancement, (1440) or postulated particle,

(1440).

Energy Declarations

Energy resp. momentum is given in the same way as in the paper, but always
in GeV, above 10**5 in exponential form. Additionally papers are assigned to
energy-ranges.

--

| | | E(beam) [GeV] (target: nucleon)|

| | |--|

| Range | E(cms) | | | |

| | [GeV] | beam: e-, | beam: K | beam: p |

| | | photon, pi | | |

|-------|-------------|--------------|--------------|------------|

| ((1)) | 0.0 - 3.0 | 0.0 - 4.32 | 0.0 - 4.20 | 0.0 - 3.85|

| ((2)) | - 10.0 | - 52.8 | - 52.7 | - 52.3|

| ((3)) | - 30.0 | - 479. | - 479. | - 478.|

| ((4)) | - 100.0 | - 5325. |

| ((5)) | - 300.0 | - 47900. |

| ((6)) | - 1000.0 | - 532500. |

| ((7)) | - 10000.0 | - 53250000. |

| ((8)) | > 10000.0 | > 53250000. |

--

For asymmetric colliders the centre-of-mass energy is E(cms) = 2 sqrt(E(1)E(2)).
No energy range is given in case of cosmic radiation (when no interactions are

213

discussed) and for nucleus nucleus interactions.

Additional information on momentum transfer, limited angular range, etc.
may be included. The general rules are illustrated by the following examples :

1.5-2.7 GeV-cms, ((1))

1.75, 3.00, 4.50 GeV/c, ((1)) ((2))

351 GeV (pi), 280 GeV (p), ((3))

27.7 GeV/c/nucleon, 8.4 GeV-cms/nucleon

> 5*10**5 GeV, 2-5 degrees, ((6)) ((7)) ((8))

approx. 200 GeV/c, 0.5 < |t| < 2.5 GeV**2, ((3))

Alphabetical Keyword List

There are three kinds of entries in the alphabetical list:

regular key words boldface and blank space in column 1.

standardized non-key words “*” in column 1; these terms are generally cou-
pled to regular key words. There are also non-key words which have not
been standardized; they are not contained in this key word list

terms which are not used “-” in column 1.

Comments or rules of use are given in parentheses. “Restricted use” means
that a key word is used only in cases where it is of central importance in the
paper considered.

Entries are ordered in the following sorting sequence:

blank . (+ | *) ; - / , < > : ’ = 0....9 aA....zZ

Keywords list (fragment for Y and Z)

--- Y ---

-Y* (baryon resonance, hyperon)

-y-dependence (rapidity dependence)

*Yang-Baxter (algebra, Yang-Baxter)

Yang-Baxter equation

*Yang-Mills (gauge field theory, Yang-Mills)

-Yerevan ES (Erevan ES)

yield (usually with particles in parentheses)

ytterbium

214 APPENDIX A. THE DESY THESAURUS

yttrium

*Yukawa (’potential, Yukawa’ or ’coupling, Yukawa’)

--- Z ---

*Z(2) (e.g. ’symmetry, Z(2)’)

*Z(3) (e.g. ’symmetry, Z(3)’)

*Z(N) (e.g. ’symmetry, Z(N)’)

*Z(N) x Z(M) (e.g. ’symmetry, Z(N) x Z(M)’)

*Z’ (postulated particle, Z’)

Z0

*Z0 Z0 (e.g. ’scattering, Z0 Z0’)

*Z0(1780) (partial wave P01; ’postulated particle, Z0(1780)’)

*Z0(1865) (partial wave D03; ’postulated particle, Z0(1865)’)

*Z1(1725) (partial wave P11; ’postulated particle, Z1(1725)’)

*Z1(1900) (partial wave P13; ’postulated particle, Z1(1900)’)

*Z1(2150) (postulated particle, Z1(2150))

*Z1(2500) (postulated particle, Z1(2500))

zero mode

*zeta function (e.g. ’regularization, zeta function’)

*ZEUS (at HERA; ’magnetic detector, ZEUS’)

zinc

*Zino (postulated particle, Zino)

zirconium

-Zweig rule (Iizuka-Okubo-Zweig rule)

Appendix B

TECAT command line
usage

We include here the output of the command tecat --help to show how TECAT
program is invoked and how different variables involved are parametrized and
tuned. We consider it clarifies how experiments have been configured and exe-
cuted.

Usage: tecat [OPTION...] DATADIR

TECAT -- The TExt CATegorization framework

Arturo Montejo Raez - CERN 2004

-i, --index-collection Index full text documents (see INDEX OPTIONS)

-k, --make-folds Prepares folds for training classifiersm (see

FOLDING OPTIONS)

-K, --test-tree Tests the trained system using the MLTree

algorithm.

-R, --test-ranked Tests the trained system of a serial of classes

getting top ranked classes using classification

score.

-t, --train-by-class Train the system using given classifiers against

each class (see TRAIN BY CLASS OPTIONS)

-T, --train-tree Train the system with a method which consider all

the classes at once (the MLTree algorithm).

-X, --classify Classifies a document.

-z, --test-classes Tests the trained system of a serial of classes

returning only classes ranked with positive or

over threshold score.

DATADIR is the directory where the model is or will be stored

INDEX OPTIONS ---

-C, --classes-dir=DIR Directory where classes for each file are stored

-E, --no-stemming Disable perform Porter stemming (default enabled)

-F, --full-text-dir=DIR Directory where full text files are stored

215

216 APPENDIX B. TECAT COMMAND LINE USAGE

-m, --min-term-length=N Minimal length for a term allowed (default 0,

means no filtering)

-r, --min-freq=N Minimal frequency for a term allowed (default 0, 0

means no filtering)

-s, --stop-words=FILE File containing stop words for removal (default

’stop.txt’ at current directory

-S, --no-stop-words-removal Disable perform stop words removal (default

enabled)

-x, --max-term-length=N Maximal length for a term allowed (default 40, 0

means no filtering)

FOLDING OPTIONS ---

-d, --df-feature-selection=N Selects only features appearing in at least N

documents of the training set (default 1, 0 means

all selected)

-f, --folds=N Number of folds for cross-validation (default 10)

-g, --ig-feature-selection=N Selects only N features with the highest

information gain (default 50000, 0 means all

selected)

-j, --df-class-selection=N Selects only classes appearing in training,

evaluation and test sets and with at least N

documents for training (default 1, 0 means select

all)

-N, --no-cosine-normalization Term weights will not be normalized by the

cosine factor

-w, --weighting-entropy Weighting scheme using entropy (default TF.IDF)

-W, --weighting-tfidf Weighting scheme using TF.IDF (default)

TeCaT works in two modes: training a binary classifier for each class or

training a tree based on binary classifiers. If you specify ’--train-by-class’

option a binary classifier for each class will be trained in a one-agains-all

basis. If ’--train-tree’ is specified, then a ML-Tree will be constructed. For

both approaches, we can specify as many binary calssifiers as wanted (see

BINARY CLASSIFIERS).

CLASSIFIERS OPTIONS --------------------------------

-b, --beta-F=VALUE Beta value for F measure (default 1.0).

-c, --classifier=OPTIONS A binary classifier to be used by TECAT. See

options below.

-Q, --compute-scut The S-Cut approach will be apply to compute, using

the validation samples, an automatic threshold on

the decision value (default off, the decision

value is then 0.0).

-u, --selection-measure=N Measure to use for selecting best method. Values

of N: 0 (by precision), 1 (by recall), 2 (by

fallout), 3 (by accuracy), 4 (by error), 5 (by

distance to optimal point), 6 (by F measure), 7

(by F1 measure, default)

-U, --selection-threshold=N Threshold to be used for the selection measure.

This value is 0.0 by default. Please, not that

this value use to be in [0,1] interval and depends

in the selection measure used.

ML-TREE OPTIONS ------------------------------------

217

Above options are valid here. Additional, to control tree generation and

behaviour you have:

-B, --tree-balance=N Method to be used for determining the balance of a

class: 0 (id, default), 1 (1/ig), 2 (id/ig), 3

(Sum_children(id)), 4 (Sum_children(id)/ig); where

id is the imbalance degree, ig the information

gain and Sum_children the summatory of imbalance

degrees for potential children.

-H, --tree-max-children=N Maximum number of children per node when training

a MLTree (default 4, 0 means all children will be

accepted until one of them fails in the

evaluation). Be carefull when setting this

parameter, since the complexity of the MLTree

training algorithm is of order O(n^log2(m)) being

m the number of classes and n the number of

children per level (the tree-max-children

parameter).

-L, --tree-max-depth=N Maximum depth of the MLTree allowed when

generating it (default 7, 0 means no limit).

-Z, --tree-allow-duplicates Determines whether classes already trained in a

level may appear in lower levels (default off, add

this parameter to set it on).

BINARY CLASSIFIERS

There are two types of classifiers: external and built-in. External

classifiers are external programs which will be called by TECAT following. To

call them properly some options has to be passed. Built-in classifiers are

classification algorithms implemented internally by TECAT, so you don’t need

to specify anything but certain parameters that the classification method may

require.

OPTIONS for built-in classifiers:

method=[plaum|rocchio|wh|eg|lvq|nb|genetic]

Selects a built-in classifier to be added to the list of trained classifiers.

They are the PLAUM perceptron (plaum), the Rocchio algorithm (rocchio), the

Widrow-Hoff algorithm (wh), the Kivinen-Warmuth algorithm (kw), the LVQ neural

network (lvq), and the Naive-Bayes network (nb). Each built-in classifier has

additional parameters which can be specified using colons, e.g.:

--classifier=method=plaum:pos_tau=2.0:neg_tau=-1.5:iter=100

** PLAUM (plaum)

pos_tau: margin for positive samples (default +1.0)

neg_tau: margin for negative samples (default -1.0)

iterations: number of maximum iterations (default 50)

eta: value for eta (default 1.0)

For more information about his algorith, see [1].

** Rocchio (rocchio)

alpha: weight for previous weights (default 0.0)

beta: weight for positive samples (default 1.0)

218 APPENDIX B. TECAT COMMAND LINE USAGE

gamma: weight for negative samples (default 1.0)

nonnegative: 0 (negative weights are preserved) or 1 (negative weights are set

to 0, default)

** Naive-Bayes (nb)

NOT AVAILABLE

** Widrow-Hoff (wh)

eta: learning rate (default 1/(4*||x||^2), being ||x|| the maximum norm in

the set of samples). This value must be positive.

average: 0 (use final computed weight) or 1 (use average of all computed

weights, default)

** Exponentiated Gradient (eg)

Also known as ‘‘Kivinen & Warmuth’’ or EG algorithm

eta: learning rate (default 1/(3*R^2) where R is the difference between

the maximum weight minus the minimum weight of a term.

** LVQ (lvq)

iterations: number of maximum iterations of the LVQ loop (default 50*ncbv)

ncbv: number of codebook vectors for positive and negative sides

(default 5)

alpha: initial value for learning rate (default 0.005)

u: initial value for decreasing rate (default 0.001)

** Genetic algorithm (genetic)

NOT AVAILABLE

--- OPTIONS for external classifiers:

learn=<learn command>

This is the command used to train the classifier. It is an string following

the format specified below.

classify=<classify command>

This is the command use for classifying using the computed model in the

learning phase. It is an string following the format specified below.

format=[vectors|arff]

This is the format used create the samples for learning and classification.

Format for ’learn’ and ’classify’ strings:

Since we need to place model, samples and predictions files properly in the

invocation of the program, we will use [m], [s], [p] as patterns to represent

the location of those files in the invocation of the program. Also, some

algorithms accept a weight factor for positive samples as a measure against

imbalanced classes, for that you can use the [f] pattern, which will be

replaced by the fraction of positive samples over negative samples. See

FORMATS below

FORMATS:

** vectors

The samples file following the ’vectors’ format will contain a sample

(document) at each line in ASCII format, with the class label set to +1 or -1

before list of pairs <features>:<weight>; e.g.

219

+1 1:3.4 56:23.4 1002:-0.423233

-1 23:0.0001 435:1.3232002 2023:23.34232

-1 532:3.0 5000:-0.34

** arff

The samples file following the ’arff’ format will be compliant with standard

ARFF files used by Weka (see http://www.cs.waikato.ac.nz/~ml/weka/arff.html).

You can specify as many pairs classifiers as you want. Examples:

./tecat --train \

--classifier=method=plaum \

--classifier=learn="svm_learn -j [f] [s] [m]", \

classify="svm_classify [s] [m] [p]", \

format=vectors

--classifier=learn="svm_learn [s] [m]", \

classify="svm_classify [s] [m] [p]", \

format=vectors

TESTING OPTIONS ---

-P, --top-classes=N When --test-ranked is used, it determines that N

classes with the hights ranked status value will

returned.

-Y, --tree-traverse-all Dives down both positive and negative subtrees, no

matter the classification sign returned by a

classifier node (disabled by default).

CLASSIFICATION OPTIONS --------------------------------------

-D, --document=FULLTEXT Path to the plaintext document to be classify.

Option -w (entropy weighting) or -W (TF.IDF weighting) may be specify to

comply with the way documents were processed in training (default TF.IDF).

References --

[1]. Li. Y. and Zaragoza H., Herbrich R., Shawe-Taylor J. and Kandola J. ’The

Perceptron Algorithm with Uneven Margins’. Proceedings of the International

Conference of Machine Learning (ICML’2002), 2002.

Other options ---

-1, --class-correlation Output the correlation matrix class-to-class of

every folder

-2, --export-models=DIR Models for each classifier from the first fold

will be saved to the given directory, using the

string of the class as file name.

-3, --dump-term-ids Dumps the translation table of terms to integer

ids.

-4, --dump-class-ids Dumps the translation table of classes to integer

ids.

-q, --quiet Produces no verbose output on processing

-?, --help Give this help list

220 APPENDIX B. TECAT COMMAND LINE USAGE

--usage Give a short usage message

-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional

for any corresponding short options.

You can distribute this software freely.

Report bugs to <arturo.montejo.raez@cern.ch>.

Appendix C

The Wilcoxon test

The paired t-test is a common procedure to determine whether two distributions
or categorized variables are statistically different within a given confidence in-
terval. The test is useful for distributions whose variables are categorized into
separated groups and, therefore, only comparable by pairs at same category
level. This correlated-samples t-test makes certain assumptions and can be
meaningfully applied only insofar as these assumptions are met:

1. that the scale of measurement for distributions XA and XB has the prop-
erties of an equal-interval scale;

2. that the differences between the paired values of XA and XB have been
randomly drawn from the source population; and

3. that the source population from which these differences have been drawn
can be reasonably supposed to have a normal distribution.

If there is one or more of these assumptions that we cannot reasonably sup-
pose to be satisfied, then the t-test for correlated samples cannot be legitimately
applied. In that case we can apply the Wilcoxon test (also know as Wilcoxon
Signed Ranked test). This test is the non-parametric equivalent of the paired
samples t-test. This implies the assumption that both distributions are sym-
metrical, in which case the mean and medians are identical. Thus, the null
hypothesis (usually represented by H0) considers that for the two distributions
the median difference is zero.

We way to compute it is by calculating the differences between paired sam-
ples and then rank the absolute value of such differences. Then we take the
minimum of the signed ranked values (that is the reason for its second name)
and compare this value against a table if few labels are considered (< 30) or with
the approximated normal distribution produced by all possible combinations of
ranked signs.

221

222 APPENDIX C. THE WILCOXON TEST

category Alg. A Alg. B A − B |A − B| sorted rank signed
experimental 0,821 0,839 -0,018 0,018 – – –
magnetic 0,896 0,883 0,012 0,012 – – –
talk 0,662 0,733 -0,071 0,071 0,007 1 -1
electron 0,923 0,931 -0,007 0,007 0,011 2 2
quark 0,769 0,833 -0,064 0,064 0,012 3 3
CERN LEP 0,945 0,934 0,011 0,011 0,018 4 -4
anti-p p 1,000 1,000 0,000 – 0,029 5 5
Z0 0,909 0,880 0,029 0,029 0,064 6 -6
Batavia Coll 1,000 1,000 0,000 – 0,071 7 -7
mass spectrum 0,800 0,666 0,133 0,133 0,133 8 8

Table C.1: Wilcoxon procedure example

To clarify this process, let’s consider the example given at table C.1. We
want to compare two algorithms: A and B. For that, we have measured the
accuracy for the ten categories placed at the first column. From those values,
we compute

1. the difference between paired values,

2. then we take the absolute value and discard zeros (they are not represen-
tative),

3. now we rank this values, and

4. finally we attach the sign again.

From the last column we calculate W value, as W = min(W+,W−). W+ and
W− are the absolute sum of positive and negative ranks: W+ = 18 = 2+3+5+8,
W− = 18 = 1 + 4 + 6 + 7. In this case W is 18 (since there is no minimum,
both have been found to have the same value). Now we can use this value
to find in table C.2 the maximum allowed W admitted to guarantee a 95%
confidence level (i.e. p-value of 0.005). In our case, for n = 10 we find that,
effectively, 18 > 8. Thus, we have to reject the null hypothesis and admit that
there are significant differences between two distributions from a two-tailored
analysis. Even more, we can also study the one-tailored case, which is equivalent
to analyze the difference but in favor of one of the algorithms. Surprisingly here,
cannot admit any overall outperforming of one algorithm over the other since
both W− and W+ are equal. But, since 18 > 10 (the one-tailored threshold
found in the table), we must admit that they do differ in both directions. As
we can see by having a look at the results, for certain classes one of the two
algorithms should be preferred.

The table of critical values is not available for large distributions (usually
n > 30). In that case, as was said formerly, we can compute a value z:

z =
max(W+,W−)± 0.5− µ

σ
(C.1)

223

n Two-tailored One-tailored
6 0 2
7 2 3
8 3 5
9 5 8
10 8 10
11 10 13
12 13 17
13 17 21
14 21 25
15 25 30
16 29 35
17 34 41
18 40 47
19 46 53
20 52 60
21 58 67
22 65 75
23 73 83
24 81 91
25 89 100

Table C.2: Critical values for W statistic for the Wilcoxon Signed-Ranks test
for different numbers of subsets n at significance p=0.05. For significance, W
must be less than or equal to the critical value.

224 APPENDIX C. THE WILCOXON TEST

where µ = n(n+1)
4 and σ = n(n+1)(2n+1)

24
1. We have (being now W =

max(W+,W−):

P (W ≥ w) ≈ P (Z ≥ z) (C.2)

We can use the computer to calculate the last probability (the p-value) since
Z ∼ N(0, 1) (is approximated by a normal distribution). We recommend the
use of any statistical toolkit (R, Octave, SPSS, Matlab, etc.) for solving the
calculations involved in this test. In our example we would have:

µ = 8(8 + 1)/4 = 18

σ =
√

8(8+1)(2·8+1)
24 = 7, 14

z = 18+0.5
7,14=2,59

Now, we can use a framework like Octave to obtain the final p-value:

octave:1> 1-normal_cdf(2.59)

ans = 0.0047988

Therefore, the probability of these two distributions to be different by chance
is less than 99,6 %. So, again, we reach the same conclusion: they are effectively
different.

1in these formulae, n is usually the number of values per distribution without counting
zero differences

Index

astro-hep partition, 177
hep-ex partition, 115
hep-th partition, 177

accuracy, 78
Associative Patterns Dictionary, 95
automatic summarization, 89

bag-of-words, 37, 42, 42
batch algorithm, 67
battery strategy, 32
binary classifiers, 106
binary classifiers, 105
boosting, 37, 72
break-even point (BEP), 78

category, see key word
CDS, 20–21, 113
CDSware, 21
CERN, 15
CERN Document Server, see CDS, 95
CHI, 150
classification, 107
classification status value, 38
classification error, 64

expected, 64
classification status value, 60, 117
classifier

binary, 33
m-class, 34
m-label, 34
Support Vector Machines, 66

classifiers, 59–74
AdaBoost, 64, 72
base binary, 133
boosting, 72

decision rule based, 63
decision trees, 62
exponentiated gradient, 68
linear, 63, 66
logistic regression, 69
logistic regression, 64
maximum entropy modeling, 64
multi-label, 60
Näıve Bayes, 65
neural networks, 64
probabilistic, 62
ranking, 60
Rocchio, 67
sample based, 63
Support Vector Machines, 69
Widrow-Hoff, 66, 68

cluster hypothesis, 23
coding matrix, 60
communication, theory of, 47
concept complexity, 156
conceptual indexing, 55
conceptual phrases, 90
conflation algorithms, 89
Conseil Europeén pour la Recherche Nucléaire,

see CERN
cosine normalization, 151
cosine normalization, 105
cross validation, 80
cross-lingual searching, 85
cut, 75

descriptor, see key word
DESY, 27

key words, 28

225

226 INDEX

Deutsche Elektronen-Synchrotron, see
DESY

dimensionality reduction, 37
dimensionality reduction, 49

by feature transformation, 55
dimensionality reduction, 41, 142, 145

by document frequency, 55
by feature selection, 49

discourse trees, 90
document navigation, 84
document classification, 84
Document Clustering, 31
document modeling, 104
Dublin Core Meta-data Initiative, 115

empirical risk minimization, 64
entropy, 51
error, 78
European Organization for Nuclear Re-

search, see CERN
evaluation, 77

F1, 78
fallout, 78
feature, 36, 41, 41

weighting, 46
feature transformation, 49
feature extraction, 36, 41
feature identification, 36, 41
feature transformation, 37
feature weighting, 37
filters

document frequency, 145
information gain, 145

folding, 110

GPL, 21

hamming decoding, 62
hardware, 114
HEP, 17, 20, 21, 28
HEPI, 28
High Energy Physics, 15, see HEP
hyponomy, 26

imbalance, 116, 156
inter-class, 156

imbalance degree, 156
indexing, 22, 109

manual, 22
Information Theory, 51
information gain, 51–55, 145
inner imbalance degree, 157
inverse class frequency, 151
inverse key word frequency, 98

k-fold cross validation, 123
k-nearest neighbours, see K-NN
K-NN, 63
key word, 24, 25
key words

applications, 83
computer-based usage, 83
human manipulation, 83

Keyword assignment, 21

label, see key word
Latent Semantic Indexing, 56
latent semantic indexing, 37
learning, 105, 110
learning rate, 68
learning subset, 117
lemmatization, 37
Linear Regression, 32
loss based decoding, 62
LVQ, 32, 37, 64

Machine Aided Indexing, 91
Machine Learning, 31
machine learning, 90
macro-averaging, 79, 81
main DESY

key word, 28
MARC format, 115
MEDLINE, 90
meronomy, 26
meta-data, 115

fields, 115
metadata, 166
micro-averaging, 79, 81
multi-label, 32, 35, 74, 89

assignment, 33
multi-label classification system, 35

INDEX 227

multi-nomial model, 66
multi-word, 42

recognition, 43
multi-words, 137
mutual information, 43, 43, 137

n-grams, 41, see multi-words
Näıve Bayes, 37
Näıve Bayes, 32
normalization, 46
notation, 33–36

on-line algorithm, 67
one-against-all, 32, 60, 158
one-against-one, 32
Open Archives Initiative, 21
over-sampling, 156
over-weighting, 159

p-value, 169
part-of-speech, 41, 43, 137
PDF, 20, 41, 104
pdftotext, 114
perceptron, 37
Perceptron learning algorithm with un-

even margins, see PLAUM
PLAUM, 37, 71
Portable Document Format, see PDF
POS, 43
PostScript, see PS
precision, 23, 78
PS, 41, 104

query expansion, 85

RDF, 86
real time, 134, 182
real time, 159
recall, 23, 78
Resource Description Framework, see

RDF
Reuters’ corpus, 74

S-cut, 38, 107, 110, 160
S-cut FBR, 159
secondary DESY

key word, 28

selection measures, 106
semantic grid, 86
semantic network, 25
semantic web, 86
SINAI, 16
singular-value decomposition, 56
SLAC, 28
stemming, 37, 42, 142
stop words, 42, 55
stop words removal, 142
subject key, see key word
summarization, 42, 45, 50
Support Vector Machines, see SVM
SVM, 32, 37
systems

AIR/PHYS, 94
BIOSIS, 90
Citometer, 95
EUROVOC, 92
HEPindexer, 97, 155
MeSH, 90
NASA MAI System, 91
Sokrates, 96
TECAT, 101–111
using rules, 95

TECAT
architecture, 102
parameters, 109

TECAT usage, 213–218
term selection, 37
term clustering, 56
term extraction, see feature transfor-

mation
test set, 104
testing, 107, 110
Text Categorization

architecture, 36
multi-label case, see multi-label

Text classification, see Text Catego-
rization

Text Categorization, 31
binary case, see binary classifier
multi-class case, see multi-class

thesaurus, 24, 24–28
AGROVOC, 93

228 INDEX

ASIS, 25
DESY, 27
EUROVOC, 25
INSPEC, 25
Roget’s, 25
WordNet, 26

thresholding, 38, 60, 74
global, 60
local, 60
P-cut, 75
R-cut, 75
S-cut, 75

training, 37
training set, 104
training set size, 156

under-sampling, 156
Universal Decimal Classification, 21
Universal Language, 24
unsupervised learning, 31

validation set, 104
validation subset, 117
vector space model, 46, 145
vector space model, 36

weighting, see feature weighting, 150
cosine normalization, 46
entropy, 46, 47, 105, 151
global, 46
local, 46
normalization, 46
OKAPI, 46
TF.IDF, 46, 47, 105, 151

Wilcoxon Signed Ranked test, 169
Wilcoxon Signed Ranked text, 219–222
Wilcoxon text, 80
WordNet, 25

EuroWordNet, 25

xpdf, 114

Tesis - Resumen en castellano

Clasificación automática de documentos

en el dominio de la F́ısica de Altas

Enerǵıas

Dr. Luis Alfonso Ureña-López (director)
Dr. Ralf Steinberger (co-director)

Arturo Montejo-Ráez (doctorando)

1

Índice

Índice 2

1. Prólogo 3

2. El problema del multi-etiquetado en HEP 3

2.1. Indexado de documentos de F́ısica de Altas Enerǵıas 4

2.2. La clasificación automática . 4

2.3. La colección HEP . 6

2.4. Aplicaciones . 9

3. Sistemas anteriores 10

3.1. Sistemas no orientados a HEP . 10

3.2. Sistemas orientados a HEP . 11

4. El sistema propuesto 11

4.1. Fase de aprendizaje . 12

4.2. Fase de clasificación . 15

5. Experimentos 16

5.1. Metodoloǵıa de evaluación . 16

5.2. Experimentos más relevantes . 18

5.2.1. Desbalanceo . 18

5.2.2. Integración de los metadatos 19

5.2.3. Medida de la respuesta en tiempo real 20

5.2.4. Resultados sobre un corpus de Eurovoc 21

5.3. Experimentos adicionales . 22

6. Conclusiones y trabajo futuro 23

6.1. Colección HEP: un nuevo y desafiante corpus para investigación
en sistema de categorización multi-etiquetado 23

6.2. Selección adaptativa de clasificadores base 24

6.3. Registros con meta-datos: una fuente informacionalmente rica . . 24

6.4. Trabajo futuro . 25

2

Referencias 25

1. Prólogo

Este documento es un anexo al trabajo de tesis titulado Text categorization
of documents in the High Energy Physics Domain, redactado ı́ntegramente en el
idioma inglés. Es importante destacar que este documento sólo recoge la esencia
de dicha tesis para su rápida comprensión por el lector no versado en la lengua
anglosajona, dando por tanto una reducida visión del trabajo realizado, pero lo
suficientemente detallada como para entender el problema tratado, la solución
propuesta, y sus excelencias.

El contenido de este resumen se divide en cinco secciones. La primera sección
introduce el problema tratado, describiendo los datos sobre los que se han lleva-
do a cabo los experimentos dentro de su marco de origen. La siguiente sección
describe anteriores soluciones al problema propuestas por otros sistemas, subra-
yando sus capacidades y ĺımites en cada caso. La tercera sección (numerada con
4) describe el método propuesto, sus peculiariedades y novedades principales.
La penúltima sección repasa los experimentos llevados a cabo para comprobar
la validez del método. Por último, se resaltan las aportaciones principales del
presente trabajo junto con las posibles ĺıneas futuras de investigación abiertas.

2. El problema del multi-etiquetado en HEP

El presente trabajo constituye una propuesta de solución al problema del
multi-etiquetado masivo de documentos en general, y el de documentos en el
dominio de la F́ısica de Altas Enerǵıas en particular. El resultado de esta in-
vestigación es una respuesta real y operativa a este problema. Dicho problema
se identificó como un problema de categorización de textos1, en el que palabras
clave predefinidas son consideradas categoŕıas a ser asignadas a documentos en
función del contenido semántico de los mismos. Durante el desarrollo de esta in-
vestigación, realizada principalmente en el CERN, el Laboratorio Europeo para
la Investigación Nuclear, la colección de documentos manejada desveló proble-
mas no cubiertos con anterioridad por la literatura especializada. La necesidad
expresa de una solución al manejo de datos de esta ı́ndole que deb́ıa ir más
allá del mero análisis cient́ıfico y del prototipado ha marcado la hipótesis plan-
teada a lo largo de todo el trabajo.

Los resultados de la solución final implementada como producto de esta
investigación han abierto un amplio abanico de aplicaciones, dándome la agra-
dable sensación de usabilidad que normalmente se deja de lado en investigación
pura. El lector encontrará cuan excitante ha sido esta tarea, pero lo que no

1También denominado clasificación de textos

3

puede incluirse aqúı es el enriquecimiento personal adquirido al trabajar en un
entorno internacional durante cuatro años, junto con un equipo orientado a fa-
cilitar las técnicas computerizadas más avanzadas a la comunidad de usuarios
de la biblioteca del CERN, la más importante del mundo en F́ısica.

2.1. Indexado de documentos de F́ısica de Altas Enerǵıas

El CERN es la Organisation Européenne pour la Recherche Nucléaire. Las
siglas CERN vienen de su antiguo nombre Centro Europeo para la Investigación
Nuclear (Centre Européen pour la Recherche Nucléaire, en francés). Se trata
de un laboratorio de investigación en F́ısica de part́ıculas. Fundado en 1954
por 12 páıses europeos, el CERN es hoy en d́ıa un modelo de colaboración
cient́ıfica internacional y uno de los centros de investigación más importantes en
el mundo. Actualmente cuenta con 20 estados miembros, los cuales comparten el
financiamiento y toma de decisiones en la organizacion. Aparte de los cient́ıficos
de los estados miembros, cient́ıficos de 220 institutos y universidades de páıses
no miembros usan las instalaciones.

Desde 1990 este organismo alcanzó fama mundial entre el público general por
la invención del WWW (World Wide Web). Y es que el gran éxito del CERN
no es sólo su capacidad para producir resultados cient́ıficos de gran interés, sino
también el desarrollo de nuevas tecnoloǵıas tanto informáticas (WWW, impor-
tantes libreŕıas matemáticas, gráficas o sistemas de almacenamiento masivo)
como industriales.

El servidor de documentos del CERN (CDS, CERN Document Server) con-
tiene más de 600,000 referencias bibliográficas y 300,000 documentos en forma-
to electrónico (texto completo), relacionados con el CERN y la F́ısica de Altas
Enerǵıas. Cada semana llegan 200 nuevos art́ıculos, de ah́ı la necesidad de un
sistema automático, pues el laboratorio alemán DESY (Deutsche Elektronen-
Synchrotron), cuyo tesauro es el utilizado para la indexación por palabras clave,
no es capaz de hacer frente a la ingente cantidad de nuevos art́ıculos que apa-
recen en esta comunidad cient́ıfica.

Como refleja la figura 1, esta situación ha llegado a ser dramáticamente insos-
tenible, al no disponerse de recursos humanos necesarios que permiten etiquetar
adecuadamente los documentos recibidos.

2.2. La clasificación automática

El grado de sofisticación en los motores de búsqueda de texto completo ha
permitido su rápida difusión en todos los ámbitos donde la recuperación de in-
formación juega un papel fundamental (catálogos, bibliotecas digitales, servicies
de búsqueda en la web, etc.). Gracias a la introducción de algoritmos como Pa-
geRank [27] los motores de búsqueda basados en ı́ndices invertidos han podido
hacer frente a la búsqueda sobre colecciones cuyo tamaño representaba un reto,

4

Figura 1: Número medio de art́ıculos recibidos semanalmente por CDS cada año

no sólo por su almacenamiento, sino por la obtención de buenas respuestas en
búsquedas.

Pero antes de que los ordenadores se convirtieran no sólo en herramientas de
almacenamiento de información estructurada (como las bases de datos relacio-
nales) sino en sistemas de búsqueda sobre volúmenes de documentos ingentes, el
uso de la indexación por parte de la comunidad bibliotecaria permit́ıa clasificar,
organizar, buscar y relacionar los documentos almacenados en sus salas. Aún en
uso, las palabras clave asignadas a documentos aportan valiosa información y
numerosos sistemas para asignación automatizada están surgiendo, sobre todo
en ámbitos especializados.

El uso de vocabularios controlados y de tesauros para el etiquetado semántico
de libros, art́ıculos, revistas y cualquier otra pieza de información digna de ser
preservada era una herramienta clave para los documentalistas. Ante el aumento
de la producción sobre todo cient́ıfica donde el crecimiento de documentos ha
sido exponencial [24], la incapacidad de los métodos manuales tradicionales para
la asignación de las palabras clave ha motivo el avance de sistemas automáticos
los cuales, si bien aún no alcanzan la precisión y la cobertura deseables, śı que
representan soluciones factibles y prometedoras, con un comportamiento más
que aceptable.

La asignación automática de palabras clave a los documentos abre nuevas po-
sibilidades en la exploración documental (ver [25]), y su interés ha despertado en
la comunidad cient́ıfica la búsqueda de soluciones. La disciplina de Recuperación
de Información (RI), junto con las técnicas para el Procesamiento del Lenguaje
Natural (PLN) y los algoritmos de Aprendizaje Automático (Machine Learning,
ML) son el sustrato de donde emergen las tareas de Categorización Automática
de Textos [37]. Esta último dominio de investigación es donde se enmarca el
presente trabajo y es al mismo donde vierte sus principales aportaciones. Los

5

algoritmos de aprendizaje empleados van desde clasificadores lineales, proba-
biĺısticos y métodos de regresión ([10, 14, 22]) a redes neuronales ([23, 42]),
pasando por técnicas de voto y boosting ([1, 42]).

En la clasficación de documentos se distinguen tres casos:

Clasificación binaria. El clasificador debe devolver una de entre dos posi-
bles categorias, o bien una respuesta SI/NO. Estos son los sistemas más
simples, y al mismo tiempo los sistemas más conocidos en Aprendizaje
Automático.

Clasificación multi-clase. En este caso el clasificador debe proporcionar
una categoŕıa de entre varias propuestas. Este sistema puede basarse en
el anterior.

Clasificación multi-etiquetado. El documento se etiqueta no con una única
clase, como en el caso anterior, sino que puede tomar varias de entre las
categoŕıas disponibles. Es el problema más complejo, pero puede simplifi-
carse si utilizamos clasificadores binarios cuya repuesta pueda combinarse
(por ejemplo, mediante un ranking de clases) o entrenando sobre cada
clase un clasificador binario de repuesta SI/NO (como el sistema que se
propone).

2.3. La colección HEP

Esta tesis se especializa en la colección de documentos de F́ısica de Altas
Enerǵıas que podemos encontrar en el servidor CDS2. Los art́ıculos y borradores
de esta colección cubren, en la medida de lo posible, la literatura publicada y
no publicada de la F́ısica de part́ıculas y tecnoloǵıas asociadas.

En la figura 2 podemos ver un ejemplo de estos documentos. La colección
sobre la que se ha trabajado consiste en 22,903 documentos etiquetados manual-
mente (6,1 gigabytes) convertidos a texto plano usando la herramienta pdftotext,
inclúıda en el paquete xpdf 3. Los ficheros que almacenan las etiquetas suponen
un total de 112 megabytes de información.

Para el profuso número de experimentos realizado, se optó por separar los
documentos que sólo trataban de f́ısica experimental en lo que denominamos la
partición hep-ex, que contiene 2,967 documentos y 2,793 palabras clave (1,103 si
ignoramos claves sobre enerǵıas y 825 si además ignoramos claves sobre reaccio-
nes, que requeriŕıan un análisis más allá de lo planteado por el presente estudio).
Los documentos a texto completo generan un conjunto de más de 300,000 ca-
racteŕısticas (términos).

Un aspecto interesante de la información almacenada por CDS es que se

2http://cds.cern.ch
3disponible en http://www.foolabs.com/xpdf/

6

Figura 2: Ejemplo de un t́ıpico documento sobre HEP.

dispone de datos adicionales acerca de los documentos, sus metadatos. Los me-
tadatos disponibles son:

Creator, la lista de autores del documento

Title, el t́ıtulo del art́ıculo

Subject, el área (una entre tres: Experimental Physics, Theoretical Phy-
sics o Astrophysics)

Date, la fecha de publicación

Description, el resúmen (abstract) del documento

Esta información ha sido clave en la realización de uno de los experimentos
más interesantes de la tesis, ya que en el momento de publicación de los resulta-
dos del sistema en [30], no exist́ıan con anterioridad trabajos que hubieran hecho
uso de esta información adicional para la mejora de sistemas de clasificación.

La colección HEP y su partición hep-ex presentan otro gran reto estudiado
por esta tesis: el gran grado de desbalanceo en la distribución de las clases en

7

No. docs. Keyword
1898 (67 %) electron positron
1739 (62 %) experimental results
1478 (52 %) magnetic detector
1190 (42 %) quark
1113 (39 %) talk
715 (25 %) Z0
676 (24 %) anti-p p
551 (19 %) neutrino
463 (16 %) W
458 (16 %) jet

Figura 3: Las 10 clases más frecuentes en la partición hep-ex

los documentos, como puede constatarse en el gráfico 4. Esto provoca que haya
categoŕıas bien representadas (es decir, que han sido ampliamente asignadas
a documentos) y otras que no tanto (raramente utilizadas). La dificultad de
entrenar un sistema de aprendizaje automático con tal handicap ha supuesto
otro reto más superado por la propuesta realizada [26], redefiniendo el concepto
de grado de desbalanceo (imbalance degree).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200

n
u
m

b
e
r

o
f
d
o
cu

m
e
n
ts

keyword

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200

n
u
m

b
e
r

o
f
d
o
cu

m
e
n
ts

keyword

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f
d
o
cu

m
e
n
ts

keyword

number of documents
50 documents

100 documents

(a) Todas las clases (b) Las 100 clases más frecuentes

Figura 4: Distribución de clases por documentos en la partición hep-ex

Debemos recordar que estamos ante una de las colecciones multi-etiquetado
más completas a disposición de la comunidad cient́ıfica, pues incluso Eurovoc
presenta ciertas restricciones para su acceso. En esta colección, el número medio
de clases asignadas por documento es de 17, lo que la convierte en un conjunto
de datos excepcional para la investigación de sistemas multi-etiquetado auto-
matizados.

8

2.4. Aplicaciones

El plantear aqúı las aplicaciones que los sistemas de etiquetado automático
conllevan responde a la necesidad de corroborar la relevancia de esta investiga-
ción y los múltiples beneficios que reportó para el centro donde se desarrolló el
sistema, el CERN.

Según sea una máquina o una persona quien haga uso de estas claves, pode-
mos distinguir las aplicaciones siguientes:

Manipulación manual

• Revisión de documentación: facilitan la revisión de grandes volúme-
nes de información al no tener que centrarnos en el contenido y po-
der quedarnos a un nivel de concretización mucho mayor, ya que el
conjunto de palabras clave puede entenderse como un resumen del
contenido.

• Navegación por la base de datos documental a través de redes de
conceptos creadas a partir de las palabras clave.

• Clasificación automática de resultados en grupos de categoŕıas

• Búsquedas multilingües, cuando el tesauro lo es (como en [32]). De es-
ta forma el usuario puede recuperar documentos en distintos idiomas
a partir de un grupo determinado de etiquetas.

• Búsqueda conceptual, presentando al usuario el árbol de conceptos
generado por el tesauro, ya que los conceptos del tesauro tiene la
ventaja de relacionarse mediante meronimia, sinonimia, paronimia...
[19].

• Búsqueda guiada, permitiendo al usario descender en el árbol de ca-
tegoŕıas hasta un subconjunto desde donde lanzar su consulta.

Manipulación automátizada

• Expansión de consultas. Haciendo uso de las jerarqúıas del tesauro,
podemos tomar un término de la consulta que esté directamente re-
lacionado con una entrada en el tesauro y añadir las claves inferiores,
para búsquedas más precisas, o las superiores para búsquedas más
amplias.

• Cálculo de similaridad multilingüe, ya que podemos representar los
documentos en distintos idiomas con un conjunto común de palabras
clave, como en el caso de EUROVOC [32].

• Agrupamiento multilingüe. La misma similaridad anterior puede usar-
se para aplicar técnicas de clustering sobre colecciones de documentos
multilingües [33].

• Web semántica. Mi opinión es que todas estas aplicaciones serán cru-
ciales para el desarrollo y expansión de la web semántica, ya que

9

podemos tomar webs existentes y procesarlas para proponer cate-
goŕıas dentro de ontoloǵıas existentes, facilitando el procesamiento
inferencial posterior propuesto por estas tecnoloǵıas [2].

3. Sistemas anteriores

Como bien se ha indicado anteriormente, la asignación automática de pala-
bras clave, o el etiquetado automático de documentos (como quiera llamarse),
es un tema que desde hace tiempo viene levantando el interés de los investiga-
dores dados sus beneficios en el manejo de grandes colecciones de documentos.
Pasamos a continuación a mencionar brevemente aquellos sistemas similares
propuestos anteriormente, sus beneficios, limitaciones y ámbito de actuación.

3.1. Sistemas no orientados a HEP

BIOSIS. Categorizaba documentos a partir de un vocabulario de 15,000
términos biológicos que se pod́ıan resumir en 600 conceptos (ver [41]).
Esta clasficación era jerárquica, y si sólo se consideraba el nivel primario
en torno al 75 % de los conceptos quedaban cubiertos por el sistema. La
precisión rozaba el 65 %.

MeSH. Los Medical Subject Headings (MeSH) es una taxonomı́a de concep-
tos médicos usados en la clasificación de documentos en la base de datos
MEDLINE. El sistema desarrollado por Bruno Pouliquen [29] denomina-
do Nomindex es una de las primeras propuestas para la automatización
de su etiquetado. Su sistema aplicaba principalmente medidas estad́ısticas
t́ıpicas dentro del mundo de la Recuperación de Información dando como
resultado un sistema más que aceptable.

NASA MAI System. El sistema usado por la Agencia Espacial Nacional
Americana consist́ıa más en un sistema de ayuda al experto que en un
sistema de indexación automático, pero demostró que para un dominio tan
completo y vasto como el cubierto, precisión y coberturas en torno al 50 %
era plausibles. El sistema denominado MAI (Machine Aided Indexing)
trabajaba sobre una base de conocimiento de 170,000 palabras y frases,
con una profusa colección de reglas codificadas, lo que haćıan inviable su
aplicación a dominios distintos para los que fue diseñado [15].

Eurovoc. El Joint Research Centre de la Comisión Europea ha trabajado
desde hace tiempo en un sistema basado en el tesauro Eurovoc. Éste con-
tiene entorno a 6,000 clases, de los cuales aproximadamente 3,500 pueden
ser entrenados para su asignación automática [3, 33, 39]. Los resultados
son muy buenos, con valores de precisión y cobertura del 86 % y del 80 %
respectivamente, claro que estos valores fueron obtenidos como resultado
de una evaluación manual por parte de un grupo de expertos.

10

Otros ejemplos seŕıan los sistemas para bases de datos de patentes [9, 17],
o el diseñado para el tesauro AGROVOC [18]. No es de extrañar que cada año
esta lista de propuestas se haga más larga.

3.2. Sistemas orientados a HEP

Si nos ceñimos a sistemas de clasificación automática para documentos de
F́ısica de Altas Enerǵıas nos encontramos con las siguientes propuestas:

Sistema AIR/PHYS. Es uno de los primeros clasificadores multi-etiquetado
en producción sobre aplicaciones reales. Es una adaptación del sistema
AIR/X [11, 16]. La mejor configuración lograda llegaba al 68 % en cober-
tura y 57 % en precisión.

Citometer. Es un sistema basado en una hipótesis bastante simple: po-
demos asignar a un documento aquellas etiquetas de los documentos que
éste cita [8]. El sistema alcanzaba cuotas de precisión que iban del 41 %
al 77 %, en función del nivel de jerarqúıa requerido.

SPIRES-HEP. Este es un sistema basado en reglas, que lanza sobre el tex-
to multitud de posibles análisis de colocación de palabras para determinar
las claves a asignar [40]. Aunque con resultados esperanzadores y también
orientado al tesauro de DESY [7] (igual que el de la colección que centra
nuestra atención), su sistema no puede ser aplicado a otros dominios y
resulta bastante ŕıgido, pues las reglas deben ser introducidas a mano y
requieren un análisis manual profundo de los textos a tratar. Lamenta-
blemente no se dispone de información detallada acerca de las medidas
alcanzadas por el sistema.

Sokrates. Este sistema es otro más basado en reglas, pero cuyo funciona-
miento es aún más oscuro que el anterior. Análisis realizados por el CERN
revelaron una precisión del 40 %, aunque sobre mediciones manuales de ob-
jetividad cuestionable [5]. Es importante señalar que el sistema propuesto
en este trabajo motivó al CERN la no adquisición del sistema Sokrates, y
la financiación de gran parte de esta investigación.

HEPindexer. Este fue el primer sistema basado en técnicas de recuperación
de información que desarrollé para el CERN. Vino a dar respuesta a las
necesidades primeras de la biblioteca, y marcó la disposición del labora-
torio a continuar en la investigación de sistemas de este tipo. Su precisión
era del 52.5 % y su cobertura del 58.5 %.

4. El sistema propuesto

El sistema propuesto se ha denominado TECAT (Text Categorization Tool-
kit, y es un sistema completo que resuelve la clasificación multi-etiquetado. En

11

TECAT podemos distinguir dos fases propias de todo sistema basado en apren-
dizaje:

Fase de aprendizaje: en ella el sistema es alimentado con una colección
previamente etiquetada para entrenar los modelos de cada clase.

Fase de clasificación: en ella usamos un sistema entrenado para proponer
clases a nuevos documentos.

4.1. Fase de aprendizaje

El método de aprendizaje es supervisado, es decir, debemos disponer de
una colección de documentos que ya estén previamente etiquetados para poder
generar un modelo que permita la clasficación autónoma posterior de nuevos
documentos. Los pasos llevados a cabo en este proceso quedan ilustrados en la
figura 5.

Figura 5: Proceso de entrenamiento en TECAT.

Como podemos observar, el entramiento requiere completar una serie de
procesamientos encadenados orientados a convertir los documentos en una re-
presentación adecuada para los algoritmos de aprendizaje, para luego entrenar
dichos algoritmos:

1. Extracción de caracteŕısticas. En esta fase el documento se analiza para
determinar cuál va a ser el conjunto de caracteŕısticas ponderadas que

12

actuarán como representación del documento dentro del bien conocido
Modelo de Espacio Vectorial [36]. Se divide en dos sub-etapas:

a) Identificación de caracteŕısticas. En esta fase se eliminan aquellas
palabras mal formadas, con śımbolos extraños o términos erróneos
procedentes de la conversión desde PDF. Todos los caracteres se pa-
san a minúsculas y la puntuación es eliminada por completo.

b) Pesado de caracteŕısticas: En esta fase, la lista de términos se pesa
en función a distintos esquemas de pesado [4, 35]. El pesado de un
término i en un documento j generalmente implica el cálculo de:

wij = LijGiNi (1)

donde

Lij es el peso local del término i en el documento j. Se suele utilizar
el número de veces que el término aparece en el documento.

Gi es el peso global del término en la colección de documentos. Este
factor tiende a aligerar el peso de los términos más comunes.

Nj es el factor de normalización para pesos de términos en el do-
cumento j. Este factor reajusta los valores de los pesos para homo-
geneizar la norma de los vectores de forma de dichos pesos no sean
dependientes de la longitud del documento, por ejemplo.

En nuestra experimentación, se han barajado dos modelos de pesado:

TF.IDF. Esta medida clásica responde a la siguiente fórmula:

wij = fij
︸︷︷︸

Lij

log(N/ni)·
︸ ︷︷ ︸

Gi

1
√

∑T

k=1(fkj · log(N/nk))2
︸ ︷︷ ︸

Nj

(2)

donde
wij es el peso del término i en el documento j
fij es la frecuencia del término i en el documento j
N es el número total de documentos de la colección

ni, (nk) es el número total de documentos en la colección que
cotienen el término i, (k)

T es el número total de términos en la colección
Aqúı, el factor de normalización Nj es la denominada frecuencia
inversa de documento, encaminada a penalizar aquellos términos
que aparecen profusamente en multitud de documentos.

Basado en entroṕıa. He usado la fórmula siguiente:

13

wij = (1 + log fij)
︸ ︷︷ ︸

Lij

1 +
1

log2(N)

N∑

k=1

fik

Fi

log2

fik

Fi

︸ ︷︷ ︸

H̄(i)

︸ ︷︷ ︸

Gi

1

√
∑T

k=1(Lkj ·Gk)2

︸ ︷︷ ︸

Nj

(3)
donde

N es el número total de documentos en la colección

Fi es la frecuencia total del término i en la colección: Fi =
∑N

j=1 fij

fij es la frecuencia del término i en el documento j
H̄(i) es la incertidumbre medio o entroṕıa del término i en la colección

T es el número total de términos diferentes en la colección

Ambos esquemas de pesado han sido puestos a prueba en una serie
de experimentos espećıficos que se detallan más adelante.

2. Reducción de la dimensionalidad. Al trabajar con palabras como base para
la definición de caracteŕısticas nos encontramos con el problema de la alta
dimensionalidad del modelo de espacio vectorial (estamos hablando de
cientos de miles de posibles componentes), y de lo dispersos que resultan
dichos vectores (pocos elementos con pesos distintos a cero). Para ello se
aplican técnicas encaminadas a:

a) Filtrado. Desechar aquellas caracteŕısticas medidas como poco rele-
vantes para el documento. Se aplican medidas como la ganancia de
información [38].

b) Transformación. También entran aqúı aquellos métodos que son ca-
paces de representar distintos términos bajo una única caracteŕıstica,
es decir, de hacer confluir caracteŕısticas que pueden representar-
se bajo una forma común. Entre tales métodos podemos resaltar el
Stemming [28] y el Indexado por Semántica Latente [6], aunque de-
bido al alto coste computacional de éste último no lo hemos aplicado
en nuestro método.

3. Entrenamiento de clasificadores. El sistema propuesto consiste en el entre-
namiento de clasificadores denominados base consistentes en algoritmos de
clasificación binarios. Este entrenamiento presenta las siguiente novedades
y peculiariedades:

Se entrena un algoritmo de clasificación por cada clase

Se puede tener un algoritmo de clasificación radicalmente diferente
por cada clase, es decir, no es necesario que el valor de clasificación
devuelto por cada uno de ellos sea comparable con el resto

14

Los clasificadores para cada clase compiten al uńısono, de forma que
tras el entrenamiento sólo aquel clasificador que ha obtenido la máxi-
ma capacidad de clasificación con respecto al resto queda como re-
presentante de esa clase

4. Selección de clasificadores. Los clasificadores que no superan un cierto um-
bral de confiabilidad se desechan, como medio para combatir el problema
del desbalanceo y para acelerar el proceso hasta respuestas en tiempo real.
El algoritmo quedaŕıa como refleja el cuadro 1.

Entrada:
Un conjunto Dt de documentos multi-etiquetados para entrenamiento
Un conjunto Dv de documentos de validación
Un umbral α sobre la medida de evaluación determinada
Un conjunto L de posibles etiquetas (clases)
Un conjunto C de clasificadores binarios candidatos

Salida:
Un conjunto C ′ = {c1, ..., ck, ..., c|L|} de clasificadores binarios entrenados

Pseudo-código:
C ′ ← ∅
Para-cada li en L

T ← ∅
Para-cada cj en C

entrenar-clasificador(cj , li, Dt)
T ← T ∪ {cj}

Fin-para-cada
cmejor ← mejor-clasificador(T , Dv)
Si evaluate-classifier(cmejor) > α

C ′ ← C ′ ∪ {cmejor}
Fin-si

Fin-para-cada

Cuadro 1: Algoritmo de aprendizaje uno-contra-todos con filtrado de clasifica-
dores

4.2. Fase de clasificación

La fase de clasificación sigue, una vez entrenado el sistema, un método di-
recto. El documento pasa por las mismas fases tempranas que en el caso del en-
trenamiento, ya que tenemos que convertirlo en una representación manipulable
por los algoritmos ulteriores, como podemos ver en la figura 6. Las subetapas
de clasificación son:

15

1. Obtención de los resultados de los clasificadores. Para cada clasificador
disponible, obtenemos para el documento un valor de clasificación que
asociamos a la clase.

2. Selección de clases. Seleccionamos aquellas clases cuyo valor umbral se
encuentra por encima de uno dado. Dicho valor umbral es diferente para
cada clasificador, ya que estos valores no tienen por qué ser comparables.

Figura 6: Proceso de clasificación en TECAT.

5. Experimentos

5.1. Metodoloǵıa de evaluación

Dada la naturaleza del problema, y la escasez de experiencias previas sobre
colecciones de caracteŕısticas similares, se ha optado por definir con precisión
los aspectos relevantes a las medidas de evaluación. Los valores evaluación más
usados para medir el comportamiento de un sistema de RI en general y de
clasificación de textos en particular son diversos, aunque en este resumen nos
centraremos en cuatro de ellos. Dada la tabla de contingencia siguiente:

class ci ¿Asignado por el experto?

SI NO
¿Asignado

por el

clasificador?

SI TPi FPi

NO FNi TNi

donde

16

TPi True positive. Son aquellas decisiones en las que tanto el sistema
como el experto humano asignan una etiqueta

FPi False positive. Son aquellas etiquetas asignadas por el sistema,
pero no por el experto

FNi False negative. Aquellas etiquetas que el sistema no decide asig-
nar, mientras que el experto śı lo hizo.

TNi True negative. Aquellas etiquetas no asignadas por el sistema
que también el experto descartó

podemos construir una serie de medidas, en concreto:

precision (P) =
TP

TP + FP
(4)

cobertura (C) =
TP

TP + FN
(5)

punto de ruptura (break-even-point) (BEP) =
P + C

2
(6)

F1 =
2PC

P + C
(7)

El valor de precisión nos informa acerca de la fiabilidad de las asignaciones
realizadas por el sistema, e.g. si son correctas las etiquetas asignadas, mientras
que la cobertura nos informa sobre si la asignación realizada cubre las asigna-
ciones realizadas por expertos, e.g. si las etiquetas que debeŕıan estar han sido
propuestas. Estos dos valores son antagónicos, y normalmente cuando intenta-
mos aumentar uno es en detrimento del otro. Pero ya que el compromiso entre
ambos es lo deseable, se impone el establecer una medida que en cierta forma
refleje ese compromiso sobre un valor general de comportamiento del sistema,
y este es el cometido de las medidas punto de ruputura y F1 (siendo preferible
ésta última).

En la evaluación de sistemas de clasificación, generalmente se establecen
medidas de precisión y cobertura en base a cada clase [20], midiendo la precisión
y cobertura de esa clase sobre el éxito o no de su asignación a determinados
documentos. Esta forma de proceder es consecuencia de la tradición en sistemas
multiclase dentro de esta disciplina, pues son realmente poco frecuentes (y por
tanto, más desconocidos), los casos de asignación multi-etiquetado. Existen dos
formas de calcular valores finales para el total del sistema:

Macro-averaging. En multiclase, se calculan los valores de precisión y co-
bertura sobre cada clase, y luego se promedian para obtener valores glo-
bales del comportamiento del sistema.

17

Micro-averaging. En este caso, se calculan todos los valores de TP, FP,
FN, TN con contadores globales y finalmente se computan las medidas
anteriores.

Es normalmente la primera opción, el macro-averaging la elegida por los
estudiosos en sistemas de clasificación de textos. Pero es aqúı donde para no-
sotros esta medida requiere una consideración especial. Si calculamos medidas
de precisión y cobertura sobre cada clase, no estaremos midiendo realmente el
comportamiento de la clasificación desde el punto de vista del multi-etiquetado,
porque clases poco relevantes tendŕıan el mismo peso que clases más frecuentes,
es decir, interesa más ser bueno asignando clases frecuentes, pues desde el punto
de vista del documento debe ser lo que nos importa. Debemos, por tanto, esta-
blecer unas medidas de macro-averaging basadas en el documento, y no en la
clase, pues sólo de esa forma estaremos realmente midiendo el comportamien-
to real de un sistema multi-etiquetado. Esto es de vital importancia a la hora
de poder comparar resultados con otros sistemas. Si bien los valores obtenidos
mediante micro-averaging son comparables, no siempre es la forma elegida por
la comunidad cient́ıfica para expresar sus resultados.

Dado que el presente trabajo se centra sobre una colección multi-etiquetado,
será el macro-averaging basado en documentos la opción elegida para realizar
nuestras mediciones.

5.2. Experimentos más relevantes

Se ha realizado una vasta serie de experimentos, encaminados a estudiar de
forma minuciosa el sistema propuesto. Si bien el conjunto de posibilidades a
explorar en cada aspecto analizado es más amplio del aqúı expuesto, śı que se
ha prestado cuidadosa atención a los conceptos en los que este trabajo preten-
de realizar sus principales contribuciones. Son dichos experimentos los que se
incluyen aqúı con mayor detalle

5.2.1. Desbalanceo

En este experimento partimos con una nueva definición de la medida de
desbalanceo que no dependa de elementos emṕıricos ni de los datos en estudio,
sino que refleja de manera comparable el grado de desbalanceo de una clase a
diferencia de como lo hace la propuesta por Japkowicz [12, 13]. Definimos grado
de desbalanceo interno como:

ii = |1− 2ni/n| (8)

donde

n es el total de documentos

18

ni es el total de documentos que han sido etiquetados con la clase i

Analizar este valor es muy importante, ya que tiene profundas repercusiones
en la futura capacidad de clasificación del sistema. Generalmente, colecciones
poco balanceadas dan lugar a clasificadores no demasiado buenos. Podemos
ahora analizar el grado de desbalanceo de la partición hep-ex, tal y como refleja
la figura 7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200

imbalance degree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

imbalance degree

(a) Todas las clases (b) Las 10 clases más frecuentes

Figura 7: Grado de desbalanceo interno de clases en la partición hep-ex

La forma de atacar este gran problema presentado en nuestra colección es
mediante el algoritmo de filtrado de clases descrito anteriormente. Con dicho
sistema no permitimos que el sistema maneje clases de las que es dif́ıcil aprender,
bien por el grado de desbalanceo que presente (principalmente), bien porque la
capacidad de decisión sobre ellas va más allá del contenido del documento (como
la etiqueta talk, que indica que el documento hace referencia a una charla).

Los resultados obtenidos mediante este sistema adaptativo de entrenamiento
son prometedores, y reflejan que podemos llegar a filtrar un gran número de
clases sin pérdidas significativas en precisión y cobertura, como podemos ver
en los resultados de uno de los experimentos, reflejados en la figura 8. En este
diagrama podemos ver el efecto que tiene descartar aquellos clasificadores que
no alcanzan el umbral indicado en el eje de abcisas para la medida F1. Estos
resultados fueron publicados en [26].

5.2.2. Integración de los metadatos

Uno de los resultados más interesantes de este trabajo viene por la inte-
gración de la meta-información disponible en el modelo de documento [30]. Se
estudiaron cuatro paradigmas de fuentes de información:

1. Fuente A: sólo utilizando el resumen (componente description de cada
registro).

19

Figura 8: Influencia del filtrado usando el algoritmo SVM

2. Fuente M: sólo utilizando los metadatos (componentes description, title,
date, subject, creator y language).

3. Fuente F: utilizando el texto completo disponible del documento y obte-
nido a partir de su versión en PDF.

4. Fuente F+M: integración de todos los datos disponibles (todo lo anterior:
texto completo y metadatos).

Los resultados obtenidos se reflejan en el cuadro 2, donde se puede obser-
var los distintos valores obtenidos mediante macro-averaging medidos por cada
combinación algoritmo + tipo de fuente.

Puede observarse la mejoŕıa experimentada por la utilización de los metada-
tos, siendo preferible el esquema M al F+M, ya que implica resultados cercanos
pero con un muy reducido gasto computacional.

5.2.3. Medida de la respuesta en tiempo real

Uno de los retos de este trabajo era además el de proponer un método
que diera respuestás rápidas en el complejo proceso de la asignación multi-
etiquetado. Para ello se realizaron una serie de experimentos variados que fueron
medidos en tiempo de ejecución. Se obtuvieron tres tipos de medidas:

1. Real - Tiempo transcurrido en segundos desde la invocación del programa
de clasificación hasta la obtención de una respuesta.

20

Precision Recall F1 Accuracy Error % classes Experiment

0,442927 0,540300 0,455324 0,972086 0,027914 84,43 Widrow-Hoff A
0,441282 0,555588 0,464150 0,972381 0,027619 85,00 Widrow-Hoff F
0,455313 0,553409 0,466323 0,972133 0,027867 84,54 Widrow-Hoff M
0,463957 0,571303 0,480547 0,973005 0,026995 87,27 Widrow-Hoff F+M
0,471174 0,542124 0,461181 0,972455 0,027545 88,16 Rocchio A
0,427285 0,523589 0,428148 0,969635 0,030365 86,12 Rocchio F
0,452551 0,560559 0,456976 0,970048 0,029952 86,18 Rocchio M
0,442462 0,541912 0,443245 0,970011 0,029989 87,92 Rocchio F+M
0,691184 0,410466 0,489537 0,981950 0,018050 52,48 PLAUM A
0,710694 0,434822 0,511888 0,982663 0,017337 57,67 PLAUM F
0,720159 0,448690 0,526646 0,982828 0,017172 55,67 PLAUM M
0,725469 0,452998 0,531442 0,983174 0,016826 59,27 PLAUM F+M
0,745852 0,333645 0,434222 0,982223 0,017777 31,14 SVM A
0,754986 0,357410 0,459033 0,982669 0,017331 35,03 SVM F
0,773406 0,351618 0,458678 0,982704 0,017296 32,23 SVM M
0,769740 0,373289 0,477560 0,983198 0,016802 36,62 SVM F+M

Cuadro 2: Valores obtenidos por macro-averaging para los experimentos reali-
zados

2. Usuario - Tiempo de CPU requerido por el proceso en el espacio del
usuario

3. Sistema - Tiempo de CPU requerido por el proceso en el espacio del sis-
tema, incluyedo operaciones shell

Los valores obtenidos quedan recogidos en el cuadro 3. Como podemos ob-
servar, son valores que van de la respuesta inmediata a poco más de 2 segundos.
Estos valores se obtuvieron sobre una máquina biprocesador Dual Intel Xeon a
2,8 GHz con sistema operativo SuSE Linux 9.1.

no clases real usuario sistema estad́ıstico

5,29 1,13 1,09 0,04 media

17 2,13 2,09 0,07 máximo

0 1,06 1,01 0,03 mı́nimo

4 1,1 1,07 0,04 moda

8,2 0,01 0,01 0 varianza

2,86 0,11 0,11 0,01 desviación t́ıpica

Cuadro 3: Estad́ısiticas globales de tiempo de clasificación sobre el total de
documentos de la partición hep-ex

5.2.4. Resultados sobre un corpus de Eurovoc

Para demostrar la versatilidad del sistema propuesto, se realizaron una serie
de experimentos sobre el corpus de Eurovoc, usado por la Comisión Europea
y cuyo acceso ha sido recientemente permitido con ciertas limitaciones, pero
lo suficientes como para poder lanzar TECAT sobre estos datos ampliamente
estudiados por Steinberger, Pouliquen y otros [3, 31].

21

class precision recall accuracy error F1 BEP

1 0.713993 0.702386 0.965497 0.034503 0.705030 0.708189
2 0.639921 0.434601 0.956285 0.043715 0.503703 0.537261
3 0.399299 0.708935 0.930454 0.069546 0.506372 0.554117
4 0.735356 0.686286 0.972810 0.027190 0.706778 0.710821
5 0.475359 0.732636 0.949727 0.050273 0.566215 0.603998
6 0.904384 0.851261 0.989913 0.010087 0.876128 0.877823
7 0.381226 0.212821 0.957133 0.042868 0.258883 0.297024
8 0.653248 0.576640 0.975791 0.024209 0.611103 0.614944
9 0.528606 0.643517 0.970162 0.029838 0.576800 0.586062

10 0.856026 0.741460 0.987846 0.012155 0.792116 0.798743

Cuadro 4: Resultados de clasficación sobre las 10 clases más frecuentes de la
colección Eurovoc

Los resultados obtenidos quedan reflejados en el cuadro 4, donde puede ob-
servarse que los valores medidos, si bien no tan buenos como los obtenidos por
Pouliquen y colegas, indican claramente que un sistema TECAT con parámetros
estudiados con detenimiento puede representar una alternativa real al sistema
utilizado por la Comisión Europea (y de reciente implantación en el Congreso
de los Diputados español).

5.3. Experimentos adicionales

Resumimos aqúı brevemente otra serie de experimentos realizados encami-
nados a establecer principalmente los parámetros de configuración del sistema
TECAT para el caso de la colección de documentos HEP.

1. Bigramas. La detección de pares de palabras ı́ntimamente relaciones como
una entidad única (es decir, como una sola caracteŕıstica) ha sido realizada
usando la medida de información mutua. Los resultados obtenidos conclu-
yen que dicha detección no representa ninguna ventaja, coherentemente
con lo observado por Lewis [21].

2. Stemming y eliminación de palabras vaćıas. El uso de stemming y la eli-
minación de art́ıculos, pronombres, determinantes, etc. de poco contenido
semántico, si bien no representan una clara ventaja en cuanto a preci-
sión y cobertura, no perdujica su aplicación a la clasificación en general,
obteniendo a cambio una reducción importante de la dimensionalidad.

3. Reducción de la dimensionalidad. Se ha estudiado el mejor valor umbral
de ganancia de información que permite una reducción drástica de la
dimensionalidad sin afectar la capacidad del sistema como herramiento de
clasificación.

22

4. Pesado de las caracteŕısticas. Se ha comparado el uso del esquema de
pesado TF.IDF con el de entroṕıa, encontrando valores similares de ren-
dimiento.

5. Clasificadores. Se han analizado gran variedad de clasificadores binarios
base, destacando entre ellos SVM y PLAUM.

6. Resultados sobre un corpus mayor. Al aplicar TECAT sobre un corpus
mucho mayor al de la partición hep-ex, se observa un ligero descenso de
precisión y cobertura, motivado por el aumento considerable de las clases
a entrenar, pero aún manteniendo valores aceptables para un sistema de
clasificación de este tipo.

6. Conclusiones y trabajo futuro

Las contribuciones principales de este trabajo pueden definir en tres puntos:

1. la puesta a disposición de la comunidad cient́ıfica de un nuevo corpus de
excepcionales caracteŕıstica para el estudio de sistema multi-etiquetado,

2. un método completo y novedoso para la clasificación multi-etiquetado ro-
busto ante desbalanceo y capaz de dar respuestas en tiempo real

3. la constatación de la importancia de los metadatos para mejorar la asig-
nación.

Como corolario de esta investigación podemos añadir el sistema TECAT,
resultado una programación cuidadosa tras un largo proceso de diseño y proto-
tipado, también puesto a libre disposición de la comunidad cient́ıfica.

6.1. Colección HEP: un nuevo y desafiante corpus pa-

ra investigación en sistema de categorización multi-

etiquetado

Se introduce ampliamente esta colección, describiendo sus caracteŕısticas
más relevantes y las peculiaridades que la hacen óptima para la continuación de
trabajos en el dominio de la clasificación de textos que quieran analizar la tarea
de multi-etiquetado. Dentro de esta introducción cabe destacar:

1. La definición de una nueva medida de desbalanceo, el grado de desbalanceo
interno, que permite la comparativa de este valor entre diferentes corpora.

2. Se ha detallado dicho grado en el caso de esta colección, describiendo
como resultado un método que ha resultado robusto y válido para la tarea
central.

23

3. Se ha detallado la riqueza de meta-información presentada por esta colec-
ción, abriendo la posibilidad de análisis más profundos en la integración
de esta información.

4. La gran diversidad de experimentos realizados allanan el camino para fu-
turas investigaciones en la parametrización de sistemas, pudiendo centrar
el trabajo en aspectos más relevantes sin necesidad de reparar demasia-
do en la selección de caracteŕısticas, la reducción de la dimensionalidad
o el pesado de caracteŕısticas. Si bien siempre existen alternativas que
merezcan su exploración, el investigador que trabaje sobre esta colección
dispone de un nutrido conjunto de resultados que le ayuden en la puesta
en marcha de soluciones futuras.

El acceso a los datos está permitido, y su disponibilidad es total. Todo aquel
investigador que quiera trabajar sobre la partición hep-ex puede ponerse en
contacto con el autor de este trabajo, quien ha realizado su recopilación y for-
mateado para facilitar su uso.

6.2. Selección adaptativa de clasificadores base

El método propuesto consisten en el entrenamiento en serie de un conjunto
de clasificadores que puede ser muy variados, dejando sólo uno al final para cada
clase, o ninguno si el clasificador no alcanza las cotas de aceptación marcadas
por la parametrización elegida. Esta forma de proceder es robusta sobre datos
fuertemente desbalanceados, como ha quedado comprobado en los experimentos
realizados.

Como resultado se obtiene un sistema que, además, permite realizar predic-
ciones de clases en tiempo real, con tiempos de respuesta rara vez regitrados por
sistemas anteriores. Las posibilidades que conlleva una clasificación en tiempo
real queda indicada en las aplicaciones que dicho sistema permite.

6.3. Registros con meta-datos: una fuente informacional-

mente rica

Si bien la categorización de texto tiende a centrarse en los algoritmos de
aprendizaje, determinados aspectos relativos a las fuentes de información usadas
pueden representar una mejora substancial sobre sistemas de algoritmos más
avanzados o complejos. Esto refleja el sentir de gran parte de la comunidad
cient́ıfica, como puede leerse en la lista especializada DDLBETAtag, mantenida
por D. Lewis y que es el foro principal de debate en categorización de textos.
En el momento de escribir este resumen se ha tenido constancia de trabajos
similares [34], prácticamente coincidentes con la fecha de publicación de los
resultados de esta tesis sobre el uso de los meta-datos como fuente adicional de
información [30].

24

6.4. Trabajo futuro

Los aspectos cient́ıficos que aún quedan abiertos son amplios, y podŕıamos
enumerarlos en los puntos siguientes:

1. Extender el estudio del presente método a otras colecciones, como ha sido
brevemente desvelado al usar los datos de Eurovoc.

2. Ampliar el método para permitir respuestas dentro del árbol completo de
jerarqúıas del tesauro de DESY, ya que en el presente trabajo sólo se han
considerado etiquetas primarias (de primer nivel).

3. Analizar con más detalle el contenido de los documentos HEP, ya que estos
art́ıculos están plenos de fórmulas, cifras, diagramas y otra información
que podŕıa ser muy útil para la mejora de sistema y como fuente adicional
de caracteŕısticas del documento.

4. Como consecuencia de lo primero, una empleo mayor de sistemas de Pro-
cesamiento del Lenguaje natural, que permitan identificar elementos como
entidades nombradas, fechas, ciertos sintagmas t́ıpicos del lenguaje de la
F́ısica, etc.

5. Nuevos algoritmos de aprendizaje aparecen constantemente, algunas de
las propuestas más interesantes son LVQ, Regresión Loǵıstica y Boosting.
Su consideración en el método propuesto podŕıa representar una mejoŕıa
en los resultados de la clasificación.

Referencias

[1] Eric Bauer and Ron Kohavi. An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants. Machine Learning, 36
(1-2):105–13, August 1999.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):34–43, May 2001. ISSN 0036-8733. URL
http://www.sciam.com/2001/0501issue/0501berners-lee.html.

[3] Bruno Pouliquen, Ralf Steinberger, and Camelia Ignat. Automatic Anno-
tation of Multilingual Text Collections with a Conceptual Thesaurus. In
Amalia Todirascu, editor, Proceedings of the workshop ’Ontologies and In-
formation Extraction’ at the EuroLan Summer School ’The Semantic Web
and Language Technology’(EUROLAN’2003), page 8 pages, Bucharest (Ro-
mania), 2003.

[4] E. Chisholm and T. G. Kolda. New term weighting formulas for the vec-
tor space method in information retrieval. Technical report, Oak Ridge
National Laboratory, 1998.

25

[5] David Dallman and Jean-Yves Le Meur. Automatic keywording of high
energy physics. Technical report, European Laboratory for Particle Physics,
Geneva, Switzerland, October 1999.

[6] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by Latent Semantic Analysis.
Journal of the American Society of Information Science, 41(6):391–407,
1990. URL citeseer.nj.nec.com/deerwester90indexing.html.

[7] DESY. The High Energy Physics Index Keywords, 1996. http://www-
library.desy.de/schlagw2.html.

[8] V.V. Ezhela et al. Citations as a mean for discovery and automatic indexing
of the scientific texts with new knowledge for a given subject, 2001.

[9] C. J. Fall, A. Törcsvári, K. Benzineb, and G. Karetka. Automated catego-
rization in the international patent classification. ACM SIGIR Forum, 37
(1):10–25, 2003. ISSN 0163-5840.

[10] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network clas-
sifiers. Mach. Learn., 29(2-3):131–163, 1997. ISSN 0885-6125.

[11] Norbert Fuhr, Stephan Hartmann, Gerhard Knorz, Gerhard Lustig, Mi-
chael Schwantner, and Konstadinos Tzeras. AIR/X – a rule-based mul-
tistage indexing system for large subject fields. In André Lichnerowicz,
editor, Proceedings of RIAO-91, 3rd International Conference “Recherche
d’Information Assistee par Ordinateur”, pages 606–623, Barcelona, ES,
1991. Elsevier Science Publishers, Amsterdam, NL.

[12] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic
study. Intelligent Data Analysis Journal, 6(5), November 2002.

[13] Nathalie Japkowicz. Class imbalances: Are we focusing on the right issue?
In Workshop on Learning from Imbalanced Datasets II, ICML, Washington
DC, 2003.

[14] Thorsten Joachims. Text categorization with support vector ma-
chines: learning with many relevant features. In Claire Nédellec
and Céline Rouveirol, editors, Proceedings of ECML-98, 10th Eu-
ropean Conference on Machine Learning, number 1398, pages 137–
142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE. URL
citeseer.ist.psu.edu/joachims97text.html.

[15] Paul H. Klingbie June P. Silvester, Michael T. Genuardi. Machine-Aided
Indexing at NASA, 1994.

[16] Gerhard Knorz, Gerhard Lustig, Tzeras Tzeras, Michael Schwantner, Nor-
bert Fuhr, and Stephan Hartmann. Automatic indexing in operation: The
rule-based system AIR/X for large subject fields. Technical report, June 24
1993.

26

[17] Leah S. Larkey. A patent search and classification system. In Edward A.
Fox and Neil Rowe, editors, Proceedings of DL-99, 4th ACM Conference
on Digital Libraries, pages 179–187, Berkeley, US, 1999. ACM Press, New
York, US. URL citeseer.ist.psu.edu/larkey99patent.html.

[18] Boris Lauser and Andreas Hotho. Automatic multi-label subject indexing
in a multilingual environment. In Proc. of the 7th European Conference
in Research and Advanced Technology for Digital Libraries, ECDL 2003,
volume 2769, pages 140–151. Springer.

[19] Alan R. Aronson Lawrence W. Wright, Holly K. GrossettaÑardini and
Thomas C. Rindflesch. Hierarchical concept indexing of full-text documents
in the unified medical language system r© information sources map. Journal
of the American Society for Information Science, 50(6):514–523, 1999.

[20] D. D. Lewis. Evaluating Text Categorization. In Proceedings of Speech
and Natural Language Workshop, pages 312–318. Morgan Kaufmann, 1991.
URL citeseer.nj.nec.com/lewis91evaluating.html.

[21] D. D. Lewis. Feature Selection and Feature Extraction for Text Cate-
gorization. In Proceedings of Speech and Natural Language Workshop,
pages 212–217, San Mateo, California, 1992. Morgan Kaufmann. URL
citeseer.ist.psu.edu/lewis92feature.html.

[22] D. D. Lewis, Robert E. Schapire, James P. Callan, and Ron Papka. Training
algorithms for linear text classifiers. In Hans-Peter Frei, Donna Harman,
Peter Schäuble, and Ross Wilkinson, editors, Proceedings of SIGIR-96, 19th
ACM International Conference on Research and Development in Informa-
tion Retrieval, pages 298–306, Zürich, CH, 1996. ACM Press, New York,
US. URL citeseer.ist.psu.edu/lewis96training.html.

[23] M.T. Mart́ın-Valdivia, M. Garćıa-Vega, and L.A. Ureña-López. LVQ for
text categorization using multilingual linguistic resource. Neurocomputing,
55:665’–679, 2003.

[24] A. Montejo-Ráez. Proyecto de indexado automático en el campo de la f́ısica
de altas enerǵıas. Sociedad Española para el Procesamiento del Lenguaje
Natural, 27(295-296), 2001.

[25] A Montejo-Ráez and R. Steinberger. Why keywording matters. High
Energy Physics Libraries Webzine, (Issue 10), December 2004. URL
http://library.cern.ch/HEPLW/10/papers/2/.

[26] A. Montejo-Ráez, R. Steinberger, and L. A. Ureña-López. Adaptive se-
lection of base classifiers in one-against-all learning for large multi-labeled
collections. (3230):1–12, 2004.

[27] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank Citation Ranking: Bringing Order to the Web. Technical re-
port, Computer Science Department, Stanford University, 1998. URL
http://dbpubs.stanford.edu/pub/1999-66.

27

[28] M. F. Porter. An algorithm for suffix stripping, pages 313–316. Morgan
Kaufmann Publishers Inc., 1997. ISBN 1-55860-454-5.

[29] Bruno Pouliquen. Indexation de textes médicaux par extraction de concepts.
PhD thesis, Faculté de Médecine, Rennes, France, 2002.

[30] A. Montejo Ráez, L.A. Ureña López, and R. Steinberger. Text catego-
rization using bibliographic records: beyond document content. Sociedad
Española para el Procesamiento del Lenguaje Natural, 35:119–126, 2005.

[31] Steinberger Ralf, Bruno Pouliquen, and Camelia Ignat. Navigating mul-
tilingual news collections using automatically extracted information. In
Proceedings of the 27th International Conference ’Information Technology
Interfaces’ (ITI’2005), Cavtat / Dubrovnik, Croatia, June 20-23 2005.

[32] Ralf Steinberger, Bruno Pouliquen, and Johan Hagman. Cross-lingual Do-
cument Similarity Calculation Using the Multilingual Thesaurus EURO-
VOC. Third International Conference on Intelligent Text Processing and
Computational Linguistics, 2002.

[33] Ralf Steinberger, Johan Hagman, and Stefan Scheer. Using thesauri for
automatic indexing and for the visualisation of multilingual document co-
llections. pages 130–141, 2000.

[34] Richter and MacFarlane. The impact of metadata on the accuracy of auto-
mated patent classification. World Patent Information, (27):12–26, 2005.

[35] G. Salton and C. Buckley. Term weigthing approaches in automatic text
retrieval. Information Processing and Managemnet, 24(5):513–523, 1988.

[36] Gerard Salton, A. Wong, and C. S. Yang. A Vector Space Model for Auto-
matic Indexing. Technical Report TR74-218, Cornell University, Computer
Science Department, July 1974.

[37] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Comput. Surv., 34(1):1–47, 2002. ISSN 0360-0300.

[38] Claude E. Shannon. A mathematical theory of communication. 27(3):
379–423, July 1948. Continued 27(4):623-656, October 1948.

[39] Ralf Steinberger. Cross-lingual Keyword Assignment. In L. Alfonso Ureña
López, editor, Proceedings of the XVII Conference of the Spanish Society for
Natural Language Processing (SEPLN’2001), pages 273–280, Jaén (Spain),
September 2001.

[40] Lyubov A. Vassilevskaya. An approach to automatic indexing of scientific
publications in high energy physics for database spires-hep. Master’s the-
sis, Fachhochsule Potsdam, Institut für Information und Dokumentation,
September 2002.

28

[41] Natasha Vieduts-Stokolo. Concept recognition in an automatic text-
processing system for the life sciences, 1987.

[42] Li Y., Zaragoza H., Herbrich R., Shawe-Taylor J., and Kandola J. The per-
ceptron algorithm with uneven margins. In Proceedings of the International
Conference of Machine Learning (ICML’2002), 2002.

29

