
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Time-energy Analysis of Multi-level Parallelism in
Heterogeneous Clusters: The case of EEG Classification
in BCI Tasks

Juan José Escobar · Julio Ortega ·
Antonio F. Dı́az · Jesús González ·
Miguel Damas

Received: date / Accepted: date

Abstract Present heterogeneous architectures interconnect nodes including
multiple multi-core microprocessors and accelerators that allow different strate-
gies to accelerate the applications and optimize their energy consumption ac-
cording to the specific power-performance trade-offs. In this paper, a multi-
level parallel procedure is proposed to take advantage of all nodes of a heteroge-
neous CPU-GPU cluster. Two more alternatives have been implemented, and
experimentally compared and analyzed from both running time and energy
consumption. Although the paper considers an evolutionary master-worker al-
gorithm for feature selection in EEG classification, the conclusions from the
experimental analysis here provided can be frequently applied, as many other
useful bioinformatics and data mining applications show the same master-
worker profile than the classification problem here considered. Our parallel
approach allows to reduce the time by a factor of up to 83, with only about
a 4.9% of energy consumed by the sequential procedure, in a cluster with 36
CPU cores and 43 GPU compute units.

Keywords EEG classification · Hybrid programming · Time-energy analysis ·
Heterogeneous CPU-GPU parallel architectures · Master-worker algorithms ·
Multi-level parallelism

This research has been funded by the Spanish “Ministerio de Ciencia, Innovación y Univer-
sidades” through the grant PGC2018-098813-B-C31 and the ERDF funds

This is a post-peer-review, pre-copyedit version of an article published in The
Journal of Supercomputing. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s11227-019-02908-4

J.J. Escobar · J. Ortega · A.F. Dı́az · J. González · M. Damas
Dept. of Computer Architecture and Technology, CITIC, University of Granada (Spain)
Tel.: +34-958248994
Fax: +34-958248993
E-mail: jjescobar, jortega, afdiaz, jesusgonzalez, mdamas{@ugr.es}

2 Juan José Escobar et al.

1 Introduction

Machine learning tasks for classification, clustering, feature selection, and op-
timization problems are present in many useful applications such as bioin-
formatics and bioengineering, which usually require high-performance plat-
forms whose cost in both economic and environmental terms should be care-
fully taken into account. Indeed, the minimization of energy consumption has
emerged as one of the main issues of research in computer systems, and ef-
ficiency today not only means good speedups but also optimal energy con-
sumption. Moreover, the tasks present in machine learning also show different
processing characteristics and thus diverse profiles in energy consumption with
respect to their parallel behavior.

The use of heterogeneous computing platforms, including multi-core CPUs
(Central Processing Units) and other accelerators with different architectures,
such as GPUs (Graphic Processing Units) and FPGAs (Field Programmable
Gate Arrays), would make possible faster parallel codes that take advantage
from different kinds of parallelism in the platform. Nevertheless, although the
different speed-to-power ratios of present processors give more possibilities to
distribute the work in order to optimize energy consumption, workload balanc-
ing is much more complex to solve [1], and approaches that take into account
speedup and energy consumption criteria constitute an important research
issue [2–5]. An alternative to take into account energy consumption issues
in the code execution is to use the power management policies implemented
by present microprocessors. However, as these policies usually depend on the
microprocessor and are not visible to the user, black-box approaches [6] to
determine the main characteristics of the applied power management policy
could be devised. Also, techniques such as Dynamic Voltage and Frequency
Scaling (DVFS) could make possible for the user to control the frequency and
voltage of the processors in the platform [3,4].

In this paper, we illustrate this situation through a multi-objective ap-
proach for Electroencephalogram (EEG) classification in BCI tasks. This appli-
cation deals with feature selection in classification problems involving patterns
with a high number of features and the curse of dimensionality problem. The
multi-objective evolutionary algorithm implements a wrapper procedure for
feature selection together with a unsupervised procedure whose performance
is used to evaluate the fitness of each individual in the subpopulation [7]. The
paper analyzes the energy-time behavior on a heterogeneous CPU-GPU clus-
ter of different multi-level parallel alternatives. For a number of years, the rate
of increase in computing power has started to fall due to the Moore’s law, with
R&D more focused on energy efficiency due to environmental issues, and less
on increasing CPU and GPU brute power. Even the introduction of multi-core
processors is not enough to reverse this trend since most applications are not
optimized to use more than one core, and the efficient use of multiple cores
is still a topic of active research in computer science. In addition, there is a
problem with the exponential growth of data generated by applications, which
is impossible to cope without the development of new processing techniques.

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 3

Thus, currently, the use of computing clusters to solve some scientific problems
considering a close CPU-GPU cooperation [8], like the workload distribution
here considered, constitutes the mainstream approach to take advantage of
technology improvements and overcome the barrier of hardware limitation
and energy efficiency [1,9]. Indeed, the development of efficient codes for het-
erogeneous CPU-GPU systems needs to address hardware and software issues
related with the cooperation among computing nodes. Among those, the size
of CPU and GPU memories and their bandwidth limitations, the workload
balancing among the CPU and GPU devices, the overlapping of data during
the computation, and the parallel profile of the application considered.

The main contribution of this paper is to provide two new algorithms de-
rived from the one presented in [10], and a complementary energy-time model
that not only contributes to understand the experimental power-performance
behavior of the new codes but also to get an insight in the identification of the
workload distribution issues to be considered when coding the algorithm. One
of the proposed algorithms is postulated as an improved, optimized, and faster
version than the algorithm proposed in [10], while in the other the changes are
related to the library used for the parallelization of the code and it is presented
as an alternative that it could be better or worse than that of [10] under dif-
ferent conditions. The three algorithms are compared from the point of view
of running time and energy consumption to compare their performance.

After this introduction, Section 2 summarizes the work in the literature re-
lated with parallel implementations of evolutionary algorithms in CPU-GPU
platforms, and their corresponding energy-aware performance evaluation and
scheduling. Section 3 introduces the evolutionary multi-objective approach
here considered for feature selection in EEG classification. In addition, this
section illustrates the characteristics of the parallel applications that can ben-
efit from the parallel procedures similar to those considered in the paper.
Section 4 describes our multi-level parallel approach along with its proposed
versions, while Section 5 provides the experimental work and the energy-time
approximation models to get an insight into the observed behavior. Finally,
Section 6 gives the conclusions of the paper.

2 Related work

Many contributions on parallel implementations of evolutionary algorithms in
CPU-GPU platforms have been proposed in the literature, although most of
them do not completely exploit the CPU-GPU computing capacity as only use
one CPU thread to control the GPU activity [11]. Among the approaches for
GPU-based implementations of evolutionary algorithms analyzed in [12], some
of them propose to implement all or the most of the steps of the evolutionary
algorithm in GPU to decrease the cost of transferring information between
CPU and GPU. In general, for an evolutionary algorithm, as the fitness eval-
uation can be independently done for each individual in the population, this
step is usually implemented in parallel. Nevertheless, other steps, such as the

4 Juan José Escobar et al.

application of evolutionary operators, require interaction among individuals,
thus involving some kind of synchronization among the computing elements.
This way, two main researching lines can be distinguished among the propos-
als for GPU implementations: a parallel implementation that shows the same
behavior than the sequential one, and the implementation of an evolutionary
parallel algorithm tuned to the features of the GPU architecture. However, its
characteristics could be different from those of the corresponding sequential
algorithm. In this last alternative, an analysis of the suitability of the attained
solutions should be done.

Paper [13] describes a CUDA implementation of a parallel genetic algo-
rithm based on an island model, and it is an example of the approaches that,
as the one presented in this paper, modify the evolutionary algorithm to reach
a more suitable version for the available architecture. An alternative GPU im-
plementation of the non-dominated rank used in NSGA-II, the Archived-based
Stochastic Ranking Evolutionary Algorithm (ASREA), is provided in [14]. Pa-
per [15] provides a parallel GPU implementation of a multi-objective evolu-
tionary algorithm for a data mining application on marketing. This approach
executes all steps of an NSGA-II algorithm in GPU except the non-dominated
sorting and selection, for which a fast procedure is proposed.

There are not many approaches using the CPU and GPU as resources that
can be equally considered to distribute the workload of the optimization proce-
dure like in this paper. Paper [11] proposes a methodology to solve optimiza-
tion problems in heterogeneous CPU-GPU architectures that benefits from
both CPU and GPU devices, and points out the usefulness of further research-
ing on this approach. Our approach includes an evolutionary multi-objective
optimization and a clustering algorithm applied to a set of high-dimensional
patterns. Although the use of heterogeneous architectures has been proposed
in previous papers, the parallelization on a heterogeneous platform of a whole
data mining application with the characteristics of our target application and
the analysis of its energy consumption besides the time performance is less
frequent. Paper [16] analyzes the effect of factors such as the communication
patterns and the data partition on the performance of data mining appli-
cations, and in [17] a parallel multi-objective evolutionary procedure using
MPI on only one platform is described. Our approach takes advantage of het-
erogeneous clusters including multiple CPU-GPU nodes and distributes the
workload among both CPU and GPU devices of the nodes to accelerate the
application, and thus also allowing energy-saving.

Several approaches have been reported on scheduling procedures that take
into account not only running time but also the energy consumption of the
program [18–20]. Most of them are based on Dynamic Voltage Scaling (DVS), a
technique similar to DVFS but only allows dynamic scaling of the CPU voltage
to reduce the energy consumption. Although by reducing the processor supply
voltage the computing times of the tasks allocated in the CPU would rise, it
could be even possible not to increase the runtime of the parallel program if
these increments in the computing times fill the slack times, and thus reduc-
ing the time lighter tasks have to spent waiting for heavy tasks. Paper [21]

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 5

provides a survey that distinguishes between the approaches based on the use
of low-power components, and the techniques that use software approaches
and power-scalable components. These last techniques, in turn, can be also
classified into two alternatives: (i) those based on the dynamical adjustment
of power consumption by taking advantage of power-scalable components and
(ii) the energy-aware load balancing techniques.

Nevertheless, it is not always possible to handle the runtime power manage-
ment, and some rules or principles should be taken into account for developing
efficient procedures for a given platform. To do that, models of time and en-
ergy consumption are required to estimate the time and energy consumed by
a program, according to its profile (inherent parallelism and required synchro-
nization, memory and I/O requirements, etc.). Paper [1] provides a complete
survey of power and energy models with the corresponding set of references.
These models are classified according to their parameters, level of abstraction,
whether they model the instantaneous or average power and the energy, and
whether they provide a decomposition of power and energy among elements in
the platform. The paper also gives information about the power-energy pre-
diction accuracy, portability to different architectures, and complexity of the
model. In this line, [6] proposed a black-box scheduling approach based on an
offline power model and an online workload modeling, and papers [22,23] deal
with the determination of power and energy consumption models, either by
running micro-benchmarks [22] or through the evaluation of energy consump-
tion of the platform components [23]. Energy consumption characterization by
applying multiple linear regression models is proposed in [24].

With respect to the energy consumption efficiency of hybrid CPU-GPU
platforms, some results on this topic have been provided by papers [25–28].
For example, [25] provides analytical models to get an insight into performance
gains and energy consumption in different CPU-GPU platforms and concludes
that a greater parallelism allows opportunities for energy-saving and encour-
ages the development of energy-saving parallel applications. In this paper, we
use approximate models based on those given in [28] and in the use of averages
of the instantaneous power experimentally sampled in the nodes, to explain
the energy-time behavior in a CPU-GPU cluster of the parallel procedures
described in Section 4.

3 Master-worker evolutionary algorithms and EEG classification

EEG classification, like other high-dimensional applications in bioinformatics,
requires the processing of a huge amount of data, especially whenever the pat-
terns that make up the databases are defined by a large number of features,
and therefore the execution times are very high or prohibitive. This way, par-
allel processing and feature selection are commonly applied to decrease the
execution time and/or to improve the quality of the solutions they provide.
An approach to the aforementioned applications based on evolutionary algo-
rithms usually implies the evaluation of the utility (or fitness) of a population

6 Juan José Escobar et al.

Table 1 Runtime distribution among the most relevant steps of an evolutionary multi-
objective feature selection procedure for different population sizes, N

N
Evaluation Non-DS Crossover Others Total

Time (s) % Time (s) % Time (s) % Time (s) % Time (s)
120 119.19 99.93 0.01 0.01 0.03 0.03 0.04 0.03 119.27
240 236.38 99.92 0.07 0.03 0.09 0.04 0.03 0.01 236.57
480 477.00 99.90 0.14 0.03 0.18 0.04 0.14 0.03 477.46
960 954.85 99.87 0.70 0.07 0.31 0.03 0.29 0.03 956.15
2500 2492.26 99.72 5.21 0.21 0.87 0.03 1.00 0.04 2499.34
5000 4973.70 99.48 21.74 0.43 2.03 0.04 2.66 0.05 5000.13
10000 9984.37 99.05 85.22 0.85 3.75 0.04 6.36 0.06 10079.70
15000 14946.12 98.60 196.61 1.30 5.53 0.04 9.87 0.06 15158.13

of solutions on the problem at hand. Moreover, the diverse profiles of paral-
lelism present in the corresponding codes make possible to develop efficient
parallel codes for the present heterogeneous CPU-GPU platforms.

For example, in [7], an evolutionary multi-objective optimization method
is applied to solve a feature selection problem in a BCI application. The in-
dividuals of the population correspond to different sets of features that define
the components of the patterns to be classified. These sets of features have
to be evaluated by the accuracy of the classifier once it has been adjusted by
using the training patterns, which are characterized by the selected features.
The iterations required to train the classifier usually require a high amount of
computing time as it is shown in Table 1. This table provides the runtime for
the main steps of a multi-objective feature selection procedure, analyzed with
the tool gprof [29]. The fitness evaluation needs between 99.93% of runtime
with 120 individuals in the population, and 98.60% with 15,000 individuals.
Thus, as the fitness evaluation is completely independent for each individual of
the population and is the most time-demanding step, the efforts to parallelize
the algorithm should be focused on this task.

This paper analyzes both runtime and energy consumption, in a hetero-
geneous CPU-GPU cluster, of three multi-level parallel approaches for Multi-
Objective Feature Selection (MOFS) applied to EEG classification. They are
based on the NSGA-II algorithm, and are responsible for evolving one or mul-
tiple subpopulations. In MOFS problems, the patterns usually are character-
ized by a high number of features, being necessary to select the most relevant
features in order to get good classification performance besides decreasing
the computational cost of the procedure, among others. Due to the NP -hard
complexity of this kind of applications [30,31], it is necessary to use parallel
meta-heuristics that are capable of reducing both running time and energy
consumed by the algorithms, and heterogeneous parallel architectures to im-
plement them. Our master-worker procedures use the K-means algorithm as
unsupervised method to evaluate the solution provided by each individual,
whose multi-objective fitness is composed of two cost functions, f1 and f2,
corresponding to the minimization and maximization of the intra-cluster and
inter-cluster distances, respectively, as Equations (1) and (2) show:

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 7

f1 = 1−

 W∑
j=1

1

|Ct(j)|
·

 ∑
Pi∈Ct(j)

∥Pi −Kt(j)∥

 (1)

f2 =

W−1∑
j=1

·

∑
i>j

∥Kt(i)−Kt(j)∥

 (2)

being |Ct(j)| the number of patterns in the cluster Ct(j)(j = 1, ..,W) whose
centroid is Kt(j), and ∥Pi − Kt(j)∥ is the Euclidean distance between the
pattern Pi and the centroid Kt(j). As each individual performs one or several
executions of the K-means algorithm, and this is based on a highly paralleliz-
able operation such as the Euclidean distance, we think that a master-worker
procedure that distributes individuals or entire subpopulations on the com-
puting nodes of the cluster could be a good approach to extract the maximum
parallelism. In what follows, we describe the different parallel versions to im-
plement the MOFS procedure in CPU-GPU clusters.

4 Multi-level heterogeneous parallel approach to MOFS

The proposed parallel master-worker procedure for multi-objective feature se-
lection takes advantage of up to four parallelism levels depending on the de-
vices used to evaluate the fitness of the individuals. In this paper, we compare
three different versions for the procedure that differ on the workload distribu-
tion and also in the use of either OpenCL [32] or OpenMP [33] in the corre-
sponding parallel CPU implementations. In what follows, these versions will
be called v1, v2, and v3. The pseudocodes and an extensive analysis for version
v1 are provided in [10,34], while present paper describes and provides a com-
parative analysis of the new version v3, whose master and worker pseudocodes
are shown in Algorithms 1 and 2, respectively.

Version v1 uses OpenCL for both CPU and GPU devices to implement the
K-means algorithm, which performs the fitness evaluation of the individuals
for each subpopulation. In the case of version v2, it differs from v1 in the
CPU implementation, since the K-means is coded by using OpenMP prag-
mas instead of OpenCL. Concerning to the version v3 here proposed, some
improvements in the workload distribution have been added with respect to
versions v1 and v2 in order to reduce not only the running time but also the
energy consumed by the procedure.

The following subsections detail the levels of parallelism implemented for
the three versions, v1, v2, and v3, and their differences. Figure 1 summarizes
all procedure steps, from the creation and distribution of subpopulations done
by the master process, to the fitness evaluation of the individuals in the worker
processes. All steps are repeated several times depending on the total number
of subpopulations to be evolved and the global migration previously set.

8 Juan José Escobar et al.

End?

Final

recombination

Node 1

2x CPU

1x GPU

Node 2

1x CPU

1x GPU

Node 3

2x CPU

1x GPU

Master
Process 0

P
ro

ce
ss

 1

Process 2

P
ro

ce
ss 3

End?

Final

recombination

Node 1

2x CPU

1x GPU

Node 2

1x CPU

1x GPU

Node 3

2x CPU

1x GPU

Master
Process 00

P
ro

ce
ss

 1

Process 2

P
ro

ce
ss 3

WA

WA

Level 1

(Distribution by nodes)

Copy

onto device

Fitness

evaluation

Non-dominated

sorting

Replace

subpopulation

Crossover &

mutation

Dataset, DS, and

centroids

D2S_NSGA-II

Pre-processing and

initialization of the

devices

O
p

e
n

M
P

 t
h

re
a

d
s

Worker

Algorithm

WA

Fig. 1 MPI-OpenMP scheme of the evolutionary procedure to distribute the subpopula-
tions, which constitutes the first and second parallelism levels

4.1 Distribution of subpopulations among nodes

The first level of parallelism corresponds to a dynamic distribution of the
subpopulations over the different workers used in the cluster. It has been
implemented by using OpenMPI [35] as a Message Passing Interface (MPI)
library. We employ this approach instead of a static distribution to avoid
imbalanced workload. Firstly, observing Algorithm 1, the master (MPI process
with rank number 0) initializes the individuals of the subpopulations (line 2).
In line 3, by using an if-else statement, the program checks the total number
of MPI processes that the application is running. If the condition becomes
true, the master will be responsible for doing the entire job. That is, evolve

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 9

Algorithm 1: Pseudocode of the master algorithm for v3. The master
distributes subpopulations among all worker nodes. If only one MPI
process is detected (master), it will evaluate all subpopulations

1 Function Master(Sp,NSpop,M,DS,ND, NW)

Input : Initial subpopulations, Spi; ∀i = 1, ..., NSpop

Input : Number of subpopulations, NSpop, to evolve
Input : Number of individuals in the subpopulation, M
Input : Dataset with the EEG patterns, DS
Input : Number of devices, ND

Input : Number of workers, NW

Output: The hypervolume metric

2 Sp← initSubpopulations(Sp)

3 if Only master is detected then

4 K ← getRandomCentroids(DS)
5 D ← initDevices(DS,K,ND)

6 repeat

7 Sp← evolve(Sp,M,DS,K,D,ND)
8 Sp← globalMigration(Sp,NSpop,M)
9 Sp← nonDominationSorting(Sp,NSpop ·M)

10 until all NGm global migrations are completed;

// Start the dynamic distribution of subpopulations

11 else
12 repeat

13 RemainingWork ← NSpop

14 repeat

15 SR ← With Recv the request of worker Wj is attended
16 sent← min(RemainingWork, SR)
17 Sp → Send sent subpopulations to Wj with Send

18 RemainingWork ← RemainingWork − sent

19 until all NW workers have their first chunk OR RemainingWork is 0;
20 repeat

21 Sp ← Receive 1 subpopulation from the worker W t
j with Recv

22 sent← min(RemainingWork, 1)
23 Sp → Send sent subpopulation to the worker W t

j with Send

24 RemainingWork ← RemainingWork − sent

25 until RemainingWork is 0;

26 Sp← globalMigration(Sp,NSpop,M)
27 Sp← nonDominationSorting(Sp,NSpop ·M)

28 until all NGm global migrations are completed;

// Finish the MPI communications

29 END SIGNAL→ broadcastSignal(NW) with Bcast

30 end

31 S ← subpopulationMerging(Sp,NSpop ·M)
32 return (zitzlerHypervolume(S))

33 End

10 Juan José Escobar et al.

all subpopulations using the available devices of the node to which it belongs,
in conjunction with the necessary global migrations between subpopulations
and the non-dominated sorting (lines 6-10). Since in this case the master also
includes the worker role, it must previously obtain the centroids from dataset
DS, which are necessary to perform the K-means algorithm, and initialize the
devices in lines 4 and 5, respectively.

In versions v1 and v2 the alternative in which the master can have the
worker role does not exist (if-else in line 3), and then a minimum of two MPI
processes are necessary. This would not be relevant if more than one computing
node is available, since one of them would allocate the master process and
the other one the worker process. However, when only one computing node
is available, an MPI process that acts as master and another one that acts
as a worker is still mandatory. Logically, this presents a problem with the
saturation of CPU and memory resources, since each MPI process is mapped
to a logical core of the same node and thus less computing resources are
available to evaluate the fitness of the individuals. In addition, other overheads
such as the message passing between MPI processes or their synchronization
requirements have to be taken into account as it affects to the execution time
and the energy consumed. All this issues have been considered and fixed in
version v3 giving the master the ability to do all the job.

If the if-else statement becomes false, it means that the subpopulations
are not computed by the master. At this point, master and workers are syn-
chronized and ready to start communicating. The distribution of subpopula-
tions to be evolved and the global migration are repeated as many times as
the number of global migrations, NGm, has been set (lines 12-28). Firstly, the
master sends a first chunk of subpopulations to all nodes less than or equal to
the number of subpopulations requested by the worker (lines 14-19). The idea
is to make all nodes busy as soon as possible and thus trying to reduce the
imbalanced work. Then, the master asynchronously continues to attend the re-
quests of each worker, and dynamically distributes the rest of subpopulations
until there is no more work to do (lines 20-25). Then, the master proceeds
to perform a global migration (line 26) between all NSpop subpopulations to
improve their diversity, thus trying to avoid the local optima in order to in-
crease the quality of the solutions. A global migration implies to build a new
set of subpopulations. To define a new subpopulation, the given set of solu-
tions in the subpopulation receives solutions from the rest of subpopulations.
More specifically, each subpopulation contributes with half of its solutions in
its present Pareto’s front at most.

Once all NSpop subpopulations have been evolved, and all NGm global mi-
grations have been completed, the master sends the signal (END SIGNAL)
to the workers to notify that there are no more subpopulations to be evolved
and the MPI communications have ended (line 29). Moreover, the solutions
obtained by the different subpopulations are merged in line 31 to perform the
final subpopulation, which includes the best individuals of each subpopulation
belonging to the Pareto’s front. Finally, in line 32 the solution obtained is
returned to the main function.

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 11

Algorithm 2: Pseudocode of the worker algorithm for v3. The re-
ceived subpopulations from the master are distributed among the de-
vices. If only one subpopulation is received in the first chunk, its in-
dividuals are dynamically assigned to all ND devices to perform the
fitness evaluation
1 Function Worker(M,DS,ND, j)

Input: Number of individuals in the subpopulation, M
Input: Dataset with the EEG patterns, DS
Input: Number of devices, ND

Input: Worker ID, j

2 K ← getRandomCentroids(DS)
3 D ← initDevices(DS,K,ND)

// Start the dynamic request of subpopulations

4 ND → Request the master with Isend as many subpopulations as ND devices
5 Spl ← Receive rcv subpopulations from the master with Recv

6 repeat

/* Start OpenMP section with rcv CPU threads,

W t
j ;∀t = 1, ..., rcv ≤ ND (D2S NSGA-II algorithm) */

7 #pragma omp parallel num threads(rcv)
8 {
9 repeat

10 Spli ← evolve(Spli ,M,DS,K,D,ND)
11 Spli → Return Spli to the master with Isend and ask for another
12 Spli ← W t

j receives new subpopulation from the master with Recv

13 until no new subpopulation is received in Spl;
14 }

/* End OpenMP section. Waiting for the master to perform the

global migration or send the END SIGNAL */

15 ND → Request again the master with Isend ND subpopulations at most
16 Spl ← Receive rcv subpopulations from the master with Recv

17 until the END SIGNAL is received;

18 End

4.2 Distribution of individuals or subpopulations by devices

If more than one MPI process is running, while the master process is schedul-
ing the distribution of subpopulations, the workers (Algorithm 2) perform all
steps of the evolutionary procedure for each subpopulation. To do it, at the
beginning, and after a global migration, each worker Wj requests to the mas-
ter as many subpopulations as devices, ND, are present in the node (lines 4
and 15). However, the number of subpopulations received, Spl, could be lower
than ND if there are not enough subpopulations available to be evolved, as
it is shown in lines 5 and 16. Previously, before starting the MPI communi-
cations with the master, the centroids, K, must be obtained and the devices,
D, initialized. In GPU, the initialization also includes copying some data from
the host, such as the centroids and the DS dataset (lines 2-3).

12 Juan José Escobar et al.

Level 4 (K-means)

Yes

CU2

Core1 Core2 CoreP

Subpopulations?

Subpopulations scheduling

No

Individuals scheduling

Level 2

(Distribution by devices)

CU1 CUP

Level 3 (Distribution by CUs/cores)

Fitness evaluation

Fig. 2 Fitness evaluation in the devices, providing the third an fourth parallelism levels

In the OpenMP section (line 7), as many CPU threads as received sub-
populations, W t

j ;∀t = 1, ..., rcv ≤ ND, are created through the corresponding
OpenMP pragma to parallelize the evolutionary steps contained within the
function evolve (line 10). This way, each subpopulation, Spli , is assigned to
one of these CPU threads, which manage and execute one call to the evolve

function to perform the evolutionary operators for its corresponding subpopu-
lation, such as crossover, mutation, and non-dominated sorting, which are re-
peated according to the required number of subpopulation generations. How-
ever, the evaluation of individuals, also inside the evolve function, may be
executed either on the free CPU cores or on other accelerators, depending on
whether the CPU thread associated with Spli manages the CPU or not.

To summarize, this constitutes the second level of parallelism because the
subpopulations received by the workers are assigned to the available devices,
either the CPU itself or other devices. If the worker receives only one subpop-
ulation, rcv = 1, and one OpenMP thread is created, the second parallelism
level is preserved because the evolve function detects this situation and dy-
namically distributes the individuals among all devices. Thus, two dynamic
scheduling alternatives for evaluation of individuals are present. Figure 2 il-
lustrates more clearly this situation. In the versions v1 and v2, the worker
Wj will not ask for more work to the master until their Spl subpopulations

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 13

have been computed. However, this strategy caused load imbalance since the
devices are not homogeneous, being this imbalance even greater when their
computing capabilities differ significantly. Normally some devices will finish
their work before others, causing idle time for the most powerful devices, and
thus, not only an increase in energy consumption but also a reduction in the
acceleration of the algorithm. Thus, in the v3 version, each thread, W t

j , now
has the capacity to return its subpopulation, Spli , directly to the master, and
ask for a new subpopulation (lines 11-12). The cost of introducing this im-
provement is the elimination of the so-called local migrations implemented in
the v1 and v2 versions to migrate individuals between the subpopulations of
each device. However, we have verified that its elimination does not affect the
quality of the solutions, as it is shown in Section 5. Probably, other strate-
gies to cope with load imbalance could be studied to analyze the computing
capacity of each device in order to assign more work to those that are more
powerful, or modify the clock frequency of the cores to match the running time
of the devices, allowing better performance and energy-saving by eliminating
the idle time. Finally, once the whole process is finished, the OpenMP section
ends (line 14) and the worker Wj waits for the assignment of more work (lines
15-16), or the END SIGNAL signal (line 17), implying that all NGm global
migrations have been carried out by the master, and the workers can return.

4.3 Distribution of individuals by CUs or CPU cores. K-means algorithm

The third and fourth levels of parallelism occur within the evolve function
(lines 7 and 10 of Algorithms 1 and 2, respectively). Regardless of whether one
or multiple subpopulations are evaluated, the third level works with individ-
uals. In version v1, the fitness evaluation is performed by launching OpenCL
kernels, as was proposed in [36], and optimized/analyzed in [37,38]. Each de-
vice distributes individuals among their processing elements, i.e. CPU cores
or Compute Units (CUs), in case of GPUs. Just before calling the kernel, the
individuals to be evaluated must be transferred from the host to the devices.

On the other hand, the implementation of K-means for versions v2 and
v3 is not coded with OpenCL, but in OpenMP. The objective of studying
an OpenMP version is to analyze the impact of both implementations in the
execution time and energy consumed. Its use is also motivated by the ease of
implementation, since a #pragma omp parallel for pragma in the loop that
iterates over the array of individuals is enough to distribute them through
the CPU threads (see Algorithm 3). Although it could be thought that the
result will be the same, it must be taken into account that the OpenCL kernels
for K-means are compiled and executed at runtime (online) by the OpenCL
driver of the CPU, while in the OpenMP versions, v2 and v3, K-means is
compiled by the corresponding C++ compiler. This circumstance, along with
the compiler used and the possible optimizations that each one is able to
achieve, can determine the difference between choosing one option or the other.

14 Juan José Escobar et al.

Algorithm 3: Pseudocode of the OpenMP CPU K-means for v2 and
v3 that evaluates a chunk of individuals
1 Function K-means(I,NI , DS,K,NT)

Input : The individuals to be evaluated, I
Input : Number of individuals to be evaluated, NI

Input : Dataset with the EEG patterns, DS
Input : Set K of W centroids randomly chosen from DS
Input : Number of CPU threads to execute the algorithm, NT

Output: f1(I): intra-cluster distances of I according to Equation (1)
Output: f2(I): inter-cluster distances of I according to Equation (2)

2 #pragma omp parallel for num threads(NT)

3 for i← 1 to NI individuals do

4 KC ← Create a copy of the centroids
5 Initialization of the mapping table, MT ← 0
6 repeat

7 MT ← Patterns in DS are assigned to the cluster
8 D ← Store nearest distance for each pattern
9 Check if any pattern has changed its assignment

10 KC ← Update the centroids using the dataset DS

11 until stop criterion is not reached;

12 f1(Ii)← intraCluster(KC , DS,D)
13 f2(Ii)← interCluster(KC , DS)

14 end
15 return (f1(I), f2(I))

16 End

As commented in Section 3, the fitness evaluation is carried out by applying
a K-means algorithm over each individual. In CPU, since each individual is
assigned to one core, K-means is sequentially executed within that core. In
GPU, as each CU is composed by multiple work-items, the data parallelism
available in K-means allows the parallelization of both centroids assignment
and centroids update, which constitutes the fourth (and last) parallelism level
(see Algorithm 4). We are aware that data parallelism is also possible in the
CPU cores taking into account the usually available vectorization instructions.
It would allow an even more efficient use of the architecture resources although,
for simplicity, this will be considered in our future works.

5 Experimental work

In this section, we analyze the performance of our C++ codes, running on
a cluster that executes CentOS (v7.4.1708) and contains four NUMA nodes
connected by Gigabit Ethernet. The source codes have been compiled with the
GNU compiler (GCC v4.8.5) and the optimization level -O2 for all executions
except of those in Fig. 3, where the Intel compiler (ICC v19.0.0.117) has also
been used. The OpenMPI library used (v1.10.7) has support for the MPI API
(v3.0.0). When multiple nodes are used, the front-end node is dedicated to the

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 15

Algorithm 4: Pseudocode of the OpenCL GPU K-means for v1, v2,
and v3 that evaluates a chunk of individuals. The expression inside
the double angles << expr >> defines the distribution of compute
units and work-items used in the different steps of the algorithm

1 Kernel function K-means(I,NI , DS,K,DSt)

Input : The individuals to be evaluated, I
Input : Number of individuals to be evaluated, NI

Input : Dataset with the EEG patterns, DS
Input : Set K of W centroids randomly chosen from DS
Input : Dataset DSt is DS in column-major order
Output: f1(I): intra-cluster distances of I according to Equation (1)
Output: f2(I): inter-cluster distances of I according to Equation (2)

2 << All compute units,All work-items >>
3 for i← 1 to NI individuals do

4 << Compute unitID,All work-items >>
5 KL ← Copy the centroids from global memory to local memory
6 IL ← Copy individual Ii from global memory to local memory
7 Initialization of the mapping table, MT ← 0
8 repeat

9 << Compute unitID,Work-itemID >>
10 MT ← Patterns in DSt are assigned to the cluster
11 D ← Store nearest distance for each pattern
12 Check if any pattern has changed its assignment

13 << Compute unitID,All work-items >>
14 KL ← Update the centroids using the dataset DS

15 until stop criterion is not reached;

16 << Compute unitID,Work-item number 0 >>
17 f1(IL)← intraCluster(KL, DS,D)
18 f2(IL)← interCluster(KL, DS)

19 end
20 return (f1(I), f2(I))

21 End

master process and the others are the workers. The CPU-GPU characteristics
of each platform are shown in Tables 2 and 3. To perform the data parallelism
of the K-means algorithm in GPU, each CU schedules 1,024 work-items, and
thus the total amount of threads, Tt, in each GPU to perform the algorithm
is Tt = CUs · 1, 024.

In our experiments, we have used three datasets from the BCI Laboratory
at the University of Essex, described in [39]. They correspond to subjects coded
as 104, 107, and 110, and each include 178 EEG patterns with 3,600 features
per pattern. However, we only show the results for dataset 110 due to their
similar results. The maximum value of the cost functions is f1 = f2 = 1.0,
and the hypervolume metric is calculated according to the Zitzler algorithm
[40,41], which uses (0,0) as the reference point, and thus, the maximum value
is hv = 1.0. We have evaluated 3,840 individuals distributed into 1 to 32
subpopulations, along 150 generations, including global migrations between
different nodes (only available in the cluster) and local migrations between

16 Juan José Escobar et al.

Table 2 CPU characteristics of the platforms used in the experiments

Platform Model Cores/Threads
Core

(MHz)
RAM

Front-end
2x Intel Xeon E5-2620 v2 12/24

2,100 32 GB
Node 1
Node 2 1x Intel Xeon E5-2620 v4 8/16
Node 3 2x Intel Xeon E5-2620 v4 16/32

Table 3 GPU characteristics of the platforms used in the experiments

Platform Model CUs/Cores Core/Memory (MHz) RAM
Node 1 1x Tesla K20c 13/2,496 706/5,200 5 GB
Node 2

1x Tesla K40m 15/2,880 745/6,008 12 GB
Node 3

Table 4 Parameters of the implemented NSGA-II algorithm

Total individuals (N) 3,840
Subpopulation Number (NSpop) 1 to 32

Size (M) N/NSpop

Evolution
Generations (g) 150

Selection Binary tournament

Migration
Global (NGm) 5
Local (NLm) 15

Crossover
Type Uniform

Probability 0.75

Mutation
Type Bit inversion

Probability 0.025

subpopulations of the same node (only available for versions v2 and v3). Table
4 summarizes the values of the parameters used in the implemented NSGA-II
algorithm. Due to the total number of generations is 150, each global migration
is performed every 30 generations and one local migration every 10 generations
in the cases where they are enabled. All experiments have been repeated 20
times to obtain more reliable measurements on the behavior of the procedure.

The instantaneous power and the energy consumption of the four nodes
of our cluster have been measured by a watt-meter we have developed based
on Arduino Mega. It provides, in real-time, four measures per second for each
node corresponding to the instantaneous power (in Watts) and the cumulated
consumed energy (in W ·h) of the whole node. Moreover, in the measures, the
instantaneous power and the energy consumed by the switch, necessary for the
communications, are included too (below 5 W). However, as it will be shown
in Subsection 5.1, the consumption of the switch is much lower compared to
the consumption of the devices.

5.1 Experimental results

Figure 3 provides the measures for running time and energy consumption when
using the GCC and Intel compilers, and the optimization levels -O2 and -O3.

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 17

v1-O2 v1-O3 v2-O2 v2-O3 v3-O2 v3-O3

Version - Optimization level

650

700

750

800

850

900

T
im

e
 (

s
)

GCC

Intel

(a)

v1-O2 v1-O3 v2-O2 v2-O3 v3-O2 v3-O3

Version - Optimization level

32

34

36

38

40

42

E
n
e
rg

y
 (

W
 ·
h
)

GCC

Intel

(b)

Fig. 3 Comparison of (a) running time and (b) energy consumed obtained in node N2 for
versions v1, v2, and v3 with 1 subpopulation and CPU-only configuration. Code compiled
with GCC and Intel compilers, and optimization levels -O2 and -O3

They have been obtained after executing the versions v1, v2, and v3 in node
N2 in an CPU-only configuration. Focusing on the GCC compiler, it can be
observed that v2 and v3, which are the same program as v1 but with OpenMP
implementation in CPU, are worse because the Intel OpenCL driver seems to
apply better optimizations on the OpenCL code than those provided by GCC
on the OpenMP code. Even the use of the optimization level -O3 is not enough
to achieve the performance of v1. An inexperienced programmer might think
that the compilation with -O3 cannot be valid in heterogeneous systems since
there would be a risk of incompatibility of the executable with the different
processors of each node. However, the mpirun command offers the possibility
to specify a binary file for each MPI process that runs the program. Using this
properly can be more or less easy and will depend on the application and how
it is executed, as for example the order of the MPI processes or the number of
them changes each time the application is executed. On the other hand, when
analyzing the behavior of the bars for the Intel compiler, what is observed is
that v1 gets similar execution times since the Intel compiler cannot act on the
OpenCL code, and in general all results obtained by the GCC compiler have
been improved. This is logical considering that both CPU and compiler have
been designed by Intel. The difference is even greater when the optimization
level -O3 has been used, since it seems that the Intel compiler has applied
more aggressive optimizations, allowing to versions v2 and v3 decrease by
approximately 19% the execution time and energy consumed by v1.

Figure 4 provides the time, energy consumption and solution quality (hy-
pervolume of the Pareto’s front obtained by the corresponding version) after
executing the versions v1, v2, and v3 in all nodes (Tables 2 and 3 show the
CPU-GPU characteristics of each node). Figures 4.a and 4.b compare the time
and energy for different versions from 1 to 32 subpopulations. From these fig-
ures, it is clear that version v3 provides best values for both running time and
energy consumption than v1 and v2 from 10 to 32 subpopulations. In the case
of from 1 to 9 subpopulations, v3 is better (or similar) in time and energy con-

18 Juan José Escobar et al.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of subpopulations

0

100

200

300

400

500

T
im

e
 (

s
)

v1

v2

v3

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of subpopulations

0

15

30

45

60

75

90

E
n

e
rg

y
 (

W
 ·

h
)

v1

v2

v3

(b)

v1 -4 v2 -4 v3 -4 v1 -8 v2 -8 v3 -8 v1 -16 v2 -16 v3 -16 v1 -32 v2 -32 v3 -32
0.97

0.975

0.98

0.985

0.99

0.995

1

H
y
p
e
rv

o
lu

m
e

Version - Number of subpopulations

(c)

Fig. 4 Behavior of versions v1, v2, and v3 using all nodes in CPU-GPU configuration.
Subpopulations from 1 to 32 for (a) running time and (b) energy consumed; (c) hypervolume
(4, 8, 16, 32 subpopulations). Code compiled with GCC and optimization level -O2

sumption than v2. Moreover, it can be observed that the lowest running time
has been obtained when using 28 subpopulations. Figure 4.c only provides the
hypervolume boxplots of the Pareto’s front for 4, 8, 16, and 32 subpopulations.
Nevertheless, we have checked that the obtained hypervolumes from 1 to 32
subpopulations are higher than 0.975, thus corresponding to solutions with
adequate quality levels (the maximum hypervolume value is hv = 1.0).

As the lowest running time corresponds to the use of 28 subpopulations
in version v3, we have calculated the equivalent runtime and energy measure

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 19

for the sequential version by using the CPU of node N3, obtaining Tseq =
11, 840.26 seconds and Eseq = 626.2 W·h. Thus, the parallel version provides
a peak reduction in time by a factor of up to 83, and only requires about a
4.9% of the energy consumed by the sequential procedure.

5.2 An approach to explain the observed behavior for execution time and
energy consumption

In what follows, we provide an insight of the reasons that explain the energy
consumption and runtime of the implemented workload distribution alterna-
tives, which are experimentally observed and shown in Figure 4. To do that,
we use simple time and energy models whose purpose is not to achieve an
accurate quantitative prediction of the experimentally measured data but to
understand the observed behavior in order to extract conclusions about the
best alternative to select according to the power-performance goals. The mod-
els here described are based on those proposed in [28] for a population dis-
tributed among the available CPU and GPU processing elements of a node to
compute the fitness of each individual. The model for runtime starts from the
following equation:

t = g ·
(
N · tmaster +max

(⌈
x ·N
PGPU

⌉
· tGPU ,

⌈
(1− x) ·N

PCPU

⌉
· tCPU

))
(3)

where g is the number of generations, N is the number of individuals in the
population, and PCPU and PGPU are, respectively, the CPU cores and GPU
CUs in the platform. It is considered that the x ·N individuals allocated to the
GPU are equally distributed among its CUs, and the (1 − x) · N individuals
are equally distributed among the CPU cores. The parameter tmaster corre-
sponds to the time required by one of the cores to process the master task
comprising the distribution of individuals among the CPU and GPU process-
ing elements, and the computation of evolutionary operators once the fitness
of the individuals have been processed for a given generation. The parameters
tCPU and tGPU are, respectively, the time required by the CPU cores and the
GPU CUs to evaluate one individual. The parameters tmaster, tCPU and tGPU

can be also expressed as a function of the corresponding workload and the fre-
quency of the corresponding processor as tmaster = Wmaster

FCPU
, tCPU = WCPU

FCPU
,

and tGPU = WGPU

FGPU
, where FCPU and FGPU are the frequencies of, respectively,

the CPU and GPU processing elements, and Wmaster, WCPU , and WGPU are
respectively, estimations of the cycles of the workloads for the master task, the
evaluation of an individual in the CPU, and the evaluation of an individual in
the GPU. This way:

t = g ·
(
N · Wmaster

FCPU
+max

(⌈
x ·N
PGPU

⌉
· WGPU

FGPU
,

⌈
(1− x) ·N

PCPU

⌉
· WCPU

FCPU

))
(4)

20 Juan José Escobar et al.

where it is supposed that the times tCPU and tGPU required to evaluate one
individual are the same for all individuals evaluated by the corresponding
device. The EEG feature selection for BCI here considered can be suitably
modelled this way as the evaluation of each individual has been done by a fixed
number of iterations of the K-means algorithm. Thus, it can be supposed that
the parallelism provided by the GPU gives similar acceleration to theK-means
algorithm for all individuals in the population [38]. By using the estimations
of Wmaster, WCPU , and WGPU done as in [28], for each node of the cluster and
the characteristics shown in Tables 2-4, it is possible to derive an approximate
runtime model of the parallel codes for the heterogeneous cluster as follows.

In all v1, v2, and v3 versions, the master tasks are executed by a thread
running in one of the nodes of the cluster and distributes the subpopulations
among the rest of nodes in the cluster, which will execute the generations of the
subpopulations allocated to each one along with the local migrations among
subpopulations in the same node (only for v1 and v2). Once a given node com-
pletes the processing of generations between local migrations corresponding to
the subpopulations previously allocated, it asks for more subpopulations to
the master. When the subpopulation generations and the evolutionary opera-
tors among global migrations have been processed by the corresponding node,
the subpopulations are sent to the master node. Then, once the information
from all nodes have been received, a new set of subpopulations is built and
distributed again among the nodes of the cluster. By the definition of CGPU

and CCPU in Equations (5) and (6) as the workload assigned to the GPU and
CPU, respectively, the time required by the i-th node to compute the gen-
erations of a subpopulation between each global migration can be estimated
according to Equation (7):

CGPU = x ·
(

N

NSpop

)
·∆NSpop (5)

CCPU = (1− x) ·
(

N

NSpop

)
·∆NSpop (6)

Ti = NLm ·
(
g ·max

(⌈
CGPU

PGPU

⌉
· WGPU

FGPU
,

⌈
CCPU

PCPU

⌉
· WCPU

FCPU

)
+ TLm

)
(7)

where NLm is the number of local migrations among subpopulations in the
same node and TLm the time required to process a local migration. In the
previous equation, ∆NSpop the number of subpopulations the master sends to
a given node once it asks for more work. The versions v1 and v2 use ∆NSpop =
2, while ∆NSpop = 1 in v3. This way, the granularity of the interchanges
of information between the master node and the nodes that evaluated the
subpopulations is coarser for v1 and v2 than for v3, and in the equation:

Tcluster = NGm · (Tmaster +max (Ti;∀i = 1, ..., Nnodes) + Tcom) (8)

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 21

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of subpopulations

0

100

200

300

400

500

T
im

e
 (

s
)

v2

v2 model

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of subpopulations

0

100

200

300

400

500

T
im

e
 (

s
)

v3

v3 model

(b)

Fig. 5 Comparison of runtime between the experimental data shown in Fig. 4.a and the
corresponding model, using all nodes in CPU-GPU configuration. Code compiled with GCC
and optimization level -O2. Subpopulations from 1 to 32: (a) v2 ; (b) v3

that estimates the runtime of the application, Tcluster, when all NGm global
migrations are completed. The magnitude of the communication time between
nodes, Tcom, is higher for v1 and v2 than for v3. Figures 5.a and 5.b com-
pare the experimental and modeled running time for the versions v2 and v3,
respectively. Although there are significant deviations in the predictions for
some cases, the model provides a shape that correctly shows the changes in
case of one to six subpopulations, and also shows the presence of sawtooth
in the evolution of the running time as the number of subpopulations grows.
To quantitatively evaluate the quality of the fit of our model, we have used
the Normalized Root-Mean-Squared Error (NRMSE), a standard criteria for
regression whose values are between (−∞, 1] depending on if there is a bad
fit between the model and the experimental data or a perfect fit, respectively.
Values of NRMSE = 0.439 for v2 and NRMSE = 0.787 for v3 have been
obtained (in [42] a value of NRMSE > 0.2 is considered as a good result).

With respect to the estimation of the energy consumption, a model based
on the product of running times and the average instantaneous power con-

22 Juan José Escobar et al.

sumed by each node and the switch along different steps of those running
times has been used. Thus, the energy consumed by a node of the cluster can
be approximated by using the average of their instantaneous power consumed,
Powi, when it is executing the corresponding workload allocated to it, and the
average of the instantaneous power when the node is idle, Powidle

i . Thus, the
energy consumed by the i-th element of the cluster, Ei, could be estimated by:

Ei = Powi · Ti + Powidle
i · (Tcluster − Ti) (9)

This way, the amount of energy consumed by the cluster is obtained by
the sum of the energy consumed by all nodes plus the energy consumed by the
network. The energy consumed by the network could be estimated from the
product of Tcom and the average of the instantaneous power consumed by the
switch when there is communication among nodes, PowSW , and the product
of (Tcluster − Tcom) and the average instantaneous power consumed by the
network when there is not any communication, Powidle

SW . The quality of this
approach to estimate the energy consumption depends on the behavior of the
instantaneous power as we are assuming that the instantaneous power of each
element of the cluster (nodes and switch in our case) only shows two different
average values in its evolution: one when it is doing useful work and another
one when it is idle. Of course, this situation does not exactly happen, but if
the experimental values are quite close to two different average values, the
approach here considered could be useful to estimate the energy consumption.

Figure 6 shows the evolution of the instantaneous power of the nodes and
switch of the cluster for versions v2 and v3, using 6 and 32 subpopulations.
Some conclusions can be drawn from these figures, that reveal the way the
runtime system takes advantage of the resources offered by the processors
to achieve a more efficient energy consumption when running this program.
The standard Advanced Configuration and Power Interface (ACPI) [43], in-
cludes mechanisms to manage and save energy and provides information about
the configuration and control of the processor states in terms of energy con-
sumption and performance. In the same way, the Linux kernel implements
the infrastructure Cpufreq [44] that allows the operating system (either auto-
matically through the events generated by the ACPI or through user program
calls) to change the operating frequency of the processor for energy-saving. Al-
though the so-called governors are included in Cpufreq to implement specific
policies to control the processor clock, in this paper we are more interested on
the observation whether to change the workload distribution strategy affects
in the energy-saving strategy.

From previous figures, it is clear that the most part of the instantaneous
power corresponds to nodes N1 to N3 where the main part of the work is be-
ing processed. The instantaneous power consumed by the network is quite low
in comparison with the energy consumption of the devices. Nodes N1 to N3,
which present the highest instantaneous power, clearly show two situations
corresponding to their working and idle states. The observed instantaneous
power exhibits changes in these two situations but these changes are smaller

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 23

50 100 150 200 250 300

Time (s)

0

40

80

120

160

200

240

280

In
s
ta

n
ta

n
e

o
u

s
 p

o
w

e
r

(W
)

Front-end

N1

N2

N3

Switch

(a)

50 100 150 200 250

Time (s)

0

40

80

120

160

200

240

280

In
s
ta

n
ta

n
e

o
u

s
 p

o
w

e
r

(W
)

Front-end

N1

N2

N3

Switch

(b)

50 100 150 200 250 300

Time (s)

0

40

80

120

160

200

240

280

In
s
ta

n
ta

n
e

o
u

s
 p

o
w

e
r

(W
)

Front-end

N1

N2

N3

Switch

(c)

50 100 150

Time (s)

0

40

80

120

160

200

240

280

In
s
ta

n
ta

n
e

o
u

s
 p

o
w

e
r

(W
)

Front-end

N1

N2

N3

Switch

(d)

Fig. 6 Instantaneous power using all nodes for versions v2 and v3 in CPU-GPU configu-
ration. Code compiled with GCC and optimization level -O2: (a) v2, 6 subpopulations; (b)
v2, 32 subpopulations; (c) v3, 6 subpopulations; (d) v3, 32 subpopulations

than the differences between the mean instantaneous power for these two alter-
natives. With respect to N2, the instantaneous power does not clearly presents
the behavior shown by N1 and N3. In this case, it seems that the instantaneous
power oscillates around a value that is lower than those values corresponding
to the highest values shown for N1 and N2, but similar to the lowest values
for N1 and N2 (corresponding to their consumption when they are idle).

Figure 7 shows the histograms of the instantaneous power values exper-
imentally measured for all nodes, and versions v2 and v3 along with the
corresponding density function obtained by a smoothing function fit of the
histograms [45]. The number of bins in the histograms is equal to the square
root of the number of samples experimentally obtained for each case. As it
can be seen, the density functions present two maxima. The two instantaneous
power values for these two maxima can be used as estimators of the parame-
ters Powi and Powidle

i used in the energy model for the node Ni: the highest
instantaneous power estimates Powi, and the lowest estimates Powidle

i .

Table 5 provides the estimated values of Powi and Powidle
i for versions v2

and v3 and all nodes. They have been obtained as the average of the maxima
in the density functions corresponding to histograms for 6, 8, 16, 24 and 32
subpopulations. The values show that the estimated values for Powi are higher

24 Juan José Escobar et al.

125 150 175 200 225 250
Instantaneous power (W)

0

20

40

60

80

F
re

qu
en

cy

(a)

125 150 175 200 225 250 275
Instantaneous power (W)

0

20

40

60

80

100

120

F
re

qu
en

cy
(b)

140 150 160 170 180 190
Instantaneous power (W)

0

10

20

30

F
re

qu
en

cy

(c)

Fig. 7 Histograms of the instantaneous power in CPU-GPU configuration. Code compiled
with GCC and optimization level -O2. Version v2 and 6 subpopulations for nodes (a) N1
and (b) N3. Version v3 and 32 subpopulations for node (c) N2

Table 5 Standard deviation of the estimated Powi and Powidle
i for all nodes in CPU-GPU

configuration, and versions v2 and v3. Code compiled with GCC and optimization level -O2

Node Version Powidle
i (W) Powi (W)

N1
v2 156.30± 0.82 224.72± 4.61
v3 156.58± 1.47 234.72± 2.65

N2
v2 146.08± 8.51 160.01± 4.69
v3 154.38± 3.41 177.36± 3.21

N3
v2 172.76± 6.78 226.38± 4.81
v3 170.14± 2.16 244.58± 2.93

v2-I v3-I v2-W v3-W
150

170

190

210

230

250

In
s
ta

n
ta

n
e

o
u

s
 p

o
w

e
r

(W
)

Version - Power state

(a)

v2-I v3-I v2-W v3-W
130

140

150

160

170

180

In
s
ta

n
ta

n
e

o
u

s
 p

o
w

e
r

(W
)

Version - Power state

(b)

v2-I v3-I v2-W v3-W
150

170

190

210

230

250

In
s
ta

n
ta

n
e

o
u

s
 p

o
w

e
r

(W
)

Version - Power state

(c)

Fig. 8 Graphical comparison of the values shown in Table 5 for the power states (I) Idle
and (W) Workload in CPU-GPU configuration: (a) Node N1; (b) Node N2; (c) Node N3.
Code compiled with GCC and optimization level -O2

for version v3 than for v2. This trend is similar for Powidle
i except in one case.

Moreover, the differences among the estimated Powidle
i for v2 and v3 are lower

than those estimated for Powi. All these conclusions have been tested for
statistical significance by applying the Kolmogorov-Smirnov and the Kruskal-
Wallis tests. Table 6 provides the obtained p-values for the previous boxplots
and shows that except for two cases (bold cells), the differences between the
other alternatives are significant (p-values below 0.05). Thus, the parameters
estimated for Powi and Powidle

i can be used in the approximated models to
provide an insight about the experimental results obtained.

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 25

Table 6 p-values for boxplots of Fig. 8 (p-values below 0.05 mean significant differences)

Node Instantaneous power comparison p-value

Powidle
N1

(v2) vs PowN1
(v2) 0.008

Powidle
N1

(v3) vs PowN1
(v3) 0.009

Powidle
N1

(v2) vs Powidle
N1

(v3) 0.753
N1

PowN1 (v2) vs PowN1 (v3) 0.008

Powidle
N2

(v2) vs PowN2
(v2) 0.009

Powidle
N2

(v3) vs PowN2
(v3) 0.009

Powidle
N2

(v2) vs Powidle
N2

(v3) 0.028
N2

PowN2
(v2) vs PowN2

(v3) 0.009

Powidle
N3

(v2) vs PowN3
(v2) 0.008

Powidle
N3

(v3) vs PowN3
(v3) 0.008

Powidle
N3

(v2) vs Powidle
N3

(v3) 0.465
N3

PowN3
(v2) vs PowN3

(v3) 0.008

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of subpopulations

0

15

30

45

60

75

90

E
n
e
rg

y
 (

W
 ·
h
)

v2

v2 model

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of subpopulations

0

15

30

45

60

75

90

E
n
e
rg

y
 (

W
 ·
h
)

v3

v3 model

(b)

Fig. 9 Comparison of energy consumption between the experimental data shown in Fig. 4.b
and the corresponding model, using all nodes in CPU-GPU configuration. Code compiled
with GCC and optimization level -O2. Subpopulations from 1 to 32: (a) v2 ; (b) v3

26 Juan José Escobar et al.

Figures 9.a and 9.b compare the experimental values for the energy con-
sumption with those estimated by the approximate model we have used, re-
spectively for the versions v2 and v3. The values of NRMSE for these two
alternatives are 0.403 for v2, and 0.744 for v3, thus corresponding to accept-
able model approximations. As the previously described model for runtime,
the model for energy shows similar behavior as the experimental results from
one to six subpopulations, and also exhibits the sawtooth behavior when the
number of subpopulations changes.

6 Conclusions

Different versions of a parallel procedure for multi-objective feature selection
in EEG classification for BCI tasks have been implemented to take advantage
of heterogeneous clusters whose nodes include CPU and GPU devices. The cor-
responding codes use MPI, OpenMP and/or OpenCL libraries to implement
message-passing and shared-memory communication and benefit from thread-
level and data-level parallelism across a heterogeneous CPU-GPU cluster. Ver-
sions v1, v2, and v3, compared in this paper, implement a master-worker evo-
lutionary algorithm based on subpopulations but they differ in their workload
distribution strategy and in the use of either OpenCL or OpenMP to evaluate
the individuals of each subpopulation when using CPU. Thus, in v1 the fitness
evaluation of the individuals is coded with OpenCL in both CPU and GPU,
while in v2 and v3 the evaluation in CPU is coded with OpenMP. When these
alternative versions are executed by using only CPU, v1 obtains slightly better
results in both time and energy consumption than versions v2 and v3 when-
ever the GCC compiler has been used, because the OpenCL driver used for v1
applies all optimizations by default, while v2 and v3 only take advantage of
the relatively less effective GCC optimizations (regardless of the optimization
level applied). Nevertheless, when the Intel compiler and the -O3 optimiza-
tion level are applied to generate the executable, v2 and v3 show relevant
decrements in runtime and energy consumed when they are compared to v1.

The performances of v1, v2, and v3 when they are executed in the cluster
show differences in both time and energy consumption as v1 and v2 use a
different strategy from v3 to distribute the workload. Thus, although in all
versions the subpopulations are dynamically distributed among the nodes, in
versions v1 and v2 the worker nodes do not ask the master for more subpopu-
lations until the subpopulations assigned to CPU and GPU are computed after
completing the local migrations. In v3, once a subpopulation is computed, the
worker node can ask for a new subpopulation and there is only synchroniza-
tion among global migrations as the local migrations has been removed (we
have experimentally seen this does not affect to the quality of the solutions).
This way, the granularity of the information interchanged between master and
worker nodes is finer for v3 than for v1 and v2. These circumstances could ex-
plain the improvement in time and energy consumption observed for v3 with
respect to v1 and v2. Approximated models for time and energy consumption

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 27

have been fitted by taking into account the characteristics of the nodes in
the platform, and the experimental evolution of their instantaneous power, to
explain the experimental results. These models provide acceptable fits to the
experimental data as they show similar shapes in the sawtooth behavior for v2
and v3, which is caused by workload imbalances. Due to the granularity in v3
is lower than in v2, the sawtooth decrease and the energy-time performance
improves for v3 when increasing the number of subpopulations.

The results show that the proposed parallel approaches are able not only
to accelerate the runtime but also to reduce the energy consumption with
respect to a sequential implementation. Time has been reduced by a factor
higher than 83 with the implemented parallel versions, requiring only about a
4.9% of the energy consumed by the corresponding sequential code when us-
ing all nodes of our CPU-GPU cluster. However, new studies could be useful
to complete the experimental analysis for new alternatives and experimental
situations. For example, a detailed analysis of energy consumption devoted to
communications or a better study about about the effect of the different steps
of the parallel evolutionary algorithm in the instantaneous power would be
also interesting to devise new strategies for energy-efficient programming. In
addition, the algorithm must be improved when there are few subpopulations
to avoid idle devices and nodes. We are working on a new version in which
the granularity in the workload distribution is finer considering three alterna-
tives: (i) discard the scheduling of subpopulations in favor of a more efficient
scheduling of individuals, although it may involve more MPI communications;
(ii) keep both strategies but prioritize the distribution by nodes instead of
by devices. When each node detects that only one subpopulation has been
received, the scheduling of individuals is applied and all devices of that node
cooperate to evaluate the individuals; (iii) keep both strategies and detect the
size of the problem when the program starts, to subsequently apply either the
scheduling of subpopulation, or the scheduling of individuals during all execu-
tion, although a suitable study should be accomplished to find the threshold
that determines which is the optimal approach.

Acknowledgements We would like to thank the BCI laboratory of the University of Essex,
especially prof. John Q. Gan, for allowing us to use their databases

References

1. O’brien, K., Pietri, I., Reddy, R., Lastovetsky, A., Sakellariou, R.: A survey of power
and energy predictive models in hpc systems and applications. ACM Computing Surveys
50(3), 37:1–37:38 (2017)

2. Zhang, Y., Hu, X., Chen, D.: Task scheduling and voltage selection for energy minimiza-
tion. In: Proceedings of the 39th Annual Design Automation Conference. pp. 183–188.
DAC’2002, ACM, New Orleans, Louisiana, USA (June 2002)

3. Baskiyar, S., Abdel-Kader, R.: Energy aware dag scheduling on heterogeneous systems.
Cluster Computing 13(4), 373–383 (2010)

4. Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing systems
under different operating conditions. IEEE Transactions on Parallel and Distributed
Systems 22(8), 1374–1381 (2011)

28 Juan José Escobar et al.

5. Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A., Talbi, E.G., Bouvry, P.: A
hierarchical approach for energy-efficient scheduling of large workloads in multicore
distributed systems. Sustainable Computing: Informatics and Systems 4(4), 252–261
(2014)

6. Barik, R., Farooqui, N., Lewis, B., Hu, C., Shpeisman, T.: A black-box approach to
energy-aware scheduling on integrated cpu-gpu systems. In: Proceedings of the 2016
International Symposium on Code Generation and Optimization. pp. 70–81. CGO’2016,
ACM, Barcelona, Spain (March 2016)

7. Ortega, J., Asensio-Cubero, J., Gan, J., Ortiz, A.: Classification of motor imagery tasks
for BCI with multiresolution analysis and multiobjective feature selection. BioMedical
Engineering OnLine 15(1), 149–164 (2016)

8. Raju, K., Niranjan, N.: A survey on techniques for cooperative cpu-gpu computing.
Sustainable Computing: Informatics and Systems 19, 72–85 (2018)

9. Mittal, S., Vetter, J.: A survey of methods for analyzing and improving gpu energy
efficiency. ACM Computing Surveys 47(2), 19:1–19:23 (2014)

10. Escobar, J., Ortega, J., Dı́az, A., González, J., Damas, M.: Speedup and energy anal-
ysis of eeg classification for bci tasks on cpu-gpu clusters. In: Proceedings of the 6th
International Workshop on Parallelism in Bioinformatics. pp. 33–43. PBIO’2018, ACM,
Barcelona, Spain (September 2018)

11. Vidal, P., Alba, E., Luna, F.: Solving optimization problems using a hybrid systolic
search on gpu plus cpu. Soft Computing 21(12), 3227–3245 (2017)

12. Luong, T., Melab, N., Talbi, E.G.: Gpu-based island model for evolutionary algorithms.
In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computa-
tion. pp. 1089–1096. GECCO’2010, ACM, Portland, OR, USA (July 2010)

13. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the cuda architecture.
In: Proceedings of the 13th European Conference on the Applications of Evolutionary
Computation. pp. 442–451. EvoApplications’2010, Springer, Istambul, Turkey (April
2010)

14. Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-objective
optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Compu-
tation on GPGPUs, pp. 267–286. Natural Computing Series, Springer (2013)

15. Wong, M., Cui, G.: Data mining using parallel multi-objective evolutionary algorithms
on graphics processing units. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evo-
lutionary Computation on GPGPUs, pp. 287–307. Natural Computing Series, Springer
(2013)

16. Gainaru, A., Slusanschi, E., Trausan-Matu, S.: Mapping data mining algorithms on
a gpu architecture: A study. In: Proceedings of the 19th International Symposium.
Foundations of Intelligent Systems. pp. 102–112. ISMIS’2011, Springer, Warsaw, Poland
(June 2011)

17. Coello Coello, C., Sierra, M.: A study of the parallelization of a coevolutionary multi-
objective evolutionary algorithm. In: Proceedings of the 3rd Mexican International Con-
ference on Artificial Intelligence. pp. 688–697. MICAI’2004, Springer, Mexico City, Mex-
ico (April 2004)

18. Pruhs, K., Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints.
Theory of Computing Systems 43(1), 67–80 (2008)

19. Rotem, E., Weiser, U., Mendelson, A., Ginosar, R., Weissmann, E., Aizik, Y.: H-
earth: Heterogeneous multicore platform energy management. IEEE Computer Mag-
azine 49(10), 47–55 (2016)

20. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling on
multicore heterogeneous grid computing systems. Journal of Grid Computing 11(4),
653–680 (2013)

21. Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J., Zhang, L.,
Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A., Xu, C.Z., Balaji, P., Vishnu,
A., Pinel, F., Pecero, J., Kliazovich, D., Bouvry, P.: An overview of energy efficiency
techniques in cluster computing systems. Cluster Computing 16(1), 3–15 (2013)

22. Hong, S., Kim, H.: An integrated gpu power and performance model. SIGARCH Com-
puter Architecture News 38(3), 280–289 (2010)

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 29

23. Ge, R., Feng, X., Burtscher, M., Zong, Z.: Peach: A model for performance and energy
aware cooperative hybrid computing. In: Proceedings of the 11th ACM Conference on
Computing Frontiers. pp. 24:1–24:2. CF’2014, ACM, Cagliari, Italy (May 2014)

24. De Sensi, D.: Predicting performance and power consumption of parallel applications.
In: Proceedings of the 24th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. pp. 200–207. PDP’2016, IEEE, Heraklion Crete, Greece
(February 2016)

25. Marowka, A.: Energy consumption modeling for hybrid computing. In: Proceedings of
the 18th International Conference on Parallel Processing, Euro-Par 2012. pp. 54–64.
Euro-Par’2012, Springer, Rhodes Island, Greece (August 2012)

26. Ma, K., Li, X., Chen, W., Zhang, C., Wang, X.: Greengpu: A holistic approach to energy
efficiency in gpu-cpu heterogeneous architectures. In: Proceedings of the 41st Interna-
tional Conference on Parallel Processing. pp. 48–57. ICPP’2012, IEEE, Pittsburgh, PA,
USA (September 2012)

27. Allen, T., Ge, R.: Characterizing power and performance of gpu memory access. In:
Proceedings of the 4th International Workshop on Energy Efficient Supercomputing.
pp. 46–53. E2SC’2016, IEEE Press, Salt Lake City, Utah, USA (November 2016)

28. Escobar, J., Ortega, J., Dı́az, A., González, J., Damas, M.: Energy-aware load balancing
of parallel evolutionary algorithms with heavy fitness functions in heterogeneous cpu-
gpu architectures. Concurrency and Computation: Practice and Experience p. e4688
(2018)

29. Free Software Foundation: Gnu gprof documentation.
https://ftp.gnu.org/pub/old-gnu/Manuals/gprof-2.9.1/html node/gprof toc.html

(Accessed: 2017-02-10)
30. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal

of Machine Learning Research 3, 1157–1182 (March 2003)
31. Charikar, M., Guruswami, V., Kumar, R., Rajagopalan, S., Sahai, A.: Combinatorial

feature selection problems. In: Proceedings of the 41st Annual Symposium on Founda-
tions of Computer Science. pp. 631–640. FOCS’2000, IEEE, Redondo Beach, CA, USA
(November 2000)

32. Khronos Group: Khronos opencl registry. https://www.khronos.org/registry/cl/

(2015), accessed: 2015-11-30
33. OpenMP Community: Openmp specifications. http://www.openmp.org/specifications/

(Accessed: 2016-11-21)
34. Escobar, J., Ortega, J., Dı́az, A., González, J., Damas, M.: Multi-objective feature selec-

tion for eeg classification with multi-level parallelism on heterogeneous cpu-gpu clusters.
In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation.
pp. 1862–1869. GECCO’2018, ACM, Kyoto, Japan (July 2018)

35. The Open MPI Project: Openmpi documentation. https://www.open-mpi.org/doc/

(Accessed: 2018-11-19)
36. Escobar, J., Ortega, J., González, J., Damas, M.: Assessing parallel heterogeneous com-

puter architectures for multiobjective feature selection on eeg classification. In: Proceed-
ings of the 4th International Conference on Bioinformatics and Biomedical Engineering.
pp. 277–289. IWBBIO’2016, Springer, Granada, Spain (April 2016)

37. Escobar, J., Ortega, J., González, J., Damas, M.: Improving memory accesses for het-
erogeneous parallel multi-objective feature selection on eeg classification. In: Proceed-
ings of the 4th International Workshop on Parallelism in Bioinformatics. pp. 372–383.
PBIO’2016, Springer, Grenoble, France (August 2016)

38. Escobar, J., Ortega, J., González, J., Damas, M., Dı́az, A.: Parallel high-dimensional
multi-objective feature selection for eeg classification with dynamic workload balancing
on cpu-gpu. Cluster Computing 20(3), 1881–1897 (2017)

39. Asensio-Cubero, J., Gan, J., Palaniappan, R.: Multiresolution analysis over simple
graphs for brain computer interfaces. Journal of Neural Engineering 10(4), 21–26 (2013)

40. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a
comparative case study. In: Proceedings of the 5th International Conference on Par-
allel Problem Solving from Nature. pp. 292–301. PPSN V, Springer, Amsterdam, The
Netherlands (September 1998)

41. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Ap-
plications. Shaker Verlag Germany (1999)

30 Juan José Escobar et al.

42. Ŝırbu, A., Babaoglu, O.: Power consumption modeling and prediction in a hybrid cpu-
gpu-mic supercomputer. In: Proceedings of the 22nd International Conference on Paral-
lel Processing, Euro-Par 2016. pp. 117–130. Euro-Par’2016, Springer, Grenoble, France
(August 2016)

43. Advanced Configuration and Power Interface (ACPI): Acpi specification.
http://www.acpi.info/spec.htm (Accessed: 2018-11-30)

44. CPUFreq Governors: Information for users and developers.
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt (Accessed:
2018-11-30)

45. Mathworks: Matlab histfit function. https://mathworks.com/help/stats/histfit.html
(Accessed: 2018-12-02)

Juan José Escobar received the M.Sc. degree in com-
puter science from the University of Granada, Spain, in
2014. Currently he is a Ph.D. student at the Department
of Computer Architecture and Technology of the Univer-
sity of Granada. His main research interests include code
optimization, energy-efficient parallel and distributed com-
puting, and workload balancing strategies, specially in is-
sues related to the development of heterogeneous parallel
algorithms for evolutionary multi-objective feature selec-
tion problems

Julio Ortega received his B.Sc. degree in Electronic
Physics in1985, M.Sc. degree in Electronics in 1986, and
Ph.D. degree in 1990 from the University of Granada,
Spain. His Ph.D. dissertation has received the Award of
Ph.D. dissertations of the University of Granada. He was
at the Open University, U.K., Department of Electronics
(University of Dortmund, Germany), and Department of
Computer Science and Electrical Engineering (University
of Essex, UK), as invited researcher. Currently he is a Full
Professor at the Department of Computer Architecture and
Technology of University of Granada and Senior Member of
the IEEE Computer Society. He has published more than
200 technical papers and contributions to international con-
ferences. His research interests include the processing of
parallel computer architectures, multi-objective optimiza-
tion, neural networks, and evolutionary computation

Analysis of Multi-level Parallelism in CPU-GPU Clusters for EEG Classification 31

Antonio F. Dı́az received the M.S. degree in electronic
physics in 1992 and the Ph.D. degree in 2001, both from
the University of Granada, Spain. In 1993, he was at the
Institute National Polythechnique of Grenoble, France as
visitor researcher. Currently, he is an Associate Professor in
the Department of Computer Architecture and Technology,
the University of Granada. His research interests are in the
fields of: cluster computing, GPUs, high performance mass
storage and parallel I/O

Jesús González received the M.A.Sc. degree in Computer
Engineering in 1997 and the Ph.D. degree in 2001, both
with honors, from the University of Granada, Spain. He is
currently an Associate Professor within the Department of
Computer Architecture and Computer Technology in the
University of Granada. His current areas of interest are re-
lated to the fields of embedded systems, neural networks,
and evolutionary computation

Miguel Damas received the M.Sc. degree (1991) and
Ph.D. degree (2000) in computer engineering, both with
honours from the University of Granada (Spain). Associate
professor in the Department of Computer Architecture and
Computer Technology of the University of Granada from
2001. He currently teaches in the electrical engineering de-
gree, in the computer engineering degree, and in the Master
of Data Science and Computer Engineering. From 1990, he
belongs to the research group CASIP (Circuits and Systems
for Information Processing) and has collaborated with sev-
eral companies in research and consultory activities. He has
authored more than 80 technical papers in areas of interest
related to industrial control and communications, human
activity recognition systems, machine learning, and paral-
lel programming for optimization problems

