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ABSTRACT 
 
This study analyzes the severity of crashes on two-lane rural highways involving 
vulnerable users, such as pedestrians, cyclists or motorcyclists. The main aim is to 
detect patterns in order to develop safety improvement strategies specifically focused on 
these users. Such patterns were identified using Decision Rules extracted from Decision 
Trees. The main findings indicate that pedestrian crashes on two-lane rural highways 
are associated with accidents entailing death or serious injury. To reduce the severity of 
traffic crashes involving cyclists, the administration should improve shoulder 
conditions. The patterns for motorcycle accidents show their severity to be influenced 
by atmospheric factors, gender and age of the driver, type of accident and the alignment 
of the road. The most severe patterns for motorcycles are associated with pedestrian 
accidents and run-off-the-road collisions when the alignment of the road is a signalized 
curve without speed limit. 
 
RESUMEN 
 
Este estudio analiza la gravedad de los accidentes que involucran a usuarios 
vulnerables en carreteras convencionales. El objetivo principal es detectar 
determinados patrones de accidentes, con el fin de desarrollar estrategias de mejora de 
seguridad vial, centradas específicamente en estos usuarios. Estos patrones han sido 
identificados utilizando Reglas de Decisión extraídas de Árboles de Decisión. Los 
resultados indican que los accidentes con peatones en carreteras convencionales de dos 
carriles se asocian con los accidentes más graves, es decir, accidentes mortales o con 
lesiones graves. Para disminuir la gravedad de los accidentes que involucran a 
ciclistas, las administraciones competentes deben mejorar las condiciones de los 
arcenes. Los patrones obtenidos para accidentes con motocicletas muestran que su 
gravedad está influenciada por factores atmosféricos, el género y la edad del 
conductor, el tipo de accidente y la alineación de la carretera. Además, los accidentes 
con motocicletas más graves son salidas de la vía, que involucran peatones y ocurren 
en tramos de carretera en el que la alineación es una curva señalizada y sin límite de 
restricción velocidad. 
  



1. INTRODUCTION 
 

Two-lane rural highways present higher crash incidence and crash injury rates than 
other types of roadways (1), and they represent a substantial proportion of the road 
network in most countries. Authors Wang et al. (2) highlighted that the fatal crash rate 
on rural highways is more than double that for urban roads, even though the rate for all 
rural highway crashes is just under half of that for urban highways. 
 
In Spain, accidents on rural roads represent around 75% of the total, whereas only 
around 20% of accidents are produced on freeways, and the remaining 5% on 
motorways (3). These numbers underline the necessity to improve safety on rural roads. 
In fact, the Spanish Road Safety Strategy 2011-2020 (4) identified safety improvement 
on two-lane rural highways as one of its priorities to reduce the socio-economic impact 
of highway crashes. Another highlighted priority is the protection of vulnerable users.  
 
Numerous studies in the literature look at accidents involving motorcycle riders, who 
are more vulnerable than other vehicle drivers because of the lack of protection in the 
event of a crash (5-9). In addition, pedestrian and motor vehicle crashes are a serious 
problem throughout the world, for which reason other studies analyze the severity of 
crashes with pedestrians (10-12). Some studies examine the severity of cyclist 
involvement in traffic crashes (13-15).  
 
The present study has a dual focus, analyzing accidents that occur on two-lane rural 
highways and moreover involve vulnerable users. To this end Data Mining techniques 
have been applied, which have been receiving much attention on the part of road safety 
researchers (16). More specifically, this paper applies Decision Trees (DTs), as they 
make it possible to draw crash patterns that are easy to understand for safety managers.  
 
While DTs in general have been widely applied in road safety literature, the CART 
method is the one most used (6, 12, 17-19). There are other algorithms, such as ID3 and 
C4.5, that likewise can be used to build DTs. Recently, De Oña et al. (18) compared the 
results of all these algorithms, and found that CART and C4.5 lead to better results than 
ID3. Therefore, in this study CART and C4.5 algorithms will be used to build DTs. 

 
A relevant advantage of DTs as compared to other methods with similar aims is that the 
structure of a DT allows for the extraction of Decision Rules (DRs). DRs provide an 
easy manner of identifying crash patterns. In view of these patterns, safety managers 
can more readily establish specific countermeasures to improve road safety. 

 
The paper is structured as follows: section 2 shows the methodology used to conduct the 
analysis, with a description of DTs and crash data. In section 3 the results and 
discussion are described, and finally, the conclusions are reported. 

 
2. MATERIALS AND METHODS 
 
2.1. DECISION TREES 

 
A DT is a predictive model that can be used to represent both classifiers and regression 
models. DTs are popular due to their simplicity and transparency; moreover, they are 
usually presented graphically as hierarchical structures, making them easy to interpret. 



Nodes and branches form DTs. There are three types of nodes: root nodes, decision 
nodes (or intermediate nodes) and leaves (or terminal nodes). A Root node contains all 
the data. Decision nodes gather a test of a particular attribute. Ultimately, to classify an 
unlabeled instance, the case is routed down the tree according to the values of the 
attributes tested in successive decision nodes, and when a leaf is reached, the instance is 
classified according to the probability distribution over all classification possibilities. 
Thus, leaves are the terminal nodes of the tree and they specify the ultimate decision of 
the tree.  
 
The DT is typically constructed by means of a “divide-and-conquer” approach. Thus, 
the first step is to select an attribute that will serve as a root node of the tree. This root 
node splits up and divides the dataset into different subsets, one for every value of the 
root node. A branch specifies each value. The construction of the tree becomes a 
recursive problem, since the process can be repeated for every branch of the tree. It 
should be noted that only those instances that actually reach the branch are used in the 
construction of the tree. In order to determine which attribute to split on, given a set of 
examples with different classes, different algorithms can be used (i.e. ID3, C4.5, 
CART).  
 
Any algorithm can be used to fit a tree to a sample using recursive partitioning. The 
sample is split into increasingly homogeneous subsets until the leaf node contains only 
cases from a single class, or until the stopping criterion is reached.  
 
Sample cases are recursively subdivided into segments at each stage of subdivision, a 
segment is divided according to an explanatory variable that is selected based on a 
specific criterion. The explanatory variable giving the highest value for the criteria is 
chosen from among all explanatory variables at each division. Such division continues 
until all cases in each segment have the same class, or until the stopping criterion is 
reached. 
 
2.1.1. CART 

 
The CART method builds binary Decision Trees. This algorithm uses the Gini Index as 
the splitting criterion. Depending on the nature of the dependent variable, CART 
develops classification trees (discrete target variable) or regression trees (continuous 
target variable).  
 
The development of a CART model generally comprises three steps: (1) tree growing 
(2) pruning process (3) optimal tree selection from the pruned trees. Tree growing 
consists of recursively partitioning the target variable to maximize ‘‘purity’’ in the two 
child nodes. By definition, the terminal nodes present a low degree of impurity 
compared to the root node. In the tree growing stage, predictors generate candidate 
partitions (or splits) at each internal node of the tree, so that a suitable criterion must be 
defined to choose the best split of the objects. Gini reduction criteria measure the 
‘‘worth’’ of each split in terms of its contribution toward maximizing homogeneity 
through the resulting split. If a split results in splitting of one parent node into B 
branches, the ‘‘worth’’ of that split may be measured as follows: 
 
 Worth = Impurity	(Parent	node) − ∑ P(n) ∗ Impurity(n)8

9:; , (1) 



where Impurity (Parent node) denotes the Gini measure for the impurity (i.e., non-
homogeneity) of the parent node, and P(n) denotes the proportion of observations in the 
node assigned to branch n. The impurity measure, Impurity (node), may be defined as 
follows: 
 
 Impurity	(node) = 1 − ∑ (9=>?@A	BC	DEFGG	H	DFG@G

FEE	DFG@G	H9	IJ@	9BK@
)^MN

H:; , (2) 
 
When a node is “pure”, this measure (Eq. 1) will have a minimum value, and its value 
will be higher for less homogeneous nodes. If one considers the definition of “worth” 
(Eq. 2), a split resulting in more homogeneous branches (child nodes) will have more 
“worth”. 
While developing a CART, this criterion is applied recursively to the descendants, to 
achieve child nodes having maximum worth. The splitting process continues until there 
is no reduction in impurity and/or the limit for the minimum number of observations in 
a node is reached. Hence, a saturated tree is obtained, providing the best fit for the data 
used. However, this overfitting does not help in accurately classifying another data set. 
Therefore, to develop a CART model, the data is usually divided into two subsets, one 
for training and the other one for testing. The training sample is used to split nodes, 
while the testing sample is used to compare any misclassification. The saturated tree is 
constructed from the training data.  
 
Overly large trees could result in higher misclassification when used to classify new 
data sets. A tree is therefore pruned in the second step to decrease its complexity. 
Pruning is performed according to the cost-complexity algorithm, which is based on 
removing branches that add little to the predictive value of the tree. The cost-complexity 
measure combines the precision criteria as opposed to complexity in the number of 
nodes and processing speed, searching for the tree that obtains the lowest value for this 
parameter. The last step therefore leads to the optimal tree. A more detailed description 
of the CART method can be found in Breiman et al. (20). 
 
2.1.2. C4.5  
 
When using the C4.5 algorithm (21), the splitting criterion is the gain ratio, a criterion 
based on information theory. The information conveyed by a message about an event 
depends on the probability of the event; it can be measured in bits as minus the 
logarithm to base 2 of that probability. The information within a message that a random 
case belongs to a certain class is given as: 
 
 −𝑙𝑜𝑔M[

STUV(WX,Z)
|Z|

] bits (3) 
 
where T is a sample of cases, CH is class i, and freq(CH, T) is the number of cases in T 
that belong to class CH. 
 
In this way, the expected amount of information info(T) from such a message pertaining 
to T (also called entropy) is measured as follows: 
 
 𝑖𝑛𝑓𝑜(𝑇) = −∑ {STUV(WX,Z)

|Z|
f
g:; 𝑥𝑙𝑜𝑔M[

STUV(WX,Z)
|Z|

]}  (4) 
 



Entropy can also be measured after T has been partitioned into n sets using the outcome 
of a test carried out on attribute X: 
 
 𝑖𝑛𝑓𝑜j(𝑇) = −∑ |ZX|

|Z|
k
g:; 𝑥𝑖𝑛𝑓𝑜(𝑇g)  (5) 

 
With these two measurements, the gain criterion used in conjunction with the ID3 
algorithm (22) can be defined as follows: 
 
 𝑔𝑎𝑖𝑛(𝑋) = 𝑖𝑛𝑓𝑜(𝑇) − 𝑖𝑛𝑓𝑜j(𝑇)  (6) 
 
The gain criterion measures the information gained by partitioning the training set using 
test X. We should stress that this gain criterion has an implicit preference for splitting 
nominal attributes with many values. Therefore, it produces trees that discard the 
remaining attributes prematurely, because they soon come to branches that have only a 
few cases. As an improvement upon the ID3 algorithm, Quinlan (21) introduces the 
C4.5 algorithm, where the gain criterion is replaced by a Gain Ratio criterion. 
 
The gain ratio (22) is obtained by normalization, where gain(X) is divided by the 
potential information that can be generated by division X: 
 
 𝑠𝑝𝑙𝑖𝑡	𝑖𝑛𝑓𝑜(𝑋) = −∑ |ZX|

|Z|
k
g:; 𝑥𝑙𝑜𝑔M q

|ZX|
|Z|
r (7) 

 
Accordingly, the gain ratio is defined as: 
 

 𝑔𝑎𝑖𝑛	𝑟𝑎𝑡𝑖𝑜(𝑋) = tugk(Z)
vwxgy	gkSz({)

 (8) 

 
Any DT built following this procedure would overfit the data. To avoid overfitting, 
pruning strategies can be used, simplifying the tree by discarding one or more subtrees 
and replacing them with leaves. The algorithm incorporates pruning once a tree has 
been induced, by applying a hypothesis test on whether or not to expand a branch. A 
more detailed description of the C4.5 algorithm can be found in Quinlan (21). 
 
2.2. DECISION RULES 
 
After the decision tree is constructed, the tree can be easily turned into a rule set by 
deriving a rule for each path in the tree that starts at the root and ends at the leaf node. 
The rules conform a logical-conditional structure of the type “IF (X) → THEN (Y)”, 
where X is the antecedent (formed by a set of statuses of several attribute variables); 
and Y is the consequent (formed by only one state of the class variable). 
 
A priori, the number of rules can be determined by the number of terminal nodes on the 
tree. However, in order to extract significant rules that would provide useful 
information for the implementation of road safety strategies in the future, three 
parameters and the minimum threshold are used in each possible “X→Y” rule: 



• Population (Po) is the percentage of the dataset where “X” appears.  
• Support (S) is the percentage of the dataset where “X & Y” appear.  
• Probability (P) is the percentage of cases in which the rule is accurate (i.e. P=S/Po 

expressed as percentage).  
• Lift (L) relates the frequency of co-occurrence of the antecedent and the consequent 

to the expected frequency of co-occurrence under the assumption of conditional 
independence. 

 
The threshold values for the parameters (Po, S, P and Lift) are normally selected in light 
of the following characteristics: nature of the data balanced or unbalanced; significant 
interest in fatal crashes (rare events); and sample size —small or large datasets (23). In 
this study, the threshold values considered are (18, 23): Po≥1%; S≥ 0.6%; P≥60%; 
Lift≥1.2. 
 
Due to the large number of patterns considered, DTs may run an extreme risk of type I 
error that is, finding patterns apparently owing to chance alone that satisfy constraints 
on the sample data (24). To reduce the risk of type I error, the data set was randomly 
split into a training test and a test set (12, 17; 19). 
 
2.3.DATA 
 
Accident data were obtained from the Spanish General Traffic Accident Directorate 
(DGT) for two-lane rural highways in Andalusia over a period of seven years (2003–
2009). This study included only rural highways with two lanes (one for each direction) 
and accidents involving one vehicle and vulnerable users (pedestrians, motorcycles or 
bicycles). The total number of such accidents was 3,225. 
 
The variable under study is accident severity. Following previous studies (17; 19, 25) 
severity is defined based on the worst injury sustained in the accident, and two levels 
are established: slight injury (SI) and accidents where persons were killed or seriously 
injured (KSI).  
 
To identify the main factors that affect the accident severity of vulnerable users, 19 
variables were analyzed (see Table 1). These variables describe characteristics related to 
the driver (age and gender); accident (month, time, day, occupants involved, accident 
type and cause); road (alignment, safety barriers, pavement width, lane width, shoulder 
type, paved shoulder, pavement markings and sight distance); vehicle (vehicle type); 
and context (atmospheric factors and lighting). Table 1 offers a description of the 
variables together with the frequency distribution. 
 
  



Variables: Description Code Severity: KSI / SI  Total 
AGE: Age >=18 100 103 203 

[19-25] 317 375 692 
[26-45] 787 855 1642 
[46-65] 247 306 553 
>=66 59 76 135 

 ACT: Accident type FO: Fixed objects collision 21 30 51 
OT: Other 49 96 145 
PED: Collision with pedestrian 489 290 779 
RO: Rollover 146 240 386 
ROR: Run-off-road without collision 372 613 985 
ROR_CO: Run-off-road with collision 433 446 879 

ALI: Alignement 

CH: Curve heavy 92 104 196 
CHS: Curve heavy with sign speed 152 161 313 
CHWS: Curve heavy without sign speed 248 232 480 
CS: Curve smooth 256 306 562 
INT: Intersection 177 208 385 

 TG: Tangent 585 704 1289 
ATF: Atmospheric factors GW: Good weather 1420 1578 2998 
 HR: Heavy rain 12 28 40 
 LR: Ligth rain 42 74 116 
 OT: Other 36 35 71 
BAR: Safety Barriers N: No 1025 1221 2246 
 Y: Yes 485 494 979 
CAU: Cause COM: Combination of factors 105 130 235 
 DF: Driver factors 1244 1345 2589 
 OT: Other 141 173 314 
 RF: Road factors 10 50 60 
 VF: Vehicle factors 10 17 27 
DAY: Day APH: After public holiday 124 149 273 
 BPH: Before public holiday 273 260 533 
 PH: Public holiday 513 537 1050 
 WD: Working day 600 769 1369 
LAW: Lane width MED: [3.25–3.75] m 1088 1236 2324 
 THI: <3.25 m 388 423 811 
 WID: >3.75 m 34 56 90 
LIG: Lighting DAY: Day 825 1101 1926 
 DUS: Dusk 73 65 138 
 NIL: Insufficient (night time) 122 113 235 
 NSL: Suficient (night time) 81 79 160 
 NWL: Without lighting (night-time) 409 357 766 
MON: month AUT: Autumn 352 378 730 
 SPR; Spring 402 465 867 
 SUM; Summer 380 476 856 
 WIN: Winter 376 396 772 
OI: ocuppant involved [1]: 1 occupant 1199 1351 2550 
 [2]: 2 occupants 225 284 509 
 [>2]: >2 occupants 86 80 166 
PAS: paved shoulder N: No, non existent or impassable 556 658 1214 
 Y: Yes 954 1057 2011 
PAW: pavement width MED: [6–7] m 474 605 1079 
 THI: < 6 m 174 202 376 
 WID: > 7 m 862 908 1770 
ROM: road marking DE: Does not exist or was deleted 83 115 198 
 SLD: Separate lanes and define road margins 1198 1371 2569 
 SLO: Separate lanes only 44 42 86 
 SMR: Separate margins of roadway 185 187 372 
GEN: gender F: Female 133 224 357 
 M: Male 1377 1491 2868 
SHT: shoulder type MED: [1.5–2.5] m 196 222 418 
 NE: Non-existent or impassable 611 739 1350 
 THI: <1.5 m 703 754 1457 
SID: sight distance ATM: Atmospheric 16 28 44 
 BUI: Building 6 4 10 
 OT: Other 48 34 82 
 TOP: Topography 253 265 518 
 VEG: Vegetation 9 10 19 
 WR: Without restriction 1178 1374 2552 
TIM: time [0-6] 274 247 521 
 (6-12] 363 444 807 
 (12-18] 449 606 1055 
 (18-24] 424 418 842 
VEH: vehicle type BIC: Biclycles 60 83 143 
 CAR: Cars 389 221 610 
 OT: Other 15 7 22 
 PTW: !"#$"#%&'()*+,-*."$"#/0/1() 1016 1382 2398 
 TRU: Trucks 30 22 52 

Table 1. Variables, values and classification by severity. 

  



3. RESULTS 
 
The model was built using Weka (26), an open source freeware available at: 
http://www.cs.waikato.ac.nz/ml/weka/. 
 
The model accuracy (that is the percentage of cases correctly classified) was very 
similar with CART and C4.5: respectively, 59.4% and 58.1%. These accuracy values lie 
within the range obtained in previous studies applying classification methods with 
similar objectives. Abdel Wahab and Abdel-Aty (27) obtained 61% accuracy when they 
applied Bayesian networks and 58.1% accuracy with neural networks; De Oña et al. 
(25) obtained 58%, 59% and 61% applying Bayesian networks with different 
algorithms. In De Oña et al. (18), the accuracy was 55.8%, 54.2% and 52.7% using 
different algorithms to build DTs. 
 
Figure 1 shows the DT built using the CART method. The number of nodes, the total 
number of accidents in each node, and the node classification based on the 2 categories 
(SI and KSI) are indicated for each node.  
 

  

Figure 1. DT´structure using CART. 



With CART, seven variables are used as predictors of the tree: accident type (ACT), day 
(DAY), time (TIM), atmospheric factors (ATF), cause(s) of the accident (CAU), 
alignment of the road (ALI) and age (AGE). Sixteen nodes form the tree, nine of them 
terminal nodes. The first splitting variable is ACT. 
 
The root node splits into two branches (nodes 1 and 2). Node 1 shows accidents with 
pedestrians, classified as KSI with 64% probability. For all the other accidents, the tree 
is divided by DAY. If DAY is a working day or just after a public holiday, the tree 
splits using TIM. Node 6 shows SI accidents between 6 a.m. and 6 p.m. with a 
probability of 69.9%. When accidents occur during the rest of the day (6 p.m. – 6 a.m.), 
and depending on ROM, accidents are classified according to the degree of severity (see 
Figure 1): if road markings separate margins of the road, accidents are KSI, with a 
probability of 67.5% (node 10); in any other case accidents are SI, with a probability of 
59.1% (node 9).  
 
When DAY is a public holiday or the day before a public holiday, the tree splits by 
ATF. When ATF are bad (light or heavy rain), accidents are SI, with a probability of 
80.5% (node 8). With good atmospheric factors or others, the tree divides by CAU. One 
terminal node appears when CAU is a combination of vehicle or road factors (node 12). 
In this case, accidents are SI with a probability of 72.4%. For other causes the tree splits 
by ALI. 
 
When ALI is a curve (node 14), accidents are KSI (54.1% of probability). However, 
when alignment is a tangent or intersection, and depending on the driver´s age, two 
terminal nodes appear with different degrees of severity: node 15 identifies KSI 
accidents for very young and old drivers (with a probability of 58.5%), whereas node 16 
shows SI accidents for drivers between 19 and 65 years of age (probability is 58%). 
 
Figure 2 shows the structure of the DT built for C4.5: there are 39 nodes from the DT, 
30 of them being terminal nodes. In this case, the DT predictors are nine variables: 
vehicle type (VEH), paved shoulder (PAS), atmospheric factors (ATF), gender (GEN), 
accident type (ACT), sight distance (SID), age (AGE), safety barriers (BAR) and 
alignment of the road (ALI). In this case, the first splitting variable is VEH. 
 
The root node is divided into five nodes (nodes 1 to 5, see Figure 2). When VEH is a 
car, truck or other type, accidents are classified as KSI with probabilities of 65%, 82.4% 
and 58% (nodes 2, 3 and 5, respectively). When the vehicle involved is a bicycle, the 
severity depends on the variable PAS. In that case, two terminal nodes are obtained: SI 
accidents on a shouldered road with 61.1% probability (node 7), and KSI accidents on 
road having no shoulder, or an impassable road, with 58% of probability (node 6).  
 
Most of the tree is formed by accidents involving motorcycles (node 1). Thus, 
depending on ATF, four nodes are created and three of them are terminal nodes. Under 
bad weather conditions, nodes 9, 10 and 11 are created. All of them involved SI 
accidents, with respective probabilities of 74.3%, 75.8% and 52.3%. When weather 
conditions were good the tree splits by GEN. For females, accidents are classified as SI 
(55.2%, node 12). For males, the tree grows depending on ACT. Then, four terminal 
nodes are obtained: accidents with pedestrians are classified as KSI with 60.8% of 
probability (node 14), whereas rollover (node 17), collision with fixed objects (node 18) 



and other types of accidents (node 16) are SI. For run-off-the-road, with or without 
collision, the tree keeps on growing. 
 
When accidents are run-off-the-roads without collision, and depending on SID, the 
following nodes are obtained: four terminal nodes involve KSI accidents when SID is 
restrained by building, atmospheric factor or other (nodes 25, 23 and 22, respectively). 
In contrast, regardless of whether SID is restrained by topography or not restrained, 
accidents are SI (nodes 24 and 20). In the case of SID restrained by topography, the 
severity of the accident depends on safety barriers. If there are safety barriers, accidents 
are more severe than if no barriers are present (node 26 vs. node 27).  
 
When accidents are run-off-the-roads with collision, and depending on AGE, the results 
are the following: KSI accidents for young drivers (node 30) entail a probability of 
60.4% and drivers between 26 and 45 years (55.3% of probability in node 29); SI 
accidents for drivers aged 46-65 (node 32) and older drivers (node 28) have 
probabilities of 59.7% and 52%. Finally, for drivers between 19 and 25 years of age, the 
tree split by ALI. When the alignment of the road is a tangent or a smooth curve (node 
36), accidents are SI. Accidents are also SI in intersections or in heavy curves (nodes 35 
and 37). This result underlines that in particular locations drivers increase their 
precautions. However, in signaled heavy curves, whether or not the speed limit is 
marked, accidents are KSI (nodes 37 and 34). In this case, drivers are more confident 
and the severity of the accident increases. 

 
Figure 2. DT´structure using C4.5. 

 
3.1.DECISION RULES 
 
Decision Tree structures can be transformed into Decision Rules. To extract significant 
and useful rules (that might provide useful information for the future implementation of 
road safety strategies), parameters population, support, confidence and lift with the 
minimum threshold were calculated. Tables 2 and 3 respectively show the significant 
rules extracted from the training set in the case of CART and C4.5. 
 



CART identifies just five significant rules: three referring to SI accidents and two with 
respect to KSI. The minimum probability is 64% (rule 1). Population ranges between 
1.5% (rules 8 and 10) and 25.6% (rule 1). All the rules have support higher than 0.6%. 
Lift varies between 1.3 (rule 6) to 1.5 (rule 8). 
 
NODE RULES: IF… THEN Po(%) S(%) P(%) Lift 

6 ACT≠PED AND DAY=(APH OR WD) AND TIM= ((12-18] OR (6-
12]) SEV= SI 21.4 15.0 69.9 1.3 

8 ACT≠PED AND DAY=(BPH OR PH) AND ATF= (LR OR HR) SEV= SI 1.5 1.2 80.5 1.5 

12 ACT≠PED AND DAY=(BPH OR PH) AND ATF= (GW OR OT) 
AND CAU=(COM OR VF OR RF) SEV= SI 2.2 1.6 72.4 1.4 

1 ACT=PED SEV= KSI 25.6 16.4 64.0 1.4 

10 ACT≠PED AND DAY=(APH OR WD) AND TIM= ([0-6] OR (18-
24]) AND ROM= SMR SEV= KSI 1.5 1.0 67.5 1.4 

Table 2. Rules extracted from tree built with CART 
 
In turn, C4.5 provides 11 significant rules: seven of them for SI accidents and four rules 
for KSI accidents (see Table 3). Probability ranges between 60.4% (rule 30) and 75.8% 
(rule 10). All the rules have populations higher than 1%. Support varies from 0.9% 
(rules 10 and 34) to 12.8% (rule 2); lift ranges from 1.2 (rules 7 and 17) to 1.4 (rules 2, 
9, 10 and 34).  
 
NODE RULES: IF… THEN Po(%) S(%) P(%) Lift 

33 VEH = PTW & ATF = GW & GEN=H & ACT=ROR_CO & AGE= 
[19-25] & ALI=TG SEV= SI 1.5 1.0 67.5 1.3 

17 VEH = PTW & ATF = GW & GEN=H & ACT=RO SEV= SI 8.4 5.1 61.0 1.2 
16 VEH = PTW & ATF = GW & GEN=H & ACT=OT SEV= SI 3.2 2.1 67.9 1.3 
12 VEH = PTW & ATF = GW & GEN=F SEV= SI 7.2 5.0 69.1 1.3 
9 VEH = PTW & ATF = LR SEV= SI 2.8 2.1 74.3 1.4 

10 VEH = PTW & ATF = HR SEV= SI 1.2 0.9 75.8 1.4 
7 VEH = BIC & PAS=Y SEV= SI 2.7 1.7 61.1 1.2 

14 VEH = PTW & ATF = GW & GEN=H & ACT=PED SEV= KSI 2.8 1.7 60.8 1.3 

30 VEH = PTW & ATF = GW & GEN=H & ACT=ROR_CO & AGE= 
<=18 SEV= KSI 1.8 1.1 60.4 1.3 

34 VEH = PTW & ATF = GW & GEN=H & ACT=ROR_CO & AGE= 
[19-25] & ALI=CHWS SEV= KSI 1.3 0.9 67.6 1.4 

2 VEH = CAR SEV= KSI 19.7 12.8 65.0 1.4 
Table 3. Rules extracted from tree built with C4.5 

 
The next step consists of validating these rules using the test set. Validation entails 
verifying the rule classification, and the parameters with their minimum threshold. 
Finally, taking into account the severity of the rules, eight validated rules were obtained 
for SI accidents (see Table 4); whereas four rules were validated for KSI accidents (see 
Table 5). All the rules obtained by means of CART (see Table 2) were validated using 
the test set, while only seven rules were validated for C4.5. 
 
NODE RULES: IF… METHOD Po(%) S(%) P(%) Lift 

33 VEH = PTW & ATF = GW & GEN=H & ACT=ROR_CO & AGE= 
[19-25] & ALI=TG C4.5 1.5 1.0 67.5 1.3 

16 VEH = PTW & ATF = GW & GEN=H & ACT=OT C4.5 3.2 2.1 67.9 1.3 
12 VEH = PTW & ATF = GW & GEN=F C4.5 7.2 5.0 69.1 1.3 
9 VEH = PTW & ATF = LR C4.5 2.8 2.1 74.3 1.4 
7 VEH = BIC & PAS=Y C4.5 2.7 1.7 61.1 1.2 

6 ACT≠PED AND DAY=(APH OR WD) AND TIM= ((12-18] OR (6-
12]) CART 21.4 15.0 69.9 1.3 

8 ACT≠PED AND DAY=(BPH OR PH) AND ATF= (LR OR HR) CART 1.5 1.2 80.5 1.5 

12 ACT≠PED AND DAY=(BPH OR PH) AND ATF= (GW OR OT) 
AND CAU=(COM OR VF OR RF) CART 2.2 1.6 72.4 1.4 

Table 4. SI rules validated. 



Table 4 shows that C4.5 provides just one pattern for bicycles, the rest relating to 
motorcycles. Rule 7, which involved 2.7% of the population, refers to accidents with 
bicycles on the road with a paved shoulder; in this case, accidents are SI (with a 
probability of 61.1%). In contrast, for accidents produced on the road where shoulders 
were not paved or inexistent (node 7 in Figure 2), crashes were KSI. From a safety point 
of view, these results demonstrate that the severity of these accidents depends on the 
shoulder of the road. That is, severity is greater on roads where the shoulder is not 
paved or does not even exist. These findings indicate that reducing the severity of 
accidents involving cyclists and cars on rural road calls for intervention by the local 
administration to improve shoulder conditions on roads frequently used by cyclists. 
 
Meanwhile, patterns with motorcycles are related with atmospheric factors. Rule 9 
shows SI accidents give a probability of 74.3% when accidents happen with light rain. 
Similar results are found under other bad weather conditions (see Figure 2, heavy rain in 
node 9 and other in node 11). In line with De Oña et al. (18), this result demonstrates 
that drivers try to be very careful under poor atmospheric conditions. 
 
The rest of the patterns involving motorcycles tend to imply good weather conditions 
and depend on the driver´s gender. Gender is a key factor in the severity of accidents 
with motorcycles. Rule 12 shows SI accidents for female drivers. This rule has the 
highest value of population (7.2%) and support (5%), with a high probability (69.1%). 
For male drivers, four patterns are obtained, two of them are SI accidents. Rule 16 
identifies SI accidents with motorcycles produced under good weather for male drivers 
when the type of accident is “other”. Rule 33 also identifies SI accidents when the 
accident type is a run-off-the-road with collision for drivers 19-25 years old and 
alignment is tangent. Good weather conditions could in fact be a contributing factor in 
motorcycle crashes, related with driver behavior (and driving speeds).  
 
CART identifies SI patterns without pedestrians (run-off-road, collision with fixed 
objects, rollover, other types). Rule 6 identifies this kind of accident on working days, 
or directly after public holidays, between 6 a.m. and 6 p.m. Rules 8 and 12 identify SI 
accidents on public holidays or immediately before public holidays. In rule 8, SI 
accidents occur under bad weather conditions (light or heavy rain) with a probability of 
80.5%. This result again suggests that drivers are more careful under difficult 
atmospheric conditions. In view of rule 12, SI accidents occur when weather conditions 
are good or other, and accident causes stem from the vehicle, road or a combination of 
factors (probability is 72.4%). 
 
NODE RULES: IF… METHOD Po(%) S(%) P(%) Lift 

14 VEH = PTW & ATF = GW & GEN=H & ACT=PED C4.5 2.8 1.7 60.8 1.3 

34 VEH = PTW & ATF = GW & GEN=H & ACT=ROR_CO & AGE= 
[19-25] & ALI=CHWS C4.5 1.3 0.9 67.6 1.4 

1 ACT=PED CART 25.6 16.4 64.0 1.4 

10 ACT≠PED AND DAY=(APH OR WD) AND TIM= ([0-6] OR (18-
24]) AND ROM= SMR CART 1.5 1.0 67.5 1.4 

Table 5. KSI rules validated. 
 
As seen in Table 5, each method identifies two KSI patterns. The C4.5 algorithm leads 
us to identify patterns involving motorcycles and male drivers. Rule 34 identifies 
accidents under good weather conditions when the alignment of the road involves a 
signalized curve without a speed limit. In this case, accidents are KSI with a probability 



of 67.6%. Some studies show that the severity of motorcycle accidents increases on 
roads with straight and curved grades (6, 15). 
 
Rule 14 shows KSI accidents for motorcycles under good weather conditions for males 
when accidents involve a pedestrian (probability of 60.8%). Pedestrian accidents 
produced by motorcycles are associated with KSI accidents, as reported in previous 
studies (28, 29). CART identifies another KSI pattern for accidents with pedestrians 
(rule 1): in this case, the relationship between pedestrian and KSI accident is direct 
(probability of 64%).  
 
Finally, rule 10 shows KSI accidents according to the type of accident (run-off-road, 
rollover, collision with fixed object, other), on working days or the day after public 
holidays, in the time period from 6 p.m. to 6 a.m., on roads where pavement marking 
separates only the margin, with a probability of 67.5%. 
 
4. CONCLUSIONS 
 
This study attempts to identify certain patterns on rural roads involving vulnerable users 
(pedestrians, cyclists and motorcycle riders). The patterns have been identified using 
two different types of DTs (CART and C4.5). Later, in order to identify patterns easy to 
understand by road safety managers, we have extracted some validated rules from the 
DTs. 
 
It is known that CART and C4.5, based on different splitting criteria and respectively 
producing binary and non-binary trees, were successfully used in the past to analyze 
crash severity, providing more reliable results than methods such as ID3. The accuracy 
of the models obtained by means of both the above methods was very similar, and 
agrees with previous studies. CART provides binary DTs. Therefore, different 
categories of the variables are grouped in the branches, increasing node support, yet 
making it impossible to analyze the influence of a specific category on severity, 
complicating the interpretation of results overall. In turn, C4.5 generates a branch for 
each category, thus enabling one to look at the influence of all the variables on severity. 
In short, C4.5 generates DTs with more branches than CART, and it therefore produces 
more rules and a lower level of support. The most noteworthy conclusion, in this case, 
is that not all the rules are finally validated. 

 
From a safety viewpoint, the main findings can be summed up as follows: 
 

• Pedestrian crashes are more frequent in urban areas than in rural areas. However, 
this study highlights that pedestrian crashes in rural areas also call for safety 
measures because of their severity. One possible countermeasure to mitigate this 
safety issue would be to implement perceptual cues, such as gateways and traffic 
calming devices, in segments of rural highways where there is high pedestrian 
activity. 

• As cyclist crashes on roads having no paved shoulder are more severe, to 
mitigate the severity of this type of accident, specific actions should be adopted 
for road margins where the volume of cyclists is high.  

• The main factors associated with the severity of motorcycle accidents are 
atmospheric conditions, gender and age of driver, type of accident, and 
alignment of the road. Interestingly enough, most severe or fatal crashes 



associated with motorcycles occur under good weather conditions, a pattern 
possibly related to driver behavior and speed. Thus, electronic speed monitors 
could produce significant safety benefits in the face of potential crashes. In 
addition, when the drivers are males, accidents are run-off-the-road with 
collision and they occur in curves that are signalized, but do not specify speed 
limit, are associated with KSI accidents. In these cases, specific road markings 
or signals could be implemented to reduce the severity of accidents. 
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