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Abstract 

In this paper we give a general method to obtain a closed model structure, in the sense of 
Quillen, on a category related to the category of simplicial groups by a suitable adjoint 
situation. Applying this method, categories of algebraic models of connected types such as those 
of crossed modules of groups (2-types), 2-crossed modules of groups (3-types) or, in general. 
n-hypercrossed complexes of groups ((n + I)-types), as well as that of n-simplicial groups (all 
types), inherit such a closed model structure. 

0. Introduction 

The problem of giving algebraic models for the homotopy theory of spaces has been 

studied in the last years by several authors [3,5, 15, 19,201. Classical references about 

it are the results by Eilenberg and Mac Lane [9] giving the well known equivalence 

between the homotopy category of pointed connected CW-complexes, with only one 

non-trivial homotopy group in dimension n, and the “homotopy” category of groups 

(abelian if n 2 2), and the results given by Mac Lane and Whitehead [16,24], proving 

a similar equivalence between the pointed connected CW-complexes such that ni = 0 

for i 2 3 (homotopy 2-types) and crossed modules. 

The category of 2-crossed modules in the sense of Conduchi [7] generalizes 

Mac Lane and Whitehead’s results since it is an appropriate “algebraic category” to 

model arbitrary homotopy 3-types [3, 71 and in [S] Carrasco and Cegarra extended 

these partial results by giving algebraic models for all connected n-types. For this, they 

considered a category, n-HXC(Gp), consisting of certain complexes of non-abelian 

groups, called by them “n-hypercrossed complexes of groups”, and showed that 

a certain localization of it, in the sense of Gabriel and Zissman [lo] is equivalent to 

the homotopy category of connected CW-complexes (n + 1)-coconnected (i.e., ni = 0, 

for all i 2 n + 2). 
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The category n-HXC(Gp) is just, for n = 1, the category XM(Gp) of crossed 
modules of groups (2-types) and, for n = 2, the category 2-XM(Gp) of 2-crossed 
modules of groups in the sense of Conducht (3-types) and, on the other hand, it is 
equivalent to the full subcategory of the category of simplicial groups consisting of 
those simplicial groups with trivial Moore complex in dimensions >n, i.e., the 
category of n-hypergroupoids of groups in the sense of Duskin-Glenn, so that this 
category of n-hypergrupoids of groups, n-Hypdg(Gp), provides also algebraic models 
for (n + I)-types. 

The theory developed by Carrasco and Cegarra was based on the classical theory 
of Kan [14] showing that the category of simplicial groups, Simp(Gp), models 
all connected types. This category is a main example of what is a closed model 
category in the sense of Quillen [21], which means that in Simp(Gp) it is possible 
to do homotopy theory as well as for categories of topological spaces, i.e., to 
have analogues of most of constructions and results which are inherent to the 
homotopy theory of spaces as loops and suspensions of objects, (co)-fibration 
sequences, etc. 

The main object of this paper is to get a closed model structure for the category 
n-Hypgd(Gp), and so for n-HXC(Gp), where the weak equivalences are precisely 
those morphisms which are inverted to do the localization which determines that 
category as a category of algebraic models of (n + I)-types. 

The technique used to define the structure and to check the axioms of closed model 
category, lies strongly on the adjoint situation connecting the category n-Hypgd(Gp) 
to Simp(Gp), and “lifting” then, to that category (which is in fact a reflexive full 
subcategory of Simp(Gp)), the well-known closed model structure of Simp(Gp) [21] 
following an analogous process, suggested by Kan and used by Thomason in [23], to 
define in Cat a closed model structure. 

The same method is then also used to get a closed model structure for the category 
of n-simplicial groups, Simp”(Gp), a category which also provides algebraic models 

for all types [4]. 
We want to note here that in 1983 Loday gave in [ 151 the foundation of a theory of 

another category of algebraic models for (n + 1)-types of spaces, called firstly “n-cat- 
groups” and renamed later more appropriately as “Cat”-groups” [2]. Proofs making 
more clear the original one of Loday have been given by Porter [20] and Bullejos et 
al. [4]. The possibility of giving a closed model structure to this other category of 
n-types is also discussed and we conjecture that it can be achieved using the same 
method as for n-Hypgd(Gp). 

The plan of this paper is briefly as follows. In Section 1 we recall the set of axioms 
most frequently used to define a closed model category and also some characteriza- 
tions of (trivial) fibrations in the category of simplicial groups which will be useful 
along the paper. In Section 2 we formulate the general problem of “lifting” the closed 
model structure of simplicial groups to a category C related to it by a pair of 
adjoint functors, showing conditions to assert that C inherits this kind of structure 
(Theorem 2.5). As a direct application of these results we see in Section 3 that the 
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category n-Hypgd(Gp), and so that of n-hypercrossed complexes of groups, n- 

HXC(Gp), is a closed model category; in particular we describe the structure for n = 1 

(crossed modules) and for n = 2 (2-crossed modules). In a similar way we also see that 

Simp”(Gp) is a closed model category and finally, in Section 3.3., we analyse in some 

detail the possibility of getting a closed model structure for the category Cat”(Gp) 

using the same method as in Section 2. 

1. Notation and preliminaries 

We will denote through this paper by Simp(Gp) the category of simplicial groups. 

i.e., the category of functors Gp ‘“’ where /A is the category whose objects are the 

ordered sets [0] = (O}, [l] = [O, l}, [2] = (0, 1,2}, . , and whose morphisms are the 

order-preserving functions between them. 

Recall that the nth-simplicial kernel of a (n - 1)-truncated simplicial group G.,,, 

d”(G.,c), is the subgroup of (G,_ r)“+ ’ whose elements are those (x0, . . . ,x,) such that 

dixj = dj_ i.xj, for i -=z j. If di: d”(G.<,) -+ G,_ , denotes the restriction of the canonical 

projection, there are unique homomorphisms sj: G,_ r --+ d”(G.,,), 0 5 j 5 n - 1, such 

that 

. . . : G-G ) l----1 0 

is a n-truncated simplicial group. By iterating this simplicial kernel construction, one 

has a functor cask”- ’ from the category of (n - I)-truncated simplicial groups to the 

category Simp(Gp). 

Given a simplicial group 

/---Y-y 
G.: . ..c.~c._ L 1 : (y==& 1- 0 

we denote by N(G.) its Moore complex [21], i.e., 

N(G.) = . ..N.(G.)& N,_,(G.)- . ..- W$+ No(G.) 

where N,(G.) = Go, 

q-1 
N,(G.) = n Kerdi s G, 

i=O 

and 6, is the restriction of d,: G, -+ G,_ r to N,(G.). 

Recall also that the homotopy groups of the underlying simplicial set of a simplicial 

group G. (pointed by the identity element) are given by the homology groups of the 



290 J.G. Cahello. A.R. GamhlJournai qf Pure and Applied Algebra 103 (1995) 287-302 

Moore complex of G.: 

Ii', = 
i~o~~~~4:G.- G,-I) 

) n20. 

d ,,+ 1 fi K44: G,+ 1 -+ G,) 
i=O 

A closed model category in the sense of Quillen [22] is a category C with three 

distinguished classes of morphisms called fibrations, cofibrations and weak equiva- 

lences, satisfying the following axioms: 

CMl. The category C has finite limits and colimits. 

CM2. For any composable pair f, y of morphisms in C, if any two of f, y, gj are 

weak equivalences, so is the third. 

CM3. If fis a retract of g and g is a fibration, cofibration or weak equivalence then 

f is also such. 

Recall a morphism f: X --f Y is a retract of g : W + Z if there are morphisms 

i:X+W, r:W+X, j:Y+Z and s:Z+Y such that ri=Id,, sj=Idy and also 

gi =jLfi = sg. 

CM4 (L#ing axiom). Given a solid arrow diagram 

A-X 
7 

/’ 
i ,f I I P 

/’ , 
B-Y 

(*I 

where i is a cofibration, p is a fibration and either i or p is a weak equivalence, then 

there exists the dotted arrow making the diagram commutative. 

CM5 (Fuctorization axiom). Any morphismfin C may be factored both as ,f= pi 

andf= qj, where p and 4 are fibrations, i and j are cofibrations, and p and j are weak 

equivalences. 

Let us note that this set of axioms is equivalent to the original one given by Quillen 

in [21]. 

We will say that a morphism in C i: A -+ B has the /ef lifting property (LLP) 

with respect to another morphism p: X + Y and p is said to have the right lifting 

property (RLP) with respect to i if the dotted arrow exists in any diagram of the 

form (*). 

Recall now that Simp(Gp) is a closed model category [21] where the firbrations 

are the Kan fibrations, the weak equivalences are those morphisms which 

induce isomorphisms on the homotopy groups and the cofibrations are defined 

by the LLP with respect to the trivial fibrations. By using the simplicial sets 

A [n, k], A [n] and d [n] [ 171 and the free group functor F : Simp(Sets) + Simp(Gp), 

(trivial) fibrations are characterized as follows [21, Section 2, Propositions 1 

and 21: 
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Proposition 1.1. Let f. : X. + Y. be a morphism of simplicial groups. 

(i) .f: is a fibration iff .f. has the RLP with respect to the family of morphisms 
FA[n, k] -+ FA[n], 0 I k I n, n > 0, induced by the inclusions A [n, k] c--) A [n], 

O<k<n,n>O. 

(ii) ,f. is (I trioiulhbration iflf. has the RLP with respect to the,fumily of morphisms 

FA [n] + FA [n], .for all n 2 0, induced by the inclusions d [n] q A [n], ,for all n 2 0. 

2. Lifting closed model structures from Simp(Gp) 

Let us consider Simp(Gp) with its Quillen’s closed model structure and suppose 
through all this section that C is a category which has finite limits and colimits, related 
to Simp(Gp) by an adjunction 

C & Simp(Gp) 
R 

(A) 

with L the left adjoint functor to R, and for which 

cp : Homc(LG., X) - Hornsi,, (G., RX) 

will denote the corresponding natural bijective map. 
The aim for this section is to prove that, under suitable conditions for this adjoint 

situation, the category C acquires a closed model structure in the Quillen’s sense, 
which is the “lifted” one-from that of Simp(Gp) in the following sense (see [23]): 

Definition 2.1. A morphism fin C is said to be fibration (weak equivalence) if Rf is 
a fibration (weak equivalence) in Simp(Gp). A morphism ,fin C is a cofibration if it has 
the LLP with respect to the trivial fibrations. 

We will use now the characterizations of (trivial) fibrations in Simp(Gp) (see 
Proposition 1.1) and the adjunction (A) to prove: 

Proposition 2.2. (i) The functor L : Simp(Gp) + C preserves cqfibrations. 

(ii) A morphism f in C is a jibration ifSit has the RLP with respect to the family of 

morphisms LFA [n, k] + LFA [n], 0 I k I n, n > 0, induced by the inclusions 

A[n,k]~A[n],O~k~n,n>O. 

(iii) A morphismf in C is a trioialjibration ifSit has the RLP with respect to thefamily 

of morphisms LFA [n] + LFA[n], n 2 0, induced by the inclusions A[n] ct A[n], 

n 2 0. 

(iv) If A + B is a cojbration in C and A _ + C is uny morphism, the induced morphism 

into the pushout 

C-BUC 
A 
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is a cojbration. 
(II) !fC, +c, -‘c-z + “’ is a sequence of cojibrations in C, the canonical morphism 

Co- C, = lim C, 
+ 

is a cojibration. 

Proof. (i) is a consequence of the natural bijective correspondence, induced by cp, 
between diagrams in C 

LG.-X /* 
Li. I I /’ 

” p 

I 

LH.- Y 

and diagrams in Simp(Gp) 

G.-RX 
;1 

i. / 
/’ 

I I /’ 

RP 

H.-RY 

(ii) and (iii) follow from Proposition 1.1. and the above correspondence between 
diagrams in C and Simp(Gp). 

As for (iv) and (v), note that the morphisms 

C-BUC 
A 

and CO + C, are cofibrations since 
fibrations, as can be easily deduced 
directed limits. 0 

they have the LLP with respect to the trivial 
from the universal property of pushouts and 

An object A in a category C is said to be “small” if 

Horn, (A, li,m 8,) z Ii2 Horn,-(A, B,) 

for any directed system (B,} in C. A family of objects {An} in C is said to be 
“sequentally small” if the objects A, are small. 

We can then prove: 

Proposition 2.3. If the finctor R : C -P Simp(Gp) preserves directed limits, then: 
(i) The objects LFA[n, k] and LFA [n], 0 I k I n, n 2 0, are sequentially small. 

(ii) For any sequence of weak equivalences in C, Co + C1 + C2 -+ ... , the canonical 
morphism 

CO- C, = lim C, + 

is a weak equivalence. 
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Proof. (i) It is well known that Fd[n,k] and Fj[n] are small. Thus, using the 

adjunction, one has 

B, B, 

z HomSimp,Gp~ 
i 

Fd[n,kl, li,m RB, 
> 

z li,m HomSimp,opI (Fd[n,k], RB,) 

2 li,m Horn, (LFd [n, k], B,), 

and similarly for LFd [n]. 

(ii) Since R preserves directed limits we have RC, 2 IiF RCi. As every C; + Cc+, 

is a weak equivalence, using the fact that in Simp(Gp) the homotopy groups of 

a directed limit are the directed limits of the homotopy groups, one sees that, as each 

RCi + RCi+ 1 is a weak equivalence, SO is RCO -+ li,m RCi z RC,. Thus CO 4 C, is 

a weak equivalence. 0 

Conditions for (A) to have a good behaviour with respect to taking pushouts in C of 

trivial cofibrations, are given in the following: 

Proposition 2.4. Suppose that the functor L: Simp(Gp) -+ C preserves weak equica- 

lences and the counit qf the adjunction (A), cc: LRC + C, is an isomorphism ,for all 

C E C. Given a pushout diagram in C 

LG.2 B 

Lf. I I B 

LH.-Q 

if,f. is a triuiut cojbration in Simp(Gp), then g is so in C. 

Proof. It remains only to prove, according to Proposition 2.2., that g is a weak 

equivalence. For this, taking the pushout diagram in Simp(Gp) 

G.3 RB 

1: I I 
H. - P, 

we have, since f. is a trivial cofibration, that RB + P is a weak equivalence and, as 

L preserves them, LRB + LP. is a weak equivalence in C. 



294 J.G. Cabello. A.R. Garzbn JJournal c$ Pure and Applied Algebra 103 (1995) 2877302 

Now, considering the commutative diagram: 

h 
I I 
I + 

LG. Lrp(h! LRBA B 

where the square on the left is a pushout, we have LP. 2 Q since eB is an isomorphism, 

and so g is a weak equivalence. 0 

We can show now the main theorem of this section. 

Theorem 2.5. For the general adjunction (A), suppose the functor L preserves weak 
equivalences, R preserves directed limits and the counit of the adjunction, Ed, is an 
isomorphism for each object C E C. Then, the category C is a closed model category 
under the structure proposed by Definition 2.1. 

Proof. Axiom CM1 is true by hypothesis and CM2 is immediate. 

Axiom CM3 for weak equivalences and fibrations holds in C clearly. Let us prove it 

for cofibrations. 

Let f: X -+ Y be a retract of a cofibration g : W + Z with morphisms i, r, j and 

s as in the formulation of CM3 (see Section l), and take any commutative square 

in C _ 

f I I P 

Yb’B 

(*) 

where p is a trivial fibration. With this square we construct the following commutative 

one 

W”‘E 

Y I I P 

ZbS‘B 

for which there exists a lifting D : Z -+ E because g is a cofibration; thus, a lifting for 

( * ) is a given by Dj. 
CM5 (Factorization axiom). We start showing the factorization as a trivial cofibra- 

tion followed by a fibration of any morphism f: X -+ Y in C. For this consider the 
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induced morphisms LFA[n, k] + LFA[n] and all the commutative diagrams 

LFA [n, k] - X 

Lb,,,,:. j’ for O<k<n and n>O. 

and let 

295 

(**I 

y LFA [In, kl - v LFA [nl 

be the induced morphism in the coproducts of LFA [n, k] and LFA [n] indexed by the 
set of all diagrams ( **). The morphism 

y FA Cn, kl - v FA Cnl 

is a trivial cofibration as it is a coproduct of trivial cofibrations and then, considering 
the pushout 

~LFAIn,kl-X 

I Ii0 
jj LFA[n] --+ X0 
i. WJ 

we have that the morphism iO is a trivial cofibration by Proposition 2.4. which has, in 
addition, the LLP with respect to all fibrations, and induced by iO and CQ, there exists 
a morphism p. :X0 + Y such that poio = f. Moreover, by construction any morphism 
LFA[n] + Y in any diagram (**) lifts through p. extending LFA[n, k] -+X +X0. 

Applying this entire construction to p. : X0 + Y, one produces a new factorization 

x,~x$+ Y 

and iterating it countably many times, one obtains a sequence of objects of I, {X,) 
and morphisms {pm : X, + Y} such that the following diagram is commutative 

X7/y_ . . . 

Y 

where each i, is a trivial cofibration. 
Call 

X, = li,m X, 
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and let i : X + X, be the canonical morphism. Then, by Propositions 2.2. and 2.3., i is 
a trivial cofibration which has, in addition, the LLP with respect to all fibrations since 
each i, has. On the other hand, the morphisms pm induce another one p : X, + Y such 
that pi =f and we will prove now that p is a fibration in C. To do this, we see, 
according to Proposition 2.2., that it has the RLP with respect to the family of 
morphisms LFA[n,k] -+ LFA[n], 0 5 k I n, n > 0. Take then any commutative 
diagram 

LFA[n, k] f, X, 

I lp 
LFA[n]A Y 

and note that, since the objects LFA [In, k] are small by Proposition 2.3, the morphism 
t factors through some X,, that is, there is a commutative diagram 

LFA [n, k] f X, 

\ /c 

X, 

Thus, using the following commutative diagram obtained from the above ones: 

LFA[n] 
s 

it is straightforward to see that the composition 

(2) 

rn,+ I 
LFA [n] - u LFA [n] = X,,, 1 - X, 

is the required lifting for the diagram (1). 
As for the factorization of f: X + Y into a cofibration followed by a trivial 

fibration, we repeat the same process as above, starting now from all commutative 
diagrams of the form 

LF;1 [n] - X 

I I 
.f 

LFA[n]- Y n20 
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having then a factorization of f, X LX, s Y, where j is a cofibration by 
Proposition 2.2, and, again by this Proposition, 4: X --f Y is a trivial fibration since 
the objects LFA [n] are small by Proposition 2.3. and so, a similar diagram to (2) gives 
the required RLP for $ 

CM4 (Lifting axiom). The only non-trivial part of this axiom consists of showing 
the existence of lifting in commutative diagrams of the form 

f I I Y 

B?Y 

(3) 

where f is a trivial cofibration and 4 is a fibration. For this, factor the mor- 
phism f: A + B as in the first half of CM5, that is, f= pi with p: A, + B a 
fibration and i: A + A, a trivial cofibration which has the LLP with respect to 
all fibrations; axiom CM2 gives then that p is also a weak equivalence and, in the 

diagram 

the dotted arrow exists since p is then a trivial fibration andfis a cofibration. On the 
other hand, since i has the LLP with respect to the fibrations there exists a morphism 
t : A, -+ X such that ti = a and qt = bp, and thus, finally, the lifting for the diagram (3) 
is given by the composition ts: B + X. 0 

Cofibrations in C can be now characterized as follows: 

Proposition 2.6. Let f: A 4 B be a morphism in C. Then, f is u cojbration i# 

f is a strong retract of the morphism j: A + A, obtuined from the factorization 

f= qj, given in the verijication of CM5, into u cojibration .followed by (I trivial 

,fibration. 

Proof. Suppose f is a cofibration in C and factor it by CM5 asf = qj. Thus in the 
diagram 

A’- A, 
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there exists a lifting s:B -+ A, which shows, by the following diagram, that f is 
a strong retract ofj 

1dA 
A-A 

f 
I I 

j 

BAA, 
4 

Conversely, iff is a strong retract of the morphism j: A + A, obtained from the 
factorization off as in the second half of CM5, fis a retract of a cofibration, and so, by 
CM3, f is. 0 

Corollary 2.7. Given X E C, X is a cojibrant object (i.e., the unique morphism C#J + X is 

a cojibration) ifl X is a retract of the objects 4m obtained from the factorization of 
4 + X into a cojibration followed by a trivial3bration as in CM5. 

3. Closed model structures for algebraic models of (n + l)-types 

We will use the general method of Section 2 to discuss closed model structures on 
categories of algebraic models of connected types. 

3. I. n-HXC(Gp) as a closed model category 

The non-abelian version of the classical Dold-Kan’s theorem given in [S] provided, 
by a canonical process of truncation, a new category of algebraic models for (n + l)- 
types. This category, n-HXC(Gp), consists of certain complexes of non-abelian 
groups, called n-hypercrossed complexes of groups; n-HXC(Gp) is equivalent to the 
full subcategory of Simp(Gp) formed by those simplicial groups with trivial Moore 
complex in dimensions > n, which we will denote by n-Hypgd(Gp) since it is just the 
category of n-hypergrupoids of groups in the sense of Duskin-Glenn [l 11. 

n-Hypgd(Gp) is a reflexive subcategory of Simp(Gp), where the reflection functor 
P: Simp(Gp) + n-Hypgd(Gp), left adjoint to the inclusion functor J, is explicitely 
given by 

i;G”& G a 
P(G.) = cask”+’ - : 

H n+l + d.+,(N:+,G.F+ 
: G,_~~...~G~-;G~ 

n ) 

where H, + 1 is the normal subgroup of G,+r formed by those x E G,+ 1 such that 

dix E d,+ l(N,+lG.), 0 I i 5 n + 1 ( compare with that given in [ll]). 
For this adjoint situation, it is clear that PJ = Id and P preserves weak equiva- 

lences. Also, note that J preserves directed limits since the Moore functor is given by 
means of finite limits and, for groups, these commute with directed limits. 
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Recalling Definition 2.1., we say that a morphismfof n-Hypgd(Gp) is a fibration 
(weak equivalence) if Jf is a fibration (weak equivalence) in Simp(Gp) and f is 
a cofibration if it has the LLP with respect to the trivial fibrations. 

With these definitions we have then, as a direct consequence of Theorem 2.5., the 
following: 

Theorem 3.1.1. n-Hypgd(Gp) is a closed model category under the structure proposed 
above. 

Using now the equivalence of categories between n-Hypgd(Gp) and n-HXC(Gp) 
[S] we have: 

Theorem 3.1.2. The category of algebraic models of (n + 1)-types, n-HXC(Gp), is 
a closed model category. 

Particularly, let us note that 1-HXC(Gp) is just the category of crossed modules of 
groups and 2-HXC(Gp) is that of 2-crossed modules of groups in the sense of 
Conducht [7] so that we have: 

Corollary 3.1.3. The category XM(Gp) of crossed modules of groups (2-types) is a 
closed model category where the Jibrations are those morphisms r = ( fi,.fo): 

(G&H) -+ (G/&H’) such that fi is surjective and the weak equivalences are those 
morphisms r inducing isomorphisms Kerp z Kerp’ and Cokerp % Coker p’. 

Corollary 3.1.4. The category 2-XM(Gp) of 2- crossed modules of groups (3-types) is 
a closed model category where the Jibrations are those morphisms 
r = (f*, fi, fo):(LAMAN) -+(L’ * M’A N’) such that f2 and f, are surjective 
and the weak equivalences are those morphisms r inducing isomorphisms 
Ker cp z Ker cp’, Ker p/Im cp z Ker p’/Im cp’ and Coker p 2 Coker p’. 

3.2. Simpl”(Gp) as a closed model category 

Simp”(Gp) denotes the category of n-simplicial groups, that is, the category of 
functors Gp n”“x !‘I.. no’, so that an n-simplical group has n independent simplicial 
structures (one for each of the “coordinate” directions). 

Simp”(Gp) is related to Simp(Gp) by an adjoint situation 

Simp”(Gp) Y!Z, Simp(Gp) 
EJ 

where the functor U is an extension [4] of Illusie’s Total Dee functor [ 131 and its right 

adjoint WV, is a generalization of the Artin-Mazur’s total complex [4, 171. 
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Following Definition 2.1. we say that a morphism f in Simp”(Gp) is a fibration 
- 

(weak equivalence) if wf is a fibration (weak equivalence) of simplicial groups, 

and cofibrations in Simp”(Gp) are defined by the LLP with respect to the trivial 

fibrations. 

Note that in [lS] Moerdijk defined, in a similar way, a closed model structure for 

Simp2 (Sets), the category of bisimplicial sets. 

The unit of the above adjunction G. + WTG. is a weak equivalence of simplicial 

groups [4] and so it is clear that the functor TT preserves weak equivalences. More- 

over, using the fact that in Simp(Gp), and hence in Simp”(Gp), directed limits 

commute with finite limits and taking into account that the construction of WV is given 

by means of finite limits, this functor preserves directed limits. Although the counit of 

this adjunction is not an isomorphism, the proof of the Theorem 2.5 works by 

replacing the required Proposition 2.4 by the following: 

Lemma 3.2.1. In any pushout diagram in Simp”(Gp) 

TFd [r, k] - X 

I I .f 
TFd[r]-P, O<k<r, r>O 

the morphism f is a trivial cojibration. 

Proof. Since the morphisms TFd [n, k] --+ UFA [n] are trivial cofibrations it is clear 

that f is a cofibration. To prove that f is a weak equivalence, i.e., that VVf is of 

simplicial groups, we use the diagonal functor D : Simp”(Gp) -+ Simp(Gp) which is 

weak equivalent to fi, that is, there exists a natural transformation v: D + E such 

that vx: DX + WX is a weak equivalence of simplicial groups [4]. Now, applying 

D to the given pushout diagram, we have a pushout in Simp(Gp) 

[I3iBFd [r, k] --+ DX 

1 I?/ 

DUFA [r] -4 DP 

where DUFA [r, k] -+ DUFF [r] is a weak equivalence and also a cofibration because, 

in fact, it is clear that this morphism is a free map in the sense of Quillen [21]. Thus K9cf 

is a weak equivalence and sof is. 0 

We can now assert the following: 

Theorem 3.2.1. The category Simp”(Gp) with the above structure is a closed model 
category. 
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3.3. A closed model structure for Cat”(Gp)? 

Let Cat”(Gp) be the category of cat”-groups [2,15], that is the category of n-fold 

internal categories in Gp, or equivalently, that of n-fold internal groupoids in Gp. By 

using the n independent category structures of a cat”-group there is a multinerve 

functor 

N : Cat”(Gp) + Simp”(Gp) 

which embeds Cat”(Gp) into Simp”(Gp) as a reflexive subcategory whose image 

consistsjust (up to natural equivalence) of those n-simplicial groups which have trivial 

Moore complex in dimensions 2 2, for each of the n independent simplicial struc- 

tures. Let us note that, for n = 1, Cat”(Gp) is the category of internal groupoids in Gp 

and N is the usual nerve functor in the sense of Grothendieck, which gives an 

equivalence of categories between Cat’(Gp) and l-Hypgd(Gp). In this case the 

reflector functor P: Simp(Gp) -+ Cat’(Gp) is given by the fundamental groupoid 

construction 

P(G.) = G1 SG 
d,N,(G.) 

0 

where the source, target and identity morphisms are induced by do, d, and 

s0 respectively. 

For n 2 2, the reflection functor 

EJ : Simp”(Gp) --+ Cat”(Gp) 

is then obtained by taking fundamental groupoid in each of the y1 independent 

directions. 

Considering then the following adjoint situation 

Cat”(Gp) 2 Simp”(Gp) 5 Simp(Gp) 
N F 

we propose, as in Definition 2.1, that a morphismfin Cat”(Gp) is a fibration (weak 

equivalence) if ENif is a fibration (weak equivalence) of simplicial groups and thatfis 

a cofibration if it has the LLP with respect to the trivial fibrations. 

For the above adjunction it is clear that the functor N : Cat”(Gp) -+ Simp”(Gp) 

preserves directed limits so the composition VW/N does; also the functor 

IFDU : Simp(Gp) -+ Cat”(Gp) preserves weak equivalences since the unit of the adjunc- 

tion, qG. : G. -+ WNPTG., induces isomorphisms on the homotopy groups ni, 

0 I i I n, for each simplicial group G. [4]. 

As in the case of Simp”(Gp), the counit of this adjunction is not an isomorphism but 

we conjecture that it is possible to use the constructions given at the proof of the 

Theorem 2.5, to show that Cat”(Gp), n 2 2, is a closed model category with the above 

proposed structure. 
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