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THE HOMOTOPY TYPE OF SPACES X 
WITH FUNDAMENTAL GROUPOID 

AND AN UNIQUE NON-TRIVIAL 
HOMOTOPY G-MODULE n,(x) 

M.Bullejos and J .G.  Cabello 

Departamento de Algebra 

Universidad de Granada 

18071 Granada 

Espaiia 

1 Introduction 

Bredon cohomology was introduced in - [4] to develop an obstruction theory for 

spaces equipped with an aciiori of a fixed group G. More recently 3Ioerdijk a id  

Svensson have defined Bredon cohomology with local or twisted coefficients 

and have shown that this cohomology is invariant under weak equivariant 

homotopy equivalence. They have also constructed a Serre spectral sequence 

for equivariant fibrations, see [20]. - 
In the non-equivariant case Mac Lane and Whitehead proved, - [17], that 

any pointed conliected 2-type (in the classical language, any 3-tuple (G, A,  k 3 )  

725 

Copyright 8 1999 by Marcel Dekker, Inc. 

D
ow

nl
oa

de
d 

by
 [

U
G

R
-B

T
C

A
 G

ra
l U

ni
ve

rs
ita

ri
a]

 a
t 0

1:
29

 1
0 

D
ec

em
be

r 
20

12
 



726 BULLEJOS AND CABELLO 

consisting of a group G, a G-module A, and a cohomology class k3 E H 3 ( G ,  A)) 

can be realized by a pointed connected space (X,xo) with homotopy groups 

vanishing a t  dimensions greater or equal to 3: and such that its fundamental 

group is G and its second homotopy group coincides with A. Our aim was to 

extend this classical result to the equivariant context. This has been achieved 

in [5], using results of the present paper which are a good (sufficiently functo- - 
rial) generalization of the classical non-equirrariant results, without assuming 

connectedness and the choice of a base point. Xot only the classical direction - 

the 2-type allows to find the space- but also the converse have been established 

in this paper, the latter by means of appropriate arguments of obstruction the- 

ory. The argumental line and the results of the present paper lay down the 

norm for establishing the final generalisation in the equivariant scenario. 

We start  from a space X with fundamental groupoid n (S)  = and 

whose only non-trivial homotopy functor is -4 = I12(X) : G -+ Ab. The 

Eilenberg-Mac Lane cohomology group involved above is then to he replaced 

by the cohomology group H3(G,  A)  of the small category G with coefficients on 

the system of abelian groups A. What we prove, thus, is that the homotopy 

type of X is completely determined by G: .-I and an element k3 E H3(G1 '4) 

(see Theorem 4.4 below). There is no extra dificulty in suppossing that .4 = 

n,jX); 77, 2 2, is the only iion trivial homotop:\- group fiinctor of .Y. so all the 

results stated have been proved in this general case. 

The use of cohomology of categories instead of cohomolog!- of groups 

seems natural. Even more, it would confirm that  the arguments employed in 

this paper were in the right direction with regard to the equivariant contest 

(as has been proved in [ 5 ] )  after the identification by Moerdijk-Svenson of - 

Bredon cohomology groups HA(X, A) (of a G-space X with coefficients in an 

abelian group-valued functor A from the orbit category C?(G): i.e. a O(G)- 

module) as collo~nology groups H g ( A ~ ( X ) .  A )  of the smull c u t q o ~ y  ilc(X) 

with coefficients in A. 
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HOMOTOPY TYPES 727 

The plan of the paper is as follows: nesr section is devoted to  coho- 

mology of small categories, reinterpreting it in terms of cotriple cohomology 

(Theorem 2.3). Section 3 will analyze the notion of n-torsor as a link between 

the cohomology of small categories and the required n-type. Finally, section 

4 is devoted to the conclusions: after the necessary machinery of obstruction 

theory to set the converse direction, the main result is proved (Theorem 4.4). 

2 On cohomology of categories 

. is  we pointed out in the introduction. the passage from the pointed connected 

case to the equivariant one requires the replacement of Eilenberg- MacLane 

cohomology of groups by that of small categories. In this section some ba- 

sic facts concerning cohomology of small categories are reviewed. Some new 

results will be introduced, with special attention to the identification of this 

cohomology as a cotriple cohomology. 

The category of all small categories and functors between them will be 

denoted by Cat. The standard conventions in any category C, ATT(C) = A 

and Obj(C) = 0 for sets of arrows and objects, respectively. s for source, t for 

target and o for composition, will be adopted, 

where A x o  ..l contains ail pairs of arrows of C such that their composition 
I 

makes sense. that is, we will write (f. g )  E A xo  .-t or (a + b 3 c) E A xo .4 

if g o f exists. 

In order to define cohomology of' a category C we use C-modules as coef- 

ficients where. as usual, by a right C-n~odule we mean any functor A frorn Cop 

t o  the category Ab of all abelian groups. Equivalently a right C-module may 
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728 BULLElOS AND CABELLO 

be viewed as an abelian group object in the topos SCoP of functors from C q  to 

the category S of sets. 

For any such C-module A, the cohomolog~ of C is then defined as the 

cohomology of the topos with coefficients in the abelian group object A, 

that is. 

Hn(C, A) = H"(S~O',  A) .  

Here and In the remaining of the paper, Ner(C) stands for the nerve of a 

small category C. It is the simplicia1 set having a t  d~mension zero the set 

of objects 0, a t  dimension one its arrows -4, and a t  dimension n the set 

of composable n-tuples of arrows in C. The face operators of Ner(C) are 

do = t ,  dl = s : N ~ T ( C ) ~  -+ Ner(C)o. and d, : KEI.(C)~ ---t Ner(C)n-l 

Then, the cohomology of C with coefficients in a C-module A can also be 

computed (see [I]) as the cohomology of the abelian cochai~l complex coming - 

from the cosimplicial abelian group defined by 

with differentials 6 : Cn(C, A) + Cn-'(C, A) obtained from the face maps of 
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HOMOTOPY TYPES 

the nerve of C by taking alternating sums, in the standard fashion. Then 

Hn(C. A )  = Hn(C*(C, A)). 

We can also use some kind of bar resolution, to compute this cohomology. 

In fact we define the simplicia1 co-complex B(C, A) of abelian groups by 

BO(C, A )  = { f : 0 ---t CA(X)/  f (xo) E A(x0) for xo r 0 )  
rf 0 

and for n 2 1, Bn(Cl A) is defined as 

where C denotes the coproduct (disjoint union) in the category of sets. Note 

that each Bn(Cl A) is converted into an abelian group by defining f +g for f ,  g E 

Bn(C,A) ,  to be the sum into A(.xO) The face operators of this cosimplicial 

complex are 

di : Bn(C, A) -+ Bn+'(C, A). O 5 i 5 TI 

From this cosimplicial complex of abeiian groups, a cochain compiex is pro- 
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730 BULLHOS AND CABELLO 

duced by defining the coboundary operators in a bar resolution fashion: 

for all 71 2 1, and 

6B0 : BO(C. A) t B1(C. A) 

Then we have 

Hn(C, A) = Hn(B*(C. A ) ) ,  

since both complexes C*(C, A )  and B*(C, A )  are isomorphic. The isomorphism 

is given a t  each dimension n as follows: 

for each tupla (a,,) to be considered in the product 
( z o 4 z 1  . . . Z , - ~ % I ~ ) € N ~ ~ ( C ) ~  

~ x o - i . . . + z n E N e r ( C ) n  ' ( X O ) ?  we define 

as the following element of Bn(C): 

Conversely, given any f E Bn(C, A ) ,  qn( j )  is defined as 

X 
q n ( f )  = ( f ( x0  -4 2 1  . . .  &,-I  -5 z,)) . A l  (zo--+=I ... x,,-1 *z , , )€~er (~) ,  

Both pn and qn describe the desired biyection. D
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HOMOTOPY TYPES 

In the particular case of the category C being a group G: viewed as an 

only-one-object category the topos SGop coincides with the topos of right G- 

sets and the above cohomology equals the usual cohomology of groups. 

For any category C, a right C-set can also be regarded as a set (over the 

set 0 of objects of C) equipped with a right C-action. In  other words, a right 

C-set is equivalent to giving a set X 1; 0 over 0 together with a C-action on 

the right 

X X ~ A ~ X  

of C on X,  where A is considered as object over 0 \.ia t ,  i.e., the elements of 

X xo A are pairs (x,g) E X x A such that p(x) = t ( g ) .  

The conditions of a C-action on the right are espresed a s  usual by 

where we write p(x, g) = x . 9. 

We have then a forgetful functor 

from the category of right C-sets to the slice category of sets over 0. which 

in fact has a left adjoint. The functor U preserves products and so it induces 

a functor M between the corresponding categories of' internal abelian group 

objects. This situation is illustrated in the following commutative diagram, 
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732 BULLWOS AND CABELLO 

where the vertical arrows are the corresponding forgetful functors from the 

categories of internal abelian groups objects. If A E ~ b ' ~ " ,  M(A) is defined 

by 

with pr the canonical projection. 

Let us note that  this functor M ,  in the case of groups, factors through 

the category of internal abelian group objects of a slice category of groups, by 

a construction of semidirect products of groups and kernels. All the mentioned 

structures can be reproduced in the case of categories by mean of the so-called 

Grothendieck construction. Given any contravariant functor F : Cog + C a t ,  

the Grothendieck semidire~t construction is the category Jc F whose objects 

are pairs (c, x) with c E 0 and x an object in F(c) .  .in arrow (f ,  A) : (c ,  x) -+ 

(c', y) consists of an arrow f : c + c' E A and an arrow in F(c) ,  X : x -+ 

F(f)(y). The composition is defined in the obvious nay. 

The Grothendieck construction, when considered on C-modules A (re- 

garding each abelian group as a category with just one object), produces a 

category whose set of objects is the same of C, and whose arrows are pairs 
f (f, a )  : c -+ c' with c -+ c' an arrow in C and a E A(c), the source and target 

of (f, a)  are the source c and the target c' of j ,  respectively. Pariicuiary, tile 

composition in Jc A is given by 

The natural projection S, F $ C is the identity on objects. This justifies the 

restriction of our setting t o  the full subcategory Cato/C (of the slice category 

CatlC) formed by those categories over C with same set of objects 0 as C. Sc A 

will be always assumed to be supplied with the natural projection to C, pr. 
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HOMOTOPY TYPES 733 

This produces an abelian group object which will be an adequate coefficient 

for certain cohomology, as follows: 

L e m m a  2.1. For any category C and rigth C-module A, the category Sc A is 

an abelean group object enternal i n  the slzce category Cato/C. 

Proof. The group operation + : Jc A x Jc A -+ Sc A is given by (f .  a)  + 
( f ,  a') = (f, a + 0') 

.4nd even more: 

Lemma 2.2. When the category considered is a groupoid G, so it is SG A, for 

any G-module A. If Gpdo/G stands for the corresponding slice category of 

groupoids (over G) with fixed set of objects, then S, A is abelian group object 

in Gpdo/cj. 

The Grothendieck construction gives rise to a functor 

which in the particular case of groupoids is indeed an equivalence of categories. 

~b'° '  2 Ab(Gpdo/G) ,  for any fixed groupoid (i. The close relationship 

between abelian group objects in SCop and abelian group objects in Cato/C 

(that in case of groupoids turns out to be an identification), together with 

the fact that this last category Cato/C is tripleable, suggest interpreting the 

cohomology H n ( C ,  A) as a cotriple cohomology. In order to articulate this 

idea, let us observe. on the one hand, that the set 
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734 BULLEJOS AND CABELLO 

of functors (over C) from C to S, A can be parametrized by the set Der(C, A) 

of "derivations" from C to A, where an element d E Der(C, A) is a corre- 
f spondence which maps any arrow a + b of C to an element d(h) E A(cr(a)) 

such that for any pair 

a 3 b 1 $ c  

of composable arrows of C, the identity 

or, in terms of actions, 

d(f1 0 f2) = d ( f ~ ) ~ ( ' * )  + d(f2), 

holds. On the other hand, recall that the category C a t  of small categories 

is tripleable over the category G r p h  of small (directed and reflexive) graphs, 

with cotriple associated to the adjunction 

where F and U are the yree category" and the "underlying graph" functors 

respectively. Now, the above adjunction (1) induces, for any groupoid C, 

another one between the corresponding slice categories 

in such a way that Ca t lC  is tripleable over Grph/U(C), where the cotriple 

comes from the adjunction (2). Besides. this last adjunction (2) could be 

restricted to another one 

where Grpho/C is the full subcategory of Grph/U(C) having as objects those 
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HOMOTOPY TYPES 735 

graphs 7 + U ( C )  over U ( C )  with the identity on vertices. The category 

C a t o / C  is then tripleable over G r p h o / C  by means of the adjunction (3). 

With the obvious abuse of language, C for the identity Idc : C -i C ,  we 

may consider then the cotriple cohornology HE(C, Jc A), n > 0, of Idc with 

coefficients in the abelian group objects fc A. Thus we prove 

T h e o r e m  2.3. For any small category C and any C-module A, there are nat- 

ural isomorphisms 

between the cotriple cohomology of C with coeficients i n  Sc A and the coho- 

mology of the small category C with coeficients i n  the C-module A. 

Proof, An standard cochain complex K consists of contravariant functors 

to the category of abelian groups. K n  : C"P -+ Ab. together with natural 

transformations dn+' : K n  i Kn+' such that dn+'dn = 0. V n  2 0. as usual. 

Thus, we shall prove the theorem as an application of the result given in [2] - 
(Corollary 3.2.): 

" I f K  y L are standard cochain complexes, both 6 -  acyclic and 6-representabies, 

and K- '  2 L - ' ,  then K and L are (homotopy)  equivalents. In  particular, they 

produce the same cohomology". 

Let us define an standard cochain complex, K ,  by 

f f o m ~ a t ~ / ~  (Ct Jc -4) i f  71 = -1 
{ K n ( C ) } n > - ~  = 

Honzcatojc (Gnf' ( C ) ,  Sc A) i f  71 >_ 0 

It  is well known that  the col~omology produced by this con~plex is the cot'riple 

cohomology of C with coefficients in Jc A. D
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736 BULLElOS AND CABELLO 

This cochain complex is 6-acyclic, that is, there is a functorial contract- 

ing homotopy in the "composite" complex {Kn(G(C))),>-1. This comes from 

the fact that the cosimplicial complex {Kn(G(C))),>-1 could be regarded as 

where Decl denotes the shift functor which acts by forgetting the last face op- 

erator at each level and renumbering the le*\.els (see - [14]). Then, just take into 

account that a simplicial contraction {c, : X,-, -+ Sn)n>-l in an augmented 

simplicial complex {Xn)n>-l (i.e.. an extra degeneracy operator) produces a 

contracting homotopy in the cochain complex obtained by "Honi-zng" and 

taking alternating sum of faces. This is defined by 

So, the required contracting homotopy for {Kn(G(C)))n>-l  - comes from the 

simplicial contraction Deci(G'(C)) has (which is the forgotten degeneracy). 

Besides, the complex {IP(C)),>-l - is G-representable , which means in 

this case that there are morphisms Kn(G(C)) % K n  (C) such that anGn+'  (ec)* = 

IdKn(C). This is achived by defining the morphisms an to be Gn(&) .  Then, 

the required equality is satisfied for the counitary law of the cotriple. 

In order to have a complete information about {Kn(G(C))),>-l, - note 

now that the -1 level of this complex, H O ~ ~ ~ ~ , , , ~ ( C ,  J, A), can be described 

as being isomorphic to Der(C, A). as remarked before. 

On the other hand, let us consider the complex Bn(C,A) introduced 

previously and, particulary, corrsider the coboundary map 

which is defined by 
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HOMOTOPY mPES 737 

for each zo 3 zl -% 22, whose kernel equals Der(C, A). This allows us 

to consider the cochain complex Bn(C,A) with a shift in dimension, that is, 

starting in B1(Cl A), as cochain complex coaugmented on Der(C, A). Let us 

give the following name to this 

and let us observe that this complex is the one of those taken to define cohomol- 

ogy of the category C with coefficients in a C-module A. as well as {IP(C)},>-, - 

defines the cotriple cohomology. 

We show now that the cochain complex {Ln(C)}n>-I - is 6-acyclic and 

6-representable. In order to prove Gacyclicness for L: me shall find the con- 

tracting homotopy s, : Ln+'Q;C + LnGC as follows: 

For f E Ln+'GC and ( p , , n , .  . . ,P ,+~)  E Ner(Q;C)n+l, we define s, by 

induction on the length of the word pl,  considering the follon-ing cases: 

2. If pl = I d ,  define 

snf (PI,. . . ,P,+I) = f (Id, Id ,pn . .  . . : P,+I) 

where it is not indicated explicitely where the identity I d  is, since this is 

forced by the belonging of ( I d ,  Id, p2,. . . , pn+:) to the nerve, -is terminology, 

( w )  stands for the word consisting of an unique letter w ,  according to the 

construction of the free groupoid functor F. 

Finally, let us show that {Ln(C)),>-I is Grepresentable as  well. To this 

end, define the morphisms a" : Ln(GC) + Ln(C) as follows: 

rnh(gl,g2, -. . ,gn+d = h(b:!, (921,. . . , ( 9 ~ ) )  
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738 BULLEJOS AND CABELLO 

where h E L n ( W )  and (g1,92,. . . , gn+l) E Ner(C)n+l. These maps must 

verify crnLn(e) = where the map Ln(cc) is defined as follows: 

Let f be in LnC and (wl, wz, . - . , wn+l) E Ner(G(C))n+I, that is, each of 

the words wi consists of letters, 

u = 1 . . 1 for i = 1,. . . , n + 1 

Then one has 

Ln(~c ) ( f  ) (wI ,  u . 2 . .  . . wn+l) = 
1 n+l n + l  n+ 1 f ( l ~ l o l s ,  - l . . . l ; . l ~ 2 0 1 : 2 - l . . . ~ ~  , . . . ,  ~ * , , + l ~ ~ * " + , ~ l . . . ~ l  ) 

where these conipositions exist since (wl, wz, . . . , wn+,) is an element of Ner 

n +  With such definitions, the required property holds. 0 

Remark 2.4. The adjunction (3) can be replaced by 

for a fized groupoid G: with set of objects 0 and arrows A. For any G- 
module A, SG A is an adequate wefficient, by 2.2 , for the wtriple whomology 

H& (G, JG A), with wtriple G' associatted to adjunction (4); hence, an anolo- 

gous proof to that given by  2.9, shows the carreponding result for Gpdo/S; to 

be true. This will be fully used in next sections. 

3 Relationship with torsors 

The identification provided in theorem 2.3 give. a new interpretation of the 

cohomology groups of any category C. This section is devoted to analizing the 

advantages of such interpretation, as a link to the required homotopy type. 

Let us determine here some simplicia1 notation. Having previously re- 

stricted our attention to groupoids with a f i x 4  set of objects, the adequate 
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HOMOTOPY TYPES 739 

simplicial setting now is the category Simp(Gpdo)  of simplicial groupoids 

with constant object of objects. that  is, simplicial groupoids in the sense of 

Dwyer and Kan, [Ill, whose category is usually denoted by Gd. The suitable - 

relationship of Gd with the category of topological spaces by means of a se- 

quence of adjunctions, will lead us to the desired homotopy type in the next 

section. 

For the fixed groupoid G .  me consider the slice category Gd/G by re- 

garding G as constant simplicial groupoid with all faces and degeneracies the 

identity. Also, any object of Gd/G can be viewed as an augmented simplicial 

groupoid E. -+ G, in the o b ~ i o u s  way. 

An augmented simplicial groupoid E. -+ G is called U-split if rhe aug- 

mented simplicial graph b-(E.) -+ U(G) has a simplicia1 contraction. that is, 

an extra degeneracy operator, called the U-splitting. 

The n-dimensional sinrplicial kernel An(E.) is the groupoid over with 

same set of objects as S and whose arrows are (n+l)-tuples (eo,.  . . , ek. . . . , en) 

of arrows ei E En-1 such that  die, = dj-lei, for all 0 5 i < j 5 n. The source 

and target of an  arrow (eo.. . . ,el;. . . . ,en) in iln(E.) are the source and target. 

respectively, of any of its components ei and the composition in An(&)  is given 

componentwise. We will write 

for the map which is the identity on objects and takes an arrow e of E,, to 

D,(e) = (do(e) ,  . . . , dn(e)) .  .4 simplicial groupoid is said to be aspherical 

at dimension n if the canonical map Dn is surjective and asphericol if it is 

aspherical a t  dimension n. for all n 2 0. -4s convention, Dl  =< do.  dl >: 

El + A,(E.) = Eo xg  Eo, while a t  dimension 0, do : Eo -t Ao(E.) = is the 

augmentation map. 

In a similar way, for any 0 < k 5 n,, one may define the 71-gmupoid of 

open k-horns, A~(E.: . ) .  The set of objects of this groupoid is 0 and its arrows 

D
ow

nl
oa

de
d 

by
 [

U
G

R
-B

T
C

A
 G

ra
l U

ni
ve

rs
ita

ri
a]

 a
t 0

1:
29

 1
0 

D
ec

em
be

r 
20

12
 



740 BULLHOS AND CABELLO 

are n-tuples (eo, . . . , ek-l, - ?  en-+I,. . . , en )  of arrows e, in En-1 (where the k-th 

component is missing), satisfiying 

There are also canonical maps a t  each dimension n ,  

defined as the identity on objects, and on arrows e of En to be 

(do(e), . . . , d - l ( e ) ,  - : d k ( e ) .  . . . ,&(el) .  

Note now that by iterating the simplicial kernel construction we obtain 

the coskeleton functor. 

from the category of truncated, a t  dimension n, simplicial groupoids over G .  

This functor coskn is right ad~oint  to the functor TT, which takes a simpli- 

cia1 groupoid over G to its truncation a t  dimension n. Then, coskn of an 

n-dimensional truncated s~mplicial groupoid over G has simplicial kernels from 

dimension n + 1 on. \\'e write the composition functor coskn o Trn as Coslcn 

then, the unit of the above adjunction D, : E. -t Coskn(E) is the ident~ty 

uutii dimension i z  and the map 3, : Em i A m ( ~ . ) )  at diinensions m 2 z-i 1 

Let A be any $module. We may describe now the Eilenberg-Mac Lane 

complexes K(SG A, n).  asociared with the corresponding abelian group object 

SG A in Gpdo/G. These simpl~cial complexes are defined to be the coskn+' of 

the truncated complex 

which is constant until dimension n - 1 (and equal to the identity on G), it 

has JGA a t  dimension n (wit!] ai! faces the projection pr )  and the product in 
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HOMOTOPY TYPES 74 1 

Gpdo/G of n + l  copies of JG A a t  dimension n +  1. The faces di : (J, A).+1 -+ 

JG A are the canonical projections for 0 5 i 5 n, while dn+l is given by the 

identity on objets and 

on arrows. 

Note that I i (SGA,n) ,  2 AL(K(JG A , n ) ) ,  for 0 < k 5 m and m 2 

n +  1. Simplicia1 objects satisfying this last condition (of ha\-ing open horns at  

dimensions greater than or equal to n + 1, in the sense that the canonical map 

< d ,  >+k:  Em -+ .\k(E.) is an  isomorphism, for all 0 < k 5 m, m 2 n + 1) 

are called n-hypergroupoids. .4n n-hypergroupoid is said to be exact if it is 

aspherical in dimensions q, 0 5 q 5 n. 

We explore now the notion of n-torsor (see [9] ,  [13]) since it plays a cen- -- 

tral r61e in the determination of the required homotopy type. The importance 

of such devices is that they give a complete interpretation for the cotripie co- 

homology groups in all dimensions that  now can be applied to the cohomology 

of the small groupoid G with coefficients in a G-module A, by 2.3. 

Definition 3.1. A K(JG A, n)-torsor relative to the forgetful functor U in  (3) 

above G, denoted b y  (E., <., JG A), consists of an augmented simplicia1 complex 

E. -t G E Gd/G. supplied with a simplicia1 map J. : E. -+ K(JG A, n)  such 

that 

1. the canonical map D. : E. -+ Coskn-'(E.) is an zson~orphism. 

2. the commututwe square of canonical maps 
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is cartesian, for 0 < k 5 n, and 

BULLNOS AND CABELLO 

3. E. -+ 4 is an augmentated U-split complex. 

Note that  condition 1 together with condition 2: implies that  An(E.) 2 

hk(E.) x G  JG A (which intuitively means that  SG A acts on Ak(E.) to fill its 

missing k-face in a fashion which is compatible with the degeneracy operators). 

Let us denote by T o r s x G ,  JG A) and Tors';[G, JG A] the category of 

K(JG A1 n)- torsors relative to U above E (where a morphism of n-torsors 

is an equivariant simplicia1 map) and the set of their connected components, 

respectively. 

Thus, K(JG A, n)-torsors interpret all cotriple cohomology groups, as fol- 

lows: 

Theorem 3.2 (Theorem 5.2, [lo]). Consider the functor U given in  (4)  - 
and the cohomology groups obtained from the corresponding cotfiple. Then, 

there are natural isomorphisms 

Once we have a new view of the cohomology of categories. as a di- 

rect consequence of the former result, there are isomorphisms Hn+'(E, A) g 

Tor;;[G, JG A], n > 0. So each cohomology class kn+l E Hn+'(E, A) appears 

to be associated to a class of connected componentes of K(SG A, n )  -torsors, 

<. : E. + K(SG A, n). Consequentely, 

Theorem 3.3. There exists a one-to-one correspondence between cohomology 

classes E H7'+l(G, A) and classes of connected components of K(JG A) n)-  

torsors relative to U above E, <. : E. -+ K(SG A, n) ,  for any abelian group 

object Jg A E Ab(GpdO/E).  0 
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HOMOTOPY TYPES 743 

The search of required homotopy type passes through n-torsors, as we 

have indicated. More precisely, it passes through a particular substructure 

that  any K(JG A, n)-torsor has, called its fibre. This is the following: 

Definition 3.4. Let (E.,<., JG A) be a K(JG A, n)-torsor. Its fiber Fib(E.) is 

defined to be the pullback simplicia1 groupold 

provided G is regarded as constant simplicia1 groupoid in Gd/G, with j. the 

inclusion. 

From this definition, the fibre of an n-torsor is an (n - 1)-hypergroupoid 

which, in addition, is exact. The relevant fact is that 

Lemma 3.5. Every exact (n- 1)-hypergroupoid may be considered as the fibre 

of an U-split IL-torsor. 

Proof. To this end, let M. + G be an exacr ( n  - 1)-hypergroupoid. 

for each 0 5 k 5 n. The n-torsor abo~-e  G ,  E F  must be Coskn-'(M.). 

Then, the abelian group object is defined as follows. First, let us remind 

that, the kernel of a functor a between groupoids in Gpdo/G, which is the 

identity on objects, is the group over 0 whose fiber a t  any point z E 0 is 

the group of autornorphisrns of x in the domain that goes to the identity on 

x by cr. Let us define then A',,, = Kerdo 3 Kerd, n . . . n Kerdn-, g MnPl ,  

which is equipped with an action of M0. carrying each u E Ah. to Afo by 

sucessive degeneracies. For the exactness. this one defines an action of 

on A',., as g . a = si- '(m)a(sz-'(m))-' .  g E G,a E A',,,, for all m E Mo 
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744 BULLEJOS AND CABELLO 

such that do(m) = g. Using now the equivalence between abelian groups 

objects of G-sets and that of sEop , we denote also by Ah. the corresponding 

functor G O P  -+ Ab. Thus, the abelian group object in Gpd,/G is obtained 

as &A',., written AM. for simplicity. Finally, the functor (, : En -+ AM. 

(which is the identity on objects), is defined on maps as &(xo, X I ,  . . . . x,) = 

(dg(xo), dn(xo, x l ,  . . . , x,-~)x;') E JG Ah. (see - [8] for groups). Moreover. this 

n-torsor is U-split. In fact, the U-splitting s, : U(A4,-l) -+ U ( M q )  is defined 

as: 

sl : U(Mo) -+ U(MI) is given by sl(.r) = hl(hodox,x), for each x E 

U(A/r,), where ho and h l  are the corresponding splittings in the under- 

lying maps of sets U(Do) : U(Mo) + L-(Ao(M.)) and U(D1) : U(JI1) + 

U(Al(M.)). and 

sg(x) = hq(sq-Idox, s,-ldlx,. . . , sq-ld,-lx, x) ,  for each x E U(A.I,-l), 

where hn is the corresponding U-splitting for U(D,). 

The key property of Fib(E.) in our deseloppement is the following: 

Proposition 3.6.  For any right (j-module A and any K ( ! ~  A. n)-torsor rel- 

ative to U above G, (E., <., JG A), then 

and there is an zsomorphisn~ 

as right G-modules. Besides. the remaining of homotopy fur~ctors are trivial. 

Proof. Any augmented simplicia1 groupoid. K. -+ G in Gd/G, may be consid- 

ered as ordinarv simplicia1 groupoid by simply forgetting the augmentation. 
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HOMOTOPY TYPES 745 

On the other hand, every ordinary simplicial groupoid X. E Gd may be seen 

as augmented by considering the coequalizer of the maps XI =t Xo -+ II,(X.): 

which is called the connected component groupoid of X.. This construction 

gives rise to a pair of adjoint functors 

between Gd and the category of augmented simplicial groupoids, with F g  for 

forgetting functor and Co(K.) = K. -+ IIo(K). It is clear that F g  o Co = Id  

and note that  the other composition Coo F g  is not equal to the identity for all 

simplicia1 complexes but for those which are aspherical (dimensions 0 and 1). 

In order to show that C o o  F g  = Id,  let us prove that U-splitness implies 

asphericity in our particular context. First. one observes that the existence of 

a simplicial contraction in an augmented simplicial groupoid makes itself as- 

pherical. Consider then any K(& A, n)-torsor in Gd/G, <. : E. -+ K(JG A; n).  

which is U-split. Hence, the canonical map 

is surjective. for all n 2 0. As the free groupoid functor F has right adjoint, 

i t  preserves colimits, particulary epimorphisms. Finally, the commutative di- 

shows that E. is spherical  since the counit of the adjunction, 6 ,  is a surjective 

map of simplicial groupoids when evaluated a t  each of them. Then, for the 

K ( &  A ,  n)-torsor I. : E. -+ K(SG A, n), it is clear that IIo(E. -+ G )  = G. As 

the fibre Fib(E.) coincides with E. until dimension n - 1, as we pointed out 

above, IIo(Fib(E.)) = G as well. 
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746 BULLEJOS AND CABELLO 

Let us study the homotopy groups of the fibre. In general, for any sim- 

plicial groupoid K. -+ G in Gd/G, its homotopy groups a t  each vertex a E 0 

are defined to be the homotopy groups (always a t  the identity on a) of the 

simplicia1 group formed by the endomorphisms of a a t  each dimension, called 

EndK,(a).  These groups can be computed as the homology groups of the 

corresponding Moore complex (see [18]), so - 

However, the ( n  - 1)-th homotopy group is particulary simple when deal- 

ing with a ( n  - 1)-hypergroupoid. In fact. as the Moore complex vanishes a t  

dimensions greater than n - 1, it is 

One observes, then, tha t  Fib(E.) has homotopy a t  dimension n - 1 since the 

KG A , n)-torsor is aspherical. In fact we prove that  I'In-l(Fib(E.), a) = A(a),  

for each vertex a E 0. Indeed, take any x E I'In-l(Fib(E.),a) and note that  

(Id,, . . ."I ; Id,, x )  E An(E.). By the isomorphism y : An(E.) 5 .\::(E.) X, 

JGA coming from the definition of n-torsor, one has associated to the given 

x E lln-,(Fib(E.). a )  one and only one (f ,  r )  E S, A such that  

?(Id, , .  . .") Ida, x) = ( ( Idu,  . . . . Id,, -), (f l  r ) )  

Note that r E A ( a )  since the belonging of ((Id,, . . . , Id,, -), (f ,  r))  to .l:(E.) xp  

S, d determines that  f is an arron with source u. This determines the desired 

biyective correspondence (x  I-+ T )  so the result comes. 

4 Generalizing Mac Lane and Whitehead's re- 

sult 

All the necessary work has been done in preceding sections, so we are ready 

to formulate and prove the announced generalization of Mac Lane and White- 
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HOMOTOPY TYPES 747 

head's result 

Theorem 4.1. For each chozce of a groupoid G .  a ngh t  G-module A and a 

cohomology class knLl E Hn+'(G, A)  there extsts a n o n  necesarzly connected 

topologzcal space X such that n l ( X )  = S and n,(.Y) = A. 

Proof.  In order to determine the required topological space from the given 

data; let us consider <. : E. -+ K(SG A, 71): the I<(SG A, n)-torsor associated 

to kn+l, according to 3.3, which is in Gd/G. 

The category Gd is related to that of simplicia1 sets, Szmp(S). by means 

of the classifying groupoid functor w : Gd -+ Simp(S) and its left adjoint, the 

loop groupoid functor, ?? : Simp(S) + Gd. We consider the corresponding 

adjunction between slice categories, 

It is well known that I & + , ( ~ ( K . ) )  2 n,(K.), as homotopy functors, for all 

i 2 0 and K. E Gd. Then, the required homotopy type X is defined by 

since, by 3.6, one has 

and, in the same way, 

nn(A') = ll,(lw(Fib(E.))I) 

= I-I~(TV(FZ~(E.))) 

r lln-, (Fib(E.)) 

N - A, 

which shows that &(S) and A are isomorphic as G-modules. 0 
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748 BULLElOS AND CABELLO 

The generalization of the converse problem, solved in the connected context 

by means of Postnikov invariants, leads us to recall some classical terminology 

in obstruction theory (see [ l G ] ) .  First. a plain generalization of the Moore - 

complex functor for any simplicial groupoid in Gd/G,  as Nq(K.) = {f E 

Kq/d, f = Id ,O < i < q - 1). with dq : Nq(K.) -+ ?Jq-,(K.) as differential 

operator. 

P ropos i t ion  4.2. Let li. i G lie an augmented szmplicial groupoid in Gd/G.  

Then the following statements ore equzualent: 

1. K. t is an exmt n-hypergroupoid. 

2. It satisfies both 

(a) Nq(K.) = 0. for q 2 1 1  + 1. and 

(b) n,(lc.,a) = 0 for 0 < r < n. at each vertex a E 0. 

Proof. Using the generalization of the Moore complex functor for simplicial 

groupoids, it is straightforn.artl to see the equivalence between being an n- 

hypergroupoid and having tri\.ial Moore complex a t  dimensions greater than 

n. Hence, an exact n-hypergroupoid has trivial homotopy no-functors a t  di- 

mensions greater or equal than n + 1. 

Let us prove now the equivalence between exactness and II,(lc., a )  = 0 

for 0 < i < n and a 6 0, making use of the fact that  each of the homotopy 

functors IIi(K.) : II,(K.) -+ Ab are defined a t  a E 0 t o  be the homotopy (at 

dimension q) of EndK,(a). 

Then, fork  E EndKp(a) such that  dik = Id,, 0 5 i 5 q (i.e., k+Imd,+, E 

Ilq(K., a ) )  one may find y E ICq+l such that  diy = k, for 0 5 i 5 q + 1, by 

applying asphericity to (k, . . .Q+*) , k) E Aq+l(K.). Note that, as source and 

target maps commute with the face operators, y is an  endomorphism of a as 

k is. Particulary d,+ly = k, so that k E Imdq+i and hence IIq(K.) is trivial 

for 0 < q < n and all a. 
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Conversely, suppose K. -+ G E Gd such that n,(K.) = 0 (at each vertex) 

for 0 < q < n and let us prove that D, =< do,. . . ,d, >: IC, -+ A,(K.) is 

surjective, 0 5 q 5 n. First, we find a preimage for those elements of A,(K.) 

which are of the form (Id,, Id,, . . . , Id, ,  k): as one of these is equivalent to 

giving k + Imd, E II,-l(K., a) = 0, there exists y E Nq(K.) such that  d,y = k 

and so, y is the required preimage. Let us consider then any (ko, . . . , kqPl, k,) E 

A,(K.) and take the corresponding element in the 9th-groupoid of open horns, 

(ko,. . . , k9-1, -) E A:(K.). 

Since each simplicia1 groupoid is a Kan complex, there exists y f K, such 

that  diy = ki for i = 0,. . . , q - 1. Now it is a matter of plain calculations 

to check out that (Id,  I d , .  . . , I d ,  d,y-'k,) belongs to Aq(K.) and so there is 

y' E K, such that diyl = I d  for i = 0, . . . , q - 1 and d,y' = dqy-'k,. Then, the 

required preimage for (ko, . . . , kq-l, k,) is yy'. 

Beyond the former characterization, the non-trivial homotopy ITo-functors 

of an exact n-hypergroupoid just amount to nn, called its center. Also note 

that  n0(K.) = G, for any exact n-hypergroupoid in Gd/G,  by the exactness. 

The assignement of a cohomology class in Hn(IT1(X), n n ( X ) )  for any 

given topological space X can be performed in two parts. First, in a simi- 

lar fashion to that used by Eiienberg and Mac Lane in defining the ciassicai 

obstruction mapping, there is a map 

Obs : {exact (n - 1) - hypergroupoid with center A) -+ H ~ + ' ( G ,  A)  

defined as follows: let us take any exact (n - 1)-hypergroupoid with center A, 

say M.. By appliying 3.5. consider ,the K(AM. ,  n)-torsor (U-split) which M. 

is the fibre of. Then, by 3.3, the correspondence to Hn+'(G,A) comes. 

In order to complete the assignement of an (n  - 1)-dimensional abstract 

kernel with center A for every topological space X with n n ( X )  as only non- 

trivial D,(X)-modulej let us consider the following sequence of adjunctions: 
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BULLElOS AND CABELLO 

I? "fn- I E 
Catn-' ( G p d , )  Gdn-I Gd Simp(S) 

W 

where C a t n ( G p d , )  stands for the category of catn-groupoids, that  is, a suit- 

able generalization of that of catn-groups defined by Loday, [15], and G d n  

is the category formed by simplicia1 n-groupoids. i.e., thosc objects having n 

independent simplicia1 structures in each of the coordinate directions. These 

two categories are related by a multinerve functor, N, and its left adjoint P, 

which reproduces the fundamental groupoid construction at each direction. 

The second adjunction is set by the diagonal func to~  and its left adjoint, 

T,, defined as a generalization of the Illusie's functor Total Dec, (for further 

details, see [6]). - 

Moving onto the corresponding slice categories, the second part of the 

required assignement is given in the following 

Propos i t ion  4.3. Gzven a topological space X wzth IIn(.Y) as unzque non- 

trzvzal hornotopy IIl(X)-functor, then Al.(X) = DNPTn-lGSzng(S) zs an  ez- 

act (n-1)-hypergroupozd. 

Proof. To this end, we have to check out the conditions given in 4.2. In effect, 

it has vanishing Moore con~plex a t  din~ensions greater than or equal to 71. ([7], - 

Theorem 1.3). On the other hand, let us prove that  Il,(M.(X)) = 0 for each 

vertex and 0 < i < n. In fact, 

The result anounced a t  the beginning of the paper has been finally 

proved: 
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HOMOTOPY TYPES 75 1 

Theorem 4.4. The homotopy type of a space X with fundamental groupoid 

I'Il(X) and a unique non-trivial homotopy functor &(X)  : Ill(S) + Ab 

is completely determined b y  I l l (X) ,  II,(X) and a cohomology class kn+* E 

H n + ' ( n l ( X ) , n n ( x ) ) .  0 
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