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Large deviation theory provides the framework to study the probability of rare fluctuations of
time-averaged observables, opening new avenues of research in nonequilibrium physics. One of the
most appealing results within this context are dynamical phase transitions (DPTs), which might oc-
cur at the level of trajectories in order to maximize the probability of sustaining a rare event. While
the Macroscopic Fluctuation Theory has underpinned much recent progress on the understanding
of symmetry-breaking DPTs in driven diffusive systems, their microscopic characterization is still
challenging. In this work we shed light on the general spectral mechanism giving rise to continuous
DPTs not only for driven diffusive systems, but for any jump process in which a discrete Z,, symme-
try is broken. By means of a symmetry-aided spectral analysis of the Doob-transformed dynamics,
we provide the conditions whereby symmetry-breaking DPTs might emerge and how the different
dynamical phases arise from the specific structure of the degenerate eigenvectors. In particular,
we show explicitly how all symmetry-breaking features are encoded in the subleading eigenvectors
of the degenerate subspace. Moreover, by partitioning configuration space into equivalence classes
according to a proper order parameter, we achieve a substantial dimensional reduction which allows
for the quantitative characterization of the spectral fingerprints of DPTs. We illustrate our predic-
tions in several paradigmatic many-body systems, including (i) the one-dimensional boundary-driven
weakly asymmetric exclusion process (WASEP), which exhibits a particle-hole symmetry-breaking
DPT for current fluctuations, (ii) the 3- and 4-state Potts model for spin dynamics, which displays
discrete rotational symmetry-breaking DPTs for energy fluctuations, and (iii) the closed WASEP
which presents a continuous symmetry-breaking DPT into a time-crystal phase characterized by a

rotating condensate.

I. INTRODUCTION

The study of dynamical large deviations in clas-
sical and quantum nonequilibrium systems has al-
lowed for a better understanding of the emerging
patterns both in the steady states and their fluc-
tuations [1-21]. Particularly relevant has been the
discovery of fluctuation theorems [22-31], concern-
ing the symmetries in the probabilities of fluctua-
tions of dynamical observables —such as the current
or the entropy production— [32-36], and the thermo-
dynamic uncertainty relations [37, 38|, which yield
bounds on dissipation in terms of current fluctua-
tions.

One of the most intriguing phenomena which
have gained attention in the last two decades are
the so-called dynamical phase transitions (DPTs)
[7, 9, 10, 39-42|. Unlike standard phase transitions,
which occur when modifying a physical parameter,
these might occur when a system sustains an atyp-
ical value, i.e a rare fluctuation, of a trajectory-
dependent observable. DPTs are accompanied by
a drastic change in the structure of those trajecto-
ries responsible for such fluctuation, and they are
revealed as non-analyticities in the associated large
deviation functions, which play the role of thermo-
dynamic potentials for nonequilibrium settings [17].

From a macroscopic perspective in driven diffu-

sive systems, the existence of DPTs is governed by
the action functional of a certain fluctuation pro-
vided by the Macroscopic Fluctuation Theory [20].
Within this framework, the occurrence of a DPT
is determined according to the functional form of
the transport coefficients characterizing the system,
namely the diffusivity and the mobility [7, 9, 10, 43].
In this context, a myriad of emerging structures as-
sociated with DPTs have been discovered, includ-
ing symmetry-breaking density profiles [43-45], lo-
calization effects [46], condensation phenomena [47]
or traveling waves [48-50] displaying time-crystalline
order [51]. Moreover, DPTs have been also predicted
and observed in active media [52-62|, where indi-
vidual particles can consume free energy to produce
directed motion, as well as in many different open
quantum systems [19, 63-73]. Interestingly, many
of these DPTs involve the spontaneous breaking of
a Z, symmetry (or invariance under discrete rota-
tions of angles 27 /m with m = 1,2, ..., n in the order
parameter space).

A different, complementary path to investigate the
physics of DPTs consists in analyzing them in terms
of the microscopic dynamics, governed by the corre-
sponding stochastic generator. For long times, such
generator may be tilted [16, 19] so as to obtain the
scaled cumulant generating function of the relevant
observable from the eigenvalue with the largest real



part, which is the Legendre transform of the associ-
ated large deviation function, just as the free energy
with respect to the entropy in equilibrium statisti-
cal mechanics. However, the tilted generator is not
a proper stochastic generator, as it does not con-
serve probability, but it can be turned into a physical
stochastic generator by means of the Doob transform
[74-78]. The Doob dynamics reweights the statis-
tics of trajectories to focus on those responsible for
a fluctuation and can be interpreted as the origi-
nal dynamics supplemented with a the appropriate
driving field which makes typical the rare fluctua-
tions of the original problem [51]. In this way the
Doob steady state contains all the information on
the most likely path to a fluctuation.

From a spectral perspective, the hallmark of a
symmetry-breaking DPT is the emergence of a col-
lection of Doob eigenvectors with a vanishing spec-
tral gap [79-83]. Such degenerate subspace, which
can be further classified using the underlying sym-
metry operator, defines the stationary subspace of
the Doob stochastic generator, so that the typ-
ical states responsible for a given fluctuation in
the original system can be retrieved from these
degenerate Doob eigenvectors. Similar ideas have
been put forward for standard phase transitions,
where the equivalence between emergent degeneracy
of the leading eigenspace of the stochastic genera-
tor and the appearance of a phase transition has
been demonstrated [79, 82]. Moreover, recent re-
sults leveraging on this idea have been derived to
construct metastable states in open quantum sys-
tems [84, 85] and to obtain optimal trajectories of
symmetry-breaking DPTs in driven diffusive systems
[45, 46, 51]. Yet, the general structure of the Doob
eigenvectors, their relation to the underlying sym-
metry of the stochastic generator, and the particular
mechanism of symmetry breaking have been elusive
so far. Previous works have focused on particular
models, but the common underlying spectral mech-
anism giving rise to the different dynamical phases
when a discrete Z,, symmetry is broken is still lack-
ing.

In this work we address this problem by shed-
ding light on the general behavior and structure
of the Doob eigenvectors involved in Z,, symmetry-
breaking DPTs. We discuss the equivalence between
an emergent degeneracy of the leading eigenspace of
the Doob generator and the appearance of a DPT
as characterized by different steady states (with dif-
ferent values of an appropriate order parameter).
This motivates the introduction of a transformation
in the degenerate subspace to construct the physi-
cal phase probability vectors from the gapless, de-
generate Doob eigenvectors. These different phase
probability vectors are connected by the symmetry

operator, thus restoring the symmetry of the origi-
nal generator. The Doob steady state can be then
written as a weighted sum of these phase probabil-
ity vectors, and the different weights are governed
by the projection of the initial state on the sub-
leading Doob eigenvectors and their eigenvalues un-
der the symmetry operator (hereafter referred to as
the symmetry eigenvalues). This clear picture ex-
plains how the system breaks the symmetry by sin-
gling out a particular dynamical phase out of the
multiple possible phases present in the first Doob
eigenvector, and enables to identify phase-selection
mechanisms by initial state preparation somewhat
similar to those already described in open quantum
systems with strong symmetries [71-73]. Moreover,
by assuming that the different phases are disjoint (so
that statistically-relevant configurations belong to
one phase at most), we derive an explicit expression
for the components of the subleading Doob eigenvec-
tors in the degenerate subspace in terms of the lead-
ing eigenvector and the symmetry eigenvalues, which
hence contain all the information on the symmetry-
breaking process. This highlights the stringent spec-
tral structure imposed by symmetry on DPTs.

The analysis of this spectral structure in par-
ticular problems is unfeasible due to the high-
dimensional character of configuration space (which
typically grows exponentially with the system size).
We overcome this issue by first introducing a parti-
tion of configuration space into equivalence classes
according to a proper order parameter of the DPT
under study, and then using it to perform a strong
dimensional reduction of the space. The resulting
reduced vectors live in a Hilbert space with much
lower dimension (which usually scales linearly with
the system size), allowing the statistical confirma-
tion of our predictions in different models.

Remarkably, the above-described symmetry-
breaking spectral mechanism, demonstrated here
for DPTs in the large deviation statistics of time-
averaged observables, is completely general for Z,,-
invariant systems and expected to hold valid also in
standard (steady-state) critical phenomena [79, 82,
86].

We illustrate our general results by analyzing in
detail three distinct DPTs in different paradigmatic
many-body systems: the one dimensional boundary-
driven (or open) weakly asymmetric simple exclu-
sion process (WASEP), the 3— and 4—state Potts
model for spin dynamics, and the closed (or periodic)
WASEP. In the open WASEP a particle-hole (Z5)
symmetry is broken when the system either crowds
or depletes the lattice with particles in order to sus-
tain current fluctuations well below the average, so
that the previous ideas apply in a straightforward
way. On the other hand, the 3— and 4—state Potts



model exhibits a spontaneous breaking of a discrete
rotational symmetry (Z3 and Zy4, respectively) to a
ferromagnetic (dynamical) phase in order to sustain
time-averaged energy fluctuations well below the av-
erage. Finally, the large deviation physics of the
closed WASEP is even more compelling: for currents
below a critical threshold, the system self-organizes
into a macroscopic jammed state in the form of a ro-
tating particle condensate, which hinders transport
thus facilitating a current fluctuation much lower
than the average. This rotating condensate breaks
time-translation invariance and the spatial transla-
tion symmetry of the ring (Zr, with L being the
number of lattice sites). In particular, we show that
the different phases here correspond to the different
locations of the condensate along the lattice, with
motion encoded in the imaginary part of the spec-
trum, which shifts the selection of the phase making
the condensate to travel at constant velocity.

The paper is organized as follows. In Section §II
we review the quantum Hamiltonian formalism for
the master equation in stochastic many-body sys-
tems, as well as its application to study the statis-
tics of trajectories and the large deviation theory of
time-averaged observables. In this section we also
introduce the Doob transform to build an auxiliary
stochastic dynamics that makes typical the rare fluc-
tuation of the original dynamics. Section §III is de-
voted to study the spectral fingerprints of DPTs us-
ing the machinery presented in §II and exploiting
the symmetry of the dynamics. This analysis pro-
vides general predictions on the spectral signatures
of symmetry-breaking DPTs which we proceed to
test in concrete examples in the subsequent sections.
In particular, in Section §IV we focus on particle cur-
rent fluctuations in the boundary-driven WASEP.
On the other hand, Section §V is concerned with
energy fluctuations in the r—state Potts model of
spin dynamics (with » = 3,4) while Section §VT is
devoted to study the symmetry-breaking in space
and time giving rise to the time crystal structure ob-
served in the open WASEP, rendering a fresh view
on this intriguing phenomenon. The general predic-
tions of §III are confirmed in every example, offering
physical insights on the different DP'Ts reported. We
end the paper with a discussion of our results in Sec-
tion §VI, while some technical notes are described in
the appendices.

II. STATISTICS OF TRAJECTORIES AND
DOOB TRANSFORM

In this work we focus on many-body jump pro-
cesses, namely discrete-state stochastic processes
such as interacting-particle systems defined on a lat-

tice and evolving in continuous time. We repre-
sent the states or configurations as vectors |C) of
an orthonormal basis in a Hilbert space H satisfying
(C|C") = dccr [87]. This allows us to write the state
of the system at time ¢ as a probability vector,

|P) = > P(C,1)[C), (1)
C

whose real entries, 0 < P(C,t) < 1, correspond to
the probability of finding the system in configuration
C' at time t. The time evolution of this probability
vector |P;) € H is given by a master equation written
in an operatorial form, 0;|P;) = W|Pt>, where W
is the Markov generator of the dynamics [88]. In
general, this generator reads

W= 3" WeocolC)(C] - Y RelO)C], (2)
C,C'#C c

where We_, ¢ is the transition rate from configu-
ration C to C’, and Rg = 20,7&0 We_ e is the
escape rate from configuration C. Since this gen-
erator is stochastic (i.e. probability conserving), we
have that (—|W = 0, with (—| the so-called “fat”
state, (—| = > ~(C|, so that the normalization
of the probability vector is always conserved, i.e.
(-|P) = Yo P(C.1) = 1 ¥,

In this work we shall focus on DPTs taking place
when a time-integrated dynamical observable is con-
ditioned to have a prescribed value. In order to
study the statistics of such trajectory-dependent ob-
servable and its large deviation properties, we will
consider ensembles of trajectories of duration 7.
Each trajectory w, = {(C;,ti)}i=0.1,...,m 1s com-
pletely specified by the sequence of configurations
visited by the system, {Ci}i=0,1,... m, and the times
at which they occur, {¢;}i=o,...m, with m being the
number of transitions throughout the trajectory,

t1 t2 ts tm
wr: Co—=C =Cy = () = Chy,s (3)
with tg = 0 setting the time origin. The probability
of a trajectory [89] is then given by

Plw,] = e~ (T—tm)Re, We,, e,

cem(emt)Re gy, o eTtiBlo P(CY,0). (4)

The time-extensive observables whose large devia-
tion statistics we are interested in might depend on
the state of the process and its transitions over time.
For jump processes, such trajectory-dependent ob-
servables can be written in general as

m

m—1
A(WT) = Z(tiJrl - tz)g(cz) + Z nCi,Ci+1 . (5)
i=0

=0



The first sum above corresponds to the time integral
of configuration-dependent observables g(C;), while
the second sum stands for observables that increase
by n¢;,c;,, in the transitions from C; to Ciy;. In
the first sum we have defined ty = 0 and t,,41 = 7.
If we are interested e.g. in the large-deviation statis-
tics of the time-integrated current, we set g(C;) =0
and 7c;,c,,, = *1 depending on the direction of
the particle jump, while n¢, c,., = 1 for the ki-
netic activity. On the other hand, the statistics
of the time-integrated energy can be obtained by
setting 1c,,c;,, = 0 and defining g(C;) as the en-
ergy of configuration C;. Thus, the probability of
having a given value of A after a time 7 is simply
Pr(A) =3, Plw:;]6(A— A(w;)). This probability
obeys in general a large deviation principle for long
times [13, 20, 90]

P, (A = a> = e TF@) (6)

T

where @ = A/7 is the time-average of A and “x<”
stands for logarithmic asymptotic equality, i.e.,

1

Tlggo - In P, (a) = F(a). (7)
This is the so-called rate function or large deviation
function (LDF), which is positive, F(a) > 0, and
equal to zero only for the average or mean value,
(a). The LDF F(a) measures the rate at which the
probability of observing a fluctuation peaks around
(a) as T increases [17, 90], or equivalently the expo-
nential rate at which the likelihood of appreciable
fluctuations away from (a) decays in time.

In order to obtain F(a), we define an ensemble
of trajectories with a fixed value A. In such ensem-
ble of trajectories, the LDF plays a role akin to the
entropy in the microcanonical ensemble of configu-
rations, with the difference that the fixed quantity
here is the (trajectory-dependent) A instead of the
(configurational) system energy. Calculations in this
ensemble are usually complicated so, in the spirit of
the microcanonical-canonical ensemble equivalence,
it is convenient to define a biased A-ensemble (some-
times also called s-ensemble in literature) in which
we allow the observable to fluctuate but fixing its av-
erage value, (A), /7 = a, through the biasing field A.
In this new ensemble, the probability of a trajectory
is [15, 16, 18, 76]

P[wT]eAA(wT)

Pled ==

(8)
where the normalizing factor Z,(\) is the dynam-
ical partition function of the A-ensemble, Z,(\) =
Do, Plw,)e*(«r) | The biasing field \ is conjugated
to the time-integrated current in a way similar to

the inverse temperature and energy in equilibrium
systems [17]. Positive values of A bias the dynamics
towards values of A larger than its average (corre-
sponding to A = 0), while negative values do the op-
posite. Hence, the average of a trajectory-dependent
observable O(w,) in the biased ensemble is given in
general by

(0 M)
on =55 )
where (-) represents an average in the unbiased tra-
jectory ensemble (A = 0). Thus, instead of com-
puting F(a) by means of Plw,], we do it through
Z+(A), which is nothing but its moment generating
function.

For long times it can be readily checked that Z,(\)
follows a large deviation principle [16, 17, 90],

Z.(\) = e (10)

with 8(\) being the scaled cumulant generating func-
tion, O()\) = lim, o, 7~ In Z,()\), whose derivatives
provide the cumulants of the time-average observ-
able, a, in the biased ensemble. In particular, the
first derivative gives the average, 6'(\) = (A)\/T.
As a consequence the value of A\ to be chosen is
the one matching the fluctuation a, i.e. such that
0'(\) = a, or, equivalently, F'(a) = X\. We can see
that 6(A) corresponds to a dynamical free energy
which is related, as in equilibrium statistical me-
chanics, to the rate function or dynamical entropy
F(a) by means of the Legendre-Frenchel transform
0(\) = —min, [F(a) — Aa] [17]. Microscopically, for
ergodic Markov processes and long times, () is
given by the eigenvalue with the largest real part of
the so-called tilted generator W*. The latter mod-
ifies the original generator, Eq. (2), by introducing
an exponential bias or tilt in the transition rates ac-
cording to the increment of the observable in each
transition and an extra term in the diagonal part of
the generator [18], namely

WA= 37 Mo W |O)(C) = Y RelC)(C
C,C'£C c
+AY_g(0)C)(C). (11)

C

The dynamical partition function can then be ex-
pressed in operatorial form as [16]

Z:(N) = (~|e™| Ry), (12)

where |Py) € H is an arbitrary initial state.
Next we introduce the spectrum of the (in general

non-symmetric) tilted generator W*. Let |R}) and
(LJ)‘| be the j-th right and left eigenvectors of W*,



such that WA RY) = 0}|R}) and (L}W* = 02(L?],
with 62 € C the corresponding eigenvalue, ordered in
decreasing value of their real part. In most models of
interest, the set of left and right eigenvectors form a
complete biorthogonal basis of the Hilbert space [91],
such that (L}|R}) = d;;. By using now a spectral
decomposition, we can write W» = > 0} R}) (L7
It is then straightforward to show from Egs. (12) and
(10) that for long times 7 the dynamical free energy
is given by the eigenvalue of W* with the largest real
part, O(\) = 6;.

Notice that, except for A = 0 where the original
(unbiased) dynamics is recovered, W* does not con-
serve probability, i.e., <—|VAV’\ # 0, and therefore it
is not a proper stochastic generator. This implies
that it is not possible to directly retrieve from the
tilted generator the physical trajectories leading to
the fluctuation a, since W* does not represent an ac-
tual physical dynamics. To overcome this issue and
obtain the trajectories generating the biased ensem-
ble in Eq. (8) for a given A, we introduce an auxiliary
dynamics or driven process built on W*, known as
the Doob transformed generator [74-76, 92]

Wi = LoWA(Lg) ™! — 631, (13)

where L) is a diagonal matrix with elements
(L))ij = ((L}])idij, and 1 is the identity matrix.
The spectra of both generators, W and Wy, are

simply related by a shift in their eigenvalues, 9;‘7 D=

9;-‘ — 6, and a simple transformation of their left
and right eigenvectors, (L | = (L}(L))™* and
|R;‘_’D> = ﬁ8‘|R§‘) As a consequence, the leading
eigenvalue of VAVg becomes zero and its associated
leading right eigenvector, given by |R) ) = L}|Ry),
becomes the Doob stationary state. In addition, the
leading left eigenvector is (L) | = (Ly|(L)) ™" =
(—|, confirming that the Doob generator does con-
serve probability, <7|VAV])3 = 0. In this way, the
Doob-transformed generator provides the physical
trajectories distributed according to the A-ensemble
given by Eq. (8) in the 7 — oo limit [78], reveal-
ing how fluctuations are created in time. The left
and right eigenvectors of the Doob generator also
form a complete biorthogonal basis of the Hilbert
space, and they are further normalized such that
maxc [(L}p|C)] = 1 and (L}p|R}p) = 655 [79].
Note that this normalization specifies the eigenvec-
tors with j > 0 up to an arbitrary complex phase
(determined in Appendix B). In addition, due to
conservation of probability, <—|\/AV]’\D = 0, we have that
<—|R3\’D) =0 for all j # 0.

In the following we will make use of the above
spectral tools to study the general structure of the

Doob eigenvectors across a DPT, with the aim of
unveiling how the different dynamical phases emerge
when an underlying symmetry is broken.

III. DYNAMICAL PHASE TRANSITIONS
AND SYMMETRIES

Standard critical phenomena occur at the configu-
rational level when varying a control parameter like
e.g. temperature or pressure. In contrast, as already
pointed out above, DPTs appear in the trajectory
space when the system is conditioned to sustain
a large fluctuation of a time-averaged observable.
Such DPTs often involve the emergence of distinct
Z,, symmetry-broken patterns [43-46], which might
be time dependent [47-51], facilitating the corre-
sponding fluctuation and thus making it far more
probable than anticipated. As in standard second-
order phase transitions, continuous DPTs are char-
acterized by some type of order which continuously
arises at the level of trajectories as the control (bias-
ing) field is varied across the transition, and which
is captured by an appropriate order parameter.

In this section we study in detail the spectral fin-
gerprints of DPTs using the mathematical tools de-
veloped in the previous section, supplemented with
the microscopic symmetry of the system. For that,
we first need to specify what a Z,, symmetry is in
this context. With this information at hand, we will
analyze the structure of the steady state of the sys-
tem in terms of the eigenvectors of the Doob gen-
erator before and after the appearance of the DPT,
discussing along the way the connection between de-
generacy of the leading Doob subspace and the emer-
gence of a DPT. We will show how the stationary
state in the symmetry-broken regime is constructed
as a weighted sum of different, well-defined phase
probability vectors connected via the symmetry op-
erator, and we will highlight initial-state prepara-
tion strategies to single out a given symmetry-broken
phase. Partitioning configuration space into the dif-
ferent phases then allows us to write the most im-
portant components of the subleading Doob eigen-
vectors in the degenerate subspace in terms of the
leading eigenvector and the symmetry eigenvalues,
showing how all the information on the symmetry-
breaking process is encoded in this leading eigenvec-
tor. The introduction of an order parameter vector
space which inherits the spectral features associated
with the DPT, and the ensuing strong dimensional
reduction, opens the door to the empirical verifica-
tion of our findings, that we set out to develop in
the following sections.



A. Z, symmetry

Our interest in this work is focused on DPTs in-
volving the spontaneous breaking of Z,, symmetry,
hence some general remarks about symmetry aspects
of stochastic processes are in order [80]. In particu-
lar, we are interested in symmetry properties un-
der transformations of state space of the original
stochastic process, as defined by the generator W,
and how these properties are inherited by the Doob
auxiliary process W3 associated with the fluctua-
tions of a time-integrated observable A. For discrete
state space, as in our case, any such symmetries cor-
respond to permutations in configuration space [80].

The set of transformations that leave invariant a
stochastic process (in a sense described below) form
a symmetry group. Multiple stochastic many-body
systems of interest are invariant under transforma-
tions belonging to the Z,, group. This is a cyclic
group of order n, so its elements are built from the
repeated application of a single operator S € Z,,
which satisfies S = 1. This operator is then uni-
tary, probability-conserving (i.e. (—|S = (—|), and
invertible, with real and non-negative matrix ele-
ments, and commutes with the generator of the
stochastic dynamics, [W, S| = 0, or equivalently

W= SWS~!. (14)

The action of the Z,, symmetry operator on config-
urations is described as a bijective transformation
acting on state space, S|C) = |Cs) € H. This trans-
formation induces a map S in trajectory space

wr:Cp—>Cy— ... = Cpy

S|

SwT:Cﬂ%CSg%...%CSm, (15)

that transforms the configurations visited along the
path but leaves unchanged the transition times
{ti}i=0,1,...m between configurations.

For the symmetry to be inherited by the Doob
auxiliary process W3 associated with the fluctua-
tions of an observable A, see Eq. (13), it is neces-
sary that this trajectory-dependent observable re-
mains invariant under the trajectory transformation,
ie. A(Sw;) = A(w;). This condition, together with
the invariance of the original dynamics under S , see
Eq. (14), crucially implies that both the tilted and
the Doob generators are also invariant under S, as
demonstrated in Appendix A,

WA = SWASL, WA = SWASL (16)
As a consequence, both VAVg and S share a com-
mon eigenbasis, i.e. they can be diagonalized at the

same time, so \R;"D> and (L?7D| are also eigenvectors
of S with eigenvalues ¢;, i.e. S|R}p) = ¢;|R}p)
and (L;:D|S = ¢, (Lj‘)D|, designated as symmetry
eigenvalues. Due to the unitarity and cyclic char-
acter of S, the eigenvalues ¢; simply correspond
to the n roots of unity, i.e. ¢; = e27%/" with
kj=01,..n—1.

B. DPTs and degeneracy

The steady state associated with the Doob
stochastic generator Wy, describes the statistics of
trajectories during a large deviation event of param-
eter \ of the original dynamics. The formal solu-
tion of the Doob master equation for any time ¢ and
starting from an initial probability vector |FPy) can
be written as |P{}P0> = exp(+tW})|Py). Introducing
now a spectral decomposition of this formal solution,
we have

A A 03| pA A
[P p,) = |Rop) + Zet #P|RE p) (L5 plPo) . (17)
>0

where we have already used that the Doob genera-
tor is stochastic and hence has a leading zero eigen-
value, 93‘7]3 = 0. Furthermore, since (—|R§‘7D> =
(LS"D|R3-\7D> = boj, all the probability of [P}y ) is
contained in |R8‘7D>, ie. <*‘Pt),\P0> = <7\R8‘,D> =1.
Thus, each term with j > 0 in the r.h.s of Eq. (17)
corresponds to a particular redistribution of the
probability. Moreover, as the symmetry operator
S conserves probability, we get 1 = (—|S|R) ) =

(=¢olRg p). L.e.
¢0 = 17 (18)

for the symmetry eigenvalue of the leading eigenvec-
tor. This implies that |R) ) is invariant under the
symmetry operator. ’

To study the steady state of the Doob dynamics,
|Py p,) = limy 00 | Pp,), we now define the spec-
tral gaps as A} = Re(6) — 0}) = —Re(&iD) >0,
which control the exponential decay of the corre-
sponding eigenvectors, cf. Eq. (17). Note that
0 < A} < A <... due to the ordering of eigenval-
ues according to their real part, see §II. When A}
is strictly positive, A} > 0, so that the spectrum
is gapped (usually A} is referred to as the spectral
gap), all subleading eigenvectors decay exponentially
fast for timescales ¢ > 1/A} and the resulting Doob
steady state is unique,

|Pap,) = | RO p)- (19)

This steady state preserves the symmetry of the

& pA — |1pA
generator, S|P} p) = |Pgp,), so no symmetry-



breaking phenomenon at the fluctuating level is pos-
sible whenever the spectrum of the Doob generator
W3 is gapped. This is hence the spectral scenario
before any DPT can occur.

Conversely, any symmetry-breaking phase transi-
tion at the trajectory level will demand for an emer-
gent degeneracy in the leading eigenspace of the as-
sociated Doob generator. This is equivalent to the
spectral fingerprints of standard symmetry-breaking
phase transitions in stochastic systems [79-83]. As
the Doob auxiliary process W% is indeed stochas-
tic, these spectral fingerprints [79] will characterize
also DPTs at the fluctuating level. In particular,
for a many-body stochastic system undergoing a Z,,
symmetry-breaking DPT, we expect that the dif-
ference between the real part of the first and the
subsequent n — 1 eigenvalues GQD goes to zero in
the thermodynamic limit once the DPT kicks in. In
this case the Doob stationary probability vector is
determined by the first n eigenvectors defining the
degenerate subspace. Note that, in virtue of the
Perron-Frobenius theorem, for any finite system size
the steady state is non-degenerate, highlighting the
relevance of the thermodynamic limit.

In general, the gap-closing eigenvalues associated
with these eigenvectors may exhibit non-zero imag-
inary parts, Im(é);.‘,D) # 0, thus leading to a time-
dependent Doob stationary vector in the thermody-
namic limit

n—1 N
|Pap) (1) = [Ryp)+ D et in) R ) (L p | Po) -

j=1

(20)

Moreover, if these imaginary parts display band
structure, the resulting Doob stationary state will
exhibit a periodic motion characteristic of a time
crystal phase [51], as we will show in the particular
example of §VI. However, in many cases the gap-
closing eigenvalues of the Doob eigenvectors in the
degenerate subspace are purely real, so Im(@j‘)D) =0
and the resulting Doob steady state is truly station-
ary,

n—1
|Pa.r) = Ryp) + Y IRAp)(LiplPo) . (21)
j=1

The number n of vectors that contribute to the Doob
steady state corresponds to the different number of
phases that appear once the Z, symmetry is bro-
ken. Indeed, a nth-order degeneracy of the leading
eigenspace implies the appearance of n different, lin-
early independent stationary distributions [80, 81],
as we shall show below. As in the general time-
dependent solution, Eq. (17), all the probability is
concentrated on the first eigenvector |R8‘,D>, which

preserves the symmetry, 5’|R(})D> = |R{p), while

the subsequent eigenvectors in the degenerate sub-
space describe the redistribution of this probability
according to their projection on the initial state, con-
taining at the same time all the information on the
symmetry-breaking process. Notice that, even if the
degeneration of the n first eigenvalues is complete,
we can still single out |R8‘7D> as the only eigenvector

with eigevalue ¢g = 1 under S (all the gap-closing
eigenvectors have different eigenvalues under S, as
it is shown in Appendix B). Indeed, the steady state
Eq. (21) does not preserve in general the symme-
try of the generator, i.e. 5|Ps)§,P0> # \PS’;Po), and
hence the symmetry is broken in the degenerate
phase. The same happens for the time-dependent
Doob asymptotic state Eq. (20).

C. Phase probability vectors

Our next task consists in finding the n differ-
ent and linearly independent stationary distribu-
tions |II;}') € H, with [ =0,1,...n — 1, that emerge
at the DPT once the degeneracy kicks in [79-83].
Each one of these phase probability vectors |II}') is
associated univocally with a single symmetry-broken
phase [ € [0 .. n — 1], and the set spanned by these
vectors and their left duals defines a new basis of
the degenerate subspace. In this way, a phase prob-
ability vector |II}') can be always written as a linear
combination of the Doob eigenvectors in the degen-
erate subspace,

n—1
) = CijlR)p) (22)
j=0

with complex coeflicients C;; € C. Moreover,
the phase probability vectors must be normalized,
(=) =1Vl € [0..n—1], and crucially they must
be related by the action of the symmetry operator,

07y,) = S|IY) (23)

which implies that [IT}) = SYII}) and therefore
Cij = Co;(¢;)!, with ¢; the eigenvalues of the sym-
metry operator. Imposing that any steady state can
be written as a statistical mixture (or convex combi-
nation) of the different phase probability vectors, it
can be simply shown (see Appendix B) that the co-
efficients are Cp j =1 Vj € [0.. n — 1]. In this way,
C1; = (¢;)!, and the probability vectors associated
with each of the symmetry-broken phases are

n—1 n—1
) =Y (6)'[R)p) =|Rop) + > () |R)p) -
Jj=0 j=1

(24)



It will prove useful to introduce the left duals (7|
of the phase probability vectors, i.e., the row vectors
satisfying the biorthogonality relation (m)|[II}') =
01 ;. These must be linear combinations of the
left eigenvectors associated with the degenerate sub-
space,

n—1

(m| =Y (L}p|Di;, (25)

Jj=0

with complex coefficients D;; € C. Imposing
biorthogonality, using the spectral expansion (22),
and recalling that the first n eigenvalues ¢; corre-
spond exactly to the n-th roots of unity (see end of
Appendix B), we thus find D;; = 1(¢;)7!, so that

- 1
7Tl | Z E ',D| . (26)
7=0

With these left duals, we can now easily write the
right eigenvectors \R;‘ p) in the degenerate subspace,

Vj € [0 .. n— 1], in terms of the different phase
probability vectors,
n—1 1=
=S I R = 150 im.
1=0 =0

(27)
where we have used that (7| R} ;) = £(¢;)~". Us-
ing this decomposition in Eq. (20), we can thus
reconstruct the (degenerate) Doob steady state as
a weighted sum of the phase probability vectors
ITI}) associated with each of the n symmetry-broken
phases,

|P5>;,P0>

() =S w(B)m). (28)
=0

with the weights w;(t) = <7rl)‘|Ps);’P0>(t) given by

1 1 \
wl(t) — g_,'_g Ze+ztlm(0ij)
j=1

These weights are time-dependent if the imaginary
part of the gap-closing eigenvalues are non-zero,
though in many applications the relevant eigenvalues
are purely real. In such cases

(65)"{(Ljp|Po) - (29)

n—1
|Ps)§,Po> = Z wy|T07)
= (30)
1 1
wr= =3 (0) (Ll R
=1

This shows that the Doob steady state can be de-
scribed as a statistical mixture of the different phases

(as described by their unique phase probability vec-
tors [I1Y)), ie. 9w = 1, with 0 < w; < 1
Vvl € [0 .. n — 1]. These statistical weights w; are
determined by the projection of the initial state on
the different phases, which is in turn governed by the
overlaps of the degenerate left eigenvectors with the
initial state and their associated symmetry eigenval-
ues.

Equation (30) shows how to prepare the system
initial state |Pp) to single out a given symmetry-
broken phase [II}}) in the long-time limit. Indeed,
by comparing Eqgs. (21) and (24), it becomes evi-
dent that choosing |Py) such that (L} p|Po) = (¢)"
Vj € [1 .. n—1] leads to a pure steady state
|P} p,) = |TI}), ie. such that w; = 6. This
strategy provides a simple phase-selection mecha-
nisms by initial state preparation somewhat similar
to those already described in open quantum systems
with strong symmetries [71-73].

It is important to note that, in general, degen-
eracy of the leading eigenspace of the stochastic
generator is only possible in the thermodynamic
limit. This means that for finite-size systems one
should always expect small but non-zero spectral
gaps AA, j € [l .. n—1], and hence the long-
tlme Doob steady state is |P, SP0> = |R8‘7D>, see

q. (19). Thls steady state, which can be written
as \RS"D> DI ' [I1}), preserves the symmetry of
the generator S0 that no symmetry-breaking DPT is
possible for finite-size systems. Rather, for large but
finite system sizes, one should expect an emerging
quasi-degeneracy [79, 82] in the parameter regime
where the DPT emerges, ie. with A}/A) < 1
Vj € [l..n—1]. In this case, and for time scales
t < 1/A)_; but t > 1/A), we expect to observe
a sort of metastable symmetry breaking captured
by the physical phase probability vectors |II'), with
punctuated jumps between different symmetry sec-
tors at the individual trajectory level. This leads in
the long-time limit to an effective restitution of the
original symmetry as far as the system size is finite.

It is worth mentioning that the symmetry group
which is broken in the DPT may be larger than Z,,.
In such case, as long as it contains a Z,, group whose
symmetry is also broken, the results derived in this
section are still valid. Actually, this occurs for the
r-state Potts model discussed in section V, which de-
spite breaking the symmetry of the dihedral group
D,., it breaks as well the symmetry of the Z, sub-

group.



D. Structure of the degenerate subspace

A key observation is that, once a symmetry-
breaking phase transition kicks in, be it either con-
figurational (i.e. standard) or dynamical, the associ-
ated typical configurations fall into well-defined sym-
metry classes, i.e. the symmetry is broken already
at the individual configurational level. As an exam-
ple, consider the paradigmatic 2D Ising model and
its (standard) Zs symmetry-breaking phase transi-
tion at the Onsager temperature 7., separating a
disordered paramagnetic phase for T > T, from an
ordered, symmetry-broken ferromagnetic phase for
T < T, [86]. For temperatures well below the criti-
cal one, the stationary probability of e.g. completely
random (symmetry-preserving) spin configurations
is extremely low, while high-probability configura-
tions exhibit a net non-zero magnetization typical of
symmetry breaking. This means that statistically-
relevant configurations do belong to a specific sym-
metry phase, in the sense that they can be assigned
to the basin of attraction of a given symmetry sector
[82].

Something similar happens in Z, symmetry-
breaking DPTs. In particular, once the DPT kicks
in and the symmetry is broken, statistically-relevant
configurations |C') (i.e. such that (C’|PS);7PO> =
P} p,(C) is significantly different from zero) be-
long to a well-defined symmetry class with index

lc € [0 .. n—1]. In terms of phase probability
vectors, this means that
()
L ~0, VI # Lo . (31)
(o)

This property arises from the large deviation scal-
ing of (C|II}'). In other words, statistically-relevant
configurations in the symmetry-broken Doob steady
state can be partitioned into disjoint symmetry
classes. This simple but crucial observation can be
used now to unveil a hidden spectral structure in
the degenerate subspace, associated with such con-
figurations. In this way, if |C) is one of these con-
figurations belonging to phase ¢¢, from Eq. (27) we
deduce that

(CIR}p) =

S|

(32
In particular, for j = 0 we have that <C|R(}7D> ~
L(C|11;,,) since ¢ = 1, and therefore

(CIR}p) = (6;)~“(C|Rgp) (33)

for j € [1 .. n—1]. In this way, the components
(c \R;D> of the subleading eigenvectors in the de-

(67O ~ Loy e oim,).
=0

generate subspace associated with the statistically-
relevant configurations are (almost) equal to those
of the leading eigenvector |R3‘7D) except for a com-
plex argument given by (¢;)~“c. This highlights
how the Z, symmetry-breaking phenomenon im-
poses a specific structure on the degenerate eigenvec-
tors involved in a continuous DPT. Of course, this
result is based on the (empirically sound) assump-
tion that statistically-relevant configurations can be
partitioned into disjoint symmetry classes. We will
confirm a posteriori this result in the three examples
considered below.

E. Order parameter space

The direct analysis of the eigenvectors in many-
body stochastic systems is typically an unfeasible
task, as the dimension of the configuration Hilbert
space usually grows exponentially with the system
size. Moreover, extracting useful information from
this analysis is also difficult as configurations are not
naturally cathegorized according to their symmetry
properties. This suggests to introduce a partition of
the configuration Hilbert space H into equivalence
classes according to a proper order parameter for
the DPT under study, grouping similar configura-
tions together (in terms of their symmetry proper-
ties) so as to reduce the effective dimension of the
problem, while introducing at the same time a nat-
ural parameter to analyze the spectral properties.

We define an order parameter p for the DPT of
interest as a map p : H — C that gives for each con-
figuration |C') € H a complex number u(C) whose
modulus measures the amount of order, i.e. how
deep the system is into the symmetry-broken regime,
and whose argument determines in which phase it
is. Of course, other types of DPTs may have their
own natural order parameters, but for Z,, symmetry-
breaking DPTs a simple complex-valued number suf-
fices, as we shall show below. Associated with
this order parameter, we now introduce a reduced
Hilbert space H, = {||v))} representing the possi-
ble values of the order parameter as vectors ||v)) of
a biorthogonal basis satisfying ((V'||v)) = d,,,. In
general, the dimension of H, will be significantly
smaller than that of H since the possible values of
the order parameter typically scale linearly with the
system size.

In order to transform probability vectors from the
original Hilbert space to the reduced one, we define
a surjective application 7 : H — H, that maps all
configurations |C) € H with order parameter v onto
a single vector ||v)) € H, of the reduced Hilbert

space. Crucially, this mapping 7 from configura-
tions to order parameter equivalence classes must



conserve probability, i.e. the accumulated probabil-
ity of all configurations with a given value of the or-
der parameter in the original Hilbert space H must
be the same as the probability of the equivalent vec-
tor component in the reduced space. In particu-
lar, let |P) € H be a probability vector in config-
uration space, and ||P)) = T|P) its corresponding
reduced vector in H,. Conservation of probability
then means that

Yo (CIPy = (P, . (34)
B

Pv)=

This probability-conserving condition thus con-
straints the particular form of the map T:H— H,.
In general, if |¢) € H is a vector in the origi-
nal configuration Hilbert space, the reduced vector
1)) = T|¥) € H,, is hence defined as

[[0)) =D () ) = l > (Cly)

v v |CYeH:
p(C)=v

1))

(35)

But what makes a good order parameter pu? In
short, a good order parameter must be sensitive to
the different symmetry-broken phases and to how
the symmetry operator moves one phase to another.
More in detail, let {|C)}, = {|C) € H : p(C) = v}
be the set of all configurations |C) € H with order
parameter u(C) = v, i.e. the set of all configurations
defining the equivalence class represented by the re-
duced vector ||v)) € H,. Applying the symmetry
operator S to all configurations in {|C)}, defines a
new set S({|C)},). We say that p is a good order pa-
rameter iff: (i) The new set S({|C)},) corresponds
to the equivalence class {|C)},  associated with an-
other order parameter vector ||v')) € H,, and (ii)
it can distinguish a symmetry-broken configuration
from its symmetry-transformed configuration. This
introduces a bijective mapping S,||v)) = ||v)) be-
tween equivalence classes that defines a reduced
symmetry operator S, acting on the reduced order-
parameter space. Mathematically, this mapping
can be defined from the relation 75|C) = S, T|C)

V|C) € H, where condition (i) ensures that S, is a
valid symmetry operator.

As an example, consider again the 2D Ising
spin model for the paramagnetic-ferromagetic phase
transition mentioned above [86]. Below the critical
temperature, this model breaks spontaneously a Z,
spin up-spin down symmetry, a phase transition well
captured by the total magnetization m, the natural
order parameter. The symmetry operation consists
in this case in flipping the sign of all spins in a con-
figuration, and this operation induces a one to one,
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bijective mapping between opposite magnetizations.
An alternative, plausible order parameter could be
m?2. This parameter can certainly distinguish the
ordered phase (m? # 0) from the disordered one
(m? =~ 0), but still cannot discern between the two
symmetry-broken phases, and hence it is not a good
order parameter in the sense defined above.

As we shall illustrate below, the reduced eigen-
vectors HR;"D» = T\R;"D> associated with the spec-
trum of the Doob generator in the original config-
uration space encode the most relevant information
regarding the DPT, and can be readily analyzed.
Indeed, it can be easily checked that the results ob-
tained in the previous subsections also apply in the
reduced order parameter space. In particular, before
the DPT happens, the reduced Doob steady state is
unique, see Eq. (19),

1P2.p,)) =1 Ro.p)) (36)

while once the DPT kicks in and the symmetry is
broken, degeneracy appears and

n—1

1P2.p,)) = lIRG D)) +Z 1R}p)) (Ljp|Po), (37)

see Eq. (21) for purely real eigenvalues [and simi-
larly for eigenvalues with non-zero imaginary parts,
see Eq. (20)]. Notice that since T is a linear trans-
formation, the brackets (L?’D|P0> do not change un-

der T as they are scalars. Reduced phase probability
vectors can be defined in terms of the reduced eigen-
vectors in the degenerate subspace, see Eq. (24),

n—1

1)) = [[Rp)) + > (¢) IR3p)) . (38)

Jj=1

and the reduced Doob steady state can be written
in terms of these reduced phase probability vectors,
IPA p)) = Yo wil[I1), see Eq. (30). Finally,
the structural relation between the Doob eigenvec-
tors spanning the degenerate subspace, Eq. (33), is
also reflected in the order-parameter space. In par-
ticular, for a statistically-relevant value of u

(ulIRYp)) ~ o7 "

GllRp).  (39)
for j € [1.. n—1], where ¢, = [0 .. n—1] is an indica-
tor function which maps the different possible values
of the order parameter p with their corresponding
phase index ¢,,. It is worth mentioning that this im-
plies that, if the steady-state distribution of y follows
a large-deviation principle, <<,u|\R3‘,D>> = e LFM)
with L being the system size and F'(u) the associated
large deviation function, then the rest of gap closing



reduced eigenvectors obey the following property for
the statistically-relevant values of u

(| R p)) = ¢ e B,

In the following sections we shall illustrate our main
results by projecting the spectral information in
the order-parameter reduced Hilbert space for three
paradigmatic many-body systems exhibiting contin-
uous DPTs.

IV. DYNAMICAL CRITICALITY IN THE
BOUNDARY-DRIVEN WASEP

We shall first illustrate the ideas introduced above
using the boundary-driven (or open) weakly asym-
metric simple exclusion process (WASEP), which
is an archetypical stochastic lattice gas modeling a
driven diffusive system [9, 93, 94]. It consists of N
particles in a one-dimensional lattice of L sites which
can be either empty or occupied by one particle at
most, so that the state C of the system at any time is
defined by the set of occupation numbers of all sites,
C = {ni}r=1,..1, with n = 0,1. Such state is en-

coded in a column vector |C) = ®£=1(nk, 1—ng)T,
where T denotes transposition, in a Hilbert space ‘H
of dimension 2”. Particles hop randomly to empty
adjacent sites with asymmetric rates p4+ = %eiE/ L
to the right and left respectively, due to the action
of an external field FE applied to the particles of the
system, see Fig. 1. The ends of the lattice are con-
nected to particle reservoirs which inject and remove
particles with rates «, v respectively in the leftmost
site, and rates J, 8 in the rightmost one. These rates
are related to the densities of the boundary particle
reservoirs as pr, = o/(a+7) and pr = §/(0+3) [13].
Overall, the combined action of the external field
and the reservoirs drive the system into a nonequi-
librium steady state with a net particle current.

At the macroscopic level, namely after a diffu-
sive scaling of the spatiotemporal coordinates, the
WASERP is described by the following diffusion equa-
tion for the particle density field p(x,t) [95],

Op = =0y [=D(p)dup + o (p)E] , (40)
p- PP P
NN N\ N
e W

FIG. 1. Sketch of the boundary-driven WASEP. N
particles in a lattice of L sites which randomly jump to
empty neighboring sites with asymmetric rates p+, and
coupled to boundary reservoirs which inject and remove
particles at different rates.
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where D(p) = 1 is the diffusion transport coefficient
and o(p) = p(1 — p) is the mobility.

At the microscopic level, the stochastic generator
of the dynamics reads

Z [p+ G0k — k(1 = ga))

+p- (67 Gy — nra(1— ﬁk))} (41)
tal6] — (1 — )] +9067
+i[6F — (1 —np)] + Bl6; —aLl,

_ ﬁﬂ

where &,j, 0, are respectively the creation and an-
nihilation operators given by 6i = (67 + i6})/2,
with 67Y the standard z,y-Pauli matrices, while
fx = 656, and 1; are the occupation and iden-
tity operators acting on site k. The first row in the
r.h.s of the above equation corresponds to transi-
tions where a particle on site k jumps to the right
with rate py, whereas the second one corresponds to
the jumps from site k& + 1 to the left with rate p_.
The last two rows correspond to the injection and
removal of particles at the left and right boundaries.

Interestingly, if the boundary rates are such that
a = B and v = §, implying that pr = 1—py, the dy-
namics becomes invariant under a particle-hole (PH)
transformation [45], Spg, which thus commutes with
the generator of the dynamics, [Spy, W] = 0. This
transformation simply amounts to changing the oc-
cupation of each site, np — 1 —ny, and inverting the
spatial order, k — L — k + 1, and it is represented
by the microscopic operator

L [L/2]

_ ~T

= H O H [UkUL f1 07 _pi10k
k'=1 k=1

1 N
+5(6757 e + 1)

(42)

where |-| is the floor function and 67 = 1 — 2y,
is the z-Pauli matrix. The operator in brackets ex-
changes the occupancy of sites k and L — k+ 1. In
particular, the first two terms act on particle-hole
pairs, while the last one affects pairs with the same
occupancy Notice that Spy is a Z symmetry, since
(Spi)? = 1. Macroscopically the PH transformation
means to change p - 1 — p and z — 1 — z, which
leaves invariant Eq. (40) due to the symmetry of
the mobility o(p) around p = 1/2 and the constant
diffusion coefficient [43-45].

A key observable in this model is the time-
integrated and space-averaged current (), and the
corresponding time-intensive observable ¢ = Q/7.
The current @ is defined as the number of jumps
to the right minus those to the left per bond (in



the bulk) during a trajectory of duration 7. For
any given trajectory w., this observable remains in-
variant under the PH transformation, Q(Sppw.) =
Q(w;), since the change in the occupation and the
inversion of the spatial order gives rise to a double
change in the flux sign, leaving the total current in-
variant. In this way, the symmetry under the trans-
formation Spy will be inherited by the Doob driven
process associated with the fluctuations of the cur-
rent, see §1II A. Indeed, the current statistics and the
corresponding driven process can be obtained by bi-
asing or tilting the original generator according to
Eq. (11),

L—1
Wr=3%" [p+ (MEDe 60 — n(Lirr — Akgr))
k=1

Tp (efA/(Lfl)&’j&kf_H _ ﬁk+1(ik _ ﬁk)):|
talo] — (11 — )] +v[67 — fa]

+6[67 — (1 —np)] + Blog — ],
(43)

where we have used that the contribution to the
time-integrated current ) of a particle jump in the
transition C' — C” is ng,cr = £1/(L — 1), depending
on the direction of the jump.

Remarkably, when pg = 1 — p1, and the stochas-
tic dynamics is hence invariant under Sppg, the
boundary-driven WASEP displays, for a sufficiently
strong external field FE, a second-order DPT for
fluctuations of the particle current below a critical
threshold. Such DPT, illustrated in Fig. 2, was pre-
dicted in [43, 44] and further explored in [45] from
a macroscopic perspective. In order to sustain a
long-time current fluctuation, the system adapts its
density field so as to maximize the probability of
such event, according to the MFT action functional
[20, 43-45]. For moderate current fluctuations, this
optimal density profile might change, but retains the
PH symmetry of the original action. However, for
current fluctuations below a critical threshold in ab-
solute value, the PH symmetry of the original action
breaks down and two different but equally probable
optimal density fields appear, both connected via the
symmetry operator [see full and dashed reddish lines
in Fig. 2(a) and Fig. 2(c)]. The emergence of these
two action minimizers can be understood by noticing
that, when pr = 1 — py, either crowding the lattice
with particles or depleting the particle population
define two equally-optimal strategies to hinder par-
ticle motion, thus reducing the total current through
the system [43-45]. More precisely, the DPT ap-
pears for an external field |E| > E, = 7 and cur-
rent fluctuations such that |¢| < ¢. = VE? — 72 /4,
which correspond to biasing fields in the range A; <
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FIG. 2. Particle-hole dynamical symmetry break-
ing in the open WASEP. Macroscopic Fluctuation
Theory results for the DPT in current fluctuations ob-
served in the boundary-driven WASEP for £ = 4 >
E. [45]. (a) Density profiles of the system for p; =
pr = 0.5 and different values of the biasing field .
The flat, PH-symmetry-preserving profile (blue, dash-
dotted line) is the optimal solution for moderate cur-
rent fluctuations, corresponding to values above A\l =
—1.52, while the PH-symmetry-breaking density pro-
files (reddish, full and dashed lines) correspond to A =
—1.6,—1.75,-2,—2.5 and A = —4 = —E. (b) Mean lat-
tice occupation (p)x in terms of the biasing field A for
pr = pr = 0.5. The observed bifurcations at A signal
the symmetry-breaking DPT. The inset shows the aver-
age current as a function of A, which becomes nonlinear
in the symmetry-breaking regime. Panels (c) and (d) are
equivalent to (a) and (b), respectively, but for pr, = 0.8
and pr =1—pr =0.2.

A < A, with AF = —E + V/E2 — 72] see insets to
Fig. 2(b) and Fig. 2(d). To characterize the phase
transition, a suitable choice of the order parame-
ter is the mean occupation of the lattice, defined as
p=L"1YF_ ny, with g € [0,1] since nj, = 0,1 due
to the exclusion rule. The behavior of this order pa-
rameter as a function of the biasing field is displayed
in Fig. 2(b) and Fig. 2(d).

We now proceed to explore the spectral finger-
prints of the phase transition for current fluctuations
in the open WASEP, a Z5 symmetry-breaking DPT.
In the following, weset E =4 anda==7=§ =
0.5, corresponding to equal densities p;, = pr = 0.5,
though all our results apply also to arbitrary strong
drivings as far as p, = 1 — pg and |E| > 7. As
discussed in previous sections, the hallmark of any
symmetry-breaking DPT is the emergence of a de-
generate subspace for the leading eigenvectors of the
Doob driven process. Our first goal is hence to an-
alyze the scaled spectral gaps LQA? associated with

the first eigenvalues of the Doob generator VA\/% for
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FIG. 3. DPT and quasi-degeneracy in the open
WASEP. (a) Scaled spectral gaps, L2A§‘, with j =
1,2,3, as a function of the biasing field A for different
lattice sizes (L = 12,14, 16, 18, 20, 22, 24, 26) in the open
WASEP. Each set of lines is associated with a different
value of j, with darker colors corresponding to larger
system sizes. The small panels show the scaled spec-
tral gaps as a function of the inverse lattice size for (b)
A= -05> A and (c) A = —3.5 < A\l. The spectral
gap L?A7 vanishes as L increases for A7 < A < AF, but
remains finite outside this region.

the boundary-driven WASEP. Note that the L? scal-
ing in the spectral gaps is required because the sys-
tem dynamics is diffusive [13, 45]. These spectral
gaps, obtained from the numerical diagonalization
of the tilted generator in Eq. (43), are displayed in
Fig. 3(a) as a function of X for different system sizes.
Recall that by definition A} (L) = 0 VA since W3 is
a probability-conserving stochastic generator. More-
over, we observe that L2Aj 5(L) > 0 for all X and L,
so their associated eigenvectors do not contribute to
the Doob stationary subspace. On the other hand,
L?A9(L) exhibits a more intricate behavior. In par-
ticular, for A7 < A < A\ this spectral gap vanishes
as L increases, signaling that the DPT has already
kicked in, while outside of this range L?A?(L) con-
verges to a non-zero value as L increases. Note how-
ever that the change in the spectral gap behavior
across /\gE is not so apparent due to the moderate sys-
tem sizes at reach with numerical diagonalization. In
any case, these two markedly different behaviors are
more clearly appreciated in Figs. 3(b)-3(c), which
display L*A} for j =1,2,3 as a function of 1/L for
A =—0.5> AT (top panel) and A = —3.5 < A} (bot-
tom panel). In particular, a clear decay of L2A3(L)
to zero as 1/L — 0 is apparent in Fig 3(c), while
L?A3 3(L) remain non-zero in this limit. In this way,
outside the critical region, i.e. for A > A\ or A < A7,
the Doob steady state is unique and given by the
first Doob eigenvector, | P} p) = |R) ), as shown in
Eq. (19). This Doob steady state preserves the PH
symmetry of the original dynamics. On the other
hand, for A, < A < A}, the spectral gap vanishes in
the asymptotic L — oo limit. As a consequence, the
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FIG. 4. Structure of the degenerate subspace in
the open WASEP. The top panels show the structure
of the leading reduced Doob eigenvector ({u||Ry p)) for
different values of X across the DPT and varying L. From
left to right: (a) A = —0.5 (symmetry-preserving phase,
before the DPT), (b) A = AY = —1.52 (critical), (c) A =
—4 (symmetry-broken phase, after the DPT). (d) Com-
parative structure of the first and second reduced Doob
eigenvectors in the degenerate subspace, ((u||R} p)) with
j = 0,1, in the symmetry-broken phase (A = —4, full
lines). The structure of the resulting reduced phase prob-
ability vectors ((u||TI}')), I = 0,1, is also shown (dotted
lines). (e) Histogram for I' = (C|R}p)/(C|R)p) ob-
tained for a large set of configurations |C') sampled from
the Doob steady-state distribution for A = —4.

second eigenvector of Wg, |R} ), enters the degen-
erate subspace so that the Doob steady state is now
doubly degenerated in the thermodynamic limit, and
given by ‘Psé,P0> = lR())\,D> + |R1\7D><L?7D|P0>a see
Eq. (21), thus breaking spontaneously the PH sym-
metry of the original dynamics. Note that this
is exact in the macroscopic limit, while for finite
sizes it is just an approximation valid on timescales
1/AY(L) < t < 1/A}(L), the long time limit being
always |Ps)§, Py R |R(>)"D> for finite system sizes.

In order to analyze the structure of eigenvectors
contributing to the Doob steady state as predicted
in Section §III, we now turn to the order parameter
space and the reduced vectors defined in Eq. (35),
using as order parameter the mean occupation of
the lattice p = L1 Zle ng. This is a good or-
der parameter as defined by its behavior under the
symmetry operator Spy, see discussion in §IIIE. In
this way we extract the relevant macroscopic infor-
mation contained in the leading Doob eigenvectors,
which is displayed in Fig. 4 for different values of
the biasing field A. In particular, Figs. 4(a)-4(c)
show the order parameter structure of the leading
reduced Doob eigenvector ||R) ,)) before the DPT



[\ = 0, Fig. 4(a)], at the critical point [A = AT,
Fig. 4(b)], and after the DPT [\ = —E, Fig. 4(c)].
These panels fully confirm the predictions of section
§III. In particular, before the DPT happens there is
only a single phase contributing to the Doob steady
state, ||R) ) = |[II3)), which preserves the Z; sym-
metry of the original dynamics. This is reflected
in the unimodality of the distribution <<,u||R3‘,D>>
shown in Fig. 4(a) for different system sizes. In-
deed, in this phase ((u||R)p)) is nothing but the
steady state probability distribution of the order
parameter p, see Eq. (34). Upon approaching the
critical point A = A}, the distribution {(u||R}p))
is still unimodal but becomes flat around the péak
(i.e. with zero second derivative), see Fig. 4(b), a
feature very much reminiscent of second-order, Z,
symmetry-breaking phase transitions [86]. In fact,
once A enters the symmetry-broken region, the dis-
tribution <(u||R()\7D>> becomes bimodal as shown in
Fig. 4(c), where two different but symmetric peaks
around g =~ 0.25 and p =~ 0.75, respectively, can
be distinguished. The leading reduced Doob eigen-
vector is still invariant under the symmetry opera-
tion, i.e. ((ullRYp)) = ((l[SullRA ) (recall that
@ — 1 — p under such transformation), but the de-
generate subspace also includes now (in the L — oo
limit) the second reduced Doob eigenvector || R} b)),
whose order parameter structure is compared to that
of [[R}p)) in Fig. 4(d). Clearly, while |\R(’}7D>> is
invariant under Su as stated, i.e. it has a sym-
metry eigenvalue ¢g = 1, HRiD)) is on the other
hand antisymmetric, guHRi\,D» = —\|R1\7D>>, ie.
¢1 = '™ = —1. This result can be also confirmed nu-
merically for the unreduced eigenvectors \RS‘,D> and
|R} ) in the space of configurations. The reduced
pha{se probability vectors can be written according
to Eq. (38) as | [IY) = |[R3 p))+ (L[| B2 p)), with
1 =0,1, and they simply correspond to the degener-
ate reduced Doob steady states in each of the sym-
metry branches, see Fig. 4(d). Such distributions
correspond to each of the symmetry-broken profiles
previously shown in Fig. 2(a) for A = —E. In gen-
eral, the reduced Doob steady state in the L — oo
limit will be a weighted superposition of these two
degenerate branches,

1P, p,)) = wol [3)) + wi ||TI))

see Eq. (30) and §IIIE, with weights w; = (1 +
(—1)! (LiD |Py))/2 depending on the initial state dis-
tribution |Py). This illustrates as well the phase se-
lection mechanism via initial state preparation dis-
cussed in §III C: choosing | Py) such that <Li‘7D|P0> =
(—1)! leads to a pure steady state |PS’,\57PO) = |II})).
To end this section, we want to test the detailed
structure imposed by symmetry on the Doob degen-
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erate subspace. In particular we showed in §III D
that, in the symmetry-broken regime, the compo-
nents (C |R§‘7D> of the subleading Doob eigenvectors
Jj € [1,n — 1] associated with statistically-relevant
configurations |C) are almost equal to those of the
leading eigenvector, (C' |R3‘7D), except for a complex
phase, see Eq. (33). This will be true provided that
|C) belongs to a given symmetry class {c. For the
open WASEP, we have that

(CIRYp) = (~1)"*“(C|R3p) ,

where /¢ = 0,1 depending whether configuration
|C) belongs to the high-p or low-p symmetry sector,
respectively. To test this prediction, we sample a
large number of statistically-relevant configurations
in the Doob steady state, and study the histogram
for the quotient I'(C) = <C|Ri\7D>/<C|RS‘7D>, see
Fig. 4(e). As expected from the previous equation,
the frequencies f(I') peak sharply around (¢1)° =1
and ¢; = —1, see also inset to Fig. 4(e), and con-
centrate around these values as L increases. This
confirms that the structure of the subleading Doob
eigenvector |R; p) is enslaved to that of |[Ryp) de-
pending on the symmetry basin of each configura-
tion. Moreover, this observation also supports a pos-
teriori that statistically-relevant configurations can
be partitioned into disjoint symmetry classes. In
the reduced order-parameter space, the relation be-
tween eigenvectors in the degenerate subspace im-
plies that (][R} p)) ~ (—1)~% (sl [R) ), where
¢, = O(p — 0.5) is an indicator function identi-
fying each phase in p-line, with ©(z) the Heavi-
side step function. In this way, the magnitude and
shape of the peaks of ({u| \RT7D>> are directly related

to those of ((ul|Rj 1)), despite their antisymmetric

(resp. symmetric) behavior under S, as corrobo-
rated in Fig. 4(d).

We end by noting that, despite the moderate lat-
tice sizes at reach with numerical diagonalization,
the results presented above for the boundary-driven
WASEP show an outstanding agreement with the
macroscopic predictions of §III.

V. ENERGY FLUCTUATIONS IN SPIN
SYSTEMS: THE r-STATE POTTS MODEL

The next example is the one-dimensional Potts
model of ferromagnets [96], a generalization of the
Ising model. The system consists of a 1D periodic
lattice with L spins {sg }x=1,.... 1, which can be in any
of r different states s;, € {0, 1,...,7—1} distributed in
a unit circle with angles ¢ = 2msy/r, as sketched
in Fig. 5 for the particular case r = 3. Nearest-



FIG. 5. Sketch of the 3-state Potts model. Each lat-
tice site contains a spin variable with 3 possible in-plane
orientations, and neighboring spins interact depending
on their relative orientations as described by the Hamil-
tonian (44).

neighbor spins interact according to the Hamiltonian

L

H= fJZ cos(@r+1 — Pk) (44)
k=1

with J > 0 a coupling constant favouring the paral-
lel orientation of neighboring spins. Configurations
{C} = {sk}k=1,.. 1 can be represented as vectors in

a Hilbert space H of dimension r¥,
L
1C) = R (0.0, Fss 15 0r Osp 1)
k=1
=1, ..., s =1r—1 cor-

such that s = 0,
respond to \0) = (1 0,...,0), [1)x = (0,1,...,0),

, Jr = Dy = (0,0,..., ), respectively.  Spins
evolve stochastically in time according to the sin-
gle spin-flip Glauber dynamics at inverse temper-
ature § [97]. The stochastic generator W for this
model can be hence obtained from the Hamilto-
nian as (C'|W|C) = WL = 1/ (14 eP2Fere),
where AE¢» ¢ is the energy change in the transition
C — ', which involves a spin rotation. The explicit
operator form for W can be then easily obtained from
these considerations, but is somewhat cumbersome
(see e.g. Appendix B of [35] for an explicit expres-
sion of W in the case r = 3).

Interestingly, the Hamiltonian (44) is invariant
under any global rotation of all the spins for an-
gles multiple of 27 /r. For convenience we define an
elementary rotation of angle 27 /r, which transforms
|s)r into |s + 1)y for every spin k, with the operator

|
—

S =

1s

L r
(Is+1)(s])y , (45)
k=

I|
=]

where we identify |r); = |0)5. Note that

(S2z)" = Sor = 1. (46)

Since the Glauber dynamics inherits the symme-
tries of the Hamiltonian, the generator is also in-
variant under the action of the rotation operator
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5'277;, ie. [W, S'QJ] = 0. This hence implies that W
has a Z, symrﬁetry in the language of §IIT A, see
Eq. (46), and makes the r-state Potts model a suit-
able candidate for illustrating our results beyond the
Z, symmetry-breaking phenomenon of the previous
section, provided that this model exhibits a DPT in
its fluctuation behavior.

It is well known that the 1D Potts model does not
present any standard phase transition for finite val-
ues of § [98]. However, we shall show below that it
does exhibit a paramagnetic-ferromagnetic DPT for
r = 3 and r = 4 when trajectories are conditioned
to sustain a fluctuation of the time-averaged energy
per spin well below its typical value. Indeed, in order
to sustain such a low energy fluctuation, the r-spin
system eventually develops ferromagnetic order so
as to maximize the probability of such event, align-
ing a macroscopic fraction of spins in the same (ar-
bitrary) direction and thus breaking spontaneously
the underlying Z,- symmetry. This symmetry break-
ing process in energy fluctuations leads to r differ-
ent ferromagnetic phases, each one corresponding to
one of the r possible spin orientations. This DPT
is well captured by the average magnetization per
spin m = L1 25:1 e’ a complex number which
plays the role of the order parameter in this case.
Note that a similar DPT has been reported for the
1D Ising model [76], which can be seen as a r = 2
Potts model.

Notice that, apart from the higher order Z,
symmetry-breaking process involved in this DPT,
a crucial difference with the one observed in the
open WASEP is that here the observable whose fluc-
tuations we are interested in (i.e. the energy) is
configuration-dependent, as opposed to the particle
current in WASEP, which depends on state transi-
tions [see Eq. (5) and related discussion|. Note also
that, as in [76], temperature does not play a crucial
role in this DPT. In particular, a change in the tem-
perature just amounts to a modification of the criti-
cal bias A. at which the DPT occurs, which becomes
more negative as the temperature increases. Since
the aim of this work is not to characterize in detail
the DPT but to analyze the spectral fingerprints of
the symmetry-breaking process, we consider § = 1
in what follows without loss of generality.

The statistics of the biased trajectories can be ob-
tained from the tilted generator, see Eq. (11), which
now reads

=W+ e(0)C)(C], (47)
C

where e(C') = H(C)/L is the energy per spin in con-
figuration C, see Eq. (44). We start by analyzing the
3-state model, and summarize the results of the 4-
state model at the end of this section. The main fea-



time

FIG. 6. Z3 dynamical symmetry breaking in the
3-state Potts model. Left panels: Spatio-temporal
raster plots of typical trajectories of the spin system (a)
before the DPT (A > A. &~ —1), and (b) once the DPT
kicks in (A < A¢) for L = 16 and 8 = 1. Each color cor-
responds to one of the three posible spin states. (¢) Mag-
nitude of magnetization as a function of the biasing field
A for increasing L in the Doob stationary regime. The
inset shows the average energy per spin vs A. Each color
represents a different L = 810,12, 14,16, with darker
colors corresponding to larger sizes.

tures of the Potts DPT are illustrated in Fig. 6. In
particular, Figs. 6(a)-6(b) show two typical trajecto-
ries for different values of the biasing field A\. These
trajectories are obtained using the Doob stochastic
generator for each A, see Eq. (13). Interestingly,
typical trajectories for moderate energy fluctuations
[Fig. 6(a), A > A. = —1] are disordered, paramag-
netic while, for energy fluctuations well below the av-
erage, trajectories exhibit clear ferromagnetic order,
breaking spontaneously the Z3 symmetry [Fig. 6(b),
A < Ac]- The emergence of this ferromagnetic dy-
namical phase is well captured by the magnetization
order parameter. Fig. 6(c) shows the average magni-
tude of the magnetization (|m|), as a function of A,
while the inset shows the behavior of the average en-
ergy per spin, (e),. These observables are calculated
from the Doob stationary distribution. As expected,
the energy decreases as A becomes more negative,
while the magnitude of the magnetization order pa-
rameter increases sharply, the more the larger L is.
The presence of a DPT around A\ = A, =~ —1 is
apparent, although the system sizes at reach via nu-
merical diagonalization (recall that the generator is
a 3% x 3L matrix) do not allow for a more precise
determination of the critical threshold.

As explained before, the alignment of a macro-
scopic fraction of spins along a preferential (but ar-
bitrary) direction breaks spontaneously the under-
lying Z3 symmetry. We hence expect this DPT to
be accompanied by the appearance of a degenerate
subspace spanned by the three leading Doob eigen-
vectors, and the corresponding decay of the second
and third spectral gaps A;‘ in the thermodynamic
limit (j = 1,2, recall that A} = 0 V)). This is
confirmed in Fig. 7, which explores the spectral sig-
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FIG. 7. DPT and quasi-degeneracy in the 3-state
Potts model. (a) Evolution of the three leading spec-
tral gaps A;‘, j = 1,2,3, with the biasing field A for
different lattice sizes L. Note that A} = A2 VA, L.
The right panels show the spectral gaps as a function
of the inverse lattice size for (b) A = 0 > A. and (c)
A= —4.25 < Ac. For A > \. the system remains gapped
VL so the Doob steady state is unique and no symmetry
breaking happens. On the other hand, for A < A. the
(equal) spectral gaps A%’Q vanish as L — oo, leading to
a Z3 dynamical symmetry breaking. Blue symbols cor-
respond to eigenvectors j = 1,2 and orange symbols to
j = 3, while the dashed lines display the expected be-
havior. The lattices sizes used are L = §8,10,12,14,16
(ordered by increasing color intensity).

natures of the Potts DPT. In particular, Fig. 7(a)
shows the evolution with A of the three leading spec-
tral gaps A;‘, 7 = 1,2,3, for different system sizes.
As expected, while the system remains gapped for
A > A VL [see Fig. 7(b)], once the DPT kicks in
(A < Xc) the spectral gaps At, vanish as L — oo,
as confirmed in Fig. 7(c). On the other hand, A3
is expected to remain non-zero, although this is
not evident in Fig. 7(c) due to the limited system
sizes at our reach. Note that A} = A2 VA since
A} = —Re(f}p) and 6} = (03p)* (and simi-
larly for eigenvectors, |R? ) = |R5 p)*), as complex
eigenvalues and eigenvecté)rs of real matrices such as
Wg and Szx come in complex-conjugate pairs. In
this case only the eigenvectors are complex, the sec-
ond and third eigenvalues of Wy} are real and there-
fore equal, Hf"D = 9%‘7]3. In fact the correspond-

ing eigenvalues of the symmetry operator S 2z are
do =1, o1 = €27/3 and ¢y = e*27/3. Therefore,
for A > A, where the spectrum is gapped, the result-
ing Doob steady state will be unique as given by the
leading Doob eigenvector, |PS>;7 Py = |R3‘7D), which
remains invariant under S 2x. On the other hand, for

A < A; the two subleading spectral gaps Ai\g van-
ish as L — o0, so the Doob stationary subspace is
three-fold degenerated in the thermodynamic limit,
and the Doob steady state depends on the projec-
tion of the initial state along the eigen-directions of



the degenerate subspace,

‘Ps/\s,P0> = |R6\,D> + |Ri‘,D><Li\,D|P0>
+ |R§\7D><L§\7D|PO> .

Since we also have that (L3 | = (L7 p|*, the above
expression can be rewritten as

|Pa.p,) = |Ro.p) + 2Re [|RY p) (L3 p|Po)] . (48)

that is, the Doob steady state in the thermodynamic
limit is completely specified by the magnitude and
complex argument of <Li‘,D|Po>. This steady state
for A < A. breaks the Z3 symmetry of the spin dy-
namics since Sz [Py p ) # [P3 p,)-

Again, as in the example for the boundary-driven
WASEP, we now turn to the reduced magnetiza-
tion Hilbert space to analyze the structure of the
eigenvectors spanning the Doob stationary subspace.
In particular, Fig. 8 shows the structure of the
leading reduced Doob eigenvector ||R3‘,D>> in terms
of the (complex) magnetization order parameter
m = L~ 37 ¢k before the DPT [A = 0 > A,
Fig. 8(a)], around the critical point [A = =1 &= A,
Fig. 8(b)|, and once the DPT is triggered [A = —5 <
A, Fig. 8(c)]. We recall that

((m|[Ryp)) = > (CIR4p),
|CYeH:
m(C)=m

see Eq. (34), and note that |R) ) is always real, and

so is the projection ({(m||R} )) which can be hence
considered as a probability distribution in the com-
plex m-plane. For A > A., before the DPT happens,
((m||R) p)) is peaked around |m| = 0, see Fig. 8(a).
In this case the spectrum is gapped and there exists
a unique, symmetry-preserving reduced Doob steady
state ||[P3 p,)) = IRy p)). When X ~ X, the dis-
tribution ((mHRS"D» flattens and spreads out, see
Fig. 8(b), hinting at the emerging DPT which be-
comes apparent once A < X, when ((m||R} ) de-
velops well-defined peaks in the complex m-plane
around regions with |m| ~ 1 and complex phases
¢ = 0, 2r/3 and 4n/3, see Fig. 8(c). In all
cases || R) ) is invariant under the reduced symme-
try transformation, <<m|\$‘m||R3"D>> = ((mHR&D)},

where Sy, amounts now to a rotation of angle 27/3
in the complex m-plane that keeps constant |m)|.
However, for A < A, the Doob stationary subspace
is three-fold degenerate in the L. — oo limit, and
includes now the complex-conjugate pair of eigen-
vectors |\Ri\7D>> and [|R3 1)), which transform un-

der the reduced symmetry operator as Sp| IR}p)) =
¢;|IR}p)) with ¢; = e™/3 and j = 1,2. The
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FIG. 8. Quasi-degenerate reduced eigenvectors

in the 3-state Potts model. (a)-(c) Structure of
{((m||R) p)) in the complex m-plane for different values
of X across the DPT and L = 16. From left to right: (a)
A = 0 (symmetry-preserving phase, before the DPT), (b)
A=—-1= X (c) A = =5 (symmetry-broken phase, after
the DPT). (d) Structure of ((m||R?p)). The top pan-
els display Re[e’>™/3((m||R} p))], while the mid panels
show Im[e”*™/3((m||R? ))] for I = 0,1,2. This enables
to illustrate the phase selection mechanism of Eq. (38).
(e) Structure of the resulting reduced phase probability
vectors ((m||TI})).

reduced phase probability vectors now follow from
Eq. (38),

I0)) = [|R3 p)) +™/?|| Ry p)) + e~ 27| Ry )
= ||R5.p)) + 2Rele®™ /|| R} )],

with [ = 0,1,2, and define the 3 degenerate Doob
steady states, one for each symmetry branch, once
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FIG. 9. Structure of the degenerate subspace

in the 3-state Potts model. (a) Density plot for
I' = (C|R}p)/{C|R} p) in the complex I'-plane obtained
for a large set of configurations |C) sampled from the
Doob steady-state distribution for L = 16 and A = —5.
The inset is a zoom on one of the compact regions around
the complex unit circle where points converge. The small
panels to the right show the same density plot, as ob-
tained for different system sizes (b) L = 12 and (c)
L = 8. A different color is used for the highest val-
ues of the density to highlight the sharp concentration
around the cube roots of unity.

the DPT appears. The order parameter struc-
ture of these reduced phase probability vectors, as
well as that of the real and imaginary parts of
the reduced eigenvector ||[R3p)) = |[R{p))*, are
shown in Figs. 8(d)-8(e). In particular we display
Re[e?2r/3 (ml[ R} )] and Imfe’rl/3 ((m|[ R} p))],
instead of Re[((m||R} p))] and Im[((m||R} p))], re-
spectively, to illustrate the phase selection mech-
anism of Eq. (24) while conveying the full com-
plex structure of this eigenvector. For instance,
the phase vector ||[II})) can be selected by just
adding 2Re[|\Ri‘7D>>] to HR(’},D», see the [ = 0 in
Figs. 8(d)-8(e), while for the other two ||T[')) a com-
plex phase is required to rotate HRi\)D>> and can-

cel out the undesired peaks in HR()\’D)). A generic
steady state will correspond to a weighted superpo-
sition of these phase probability vectors, HPj; Py)) =

212:0 w;||I1}')), with the statistical weights depend-
ing on the initial state, see Eq. (30).

The intimate structural relation among the lead-
ing eigenvectors defining the degenerate subspace in
the symmetry-broken regime (A < \.) can be stud-
ied now by plotting I'(C) = (C|R},)/(C|R) p) in
the complex plane for a large sample of statistically-
relevant configurations |C). As predicted in
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Eq. (33), this quotient should converge as L increases
to

L(C) = (e27/%) 7t (49)

with £c = 0, 1, 2 identifying the symmetry sector to
which configuration |C) belongs in. Fig. 9 shows
the density histogram in the complex I'-plane ob-
tained in this way for A = =5 < A. and a large
sample of important configurations. As predicted,
all points concentrate sharply around three compact
regions around the complex unit circle at phases
¢ =0, 2n/3 and 4n/3, see Eq. (49) and the in-
set in Fig. 9. Notice that, even though a log scale is
used to appreciate the global structure, practically
all density is contained in a very small region around
the cube roots of unity. Moreover, the convergence
to the predicted values as L increases is illustrated
in Figs. 9(b)-9(c). Equivalently, in the reduced order
parameter space we expect that

((m||R}p)) = (e™/%)~fm((ml| Ry p)) |

for 7 = 1,2, where ¢, = 0,1,2 is a characteristic
function identifying each phase in the m-plane. This
relation implies that the size and shape (and not only
the positions) of the different peaks in ((m||R;"D>>,
7 =0,1,2, in the complex plane are the same, see
Eq. (39), a general relation also confirmed in the
boundary-driven WASEP.

Equivalent ideas hold valid for the ferromagnetic
dynamical phase found in the 4-state Potts model.
In this case, when the system is conditioned to sus-
tain a large time-averaged energy fluctuation well
below its average, a similar DPT to a dynamical fer-
romagnetic phase appears, breaking spontaneously
the Z4 discrete rotational symmetry of this model.
Hence we expect a degenerate Doob stationary sub-
space spanned by the first four leading eigenvectors,
with eigenvalues under the symmetry operator given
by ¢o = 1, ¢1 = €2™/* and ¢y = e ?7/4 and
¢3 = —1. The generic Doob steady state can be
then written as

[P py) = |Ro p) + 2Re[| R} p) (L] p| Po)]
+\R§,D><L§,D|Po>,

where |R3 ) is purely real and we have used that

|Ry ) = |Ryp)*. Fig. 10 summarizes the spectral
sigﬁatures of the DPT in the reduced order parame-
ter space for the 4-state Potts model. In particular,
Figs. 10(a)-10(c) show ((m||R} ,)) for different val-
ues of X across the DPT. This dfstribution, which ex-
hibits now four-fold symmetry, goes from unimodal
around |m| = 0 for A > A, to multimodal, with 4
clear peaks, for A < A, as expected. Figure 10(c)
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FIG. 10. Quasi-degenerate reduced eigenvectors
in the 4-state Potts model. Panels (a)-(c) show the
structure of ((m||Rj p)) in the complex m-plane for dif-
ferent values of A across the DPT and L = 12. From left
to right: (a) A = 0 (symmetry-preserving phase, before
the DPT), (b) A = =2 = A, (¢) A = —7 (symmetry-
broken phase, after the DPT). The panel to the right of
(c) shows ((m||R3 p)), which is also real. (d) Real and
imaginary structure of ((m||R} p)). The top panels dis-
play Re[e’>™"/*((m||R} p))], while the mid panels show
Im[e”™/*((m||R} p))] for | = 0,1,2,3. This illustrates
the phase selection mechanism of Eq. (38). Panels (e)
show the structure of the resulting reduced phase prob-
ability vectors ((m]|II}")).

also includes ((m\|R§7D>> for this A, which is purely
real. Figures 10(d) capture the real and imaginary
structure of ((m||R}p,)) for A < A, in a manner

equivalent to Fig. 8(e) (recall that ((m||R3p)) is
simply its complex conjugate). Interestingly, the
presence of a fourth eigenvector in the degenerate
subspace for A < A, make for a richer phase selection
mechanism. Indeed, the reduced phase probability
vectors are now

I1)) = [|R p))+2Rele™™ (| Ry p)]+(=1)'| B3 p)) -

Their order parameter structure ((m||II})) is dis-
played in Figs. 10(e). The j = 3 eigenvector trans-
fers probability from the configurations with mag-
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FIG. 11. Structure of the degenerate subspace for
the 4-state Potts model. (a) Density plot for I'; =
(C|R}p)/(C|Ry p) in the complex I'-plane for j = 1,3
obtained for a large set of configurations |C) sampled
from the Doob steady-state distribution with L = 12 and
A = —7. The inset zooms on one of the regions, given
by Eq. (33) where the density peaks. The small panels
to the right show the same density plot, as obtained for
different system sizes: (b) L = 10 and (¢) L = 8. A
comparison of the different panels allows us to appreciate
the convergence to the predicted values as L increases,
even though in this case the difference is subtle due to the
similar lattice sizes. Notice the log scale in the colorbar;
this shows that almost all the density is contained in a
small region around +1 and =i, as predicted.

netizations either in the horizontal or vertical ori-
entation to the other one, see Fig. 10(c), while
the combination of the second and third eigen-
vectors transfers probability between the two di-
rections as dictated by the complex argument of
(L} 5| Py), see Eq. (30). Finally, Fig. 11 confirms
the7tight symmetry-induced structure in the degen-
erate subspace for A < A. by plotting I';(C) =
(C|R}p)/{C|Rj ) in the complex plane for j = 1,3
and a large sample of statistically-relevant configura-
tions |C). As expected, the point density associated
with each eigenvector peak around (¢;)~*c, which
in this case correspond to +1, +i for |R1\7D>, and +1
for |R§\’D>. Also, the density concentrates more and
more around these points as L increases.

Summing up, we have shown how symmetry
severely constraints the spectral structure associated
with a DPT characterizing the energy fluctuations of
a large class of spin systems.



FIG. 12. Sketch of the WASEP with periodic
boundary conditions. The stochastic particle jumps
occur now in a periodic lattice, so the total number of
particles is conserved during the evolution.

VI. A SPECTRAL PERSPECTIVE ON
TIME CRYSTALS: THE CLOSED WASEP

For the last example we go back to the WASEP
model, using now periodic (or closed) boundary con-
ditions, as illustrated in Fig. 12. Despite the absence
of boundary driving, the steady state of the closed
WASEP sustains a net particle current due to the
external field. In this system, unlike the boundary-
driven case, the total number of particles N remains
constant during the evolution, so that the mean
density pp = N/L becomes an additional control
parameter. This means in particular that the PH
symmetry present in the boundary-driven WASEP
(when the reservoir densities obey pr = 1 — pr)
is lost except when the global density is pp = 0.5,
since the PH transformation changes the density as
po — 1—po. Instead, the closed WASEP is invariant
under the translation operator, S7, which moves all
the particles one site to the right, K — k + 1. Such
operator reads,

L—1
. L T R
St = H [Gl—:akJrl + 030, + §(Uk‘7k+1 +1)} ;
k=1

where we identify site L + 1 with site 1. Thus we
have [W, St] = 0 for the stochastic generator in this
model. Note that (St)> = 1, and hence the closed
WASEP will exhibit a Z; symmetry. As we will
discuss below, this case is subtly different from the
previous examples, as the order of the Z;, symmetry
increases with the lattice size, approaching a contin-
uous symmetry in the thermodynamic limit. Still,
our results remain valid in this case. The current
large deviation statistics is encoded in the spectral
properties of the tilted generator, which now reads

L
WA =3 [ oy (P E6 07— in(Lias — )
k=1

o MLg+

+p7( 6k 61;-1 - ﬁkJrl(ik - ﬁk))} ,
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FIG. 13. Z;, symmetry-breaking DPT in the closed
WASEP. Top panels: Typical spacetime trajectories of
the closed WASEP for current fluctuations above (a) and
below (b) the critical current. Note the periodic bound-
ary conditions, and the emergence of a jammed matter
wave below the critical current. (c) Density profile of the
rotating condensate for different values of A. (d) Average
magnitude of the packing order parameter as a function
of A. The inset shows the average current vs A, which be-
comes nonlinear in the symmetry-breaking regime. In all
panels the global density is po = 1/3 and E =10 > E..

to be compared with the boundary-driven case,
Eq. (43). The original generator W can be recov-
ered by setting A = 0 above, and it can be easily
checked that [W, St] = 0.

Interestingly, the closed WASEP also presents a
symmetry-breaking DPT when the system is biased
towards currents well below its typical value and in
the presence of a strong enough field [9, 49, 51].
In this case the optimal strategy to sustain a low
current fluctuation cannot be depleting or crowd-
ing the lattice with particles to hamper the flow,
as in the boundary-driven case, since now the total
number of particles is constant. Instead, when this
DPT kicks in, the particles pack together creating a
jammed, rotating condensate which hinders particle
motion to facilitate such a low current fluctuation,
see Figs. 13(a)-13(b). This condensate breaks spon-
taneously the translation symmetry Sr and, when-
ever po # 1/2, travels at constant velocity along
the lattice, breaking also time-translation symme-
try |9, 49]. These features are the fingerprint of
the recently discovered time-crystal phase of mat-
ter [51, 99-105]. Specifically, this DPT appears for
external fields |E| > E. = 7/+/po(1 — po) and for

currents |q| < q. = po(1 — po)y/E? — E2, which
correspond to biasing fields A\ < A < AF, with

M= —E+ /E? - E2 [9, 49|, see the inset to
Fig. 13(b). For A outside this regime, the typical
density field sustaining the fluctuation is just flat,

structureless [Fig. 13.(a)], while within the critical
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FIG. 14. Spectral signatures of a continuous

time crystal DPT. Diffusively-scaled eigenvalues of the
Doob stochastic generator WB for the closed WASEP
with po = 1/3 and E = 10 > E. and lattice sizes
L =9,12,15,18,21,24. The different colors and marker
types denote the symmetry eigenvalue ¢; = €2k /L cor-
responding to each A;‘. Top panels show the evolution
with A of the real (a) and imaginary (b) parts of the
first few leading eigenvalues of Wy, for increasing values
of L, denoted by increasing color intensity. More specifi-
cally, they show the largest AJA- corresponding to each k;.
Bottom panels show the spectrum in the complex plane
in (c¢) the homogeneous phase for A = —1, and (d) the
condensate phase for A\ = —9. The size of each marker
indicates the lattice size (bigger marker correspond to
bigger L), showing their evolution as L increases. The
colors and markers beyond the ones in the legend corre-
spond to k; = [5 .. 12], which appear in order in panel
(d). Panels (e)-(f) show the finite-size scaling analysis
for the real and imaginary parts of the leading eigenval-
ues in the homogeneous (e) and condensate (f) phases.
The real parts converge to zero as a power law of 1/L in
the condensate phase, while the imaginary parts exhibit
a clear band structure with constant frequency spacing
0, proportional to the condensate velocity.

region a matter density wave [Fig. 13(b)] with a
highly nonlinear profile develops. Figure 13(c) shows
the density profiles of the resulting jammed conden-
sate for different values of A in the macroscopic limit.

A suitable way to characterize this DPT consist in
measuring the packing of the particles in the 1D ring.
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For a configuration C' = {ny }x=1,....1, with n, = 0,1
the occupation number of site k, the packing order
parameter z is defined as

L
1 ) )
Z = 4N k?_l Ny el27rkr/L _ |Z|ez§a ) (50)

This measures the position of the center of mass of
the system in the two-dimensional plane. The mag-
nitude |z| of this packing parameter is close to zero
for any homogeneous distribution of particles in the
ring, but increases significantly for condensed con-
figurations, while its complex phase ¢ signals the
angular position of the condensate’s center of mass.
In this way, we expect |z| to increase from zero when
the condensate first appears at the DPT. This is con-
firmed in Fig. 13(b), which shows the evolution of
(|z])» as a function of the biasing field.

As in the previous cases, the DPT in the closed
WASEP is accompanied by the emergence of a de-
generate Doob stationary subspace spanned by mul-
tiple Doob eigenvectors with vanishing spectral gaps
in the thermodynamic limit. However, in stark con-
trast with previous examples, in this case the num-
ber of degenerating eigenvectors is not fixed but in-
creases linearly with the system size. This can be
observed in Fig. 14, which shows the spectrum of the
Doob stochastic generator Wy, for the closed WASEP
with L =24, pg = 1/3 and E = 10 > E,.. In partic-
ular, Figs. 14(a)-14(b) show the evolution with A of
the real (a) and imaginary (b) parts of the first few
leading eigenvalues of \/AV]AD for different system sizes
L. A clear change of behavior is apparent at \F.
Indeed, the whole structure of the spectrum in the
complex plane changes radically as we move across
ME, see Figs. 14(c)-14(d), with a gapped phase for
A > A or A < A\ [see Fig. 14(e)], and an emerging
gapless phase for A7 < A < Al characterized by a
vanishing spectral gap A% (L) of a macroscopic frac-
tion of eigenvalues j € [1,O(L)] as L — oo, which
decay linearly as 1/L and with hierarchical struc-
ture in j, see Fig. 14(f). Moreover, the imaginary
parts of the gap-closing eigenvalues in this regime
are non-zero (except for the leading one) and ex-
hibit an emerging band structure with a constant
frequency spacing d, see dashed horizontal lines in
Fig. 14(f). We will show below that this band struc-
ture in the imaginary axis can be directly linked with
the velocity v of the moving condensate.

In view of these spectral properties, we naturally
expect a unique Doob steady state in the regime
where the spectrum is gapped, i.e. A > AT or A <
A, given by the leading Doob eigenvector |PS’;’ P =
|Rop)-
Sr. On the other hand, in the gapless regime A\, <
A < A\t the Doob stationary subspace will be O(L)-

This steady state remains invariant under
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FIG. 15. The leading eigenvector across the DPT
in the closed WASEP. Structure of ((z||Rj p)) in the
complex z-plane for different values of A across the DPT
for po = 1/3, E = 10 > E. and L = 24. From left
to right: (a) A = 0 (symmetry-preserving phase, before
the DPT), (b) A = —2.5 ~ A}, (c) A = —9 (symmetry-
broken phase, after the DPT). Note the transition from
unimodal((z|| R} p)) peaked around |z| &~ 0 for A > A}
to the inverted Mexican-hat structure with a steep ridge
around |z| &~ 0.7 for A\; < A < A7.

degenerate, and the resulting Doob steady state will
be in fact time-dependent and approximately equal
to

L—1
P2 p,) (1) = Ry p)+ Y e n) | R WL | Py)

(51)
see Eq. (20) in §IIIB and the associated discussion.
It is important to notice that this is an approxima-
tion, the more accurate the larger L is. For any
finite L the leading spectral gaps won’t be com-
pletely closed, in fact they decay as 1/L in a hierar-
chical manner, see Fig. 14(d) and Fig. 14(f), and the
Doob stationary subspace will be quasi-degenerate
[79, 82, 83]. As L increases, the steady state is bet-
ter approximated by Eq. (51), i.e. as more and
more eigenvectors enter the quasi-degenerate sub-
space. As expected, the Doob steady state in this
quasi-degenerate regime breaks spontaneously the
translation symmetry, so St|P p ) (t) # [P p,) (1),
see below.

Assuming now L to be odd for simplicity (all re-
sults can be trivially generalized to even L), and
recalling that the complex eigenvalues and eigen-
vectors of WD come in complex-conjugate pairs, so
Im(e%_|r1 D) = Im(02,C b)), the band structure with
constant spacing & observed in the imaginary parts
of the gap-closing eigenvalues implies that

+46/2, j=24,...,L -1
m(@p) =4 0 =
—(+1Ds/2, j=1,3,...,L—2
and hence asymptotically
L—1 N
itds
[Pp,)(8) ~ [R3p)+2 D7 Re e R NLAL o))
j=2

Jj even
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Similarly, the symmetry eigenvalues ¢; of the dif-

ferent Doob eigenvectors, such that S'T|RJ>‘7D> =
¢j|R;" b)), come in complex-conjugate pairs and obey

e timi/L
¢ = e-in(G+D/L

such that ¢orpi1 = @3-

j=2,4,....L—1
j=1,3,...,L -2

In this way, we can easily

see that
L—1
i JL
StlPAp)(0) ~ [Ryp) +2 Y Re[e+H)% |R)p)
j=2

This shows that, in the quasi-degenerate phase A\, <
A< /\+ (i) the symmetry is spontaneously broken,
St|P) Ap) (1) # |P3.p,)(t), but (ii) spatial transla-
tion and time evolution are two sides of the same
coin in this regime. In particular, we have shown
that a spatial translation of a unit lattice site is
equivalent to a temporal evolution of time 27 /L4,
Le. ST|PS);,PO>( ) ‘ ss P0>( 7(.;)’ leading to a
time-periodic motion of period 27 /4 or equivalently
a density wave of velocity v = Ld/2m.

For the phase probability vectors in the
symmetry-broken regime, Eq. (24) implies that
L-1
iy
) = [Ryp)+2 3 Re[e+m|R§D>] . (52)
j=2

j even

such that Sp[II}) = I} ;). The dominant con-
figurations in these phase probability vectors corre-
spond to different static particle condensates, local-
ized around the L different lattice sites. Note that
these localized |I1}') are built as linear superpositions
of the different delocalized eigenvectors |RJ)‘ p) shifted
appropriately according to their symmetry eigenval-
ues, (¢;)!. Figure 16(f), which will be discussed
later, sketches this condensate localization mecha-
nism in the reduced order parameter space. We can
write the time-dependent stationary Doob state in
terms of the static phase probability vectors as

L-1
)~y w(®)),
1=0

where the different phase weights w;(t) are now time-
dependent, see Eq. (29),

|[Pap)( (53)

L—-1

w0 =1+ 2 5 meferts-mum i)

S
.
I
M

I
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]
<
@

n

(54)



FIG. 16. Quasi-degenerate reduced eigenvectors
in the closed WASEP and condensate localiza-
tion. (a)-(e) First few reduced eigenvectors of the Doob
degenerate subspace in the closed WASEP. In particular,
the real and imaginary parts of ((z||R} p)) are displayed
for \; < A = —9 < A} and different (even) values of
j = 2,4,6,8. Recall that the complex eigenvalues and
eigenvectors of Wﬁ come in complex-conjugate pairs, so
((zl|R2k41,0)) = ((2||R2% p))"- The main panels show
the real parts, while the insets display the imaginary
parts for each j. Note the j-fold symmetry of reduced
eigenvectors, and that non-negligible structure appears
in all cases in the region |z| ~ 0.7, as expected in the
symmetry-broken dynamical phase. (f) Sample of the
resulting reduced phase probability vectors ((z||II}')) for
1 =0,6,17. (g) Sketch of the spectral localization mech-
anism that gives rise to a compact condensate. Each
slice shows Re[¢}((z||R} p))] for the corresponding j.

The periodicity of the resulting symmetry-broken
state is reflected in the fact that w;(¢+27/6) = w;(t)
vielo..L—1].

The spectral structure of the Doob stationary sub-
space is better explored in the reduced Hilbert space
associated with the packing order parameter z in-
troduced in Eq. (50). Figure 15 shows the struc-
ture of the leading reduced eigenvector ((z||R}p))
in the complex z-plane for varying A across ‘the
DPT. As observed in previous examples, before the
DPT occurs (i.e. for A > AF or A < A7, when

c

the spectrum of Wf‘) is gapped) the real distribution
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((z||R) b)) is unimodal and peaked around |z| ~ 0,
indicating the absence of order in this symmetry-
preserving phase. As A approaches the critical point
<<z||R(>)‘7D>) flattens and spreads over the unit com-
plex circle, see Fig. 15(b) for A & A\, while deep in-
side the critical regime A, < A < A} the distribution
<<z||R6\7D>> develops an inverted Mexican-hat shape,
see Fig. 15(c), with a steep ridge around |z| ~ 0.7
but homogeneous angular distribution. This means
that the typical configurations contributing to | Ry p)
correspond to symmetry-broken condensate configu-
rations (]z] # 0), localized but with a homogeneous
angular distribution for their center of mass. In-
deed, the resulting reduced eigenvector is invariant
under the reduced symmetry operator, S,||Rj 1)) =

IR} 1)), where S, is now just a rotation of 27/L
radians in the complex z-plane. As in the previ-
ous examples, the subleading eigenvectors spanning
the (quasi-)degenerate subspace cooperate to break
the symmetry, in this case by localizing the conden-
sate at a particular point in the lattice. Figure 16
shows the z-structure of the real and imaginary parts
of the first few subleading reduced eigenvectors in
the closed WASEP, <<z||R?‘7D)> for j = 2,4,6,8. In-
terestingly, the jth-order (j even) reduced eigenvec-
tor exhibits a clear (j/2)-fold angular symmetry in
the z-plane [i.e. invariance under rotations of an-
gles 4w /j = 27m/(j/2)|, with non-negligible struc-
ture around |z| &~ 0.7 # 0 for the particular case
A = —9. All (quasi-)degenerate eigenvectors hence
exhibit some degree of angular symmetry but their
superposition, weighted by their symmetry eigenval-
ues (qu)l, cooperates to produce a compact conden-
sate localized at site [ and captured by the reduced
phase probability vector [|II}')), see also Eq. (52).
A sample of the resulting reduced phase probabil-
ity vectors is shown in Fig. 16(e), which as expected
are localized around different angular positions along
the ring. Figure 16(f) shows a sketch of the spectral
localization mechanism that gives rise to a compact
localized condensate from the superposition of mul-
tiple delocalized reduced eigenvectors in the degen-
erate subspace. As described above, the time de-
pendence introduced by the imaginary parts of the
gap-closing eigenvalues, together with their imagi-
nary band structure, lead to the motion of the con-
densate at constant velocity.

According to Eq. (33), in the symmetry-broken
regime we should expect a tight relation between
the eigenvectors spanning the degenerate Doob sub-
space. In particular, we expect that

(CIR}p) ~ e T (C|Rgp) (55)

for the statistically-relevant configurations |C) in the
Doob stationary state belonging to the basin of at-
traction of phase £ € [0, L — 1], see the associated
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FIG. 17. Structure of the degenerate subspace
in the closed WASEP. Density plot of I'; =
(C|R}p)/{C|R)p) in the complex I'-plane, with j =
2,4,6,8, obtained for a large set of configurations |C')
sampled from the Doob stationary distribution in the
symmetry-broken regime for A = -9, £ = 10 > E. and
(a) L =24, (b) L = 18 and (c) L = 15. Different col-
ors correspond to different values of index j. The insets
show zooms on compact regions around the complex unit
circle to better appreciate the emerging structure.

discussion in §IITD. To investigate this relation, we
now plot in Fig. 17 a density map in the complex
plane for the quotients T';(C) = (C|R}p)/(C|R} )
for j = 2,4,6,8 obtained from a large sample of
configurations drawn from the Doob stationary dis-
tribution |PS’;7PU>(t). As expected from Eq. (55), we
observe a condensation of points around the com-
plex unit circle, with high-density regions at nodal
angles multiple of ¢; = mj/L. For instance, for
7 = 2 we expect to observe sharp peaks in the den-
sity plot of I'y(C) in the complex unit circle at angles
2rk/L, k € [0 .. L — 1], as confirmed in Fig. 17(a)
for L = 24. The convergence to the complex unit
circle improves as the system size L increases, see
Figs. 17(b) and 17(c), and for fixed L this conver-
gence is better for smaller spectral index j, i.e. for
the eigenvectors R;" p whose (finite-size) spectral gap
A}(L) is closer to zero, see Fig. 14(f). Note also
that, when the (even) spectral index j is conmen-
surate with 2L, we expect 2L/j nodal accumulation
points in the density plot for I';(C), e.g. for j =6
and L = 24 we expect 8(= 2 x 24/6) nodal points,
as seen in Fig. 17(a). For a (even) spectral index j
inconmensurate with 2L one should observe just L
nodal points, as shown in Fig. 17(b) for j = 4 and
L = 15. Overall, this analysis confirms the tight
structural relation imposed by the Z; symmetry on
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the eigenvectors spanning the Doob stationary sub-
space, confirming along the way that statistically-
relevant configurations in the Doob stationary state
for the closed WASEP can be classified into different
symmetry classes.

In summary, we have shown in this section that
the general results derived in §IIT on how symmetry
imposes a specific spectral structure across a DPT
are also valid when it asymptotically breaks a con-
tinuous symmetry, as it is the case in the closed
WASEP model and its DPT to a time-crystal phase
for low enough current fluctuations. The chances
are that this picture remains valid in more general,
continuous symmetry-breaking DPTs.

VII. DISCUSSION

In this paper we have unveiled the spectral sig-
natures of symmetry-breaking DPTs. Such DPTs
appear in the fluctuating behavior of many-body
systems as mnon-analyticities in the large devia-
tion functions describing the fluctuations of time-
averaged observables, and are accompanied by sin-
gular changes in the trajectories responsible for such
rare events. The main tools used in this work include
the quantum Hamiltonian formalism for the mas-
ter equation, describing the dynamics of stochastic
many-body systems, together with large deviation
theory whereby the symmetry of the microscopic dy-
namics has been fully exploited. A cornerstone in
our analysis has been the Doob transform to build a
driven stochastic process that makes typical a rare
fluctuation of the original dynamics. Crucially, the
steady state of the resulting Doob dynamics contains
all the information of the most likely path leading
to such rare fluctuation of the original process.

In this way, the spectral hallmark of a symmetry-
breaking DPT is the emergence of a degeneracy in
the stationary subspace of Doob eigenvectors. The
degenerate eigenvectors exhibit different behavior
under the symmetry transformation, and we show
how symmetry and degeneracy cooperate to yield
different, coexisting steady states once the DPT has
kicked in. Such steady states are characterized by
physical phase probability vectors, connected via the
symmetry transformation, that we explicitly build
from the gapless Doob eigenvectors in the degenerate
subspace. Moreover, a generic steady state can be
then written as a weighted sum of these phase prob-
ability vectors, with the different weights controlled
by the initial state. This mechanism explains how
the system breaks the symmetry by singling out a
particular dynamical phase out of the multiple pos-
sible phases present in the first Doob eigenvector.
By conjecturing that statistically-relevant configura-



tions in the symmetry-broken regime can be parti-
tioned into different symmetry classes, we further de-
rive an expression for the components of the sublead-
ing Doob eigenvectors in the degenerate subspace in
terms of the leading eigenvector and the symmetry
eigenvalues, showcasing the stringent spectral struc-
ture imposed by symmetry on DPTs. Finally, we
introduce a reduced Hilbert space based on a suit-
able order parameter for the DPT, with appropriate
transformation properties under the symmetry oper-
ator. All the spectral signatures of the DPT are re-
flected in this reduced order-parameter space, which
hence allows for the empirical verification of our re-
sults while providing a natural classification scheme
for configurations in terms of their symmetry prop-
erties.

We have illustrated our general results by an-
alyzing three distinct DPTs in several paradig-
matic many-body systems. These include the one-
dimensional boundary-driven WASEP, which ex-
hibits a particle-hole symmetry-breaking DPT for
current fluctuations, the r-state Potts model for spin
dynamics (with » = 3,4), which displays discrete ro-
tational symmetry-breaking DPTs for energy fluctu-
ations, and the closed WASEP which presents a con-
tinuous (in the L — oo limit) symmetry-breaking
DPT to a time-crystal phase characterized by a
rotating condensate or density wave. Our results
on the spectral fingerprints of symmetry-breaking
DPTs are fully confirmed in these intriguing exam-
ples, offering a fresh view on spontaneous symmetry
breaking phenomena at the fluctuating level. This
is particularly interesting for the case of the time-
crystal DPT in the closed WASEP, where the valid-
ity of our results suggests an extension to the limit
of continuous symmetry breaking phenomena.

The spectral symmetry-breaking mechanism de-
scribed in this work is completely general for Z,-
invariant systems, so we expect these results to hold
valid also in standard (steady-state) critical phenom-
ena, where the dimensional reduction introduced
by the projection on the order-parameter, reduced
Hilbert space can offer new perspectives on well-
known phase transitions [79, 82, 86].
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It would be also interesting to extend the current
analysis to more complex DPTs. For instance, it
would be desirable to investigate the spectral signa-
tures of DPTs in realistic high-dimensional driven
diffusive systems, as e.g. the DPTs discovered in the
current vector statistics of the 2D closed WASEP
[106]. In this case, the complex interplay among
the external field, lattice anisotropy, and vector cur-
rents in 2D leads to a rich phase diagram, with dif-
ferent symmetry-broken dynamical phases separated
by lines of first- and second-order DPTs, and com-
peting time-crystal phases. The spectral fingerprints
of this complex competition between DPTs would
further illuminate future developments. It would be
also interesting to explore the spectral signatures of
possible DPTs in driven dissipative systems [107—
109], or for diffusive systems characterized by mul-
tiple local conservation laws, as e.g. the recently
introduced kinetic exclusion process [110]. Finally,
though the interplay between symmetry and DPTs
in open quantum systems has been investigated in
recent years [71, 72], the range of possibilities offered
by the order-parameter reduced Hilbert space calls
for further investigation.
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Appendix A: Symmetry and the Doob generator

In this Appendix we show that, whenever the
original stochastic generator W is invariant under
a unitary symmetry operator S, ie. [W,S] = 0,
both the tilted (W*) and the Doob (W3)) generators
are also invariant under S , provided that the time-
integrated observable A associated with these large-
deviation generators exhibits the same symmetry,
ie. A(Sw;) = A(w,) for any trajectory w,, where S
is the map in trajectory space induced by the sym-
metry operator S at the configurational level, see
§IITA.

As explained in §II, the time-additive observables
A(w;) whose large deviation statistics we are inter-
ested in might depend on the state of the process
and its transitions over time. For jump processes as
the ones considered here, such trajectory-dependent
observables can be written in general as

m m—1
Alwr) = Z(ti+1 —t:)9(Ci) + Z NC;i,Ciya s
i=0 i=0

see Eq. (5) in §II. The first sum above corresponds
to the time integral of configuration-dependent ob-
servables, g(C;), while the second sum stands for ob-
servables that increase by 7¢,,c,,, in the transitions
from C; to C;y1. In the first sum we have defined
to = 0 and t,+1 = 7. Demanding A(w;) to remain
invariant under the symmetry transformation for
any trajectory implies that both the configuration-
dependent ¢g(C') and the transition-dependent n¢ ¢
functions are invariant under such transformation,
so g(C) = g(Cs) and nc,cr = ncg,cy, with the def-
initions |C's) = S|C) and |C%) = S|C’). From this
and the definition of W* in Eq. (11) we can see that if
the original generator W commutes with S , so that
Weoer = (C'IW|C) = (C'|STIWS|C) = Weeney,
V|C),|C") € H, then the tilted generator W* will
also conmute with S. In particular,

SWAS™ = N Moo WL, S|CN)(C|S T

C,C'#£C

fZRcS|C (C|8- +)\Zg )|y eS8 =

A
> enCS’C/SWcsachCéHCSI
Cs,CL#Cs

— Y Reg|Cs){(Cs|+ 1) g(Cs)|Cs)(Cs| =
Cs Cs

Therefore we have that [VAVA,SY] = 0, provided the
above conditions on observable A hold.
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The associated Doob stochastlc generator is de-
fined as W3y = LYWA (L))~ — 631, where L} is a
diagonal matrix with elements (Lé)u = (<L8|)1(5U,
with (L}| the leading left eigenvector of W*, see
Eq. (13). In order to prove that [W},S5] = 0, we
hence have to show first that (L}| is invariant under
S, ie. (L)|S = (L)|. Since W entries are non-
negative, by virtue of Perron-Frobenius theorem the
eigenvector (L})| associated with the largest eigen-
value 6} must be non-degenerate and their compo-
nents real and positive. Moreover, because we have
shown that W* commutes with S, (L}| must also
be an eigenvector of S, (L}|S = ¢o(L)).
because all components of both (L}| and S are real
and positive, we must have the same for ¢o(Lg|. The
only eigenvalue of S that satisfies this is oo =1, and
therefore (L)|S = (L|. In this way, the operator
I:(} used in the Doob transform commutes with S,

Finally,

=Y _slepryleyels
C

=Y ICs)(L3|Cs)(Cs| = Ly,
Cs

where we have used in the second equahty that
(L}|C) = (L3|8|C), implying that [W,S] = 0,
which was to be proved.

Appendix B: Phase probability vectors in terms
of right eigenvectors

In this Appendix we compute explicitly the co-
efficients relating the phase probability vectors |II}\)
introduced in §III C with the Doob right eigenvectors
|R]>.‘7D) spanning the degenerate stationary subspace
for a Z,, symmetry-breaking DPT. By definition, any
phase probability vector can be always written as a
linear combination

) =Y CijlR)p), (B1)

with complex coefficients €y ; € C. Phase probabil-
ity vectors must be also normalized, (—|II}') = 1
vl € [0 .. n — 1], and consecutive vectors must
be related by the action of the symmetry operator,
ITI},,) = S|II}'), which implies that [IT}) = S'[II})
and therefore C; ; = Cp j(¢;)!, see Eq. (B ) with ¢;
the eigenvalues of the symmetry operator, S |Rj7D> =
¢j|R§\,D>'

In order to obtain the coefficients Cy ;, we impose
now that the Doob stationary distribution can be
written as a statistical mixture (or convex sum) of



the different phase probability vectors

n—1 n—1ln—1
Par) =D wllly) = 303" wiCoi(65)' 1)
=0 J=0 1=0

with Z?':_Olwl = 1and 0 < w; < 1, where
we have used Eq. (Bl) in the second equality.
Comparing this expression with the Spectral de-
composmlon of the Doob steady state, |PJ p) =

Z \ D><L3\D|P0> we find

Z wCo j(¢;)"

Taking now the modulus on both sides of the equa-
tion, using the triangular inequality and noticing
that eigenvalues ¢; lie in the complex unit circle
so |¢;] = 1, we obtain [(L}p|Po)| < |Co, |- This
inequality is saturated whenever the initial vector
|Py) is chosen so that the Doob stationary vector
coincides with one phase, i.e., w; = ¢ for some ',
see BEq. (B2), so that |P} p ) = [TI})) for this partic-
ular initial |Py). In this way, we have found that in
general

Lyp|Ro) = (B2)

|Co,5] = %?;C‘<L?,D|P0>|'

We can now write

max <L>‘

Fy)| = max
IPo) 1) )

| Po

)

S (L2 p|C)(C]Ry)
C
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and since we have chosen to normalize the left eigen-
vectors such that maxc|<L§‘,D|C>| =1, see §II, and
noting that (C|Py) < 1V|C), it is clear that the max-
imum over |Py) is reached when |Py) = |C*), the
configuration where |[(L}|C*)| takes it maximum
value 1. Therefore we find that |Cp ;| = 1. Note also
that the normalization condition maxc\<L§‘)D|C>| =
1 specifies left eigenvectors up to an arbitrary com-
plex phase, which can be now chosen so that Cp ; = 1
Vj < n. This hence implies that the coefficients in
the expansion (B1) are C; ; = (¢;)!, and we can ob-
tain the final form of the probability vector of the
phases in terms of the degenerate right eigenvectors,

n—1

) => (6)'|R)p)

J=0

see Eq. (24) in the main text.

This structure in the phase vectors |II}') has im-
plications on the eigenvalues of the symmetry oper-
ator. In particular, the fact that the different phases
must be linearly independent implies that the first n
eigenvalues ¢; must be different. If there were two
eigenvalues such that ¢;» = ¢;~, then all the vec-
tors |II}*(t)) would live in the hyperplane given by
the constraint ((L;,7D| - (L?,,’D|)|v) = 0, in contra-
diction to our initial assumption. Therefore, for the
symmetry-breaking DPT to occur, the first n eigen-
values ¢; must be different, which in turn implies
that they must correspond to all the n-th roots of
unity.
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