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Abstract: We introduce a method for consistently incorporating meson-exchange currents (MEC)
within the superscaling analysis with relativistic effective mass, featuring a new scaling variable, ψ∗,
and single-nucleon cross-sections derived from the relativistic mean field (RMF) model of nuclear
matter. The single-nucleon prefactor is obtained from the 1p1h matrix element of the one-body current,
combined with the two-body current, averaged over a momentum distribution of Fermi kind. The
approach is applied to selected quasielastic cross-sectional data on 12C. The results reveal a departure
from scaling behavior, yet, intriguingly, the data collapse into a discernible band that is parametrized
using a simple function of ψ∗. This calculation, as developed, is not intended to provide pinpoint
precision in extracting nuclear responses. Instead, it offers a global description of the quasielastic
data with a considerable level of uncertainty. However, this approach effectively captures the overall
trends of the quasielastic data beyond the Fermi gas model with a minimal number of parameters.
The model incorporates partially transverse enhancement of the response, as embedded within the
relativistic mean field framework. However, it does not account for enhancements attributed to
the combined effects of tensor correlations and MEC, given that the initial RMF model lacks these
correlations. A potential avenue for improvement involves starting with a correlated Fermi gas
model to incorporate additional enhancements into single-nucleon responses. This study serves as a
practical demonstration of implementing such corrections.

Keywords: superscaling; quasielastic electron scattering; meson-exchange currents; relativistic
mean field

1. Introduction

A substantial effort has been devoted to the investigation of the electromagnetic re-
sponse of nuclei in the quasielastic peak. Following the success of the Fermi gas model
in providing a straightforward description of the cross-section, the focus shifted towards
the separate response functions bringing to the forefront both experimental challenges
in the longitudinal/transverse (L/T) separation and theoretical complexities in their de-
piction [1,2]. One initial challenge, the quenching of the longitudinal response, has seen
theoretical resolution through the inclusion of short-range correlations within the nuclear
wave function, along with accounting for final state interactions. This approach also ap-
pears to address the associated issue concerning the description of the Coulomb sum
rule [3–5].

The situation becomes more intricate when examining the transverse response, as
calculations in light nuclei have revealed a positive interference between one-body and
two-body currents, resulting in an enhancement of the transverse response compared to
what the one-body current alone would predict [6,7]. This enhancement, attributed to
meson-exchange currents (MEC), has also been observed in the transverse response of
12C [8] within the Green Function Monte Carlo model [9–11], and it has been parameterized
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in a phenomenological fit of the cross-section [12,13]. A calculation by Fabrocini in nuclear
matter [14] points towards this enhancement being a result of the simultaneous interaction
of tensor nucleon–nucleon correlations with the ∆-isobar exchange current, as independent
particle models typically predict negative interference between the one-body current and
MEC [15]. For high-momentum transfer (q > 500 MeV/c), the situation becomes more
complex due to the significant influence of relativistic effects [16,17].

In recent years, there has been a resurgence of interest in electron scattering stud-
ies [16,18–21], driven by the potential to calibrate theoretical models using (e, e′) data.
These calibrated models can then be extended to neutrino interactions by incorporating
the contributions of the axial current. The pursuit of neutrino oscillation experiments
represents a formidable scientific endeavor, encompassing a synergy of experimental and
theoretical efforts [22–27]. Theoretical nuclear physics has taken a central role in analyz-
ing neutrino-induced nuclear reactions within these experiments [28–37]. The objective
is to minimize uncertainties stemming from nuclear effects, which constitute a primary
source of systematic errors when determining neutrino interactions within detectors. The
interplay and relationship between neutrino and electron scattering cross-sections play a
pivotal role in this context, serving as a crucial mechanism for controlling and mitigating
systematic errors.

At typical energies around 1 GeV in many neutrino experiments, a significant contri-
bution arises from quasielastic nucleon emission, which dominates at transferred energies
around ω = |Q2|/2m∗N , where ω is the energy transfer, Q2 = ω2 − q2 < 0, and q is the
momentum transfer to a nucleon with relativistic effective mass m∗N [38–42]. It is crucial to
take into account that the transferred energies involved in neutrino experiments necessitate
a relativistic treatment of the reaction. This requirement introduces significant challenges
in constructing appropriate models for these interactions [8,43–46].

In addition, the emission of two particles (2p2h), originating from MEC and short-
range correlations, has emerged as a central focus in the study of lepton-nucleus scattering.
A significant body of research has been devoted to comprehending the impact of 2p2h
processes on the cross-sections of both electron and neutrino interactions [47–57]. The
most commonly employed approaches are often based on the Fermi gas and shell models.
Refs. [58,59] introduced a generalized formalism rooted in factorization principles and
nuclear spectral functions, enabling the treatment of transition matrix elements that in-
corporate MEC. The framework was further expanded in Ref. [60] to the weak charged
and neutral currents. Ab initio methods such as the Green Function Monte Carlo (GFMC)
approach, while powerful, encounter a significant challenge in that they are inherently non-
relativistic. Extending these methods to cover the entire range of energies and momentum
transfers of interest is a non-trivial endeavor [61].

It is often overlooked that MEC also contribute to the emission of a single particle
(1p1h), thereby introducing interference effects with the one-body current [16]. Notably,
calculations in Fermi gas and shell models have shown a reduction in the quasielastic
transverse response compared to the impulse approximation [15,16,62–68]. This reduction
is mainly due to the exchange part of the 1p1h matrix element of the ∆ current. The
negative interference between one-body and two-body currents is a consistent feature in
all independent particle models. As mentioned previously, it is only when tensor nucleon–
nucleon correlations are incorporated that a positive interference arises [14].

In this work, we present a method for the consistent inclusion of meson-exchange
currents (MEC) within the framework of the superscaling analysis with relativistic effective
mass (SuSAM*) [69,70]. This scaling approach sets itself apart from the SuSA methodolo-
gies [18,36,71–74] offering an alternative means to globally and on average describe (e, e′)
quasielastic cross-sections.

The scaling models are founded on the premise of approximating nuclear responses as
a product of a single-nucleon response, multiplied by a scaling function. The phenomeno-
logical scaling function effectively accounts for nuclear structure and reaction effects, with
its parameters fitted to experimental data. The motivation behind scaling models arises
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from the observation that inclusive data, when divided by an appropriate single-nucleon
prefactor, approximately scale when plotted against a suitable scaling variable, ψ, extracted
from the relativistic Fermi gas (RFG) model [71]. The SuSA model [34], along with its
improved version SuSAv2, and the alternative SuSAM*, has been extensively utilized to
analyze inclusive electron and neutrino scattering data [18,36,71–74]. By establishing a
phenomenological scaling function extracted from (e, e′) data, these models provide a
valuable foundation for extrapolating to neutrino cross-sections.

The SuSAM* model used in this work differs from the SuSA framework by incorporat-
ing the effective mass dependence from the relativistic mean field (RMF) theory. A notable
feature of the RMF model of nuclear matter (such as the Walecka or σ−ω model [39]) is
that it reproduces the (e,e′) cross-section better than the RFG model when an appropriate
value for the effective mass M* is chosen [38,41,75]. Motivated by this, the SuSAM* model
employs the RMF model’s scaling variable, ψ∗, and single-nucleon prefactor dependent
on the effective mass, with the aim to capture the relativistic dynamics associated with
the RMF.

Another distinguishing feature is that, while SuSA assumes distinct longitudinal and
transverse scaling functions, in SuSAM*, only a single scaling function is considered. Con-
sequently, all differences between the longitudinal and transverse responses are attributed
to the characteristics of the single nucleon. Within SuSAM*, the single nucleon partially
accounts for the enhancement of the transverse response through the effective mass [19].
The scaling function is obtained from selected quasielastic cross-section data, after dis-
carding non-scaling data points. The selected quasielastic data are organized into a robust
‘thick band’, as parameterized in Ref. [19]. The inherent level of uncertainty within this
band reflects the extent to which the ψ∗-scaling is violated. This approach yields significant
deviations both above and below the average, depending upon the kinematic conditions.
Consequently, it should not be regarded as a precise parametrization of the cross-section or
a means for pinpoint accuracy in extracting response functions. Rather, its purpose is to
offer a global, averaged description of the quasielastic data beyond the FRG. It presents the
advantage of simplicity, involving only a limited number of parameters.

Until now, a unified model that incorporates 1p1h MEC in the superscaling approach
had not been proposed. This was primarily due to the violation of scaling properties by
MEC, even at the Fermi gas level [76]. Additionally, the 1p1h matrix element of MEC is not
easily extrapolated to the |ψ| > 1 region outside the range where the Fermi gas response
is different from zero, as nucleons are constrained by the Fermi momentum. In this work,
we address both of these challenges in a unified manner by modifying the SuSAM* model
to account for the contribution of MEC within the single-nucleon prefactor. In the new
approach, the single-nucleon response is averaged with a smeared momentum distribution
around the Fermi surface [77]. As a result, the averaged single-nucleon responses are
well-defined for all of the values of ψ∗.

The single-nucleon response now incorporates the contribution of MEC to the effective
one-body current operator, enabling a novel scaling analysis of the data. We anticipate that
the 1p1h MEC matrix elements, when incorporated within the single-nucleon framework,
result in a negative contribution due to our initial assumption of an independent particle
model. However, if one were to start from a model that incorporates tensor correlations
between nucleons, it could potentially lead to the construction of a single nucleon prefactor
featuring the corresponding enhancement of the transverse response. The approach de-
lineated in this paper could be similarly applied in this scenario. The ultimate goal of this
approach would be to devise a single-nucleon prefactor that enhances the scaling properties
of the quasielastic data.

This article is structured as follows. In Section 2, we introduce the formalism of
quasielastic electron scattering within the framework RMF model of nuclear matter, in-
corporating MEC. In Section 3, we present our unified scaling model that incorporates
MEC effects. We describe the modifications made to the conventional scaling approach to
account for the contribution of MEC within the single-nucleon prefactor. In Section 4, we
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present the results of our calculations and analyses based on the unified scaling model with
MEC. Finally, in Section 4, we present the conclusions drawn from our study.

2. Formalism
2.1. Response Functions

We start with the inclusive electron scattering cross-section in plane-wave Born ap-
proximation with one-photon exchange. The exchanged photon transfers an energy ω
and a momentum q to the nucleus. The initial electron energy is εe, the scattering angle
is θ, and the final electron energy is ε′e = εe − ω. The double differential cross-section
is written in terms of the longitudinal and transverse response functions, RL(q, ω) and
RT(q, ω), respectively, where q = |q|

dσ

dΩdε′
= σMott(vLRL(q, ω) + vT RT(q, ω)), (1)

where σMott is the Mott cross-section and vL and vT are the kinematic coefficients defined as

vL =
Q4

q4 (2)

vT = tan
Q4

q4 −
Q2

2q2 (3)

with Q2 = ω2 − q2 < 0 the four-momentum transfer. The nuclear response functions are
the following combinations of the hadronic tensor

RL = W00, RT = W11 + W22. (4)

The inclusive hadronic tensor is constructed from the matrix elements of the electro-
magnetic current operator Ĵµ(q) between the initial and final hadronic states:

Wµν = ∑
f

∑
i
〈 f | Ĵµ(q)| i〉∗〈 f | Ĵν(q)| i〉

× δ(E f − Ei −ω), (5)

where the sum is performed over the undetected final nuclear states | f 〉 and the average
over the initial ground state |i〉 spin components.

In this work, our approach aims at exploring the scaling symmetry of quasielastic data.
This scaling symmetry states that the scaling function, that is, the cross-section divided
by an appropriately averaged single-nucleon cross-section and multiplied by a kinematic
factor, only depends on a single kinematic variable, ψ, rather than on the three variables
(ε, q, ω). The scaling function is approximately the same for all nuclei [70]. The starting
point for the scaling analysis is the relativistic Fermi gas (RFG) model, where this symmetry
holds exactly. In the case of real nuclei, it is only approximately fulfilled, but it proves to be
very useful for analyzing experimental data and performing calculations and predictions.

2.2. 1p1h Hadronic Tensor

In independent particle models, the main contribution to the hadronic tensor in the
quasielastic peak comes from the one-particle one-hole (1p1h) final states. As the transferred
energy increases, there are contributions from two-particle two-hole (2p2h) emission, the
inelastic contribution of pion emission above the pion mass threshold, and the deep inelastic
scattering at higher energies. Therefore, the hadronic tensor can be generally decomposed
as the sum of the 1p1h contribution and other contributions:

Wµν = Wµν
1p1h + Wµν

2p2h + . . . (6)
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In this work we focus on the 1p1h response, which in the RFG model, reads

Wµν
1p1h = ∑

ph

〈
ph−1

∣∣∣ Ĵµ| F〉∗
〈

ph−1
∣∣∣ Ĵν| F〉

× δ(Ep − Eh −ω)θ(p− kF)θ(kF − h) (7)

where |p〉 ≡ |psptp〉 and |h〉 ≡ |hshth〉 are plane-wave states for particles and holes,
respectively, and |F〉 is the RFG ground state with all momenta occupied below the Fermi
momentum kF. The novelty compared to previous works on scaling is that we start from a
current operator that is a sum of one-body and two-body operators. This approach allows
us to consider the contributions of both the usual electromagnetic current of the nucleon
and the meson-exchange currents (MEC) to the 1p1h response:

Ĵµ = Ĵµ
1 + Ĵµ

2 , (8)

where Ĵ1 represents the one-body (OB) electromagnetic current of the nucleon, while Ĵ2
is the two-body MEC. Both currents can generate non-zero matrix elements for 1p1h
excitation. MEC are two-body operators and they can induce 1p1h excitation due to the
interaction of the hit nucleon with a second nucleon acting as a spectator. The many-body
matrix elements of these operators are given by〈

ph−1
∣∣∣ Ĵµ

1 | F〉 = 〈p| Ĵ
µ
1 |h〉 (9)

for the OB current and〈
ph−1

∣∣∣ Ĵµ
2 | F〉 = ∑

k<kF

[
〈pk| Ĵµ

2 |hk〉 − 〈pk| Ĵµ
2 | kh〉

]
(10)

for the two-body current, where the sum over spectator states (k) is performed over the
occupied states in the Fermi gas, considering both the direct and exchange matrix elements.
Due to momentum conservation, the matrix element of the OB current between plane
waves can be written as

〈p| Ĵµ
1 |h〉 =

(2π)3

V
δ3(q + h− p)

mN√
EpEh

jµ
1 (p, h), (11)

where V is the volume of the system, mN is the nucleon mass, Ep =
√

p2 + m2
N and

Eh =
√

h2 + m2
N are the on-shell energies of the nucleons involved in the process, and

jµ1 (p, h) is the OB current (spin–isospin) matrix

jµ
1 (p, h) = ū(p)

(
F1γµ + i

F2

2mN
σµνQν

)
u(h), (12)

with F1 and F2 being the Dirac and Pauli form factors of the nucleon. In the case of the
two-body current, the elementary matrix element can be written in a similar form:

〈p′1 p′2| Ĵ
µ
2 |p1 p2〉 =

(2π)3

V2 δ3(p1 + p2 + q− p′1 − p′2)

× m2
N√

E′1E′2E1E2

jµ2 (p
′
1, p′2, p1, p2). (13)

Here jµ
2 (p

′
1, p′2, p1, p2) is a spin–isospin matrix and it depends on the momenta of the

two nucleons in the initial and final state. The two-body current contains the sum of the
diagrams shown in Figure 1, including the seagull, pionic, and ∆ isobar currents. The



Symmetry 2023, 15, 1709 6 of 32

specific form of the two-body current function will be given later when we discuss the
MEC model. By inserting (13) into Equation (10) we obtain an expression similar to (11)
that resembles the matrix element of an effective one-body (OB) current for the MEC:

〈
ph−1

∣∣∣ Ĵµ
2 | F〉 =

(2π)3

V
δ3(q + h− p)

mN√
EpEh

jµ
2 (p, h). (14)

Here the effective OB current generated by the MEC involves a sum over the spectator
nucleons and is defined by

jµ
2 (p, h) ≡

∑
k<kF

mN
VEk

[
jµ
2 (p, k, h, k)− jµ2 (p, k, k, h)

]
. (15)

Note that in the thermodynamic limit V → ∞, the above sum will be transformed into
an integral over the momenta occupied in the Fermi gas:

1
V ∑

k<kF

→ ∑
sktk

∫ d3k
(2π)3 θ(kF − k). (16)

Finally, we can write the transition matrix element of the total current between the
ground state and the 1p1h state as

〈
ph−1

∣∣∣ Ĵµ| F〉 = (2π)3

V
δ3(q + h− p)

mN√
EpEh

jµ(p, h), (17)

where the effective total current for the 1p1h excitation includes contributions from both
the one-body current and MEC:

jµ(p, h) = jµ1 (p, h) + jµ2 (p, h). (18)

By inserting (17) into Equation (7) and taking the thermodynamic limit, we obtain the
following expression for the hadronic tensor:

Wµν =
V

(2π)3

∫
d3hδ(Ep − Eh −ω)

m2
N

EpEh
2wµν(p, h)

× θ(p− kF)θ(kF − h), (19)

where p = h + q by momentum conservation after integration over p. The function wµν is
the effective single-nucleon hadronic tensor in the transition

wµν(p, h) =
1
2 ∑

spsh

jµ(p, h)∗ jν(p, h). (20)

In this equation, we did not include the sum over isospin tp = th. Therefore, wµν refers
to the tensor of either proton or neutron emission, and the total tensor would be the sum
of the two contributions. Note that the effective single-nucleon tensor wµν includes the
contribution of MEC, thus encompassing an interference between the one-body and two-



Symmetry 2023, 15, 1709 7 of 32

body currents. Indeed, the relevant diagonal components of the effective single-nucleon
hadronic tensor for the longitudinal and transverse responses (4) can be expanded as

wµµ(p, h) =
1
2 ∑

spsh

|jµ
1 + jµ

2 |2

=
1
2 ∑ |jµ

1 |2 + Re ∑(jµ
1 )
∗ jµ

2 +
1
2 ∑ |jµ

2 |2

≡ wµµ
1 + wµµ

12 + wµµ
2 (21)

where wµµ
1 is the tensor corresponding to the one-body current, wµµ

12 represents the in-
terference between the one-body and two-body currents, and wµµ

2 corresponds to the
contribution of the two-body current alone. The one-body part is the leading contribution
in the quasielastic peak, while the dominant contribution of the MEC corresponds to the
interference with the one-body current [15,62], with the pure contribution of the two-body
current being generally smaller.

h1 h2

p′1 p′2

Q

(a)

h1

p′1

h2

p′2

Q

(b)

h1

p′1

h2

p′2

Q

(c)

h1 h2

p′1 p′2

Q

(d)

h1

p′1

h2

p′2

Q

(e)

h1 h2

p′1 p′2

Q

(f)

h1

p′1

h2

p′2

Q

(g)

Figure 1. Feynman diagrams for the 2p2h MEC model used in this work. The total MEC are the sum
of seagull (diagrams a,b), pion in fligh (diagram c) and ∆ current (diagrams d–g).

2.3. Responses in the Relativistic Mean Field Approach

Going beyond the relativistic Fermi gas (RFG) model, the relativistic mean field (RMF)
approach for nuclear matter allows for the inclusion of dynamic relativistic effects. The
simplest approximation in this framework is to introduce constant mean scalar and vector
potentials with which the nucleons interact [38,39,41,42]. The scalar potential is attractive,
while the vector potential is repulsive. The single-particle wave functions still exhibit
plane-wave behavior with momentum p in nuclear matter, but with an on-shell energy
given by

E =
√

m∗2N + p2, (22)

where m∗N is the relativistic effective mass of the nucleon, defined as

m∗N = mN − gsφ0 = M∗mN . (23)

Here φ0 is the scalar potential energy of the RMF and gs the corresponding coupling
constant [39], and M∗ = 0.8 for 12C, the nucleus considered in this work [56]. To account
for the interaction with the vector potential, a positive energy term needs to be added to
the on-shell energy. Therefore, the total energy of the nucleon can be expressed as:

ERMF = E + Ev. (24)
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In this work, we use the value Ev = 141 MeV, obtained in Ref. [56] for 12C. Note that in
observables that only depend on the energy differences between initial and final particles,
the vector energy is canceled out, and only the on-shell energy appears. This cancellation
happens, as we will see, in the response associated to the one-body current. However, in
the case of the two-body current, the vector energy needs to be taken into account in the ∆
current, as we will see in the next section.

In the present RMF approach of nuclear matter, the evaluation of the hadronic tensor
is conducted similarly to the RFG, with the difference being that the spinors u(p) now
correspond to the solutions of the Dirac equation with the relativistic effective mass m∗N .
From Equation (19), the 1p1h nuclear response functions are then given by

RK(q, ω) =
V

(2π)3

∫
d3h

(m∗N)
2

EpEh
2wK(p, h)

×θ(p− kF)θ(kF − h)δ(Ep − Eh −ω), (25)

where Ep, Eh are the on-shell energies with effective mass m∗N , and wK are the single-nucleon
responses for the 1p1h excitation

wL = w00, wT = w11 + w22. (26)

The effective single-nucleon tensor wµν is constructed as in Equation (20), but the
current is obtained from matrix elements using spinors with the relativistic effective mass
m∗N instead of the normal nucleon mass. This prescription is also followed when evaluating
the 1p1h matrix elements of the MEC (as discussed in the next section).

To compute the integral (25), we change to the variables (Eh, Ep, φ), using h2dhd cos θ =
(EhEp/q)dEhdEp. Then the integral over Ep can be performed using the Dirac delta. This
fixes the angle θh between q and h

cos θh =
2Ehω + Q2

2hq
. (27)

The integration over the angle φ gives 2π by symmetry of the responses when q is on
the z-axis [35]. The result is an integral over the initial nucleon energy

RK(q, ω) =
V

(2π)3
2πm∗3N

q

∫ ∞

ε0

dε n(ε) 2wK(ε, q, ω), (28)

where we define the adimensional energies ε = Eh/m∗N and εF = EF/m∗N . Moreover, we
introduce the energy distribution of the Fermi gas n(ε) = θ(εF − ε). The lower limit of the
integral (28), ε0, represents the minimum energy that an on-shell nucleon can have when it
absorbs energy ω and momentum q [35]

ε0 = Max

{
κ

√
1 +

1
τ
− λ, εF − 2λ

}
, (29)

where we define the dimensionless variables

λ =
ω

2m∗N
, κ =

q
2m∗N

, τ = κ2 − λ2. (30)

From Equation (28), the nucleons that contribute to the response function RK(q, ω) are
those with energy ranging from ε0 to εF. For fixed values of φ, q, ω, the integral over energy
ε in Equation (28) corresponds to integrating the single-nucleon response over a path in
the momentum space of the hole h, weighted with the momentum distribution. The angle
between h and q for each energy is given by Equation (27). The minimum momentum h0
corresponds to the minimum energy ε0. Indeed, for a specific value of ω, the lower limit of
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the integral becomes h = 0 or ε0 = 1, which corresponds to the center of the quasielastic
peak. Using Equation (29), it is straightforward to verify that this point corresponds to
λ = τ in the regime without Pauli blocking.

2.4. Scaling

Scaling is based on the approximated factorization of an averaged single-nucleon
response from the nuclear cross-section. This factorization is exact in the RMF model with
the OB current. In previous works, analytical expressions were obtained from the RFG and
RMF models by explicit integration of the one-body responses, Equation (28). However in
this case, it is not possible to perform the integration (28) analytically because now wK also
includes the matrix elements of the two-body operator. Nevertheless, we can still define
averaged single-nucleon responses as

wK(q, ω) =

∫ ∞
ε0

dε n(ε)wK(ε, q, ω)∫ ∞
ε0

dε n(ε)
(31)

and we can rewrite Equation (28) in the form

RK(q, ω) =
V

(2π)3
2πm∗3N

q
2wK(q, ω)

∫ ∞

ε0

dε n(ε). (32)

The averaged single-nucleon responses, wK(q, ω), include the combined effect of both
the OB current and the MEC in all the 1p1h excitations compatible with given values of
(q, ω). Equation (32) shows that in the RMF model (or the RFG model for effective mass
M∗ = 1), the nuclear responses factorize as the product of the averaged single-nucleon
response (including MEC) and the scaling function. In fact, a superscaling function can be
defined as

f ∗(ψ∗) =
3
4

1
εF − 1

∫ ∞

ε0

n(ε)dε, (33)

where εF − 1 is the kinetic Fermi energy in units of m∗N and the ψ∗-scaling variable is related
to the minimum nucleon energy, ε0, as

ψ∗ =

√
ε0 − 1
εF − 1

sgn(λ− τ). (34)

The scaling variable, ψ∗, is negative (positive) for λ < τ (λ > τ). In the RMF, the
scaling function is easily evaluated from Equation (33), giving

f ∗(ψ∗) =
3
4
(1− ψ∗2)θ(1− ψ∗2). (35)

Note that the scaling function of nuclear matter is zero for ε0 > εF, and this is
equivalent to |ψ∗| > 1. This is a consequence of the maximum momentum kF for the
nucleons in nuclear matter, which implies that ε0 < εF.

Using V/(2π)3 = N/( 8
3 πk3

F) for nuclear matter, we can write the response func-
tions (32) as

RK(q, ω) =
εF − 1
m∗Nη3

Fκ
(Zwp

K(q, ω) + Nwn
K(q, ω)) f ∗(ψ∗), (36)

where we add the contribution of Z protons and N neutrons to the response functions, and
ηF = kF/m∗N .

2.5. SuSAM*

The expression given by Equation (36) for the response function is formally the same
as the response in the RMF, the only difference being that the averaged single-nucleon
response now includes the contribution of MEC to the 1p1h excitation. This equation, valid
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for the RMF, serves as the starting point for performing the superscaling analysis with
relativistic effective mass (SuSAM*) using electron scattering data, extending the formula
to the region ε0 > εF or |ψ∗| > 1. We follow the procedure suggested by Casale et al. [77].

In the Fermi gas, it is not possible to extend the averaging formula for ε0 > εF because
the momentum distribution is zero and the denominator in (31) vanishes. Therefore, we
slightly modify the Fermi gas distribution by allowing a smeared Fermi surface, so that
the distribution is not exactly zero above kF, allowing for the averaging procedure. By
substituting the Fermi distribution with a distribution that is not significantly different
from the original one for h < kF, the average of the single-nucleon response will not change
significantly in the Fermi gas region |ψ∗| < 1.

By this method, the extension of the single-nucleon average is carried out smoothly and
continuously to the region |ψ∗| > 1, with the added meaning that, in this way, we take into
account, at least partially, the high-momentum distribution. This is because it is primarily
the nucleons with momenta greater than kF that contribute to this region. A possible
distribution that can be used to extend the averaging procedure is the Fermi distribution:

n(h) =
a

1 + e(h−kF)/b
. (37)

Using this distribution, the integrals in the numerator and denominator of Equation (31)
extend to infinity and are well-defined for ε0 > εF or |ψ∗| > 1. An appropriate value for the
smearing parameter is b = 50 MeV/c, used in Ref. [77], where the averaged single-nucleon
responses were evaluated for the one-body current, and it was found to yield practically
the same results as the analytically calculated responses in the strict Fermi gas region. The
averaged responses were also found to be very similar to the traditionally extrapolated
responses outside this region. This proposed method provides a simple approach that
allows for the definition of generalized scaling, including the MEC, consistently, and also
takes into account that the nucleons are not limited by a maximum Fermi momentum.

Several approaches exist to obtain a phenomenological scaling function. Different
methods are based on different assumptions for the scaling function or the single-nucleon
response, but all are ultimately adjusted to experimental data. The original SuSA model,
based on the RFG, was fitted to the scaling data of the longitudinal response, to obtain
a longitudinal scaling function, fL, while in the extended SuSA-v2 approach, the RMF
model for finite nuclei was used to obtain a transverse scaling function, fT . The SuSAM*
model, based on the nuclear matter RMF with effective mass, directly fitted the quasielastic
data of the cross-section after discarding the non-scaling data points, to obtain a single
phenomenological scaling function valid for both the L and T channels [19]. In the RMF
framework, there is an inherent enhancement of the transverse response due to the amplifi-
cation of the lower component of the spinors by the introduction of the effective mass in the
single-nucleon responses. This enhancement was previously demonstrated in Ref. [19]. In
the SuSAv2 model, it was accounted for by modifying the transverse scaling function using
the RMF theoretical scaling function, as discussed in [18]. In our case, this enhancement is
integrated into the single-nucleon transverse response through the effective mass.

In the generalized SuSAM* model proposed here, we follow the same procedure as
described in References [42,43]. First, we subtract the calculated inclusive cross-section
for two-particle emission in the RMF with a relativistic MEC model from the (e,e′) data.
This subtraction aims to partially remove the contribution of 2p2h processes present in the
data, in order to isolate the purely quasielastic data as much as possible. Next, we scale
each residual data point by dividing it by the contribution of the single nucleon to the
cross-section, as given by Equation (36),

f ∗exp =

(
dσ

dΩdω

)
exp
−
(

dσ

dΩdω

)
2p2h

σM(vLrL + vTrT)
, (38)
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where the single-nucleon cross-section includes the averaged single-nucleon responses
including MEC

rK =
εF − 1
m∗Nη3

Fκ
(Zwp

K(q, ω) + Nwn
K(q, ω)). (39)

Note that fexp is not solely an experimental quantity, as it inherently depends on the
model used to calculate the contribution of the MEC 2p2h processes.

In the results section, we proceed with the scaling analysis for the obtained f ∗exp data,
using a plot as a function of ψ∗, calculated using Equation (34). This analysis includes a
selection process to identify the data points that are most likely to be quasielastic (which
exhibit approximate scaling behavior) and discarding the remaining data points (mainly
non-scaling inelastic processes). The selection process is based on the assumption that the
true quasielastic points approximately scale and tend to collapse into a narrow band. The
selection algorithm is described in the Results section when discussing the scaling analysis.
Finally, we fit a phenomenological scaling function to the surviving data points, aiming to
describe the global scaling behavior of the quasielastic region.

2.6. Meson-Exchange Currents

In this work, we use the relativistic meson-exchange currents (MEC) model described
in Ref. [55]. The Feynman diagrams shown in Figure 1 illustrate the different components
of the MEC model. Diagrams (a) and (b) correspond to the seagull current, diagram (c)
represents the pion-in-flight current, and diagrams (d,e) and (f,g) depict the forward-
and backward-∆(1232) currents, respectively. The specific treatment of the ∆ current is
model-dependent, and various versions exist with possible corrections to the off-shell
relativistic interaction of the ∆. Other widely used models for MEC include those described
in Refs. [54,62,78].

While these different models may exhibit slight variations and corrections to the ∆ off-
shell interaction, they generally yield similar results for the dominant transverse response
at the quasielastic peak. In particular, in the Results section, we compare our findings with
the model presented in Refs. [62,78], which we previously employed to assess the impact
of MEC on the 1p1h response.

In our model, the MEC functions defined in Equation (13) correspond to the sum of
the diagrams of Figure 1

jµ
2 (p

′
1, p′2, p1, p2) = jµ

sea + jµ
π + jµ∆, (40)

where the ∆ current is the sum of the forward and backward terms

jµ∆ = jµ
∆F + jµ

∆B. (41)

These functions are defined by

jµsea = [Iz]t′1t′2,t1t2

f 2

m2
π

Vs′1s1
πNN(p′1, p1)FπNN(k2

1)ūs′2
(p
′
2)FV

1 γ5γµus2(p2) + (1↔ 2) (42)

jµπ = [Iz]t′1t′2,t1t2

f 2

m2
π

FV
1 Vs′1s1

πNN(p′1, p1)V
s′2s2
πNN(p′2, p2)(k

µ
1 − kµ

2 ) (43)

jµ
∆F = [UF

z ]t′1t′2,t1t2

f f ∗

m2
π

Vs′2s2
πNN(p′2, p2)FπN∆(k2

2)ūs′1
(p′1)k

α
2Gαβ(p1 + Q)Γβµ(Q)us1(p1) + (1↔ 2) (44)

jµ
∆B = [UB

z ]t′1t′2,t1t2

f 2 f ∗

m2
π

Vs′2s2
πNN(p′2, p2)FπN∆(k2

2)ūs′1
(p′1)k

β
2 Γ̂µα(Q)Gαβ(p′1 −Q)us1(p1) + (1↔ 2) (45)

We evaluate these matrix elements in the framework of the RMF model, where the
spinors u(p) are the solutions of the Dirac equation with relativistic effective mass m∗N . The
four-vectors kµ

i = p′i
µ − pµ

i with i = 1, 2 are the momenta transferred to the nucleons 1, 2.
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We define the following function that includes the πNN vertex, a form factor, and the pion
propagator

Vs′1s1
πNN(p′1, p1) = FπNN(k2

1)
ū(p′1)γ

5/k1u(p1)

k2
1 −m2

π
. (46)

We apply strong form factors at the pion absorption/emission vertices given by [47,79]

FπNN(k) = FπN∆(k) =
Λ2 −m2

π

Λ2 − k2 . (47)

The charge structure of the MEC involves the isospin matrix element of the operators

Iz = i[τ(1)× τ(2)]z, (48)

UF
z =

√
3
2

3

∑
i=1

(TiT†
z )⊗ τi, (49)

UB
z =

√
3
2

3

∑
i
(TzT†

i )⊗ τi, (50)

where we denote by T†
i the Cartesian coordinates of the 1

2 → 3
2 transition isospin operator.

For the transition from a nucleon to a ∆ resonance, the isospin transition operator
can be represented using the Clebsch–Gordan coefficients, which describe the coupling of
isospin 1/2 with isospin 1 to give isospin 3/2 [80]

〈 3
2 t∆|T†

µ | 12 t〉 = 〈 1
2 t1µ| 32 t∆〉 (51)

with T†
µ being the spherical components of the vector ~T†. With the aid of the expression

TiT†
j = (2/3)δij − i

3 τiτj and making the summation, we can rewrite the isospin operators
in the forward and backward ∆ current as

UF
z =

√
3
2

(
2
3

τ
(2)
z − i

3

[
τ(1) × τ(2)

]
z

)
(52)

UB
z =

√
3
2

(
2
3

τ
(2)
z +

i
3

[
τ(1) × τ(2)

]
z

)
. (53)

The γN → ∆ transition vertex in the forward ∆ current is defined as [81,82]

Γβµ(Q) =
CV

3
mN

(gβµ /Q−Qβγµ)γ5 (54)

while for the backward ∆ current

Γ̂µα(Q) = γ0[Γαµ(−Q)]†γ0. (55)

In this vertex, we neglect the contributions of order O(1/m2
N). Note that the Γβµ

operator is a spin matrix and depends on the vector form factor CV
3 . In this paper, we use

the vector form factor in ∆ current from Refs. [52,82]:

CV
3 (Q

2) =
2.13

(1− Q2

M2
V
)2

1

1− Q2

4M2
V

. (56)

Various alternative approximations to the propagator have been proposed [83]. How-
ever, in the case of the quasielastic peak, the typical kinematics are of the order of 1 GeV,
and these issues are not expected to be relevant. They are overshadowed by other more sig-
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nificant nuclear effects that dominate in this energy regime. Here we use the ∆ propagator
commonly used for the spin-3/2 field

Gαβ(P) =
Pαβ(P)

P2 −M2
∆ + iM∆Γ(P2) + Γ(P2)2

4

(57)

where M∆ and Γ are the ∆ mass and width, respectively. The projectorPαβ(P) over spin-3/2
on-shell particles is given by

Pαβ(P) = −(/P + M∆)

×
[

gαβ −
γαγβ

3
− 2PαPβ

3M2
∆

+
Pαγβ − Pβγα

3M∆

]
. (58)

Finally, the ∆ width Γ(P2) is given by

Γ(P2) = Γ0
m∆√

P2

(
pπ

pres
π

)3
. (59)

In the above equation, pπ is the momentum of the final pion resulting from the ∆
decay, pres

π is its value at resonance (P2 = m2
∆), and Γ0 = 120 MeV is the width at rest. The

width (59) corresponds to the ∆ in a vacuum, and it is expected to be slightly different in
the medium depending on the kinematics. One could investigate the dependence of the
results on the choice of the width. However, in this work, we do not delve into this issue
because, as we will see, the effect of the MEC on the 1p1h response is generally small, and
corrections due to fine-tuning of the model are unlikely to substantially alter the results.

In the relativistic mean field description used in this work, we consider that the ∆ also
interacts with the scalar and vector fields, acquiring an effective mass and vector energy.
To treat this case, we make the following substitutions in the ∆ propagator for the ∆ mass
and momentum [41,84]:

M∆ → M∗∆, P∗µ = Pµ − δµ0E∆
v . (60)

We use the value M∗∆ = 1042 MeV, taken from [57], and the universal vector coupling
E∆

v = Ev.
With the MEC current defined in Equations (24)–(27), the effective one-body current

j2(p, h) is generated by summing over the spin, isospin, and momentum of the spectator
nucleon, as in Equation (15). First, it can be observed that due to the sum over isospin tk,
the direct term is zero (see Ref. [62] for details). Therefore, the many-body diagrams that
contribute to the 1p1h MEC are those shown in Figure 2. Furthermore, it can be verified
that diagrams f and g in Figure 2 are also zero. Therefore, only diagrams a, b, c, d, and e in
Figure 2 survive and contribute to the 1p1h MEC matrix elements.

P H

Q

K

(a)

P H

Q

K

(b)

P H

Q
K

(c)

P H

Q

K

(d)

P H

Q

K

(e)

P H

Q

K

(f)

P H

Q

K

(g)

Figure 2. Diagrams for the 1p1h MEC matrix elements. They are the sum of seagull (diagrams a,b),
pion in fligh (diagram c), and ∆ (diagrams d–g) contributions
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3. Results

In this section, we present the results for the effects of MEC on the 1p1h response
functions using several models: the relativistic Fermi gas, the relativistic mean field, and
the generalized SuSAM* model. By employing these different models, we take into account
relativistic kinematics and we can analyze the impact of including the relativistic effective
mass of the nucleon and the ∆ resonance appearing in the MEC. The scaling analysis
described in the previous Section allows us to study the influence of MEC on the generalized
scaling function also in the region |ψ∗| > 1 where the RFG and RMF responses are zero.
Moreover, we can investigate how the inclusion of MEC affects the scaling function and
compare it with the predictions of the RFG and RMF models.

Unless stated otherwise, we present the results for 12C with a Fermi momentum of
kF = 225 MeV/c. We use an effective mass of M∗ = 0.8, following the same choice of
parameters as in References [56,57]. The calculation of 1p1h responses involves evaluating
the 1p1h matrix element of the MEC, as given by Equation (15). This requires performing
a numerical three-dimensional integration to account for the momentum dependence.
Subsequently, a one-dimensional integration is carried out to calculate the averaged single-
nucleon responses, as described in Equation (31).

First, since this work is an extension of the MEC model from Ref. [62] to the superscal-
ing formalism, we compare it with the OB-MEC interference responses presented in [62]
within the framework of the RFG. It should be noted that in [62] a different version of the
∆ current was used. The ∆ current was obtained from the γN∆ Lagrangian proposed by
Pascalutsa [78]

LγN∆ = ie
G1

2mN
ψ

αΘαµγνγ5T†
3 NFνµ + h.c., (61)

plus O(1/m2
N) terms that give negligible contribution in the quasielastic energy region.

The tensor Θαµ may contain an off-shell parameter and another arbitrary parameter related
to the contact invariance of the Lagrangian. In this work, we use the simplest form

Θαµ = gαµ −
1
4

γαγµ. (62)

The coupling constant G1 was determined in [78] by fitting Compton scattering on
the nucleon. However, there is a detail that needs to be clarified: the isospin opera-
tor used by Pascalutsa is normalized differently from the standard convention. That is,

TPascalutsa
i =

√
3
2 Ti, where Ti is the operator used in our calculation. This means that if we

use the standard Ti in the Lagrangian (61), it should be multiplied by
√

3
2 . This is equivalent

to multiplying Pascalutsa’s coupling constant G1 = 4.2 by the factor
√

3
2 . In Reference [62],

this detail went unnoticed, and the
√

3/2 factor was not included in the calculations.
Using the Lagrangian given by Equation (61), the following ∆ current is obtained:

jµ∆F = [(TiT†
3 )⊗ τi]t′1t′2,t1t2

f f ∗

m2
π

F∆(Q2)Vs′2s2
πNN(p′2, p2)FπN∆(k2

2)

ūs′1
(p′1)k

α
2

[
ΘαβGβρ(p1 + Q)

G1

2mN
[Θρµγν −Θρνγµ]γ5Qν

]
us1(p1) + (1↔ 2) (63)

and a similar expression for the ∆ backward current. This current was used in Ref. [62] to
compute the OB-MEC interference with the following form factor

F∆(Q2) = Gp
E(Q

2)

(
1− Q2

3.5(GeV/c)2

)−1/2

(64)

where Gp
E is the electric form factor of the proton.
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In Figure 3, we present the interference between the OB and ∆ currents in the transverse
response of 40Ca. We compare our results with the model of Reference [62] in RFG, where
the Lagrangian of Pascalutsa was used. The results of [62] were corrected with the factor

of
√

3
2 mentioned earlier. For q = 500 MeV/c, there is little difference between the two

models. However, for q = 1 GeV/c, the difference becomes more noticeable.

∆1

∆2

q = 500 MeV
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Figure 3. Interference OB-MEC in the transverse response of 40Ca for two values of the momentum
transfer, with kF = 237 MeV/c. In the graph, the curve labeled ∆1 corresponds to using the ∆ current
of the present work in RFG. The curve ∆2 corresponds to the calculation from Reference [62].

The results of Figure 3 show that the ∆ current model used in this work does not
differ significantly from the model in Reference [62], providing similar results. The small
differences observed can be attributed to the different form factor and coupling constants,
and can be understood as a model dependence in these results. From here on, all the results
refer to the ∆ current model described in the Equations (44) and (45).

It is expected that any relativistic model should reproduce the results of the well-
established non-relativistic model for small values of energy and momentum in the non-
relativistic limit [85]. As a check in this regard, in Figure 4, we compare the present model
with the non-relativistic Fermi gas model from Ref. [15]. The non-relativistic ∆ current
used is taken from [62]. To perform this comparison, the same form factors and coupling
constants are used in the relativistic and non-relativistic models. To take this limit in
Figure 4, we follow the procedure as follows: q is small and kF = q/2. We show the
comparison between the two models for various values of q ranging from 100 to 500 MeV/c.
In the left panels, we present the contribution of the transverse response stemming from
the interference OB-π between the pure pionic MEC (diagrams a–c in Figure 2), and in the
right panels, we show the OB-∆ interference (diagrams d–g in Figure 2) for the same values
of q. As expected, we observe that for q = 100 MeV/c, the relativistic and non-relativistic
models practically coincide, demonstrating the consistency between the two models in the
non-relativistic limit.
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Figure 4. Comparison between relativistic and non-relativistic MEC transverse responses in 12C.
Black lines: RFG. Red lines: non-relativistic Fermi gas. Left panels show the interference OB-π, and
left panels the interference OB-∆. In these calculations the strong form factors in the pion vertices are
set to one.

In Figure 4, one can also observe that for low values of q, the dominant contributions
to the MEC are from the seagull and pion-in-flight diagrams, with the seagull diagram
playing a particularly important role. These diagrams contribute positively to the MEC,
enhancing the overall response. On the other hand, the contribution from the ∆ resonance
is negative. As q increases, the influence of the ∆ resonance becomes more significant, and
it starts to dominate the MEC contribution for q values around 400 MeV/c.

Before performing the scaling analysis, we examine the averaged single-nucleon
responses that are used to scale the data. In Figure 5, we display the longitudinal and trans-
verse single-nucleon responses for various values of q as a function of the scaling variable.
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The calculated responses are shown separately for the OB current and the total responses
including the MEC and taking into account the sum of protons and neutrons. The total
response, which we define in Equation (36), comes from the product of the single nucleon
with the phenomenological scaling function obtained from the (e, e′) data as shown below.
We used a Fermi distribution, Equation (37), with a smearing parameter b = 50 MeV/c,
although the single-nucleon responses do not depend much on this specific value. It is ob-
served that the effect of the MEC is negligible in the longitudinal response, as the curves for
the OB current and total response overlap. However, in the transverse response, the effect
of the MEC becomes appreciable, resulting in a reduction in the wT response compared to
the OB current. This reduction can be attributed to the interference between the one-body
and two-body currents, which leads to a modified transverse response. The comparison
between the OB current and the total response including the MEC provides insights into
the contributions of the MEC to the single-nucleon responses and sets the stage for the
subsequent scaling analysis.
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Figure 5. Averaged single-nucleon responses computed with and without MEC, for several values of
the momentum transfer as a function of the scaling variable ψ∗.

Note that the center of the quasielastic peak corresponds to ψ∗ = 0, where the energy
and momentum can be transferred to a nucleon at rest. We see that MEC have a larger
impact in the region ψ∗ > 0, that is, the right-hand side of the peak, corresponding to
higher energy transfers.

In Figure 6, we present the scaling analysis of the 12C data. In the top panel, the exper-
imental data, f ∗exp, are plotted against ψ∗ in the interval −2 < ψ∗ < 2. The experimental
data are from Refs. [86,87] and cover a wide electron energy range, from 160 MeV up to
5.8 GeV. We observe a significant dispersion of many data points, indicating a wide range
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of inelastic scattering events. However, we also notice that a portion of the data points
cluster together and collapse into a thick band. These data points can be considered as
associated to quasielastic (1p1h) events. To select these quasielastic data, we apply a density
criterion. For each point, we count the number of points, n, within a neighborhood of
radius r = 0.1, and eliminate the point if n is less than 25. Points that are disregarded are
likely to correspond to inelastic excitations and low energy processes that violate scaling
and cannot be considered within quasielastic processes. We observe that the remaining
selected points, about half of the total, shown in the middle panel of Figure 6, form a distinct
thick band. These points represent the ones that best describe the quasielastic region and
approximately exhibit scaling behavior. The red curve represents the phenomenological
quasielastic function f ∗(ψ∗) that provides the best fit to the selected data using a sum of
two Gaussian functions:

fit
Data
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Figure 6. Scaling analysis of 12C data including MEC and relativistic effective mass M∗ = 0.8. The
Fermi momentum is kF = 225 MeV/c. In the top panel, we show the data points after scaling,
representing the overall distribution. In the middle panel, we display the selected data points, which
are chosen after eliminating those that do not exhibit clear scaling behavior. In the bottom panel, we
present the phenomenological scaling function, which is fitted to the selected data points, compared
to the scaling function obtained in a similar analysis without MEC. Experimental data are taken from
Refs. [86,87].
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f ∗(ψ∗) = a3e−(ψ
∗−a1)

2/(2a2
2) + b3e−(ψ

∗−b1)
2/(2b2

2). (65)

The parameters found are shown in Table 1.

Table 1. Table of fitted parameters of the scaling function.

a1 a2 a3 b1 b2 b3

−0.01015 0.46499 0.69118 0.86952 1.16236 0.17921

In the bottom panel of Figure 6, we compare the scaling function obtained in our
analysis with the scaling function obtained without including the MEC contributions.
When including the MEC, the scaling function appears slightly higher since the single-
nucleon response with MEC is slightly smaller than without them. However, both analyses
provide a similarly acceptable description of the data. This suggests that while the MEC do
have an impact, their effect is relatively small and does not significantly alter the overall
scaling pattern observed in the data.

Upon examining the middle panel of Figure 6, we observe a significant variation
within the band of selected points. This variation serves as a measure of scaling violation.
In the vicinity of the peak, we note a variation of approximately 20%. However, as we
move away from the QE peak, the scattering of data points exceeds 20%, reaching up to
100% at low omega. This scaling violation was first identified and extensively discussed in
Reference [75], where a similar band was obtained without the inclusion of meson-exchange
currents (MEC). It is worth noting that there are approximately 1500 data points comprising
the QE band in the middle panel of Figure 6. This implies that a large set of data are close
to the factorized formula in a first approximation within the peak region. However, outside
the peak, the factorization describes the data less accurately. Scaling violation should be
attributed to various nuclear processes that break the factorization of the cross-section into
a single-nucleon response times a scaling function. These processes include final state
interactions, Random Phase Approximation (RPA), nuclear correlations, finite-size effects,
residual inelastic effects, and more. Additionally, these effects can have differing impacts
on the transverse and longitudinal response, with their combined magnitude accounting
for approximately 10% of the scaling violation at the peak. Notably, our analysis, when
compared to previous studies [75], shows that the inclusion of MEC 1p1h effects has little
to no effect on the amplitude of the scaling violation.

Now that we have obtained the phenomenological scaling function through the scaling
analysis, we can utilize this function to calculate the response functions of the model beyond
the RMF. By multiplying the scaling function by the averaged single-nucleon responses, as
stated in Equation (36), we can extend our calculations to different kinematic regimes and
explore the behavior of the responses beyond the relativistic mean field description. This
allows us to investigate the influence of various factors, such as the MEC and relativistic
effects, on the response functions and cross-sections.

In Figures 7–10, we present the interferences of the OB-MEC in the response functions
for different values of q (500, 700, 1000, and 1500 MeV/c). We separate the interferences into
OB-seagull, OB-pionic, and OB-∆ contributions for both the longitudinal and transverse
responses as functions of ω. Each panel displays three curves corresponding to the free
RFG (with effective mass M∗ = 1), the RMF (with effective mass M∗ = 0.8), and the
present SuSAM* model. These figures allow us to analyze the relative contributions of the
different OB-MEC interferences in the response functions at various kinematic regimes. By
comparing the results obtained from the RFG, RMF, and SuSAM* models, we can observe
the effects of including the relativistic interaction through the effective mass and the scaling
function on the interferences.
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Figure 7. Interference OB-MEC responses separated in seagull, pion-in-flight, and ∆ contributions
for 12C and q = 500 MeV/c. In each panel we compare the results of RFG (with M∗ = 1, dot–dash),
with the RMF (with M∗ = 0.8) and the SuSAM* model.

SuSAM* sea
Sea M*

Sea

R
L
[G

eV
−
1
]

7006005004003002001000

0.2

0.15

0.1

0.05

0

−0.05

SuSAM* pif
Pif M*

Pif

q = 700 MeV

7006005004003002001000

0.08
0.06
0.04
0.02

0
−0.02
−0.04
−0.06
−0.08
−0.1

SuSAM* del
∆ M*

∆

7006005004003002001000

0.15

0.1

0.05

0

−0.05

−0.1

ω [MeV]

R
T
[G

eV
−
1
]

7006005004003002001000

1.2
1

0.8
0.6
0.4
0.2
0

−0.2
−0.4
−0.6

ω [MeV]

7006005004003002001000

0

−0.05

−0.1

−0.15

−0.2

−0.25

−0.3

−0.35

ω [MeV]

7006005004003002001000

0.5

0

−0.5

−1

−1.5

−2

−2.5

Figure 8. The same as Figure 7 for q = 700 MeV/c.
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Figure 9. The same as Figure 7 for q = 1000 MeV/c.
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Figure 10. The same as Figure 7 for q = 1500 MeV/c.

First we observe that the introduction of the effective mass M∗ = 0.8 shifts the re-
sponses to the right, towards higher energy values. The effective mass takes into account
the binding of the nucleon in the nucleus, which causes the quasielastic peak to approxi-
mately coincide with the maximum of the experimental cross-section. In the RFG, this is
traditionally taken into account by subtracting a binding energy of approximately 20 MeV
from ω to account for the average separation energy of the nucleons. In the RMF, this is
automatically included by considering the effective mass of the nucleon, M∗ = 0.8, which
was adjusted for 12C precisely to achieve this effect.

In the transition from the RMF to the SuSAM* model, we replace the scaling function
of the RFG with the phenomenological scaling function that we adjusted. This new scaling
function extends beyond the region of −1 < ψ∗ < 1, where the RFG scaling function is
zero. As a result, we observe in Figures 7–10 that the interferences acquire a tail towards
high energies, similar to the behavior of the scaling function.

The tail effect is more pronounced in the longitudinal responses because the single-
nucleon longitudinal response, as shown in Figure 5, increases with ω. This amplifies the
tail when multiplied by the scaling function. However, it is important to note that the
contribution of the MEC to the longitudinal response is relatively small compared to the
dominant transverse response. Therefore, while the tail effect is observed in the longitudinal
responses, its impact on the cross-section is not as significant as in the transverse channel,
if not negligible.

In the dominant transverse response, the seagull contribution from the MEC is positive,
leading to an enhancement of the response, while the pionic and ∆ contributions are
negative, causing a reduction in the overall response when including the MEC. This is in
line with pioneering calculations by Kohno and Otsuka [63] and by Alberico et al. [64] in
the non-relativistic Fermi gas. Moreover, in shell model calculations, similar results have
been obtained [15], showing that the MEC contributions also lead to a tail and extension of
the response functions to higher values of ω, as in the SuSAM* approach. It is worth noting
that the relative importance of these contributions can depend on the momentum transfer
q and the energy transfer ω. For the values considered in Figures 7–11, the ∆ current is
found to be the dominant contribution, leading to a net negative effect from the MEC.

The observation in Figure 10 of a sign change and a small bump in the OB-∆ transverse
response for high values of ω is indeed interesting. The change of sign is already observed
for q = 1 GeV/c in Figure 9. This connects with the findings in Reference [16], where
a pronounced bump and sign change were reported in a semi-relativistic shell model
calculation based on the Dirac equation with a relativistic energy-dependent potential. In
the present calculation, the bump is observed but it is very small compared to the results
of Ref. [16]. It is important to note that, in the present work, the fully relativistic SuSAM*
approach is employed, which takes into account the dynamical properties of both nucleons
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and the ∆, as well as the scaling function. This differs from the approach in Reference [16],
where a static propagator for the ∆ was used. To definitively clarify the difference with the
present results, a fully relativistic calculation in finite nuclei, considering the dynamical
properties of the ∆ would be necessary.

The comparison of the OB-MEC interference with the MEC contribution alone (repre-
sented by wµν

12 and wµν
2 , respectively, in Equation (21)) in the transverse response is shown

in Figures 11 and 12. We observe that the MEC contribution alone represents a small
and almost negligible contribution to the transverse response. This justifies the previous
calculations that focused only on the OB-MEC interference (e.g., the semi-analytical calcu-
lations in References [15,88] for the non-relativistic Fermi gas), as it provides an excellent
approximation. This observation holds true for both the RMF model in Figure 11 and the
SuSAM* model in Figure 12. It highlights the fact that the dominant contribution to the
transverse response arises from the interference between the OB and MEC, while the pure
MEC contribution is relatively small. It is also worth stressing that while the pure MEC
contribution is, of course, positive, the interference contribution is negative.
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Figure 11. Comparison of OB-MEC interference in the transverse response (black lines) with the pure
MEC transverse response (red lines) for several values of q in the RMF model.
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Figure 12. The same as Figure 11 in the SuSAM* model.

In Figure 13, we present the total responses of 12C computed using the generalized
SuSAM* model. These responses are obtained by multiplying the phenomenological scaling
function by the averaged single-nucleon response and summing over protons and neutrons,
as given by Equation (36). The responses are shown for different values of q as a function of
ω. In the same figure, we also show the results without including the MEC contributions,
which corresponds to setting the terms w12 + w2 associated with the two-body current
(Equation (21)) to zero.

Comparing the results with and without MEC, we observe that the impact of MEC is
more significant in the transverse response compared to the longitudinal response. This is
expected since the corrections due to MEC in the longitudinal response are higher-order
effects in a non-relativistic expansion in powers of v/c, as known from previous studies [89].
Therefore, the MEC contributions to the longitudinal response are minimal and only start
to become noticeable for q >1 GeV in the high-energy region. However, this high-energy
region is dominated and overshadowed by pion emission and inelastic processes, making
it difficult to isolate the 1p1h longitudinal response.
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Figure 13. Response functions calculated in the generalized SuSAM* model (black curves). The red
curves do not include the MEC.

The inclusion of MEC in the single nucleon leads to a reduction in the transverse
response by around 10% or even more for all studied values of q. This is consistent
with previous calculations in RFG and the shell model [14–16,62,90]. These calculations
have consistently shown that MEC in the 1p1h channel tend to decrease the transverse
response compared to the contribution from the one-body current. It is important to note
that this reduction in the transverse response is a direct consequence of the destructive
interference between the one-body current and MEC. The contribution of MEC to the
transverse response is negative because the direct two-body matrix element is zero (in
symmetric nuclear matter, N = Z) or almost zero (in asymmetric nuclear matter, N 6= Z, or
in finite nuclei) after summing over isospin.

The treatment of the ∆ resonance in the medium is subject to various ambiguities and
uncertainties. In our generalized SuSAM* model, we assume that the ∆ resonance acquires
an effective mass M∗∆ and vector energy E∆

v due to its interaction with the RMF. This requires
modifying the propagator according to the formalism proposed in References [41,84]. To
estimate the effect of this treatment, in Figure 14 we compare the transverse response for the
OB-∆ interference calculated assuming that the ∆ remains unchanged in the medium, i.e.,
setting M∗∆ = M∆ and E∆

v = 0. The response with the free ∆ without medium modifications
is slightly smaller in absolute value, around 10% depending on the momentum transfer.
This can be seen as an estimation of the uncertainty associated with the ∆ interaction in
the medium.

Another related issue is the modification of the ∆ width in the medium, which we
have not considered here assuming the free width (59). This effect can also influence the
results, but it is expected to be of the same order as the observed effect in Figure 14. It
is important to note that the treatment of the ∆ resonance in the medium is a complex
topic, and further investigations and refinements are needed to fully understand its effects
and uncertainties.
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Figure 14. Comparison of the transverse interference OB-∆ computed in the generalized SuSAM*
model with and without relativistic effective mass and vector energy for the ∆.

In Figure 15, we compare the total transverse response calculated in the RMF model
with an effective mass of M∗ = 0.8 to the results obtained in the generalized SuSAM* ap-
proach for various momentum transfers, ranging from q = 300 MeV/c to q = 1500 MeV/c.
Both calculations include the effects of MEC. One notable difference between the two
approaches is the presence of a pronounced tail at high energy transfer rates in the SuSAM*
results. This tail extends well beyond the upper limit of the RFG responses, reflecting the
effect of the phenomenological scaling function used in the SuSAM* approach. Similar
effects are found in the longitudinal response. Additionally, it is worth noting that the peak
height of the transverse response in the SuSAM* approach is generally higher compared to
the RMF model. Overall, the comparison in Figure 15 highlights the improvements and
additional physics captured by the SuSAM* approach, by extending the scaling function of
the RFG to describe the transverse response in a wider energy transfer range.

Finally, in Figure 16, we present the results for the (e,e′) double differential cross-
section of 12C calculated with the generalized SuSAM* model including MEC, compared to
experimental data for selected kinematics. We also compare these with the same model
but assuming that only the single-nucleon contribution is present, i.e., setting the MEC to
zero. We observe that the inclusion of MEC in this model leads to a small reduction in the
cross-section compared to the case without MEC. This reduction is a consequence of the
decrease in the transverse response due to the presence of MEC.

Figure 16 also provides an illustrative example of the averaged description of the
global (e, e′) cross-section data. It is important to note that considering the scaling violation
uncertainty—the scatter of the points in the scaling band is larger than 20%—significant
deviations from the QE data are expected for certain kinematic conditions. In some cases,
the predicted cross-section is above the data, while in others, it is below. It is important to
note that the phenomenological scaling function is derived by excluding data points that
significantly deviate from scaling behavior. Specifically, kinematics involving substantial
contributions from pion emission are excluded as non-quasielastic. Consequently, in these
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cases, the predicted cross-section falls below the experimental data. A more comprehensive
and detailed comparison is available in Refs. [19,70], where results are presented using
a phenomenological scaling band for a broader range of kinematics. We refer interested
readers to that reference since the results for the cross-section do not differ significantly
from those presented therein. This similarity arises because, while we incorporate MEC
within the single-nucleon framework in this work, the new scaling analysis primarily
shifts the data points slightly with respect to the one-body current case, thus modifying
the scaling function band only marginally. The description of the cross-section, however,
remains practically the same.
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Figure 15. Total transverse responses for 12C including MEC in the RMF model with M∗ = 0.8
compared to the generalized SuSAM* model.

This work does not include comparisons with separate response function data or the
Coulomb sum rule. While the scaling band results from the clustering of data points with
varying momentum and energy transfers, the faithful reproduction of separate response
functions by a model is not necessarily guaranteed. To ensure the accuracy of a scaling-
based approach in describing response functions, it would be imperative to somehow
incorporate experimental information about these response functions into the scaling
analysis. This is an endeavor that requires further investigation beyond the scope of
this study, which primarily serves to illustrate how to modify the scaling approach to
incorporate MEC within the single-nucleon framework.
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Figure 16. Cross-section of 12C for several kinematics computed with the generalized SuSAM* model,
including MEC, compared with the same calculation without MEC. Experimental data are from
Refs. [86,87].

4. Discussion and Concluding Remarks

From the results seen in the previous section, we observe that, in all the models
considered, the transverse response decreases when including meson-exchange currents
in the 1p1h channel. This result is consistent with previous independent calculations
performed in the relativistic and non-relativistic Fermi gas models as well as in the non-
relativistic and semi-relativistic shell models. The result is a consequence of the fact that
the main contribution arises from the interference of the OB and ∆ currents, in particular
through the exchange diagram, carrying a minus sign. The contribution from the direct
part of the MEC matrix element is zero in the Fermi gas, and this is the reason for the
negative contribution.

It is worth mentioning the existence of some calculations that disagree with this result
and suggest a different effect of MEC on the transverse response. We would like to comment
in particular on two notable model calculations: the Green Function Monte Carlo (GFMC)
model from Reference [11] and the Correlated Basis Function (CBF) calculation by Fab-
rocini [14], both including meson-exchange currents in the 1p1h sector. In both approaches,
the effect of MEC is positive in the quasielastic peak and quite significant, around 20%,
in the transverse response. This substantial effect is attributed to the simultaneous effect
of tensor correlations in the wave function and MEC. In fact, in Fabrocini’s calculation,
the origin of this effect was found to be the tensor-isospin correlation contribution in the
direct matrix element of the ∆ current, which is non-zero when summing over isospin for
correlated wave functions. This effect can also be understood in terms of the presence of
short-range correlations in the nuclear wave function. The direct matrix element of MEC,
when a proton is emitted, involves the interaction of the proton with protons as well as with
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neutrons, i.e., the MEC matrix element involves PN and PP pairs. The high-momentum
component of these pairs is significantly different because PN pairs contain the 3S1 and 3D1
deuteron-like waves, while PP pairs do not. Therefore, when summing over isospin, there is
no cancellation between PP and PN pairs in the high-momentum part of the wave function,
resulting in a non-zero direct matrix element. This is in agreement with the conclusion of
Fabrocini, as the tensor-isospin term precisely generates this significant difference between
PP and PN pairs. An alternative way to investigate this hypothesis would be to perform cal-
culations in the independent particle model by solving the Bethe–Goldstone equation [91]
for PP and PN pairs and using a correlation current similar to the one proposed in [92].
Such calculations could provide further insights into the effect of short-range correlations
on the MEC contributions to the transverse response.

On the other hand, the results of Fabrocini reproduce the well-known effect that MEC
has a negative impact on the transverse response when the correlation’s functions are set to
zero, consistent with the results from uncorrelated models. Since in the present work we
started with an uncorrelated model, the relativistic mean field, the effects of correlations
in the transverse current are expected to be included phenomenologically in the scaling
function. This and other mechanisms, such as final state interactions, contribute to the
violation of scaling observed in the data.

In conclusion, this work presents a method that enables the consistent inclusion of
meson-exchange currents (MEC) within the framework of the superscaling analysis with
relativistic effective mass. The approach is rigorously relativistic, drawing its foundation
from the relativistic mean field theory of nuclear matter. The generalized scaling analysis is
comprehensively illustrated and applied to the (e,e′) cross-section of 12C. To achieve this, we
introduce a novel definition of the single-nucleon tensor within the model’s factorization.
The averaged single-nucleon hadronic tensor is defined by the summation of one-body
and two-body currents, with no alteration to the definition of the scaling function, which
retains its form as in the one-body current case within the Fermi gas. This averaging
definition is extended beyond the scaling region of −1 < ψ∗ < 1 characteristic of the
Fermi gas, achieved by slightly modifying the momentum distribution through a smeared
Fermi distribution. This adaptation allows for the evaluation of MEC for any value of the
scaling variable.

Through the inclusion of MEC and the utilization of a phenomenological scaling
function, we conducted a comparative analysis of the 1p1h response functions within
the context of the RFG, RMF, and SuSAM* models. In these models, MEC diminish the
transverse response, while the longitudinal response remains relatively unaffected by their
presence. This observation aligns with previous calculations in other independent particle
models, most notably within shell model calculations [15,16]. Our detailed examination of
the interference responses between one- and two-body currents sheds light on the influence
of the effective mass, resulting in a rightward shift and slight modifications in strength. As
an essential test of the results, we verified that in the low-momentum limit, the predictions
of the relativistic model align with those of the non-relativistic model in the Fermi gas.

The generalized scaling analysis, augmented with the inclusion of MEC, offers a
global description of the quasielastic electron cross-section, albeit solely as an average
representation. The selected QE data generate a band with scatter of∼ 20% at the maximum,
highlighting the extent of scaling violation. By design, this approach is not intended
for precise cross-section calculations. When the effect of MEC is incorporated within
the single-nucleon framework, the scaling data undergo only slight modifications, well
within a percentage considerably smaller than the uncertainty within the scaling band.
Consequently, the overall description of the cross-section is minimally impacted by the
inclusion of MEC, relative to the use of the OB current alone.

We anticipate that the landscape may undergo transformation with the development
of a more realistic averaged single-nucleon framework, possibly incorporating a Fermi gas
description enhanced by short-range correlations. In such a scenario, the meson-exchange
currents (MEC) are expected to exert a more substantial influence, potentially leading to
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a significant increase in the transverse response. This paper demonstrates, for the first
time, the methodology for incorporating these modifications within the SuSAM* formalism,
highlighting its significance.

A central question remains as to whether it is feasible to identify more realistic single-
nucleon responses capable of diminishing the degree of scaling violation within the scaling
data. If successful, such a model could offer enhanced predictive capabilities. Alterna-
tively, exploring variations in the single-nucleon responses, akin to a phenomenological
parametrization in both the longitudinal and transverse channels, as exemplified by the
Bodek–Christy model [12,13], remains a promising avenue for future investigation, includ-
ing the extension of the model to study neutrino-nucleus scattering.
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