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Abstract. Machine learning is recognised as a relevant approach to de-
tect attacks and other anomalies in network traffic. However, there are
still no suitable network datasets that would enable effective detection.
On the other hand, the preparation of a network dataset is not easy due
to privacy reasons but also due to the lack of tools for assessing their
quality. In a previous paper, we proposed a new method for data quality
assessment based on permutation testing. This paper presents a parallel
study on the limits of detection of such an approach. We focus on the
problem of network flow classification and use well-known machine learn-
ing techniques. The experiments were performed using publicly available
network datasets.
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1 Introduction

Network security is a key research area today. Development in the field of the In-
ternet goes hand in hand with increasing threats. Machine learning (ML) systems
play a critical role in this field. However, ML techniques suffer of the ”garbage-
in-garbage-out” (GIGO) problem, meaning they can only be as good as the data
they are trained on [26]. This is a fact that has serious consequences because,
despite its high performance, the model may be ineffective when trained on a
dataset that does not represent the real environment. This situation can easily
happen if the ML model is moved to another network or there is a drift in input
data.

Although the network traffic can be easily captured from the network, many
papers noticed the lack of the high-quality network datasets [27][9] and the prob-
lem of assessing the quality of datasets is overlooked. Scientists and practitioners
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tend to focus their efforts on optimizing ML models rather than on the quality
of the datasets [7], and the research area related to assessing the quality of the
dataset is overlooked. Dataset cleaning fixes well-known bugs in data but does
not fix the problem of the quality. After removing duplicates, outliers, and er-
rors resulting from technical problems or human activity, there are still problems
with the completeness of the dataset, its accuracy, consistency, or uniqueness of
the data, and these characteristics still remain difficult to assess [7]. In addition,
problems such as class imbalance [25], class overlapping [12], noisy data [15],
incorrect labels [10], or non-stationarity [33] are often unnoticed.

In this paper, we focus on the dataset quality assessment problem. In previous
work, we presented how to use permutation testing for this task [8]. Our approach
allows us to check whether the dataset contains enough information to predict a
specific labeling, i.e., assignation of traffic units to the legitime or attack class.
We showed that the proposed methodology is able to effectively assess the quality
of a network dataset by checking the relationship between the observations and
labels. In this article, we highlight the problem of the sensitivity of this method
to partial mislabeling, that is, the incorrect assignation of a subset of traffic
units to the normal/attack classes, and demonstrate how to use our approach to
capture even a small inconsistency.

The advantage of permutation testing [23] [22] is that the permutation tests
create a null distribution that allows us to test the statistical significance of the
performance results of a given ML classifier or set of classifiers. Moreover, as
already shown in [21], permutation testing can be a useful tool to evaluate the
impact of noisy data on the model performance.

In this paper, our contributions are as follows:

– We describe challenges for dataset quality assessment which are crucial for
the effectiveness of machine learning-based network systems;

– We emphasize that a small problem in the network data may affect ML
results;

– We experimentally investigate the limit of detection in our dataset quality
assessment method based on permutation testing (PerQoDA) presented in
[8][32] and propose the change in our original methodology;

– We show how by permuting (even extremely) a small number of labels, we
can detect small mislabeling problems in the dataset. These are important
research results because, to the best of our knowledge, there are no methods
that can detect mislabeling at such a high level of sensitivity.

The rest of the paper is organized as follows. Section 2 discusses related work
in the literature. Section 3 provides an introduction to permutation testing, the
details of the permutation-based methodology for assessing the quality of the
dataset, and how to interpret the results. Section 4 describes the problem of the
limit of detection in our method. Section 5 lists the results of the experiments
carried out on real network datasets. Finally, Section 6 concludes the paper and
discusses future work.
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2 Related work

Dataset quality evaluation is key in the analysis and modeling of big data [4],
and it is of interest when developing new benchmarking datasets, critical for net-
work security. Evaluating the dataset quality is challenging and must be done
prior to any data modeling. While there are metrics that evaluate some impor-
tant properties of a dataset (accuracy, completeness, consistency, timeliness, and
others), these metrics often overlap [16]. Also, these metrics are more focused
on the quality of data, and there is a lack of complete and proven methodologies
for assessing the quality of datasets from a general perspective [30]. Soukup et
al. [28] proposed general dataset quality definitions and an evaluation methodol-
ogy of dataset quality based on selected performance measures between several
versions of the dataset. Statistical methods were used to compare their results.
However, no methods for overall evaluation were proposed.

Current research is mainly focused on data cleaning and optimization that
can indirectly improve the dataset’s quality. Taleb et al. [30] proposed qual-
ity evaluation scheme that analyzes the entire dataset and seeks to improve it.
More metrics and proposals are part of future work. Another method is crowd-
sourcing, where experts perform small tasks to address difficult problems. There
are many applications of this approach, for example, a query-oriented system
for data cleaning with oracle crowds [5] or a technique that improves the qual-
ity of labels by repeatedly labeling each sample and creating integrated labels
[34]. Another technique is metamorphic testing, originally developed to evalu-
ate software quality and verify relations among a group of test outputs with
corresponding test inputs [36]. Auer et al. [3] proposed to use this method to
assess the quality of data expressing data as functions and defining metamor-
phic relations on these functions. Ding et al. [11] showed another application of
metamorphic tests that were used to assess the fidelity, diversity, and validity
of datasets on a large scale. The authors of [31] proposed a black-box technique
that uses metamorphic tests to find mislabeled observations for which there is
a probability that the metamorphic transformations will cause an error. Erro-
neous labels are found using entropy analysis, which leverages information about
the output uncertainty. Additional options for dataset optimization are transfer
learning [24] and knowledge graphs [6] that were used to detect information gaps
and semantic problems. There is also an approach using reinforcement learning
[35]. This meta learning framework explores how likely it is that each training
sample will be used in training the predictive model.

Apruzzese et al. [2] proposed semisupervised methods within the framework
of active learning. This is very beneficial to improve the current dataset but
it cannot be used to evaluate quality. Moreover, Joyce et al. [17] is focused on
the unlabeled part of the dataset. The proposed solution can detect problematic
traits of dataset that can lead to over-fitting. However, the quality measure is
missing, and domain knowledge is required. Engelen et al. [14] is focused on
dataset quality assessment, however, the dataset is analyzed manually based on
deep domain knowledge.
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In the paper [8], we proposed a permutation-based assessment methodology
that allows the analyst to conveniently check whether the information contained
in the dataset is rich enough to classify observations precisely. Our method can
detect inconsistencies in the relationships between observations and labels in
multidimensional datasets. We also proposed a scalar metric allowing us to com-
pare two versions of a dataset (e.g., after some differential preprocessing) in
terms of quality [32]. We focus on supervised binary classification problems and
estimate dataset quality without input data or hyperparameters optimization.

In this article, we explore the detection limits of our approach and show how
to detect small imperfections in large datasets.

3 Background

In this section, we describe the permutation testing method, introduce an ap-
proach that uses permutation tests to assess the quality of a dataset, and explain
how to interpret the results.

3.1 Permutation testing

Permutation tests are a form of statistical inference which does not rely on
assumptions about the data distribution [23]. Thanks to this approach, we can
test if there is a significant relationship between the content of a traffic dataset
and its corresponding labeling. For that, we define the so-called null hypothesis
that the association of the traffic and the labeling is mild enough so that it
could be the result of randomness, and we test whether this hypothesis could be
rejected.

Permutation testing relies on random sampling. We repeatedly shuffle (i.e.,
permute) the selected data and check if the unpermutted (real) data comes from
the same population as the resamples. To compute the p-value, we typically
take the number of test statistics computed after permutations that are greater
than the initial test statistic and divide it by the number of permutations. If the
p-value is less than or equal to the selected significance level, we can reject the
null hypothesis and accept the alternative hypothesis, which reflects that the
relationship between traffic and labels is statistically significant.

3.2 Dataset quality assessment based on the permutation testing

In short, our method presented in [8] is to calculate the model performance
after each permutation and see how many times that performance was better
than the model performance on the original data (true results). If this happens
many times, it would mean that our dataset is so random that it does not allow
classifiers to learn an accurate classification model. Since we want to assess the
quality of the dataset and not the quality of a specific ML classification strategy,
our approach is based on a pool of classifiers (from the simplest to complex and
from traditional to the state-of-the-art). In our method, we only permute labels
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and examine the relationship between observations and labels. For each classifier,
after P permutations, we obtain P performance results. Then we compare each
result with the true performance result and compute a p-value. The obtained
p-value table allows us to evaluate the quality of the dataset.

Let M be the model performance4 calculated from the original dataset and
M∗ the model performance computed after permutation. The p-value can be
defined as follows [1]:

p-value =
No. of (M∗ ≥ M) + 1

Total no. of M∗ + 1
(1)

In our method, we set the significance level to 0.01, and we define the null
hypothesis as that the association between observations and labels in the dataset
is the simple result of chance. This means that if the p-value > 0.01, the null
hypothesis cannot be rejected. Therefore the dataset has a weak relationship
between observations and labels. On the other hand, if the p-value ≤ 0.01, we
can reject the null hypothesis and conclude that the relationship is significantly
strong.

We assess the statistical significance of the performance results permuting
a selected part of the dataset, not just the whole dataset. We run permutation
tests for different label percentages (for example, 50%, 25%, 10%, 5%, 1%).
By taking an increasing number of labels into the permutation, we are able to
identify different levels of quality in the data, that is, of association between
data and labels. Note these set of tests are incremental and as such we did not
apply corrections on the significance level (e.g., Bonferroni corrections).

Let (X,y) be a dataset, where X is the set of observations and y is the set
of labels. To evaluate the quality of the dataset, we perform the following steps:

1. Train a pool of classifiers using the original dataset (X,y)
2. Evaluate each model using the selected metric
3. Permute selected percentage of the labels y to get new labels yp and new

dataset (X,yp)
4. Train the pool of classifiers on the dataset (X,yp)
5. Evaluate each model with the selected performance metric
6. For yp and y, compute the correlation coefficient
7. Repeat the steps 3 through 6, P times
8. Calculate p-value according to Eq. (1)
9. Repeat the steps 7 and 8 for each value of percentage

The proposed approach works for both balanced and imbalanced datasets
because it is finding trends in permutations [32].

3.3 Visualisation and interpretation

After the procedure described in Section 3.2, we get a pool of performance results
after permutations and a p-value table. To assess the performance results, we

4 We can choose any performance metric such as accuracy, precision, recall, etc.
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combine a permutation chart and a p-value table. If at least one classifier shows
statistical significance in all permutation percentages, we can deem the dataset
as good. The reason is that we can find at least one ML method that can identify
the relationship between data and labels. If no ML method shows significant
results at any permutation level, the data should be considered of bad quality.
Any result in between these two extreme outputs reflect a partial level of quality,
which grows with the number of permutation percentages in which we find at
least one significant classification model.

An example of the visualisation of the performance results is shown in Fig. 1b.
Consider the dataset presented in Fig. 1a. This dataset is of good quality because
the classes are well separated, so we expect the ML algorithms to perform very
well on this data. In the permutation chart, we can see the true performance
results (shown by diamonds) and all the performance results after permutations
(shown by circles). Each performance result after permutation is located de-
pending on the correlation between the original labeling and the permuted one
[18]. We can notice that the true performance is high (equal to or close to 1) as
expected, and the results after each permutation are lower than the true results
(what is also expected if the dataset is of good quality). The lowest performance
at different percentage levels is marked with a red dashed horizontal line. This
can be interpreted as a baseline of randomness. This value can sometimes be
unexpectedly high and should therefore be observed (in this case, it is around
0.55).

(a) Dataset (b) Permutation chart

Fig. 1: Dataset (a) and the permutation chart (b)

As can be seen in the p-value table (Tab. 1), all performance results are
statistically significant. All classifiers at all permutation levels reject the null hy-
pothesis (the symbol . represents the value ≤ 0.01). This means a very strong re-
lationship exists between the observations and the labels in the original dataset.

Additionally, in the previous work [32] we proposed a scalar metric for com-
paring datasets. We defined a slope metric that corresponds to the slope of the
regression line fitted to the points representing the classifier’s performance scores
(obtained after permutations) at different permutation levels (see Fig. 1b). Thus,
we got one slope per classifier, the largest of which was defined as a measure of
the quality of the dataset (in this case, the slope is approximately 0.75).
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Table 1: p-value table: p-values less than or equal to the significance level 0.01
are replaced by a dot.

50% 25% 10% 5% 1%

KNN . . . . .
SVM . . . . .
DT . . . . .
RF . . . . .
AB . . . . .
XGB . . . . .
MLP . . . . .

4 Limits of detection

In the dataset quality assessment method described in Section 3.2, we permute
the selected percentage of the labels. However, taking 1% of the labels in a large
dataset, we may not notice problems in the relationship between X and y in
a minor number of instances. Since we want to detect as minor mislabelling
problems as possible in the dataset, intuitively, we should permute the smallest
possible number of labels. This will allow us to establish the limit of detection
(LOD) of our approach. In chemistry, this term is defined as the lowest concen-
tration of an analyte that can be reliably detected with statistical significance
(for example, with 95% certainty) using a given analytical procedure [19]. Based
on these considerations, this paper examines the LOD of our approach, that is,
how well we can detect minor problems in datasets.

In order to investigate the limit of detection in our dataset quality evaluation
method, we will perform permutation tests on a very small number of observa-
tions (for example, 100, 50, 25, 10, 5, 1), regardless of the size of the dataset. By
permuting such a small fraction of the labels, we can evaluate the performance
loss (if any) at a high level of detection. This allows us to assess the relevance
of very small parts of the dataset and consequently assess the accuracy of the
labeling of the entire dataset, i.e., to evaluate its overall quality. It is also worth
noting that we will have high correlation coefficient values for a large dataset
because we only change a small part of the labels.

In practice, we make one change to the algorithm presented in Section 3.2.
We will permute the same small number of labels in each dataset instead of a
percentage (in step 3).

The theoretical foundations of the above considerations can be found in our
work [32], in which we explained why our method of assessing the quality of a
dataset is more sensitive at low permutation percentages.

5 Experiments

In this section, we present the results of the experiments with the LOD in the
permutation-based dataset quality assessment method. We also present ML tech-
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niques and performance metrics that were used in the procedure. We present two
case studies conducted on the publicly available real network datasets.

5.1 ML algorithms

In our experiments, we used a pool of well-know supervised ML methods: K
Nearest Neighbours (KNN), kernel Support Vector Machine (SVM), Decision
Tree (DT), Random Forest (RF), AdaBoost (AB), XGBoost (XGB), and multi-
layer perceptron (MLP). The DT, RF, AB and XGB classifiers had a weight
class option set to ”balanced”. The other hyperparameters were the default. We
used the standard stratified 2-fold cross-validation (CV) with shuffling the data
before splitting into batches. In other words, datasets were split into two sets
(for training and testing) keeping the percentage of samples for each class, the
models were then trained on one split and evaluated in the other twice, and the
performance results were averaged. Data has been scaled to range [0, 1]. We used
the Weles tool [29] to automate the generation of results.

5.2 Evaluation metric

Our dataset quality assessment method can be used with different performance
metrics [32]. For this paper, we selected a recall metric, which directly reflects
the number of detected anomalies, i.e., the percentage of correctly classified pos-
itives, and which can arguably be considered especially relevant in cybersecurity
research. The recall is defined as follows:

Recall =
TP

TP + FN
(2)

where TP is the number of correctly predicted undesired traffic (True Positives),
and FN is the number of anomalous traffic classified as normal traffic (False
Negatives).

5.3 Case studies

In this section, we present the results of the experiments on real datasets. We
used publicly available datasets: inSDN and UGR16. In all experiments, we con-
sidered the following fixed number of permuted labels (instead of percentages):
100, 50, 25, 10, 5, and 1 (from each class), and we conducted 200 permutations.
We focused on the binary classification problem.

Case study 1: inSDN dataset

The inSDN dataset is a publicly available network flow-based dataset that con-
tains 68,424 normal (legitimate) and 275,465 attack observations captured in a
Software Defined Network (SDN) environment [13]. The inSDN dataset includes



Evaluation of Detection Limit in Network Dataset Quality Assessment 9

(a) 2000 obs, 0% mislabels (b) 2000 obs, 5% mislabels (c) 2000 obs, 10% mislabels

(d) 10,000 obs, 0% mislabels(e) 10,000 obs, 5% mislabels(f) 10,000 obs, 10% mislabels

(g) 20,000 obs, 0% mislabels(h) 20,000 obs, 5% mislabels(i) 20,000 obs, 10% mislabels

Fig. 2: Permutation charts for the inSDN datasets

attacks on the Open vSwitch (OVS) machine as well as the server-directed at-
tacks: DoS, probe, brute force attacks (BFA), password-guessing (R2L), web
application attacks, and botnet. The inSDN dataset contains 83 traffic features.

In this scenario, we assessed the quality of the dataset against the problem of
distinguishing Probe attacks from normal traffic. We created balanced datasets
(prevalence5 = 0.5) with 2000, 10,000, and 20,000 observations. We removed the
following features: Timestamp, Flow ID, Src IP, Dst IP, Src Port, Dst Port, and
Protocol. To the original datasets, we introduced 0%, 5% and 10% mislabels.
Mislabels were injected randomly to both the normal data and attack data (in
the same proportions), and were present in the training set and test set. Our goal
was to capture the quality difference between original and mislabeled datasets.
Using the permutation strategy described in Section 4, we permute a maximum
of 5% (100/2000), 1% (100/10,000), and 0.5% (100/20,000) of the labels of the
first, second and third dataset, respectively.

The results of the dataset quality assessment with our permutation approach
is shown in Fig. 2 and Tab. 2. As expected, we can see that mislabeled datasets
are of lower quality than the original ones. All original samples are of a good

5 percentage of positives in the dataset
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Table 2: p-value tables for the inSDN datasets. P-values above significance level
0.01 are marked in red, lower p-values are replaced by dot.

2000 obs
0% mislabels

2000 obs
5% mislabels

2000 obs
10% mislabels

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . . . . .02 .02 . . . . .01 .08 .16 . . . .05 .13 .18 .14
SVM . . . . . .02 .02 . . . . .02 .13 .15 . . . . .07 .25 .31
DT . . . . . . . . . .02 .18 .21 .33 .38 . .04 .26 .51 .66 .62 .64
RF . . . . . . . . . .12 .66 .81 .91 .89 . . .10 .32 .51 .52 .56
AB . . . . . . . . . .01 .13 .17 .24 .32 . .06 .26 .52 .70 .68 .68
XGB . . . . . . . . . .42 .86 .94 .95 .97 . . .05 .23 .38 .43 .41
MLP . . . . . .03 .01 . . . . .02 .17 .21 . . . .12 .34 .74 .74

10,000 obs
0% mislabels

10,000 obs
5% mislabels

10,000 obs
10% mislabels

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . . . . . . . . . .06 .15 .28 .30 . . .06 .17 .21 .22 .30
SVM . . . . . .02 .05 . . . . .02 .11 .10 . . . . .03 .15 .19
DT . . . . . . . . . .01 .05 .06 .10 .12 .01 .12 .35 .53 .56 .53 .55
RF . . . . . . . . . . .08 .13 .10 .15 . . . .05 .07 .05 .04
AB . . . . . . . . . .02 .03 .07 .06 .07 . .02 .08 .20 .17 .14 .16
XGB . . . . . . . . . . .01 .05 .11 .10 . . .01 .09 .15 .17 .19
MLP . . . . .03 .19 .21 . . . . .03 .19 .22 . . . .02 .06 .21 .26

20,000 obs
0% mislabels

20,000 obs
5% mislabels

20,000 obs
10% mislabels

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . . . . . . . . .10 .47 .60 .66 .69 . . .07 .17 .20 .23 .25
SVM . . . . .05 .22 .24 . . . .02 .09 .27 .24 . . . .02 .16 .48 .48
DT . . . . .05 .26 .27 . .06 .26 .46 .46 .49 .56 .11 .38 .55 .68 .67 .68 .68
RF . . . . .18 .46 .50 . . .05 .15 .15 .16 .18 .04 .21 .42 .55 .60 .61 .61
AB . . . . .08 .30 .44 . .05 .12 .28 .36 .32 .39 .14 .41 .54 .61 .73 .68 .68
XGB . . . .01 .30 .59 .65 . . . .02 .13 .43 .33 . . .15 .63 .80 .80 .81
MLP . . . .03 .03 .57 .56 . . . . .04 .19 .24 . . . .08 .27 .67 .65

quality (even in case of the dataset with 20,000 observations and 0% mislabels
we have at least one classifier with statistically significant results). However,
in the permutation charts depicted in Fig. 2, we see black circles indicating
that the performance results after permutations were better than in the original
dataset. In the case of mislabeled datasets, we cannot reject the hypothesis
that the dataset is random as all classifiers do not have significant results when
we permute 1, 2, and 5 labels. Note that if the smallest percentage were 1%,
we would not be able to detect relationship problems in datasets with 10,000
and 20,000 observations having 5% mislabels (because for these datasets 1%
means 100 and 200 labels, respectively, and for these permutation levels the
performance results are statistically significant). Moreover, these datasets would
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most likely have statistically significant performance scores for 5% permutation
level as well, since typically, if the results are statistically significant at some level
of permutation, they’re also statistically significant if more labels are permuted.

The slope analysis also confirms that the mislabeled datasets are worse than
the original dataset (Tab. 3). The original good-quality datasets have the highest
slope values, and the datasets with 10% incorrect labels have the lowest slope.

It is worth noting, however, that for all analyzed samples, we can find ML
techniques which achieved true performance results above 0.9 (Tab. 4), and, in re-
search practice, without the dataset quality evaluation, they could be considered
to be of good quality. In particular, the datasets with 5% mislabels have quite
high performance results (even 0.95), and without the analysis with a method
like the one we propose, they could be considered as good-quality datasets.

Table 3: The slopes computed for the inSDN consecutive normal observations
and Probe/OVS attack data (samples without and with mislabels)

Dataset 0% mislabels 5% mislabels 10% mislabels

2000 obs 0.97279 DT 0.78068 DT 0.60636 RF
10,000 obs 1.04494 AB 0.82356 DT 0.70278 AB
20,000 obs 1.04837 DT 0.85276 DT 0.63686 DT

Table 4: inSDN datasets - true performance results (recall)

2000 obs
0% mislabels

2000 obs
5% mislabels

2000 obs
10% mislabels

KNN 1.0 0.951 0.899
SVM 1.0 0.95 0.9
DT 1.0 0.907 0.814
RF 1.0 0.921 0.852
AB 1.0 0.908 0.816
XGB 1.0 0.926 0.881
MLP 1.0 0.95 0.9

10,000 obs
0% mislabels

10,000 obs
5% mislabels

10,000 obs
10% mislabels

KNN 1.0 0.948 0.891
SVM 1.0 0.951 0.902
DT 1.0 0.901 0.814
RF 1.0 0.93 0.854
AB 1.0 0.909 0.822
XGB 1.0 0.949 0.902
MLP 1.0 0.95 0.9

20,000 obs
0% mislabels

20,000 obs
5% mislabels

20,000 obs
10% mislabels

KNN 1.0 0.948 0.893
SVM 1.0 0.95 0.902
DT 1.0 0.9 0.809
RF 1.0 0.936 0.864
AB 1.0 0.91 0.82
XGB 1.0 0.95 0.9
MLP 1.0 0.95 0.901
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Case study 2: UGR16 dataset

Another publicly available dataset we assessed was the UGR16 dataset [20]. This
dataset contains Netflow flows taken from a real Tier 3 ISP network composed
of virtualized and hosted services of many companies and clients. The network
traffic was captured on the border routers, so this dataset contains all the incom-
ing and outgoing traffic from the ISP. The UGR16 dataset contains 142 features
and includes attack traffic (DoS, port scanning, and botnet) against fake victims
generated by 25 virtual machines that were deployed within the network.

We tested three versions of this dataset depending on whether the flows
in the dataset were unidirectional or bidirectional and whether the traffic was
anonymized during parsing or not (Tab. 5). The original dataset (V1) contains
unidirectional flows that were obtained from Netflow using the nfdump tool with-
out using the -B option which creates bidirectional flows and maintain proper or-
dering. After the V1 dataset was anonymized, we created two additional datasets:
V2 with the -B option enabled and V3 without this option. Additionally, V2 and
V3 datasets were devoid of features identifying Internet Relay Chat (IRC) flows
(Src IRC Port, Dst IRC Port) that were seen to have a deep impact in the detec-
tion of the botnet in the test data. After parsing, the datasets consisted of 12,960
observations containing flows aggregated at one-minute intervals (1006 observa-
tions with attack data). These datasets were highly imbalanced with prevalence
= 0.078.

Table 5: UGR16 dataset versions
Dataset Direction -B option Anonymization IRC

V1 unidirectional – – ✓
V2 bidirectional ✓ ✓ –
V3 unidirectional – ✓ –

The results of the UGR16 dataset quality assessment with our permutation-
based approach are shown in Fig. 3, Tab. 6, and Tab. 7. As you can see, the
original dataset (V1) is not perfect, and the high quality of the labeling is ques-
tionable. All ML techniques do not produce significant results for 1, 2, 5, and 10
permuted labels. Additionally, enabling option -B (V2) resulted in deterioration
of the quality of the dataset (the RF algorithm is an exception, although it also
has statistically insignificant results). It is also worth noting that anonymization
lowered the quality of the dataset which is surprising and should be investigated
in the future in more detail. True performance results are presented in Tab. 8.

(a) V1 (b) V2 (c) V3

Fig. 3: Permutation charts for the UGR16 datasets
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Table 6: p-value tables for the UGR16 datasets. P-values above significance level
0.01 are marked in red, lower p-values are replaced by dot.

V1 V2 V3

100 50 25 10 5 2 1 100 50 25 10 5 2 1 100 50 25 10 5 2 1

KNN . . .01 .07 .12 .13 .17 . .07 .30 .40 .50 .56 .54 . .04 .15 .28 .35 .46 .41
SVM . . . .15 .36 .53 .58 . .02 .04 .12 .18 .17 .22 . .01 .22 .62 .81 .86 .82
DT . . . .05 .18 .32 .37 .03 .26 .51 .63 .66 .70 .72 . . .12 .29 .42 .53 .52
RF . . . .08 .20 .24 .24 . . . .02 .04 .10 .04 . .03 .35 .64 .68 .77 .82
AB . . . .05 .21 .33 .35 .03 .09 .32 .41 .43 .54 .52 . .04 .22 .51 .54 .65 .65
XGB . . . .16 .48 .70 .64 . . .17 .57 .68 .78 .83 . . . .08 .20 .22 .29
MLP . . . .07 .15 .30 .31 .13 .55 .87 .96 .96 .99 .98 . .13 .41 .53 .58 .63 .58

Table 7: The slopes computed for the UGR16 datasets
V1 V2 V3

Slope 1.88207 AB 1.49998 MLP 1.48212 MLP

Table 8: UGR16 datasets - true performance results (recall)

V1 V2 V3

KNN 0.641 0.315 0.391
SVM 0.762 0.236 0.268
DT 0.917 0.565 0.753
RF 0.896 0.395 0.411
AB 0.916 0.575 0.746
XGB 0.926 0.807 0.903
MLP 0.923 0.62 0.778

6 Conclusions

Machine learning techniques require high-quality datasets. An effective method
for assessing the quality of a dataset helps understand how the quality of the
dataset affects the performance results and can be instrumental to solve problems
related to the degradation of the model performance after the move to produc-
tion. We believe that the dataset quality has to be addressed and assessed prior
to any ML application.

In our previous papers [8][32], we presented an effective method for the
dataset quality assessment based on the permutation testing. The technique
is based on well-known ML classifiers. In this paper, we investigated the limits
of detection of this methodology, that is, how sensitive is our method to small
quality problems in the dataset. For that purpose, we investigated deep permuta-
tions, that is, permutations of very small parts of the datasets. The theoretical
basis and the conducted experiments prove that the method is effective. It is
worth adding, however, that our method allows for the evaluation of a dataset,
but does not solve the problem of building a high-quality dataset.
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In future work, we aim to define the general slope metric more appropriate
for assessing every dataset, which will include the solution of the detection limit.
Also, we would like to leverage available metadata to describe Root Cause Analy-
sis (RCA) of quality decrease. Moreover, we plan to improve the implementation
of the proposed method to allow higher adoption in the community.
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