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Abstract: The use of machine learning techniques for the construction of predictive models of disease
outcomes (based on omics and other types of molecular data) has gained enormous relevance in
the last few years in the biomedical field. Nonetheless, the virtuosity of omics studies and machine
learning tools are subject to the proper application of algorithms as well as the appropriate pre-
processing and management of input omics and molecular data. Currently, many of the available
approaches that use machine learning on omics data for predictive purposes make mistakes in
several of the following key steps: experimental design, feature selection, data pre-processing,
and algorithm selection. For this reason, we propose the current work as a guideline on how to
confront the main challenges inherent to multi-omics human data. As such, a series of best practices
and recommendations are also presented for each of the steps defined. In particular, the main
particularities of each omics data layer, the most suitable preprocessing approaches for each source,
and a compilation of best practices and tips for the study of disease development prediction using
machine learning are described. Using examples of real data, we show how to address the key
problems mentioned in multi-omics research (e.g., biological heterogeneity, technical noise, high
dimensionality, presence of missing values, and class imbalance). Finally, we define the proposals for
model improvement based on the results found, which serve as the bases for future work.

Keywords: machine learning; omics; data pre-processing

1. Introduction

In recent years, the biomedical field has experienced a big data revolution. Since the
appearance of the first microarray technologies, the competencies of generating data and
extracting useful knowledge have increased exponentially. In fact, now we can perform a
whole range of molecular analyses on a genome-wide scale, generally referred to as omics
analyses. Omics technological advances have led to breakthroughs in our fundamental
understanding of cell biology: from our ability to identify alterations in the DNA sequence
via a genome-wide association study (GWAS), to the study of gene expression levels by
means of RNAseq experiments, or the possibility of studying environmentally inducible
chemical DNA modifications with an epigenome-wide association study (EWAS). Similarly,
omics studies are generating very positive insights into improving our knowledge of clinical
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treatments and managing multi-factorial and complex diseases. One of the most promising
clinical applications of omics technologies has been the generation of predictive biomarker
panels for personalized estimations of disease risk and the consequent implementation
of stratified clinical guidelines. In this regard, omics technologies have taken further
advantage of the recent advances in the machine learning (ML) field. ML is a research
branch of artificial intelligence that has experienced a notable boost due to its ability
to automatically generate predictive and descriptive models from massive amounts of
data. Within the context of predictive modeling, increasingly sophisticated ML algorithms
have become available; highlighting ensemble modeling or the recent revolution of deep
learning [1]. We can highlight some promising examples of biomedical applications of ML
models, such as predicting the glycemic response from food intake [2] or the response to
treatment in breast cancer patients [3]. In addition, massive omics data generation has been
used with ML tools to reconstruct the 3D structure of the genome, model chromatin state,
identify genes/regulatory elements, predict the relationship between promoters/enhancers
and gene expression, predict transcription factor binding sites, predict protein–protein
interactions, stratify metabolic phenotypes, and diagnose/classify different diseases [4].
However, experts in omics data analysis are often unaware of the assumptions behind
machine learning models violating some of them. For this, it is relevant to avoid pitfalls
in biological studies, such as not differentiating training/test data, not including the
confounding variables in the model, and not treating class imbalance. These pitfalls
are described in more detail elsewhere [5]. Regardless of the aforementioned potential
applications and benefits that the fields of omics and ML yield, the main Herculean task is
to translate these promises into tangible predictive models in daily clinical practice [6].

Most of the challenges encountered are related to the implementation of accurate
and reliable analytic pipelines, which are aggravated by the shortage of suitably trained
professionals to perform such complex data analysis tasks. This is mainly due to the
complex nature of omics data, with huge variations across platforms, different needs
for pre-processing steps, intense heterogeneity within and between human subjects, and
the ubiquitous problem of high-dimensionality and low sample size settings. Predictive
modeling is severely affected by high dimensionality due to what is known as the curse of
the dimensionality problem. Some advanced pre-processing methods for feature selection,
such as ridge regression, lasso, and elastic-net, have been used to improve the performances
of ML models. Research shows that these techniques, despite their great potential, are not
recommended for use with low data sample sizes because they cause overfitting [7,8]. In this
sense, the principal component analysis (PCA) is used in several studies, but its use could
involve a loss of interpretability and/or biological meaninglessness. Other techniques,
such as filters and wrappers, can be valid solutions as long as they are accompanied by
validation to confirm the biological sense. This scenario encourages the creation of new
feature selection methods for omics data with very low sample sizes. In this paper, we
proposed the realization of feature selection based on human expert knowledge with as
much biological sense as possible. Once non-sense features are eliminated, automatic
feature selection is perfectly handled by the applied ML method, since all of them are
well-known and recognized algorithms, including feature selection as an important part of
their learning process [9].

The selection of the most suitable pre-processing pipeline for each omics layer and the
choice of the most appropriate ML model are critical steps that must take place considering
the particularities of human datasets and depending on the purpose of each predictive
modeling tool. This problem increases if we take into account the need to create inter-
pretable models. To address this need, the recent explainable artificial intelligence (XAI)
revolution has emerged, which recommends the use of transparent models that are easily
understood by human users or the use of post hoc mechanisms that provide comprehensi-
bility to models that are not understandable by scientists, which is especially relevant for
medical applications [10]. In the present paper, we reviewed some of the particularities
that make predictive modeling with multi-omics data a challenging task and propose
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adequate solutions that are currently employed in ML-omics research. In order to illustrate
the process, we present a case study based on the generation of a predictive ML model
following a longitudinal design in children with obesity and metabolic dysfunction. In this
population, a series of multi-omics data layers (GWAS and EWAS), as well as biochemical
and clinical variables, were available at the pre-pubertal stage. In addition, the metabolic
status reached by each child at the pubertal stage was determined by the presence of insulin
resistance (IR). The main objective of the contribution was the construction of a robust ML
predictive model capable of predicting the IR status of each child by analyzing multi-omics
and biochemical pre-pubertal data. In this paper, we describe the main challenges faced by
omics ML predictive modeling and propose specific data pre-processing guidelines and
different analytical solutions to these challenges. Furthermore, we described the rationale
and recommendations that should guide the selection of an ML algorithm and experimental
design using a case study of childhood obesity as an example [9].

2. Materials and Methods
2.1. Description of Case Study Population and Data

The PUBMEP (“PUBberty and Metabolic risk in obese children. Epigenetic alterations
and Pathophysiological and diagnostic implications”) project is a longitudinal research
study in which children with and without obesity are followed from pre-puberty to pu-
berty evaluating the prevalence of metabolic syndrome and the progression of related
cardiometabolic risk factors. In this population, a series of multi-omics analyses were
conducted with the aim of discovering new and promising blood molecular biomarkers of
IR during the metabolically critical period of puberty (see Figure 1) [11].

IR is one of the metabolic alterations derived from obesity that appears the earliest in
patients. If not properly addressed, IR finally results in the development of more severe
diseases, such as cardiovascular disease or type II diabetes. For this reason, IR has become
a cornerstone in preventing obesity-associated morbimortality. In the PUBMEP study,
90 Spanish children (47 females) were allocated into two experimental groups according
to their IR status (IR or non-IR) after the onset of puberty (see Figure 1). The number of
children with respective gender distribution in each group can be found in Figure 1. In
this population, as mentioned in the introduction, pre-pubertal (T0) data (GWAS, EWAS,
clinical, anthropometric, and biochemistry) were employed as predictors for the IR status at
the pubertal stage (T1). For this purpose, several pre-processing steps and ML models were
implemented as detailed below. In the current paper, datasets were divided into GWAS,
EWAS, and biochemistry (which also incorporated data from anthropometry and clinical
history). Children from the PUBMEP project were recruited in three different Spanish
cities: Santiago de Compostela, Zaragoza, and Córdoba. As detailed below, the recruitment
origin was considered a substantial source of confounding, and was, therefore, taken into
account during the analyses. An extensive description of the PUBMEP project can be found
elsewhere [11].

2.2. Data Pre-Processing Guidelines and Analytical Assessment of ML Predictive Models
2.2.1. GWAS Data

Genomic data were generated by the sequencing of blood samples using a bead
chip called Infinium Global Screening-24-v3.0. This technology allowed us to measure
651,563 single nucleotide polymorphisms (SNPs) with a small percentage of missing values.
Genotype imputation was performed using the Minimac 4 method from the haplotype
reference consortium (HRC) reference (GRCh37/hg19 genomic annotation) panel using the
Michigan imputation server [12]. On this server, an automated quality control analysis was
performed prior to imputation. The exclusion criteria for this initial quality control were the
standard criteria defined by this software: low allelic frequency (less than 0.2); low call rate
(less than 0.95); and repeated variants or without information. Once our genomic data were
imputed, a second quality control analysis was performed with PLINK 1.9 software [13].
The second quality control exclusion criteria were: low imputation quality (R2 < 0.9);
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variants that did not meet the Hardy–Weinberg equilibrium (HWE− P > 10−6); and low
minor allele frequency (MAF < 0.01) [14].

LONGITUDINAL APPROACH in a Spanish Cohort  (N=98, ♁ 45♀53)

Normal-weight

Overweight and obese

non-IR

non-IR

IR

non-IR

non-IR

IR

non-IR
N=64

♁ 34♀30

IR
N=26

♁ 9♀17

Pre-puberty stage 
(baseline) Puberty stage (follow-up)

Figure 1. Summary of the PUBMEP project.

The underlying bases of the inheritance of diseases were not always the same (e.g., au-
tosomal dominant, recessive, or co-dominant); this has direct effects on the way we repre-
sent data and construct predictive ML models. In the case of obesity, as mentioned in the
previous section, we are dealing with a complex trait with a strong polygenic and additive
nature (the accumulation of many low-risk effects of SNPs is what constitutes a high-risk
profile). Considering this, GWAS data were encoded according to the additive model in this
paper. For this reason, we propose using a dosage format (raw) to perform the classification
task. A dosage format indicates the presence or absence of a risk or reference allele in a
SNP encoded with 0, 1, or 2. One advantage of its use is that it allows the use of numerical
genetic variables, making it suitable for the algorithm’s learning process [13,15].

Regarding feature selection prior to ML application, we selected a subset of 151 SNPs
from the entire array according to previous evidence in the literature. In particular, we
collected SNPs highlighted in the meta-analysis, since they are considered to be the studies
with the highest degrees of evidence, guaranteeing high statistical power to detect the
small effects that each SNP could exert on the phenotype. For this purpose, we performed
a literature and database search (GWAS and PGS catalog [accessed on 25 June 2022];
https://www.ebi.ac.uk/gwas/, https://www.pgscatalog.org/, [16,17]) and selected three
articles that performed meta-analyses on large populations of European descent [18–20].

β =
M

M + U
, (1)

M = log2(
M
U

), (2)

2.2.2. EWAS Data

EWAS data were generated using the Infinium MethylationEPIC 850K from blood
samples. To remove any source of technical variability, low-performing probes were
filtered out according to different criteria: probes with a detection p-value above 0.01 in
more than 10% of the samples, probes with SNPs, cross-reactive probes that aligned to
multiple locations, and probes located on the Y chromosome. Regarding normalization,
we applied Beta-Mixture Quantile (BMIQ) normalization, which affects only biased type
II probes, using the wateRmelon R package. The selection of this normalization method
was based on the fact that all samples under study were obtained from the same tissue
(blood) [21]. Regardless of the Illumina microarray version employed, for each CpG, there

https://www.ebi.ac.uk/gwas/
https://www.pgscatalog.org/
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are two measurements: a methylated intensity (denoted by M) and an unmethylated
intensity (denoted by U). These intensity values can be used to determine the proportion
of methylation at each CpG locus. Methylation levels are commonly reported as either β
values or M-values (see Equations (1) and (2); as well as Figure 2). A detailed comparison
of M-values and β values is available elsewhere [22]. Lastly, we obtained the β and M
values of 834,371 CpG sites.

Figure 2. Comparison between β and M values. This image was taken and modified from [23].

In this case, the feature-selection procedure consisted of the application of an agnostic
selection, a type of feature selection in which differentially methylated CpG sites associated
with IR were extracted genome-wide (hypothesis-free). This procedure was conducted in
an independent population study that had the same origins as our study population, with
some samples overlapping. The study population, which facilitated the agnostic selection,
was part of a study of 139 children (76 girls), including longitudinal and cross-sectional
approaches, and followed the same experimental design. More details about the selection
of these CpG sites can be found in reference [24]. The choice of performing an agnostic
selection for the phenotype of interest (IR) instead of relying on the literature findings in
GWAS data was motivated by the fact that epigenetics findings are strongly conditioned by
the characteristics and environmental exposures of each population. In this regard, having
an independent sample with the same characteristics as the current study cohort was a
better option than selecting CpG sites according to European population studies (among
which, child studies are scarce) [9].

2.2.3. Biochemistry, Anthropometrical, and Clinical Data

The last dataset is referenced as the biochemistry dataset; it involves the combination
of data of diverse origins as mentioned previously. This dataset consists of 48 input
variables related to the pubertal IR problem. The main problem with these data involved
the presence of missing values. The structures of missing data in our cohort were checked
(missing completely at random (MCAR), missing at random, missing not at random, and
structurally missing). Then, 14 biochemical variables with more than 5 missing values were
discarded in order to avoid introducing excessive noise into the data via imputation. We
revised several imputation methods, such as mean/median imputation, knn imputation,
bagged trees, Multiple imputations by chained equations (MICE) [25], and missForest [26].
We chose the missForest method for several reasons: it is a non-parametric method that can
impute continuous and categorical features, does not require tuning parameters because
of its robust performance, and does not require assumptions about the distribution of the
features. This method was used in the final 34 features via the missForest R package [26].
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2.3. Basis and Recommendations That Must Guide the Selection of a ML Algorithm and the
Experimental Design
2.3.1. Experimental Design

After completing individual pre-processing procedures, three different datasets (GWAS,
EWAS, and biochemistry) were obtained. Each dataset had 1 response variable with 2 dis-
tinct classes (IR and non-IR) out of 90 children. The input feature numbers (per dataset)
were 151, 267, and 34 for the GWAS, EWAS, and biochemistry data, respectively. A sum-
mary of the main characteristics of each dataset considered in this study, as well as the
number of variables fulfilling quality filters can be seen in Table 1.

Table 1. Summary table of the three different datasets considered in this study, showing the main
features considered in each pre-processing step.

GWAS EWAS Biochemistry

Initial variables 651,563 866,091 48

Variables with low quality or missing values 138,626 31,184 14
(21.27%) (3.60%) (15.2%)

% missing values after quality filtering 0% 0% 0.9%
Final number of variables 5,894,726 834,371 34
Final number of variables after feature selection 151 267 34

Although a promising approach would have involved the simultaneous modeling
of several omics layers together with biochemistry data, merging so much information
into a single model would also increase the problem of high dimensionality. Moreover, the
different nature of each dataset makes it essential to take a first look at the models con-
structed separately, in order to understand the amount of valuable information available in
each source. In this paper, as a preliminary approach, we propose generating independent
ML predictive models for each layer of data, leaving multi-omics modeling as a pending
task for future work. Our approach allowed us to extract predictive information from the
different biological layers and validate the most important variables for the IR problem
while avoiding overfitting [9].

One of the most important practices in the ML field is to train the algorithms on
a set of individuals differing from the set aimed to evaluate the model performance. If
it is not possible to access an independent population, then the training and test sets
must be selected iteratively from the same population through a process known as cross-
validation (CV). There are several types of CV: leave one out (LOOCV), Montecarlo CV,
Bootstrap, k-fold CV, and repeated k-fold CV. Generally, the default k-fold CV is preferred
because it presents the average estimations with the least possible errors. Choosing the
right validation methodology (according to the characteristics of the data) is the key to
preventing erroneous conclusions from the models [27].

Another important factor is that the learning process should be as homogeneous as
possible in each iteration. That is, the distribution of the variables and the proportion of
classes should be the same in the training and test sets for each iteration of the CV process.
In this paper, a stratified 5-fold CV, repeated 5 times, was used to evaluate the model
performance, adding up to a total of 25 executions. Research shows that this approach is
one of the best CV procedures to reduce the variability of average classification metrics in
low sample size designs. Although other CV methodologies such as LOOCV have also
been commonly used in the context of low sample sizes, we continue to recommend the
use of repeated k-fold cross-validation for similar studies where the sample size is low, as
this methodology has the lowest estimation error, offers a good bias-variance ratio, and is a
computationally affordable procedure [27,28].

As can be seen in Figure 1, the datasets from the case study present a severe class
imbalance that could lead to overfitting in terms of the majority and minority classes. With
this in mind, oversampling and undersampling techniques were tested on the training sets
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to “balance” the learning procedure while keeping the original samples and distributions
for the test sets. The resampling method employed was the default method from the R
package ’themis’ [29]. To confirm that learning occurs equally in both classes, it is necessary
to evaluate the performances of the models by looking at different classification metrics [30].

2.3.2. Selection of ML Algorithms and Classification Metrics

Another point of debate when constructing a predictive model is the choice of the ML
algorithm and the metrics to be used, which will be strongly conditioned by the objective to
be pursued. For example, looking for a model with high predictive ability, neural networks,
support vector machines, random forests, or boosted trees might be valuable options.
However, if a model is to be used in clinical practice, clinicians must understand how the
algorithm makes decisions due to the ethical issues underlying decision-making that may
have an impact on the patients’ lives. In such cases, we may opt for more interpretable
models, such as decision trees or other rule-based methods, avoiding the so-called black box
models, whose predictions lack understandable explanations of their underlying internal
mechanisms [31]. The need to find models that provide both good predictive performances
and explainability has recently increased the popularity of XAI, leading to the use of
comprehensive models or the development of techniques that provide explainability to
such models [10]. In this regard, techniques (e.g., the SHapley Additive Explanations
(SHAP) feature attribution framework) were developed to provide explainability to models
whose internal behaviors are not directly understandable due to their complexities [32,33].

In this study, we chose the well-known OneR [34], CART [35], and XGBoost [36]
algorithms for the purpose of showing the behaviors of various ML methods that provide
transparent classifiers over the different omics datasets, because it is essential for experts to
understand how the models make their predictions. OneR and CART generate transparent
classifiers based on a single-rule system and a simple decision tree, respectively, so the
experts can understand them directly due to their nature. On the other hand, XGBoost
generates an accurate ensemble-type classifier using gradient boosting. This classifier
has become very popular because of its ability to achieve good performance results on
structured data. However, this algorithm provides a black-box classifier based on a tree en-
semble, involving the need to use SHAP explanations to understand the generated model.

There are several metrics of interest when evaluating the performance of a model.
Metrics that consider classes separately, such as sensitivity or specificity, provide valuable
information about that class but should be complemented with other measures to obtain a
complete picture of the model’s behavior. Some performance indicators combine several
metrics in an effort to achieve a more comprehensive approach, such as G-mean—the
geometric mean of sensitivity and specificity—which provides an assessment of how well-
balanced the sensitivity and specificity values are. Balancing the accuracy between the
majority and minority classes is the key to avoiding underfitting the minority class while
overfitting the majority class. Of course, the metrics used to evaluate the model are strongly
conditioned by the problem being addressed, e.g., in cases where correctly predicting the
positive class is critical, we should focus more on sensitivity than specificity, or make use
of metrics that especially penalize failures in the prediction of the positive class, such as
G-mean and F1 [30].

All trained models are included in the caret [37] package (classification and regression
training) available for R [38] and the parameters were tuned in order to optimize the
model’s performance. F1, AUC, G-mean, accuracy, sensitivity, and specificity metrics were
considered to evaluate the models. Then, different models were trained for the GWAS,
EWAS, and biochemistry datasets using both the original (and imbalanced) datasets and
the balanced versions of the original datasets, after being undersampled via the nearmiss
method included in the themis package, after optimizing its neighbor’s parameter.
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2.3.3. SHAP Explanations

One of the drawbacks to using complex but powerful methods, such as XGBoost, lies
in the fact that its behavior is difficult for humans to understand. SHAP helps to understand
the mechanisms behind its decisions, using the concept of the Shapely value, which goes
back to game theory and can help to understand every single decision made by the model
by assigning an attribution to each variable, the sum of which equals the model output for
that specific instance. We can think of our model as a game in which every variable plays
a role to obtain the model’s output, which can be computed as the sum of the individual
attribution (with sign and magnitude) of each variable.

We also use SHAP to compute the overall importance of each variable considering
the whole dataset, so that we can obtain a global idea of the role in the insulin resistance
mechanism. Equation (3) shows how Ij, the importance for any predictor j, can be calculated

as the mean of the absolute Shapley value of variable j for every sample i, denoted by |φ(i)
j |.

Ij =
1
n

n

∑
i=1
|φ(i)

j | (3)

3. Results

In this study, we illustrated how to face the main challenges related to ML prediction
in the multi-omics analysis, using a case study on childhood obesity. Our multi-omics
dataset is composed of data from GWAS, EWAS, and biochemistry. From the GWAS,
we initially had 651,563 SNPs that were matched to HRC, subjected to the initial quality
control, imputed in the Michigan Imputation Server, and subjected to a final quality control
analysis. The remaining 5,894,726 SNPs fulfilled the eligibility criteria. Then, a feature
selection of SNPs was performed before the ML application in order to select a subset of the
total 151 SNPs, of which there was prior knowledge about their association with obesity.
Consequently, the EWAS dataset was also subjected to quality control, resulting in the
elimination of 56,478 low-performing probes and the remaining 834,371 CpG sites. Next,
the feature-selection procedure was applied based on an agnostic selection and we selected
a final number of 267 CpG sites.

When we addressed the class imbalance, the quality of all classifiers improved, as
shown in Table 2. Furthermore, the classifiers that used the biochemical data layer obtained
the best results, followed by those generated with the EWAS and GWAS datasets, respec-
tively. It is worth noting that the XGBoost classifiers achieved the highest values of the
G-mean metric, presenting robust performances on all datasets (0.60, 0.62, 0.64).

Given these results, our next step is to uncover the mechanisms behind the XGBoost
model trained with the biochemistry dataset by undersampling the majority class. We
used SHAP to uncover the mechanisms behind classifier predictions using the XGBoost
algorithm, which performed slightly better in the distinct omics layer showing robust
behavior. From the three possible models, we chose the one that showed the best average
result, taking into account the accuracies in both classes (as can be reflected in the values of
the G-mean measure). Figure 3 illustrates the top 20 variables for the biochemistry dataset
ranked according to their relevance in the model’s output. Each dot represents the impact
on the model’s output for a specific dataset attribute and sample. Our model generates
an output between 0 (no-IR) and 1 (IR), and intermediate values are rounded to 0 or 1,
so that positive SHAP values can be interpreted as pushing the model toward predicting
IR while negative values push in the opposite direction. Taking this into account, we can
determine what weight (positive or negative) attribute the dataset has in the final output of
the algorithm. The dotted colors also provide useful information: red dots indicate high
values for that attribute and blue colors mean the values are low. Interestingly, the vertical
axis of the SHAP zero value usually separates the red and blue colors, which suggests
that, depending on the attribute, high values push the algorithm toward making a decision
while blue dots do the opposite.
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Table 2. Classification metrics obtained using OneR, CART, and XGBoost classifiers with/without
undersampling in the different training sets.

OneR Datasets Datasets (Undersampling)

Metrics GWAS EWAS Biochem. GWAS EWAS Biochem.

G-mean 0.27 0.44 0.46 0.40 0.44 0.67
AUC 0.48 0.51 0.54 0.42 0.44 0.67
F1 0.78 0.73 0.78 0.48 0.43 0.66
Accuracy 0.65 0.62 0.67 0.42 0.44 0.67
Sensitivity 0.88 0.76 0.83 0.55 0.45 0.62
Specificity 0.08 0.26 0.25 0.29 0.42 0.73

CART datasets datasets (undersampling)

Metrics GWAS EWAS Biochem. GWAS EWAS Biochem.

G-mean 0.00 0.44 0.09 0.41 0.52 0.66
AUC 0.50 0.52 0.49 0.47 0.53 0.67
F1 0.83 0.75 0.82 0.55 0.52 0.62
Accuracy 0.71 0.63 0.69 0.47 0.51 0.67
Sensitivity 1.00 0.79 0.97 0.70 0.55 0.58
Specificity 0.00 0.24 0.01 0.23 0.48 0.76

XGBoost datasets datasets (undersampling)

Metrics GWAS EWAS Biochem. GWAS EWAS Biochem.

G-mean 0.53 0.48 0.44 0.60 0.62 0.64
AUC 0.65 0.67 0.59 0.65 0.70 0.66
F1 0.79 0.82 0.74 0.59 0.59 0.64
Accuracy 0.69 0.72 0.62 0.60 0.62 0.64
Sensitivity 0.82 0.91 0.77 0.61 0.59 0.62
Specificity 0.35 0.25 0.25 0.59 0.64 0.66

Next, we will move from a general vision of the dataset to a more specific one. Figure 4
shows the influence of the most important attributes for a particular individual. The
classifier score was 0.83, which means that it is predicted as IR because some validated
attributes, such as the leptin/adiponectin ratio, creatinine (mg/dL), and HDL (mg/dL)
are key in pushing the algorithm toward that decision, while MPO (µg/L) and QUICKI
reduced the risk of IR. The base value represents the mean of the predictions for the whole
dataset and is the starting point from which the attributions of the different predictors are
added or subtracted.
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Figure 3. SHAP dot plot. The 20 most important attributes of the biochemistry datasets are displayed
according to their overall importance. Each dot represents the value of a sample for a given attribute,
and its SHAP value is its contribution to the model’s output for a specific sample. Dot colors indicate
if the value of the sample for the attribute is high (red) or low (blue).
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Figure 4. SHAP plot for a specific sample. This plot shows how the classifier output (0.83) is
calculated from the different attributions (positive or negative) of the different predictors. Only the
most important attributes are labeled for clarity.
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4. Discussion
4.1. Main Challenges That Are Usually Faced in Omics ML Predictive Modeling

Human research faces a range of difficulties (e.g., patient recruitment; access to inva-
sive biopsies and high costs), which directly result in studies with relatively low sample
sizes. This issue is evident in the context of omics data, where there are millions of vari-
ables measured that massively increase the rate of false-positive discoveries (i.e., the curse
of dimensionality). In the context of ML predictive modeling, low sample sizes and a
huge search space have direct effects on the performances of the models built with omics
data, leading to increases in computational burden and overfitting. For these reasons, it
is essential to perform feature-selection steps prior to model training. There are several
ways to perform feature selection, and choosing which features to use depends on the
characteristics of the data and the research problems to be evaluated. Another common
challenge in human research is the high presence of unbalanced designs in which one class
is over-represented in relation to the other. This often occurs in a setting where the disease
under study is not frequent and the recruitment of patients is complicated. As is often the
case with low sample sizes and high-dimensionality problems, the class imbalance directly
affects the ML predictive models by inducing overfitting. Multiple solutions have been
proposed to face this problem (e.g., undersampling and oversampling) depending on the
characteristics of the samples under consideration. In our case study, we demonstrated
that the undersampling solution is one of the most recommended for most human contexts
since it avoids introducing additional noise into the data. Another issue of importance
when dealing with human data is the strong variability that exists between subjects. To
address this, the development of accurate and valid experimental designs that minimize
sources of bias (such as the randomization of subjects, the gender and age balance between
recruitment centers, and the control of the batch effects) is of utmost importance. Moreover,
the validation of findings in an external population to ensure the reliability of predictive
models is essential. To this end, in cases where it is not possible to recruit additional
patients, several iterative validation solutions based on cross-validation methodologies are
available [27].

Several particularities should be highlighted when focusing on the characteristics of
omics data. This is due to the need to apply different preprocessing procedures for each
molecular layer, which is inherent to each platform. In all omics analyses, there is some
background noise or an unwanted source of variability that is associated with technical
laboratory procedures. This heterogeneity is, therefore, not related to the biological issue
being studied and must be removed from the analysis. Background noise due to technical
procedures usually differs not only between different types of omics but also between the
different technological platforms normally employed for the analysis of the omics (i.e., intra-
and inter-omics variability).

GWAS refers to any observational study of a genome-wide set of genetic variants
or SNPs in different individuals to see if any variant is associated with a trait. GWASs
are evaluated using microarrays and are subject to several problems: erroneous genotype
call assignments due to poor quality DNA samples, poor DNA hybridization to the array,
poorly performing genotype probes, and sample mix-ups or contamination. Although
currently available GWAS platforms map many SNPs (500,000 SNPs), there are still many
unmeasured variants of interest for disease prediction that could be imputed using ap-
propriate procedures [15]. In order to deal with these and other problems, quality control
filters are usually applied in GWAS research (e.g., assessing the absence of SNPs and
individuals, evaluating sex discrepancies according to sex chromosomes, filtering using
minor allele frequencies, controlling Hardy–Weinberg equilibrium, heterozygosity, and
population stratification). Another particularity involving genomics data is the existence of
a linkage between SNPs, which means that some groups of SNPs are inherited in blocks
(i.e., their minor alleles are inherited as a complete allelic phase). These SNPs are redundant
for predictive purposes and a previous pruning step must be performed before passing
GWAS data to a ML model [14].
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In EWASs, the DNA methylation (DNAm) status across the whole genome is inter-
rogated at the CpG level. For each molecule of DNA in a single cell, DNAm is a binary
entity, in that at any cytosine it is either present or absent. However, as DNAm studies
profile either bulk tissues—comprising multiple cell types—or a population of purified cells,
DNAm measurements for CpGs are always reported as continuous values representing the
proportion of methylated CpGs for the DNA position. Methylation levels are commonly
reported as either β values or M-values (see Equations (1) and (2); as well as Figure 2).
M-values have more robust statistical properties, and for that reason, they are preferred in
ML tasks to β values, which have better biological interpretations and are often used to
visualize data. A detailed comparison of M-values and β values is available elsewhere [22].

As with GWAS, EWAS data are also subject to many sources of unwanted variability,
some of them are derived from the microarray nature of the analytical platforms, detection
errors, the existence of cross-reactive probes, the need for special treatment of probes
located on sex chromosomes, or the need to normalize raw fluorescence intensity signal
data to address within-subject and between-subject variabilities. Regarding normalization
processes, although there is no single method that is universally considered best, the func-
tional normalization method is the most appropriate for datasets with overall differences
in methylation between different tissue types [39], and the BMIQ method is considered
a golden standard for dealing with datasets where large differences in terms of DNAm
between samples are not expected (e.g., when all samples derive from the same tissue) [21].

The fact that EWASs analyze a mixture of cells in a tissue is an important issue as,
in some cases, tissues are infiltrated by other cell types or are so heterogeneous that they
might confound the findings. In blood sample types, which are most commonly analyzed
in EWAS, there is an important part of variability that comes from the proportions of white
cells present in each individual. Therefore, and especially when dealing with diseases
with inflammatory components, as with obesity, it is extremely important to correct the
findings for the proportion of white cell types presented by each subject, as it might affect
the DNAm findings and, thereby, confound the effects of DNAm on the disease. This is
usually resolved in EWAS using the Houseman procedure, which deduces the proportion
of white cell types in each subject. Then, the estimated proportions can be included as
confounding variables in the models [40].

Beyond the aforementioned technical sources of variabilities associated with each
technology, there are also other particularities that affect data pre-processing and that are
of particular importance when one wants to predict an outcome. With regard to GWAS
data, it is a fact that certain diseases present strong polygenetic architectures; many genes
are involved in the development and progression of the disease. Associated genes often
have small individual effects on the phenotype, so the accumulation of many small-effect
variants constitutes a susceptibility profile. In EWASs, environmental confounders can
strongly affect epigenetic patterns. For this reason, it is well-known that the findings from
one study population cannot be easily extrapolated to another population [9].

4.2. Analysis of ML Results and Insights from the Case Study

In our study, the above considerations were extrapolated to a practical scenario aimed
at analyzing the predictive ability of ML models in the development of insulin resistance in
children. From the ML prediction models generated with the OneR, CART, and XGBoost
algorithms, the following two conclusions can be drawn:

• Models trained using the imbalanced datasets show better sensitivity at the expense
of very poor specificity, while datasets balanced during the training stage provide
more consistent values for both metrics and greater generalizability to unseen data of
any kind.

• When the training dataset is balanced, the biochemistry dataset provides the best
results in terms of F1, G-mean, accuracy, sensitivity, and specificity, followed by EWAS
and GWAS; this leads us to conclude that combining biochemistry and EWAS datasets
may be a promising strategy to improve these results. As Table 2 shows, the classifiers
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generated by OneR and CART obtain slightly higher values for the metrics analyzed on
the biochemical datasets. However, XGBoost obtains similar results for the omics and
higher values for the other two omics, presenting robust behavior in all of them [36].

When studying GWAS data, and looking at the accuracy, one might think that these
models classify well, but this is only true for the majority class. This is relevant because the
objective of our case study was the exact opposite—to predict the minority class correctly.
Despite using undersampling methods to avoid overfitting in this case, it can be observed
that the classifiers constructed on GWAS data were no better than randomly assigning
individuals to one class or another (area under the Roc curve or AUC ≈ 0.65). In relation to
the results obtained, GWAS data did not contain useful information patterns for predictive
tasks. Among other reasons, this could be attributed to the complex genetic architecture of
obesity traits and the additive effects of SNPs on disease risk since there are thousands of
SNPs, with small risk effects on the phenotype, which constitute a high susceptibility profile.
Finally, looking at Table 2, we can conclude that the use of undersampling successfully
reduced overfitting in the EWAS and biochemistry datasets.

The biochemical dataset, therefore, provided the patterns with the most useful predic-
tive information, achieving the best values in most of the metrics. The results obtained for
the biochemical dataset are not surprising since it included phenotypic, anthropometric,
and clinical variables with direct implications in the development of obesity (e.g., BMI
z-score, or waist circumference), which are currently used in daily clinical practices to
estimate the risk of metabolic syndrome in children with obesity. Moreover, through a
detailed study of attributes of the biochemistry-balanced ML model, we were able to
demonstrate that those with the highest IR predictive abilities (e.g., leptin/adiponectin
ratio) were strongly related to the presence of obesity. In fact, the regulation of leptin
levels is one of the key factors of the disease, given its implications in the development of
obesity-associated comorbidities, such as non-alcoholic fatty liver disease (NAFLD) [41,42].

In future work, other ways of encoding omics data, such as genetic, methylation,
or metabolic risk scores (polygenetic risk score) should be explored. In particular, the
way we select the input SNPs, and how we pass that information to the ML model are
very important in genetics. As we previously mentioned, obesity and other complex traits
involve a complex polygenetic architecture and it has been demonstrated that directly using
individual SNPs is not the best tool for predictive purposes. Otherwise, risk scores (which
could also be extended to EWAS and environmental data) are powerful tools to account for
the complex structures of omics data and how to best predict long-term outcomes. With
risk scores, we gather information for thousands of SNPs (or variables), thus reducing
the problem of dimensionality while modeling the complex structures of omics. Similarly,
performing appropriate feature selections on omics data that have small sample sizes is
an unsolved task in the omics ML field. For this reason, some multivariate methods could
be tested by checking their promising abilities in order to deal with omics data to reduce
their high dimensionality. Another crucial issue to consider according to our results is
the integration of multi-omics data with biochemical and clinical data in a single model.
Despite this, such combination procedures are not always as straightforward as combining
all data into the same model [27].

5. Conclusions

In this paper, we illustrated how to face the main challenges encountered when
constructing ML predictive models with multi-omics human data. The main topics covered
in this paper were as follows: a description of the main particularities of the omics data
layers, the most appropriate pre-processing approaches for each source, and a collection of
the best practices and tips for applying ML to these kinds of data for predictive purposes.
By exemplifying the generation of predictive models using real data, we showed some
of the key issues that need to be addressed in this kind of research (e.g., technical noise,
biological heterogeneity, class imbalance, high dimensionality, and the presence of missing
values). This paper presents a collection of the best practices and guidelines that could
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be extrapolated to other human diseases with complex bases (e.g., obesity). We lay the
groundwork for future work by incorporating some proposals to improve the models,
advocating that they are necessary according to the insights encountered.
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