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Abstract

A method to extract a fuzzy rule based system from a trained artificial neural network for clas-
sification is presented. The fuzzy system obtained is equivalent to the corresponding neural network.
In the antecedents of the fuzzy rules, it uses the similarity between the input datum and the weight
vectors. This implies rules highly understandable. Thus, both the fuzzy system and a simple analysis
of the weight vectors are enough to discern the hidden knowledge learnt by the neural network. Sev-
eral classification problems are presented to illustrate this method of knowledge discovery by using
artificial neural networks.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Artificial neural networks (ANNs) [1–3] are learning models that have been successfully
used in many areas such as automatic control, weather forecasting, etc. However, they are
black boxes and consequently, it is very difficult to understand how an ANN has solved a
problem. There are a comprehensive literature about the extraction of knowledge from
learning models based on black boxes [4–14].
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The principle of Zadeh’s incompatibility [15] established ‘‘the complexity of a system and

the precision with which it can be analyzed bear a roughly inverse relation to one another’’.
This principle can be applied to the ANNs . They are systems with high complexity which
can achieve a good approximation to the solution of a problem. However, it is very diffi-
cult to analyze their performance. According to this principle, the methods to understand
the action carried out by a trained ANN can be included in one of the two following
groups:

• To obtain a comprehensible system that approximates the behavior of the ANN (more
comprehension! less complexity! less accuracy). In this case, any rule extraction
method in [5,9–12] can be used.

• To describe the exact action of the ANN as understandably as possible (same complex-
ity! same accuracy! same comprehension, but with other words). In this case, the
methods presented in [6,8,13,14] can be used.

In [14] a fuzzy rule based system (FRBS) with 2m fuzzy rules, where m is the number of
hidden neurons, equivalent to an ANN is presented. This fact involves that the FRBS
obtained is very complex. Therefore it is very difficult to discern knowledge from it.
On the other hand, the FRBS presented in this work is also equivalent to the correspond-
ing ANN and it has only 2 rules with straightforward antecedents.

Other equivalent FRBS is proposed in [6,13]. It has m fuzzy rules, where m is also the
number of hidden neurons of the ANN. The antecedents of these rules use the same
inputs which are used in the ANN. Therefore, each antecedent has n fuzzy propositions
aggregated with the i-or operator. Thus, the FRBS has m · n propositions. This number
of propositions makes the comprehension of the fuzzy system complex. In this paper, the
method proposed obtains antecedents with only m fuzzy propositions. Hence, the num-
ber of propositions in the fuzzy system is equal to 2 · m. This reduced number makes the
extraction of knowledge from the FRBS easier.

The interested reader can find out a survey of several rule extraction methods in [16–18].
The approach which is proposal here, is able to extract a FRBS from an ANN that carries
out classification. This FRBS has the following features:

• The fuzzy rules express exactly the input–output mapping of the ANN. Thus, a more
comprehensible description of the ANN action is achieved.

• Their inputs are the similarity between the input vector and the weight vectors of the
ANN. Thus, the FRBS only contains 2 rules with m propositions in each antecedent.
This implies that the FRBS is very simple. Therefore, it is easy to examine the ANN
behavior by studying the FRBS.

Later, the weight vectors are analyzed to inspect the influence of each input variable on
the classification performed by the network. Thereby, the knowledge which is learnt by the
network can be understood.

The paper is structured as follows. The initial sections introduce several concepts
which are necessary to describe our proposal, in particular: ANNs for classification,
TSK FRBSs and Uninorm operators. After that, the equivalence between ANNs and
TSK FRBSs is shown. Next, a method to extract understandable fuzzy rules from ANNs
is presented. Finally, some classification problems are used to illustrate the extraction
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method proposed in this paper. Proofs of results presented throughout the paper are
found in Appendix A.

2. Artificial neural networks for classification

Multilayer feedforward ANNs for binary classification are the most common and
general model of neural nets, hence they are studied in this work. A standard network
is illustrated in Fig. 1.

Let us suppose that the net has n � 1 input values xinitial = (x1, . . . ,xn�1) and m neurons
in its only hidden layer. The output provided by the ANN is:

hðxinitialÞ ¼
Xm

j¼1

vj � Sigm
Xn�1

i¼1

xi � wij þ 1 � wnj

 !
þ b; ð1Þ

where wnj is the bias of the hidden neuron j, b is the bias of the output neuron and Sigm(x)
is the Sigmoid activation function defined as

Sigm : R! ð0; 1Þ

x 7! SigmðxÞ ¼ 1

1þ e�x
:

To carry out the binary classification (output equal to 1 or �1) the sign function is used,
which is defined as follows:

sgnðhðxinitialÞÞ ¼
1 if hðxinitialÞ >¼ 0;

�1 elsewhere:

�

On the other hand, the initial input vector xinitial is transformed into x = (xinitial, 1) when
the bias input is overlapped. By doing so, the former expression

Pn�1
i¼1 xi � wij þ 1 � wnj in the

output of an ANN isXn

i¼1

xi � wij ¼ hx;wji; ð2Þ
Fig. 1. Multilayer neural network for binary classification.
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where xn = 1, x is the new input vector, wj is the weight vector of the hidden neuron j and
h,i is the typical inner product in Rn. By substituting the Eq. (2) in (1), the ANN output is
the following:

hðxÞ ¼
Xm

j¼1

vj � Sigm
Xn

i¼1

xi � wij

 !
þ b ¼

Xm

j¼1

vj � Sigmðhx;wjiÞ þ b: ð3Þ

Finally, every input vector x0 is normalized to have unit length (kxk = 1), that is:

x ¼ x0
1

kx0k ; . . . ;
x0

n�1

kx0k ;
x0

n

kx0k

� �
:

Hence,

hx;wji ¼ kxk � kwjk � cosðx;wjÞ ¼ kwjk � cos aj;

where aj is the angle between the input vector x and the weight vector wj. The cosine func-
tion is a similarity angular measure. For instance, this measure is widely used in areas as
important as information retrieval [19].

The normalization applied to the input vectors avoids to collapse two vectors having
the same direction but different magnitude, because the bias value equal to 1 is inserted
into the vector xinitial [20].

3. TSK fuzzy rule based systems

Takagi–Sugeno–Kang fuzzy rule based systems (TSK FRBSs) [21] usually have the
following structure:

Rk : if X 1 is A1 � . . . � X n is An; then Y k ¼ p0 þ � � � þ pn � X n;

where Xi are the system input variables, Ai are labels with associated fuzzy sets and Y is the
output variable. The output Y of a FRBS with m TSK rules is computed as the weighted
average of the individual rule outputs Yi (i = 1, . . . ,m) as follows:

Y ¼
Pm

i¼1Y i � giPm
i¼1gi

;

where gi = T(A1(x1),. . .,An(xn)) is the matching degree between the antecedent part of the
rule and the current system inputs, T is usually a t-norm and x = (x1,x2,. . .,xn) is the sys-
tem input.

This kind of fuzzy system will be used in the implementation of the FRBS which is pro-
posed in this paper. The fuzzy rules will be implemented by using the operator T like an
uninorm [22,23] and the THEN-part only contains the term p0.
4. Uninorms

Typically, fuzzy sets are combined using t-norms (fuzzy intersection, and connective) or
t-conorms (fuzzy union, or connective) [24,25]. When these operators are used, no com-
pensation between small and large degrees of membership takes place [26–28].
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T-norms do not allow low values to be compensated by high values, and t-conorms do
not allow high values to be compensated by low values [23]. To describe this fact, we sup-
pose the following example:

‘‘We have evaluated n features of a car (security, comfort, acceleration, . . .). We have
obtained n values xi 2 [0,1]. Each value indicates the quality of a feature (0 is bad quality
— 0.5 neuter quality — 1 is good quality). We need to aggregate these values xi to obtain a
global value y 2 [0,1] about the car quality.’’

If we use a t-norm (x1AND . . .ANDxn) to aggregate the features of the car, only one
low value will produce a low final conclusion about the car quality, regardless of the rest
of the features were good (high values).

In the same way, if we use a t-conorm (x1OR . . .ORxn), a single high value will yield a
high final conclusion. Notwithstanding the remainder of the features were bad (low
values).

To solve this problem that arises when several degrees of membership are aggregated in
some real situations, the uninorm operators were defined. Formally, an uninorm is a
function

U : ½0; 1� � ½0; 1� ! ½0; 1�
that has the following properties:

• commutativity,
• monotonicity (increasing),
• associativity and
• an neuter element e 2 [0,1].

The most interesting property of the uninorms is its different behavior on particular
subdomains (see Fig. 2). The uninorms behave as a t-norm on the interval ([0,e] · [0,e]),
as a t-conorm on ([e,1] · [e,1]) and they have a compensation behavior on ([0,e[·]e,1]¨]
e,1] · [0,e[). When the uninorm operators are used to aggregate: (A) two small degrees
of membership, then they are scaled down, (B) two large degrees, then they are graded
Fig. 2. Behavior of the uninorm operators.
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up and (C) finally, some compensation takes place if small and large degrees are aggre-
gated [27].

This behavior is coherent with some real situations. For example, if we aggregate the n

values xi about the car quality with an uninorm, the following reasoning can be carried out:

• The car shortcomings (xi 2 [0,0.5[) are aggregated with a t-norm, obtaining only one
low value yshortcomings.

• The advantages of the car (xi 2 ]0.5,1]) are aggregated with a t-conorm, obtaining only
one high value yadvantages.

• The neuter features (xi = 0.5) do not influence on the conclusion.
• Finally, a compensation between shortcomings (yshortcomings 2 [0,0.5[) and advantages

(yadvantages 2 ]0.5,1]) of the car is made. In this way, a final value y is obtained.

A particular uninorm is the symmetric sum [29] defined as follows:

a � b ¼ a � b
a � bþ ð1� aÞ � ð1� bÞ :

Its domain is the unit square with the exception of the two points (0,1) and (1,0). The neu-
ter element of this operator is 0.5 (e = 0.5).

As illustrative example, the symmetric sum has the following behavior when combining
the values a,b 2 ]0.0,0.5[, v,d 2 ]0.5,1.0[ and e = 0.5: where:
• The AND operator acts on ]0,0.5[ like a t-norm with neuter element equal to 0.5 instead
of 1.0.

• The OR operator acts on ]0.5,1.0[ like a t-conorm with neuter element equal to 0.5
instead of 0.0.

• The �� operator carries out a compensation between a low value

g ¼ ða AND bÞ; g 2�0:0; 0:5½

and a high value

u ¼ ðv OR dÞ; u 2�0:5; 1:0½;

that is:

– (g �� u) is lower than 0.5 if ‘‘(0.5 � g) > (u � 0.5)’’.
– (g �� u) is greater than 0.5 if ‘‘(0.5 � g) < (u � 0.5)’’.
– (g �� u) is equal to 0.5 if ‘‘(0.5 � g) = (u � 0.5)’’.
The symmetric sum operator will be used to aggregate the fuzzy propositions in the
antecedents of the rules obtained from ANNs.
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5. ANNs for classification are fuzzy rule based systems

Let be a trained ANN to solve a binary classification problem. Let us suppose the
weights wij, vj and the bias b are constants after the training of the network. We have
the following decision function:

f ðxÞ ¼ sgnðhðxÞÞ
where

hðxÞ ¼
Xm

j¼1

vj � Sigm
Xn

i¼1

xi � wij

 !
þ b ¼

Xm

j¼1

vj � Sigmðhx;wjiÞ þ b:
Theorem 1. Let be an ANN with the following decision function:

f ðxÞ ¼ sgn
Xm

j¼1

vj � Sigm hx;wji
� �

þ b

 !
¼ sgnðhðxÞÞ:

It is equivalent to the following TSK FRBS:

R1 : If hðxÞ is I ð0;1ÞðxÞ; Then Y 1 ¼ 1

R2 : If hðxÞ is I�ð0;1ÞðxÞ; Then Y 2 ¼ �1

where

I ð0;1ÞðxÞ ¼
1 if x 2 ð0;1Þ
0 if x 2 ð�1; 0Þ

and I�ð0;1ÞðxÞ ¼ 1� I ð0;1ÞðxÞ:
�

Even thought we have found a FRBS that fires the same output that an ANN, the inter-
pretability has not been improved. To reach it, we will build another FRBS that approx-
imates the system above and it will let us to extract knowledge in an easy way.
Theorem 2. Let be an ANN with the following decision function:

f ðxÞ ¼ sgn
Xm

j¼1

vj � Sigmðhx;wjiÞ þ b

 !
¼ sgnðhðxÞÞ:

It is equivalent to the following TSK FRBS:

R1 : If hðxÞ is Sigmðk � xÞ; Then Y 1 ¼ 1

R2 : If hðxÞ is Sigm�ðk � xÞ; Then Y 2 ¼ �1 when k!1

where Sigmðk � xÞ ¼ 1
1þe�k�x and Sigm*(k Æ x) = 1 � Sigm(k Æ x) = Sigm(�k Æ x).
Definition 1. A FRBS which fulfills the features shown in Theorem 2 is called k-FRBS.

When a k-FRBS is implemented, the value k is moderately high. Thereby, the sigmoid
function is not quickly saturated to zero or one according to the limited precision of the
computer.
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We have obtained a k-FRBS from an ANN with only one proposition in the antecedent
of the fuzzy rules. To improve its interpretability, the antecedent of the fuzzy rules will be
transformed to get several fuzzy propositions.
5.1. Several fuzzy propositions in the antecedents

In order to obtain several fuzzy propositions in the antecedents of the rules from a
k-FRBS, we need the following result.

Proposition 1

Sigm b �
Xl

j¼1

zj

 !
¼ Sigmðb � z1Þ � . . . � Sigmðb � zlÞ

where b; zj 2 R, l 2 N and the operator * is the symmetric sum uninorm aforementioned in

Section 4 [28,29]. Its definition is given by

a1 � � � � � al ¼
a1 � � � al

a1 � � � al þ ð1� a1Þ � � � ð1� alÞ
:

This result is held for to the function Sigm*(x) as it is shown below:

Sigm� b �
Xl

j¼1

zj

 !
¼ Sigm �b �

Xl

j¼1

zj

 !
¼ Sigmð�b � z1Þ � � � � � Sigmð�b � zlÞ

¼ Sigm�ðb � z1Þ � � � � � Sigm�ðb � zlÞ:

Taking into account the nature of the output of the ANN h(x) (see Eq. (3)), we have:

R1 : If
Pm
j¼1

vj � Sigmðhx;wjiÞ þ b

 !
is Sigmðk � xÞ; Then Y 1 ¼ 1

R2 : If
Pm
j¼1

vj � Sigmðhx;wjiÞ þ b

 !
is Sigm�ðk � xÞ; Then Y 2 ¼ �1

According to the former Proposition, the k-FRBS above can be transformed into a mod-
ified k-FRBS with several fuzzy propositions, as follows:

R1 : If v1 � Sigmðhx;w1iÞ is Sigmðk � xÞ � . . .

vm � Sigmðhx;wmiÞ is Sigmðk � xÞ�
b is Sigmðk � xÞ; Then Y 1 ¼ 1

R2 : Ifv1 � Sigm hx;w1ið Þ is Sigm�ðk � xÞ � . . .

vm � Sigmðhx;wmiÞ is Sigm�ðk � xÞ�
b is Sigm�ðk � xÞ; Then Y 2 ¼ �1
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which is equivalent to:

R1 : If hx;w1i is Sigmðk � v1 � SigmðxÞÞ � . . .

hx;wmi is Sigmðk � vm � SigmðxÞÞ�
b is Sigmðk � xÞ; Then Y 1 ¼ 1

R2 : If hx;w1i is Sigm�ðk � v1 � SigmðxÞÞ � . . .

hx;wmi is Sigm�ðk � vm � SigmðxÞÞ�
b is Sigm�ðk � xÞ; Then Y 2 ¼ �1

Since the vector x is normalized to have unit lenght, we have the following expression:

hx;wji ¼ kwjk � cos aj ¼ kwjk � simðx;wjÞ:

As we mentioned before, the cosine function is used as a similarity measure in several
application areas, i.e. information retrieval. From now on, the cosine function will be
denoted as sim. This is to notice the fact that the cosine function is a similarity measure.
The interpretation of its output is the following:

• When its output is close to �1, then the vectors compared have practically opposite
directions. Hence, both vectors hardly bear resemblance.

• When its output is close to 1, then the inspected vectors have nearly the same direction.
As a consequence, we consider they are just about alike.

In this way, we obtain the following FRBS:

R1 : If kw1ksimðx;w1Þ is Sigmðk � v1 � SigmðxÞÞ � . . .

kwmksimðx;wmÞ is Sigmðk � vm � SigmðxÞÞ�
b is Sigmðk � xÞ; Then Y 1 ¼ 1

R2 : If kw1ksimðx;w1Þ is Sigm�ðk � v1 � SigmðxÞÞ � . . .

kwmksimðx;wmÞ is Sigm�ðk � vm � SigmðxÞÞ�
b is Sigm�ðk � xÞ; Then Y 2 ¼ �1

which is equivalent to the next one:

R1 : If simðx;w1Þ is Sigmðk � v1 � Sigmðkw1k � xÞÞ � . . .

simðx;wmÞ is Sigmðk � vm � Sigmðkwmk � xÞÞ�
b is Sigmðk � xÞ; Then Y 1 ¼ 1

R2 : If simðx;w1Þ is Sigm�ðk � v1 � Sigmðkw1k � xÞÞ � . . .

simðx;wmÞ is Sigm�ðk � vm � Sigmðkwmk � xÞÞ�
b is Sigm�ðk � xÞ;Then Y 2 ¼ �1
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Furthermore, if we consider the following properties:

• Sigm(k Æ vj Æ Sigm(kwjk Æ x)) 2 ]0.5,1[ when vj > 0,
• Sigm*(k Æ vj Æ Sigm(kwjk Æ x)) 2 ]0,0.5[ when vj > 0,
• Sigm(k Æ vj Æ Sigm(kwjk Æ x)) 2 ]0,0.5[ when vj < 0,
• Sigm*(k Æ vj Æ Sigm(kwjk Æ x)) 2 ]0.5,1[ when vj < 0,

and we suppose, without loss of generality, that:

• vj > 0 for k = 1, . . . ,p,
• vj < 0 for k = (p + 1), . . . ,m,
• b < 0,

then, we obtain the following k-FRBS which takes into account the behavior of the sym-

metric sum operator (see Section 4):

R1 : If simðx;w1Þ is Sigmðk � v1 � Sigmðkw1k � xÞÞ OR . . .

simðx;wpÞ is Sigmðk � vp � Sigmðkwpk � xÞÞ
��

simðx;wpþ1Þ is Sigmðk � vpþ1 � Sigmðkwpþ1k � xÞÞ AND . . .

simðx;wmÞ is Sigmðk � vm � Sigmðkwmk � xÞÞ AND

b is Sigmðk � xÞ; Then Y 1 ¼ 1

R2 : If simðx;w1Þ is Sigm�ðk � v1 � Sigmðkw1k � xÞÞ OR . . .

simðx;wpÞ is Sigm�ðk � vp � Sigmðkwpk � xÞÞ
��

simðx;wpþ1Þ is Sigm�ðk � vpþ1 � Sigmðkwpþ1k � xÞÞ AND . . .

simðx;wmÞ is Sigm�ðk � vm � Sigmðkwmk � xÞÞ AND

b is Sigm�ðk � xÞ; Then Y 2 ¼ �1

5.2. Linguistic interpretation of the fuzzy propositions

Next, we give a linguistic interpretation to the fuzzy propositions included in the k-
FRBS which is extracted from the corresponding ANN. In these k-FRBSs, we find the fol-
lowing fuzzy propositions:

(1) ‘‘b is Sigm(k Æ x)’’ can be interpreted as ‘‘b is approximately larger than 0’’ (see Fig. 3
with k = 50).

(2) ‘‘b is Sigm*(k Æ x)’’ can be interpreted as ‘‘b is not approximately larger than 0’’ as it is
shown:

Sigm�ðk � xÞ ¼ 1� Sigmðk � xÞ � NotðSigmðk � xÞÞ: ð4Þ
The last expression is equivalent to ‘‘b is approximately smaller than 0’’ (see Fig. 4
with k = 50).



Fig. 4. b is approximately smaller than 0.

Fig. 3. b is approximately larger than 0.
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(3) ‘‘sim(x,wj) is Sigm(k Æ vj Æ Sigm(kwjk Æ x))’’ with vj > 0 can be interpreted as ‘‘sim(x,wj)
is approximately largerOR than b’’ (see Fig. 5 with k = 50, vj = 1 and kwjk) where

b ¼
Sigm�1 Sigm�1ð0:75Þ

k�jvjj

� �
kwjk



Fig. 5. sim(x,wj) is approximately largerOR than b.

Fig. 6. sim(x,wj) is approximately smallerAND than b.
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and

Sigm�1ðxÞ ¼ �ln
1� x

x

� �
:

We can use the word largerOR in the last expression, because it has only a valid
meaning in the aggregation of fuzzy propositions with the t-conorm provided by
the symmetric sum.
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(4) ‘‘sim(x,wj) is Sigm(k Æ vj Æ Sigm(kwjk Æ x))’’ with vj < 0 can be interpreted as ‘‘sim(x,wj)
is not approximately largerOR than b’’ since

Sigmðk � vj � Sigmðkwjk � xÞÞ ¼ 1� Sigmðk � jvjj � Sigmðkwjk � xÞÞ
� NotðSigmðk � jvjj � Sigmðkwjk � xÞÞÞ:

The former expression is equivalent to ‘‘sim(x,wj) is approximately smallerAND than

b’’ (see Fig. 6 with k = 50, vj = �1 and kwjk = 10).
As happened with the linguistic term largerOR, the word smallerAND is used in

this expression, since it has only a valid meaning if we aggregate the fuzzy propo-
sitions with the t-norm given by the symmetric sum operator.

(5) Finally, ‘‘sim(x,wj) is Sigm*(k Æ vj Æ Sigm(kwjk Æ x))’’ is equivalent to ‘‘sim(x,wj) is not

Sigm(k Æ vj Æ Sigm(kwjk Æ x))’’ by using (4) and it has been interpreted in the above
paragraphs.
6. Examples

Next, we consider two binary classification problems to show the design of a k-FRBS
from an ANN. The two problems are (A) the XOR problem and (B) the PIMA diabetes
problem.

6.1. The XOR problem

This problem [30] has the following training data:

fðx1 ¼ ð�1;�1Þ; y1 ¼ �1Þ; ðx2 ¼ ð�1; 1Þ; y2 ¼ 1Þ;
ðx3 ¼ ð1;�1Þ; y3 ¼ 1Þ; ðx4 ¼ ð1; 1Þ; y4 ¼ �1Þg:

These input vectors joined to the bias are normalized to have unit length. Thus, the train-
ing data are transformed into the following ones:

x1 ¼ �1ffiffiffi
3
p ;
�1ffiffiffi

3
p ;

1ffiffiffi
3
p

� �
; y1 ¼ �1

� �
; x2 ¼ �1ffiffiffi

3
p ;

1ffiffiffi
3
p ;

1ffiffiffi
3
p

� �
; y2 ¼ 1

� �
;

�

x3 ¼ 1ffiffiffi
3
p ;
�1ffiffiffi

3
p ;

1ffiffiffi
3
p

� �
; y3 ¼ 1

� �
; x4 ¼ 1ffiffiffi

3
p ;

1ffiffiffi
3
p ;

1ffiffiffi
3
p

� �
; y4 ¼ �1

� �

:

A multilayer feedforward ANN with one hidden layer composed by two neurons that
solves the XOR problem is figured out in the Fig. 7. The weight vectors of this network are:
It is important to note that these weight vectors are similar. They have only the third
component different (w31 5 w32). However, it is the least important component when
the scalar products with the input vectors are computed. This component is only impor-
tant when the inputs x1 and x2 are very small or when they fulfill that (x1 = �x2). These



Fig. 7. The ANN trained to solve the XOR problem.
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facts will be useful to understand the obtained k-FRBS from the ANN that solves the
problem considered.

The corresponding k-FRBS with k = 50, extracted from the ANN displayed in Fig. 7, is
the following:

R1 : If simðx;w2Þ is Sigmð50 �Sigmð60:4 � xÞ
��

simðx;w1Þ is Sigmð�50 �Sigmð60:4 �xÞÞAND

�0:5 is Sigmð50 � xÞ; Then Y 1¼ 1

R2 : If simðx;w1Þ is Sigm�ð�50 �Sigmð60:4 �xÞÞAND

�0:5 is Sigm�ð50 � xÞ
��

simðx;w2Þ is Sigm�ð50 �Sigmð60:4 �xÞ; Then Y 2¼�1

This can be linguistically translated as:

R1 : If simðx;w2Þ is aproximately largerOR than �0:06

��
simðx;w1Þ is approximately smallerAND than �0:06 AND

�0:5 is approximately larger than 0;Then Y 1 ¼ 1

R2 : If simðx;w1Þ is approximately largerOR than �0:06 OR

�0:5 is approximately smaller than 0

��
simðx;w2Þ is approximately smallerAND than �0:06; Then Y 2 ¼ �1

From an analysis of the former k-FRBS, we can note the following conclusions:

• The fuzzy proposition ‘‘�0.5 is approximately smaller than 0’’ is nearly true in rule R2.
Thereby, the output of the k-FRBS is equal to �1 except when the input datum is sim-
ilar to w2. In this case, the fuzzy proposition ‘‘sim(x,w2) is approximately smallerAND



216 C.J. Mantas et al. / Internat. J. Approx. Reason. 43 (2006) 202–221
than �0.06’’ is almost false in rule R2. Thus, this expression is compensated with the
fuzzy proposition obtained from the bias weight.

However, it is not enough to change the output value of rule R2 when the input sam-
ple is also similar to the weight vector w1. In this case, the following proposition wins
the compensation

simðx;w1Þ is approximately largerOR than �0:06

OR

�0:5 is approximately smaller than 0

to the opposite fuzzy proposition of w2 in the rule R2:

simðx;w2Þ is approximately smallerAND than �0:06:

Therefore, the output value of the k-FRBS is equal to 1 when the input datum x accom-
plishes the following:

x is similar to w2 and x is not similar to w1: ð5Þ
• Since the weight vectors w1 and w2 are similar with the only exception of the third com-

ponent, we need that (x1 = �x2) to fulfill the condition established in (5). Thus, the two
first components of the weight vectors are cancelled and the similarity is measured using
only the third component.

After analyzing the obtained k-FRBS, we have extracted the following knowledge:
The output of the network is equal to � 1;

except when “x1 is approximately equal to� x2”:
This conclusion is coherent with a feasible solution of the XOR problem.

6.2. The PIMA diabetes problem

This problem [31] consists of discerning whether a person is diabetic or not. The data
set includes 768 data. They are divided into two sets of 576 and 192 elements that will be
used as training and test folds, respectively. Each datum is composed by eight continuous
variables, normalized in the unit interval, that is xi 2 [0,1] (i = 1, . . . , 8) and one output
with two possible values (y = �1! No diabetes; y = 1! Diabetes). The input variables
are:

• x1: Number of pregnancies.
• x2: Plasma glucose concentration a two hours in an oral glucose tolerance test.
• x3: Diastolic blood pressure (mm Hg).
• x4: Triceps skin fold thickness (mm).
• x5: Serum insulin (mU/ml).
• x6: Body mass index (weight in kg/(height in m)2).
• x7: Diabetes pedigree function.
• x8: Age in years.
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A multilayer feedforward ANN with one hidden layer composed by two neurons has
been trained with the Backpropagation algorithm [32] to solve the problem considered.
The input vectors have been previously transformed to have unit length. The success of
the trained network is 77.60% and 80.21% on the training and test data set, respectively.
It is figured out in Fig. 8.

The k-FRBS extracted from this ANN with k = 50 is:

R1 : If simðx;w1Þ is Sigmð98:75 � Sigmð22:3 � xÞ
��

simðx;w2Þ is Sigmð�95 � Sigmð24:48 � xÞÞ AND

�0:5 is Sigmð50 � xÞ; Then Y 1 ¼ 1

R2 : If simðx;w2Þ is Sigm�ð�95 � Sigmð24:48 � xÞÞ AND

�0:5 is Sigm�ð50 � xÞ
��

simðx;w1Þ is Sigm�ð98:75 � Sigmð22:3 � xÞ; Then Y 2 ¼ �1

It can be linguistically interpreted as:

R1 : If simðx;w1Þ is aproximately largerOR than �0:2

��
simðx;w2Þ is approximately smallerAND than �0:18 AND

�0:5 is approximately larger than0; Then Y 1 ¼ 1

R2 : If simðx;w2Þ is approximately largerOR than �0:18 OR

�0:5 is approximately smaller than 0

��
simðx;w1Þ is approximately smallerAND than �0:2; Then Y 2 ¼ �1

and the weight vectors w1 and w2 are the followings:
If an analysis of the former k-FRBS and their weight vectors is made, we can claim the
following:

• The fuzzy proposition ‘‘�0.5 is approximately smaller than 0’’ is almost true in rule R2.
This fact establishes a default value equal to �1 (No diabetes) in the k-FRBS.

• In the same rule, the fuzzy proposition ‘‘sim(x,w2) is approximately largerOR than�0.18’’
determines that when the input vector x is similar to the weight vector w2, the output
(y = �1) (No diabetes) is fired. Hence, we can conclude that the weight vector w2 is the
prototype to the No diabetes samples. If we observe the features of the weight vector
w2, we can see that the values with high magnitude and different from the ones of w1



Fig. 8. The ANN trained to solve the PIMA problem.
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(prototype to the Diabetes samples) are w52 = 6 and w82 = �22.6. As the inputs xi are
positive, we can claim that the prototype defined by the weight vector w2 is essentially
characterized by high values of x5 (High Serum Insuline) and low values of x8 (Low Age).

• In rule R1, the fuzzy proposition ‘‘sim(x,w1) is approximately largerOR than �0.2’’ deter-
mines that when the input vector x is similar to the weight vector x1, the output (y = 1)
(Diabetes) is fired. Thus, we can deduce that the weight vector w1 is the prototype to the
Diabetes data.

Let us see the features of the weight vector w1, we can see that the values with high
magnitude and different from the ones of w2 (the prototype to the No diabetes data)
are w21 = 12.8, w61 = 9.3 and w71 = 5.8. As the inputs xi are positive, we can conclude
that the prototype defined from the weight vector w1 is mainly characterized to the high
values of x2 (High Glucose Concentration), x6 (High Body Mass Index) and x7 (High
Diabetes Pedigree).
The knowledge discerned from the k-FRBS is intuitively correct.

7. Comparison with other extraction methods

Finally, we compare the k-FRBS extracted by using the proposed method against the
FRBSs obtained when the approaches presented in [6,14] are considered. The comparison
is made by means of a subset of standard criteria proposed in [16,33]. Next, we explain
them:

• The expressive power of the extracted rules (types of rules obtained).
• The fidelity which describes how well the rules can mimic the behavior of the ANN.
• Lastly, the comprehensibility that is determined by measuring the number of rules and

the number of antecedents per rule.

Considering the expressive power, the presented method and the one proposed in [14]
extract TSK rules with constant output. On the other hand, we obtain additive fuzzy rules
by using [6]. If we focus on the fidelity, the three approaches yield a FRBS with the same
behavior as the corresponding ANN used to extract the rules. Finally, with respect to the
comprehensibility, the method presented in [14] extracts 2m fuzzy rules with m propositions
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per rule antecedent (where m is the number of neurons in the ANN hidden layer) and the
one proposed in [6] obtains m rules with n fuzzy propositions (where n is the number of
input attributes) within each fuzzy rule antecedent. Furthermore, the proposed method
yields a FRBS with only 2 rules with m fuzzy propositions in the antecedent per rule.
8. Conclusions

A method to extract FRBSs from trained ANNs has been proposed. It carries out the
same classification as the original ANN.

To classify new data, the fuzzy rules of the system evaluate the similarity between the
input sample and the weight vectors. As a result, they are highly understandable.

Once the FRBS has been built, a simple analysis of the weight vectors is necessary to
understand the action of the network. Thus, classification problem knowledge can be
discovered using ANNs. This method of knowledge discovery has been illustrated by means
of classification problems. The knowledge extracted from the trained ANNs to solve the for-
mer problems is coherent with the standard knowledge avalaible about the problem
considered.

Appendix A. Proof of results

A.1. Proof (Theorem 1)

Let be x0 a vector belonging to the input feature space. It is tested by using the k-FRBS
proposed above:

• If h(x0) 2 (�1,0), then the output fired by the k-FRBS is given by

Y ¼
Pm

i¼1Y i � giPm
i¼1gi

¼
Y 1 � I ð0;1Þðhðx0ÞÞ þ Y 2 � I�ð0;1Þðhðx0ÞÞ

I ð0;1Þðhðx0ÞÞ þ I�ð0;1Þðhðx0ÞÞ
¼ Y 1 � 0þ Y 2 � 1

0þ 1
¼ Y 2 ¼ �1;

which is equal to the output yielded by f(x0), since f(x0) = sign(h(x0)) = �1.

• If h(x0) 2 (0,1), then the output fired by the k-FRBS is as follows:

Y ¼
Pm

i¼1Y i � giPm
i¼1gi

¼
Y 1 � I ð0;1Þðhðx0ÞÞ þ Y 2 � I�ð0;1Þðhðx0ÞÞ

I ð0;1Þðhðx0ÞÞ þ I�ð0;1Þðhðx0ÞÞ
¼ Y 1 � 1þ Y 2 � 0

1þ 0
¼ Y 1 ¼ 1;

so it is equal to the output provided by f(x0) = sign(h(x0)) = 1. h
A.2. Proof (Theorem 2)

If we consider that the following expression is equivalent to I(0,1)(x)

limk!1ðSigmðk � xÞÞ ¼ lim
1

1þ e�k�x

� �
¼

1 x 2 ð0;1Þ
0 x 2 ð�1; 0Þ;

�
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and the next one to I�ð0;1ÞðxÞ,

limk!1ðSigm�ðk � xÞÞ ¼ limð1� Sigmðk � xÞÞ ¼
0 x 2 ð0;1Þ
1 x 2 ð�1; 0Þ:

�

Then, we have that the following FRBS is equivalent to the FRBS presented in Theorem 1
when k!1.

R1 : If hðxÞ is Sigmðk � xÞ;Then Y 1 ¼ 1

R2 : If hðxÞ is Sigm�ðk � xÞ;Then Y 2 ¼ �1

In this way, as the Theorem 1 FRBS is equivalent to the decision function f(x), the FRBS
presented in this Theorem is also equivalent to f(x). h

A.3. Proof (Proposition 1)

See the proof of results included in [6]. h
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