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Resumo

Uma abordagem global da física para além do modelo padrão

A descoberta do bosão de Higgs representou um momento extraordinário para a Física de Partículas,

uma vez que foi a verificação experimental da última peça do Modelo Padrão. No entanto, a busca por

uma teoria fundamental da Natureza continua, já que o Modelo Padrão enfrenta ainda vários desafios,

tanto experimentais como teóricos, motivando várias propostas de teorias para além do Modelo Padrão.

O trabalho desenvolvido na presente tese segue duas direções complementares na pesquisa por nova

física: uma abordagem motivada por modelos específicos, que tem como objetivo explorar assinaturas

experimentais comuns a várias classes de modelos; e uma abordagem baseada na teoria de campo

efetiva, válida se a nova física for suficientemente pesada, em que podemos parametrizar os efeitos de

nova física sem ter de especificar nenhum modelo.

Apesar da primeira abordagem abranger, por definição, menos modelos de nova física, é possível

desenvolver estratégias para que a análise seja aplicável a várias classes de modelos. Para além disso,

se a nova física incluir campos leves, esta abordagem tem necessariamente que ser seguida. No âmbito

desta abordagem, considerámos modelos de Higgs composto, em que o problema da hierarquia asso-

ciado ao bosão de Higgs pode ser explicado considerando que este é um bosão de Goldstone. Estas

teorias compostas prevêem a presença de novos fermiões. Deste modo, desenvolvemos análises para

procurar por leptões pesados em colisionadores, considerando diferentes decaimentos para os mesmos

e estudando a complementaridade entre estes testes e outras observáveis associadas a matéria escura.

Na segunda abordagem, independente de modelos, extendemos os cálculos existentes no contexto da

teoria efetiva do Modelo Padrão considerando operadores de dimensão 8. Estes termos são importantes

do ponto de vista experimental, já que algumas observáveis recebem as principais contribuições a esta

ordem, mas também porque os coeficientes destes operadores podem ser constrangidos por argumentos

teóricos. Para além disso, estudámos uma extensão desta teoria efetiva incluindo um pseudo-escalar

leve, motivado pelas teorias de Higgs composto. Finalmente, usámos também a teoria efetiva do Modelo

Padrão para ligar resultados experimentais com nova física através da classicação sistemática de modelos

que podem gerar os operadores que contribuem para o momento magnético anómolo dos muões.

Palavras-chave: Equações do Grupo de Renormalização, Fenomenologia de colisionadores, Leptões

Pesados, Teoria de Campo Efetiva, Teorias para além do Modelo Padrão
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Abstract

A global approach to physics beyond the Standard Model

The discovery of the Higgs boson marked an extraordinary moment in particle physics as the last piece

of the Standard Model was experimentally verified. However, the quest for a fundamental theory of Nature

continues as the Standard Model still faces several challenges, both from experimental evidence and from

a theoretical perspective, prompting the proposal of a tremendous amount of beyond the Standard Model

scenarios.

This thesis follows two complementarity directions in the search for new physics: the first one, the

model-driven approach, requires the selection of a model or class of models and explores their most

unique signatures; the second one, valid if new physics is heavy, is to follow the effective field theory

approach and parametrize new physics effects in a model-independent way.

While the model-driven approach encompasses, by definition, less beyond the Standard Model sce-

narios, we can develop strategies so that the setup is applicable to a wide range of models; furthermore,

if new physics predicts light degrees of freedom, then this approach must be followed. We proceed

with this strategy focusing on composite Higgs models, motivated theories which explain the hierarchy

problem by considering the Higgs as a pseudo-Nambu Goldstone boson. A ubiquitous prediction of the

composite framework is the existence of vector-like leptons. As such, we propose dedicated analysis to

search for these particles at colliders considering a generic setup for their decays and study the possible

complementarity with dark matter probes.

In the model-independent approach, we extend the current calculations within the Standard Model

Effective Field Theory to account for the one-loop contribution of dimension-8 terms. These terms are

important not only from the experimental point of view, since certain observables receive their main con-

tribution at this order, but also because dimension-8 Wilson coefficients are the first ones on which purely

theoretical bounds can be placed. Furthermore, we consider the extension of the Standard Model Effec-

tive Field Theory with an extra light pseudo-scalar, a motivated scenario within the composite framework.

Finally, we use this model-independent approach to connect experimental results with Standard Model

extensions by classifying models which can generate the effective operators possibly responsible for the

anomalous magnetic moment of the muon.

Keywords: Beyond the Standard Model, Collider Phenomenology, Effective Field Theory, Renormali-

sation Group Equations, Vector-like Leptons.
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Resumen

Un enfoque global de la física más allá del modelo estándar

El descubrimiento del bosón de Higgs representó un momento extraordinario para la física de Partí-

culas, ya que supuso la verificación experimental de la última pieza del modelo estándar. Sin embargo, la

búsqueda de una teoría fundamental de la naturaleza continúa, ya que el modelo estándar todavía se en-

frenta a varios retos, tanto experimentales como teóricos, lo que motiva una gran cantidad de propuestas

de teorías más allá del modelo estándar.

Esta tesis persigue dos direcciones complementarias en la búsqueda de nueva física: la primera,

motivada por modelos, pretende explorar las señales experimentales comunes a varias clases de los

mismos; la segunda, válida si la nueva física es suficientemente pesada, consiste en utilizar las teorías de

campos efectivas y parametrizar los efectos de nueva física pe manera independientemente del modelo.

Aunque el primer enfoque abarca, por definición, menos escenarios de nueva física, es posible desa-

rrollar estrategias para que el análisis sea aplicable a un amplio rango de modelos. En el marco de este

enfoque, consideramos modelos de Higgs compuestos, en los que el problema de la jerarquía asociado

al bosón de Higgs puede explicarse considerando que es un pseudo-bosón de Nambu-Goldstone. Estas

teorías compuestas predicen la presencia de nuevos fermiones. Por ello, desarrollamos análisis para bus-

car leptones pesados en los colisionadores, considerando sus diferentes desintegraciones y estudiando

su posible complementariedad con otros observables asociados a la materia oscura.

En el segundo enfoque, independiente del modelo, extendemos los cálculos existentes en el contexto

de la teoría efectiva del modelo estándar considerando operadores de dimensión 8. Estos términos son

importantes desde un punto de vista experimental, ya que algunos observables reciben sus contribu-

ciones dominantes a este orden, pero también porque sus coeficientes pueden ser restringidos usando

argumentos teóricos. Además, estudiamos una extensión de esta teoría efectiva incluyendo un pseudoes-

calar ligero, motivado por las teorías de Higgs compuesto. Por último, también hemos utilizado la teoría

efectiva del modelo estándar para vincular los resultados experimentales con modelos de nueva física,

clasificando sistemáticamente aquellos que pueden generar los operadores que contribuyen al momento

magnético anómalo del muón.

Palabras clave: Ecuaciones del grupo de renormalización, Fenomenología de colisionadores, Lepto-

nes pesados, Más allá del modelo estándar, Teorías de campos efectiva
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1

Introduction

The discovery of the Higgs boson in the Large Hadron Collider (LHC) [1, 2] was one of the most significant

moments in recent history in particle physics. It was the final component of the Standard Model (SM) to

be experimentally confirmed, giving rise to a consistent theory that has proven to be incredibly robust,

finding agreement with experimental results in a wide array of observations.

Despite the success of the SM, it still faces theoretical and experimental challenges to which it does

not provide satisfactory answers. To name a few, the SM does not possess the ingredients to account

for neutrino masses nor the observed dark matter relic density; moreover the SM does not provide a

dynamical explanation for the flavour hierarchy nor to the light mass of the Higgs boson. As a result, an

intense effort in model-building has taken place with different theoretical ideas put forth as candidates

to describe these and other unexplained phenomena and hence constitute the next step towards a more

fundamental theory of Nature.

In spite of the wide motivation to study beyond the Standard Model (BSM) physics, we do not have

a clear indication on what the nature of new physics should be, or, more importantly, at which scale of

energy it should lie. Therefore, given the tremendous amount of theoretical ideas, the pursuit for new

physics must employ a global approach by developing strategies which are able to probe a wide range of

models.

Throughout this thesis we aim to undertake this quest for the search of BSM physics following two

main directions:

1. Look for direct evidence for BSM physics by searching for specific signatures which are theoretically

motivated. This method involves choosing a particular model or signature as a starting point which

inevitably decreases the range of applicability of the analysis. To counter this, signatures which

are prevalent among several classes of BSM scenarios should be chosen.

2. Look for indirect evidence of BSM physics by searching for deviations from the SM predictions.

This can done following the effective field theory (EFT) approach, in which new physics effects are

parametrized in terms of the low-energy degrees of freedom without mention of the UV dynamics.

This method has the clear advantage of being model-agnostic, not requiring a commitment to any
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CHAPTER 1. INTRODUCTION

particular theoretical or experimental motivation. However, it is only valid if there is a decoupling

between the scale at which the experiment is taking place and the scale of the UV theory.

Concerning point (1), the hierarchy problem (HP) is one of the main motivations to expect physics

at an energy scale that could be probed by current and future experiments. The HP boils down to the

idea that a light scalar is not natural, that is, its mass is not protected against quadratic contributions of

heavy physics, for instance, BSM physics responsible for the generation of the observed neutrino masses.

These apparently large contributions demand a large degree of fine-tuning in order to explain the observed

light Higgs which, in turn, suggests the existence of some new physics lying at the TeV scale responsible

for protecting the Higgs mass. Composite Higgs models (CHMs) are amongst the most explored of the

hierarchy problem solutions. The core idea is that the Higgs is not an elementary scalar at small distances,

being instead a composite particle. In the CHM framework, the Higgs arises as pseudo-Nambu Goldstone

boson (pNGB) from a spontaneously broken symmetry which allows it to be lighter than the scale of

compositeness. While the simplest versions of CHMs have been pushed by experimental null results to

larger energies (such that they are no longer effective solutions to the HP), non-minimal scenarios are still

viable and they provide the added benefits of being able to account for other unexplained phenomena by

the SM, such as dark matter (DM), baryogenesis, B-physics anomalies, among others.

With this motivation in mind, we aim to follow approach (1) through the lens of CHMs. A particular

signature which is ubiquitous within the composite framework (and also arises in many other models)

are vector-like leptons (VLLs). While their simplest realizations have been studied at colliders, when

considered as part of a complete non-minimal model, VLLs can give rise to different signatures. For

example, through decays to other exotic states that can escape the target of current searches. Moreover,

VLLs can be involved in the generation of a DM candidate or in explaining some flavor anomalies, which

motivates the study of the complementarity between collider observables and other experimental data.

However, the lack of a clear picture on what the next step towards the construction of a more fun-

damental picture of Nature should be leads us to also follow the model-agnostic approach (2), which we

employ within the context of the Standard Model Effective Field Theory (SMEFT). The SMEFT extends the

SM by including higher-dimensional operators built with the symmetries and fields of the SM. We will work

towards improving the SMEFT’s predictions in several directions. Firstly, by considering the non-leading

order (NLO) in the SMEFT expansion, the contribution of dimension-8 operators. This is not only use-

ful phenomenologically, as several observables receive their leading contribution at this order, but also

because dimension-8 WCs are the first ones which can be subject to theoretical bounds, the so called

positivity bounds, which can be used to, under some assumptions, delimit the space of EFTs that can be

completed by a theory in the ultraviolet (UV). Secondly, by extending the SMEFT with extra light degrees

of freedom, which is crucial to describe hierarchical BSM scenarios, that is, new physics which predicts

both light and heavy new particles. Indeed non-minimal CHMs are among those scenarios where, besides

heavy resonances, extra light pNGBs along with the Higgs boson are expected to arise. Finally, we will also

consider the NLO (loop-level) contribution in the matching calculations of UV models to the SMEFT, which
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are vital to correctly map the extensions of the SM responsible for generating specific Wilson coefficients

(WCs), namely those which contribute to observables which seem to deviate from the SM prediction.

Our attempt at a global approach to physics beyond the Standard Model is organized as follows.

Assuming knowledge of the main ideas behind Quantum Field Theory (QFT), chapter 2 is devoted to a

brief introduction of the SM and its shortcomings. Due to the importance of collider physics in the search

for BSM, we also introduce collider experiments, the relevant observables they provide and the analysis

setup used. This chapter does not intend to be a review of the topics covered but simply an introduction

to the relevant aspects for the remainder of the thesis. The model-driven approach is given in chapter

3, where we first present the main ideas behind CHMs and realize them within the Little Higgs scenario,

motivating a signature of VLLs with exotic decays. Afterwards we present a study on collider searches for

VLLs with arbitrary branching ratios (including an exotic decay) and explore the possible complementarity

with DM probes. Chapter 4 is dedicated to exploring the model-independent approach following the

SMEFT; we explore the dimension-8 contributions for the SMEFT, namely through the construction of a

bosonic Green’s basis at this order and the calculation of the renormalisation group equations (RGEs) of

the dimension-8 WCs. We also extend the SMEFT with an axion-like particle and compute the RGEs of this

theory. In chapter 5 we use the SMEFT to connect experiment with particular UV scenarios by considering

the measurement of the anomalous magnetic moment of the muon and classifying the SM extensions

which can generate the relevant operators at one-loop. Finally, we summarize and conclude in chapter

6, stressing the main results of this thesis.

Sections 3.2, 4.3, 4.4, 4.5 and 5 are based on works published during the development of this thesis

[3–8].
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2

A swift introduction to the Standard Model

2.1 Building blocks

The Standard Model (SM) of particle physics comprises our current knowledge of elementary particles

and their interactions. The construction of the SM is based on its field content, that is, the degrees of

freedom needed to describe Nature, and the symmetries the theory must respect.

The SM is governed by the set of gauge symmetries 𝑆𝑈 (3)𝐶 × 𝑆𝑈 (2)𝐿 × 𝑈 (1)𝑌 . The 𝑆𝑈 (3)𝐶
symmetry – called the colour group – describes the strong force, quantum chromodynamics (QCD), with

8 corresponding gauge bosons, the gluons, 𝐺𝐴
𝜇 (𝐴 = 1...8). The 𝑆𝑈 (2)𝐿 group corresponds to the

weak interaction mediated by the 3 𝑊𝐴
𝜇 (𝐴 = 1...3) gauge bosons, whereas 𝑈 (1)𝑌 is the abelian group

describing the hypercharge interaction mediated by the 𝐵𝜇 boson.

Matter is, on the other hand, constituted by fermions, which can be divided by whether they are

charged under 𝑆𝑈 (3)𝐶 (quarks) or not (leptons). Only the left-handed (LH) projections of fermions,Ψ,

are charged under 𝑆𝑈 (2)𝐿, making it therefore simpler to divide them into their chiralities, defined as

Ψ𝐿,𝑅 = 𝑃𝐿,𝑅Ψ, where 𝑃𝐿,𝑅 = 1/2(1∓𝛾5). The LH quarks and leptons transform as doublets meaning that

each of them has 2 components, the up- and down-type quarks and the neutrino and charged leptons.

Each of these components has a right-handed (RH) counterpart (singlet under 𝑆𝑈 (2)𝐿) except for the

neutrino. There are 3 families (flavours) of each fermion which differ only in their interaction with the

spin-0 particle of the theory. The up-type quark families are called the up (𝑢), charm (𝑐) and top (𝑡 ); the

down-type quark families are the down (𝑑), strange (𝑠) and bottom (𝑏). The charged lepton families are

the electron (𝑒), the muon (𝜇) and the tau (𝜏 ) and the neutrino families are the electron-neutrino (𝜈𝑒 ), the

muon-neutrino (𝜈𝜇 ) and the tau-neutrino (𝜈𝜏 ).

The spin-0 boson in the theory has a special role. Because fermion chiralities transform differently,

it is not possible to construct a gauge invariant mass term for them, which is in contradiction with the

observation of massive fermions. The Higgs boson plays the crucial role of generating masses for the SM

particles through electroweak symmetry breaking (EWSB). The Higgs is an uncolored complex 𝑆𝑈 (2)𝐿
doublet which can be written as 𝜙 = (𝜙1 + 𝑖𝜙2 ,𝜙3 + 𝑖𝜙4)𝑇 .

4



2.1. BUILDING BLOCKS

Fields
�
𝑆𝑈 (3)𝐶 , 𝑆𝑈 (2)𝐿, 𝑈 (1)𝑌

�

Bosons

𝐺𝐴
𝜇 ( 8, 1, 0 )

𝑊𝐴
𝜇 ( 1, 3, 0 )

𝐵𝜇 ( 1, 1, 0 )

𝜙 ( 1, 2, 1/2 )

Fermions

𝑞𝐿 = (𝑢𝐿, 𝑑𝐿)𝑇 ( 3, 2, 1/6 )

𝑙𝐿 = (𝜈𝐿, 𝑒𝐿)𝑇 ( 1, 2, -1/2 )

𝑢𝑅 ( 3, 1, 2/3 )

𝑑𝑅 ( 3, 1, -1/3 )

𝑒𝑅 ( 1, 1, -1 )

Table 1: The fields present in the SM and their representations under the SM gauge groups.

In table 1, the field content of the SM and how each field transforms under the gauge groups are pre-

sented. In principle, an infinite number of interactions could be written that respect the aforementioned

symmetries. However, there is one last ingredient to build the SM, which is the principle of renormalis-

ability. The SM is a renormalisable theory in the sense that it contains all the terms needed to absorb any

divergence it generates. In essence, this means that it is limited to interactions of mass dimension ≤ 4.

With this in mind, the Lagrangian for the SM can be written as:

LSM = − 1
4
𝐺𝐴
𝜇𝜈𝐺

𝐴 𝜇𝜈 − 1
4
𝑊𝑎

𝜇𝜈𝑊
𝑎 𝜇𝜈 − 1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 − 𝜃�̃�𝐴
𝜇𝜈𝐺

𝐴 𝜇𝜈

+ 𝑞𝛼𝐿𝑖 /𝐷𝑞𝛼𝐿 + 𝑙𝛼𝐿 𝑖 /𝐷𝑙𝛼𝐿 + 𝑢𝛼𝑅𝑖 /𝐷𝑢𝛼𝑅 + 𝑑𝛼𝑅𝑖 /𝐷𝑑𝛼𝑅 + 𝑒𝛼𝑅𝑖 /𝐷𝑒𝛼𝑅 (2.1)

+ �
𝐷𝜇𝜙

�† (𝐷𝜇𝜙) − 𝜇2 |𝜙 |2 − 𝜆 |𝜙 |4 −
�
𝑦𝑢𝛼𝛽𝑞

𝛼
𝐿
�𝜙𝑢𝛽𝑅 + 𝑦𝑑𝛼𝛽𝑞𝛼𝐿𝜙𝑑𝛽𝑅 + 𝑦𝑒𝛼𝛽𝑙𝛼𝐿𝜙𝑒

𝛽
𝑅 + h.c.

�
, (2.2)

where 𝛼 and 𝛽 are family (flavour) indices, 𝜙 = 𝑖𝜎2𝜙 , with 𝜎2 being the second Pauli matrix, and

𝐺𝐴
𝜇𝜈 = 𝜕𝜇𝐺

𝐴
𝜈 − 𝜕𝜈𝐺

𝐴
𝜇 + 𝑔3𝑓 𝐴𝐵𝐶𝐺𝐵

𝜇𝐺
𝐶
𝜈 (2.3)

𝑊𝑎
𝜇𝜈 = 𝜕𝜇𝑊

𝑎
𝜈 − 𝜕𝜈𝑊

𝑎
𝜇 + 𝑔2𝜀𝑎𝑏𝑐𝑊 𝑏

𝜇𝑊
𝑐
𝜈 (2.4)

𝐵𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇 , (2.5)

where 𝑓 𝐴𝐵𝐶 and 𝜀𝑎𝑏𝑐 correspond to the structure constants of 𝑆𝑈 (3) and 𝑆𝑈 (2) respectively and 𝑔3

and 𝑔2 are the couplings strenghts of the color and weak interactions respectively.

The SM also contains the QCD 𝜃 -term, 𝜃�̃�𝐴
𝜇𝜈𝐺

𝐴 𝜇𝜈 , where �̃�𝐴
𝜇𝜈 ≡ 1

2𝜖
𝜇𝜈𝛼𝛽𝐺𝐴

𝛼𝛽
and 𝜖𝜇𝜈𝛼𝛽 is the totally

antisymmetric Levi-Civita tensor. This interaction is a total derivative, however, it cannot be removed from
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CHAPTER 2. A SWIFT INTRODUCTION TO THE STANDARD MODEL

the Lagrangian since it is a topological term1.

The covariant derivative, which when acting on fermions is given in its contracted form /𝐷 ≡ 𝐷𝜇𝛾
𝜇 ,

is defined in the minus-sign convention as:

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔1𝑌𝐵𝜇 − 𝑖𝑔2
𝜎𝐼

2
𝑊 𝐼

𝜇 − 𝑖𝑔3
𝜆𝐴

2
𝐺𝐴
𝜇 , (2.6)

where 𝑔1 is the coupling strength associated with 𝑈 (1)𝑌 , 𝑌 is the hypercharge of the particle on which

the derivate is acting upon, 𝜎𝐼 are the Pauli matrices and 𝜆𝐴 the Gell-Mann matrices.

2.2 Electroweak symmetry breaking

Knowing that 𝜆 must be positive such that the Higgs potential is bounded from below, then, for a negative

𝜇2, the potential develops a minimum, resulting in a non-vanishing vacuum expectation value (vev), 𝑣 ,

for the Higgs boson. This originates the spontaneous symmetry breaking (SSB) of 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 →
𝑈 (1)em which explains why at low-energies we observe the electromagnetic interaction mediated by a

massless photon.

Without loss of generality, the vev of the Higgs can be chosen to be real and aligned with its lower

component such that:

𝜙 =
1√
2

�
0

ℎ + 𝑣

�
, (2.7)

where 𝑣 =
�
−𝜇2/𝜆 and ℎ is the Higgs boson. The choice in Eq. (2.7) corresponds to the unitary gauge,

where by the appropriate rotations, allowed by the gauge symmetry, we remove the remaining degrees

of freedom of the original Higgs doublet as they become the longitudinal components of 3 gauge bosons

which, in turn, become massive [11–13]. Indeed, by taking the kinetic term of the Higgs term in Eq. (2.1)

and considering now that the Higgs acquires a vev results in a mass term for 𝑊 1
𝜇 and 𝑊 2

𝜇 and mixing

between the gauge bosons𝑊3 and 𝐵:

�
𝐷𝜇𝜙

�† (𝐷𝜇𝜙) ⊃ 𝑔22
𝑣2

8

��
𝑊 1

𝜇

�2
+
�
𝑊 2

𝜇

�2
+
�
𝑔1
𝑔2
𝐵𝜇 −𝑊 3

𝜇

�2�
(2.8)

where we neglected terms with ℎ. The rotation to the mass basis results in:

𝑍𝜇 ≡ 𝑐𝜔𝑊
3
𝜇 − 𝑠𝜔𝐵𝜇 (2.9)

𝐴𝜇 ≡ 𝑠𝜔𝑊
3
𝜇 + 𝑐𝜔𝐵𝜇 , (2.10)

where 𝑐𝜔 ≡ cos𝜃𝜔 , 𝑠𝜔 ≡ sin𝜃𝜔 and 𝜃𝜔 is the Weinberg angle defined as

tan𝜃𝜔 =
𝑔1
𝑔2

. (2.11)

1One could think of considering terms of the same form with the other gauge bosons, but these are not physical as they
can be rotated away [9, 10].
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2.2. ELECTROWEAK SYMMETRY BREAKING

𝑢 𝑐 𝑡 𝑑 𝑠 𝑏 𝑒 𝜇 𝜏 𝑍 𝑊 ± ℎ

Mass (GeV) 0.002 1.27 173 0.005 0.093 4.2 0.0005 0.105 1.78 91.2 80.4 125

Table 2: Approximate mass of the SM particles. Values taken from Ref. [14], where the uncertainties
associated with these quantities can also be obtained.

Applying the rotations to Eq. (2.8) results in the mass terms

𝑚𝑊 ± =
𝑔2𝑣

2
, 𝑚𝑍 =

1
𝑐𝜔

𝑔2𝑣

2
, 𝑚𝐴 = 0 , (2.12)

where𝑊 ± ≡ (𝑊 1 ∓𝑊 2)2/√2. We see that the gauge boson 𝐴𝜇 , the photon, remains massless after

EWSB.

Upon considering the redefinitions of the gauge bosons, the covariant derivative becomes (up to the

coupling with the gluon which remains unaltered):

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔2
𝜎±
√
2
𝑊 ±

𝜇 − 𝑖
𝑔2
𝑐𝜔

�
𝜎3

2
− 𝑠2𝜔𝑄

�
𝑍𝜇 − 𝑖𝑔1𝑐𝜔𝑄𝐴𝜇 , (2.13)

where we see that 𝑔1𝑐𝜔 ≡ 𝑒 with 𝑒 the electromagnetic coupling strength and the electric charge is given

by 𝑄 ≡ 𝑇3 + 𝑌 where 𝑇3 is the third component of isospin. We also redefined 𝜎± ≡ (𝜎1 ± 𝜎2)/2.

2.2.1 Fermionic Sector

Upon EWSB the fermions also gain a mass from the Yukawa sector

Lyuk = − 1√
2
(ℎ + 𝑣)

�
𝑦𝑢𝛼𝛽𝑢

𝛼
𝐿𝑢

𝛽
𝑅 + 𝑦𝑑𝛼𝛽𝑑𝛼𝐿𝑑

𝛽
𝑅 + 𝑦𝑒𝛼𝛽𝑒𝛼𝐿𝑒

𝛽
𝑅 + h.c.

�
. (2.14)

To move to the mass basis of the fermions, a unitary rotation,𝑈 𝑓
𝐿,𝑅 , is applied to each chiral component

of each sector 𝑓 = {𝑢, 𝑑 , 𝑙} such that it diagonalizes the Yukawa couplings:

𝑈𝑢†
𝐿 𝑦𝑢𝑈𝑢

𝑅 = diag(𝑦𝑢, 𝑦𝑐, 𝑦𝑡 ) , (2.15)

𝑈𝑑†
𝐿 𝑦𝑑𝑈𝑑

𝑅 = diag(𝑦𝑑 , 𝑦𝑠, 𝑦𝑏) , (2.16)

𝑈 𝑙†
𝐿 𝑦

𝑙𝑈 𝑙
𝑅 = diag(𝑦𝑒, 𝑦𝜇, 𝑦𝜏 ) , (2.17)

resulting in masses of the fermions given by𝑚𝜓 = 𝑣𝑦𝜓/√2. The masses of fermions and other particles

are presented in table 2.

These rotations have no influence in the couplings with neutral gauge bosons since their effect is

𝑈
𝑓 †
𝐿,𝑅𝑈

𝑓
𝐿,𝑅 = 1. However, the couplings with the 𝑊 ± bosons, after taking into account the covariant

derivative in Eq. (2.13) become, in the quark sector,

LSM ⊃ − 𝑔

2
√
2
𝑢𝐿𝛾

𝜇
�
𝑈𝑢†
𝐿 𝑈𝑑

𝐿

�
𝑑𝐿𝑊

+
𝜇 + h.c. , (2.18)
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where
�
𝑈𝑢†
𝐿 𝑈𝑑

𝐿

�
≡ 𝑉CKM is the Cabibbo-Kobayashi-Maskawa (CKM) matrix which is responsible for

flavour-changing charged currents at tree-level in the SM. In the SM the CKM is a unitary matrix which

can be parametrized by 4 physical parameters, 3 mixing angles, 𝜃12, 𝜃13, 𝜃23 and a CP-violating phase,

𝛿 . Explicitly,

𝑉CKM =
����

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒

𝑖𝛿 𝑠23𝑐13

𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒
𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒

𝑖𝛿 𝑐23𝑐13

����
, (2.19)

where 𝑐𝑖 𝑗 = cos𝜃𝑖 𝑗 and 𝑠𝑖 𝑗 = sin𝜃𝑖 𝑗 .

In the lepton sector the couplings with the𝑊 boson would read:

L𝑆𝑀 ⊃ − 𝑔

2
√
2
𝑒𝐿𝛾

𝜇
�
𝑈 𝑙†
𝐿 𝑈

𝜈
𝐿

�
𝜈𝐿𝑊

+
𝜇 + h.c. , (2.20)

where we introduced a unitary rotation to the neutrinos 𝑈𝜈
𝐿 . The leptonic counterpart of the CKM matrix

is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, where 𝑈PMNS ≡ 𝑈 𝑙†
𝐿 𝑈

𝜈
𝐿 . However, since

within the SM there is no Yukawa term including the neutrinos, we are free to choose 𝑈𝜈
𝐿 = 𝑈 𝑙†

𝐿 resulting

in𝑈PMNS = 1. Therefore, there are no flavour changing currents, either charged or neutral, in the lepton

sector of the SM.

Note that even before EWSB there is freedom within the Lagrangian of Eq. (2.1) to rotate 𝑙𝐿 and 𝑒𝑅
such that the lepton Yukawa can always be written as a diagonal matrix. In the quark sector, since we

have two Yukawa terms including 𝑞𝐿, there is only freedom to take either 𝑦𝑢 or 𝑦𝑑 diagonal.

2.3 Shortcomings of the Standard Model

As hinted before, and in the title of this thesis, despite the incredible success of the SM at describing

most of the experimental data to this day, it does not provide satisfactory answers to everything that we

observe, prompting the study of BSM physics. Some of the shortcomings of the SM are:

• Gravity

The SM is incomplete as it does not provide a description of the gravitational interactions and

therefore does not describe all the observed forces.

• Neutrino oscillations

Neutrinos were observed to oscillate between their states in the flavour basis [15–22] implying that

they have a mass. The SM does not include a mass term for neutrinos and as such, explaining it

is among the most important directions for searches of BSM. From cosmological observations the

sum of their masses is bound to be
�
𝑚𝜈 < 0.12 eV [23].
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• Dark matter

The anomalous rotation velocity of galaxies far from their center prompted the conjecture that

there was more matter than what could be seen [24]. Other evidence for this dark matter (DM)

stems from studies on gravitational lensing of clusters of galaxies [25], the observed cosmic back-

ground [23] or the observation of the bullet cluster [26] – see Refs. [27, 28] for a complete overview

on the motivation for DM. However, the SM does not provide a viable DM candidate.

• Baryon asymmetry

Our observations of the Universe lead to the conclusion that it is dominated by baryons instead

of anti-baryons [29]. Sakharov derived 3 conditions which had to be met for baryogenesis [30] to

occur: baryon number violation, C and CP-violation and departure from thermal equilibrium. The

SM alone does not possess these ingredients (for instance, CP-violation present in the CKM matrix

is not enough to generate the observed domination of baryons [31]) and as such, baryogenesis

points to BSM scenarios.

• Hierarchy problem

A scalar can receive contributions to its mass which are proportional to arbitrarily heavy scales

(possibly corresponding to BSM solutions to any of the problems in this list). Therefore, to explain

the observation of a light Higgs boson within the SM, a huge fine-tuning between the bare parame-

ters of the theory and quantum corrections would be needed, deeming the theory unnatural. Note

that if there is no BSM physics, there is no HP.

• Strong CP-problem

From symmetry principles, the CP-violating interaction 𝜃�̃�𝐴
𝜇𝜈𝐺

𝜇𝜈
𝐴 can be written within the strong

sector of the SM. However, from measurements of the electric neutron dipole moment this term is

bounded to be |𝜃 | � 10−11 [32–34]. The SM does not provide any explanation for the smallness

of this dimensionless coupling.

• The flavour puzzle

As can be seen from table 2, the mass of fermions within the SM extends over six orders of

magnitude. This has no dynamical explanation within the SM and it is simply parametrized with

the degrees of freedom of the Yukawa couplings.

• Cosmology

The Λ-CDM model is currently the most successful at describing the cosmological history of the

Universe [23, 35]. However, some of its important aspects do not find any explanation within the

SM, such as inflation and dark energy (besides the already mentioned DM candidate) [35].

9



CHAPTER 2. A SWIFT INTRODUCTION TO THE STANDARD MODEL

• Flavour anomalies

While not yet a clear indication for new physics since these observations have yet to cross the 5𝜎

mark for discovery, recent experimental data regarding lepton flavour universality violation (LFUV)

in B-meson decays seem to point to BSM. Adding to these, a recent measurement of the anomalous

moment of the muon [36] seems to corroborate a deviation from the SM reported in 2006 [37].

Taken together, these two measurements result in a 4.2𝜎 deviation from the SM prediction [38].

Some of these shortcomings are a result of direct experimental evidence, such as neutrino masses and

dark matter, while others have to do with the fact that the SM does not explain its parameters dynamically,

such as the flavour puzzle or the hierarchy problem. Looking at the intersection between these two

approaches can be a fruitful direction since many models motivated by theoretical considerations can

provide solutions to other more experimentally driven shortcomings of the SM.

Let us look in more detail at the motivations to explore BSM physics which are most relevant for this

thesis.

2.3.1 The hierarchy problem

To understand why the HP only features in light elementary scalars, let us see what it means for a

parameter to be naturally small.

When a parameter is the sole responsible for breaking some symmetry, which is equivalent to saying

that when we take this parameter to zero a symmetry is recovered, all contributions to this quantity must

be proportional to itself. This is so since we assumed there was no other coupling capable of breaking the

referred symmetry. In this case, it is technically natural for the parameter to be small, following ’t Hooft’s

criteria [39].

Within the SM, by taking fermion (gauge boson) masses to zero one recovers a chiral (gauge) symme-

try. Therefore, contributions to the masses of these particles must be proportional to themselves and can

consequently be considered naturally small. The Higgs boson mass, on the other hand, is not responsible

for breaking any symmetry that we know of.

The Higgs mass can be written as

𝑚ℎ =𝑚0
ℎ + 𝛿𝑚ℎ , (2.21)

where𝑚ℎ is the observable Higgs mass,𝑚0
ℎ

the bare parameter in the Lagrangian and 𝛿𝑚ℎ the quantum

corrections. If 𝛿𝑚ℎ is very large, then a fine cancelation with 𝑚0
ℎ
≈ −𝛿𝑚ℎ would be required. If there

is no other BSM physics, the Planck scale seems like an unavoidable cut-off of the SM description which

would require a fine-tuning of one part in ∼ 1015 to explain the observed Higgs mass.

We can see the dependence of the Higgs mass on a scale of new physics explicitly through a simple

example. Consider extending the SM with a heavy fermion Ψ with mass 𝑀Ψ which, besides its kinetic
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term, couples to the Higgs through a Yukawa-like term as 𝑌𝜓Ψ𝜙Ψ. The contribution of this heavy degree

of freedom to the Higgs mass, calculated in dimensional regularization with the MS scheme, is given by:

𝛿𝑚ℎ =
3𝑌𝜓
16𝜋2𝑀

2
Ψ , (2.22)

where it becomes evident that the corrections are quadratically proportional to new physics. The same

qualitative result would arise if instead of a fermion we had considered a heavy scalar for instance.

Fine-tuning does not reflect an inconsistency within the theory, but it has served us well as a guiding

light in the recent past by hinting towards the existence of the 𝜌 -meson or the charm quark for example

[40]. Naturalness principles did not predict an exact value for the mass of a particle, but indicated where

to expect new physical phenomena. Indeed, the HP points to new physics at the TeV scale to protect

the Higgs mass. Two of the most popular solutions to the HP are supersymmetry (SUSY) and composite

Higgs models (CHM); in this thesis we will focus on the latter and introduce the composite framework in

section 3.1.

2.3.2 Dark Matter

To explain the DM evidences with a particle, the SM must be extended with a stable and electrically neutral

candidate. Furthermore, the DM candidate needs to account for the relic abundance observed today [23]:

ΩDMℎ
2 = 0.120 ± 0.001 , (2.23)

where Ω𝑖 corresponds to the ratio between the observed energy density of the component 𝑖 and the

critical density and ℎ is the reduced Hubble parameter [14]. Let us highlight the main features of some

of the most explored mechanisms to generate the correct relic density.

Consider a DM candidate, 𝜒1, with a mass around the EW scale which, in the early Universe, is in

thermal equilibrium with the SM bath through 2 ↔ 2 processes such as 𝜒1𝜒1 ↔ SMSM, where SM

corresponds any SM particle. The evolution of the DM number density, 𝑛, is given by the Boltzmann

equation:
𝑑𝑛

𝑑𝑡
+ 3𝐻𝑛 =

�
𝑛2eq − 𝑛2

�
�𝜎ann𝑣� , (2.24)

where 𝐻 is the Hubble parameter, 𝑛eq is the equilibrium number density which, for a non-relativistic

species follows 𝑛eq ∝ (𝑚𝜒1𝑇 ) (3/2)𝑒 (−𝑚𝜒1/𝑇 ) [41, 42], 𝜎ann is the annihilation cross-section, 𝑣 is the DM

velocity and �· · · � corresponds to a thermally averaged quantity. When the right-hand side of Eq. (2.24)

dominates, that is, when the interaction rate is sufficiently large, the DM number density tends to its

equilibrium value. However, as the Universe expansion, second term on the left-hand side of Eq. (2.24),

becomes more important, the DM becomes more dilluted and the annihilation process less efficient.

Indeed, when𝐻 ∼ �𝜎ann𝑣� 𝑛 , the DM decouples from the thermal bath and its comoving number density

becomes constant and equal to what we observe today. Therefore, knowing the annihilation cross-section

of a given DM candidate, one can solve numerically Eq. (2.24) to calculate the DM present day relic

11



CHAPTER 2. A SWIFT INTRODUCTION TO THE STANDARD MODEL

density. This mechanism for generating the DM relic density is called freeze-out. For weakly interacting

massive particles (WIMPs) that decouple from the thermal bath while non-relativistic, freeze-out occurs at

a temperature 𝑇𝐹 ∼𝑚𝜒1/20 [41–43].

Co-annihilation [44] happens when there is a particle, 𝜒2, with a similar mass than that of the DM

candidate, 𝜒1, which can enhance the annihilation cross-section. The processes which are now relevant

for setting the DM relic density are 𝜒1 𝜒1 ↔ SMSM , 𝜒1 𝜒2 ↔ SMSM and 𝜒2𝜒2 ↔ SMSM.

A rough estimation of the mass splitting needed for co-annihilation to play a significant role can

be obtained by assuming the same coupling strengths for the co-annihilation and standard annihilation

processes. Considering that, for the two particles to be in thermal equilibrium at freeze-out, we need

𝑚𝜒2 −𝑚𝜒1 ∼ 𝑇𝐹 , and, assuming𝑇𝐹 ≈𝑚𝜒1/20, the resulting mass splitting is Δ ≡ (𝑚𝜒2 −𝑚𝜒1)/𝑚𝜒1 =

0.05 [43–45].

If DM cannot reach thermal equilibrium in the early Universe, freeze-out cannot occur and another

mechanism is needed. This can happen in scenarios where DM couples extremely feebly to the SM,

hence why these candidates are called feebly interacting matter particles (FIMP) [41]. In such cases, the

DM initial abundance is assumed to be very small, usually set by an inflationary epoch and its current

day relic density can be set by a non-thermal process such as the decay of a heavier particle, which can

be a SM particle SM → 𝜒1𝜒1 or another BSM state, 𝜒2 → 𝜒1SM [41]. The relic density also reaches a

constant value when the particle decaying into DM is depleted from the thermal bath.

2.3.3 Flavour anomalies

Recently there have been multiple tests of LFUV which show some deviation from the SM prediction. The

most significant are the measurements of the ratios

𝑅 (∗)
𝐾 =

BR(𝐵 → 𝐾 (∗)𝜇𝜇)
BR(𝐵 → 𝐾 (∗)𝑒𝑒) and 𝑅 (∗)

𝐷 =
BR(𝐵 → 𝐷 (∗)𝜏𝜈𝜏 )
BR(𝐵 → 𝐷 (∗)ℓ𝜈ℓ)

, (2.25)

where ℓ = 𝑒, 𝜇. 𝑅 (∗)
𝐾 is related to a neutral 𝑏 → 𝑠 transition and happens at loop-level in the SM whereas

𝑅 (∗)
𝐷 corresponds to the charged 𝑏 → 𝑐 transition which in the SM takes place at tree-level. The combined

measurements of 𝑅𝐷 and 𝑅∗
𝐷 [46–54] point to a deviation from the SM prediction at 3.1𝜎 [55]. On the

other hand, the latest measurement of 𝑅𝐾 alone deviates from the SM prediction at 3.1𝜎 [56] and 𝑅∗
𝐾 at

2.5𝜎 [57].

Another interesting measurement is the apparent violation of unitarity in the first row of the CKM

matrix, called the Cabibbo angle anomaly (CAA). Measurements of 𝑉𝑢𝑠 from the leptonic kaon decay,

𝐾 → 𝜋𝑙𝜈 , are in tension with those obtained when assuming CKM unitarity and taking 𝑉𝑢𝑑 from super-

allowed 𝛽 decays. These results are quite dependent on the parametrization of the 𝛽 decays and the

corresponding significance has been quoted as being between 3 and 5 𝜎 [58, 59].

Finally, an anomalous magnetic moment of the muon, 𝑎𝜇 , has been observed in 2006 by the

Brookhaven National Laboratory [37]. More recently, the Fermilab Muon g-2 Experiment has also mea-

sured this quantity [36] and seems to find agreement with the previous observation of a larger value than
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the SM prediction. Combined, these results present a deviation from the SM of 4.2𝜎 with

Δ𝑎𝜇 = 𝑎EXP𝜇 − 𝑎SM𝜇 = (251 ± 59) × 10−11, (2.26)

where we used the SM prediction quoted in Ref. [38]. This calculation does not include the latest lattice

calculation of the hadronic vacuum polarization (HVP) contribution by the Budapest-Marseille-Wuppertal

collaboration [60] which seems to alleviate the tension. However, since this new result for the HVP also

introduces tensions in other results such as in the 𝑒+𝑒− → hadrons cross-section [61–64], it is commonly

neglected in the literature for now, until the situation becomes clearer.

2.4 Collider phenomenology

Some of the strongest constraints set on new physics come from collider experiments, which consist in

colliding beams of particles and studying the kinematic distributions resulting from these collisions. The

most energetic collider ever built is the Large Hadron Collider (LHC) [65] at CERN, which collides proton

beams at a center of mass energy of
√
𝑠 = 13 TeV.

A common prediction of BSM theories is the existence of new particles which could in principle be

produced (and decay) at the LHC, which would provide a clear evidence for new physics if ever observed.

Collider experiments are therefore a powerful avenue to test BSM scenarios. The idea is to simulate the

expected result from proton collisions given a benchmark model and compare it to the actual distribution

of data. We dedicate this section to introducing the generic features of colliders and the different tools used

in collider simulations aimed at searching for BSM scenarios such as the ones which we will introduce in

the next chapter.

2.4.1 Features and geometry of a detector

There are 4 main detectors within the LHC:

• ATLAS [66, 67] and CMS [68, 69], multi-purpose detectors which capture particles that fly in all

directions;

• LHCb [70, 71], a forward detector focusing on the study of heavy flavoured mesons;

• ALICE [72], a detector focused on heavy-ion physics.

ATLAS and CMS are the most relevant for this thesis as they are the more suitable to search for heavy

new particles. While the details among the two are not the same, the general setup is similar and we will

not make any distinctions when analyzing the geometry of the detectors.

These detectors are cylinder shaped, with the central axis aligned with the particle beam, the z-axis.

The flight directions of particles resulting from the original collision can be parametrized through the polar

angle, 𝜃 , and the azimuthal angle, 𝜙 ; see figure 1 for an illustrative diagram of the detector.
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Figure 1: Scheme of a detector [73]. The detector is centered around the beam, the 𝑧-axis. The azimuthal
angle, 𝜙 , goes around the beam and is defined as 𝜙 = 0 in the 𝑥 -axis. The pseudo-rapidity, 𝜂, is shown
as a function of the polar angle, 𝜃 .

It is useful to define the angular distance between two tracks Δ𝑅 ≡
�
(Δ𝜙)2 + (Δ𝑦)2, where 𝑦 is

the rapidity defined as

𝑦 ≡ 1
2
ln
𝐸 + 𝑝𝑧
𝐸 − 𝑝𝑧

, (2.27)

with 𝐸 and 𝑝𝑧 denoting the components of the four momentum 𝑝𝜇 = (𝐸 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧). In the limit of

massless particles, rapidity is equivalent to pseudo-rapidity, defined as 𝜂 ≡ −ln tan 𝜃
2 .

The components of the 4-momentum of particles resulting from the collision can be approximately

reconstructed through the deposit of energy along the calorimeters and through the measurement of the

curvature of the particle’s trajectory due to effect of a strong magnetic field. This curvature also allows

the distinguishing between positively and negatively charged particles.

An important observable which can be constructed from the 4-momentum of the reconstructed par-

ticles for an event (a collision) is the 2-vector missing transverse momentum

−→/𝑝𝑇 ≡ −
�
𝑖

−→𝑝𝑇 𝑖 , (2.28)

where −→𝑝𝑇 𝑖 ≡ (𝑝𝑥 , 𝑝𝑦) is the transverse momentum of particle 𝑖 and the quantity is summed over all

particles in an event. The related scalar quantity missing transverse energy (MET), denoted by /𝐸𝑇 , is

given by:

/𝐸𝑇 ≡ |−→/𝑝𝑇 | . (2.29)

The relevance of this observable has to do with the fact that, since the original colliding particles are

taken to be aligned with the 𝑧-axis, the transverse momentum of the initial system of particles is zero. By

momentum conservation, summing all the transverse momentum of the resulting particles should also

give a vanishing result. If that is not the case, then some part of the event must have gone unidentified

such as a neutrino or a BSM particle which did not decay within the detector.

Particle identification is done through the layered structure of the detector: different particles trans-

verse different layers. The innermost layer corresponds to a tracking system which identifies tracks (and

their curvature) from charged particles near the collision vertex. In the next layer, the electromagnetic
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calorimeter, electrons and photons deposit all of their energy. Hadrons transverse into the subsequent

hadronic calorimeter, where they lose their energy. Finally, muons are detected by the outermost layer.

As mentioned before, neutrinos do not interact with the detector leading to large MET signatures. Heavier

particles, such as the top, tau and the massive gauge bosons decay promptly within the detector and can,

in principle, be reconstructed according to the identified decay products.

Quarks and gluons are not identified at the detector level since these are only found within hadrons

(the only exception is the top-quark which decays before hadronizing). Jets are objects created to capture

the collection of particles arising from the same original quark or gluon through hadronization [74]. The

precise definition of a jet is not unique and several algorithms have been proposed in the literature to

characterize a jet. Clustering algorithms consider two distances to define a jet: 𝑑𝑖 𝑗 , a distance between

two hadrons 𝑖 and 𝑗 and 𝑑𝑖𝑏 , a distance from hadron 𝑖 to the beam. If the former is the smallest, then

the hadrons 𝑖 and 𝑗 are combined; otherwise, if 𝑑𝑖𝑏 is larger, then the object is taken from the hadron list

and considered a jet [73]. Within this thesis we will use the clustering anti-𝑘𝑡 algorithm [75].

2.4.2 Analysis setup

When looking for new physics at colliders, from the theoretical point of view we try to predict some excess

in a particular observable (the discriminating observable) when comparing with the SM prediction. This

way, an experimental analysis can search for that excess which, if found, could indicate BSM physics at

some confidence level.

To study how a BSM model behaves at colliders, the first step is to generate events, that is, use

Monte Carlo simulators to generate the predicted results from proton-proton collisions under a theoretical

scenario. At this level, these results can include photons, leptons, quarks and gluons (or any other stable

BSM state that is included in the model). The properties of the particles resulting from the collision

will follow the probability distribution of the underlying theory. We implement the theory under study

using FeynRules [76] and generate a Universal Feynman Output (UFO) [77] which can then be read by

MadGraph5_aMC@NLO [78] to simulate events following the chosen model. In general we are interested

in a particular final state from the BSM scenario, so the generation of events focuses in those which result

in such final state. Note that we also need to generate the SM predicted events for the same final state,

that is, the background of our analysis.

The hadronization and showering of the generated particles in the previous step is done through

Pythia [79] and is a model-independent computation, following mainly QCD calculations. Finally, the

detector response is modelled using Delphes [80], which parametrizes the momentum and pseudo-

rapidity thresholds for particles to be identified and considers the identification efficiencies (in terms of

these kinematic observables) of a realistic detector.

The final number of events from the signal is typically many orders of magnitude smaller than the

background from the SM. As such, a search strategy with selection cuts on several observables (other

than the discriminant one) must be developed such that these selections reject most of the SM events
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while keeping the majority of signal events. After the optimization of this strategy, a statistical analysis

on the discriminant variable can be performed to bound – or quote a discovery of – the BSM physics

scenario.

2.4.2.1 Statistical tools

The statistical analysis is performed according to the 𝐶𝐿𝑠 method [81]. This method introduces a test

statistic, 𝑄 , defined as the ratio between the likelihoods associated with the signal + background hypoth-

esis (𝐿𝑠+𝑏 ) – corresponding to new physics – and the background only hypothesis (𝐿𝑏 ):

𝑄 ≡ 𝐿𝑠+𝑏 (𝑛)
𝐿𝑏 (𝑛)

, (2.30)

where the likelihood functions are given by 𝐿𝑥 (𝑛) ≡ 𝑃 (𝑛 |𝑥), that is, the conditional probability for the

observed data, 𝑛, given a particular theory input 𝑥 , which is either signal+background, or background

only.

The confidence estimators on both hypotheses are given by

𝐶𝐿𝑠+𝑏 ≡ 𝑃𝑠+𝑏 (𝑄 ≤ 𝑄𝑜𝑏𝑠) , 𝐶𝐿𝑏 ≡ 𝑃𝑏 (𝑄 ≤ 𝑄𝑜𝑏𝑠) , (2.31)

where

𝑃𝑥 (𝑄 ≤ 𝑄𝑜𝑏𝑠) =
∫ 𝑄obs

−∞

𝑑𝑃𝑥
𝑑𝑄

𝑑𝑄 , (2.32)

and 𝑑𝑃𝑥
𝑑𝑄 the probability distribution function of the test statistic for the scenario 𝑥 (𝑠 + 𝑏 or 𝑠).

With this, if we obtain 𝐶𝐿𝑠+𝑏 ≤ 𝛼 = 0.05 for a particular model, this means that such model can be

excluded at a confidence level of 𝐶𝐿 = 1 − 𝛼 = 95%. However, when the distributions of 𝑃𝑏 and 𝑃𝑠+𝑏
are very close, as is the case for very small signal, the 𝐶𝐿𝑠+𝑏 method can actually exclude models which

it does not have sensitivity to [81]. It is therefore common to normalize 𝐶𝐿𝑠+𝑏 by 𝐶𝐿𝑏 , giving rise to the

𝐶𝐿𝑠 quantity:

𝐶𝐿𝑠 ≡ 𝐶𝐿𝑠+𝑏
𝐶𝐿𝑏

. (2.33)

To concretize the𝐶𝐿𝑠 method let us consider a simple case of a single bin experiment, based on the

predictions from the SM and a BSM model. The number of events in the specific bin follows a Poissonian

distribution with expected values 𝑠 for the BSM scenario and 𝑏 for the background SM prediction. Starting

from Eq. (2.30), we can write the test statistic in its more useful form, ln𝑄 , as:

𝑄 = 𝑒−𝑠
�
1 + 𝑠

𝑏

�𝑛
⇒ ln𝑄 = −𝑠 + 𝑛 ln

�
1 + 𝑠

𝑏

�
, (2.34)

where 𝑛 is the number of events observed. Since 𝑛 follows the same behaviour as ln𝑄 (up to a multi-

plicative factor and a shift), for simplicity let us choose 𝑛 as the test statistic. Consequently:

𝐶𝐿𝑠 =
𝑃𝑠+𝑏 (𝑛 ≤ 𝑛𝑜𝑏𝑠)
𝑃𝑏 (𝑛 ≤ 𝑛𝑜𝑏𝑠)

(2.35)

16



2.4. COLLIDER PHENOMENOLOGY

If zero events are observed in a bin in which zero background events are expected, then any model which

predicts more than 3 events could be excluded at 95% confidence level, since

𝐶𝐿𝑠 = 𝑒−𝑠 ≤ 0.05 (2.36)

⇒ 𝑠 > 2.99 . (2.37)

Conversely, a model which does not predict at least 3 events can never be excluded, even in the best

case scenario of the analysis being background-free.

For multi-binned analysis, we will use the OpTHyLiC [82] tool2 to obtain the sensitivity on new

physics following the 𝐶𝐿𝑠 method. Given a discriminant variable and the signal and background distri-

butions, the program outputs the signal strength modifier 𝜇𝑢𝑝 ≡ 𝜎up/𝜎 th, where 𝜎up corresponds to

the maximum cross-section allowed at a chosen confidence level and 𝜎 th is the theoretical cross-section,

given by MadGraph [78].

2The tool pyhf [83] was also used to cross-check some results.
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3

Model-driven approach

The search for new physics following a model-driven approach requires, by definition, the choice of a par-

ticular model which motivates the phenomenological signature under study. CHMs are good candidates

for such models as they have received considerable attention as viable explanations of the HP [84–88].

Furthermore, in their non-minimal realizations, CHMs can also provide solutions for other shortcomings of

the SM, such as presenting a DM candidate. Motivated by CHMs, we choose to look for vector-like leptons

(VLLs) not only because they are ubiquitous in composite scenarios (and other theoretical frameworks)

but also because they have not yet been extensively studied from the experimental point of view, with

most analysis making strong assumptions on their signature such as considering that they can only decay

to SM particles, which is not in general the case when the VLL is considered as part of a complete model.

With this in mind we will start this chapter by introducing the idea behind CHMs in section 3.1 and

building a particular realization based on the collective symmetry breaking mechanism, the Littlest Higgs

model with T-parity (LHT). Within this model, VLLs are predicted to exist with decays to other exotic

particles. As such, section 3.2 will be devoted to the construction of a collider search strategy to look

for VLLs with arbitrary branching ratios into SM decays and an extra decay channel to another BSM

particle. Note that this analysis can probe the LHT model but it is also applicable to a much wider range

of scenarios. Furthermore, we will also explore the complementarity between collider probes and other

observables in section 3.2.5. Section 3.2 is based in the work published in Ref. [3].

3.1 The composite Higgs idea

CHMs provide a natural solution to the hierarchy problem by considering that the Higgs boson is not an

elementary light scalar, but is instead a bound state of a strongly interacting new sector. The lack of

experimental evidence for such a sector so far points to a scale of compositeness above the TeV. In order

for it to be lighter than this scale, the Higgs is predicted as a pseudo-Nambu Goldstone boson (pNGB)

arising from a spontaneously broken continuous symmetry of this sector.

Considering the Higgs as a pNGB is quite an alluring idea since it finds a clear analogy within the

SM. At low energies, the pion seems to be a light elementary scalar and would therefore suffer from a
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hierarchy problem. However, at smaller distances we find out that the pion is in fact a composite particle

which can be seen as a pNGB arising from the chiral symmetry breaking.

In general, from the Goldstone theorem [89], a spontaneously broken continuous symmetry G → H ,

where H is a subgroup of G, implies the existence of massless scalars, the Nambu-Goldstone bosons

(NGBs). These NGBs parametrize the degenerate vacua of the SSB and as such, each NGB is associated

with a broken generator of the coset G/H resulting in 𝑛 = dim(G) − dim(H) NGBs. For the Higgs

boson to be explained through this mechanism, the coset G/H must include at least 4 NGBs which must

form a doublet under 𝑆𝑈 (2).
If part of the original symmetry is local, the NGBs can be removed with the appropriate field redefini-

tions, giving mass to the gauge bosons associated with the broken generators. This process was already

seen in the SM electroweak (EW) transition, in which the SSB 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 → 𝑈 (1)em originated

3 NGBs which became the longitudinal degrees of freedom of the 𝑊 +,𝑊 − and 𝑍 bosons. In general,

taking G̃ as the gauged subgroup of G and H̃ as the gauged subgroup of H , 𝑛𝑔 = dim(G̃) − dim(H̃ )
NGBs are therefore unphysical and 𝑛−𝑛𝑔 remain in the theory. The effective description of NGBs arising

from SSB follows from employing the Callan-Coleman-Wess-Zumino formalism [90, 91].

The NGBs have an exact shift-symmetry [9, 92] which implies that another ingredient is needed to

describe the SM Higgs, which has shift-breaking couplings such as a mass, a quartic coupling and Yukawa

terms. Indeed, in order to explain the Higgs boson as arising from a SSB, the symmetry must be explicitly

broken so that terms breaking the shift-symmetry can be generated. In this case the NGBs are actually

called pseudo-Nambu Goldstone bosons (pNGBs) as they arise from an approximate symmetry. There

are different strategies on how to explicitly break the symmetry and in this section we will go over the

collective symmetry breaking mechanism, which is at the heart of Little Higgs models [93, 94].

Collective symmetry breaking was proposed as a method to explicitly break the symmetry such that

the common quadratic divergences that generate a mass to the Higgs boson are actually alleviated to

logarithmic divergences. This mechanism naturally accounts for a separation between the EW scale and

the compositeness scale and allows for heavier fields to be responsible for generating the Higgs mass

than in typical CHM scenarios. Note that when we mention quadratic or logarithmic divergences we are

following the nomenclature usually used in the literature which is commonly working with the cut-off reg-

ulator scheme. Statements about these divergences are not scheme-dependent and within dimensional

regularization with the MS scheme (where divergences are subtracted by appropriate counterterms), we

obtain quadratic or logarithmic dependences on the masses of the heavy particles contributing to the

Higgs mass, as we saw in Eq. (2.22).

3.1.1 Collective symmetry breaking

Let us introduce the mechanism of collective symmetry breaking through a toy model [92, 95]. Consider

the spontaneous symmetry breaking pattern 𝑆𝑈 (3) × 𝑆𝑈 (3) → 𝑆𝑈 (2) × 𝑆𝑈 (2), which gives rise to

10 NGBs. The SSB is triggered by two fields, 𝜙1 and 𝜙2, which acquire a vev, each responsible for one
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of the 𝑆𝑈 (3) → 𝑆𝑈 (2) breakings. The fields can be parametrized as

𝜙1 = 𝑒Π1/𝑓 ���
�
0

0

𝑓

���
�
, 𝜙2 = 𝑒Π2/𝑓 ���

�
0

0

𝑓

���
�
, (3.1)

where the Goldstone matrices are given by Π1,2 ≡ 𝜋𝑎1,2𝑇
𝑎 where 𝜋𝑎 are the NGBs and 𝑇𝑎 the broken

generators of the SSB, and 𝑓 is the magnitude of both vevs, which, for simplicity, we assumed to be

aligned. Both Goldstone matrices will include a complex doublet under 𝑆𝑈 (2), ℎ, which we will indentify

with the Higgs:

Π𝑖 =

�
02×2 ℎ

ℎ† 0

�
, (3.2)

where 𝑖 = 1, 2. We neglected the remaining 6 NGBs since they will either become the longitudinal degree

of freedom of massive gauge bosons or are simply not relevant for the analysis.

The symmetry is explicitly broken by gauging the diagonal subgroup of 𝑆𝑈 (3) × 𝑆𝑈 (3), 𝑆𝑈 (3)𝐷 .

The corresponding NGB Lagrangian is given by:

L = |𝐷𝜇𝜙1 |2 + |𝐷𝜇𝜙2 |2 , (3.3)

such that the gauge interactions between two gauge bosons and two scalar fields are given by

L ⊃ |𝑔1𝑋𝜇𝜙1 |2 + |𝑔2𝑋𝜇𝜙2 |2 , (3.4)

where 𝑋𝜇 corresponds to the 𝑆𝑈 (3)𝐷 gauge bosons. Under a generic transformation of this symmetry,

𝑈 = 𝑒𝛼
𝑎𝑇𝑎 , the fields transform as [95]:

𝜙1 → 𝑒𝑖𝛼
𝑎
1𝑇

𝑎
𝜙1 𝜙2 → 𝑒𝑖𝛼

𝑎
2𝑇

𝑎
𝜙2 𝑋𝜇 → 𝑒−𝑖𝛼

𝑎𝑇𝑎𝑋𝜇𝑒
𝑖𝛼𝑎𝑇𝑎 , (3.5)

which leaves the Lagrangian (3.3) invariant when 𝛼𝑎1 = 𝛼𝑎2 = 𝛼𝑎, as expected.

Let us now consider a scenario in which the second term in (3.4) does not exist, that is 𝑔2 = 0. In this

case, we must have 𝛼𝑎1 = 𝛼𝑎 in order to keep the Lagrangian invariant; however, 𝜙2 is free to transform

with a different 𝛼𝑎2 . As such, the theory still possesses an 𝑆𝑈 (3) ×𝑆𝑈 (3) symmetry which has not been

explicitly broken. Indeed, each of the terms in (3.3) conserves by itself 𝑆𝑈 (3) × 𝑆𝑈 (3). Only when both

terms exist, 𝑔1 ≠ 0 and 𝑔2 ≠ 0, is the original symmetry actually explicitly broken to 𝑆𝑈 (3)𝐷 , since in

that case 𝜙1 and 𝜙2 must rotate with the same angle 𝛼𝑎1 = 𝛼𝑎2 = 𝛼𝑎. The mechanism through which

more than one coupling is needed in order to explicitly break a symmetry is called collective symmetry

breaking (CSB).

Due to the CSB, any contribution to the mass of the pNGBs must therefore be proportional to both 𝑔1
and𝑔2. Diagrammatically, this results in one extra propagator, which generates a logarithmically divergent

contribution at one-loop. This can be seen from the diagram in figure 2. Simply from dimensional
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Figure 2: Diagram contributing to the pNGB mass term in collective symmetry breaking; see text for
details.

analysis this can also be predicted: since any contribution must be proportional to both couplings, it

must be contribution to the quartic coupling involving both fields, |𝜙†
1𝜙2 |2, which when expanded gives

|𝜙†
1𝜙2 |2 = 𝑓 4 − 2𝑓 2ℎ†ℎ + · · · . Any contribution to this quantity must be dimensionless and therefore, at

most it can be logarithmically divergent.

The CSB method can also be applied in the fermionic sector, by embedding the SM doublet 𝑄𝐿 and

an additional top partner,𝑇 , in a 3 of 𝑆𝑈 (3)𝐷 , Ψ = (𝑡𝐿,𝑏𝐿,𝑇 ). Including also two right-handed fermions

𝑡1,2, singlets of 𝑆𝑈 (3)𝐷 , we can write the fermionic Lagrangian as

L 𝑓 𝑒𝑟𝑚𝑖𝑜𝑛𝑖𝑐 = 𝜆1Ψ𝜙1𝑡1 + 𝜆2Ψ𝜙2𝑡2 + h.c. . (3.6)

After expanding 𝜙1,2, a combination of 𝑡1 and 𝑡2 will give rise to the SM right-handed top quark and another

combination will correspond to the right-handed counterpart of the top partner.

Following the same reasoning as in the gauge sector, in order to explicitly break the 𝑆𝑈 (3) × 𝑆𝑈 (3)
symmetry, both 𝜆1 and 𝜆2 must be non-zero. Otherwise, if 𝜆1 (𝜆2) is zero, then 𝜙2 (𝜙1) would be able to

rotate freely, resulting in an 𝑆𝑈 (3) × 𝑆𝑈 (3) symmetry. Therefore, any contribution to the pNGBs mass

must once again be proportional to both couplings which generates a contribution at most logarithmically

divergent; see figure 3.

3.1.2 Littlest Higgs

The Littlest Higgs model (LHM) is amongst the most economical and realistic applications of the CSB

mechanism and therefore it has been widely studied in the literature [96–98]. This model predicts that

the Higgs arises as a pNGB after the SSB 𝑆𝑈 (5) → 𝑆𝑂 (5) at the scale 𝑓 ∼ 1 TeV after a field in the

symmetric representation of 𝑆𝑈 (5) develops a vev,

Σ0 = 𝑓
����
02×2 0 12×2
0 1 0

12×2 0 02×2

����
. (3.7)

We parametrize the resulting 14 NGBs in a similar fashion to what was done before:

Σ(𝑥) = 𝑒2𝑖Π/𝑓 Σ0 , (3.8)
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Figure 3: Diagram contributing to the pNGB mass term in the fermionic sector in collective symmetry
breaking.

where Π = 𝜋𝑎𝑇𝑎, 𝜋𝑎 are the NGBs and 𝑇𝑎 the associated broken generators of 𝑆𝑈 (5).
The source of explicit symmetry breaking comes from the gauging of an [𝑆𝑈 (2) ×𝑈 (1)]2 subgroup

of 𝑆𝑈 (5), whose generators are given by

𝑄𝑎
1 =

1
2

����
𝜎𝑎 0 0

0 0 0

0 0 02×2

����
, 𝑌1 =

1
10

diag(3, 3,−2,−2,−2) ,

(3.9)

𝑄𝑎
2 =

1
2

����
02×2 0 0

0 0 0

0 0 −𝜎𝑎∗
����
, 𝑌2 =

1
10

diag(2, 2, 2,−3,−3) ,

where the subscripts 1 and 2 denote each of the gauged 𝑆𝑈 (2) ×𝑈 (1).
The spontaneous breaking induced by the vev of Eq. (3.7) results in the breaking of the gauged group

to a single copy of 𝑆𝑈 (2) × 𝑈 (1). One combination of the [𝑆𝑈 (2) × 𝑈 (1)]2 will belong to the set

of unbroken generators and its corresponding gauge bosons will be identified with the SM ones; another

combination will be found within the set of broken generators and the corresponding gauge bosons will eat

4 of the NGBs becoming massive. The gauge bosons resulting from these combinations can be written

as: �
𝑊𝜇

𝑊 �
𝜇

�
=

�
cos𝛼 − sin𝛼

sin𝛼 cos𝛼

� �
𝑊 1

𝜇

𝑊 2
𝜇

�
,

�
𝐵𝜇

𝐵�𝜇

�
=

�
cos𝛼� − sin𝛼�

sin𝛼� cos𝛼�

� �
𝐵1
𝜇

𝐵2
𝜇

�
, (3.10)

where tan𝛼� = 𝑔�2/𝑔�1 and tan𝛼 = 𝑔2/𝑔1 with𝑔1 and𝑔2 corresponding to the gauge couplings of 𝑆𝑈 (2)1
and 𝑆𝑈 (2)2 respectively and 𝑔�1 and 𝑔�2 corresponding to the gauge couplings of 𝑈 (1)1 and𝑈 (1)2. The

combinations𝑊𝜇 and 𝐵𝜇 are the SM gauge bosons, whereas𝑊 �
𝜇 and 𝐵�𝜇 are the heavy gauge bosons.
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Finally, the NGBs matrix is given by:

Π =

����������
�

−𝜔0

2 − 𝜂√
20

−𝜔+√
2

−𝑖 𝜋+√
2

−𝑖Φ++ −𝑖 Φ+√
2

−𝜔−√
2

𝜔0

2 − 𝜂√
20

𝑣+ℎ+𝑖𝜋0

2 −𝑖 Φ+√
2

−𝑖Φ0+Φ𝑃√
2

𝑖 𝜋
−√
2

𝑣+ℎ−𝑖𝜋0

2

�
4
5𝜂 −𝑖 𝜋+√

2
𝑣+ℎ+𝑖𝜋0

2

𝑖Φ−− 𝑖 Φ
−√
2

𝑖 𝜋
−√
2

−𝜔0

2 − 𝜂√
20

−𝜔−√
2

𝑖 Φ
−√
2

𝑖Φ0+Φ𝑃√
2

𝑣+ℎ−𝑖𝜋0

2 −𝜔+√
2

𝜔0

2 − 𝜂√
20

����������
�

, (3.11)

where 𝜙 = (−𝑖𝜋+, (𝑣 + ℎ + 𝑖𝜋0)/√2)𝑇 is the SM Higgs and Φ is an 𝑆𝑈 (2)𝐿 triplet. These pNGBs

remain in the physical spectrum of the theory, whereas 𝜔±, 𝜔0 and 𝜂 become the longitudinal degrees

of freedom of the heavy gauge bosons.

The presence of CSB can be seen through the way the [𝑆𝑈 (2) ×𝑈 (1)]2 generators are embedded

in 𝑆𝑈 (5). If we take 𝑔2 = 𝑔�2 = 0 (𝑔1 = 𝑔�1 = 0), then the generators 𝑄𝑎
1 (𝑄𝑎

2 ) and 𝑌1 (𝑌2) will commute

with an 𝑆𝑈 (3) group embedded in the lower right (upper left) corner of an 𝑆𝑈 (5) matrix. That is, if

only one of the copies of 𝑆𝑈 (2) ×𝑈 (1) is gauged, then an 𝑆𝑈 (3) × 𝑆𝑈 (2) ×𝑈 (1) symmetry remains

unbroken which prevents the generation of the Higgs mass. Only when all gauge couplings are taken to

be non-zero is the symmetry explicitly broken to 𝑆𝑈 (2) ×𝑈 (1), allowing a mass generation to the Higgs

boson.

3.1.3 Littlest Higgs model with T-parity

Despite its success in explaining a light Higgs boson, the LHM introduces several problems when com-

pared with experimental data [97–99]. In particular, the tree-level exchange of the heavy gauge bosons

generates 4-fermion operators, constrained by LEP data, and also modifies the couplings of the Higgs

boson to SM fermions. Furthermore, this tree-level exchange of heavy gauge bosons as well as a non-zero

vev of the triplet pNGB, Φ, contribute to electroweak precision observables (EWPO). All things considered,

Ref. [98] found that the scale 𝑓 had to be ≥ 4 TeV which would still demand a significant fine-tuning to

account for a light Higgs, going directly against the main motivation of these models.

In order to avoid these tree-level contributions, an additional discrete symmetry can be added to

the theory, known as T-parity [100–102]. The Littlest Higgs with T-parity (LHT) is therefore endowed

with a symmetry under which most of the new particles are T-odd. This T-transformation will act as an

automorphism between the two copies of 𝑆𝑈 (2) ×𝑈 (1) such that:

𝐺1
T←→ 𝐺2 . (3.12)

For the gauge sector to be T-even, the gauge couplings must therefore be the same 𝑔1 = 𝑔2 = 𝑔 and

𝑔�1 = 𝑔�2 = 𝑔�. From Eq. (3.10) this results in:

𝑊 ± =
𝑊1 ±𝑊2√

2
, 𝐵± =

𝐵1 ± 𝐵2√
2

, (3.13)
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where the 𝑊 + and 𝐵+ are T-even and correspond to the SM gauge bosons, whereas 𝑊 − and 𝐵− are

T-odd. We relabel the latter to𝑊𝐻 and 𝐵𝐻 to refer to the fact that they must be heavy in comparison with

the former T-even combination. Invariance under T-parity forbids tree-level exchange of a heavy gauge

boson (T-odd) by external SM particles (T-even), therefore relaxing the main constraints on the LHM. Any

contribution of the heavy gauge bosons to electroweak precision observables (EWPO) can only occur at

loop-level.

On the other hand, the Goldstone matrix can be taken to transform as:

Π
T−→ −ΩΠΩ (3.14)

where Ω = diag(−1,−1, 1,−1,−1). This ensures that the Higgs boson is T-even, whereas the pNGB

triplet, Φ, is T-odd. Consequently, the trilinear coupling 𝐻 †Φ𝐻 is forbidden, preventing the triplet from

acquiring a vev.

Upon EWSB, when the Higgs acquires a vev, the heavy gauge bosons in their mass basis are given

by:

𝑊 ±
𝐻 =

1√
2

�
𝑊 1

𝐻 ∓ 𝑖𝑊 2
𝐻

�
,

�
𝑍𝐻

𝐴𝐻

�
=

�
1 −𝑥𝐻 𝑣2

𝑓 2

𝑥𝐻
𝑣2

𝑓 2
1

� �
𝑊 3

𝐻

𝐵𝐻

�
, (3.15)

where

𝑥𝐻 =
5𝑔𝑔�

4 (5𝑔2 − 𝑔�2) . (3.16)

Their masses are [103, 104]:

𝑀𝑊𝐻 = 𝑀𝑍𝐻 = 𝑔𝑓

�
1 −

�
𝑣

𝑓

�2�
, (3.17)

𝑀𝐴𝐻 =
𝑔�√
5
𝑓

�
1 − 5

8

�
𝑣

𝑓

�2�
. (3.18)

For the light gauge bosons, EWSB follows the same procedure as in the SM. Note that 𝐴𝐻 is the lightest

T-odd particle (LTP) introduced in the LHT [103, 105, 106] and it is therefore stable, resulting in a MET

signature at colliders. This is relevant since the decay of all T-odd particles follows a chain which always

ends up in the LTP, 𝐴𝐻 , and SM particles. Furthermore, given that 𝐴𝐻 is neutral, it is also a viable dark

matter candidate. In section 3.2.5 we will study this possibility.

In order to implement T-parity in the fermionic sector we introduce two doublets 𝜓1 (a doublet of

𝑆𝑈 (2)1) and𝜓2 (a doublet of 𝑆𝑈 (2)2) for each SM fermionic doublet. 𝜓1 and𝜓2 are then embedded in

incomplete 𝑆𝑈 (5) multiplets

Ψ1 =
����
𝜓1𝐿

0

0

����
and Ψ2 =

����
0

0

𝜓2𝐿

����
. (3.19)
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Under T-parity, these multiplets transform as

Ψ1
T←→ ΩΣ0Ψ2 , (3.20)

where Ψ1 + ΩΣ0Ψ2 is T-even and can therefore be recognized as a SM doublet and Ψ1 − ΩΣ0Ψ2 is

T-odd and is identified with the LH component of a new particle. In order to give a mass to these heavy

doublets we introduce the RH components which will also transform as a doublet under 𝑆𝑈 (2) giving

rise to vector-like fermions. The RH must be included in a complete multiplet, Ψ𝑅 , which will result in

the introduction of other fields. Details on the phenomenological effects of these extra fields and on the

remaining pieces of the LHT Lagrangian can be found in Refs. [104, 107–109]. While important to

understand the complete framework of the model, these details will not be relevant for the analysis which

we aim to perform in this work.

The heavy femions acquire their mass through the Lagrangian

Lk = −𝑘 𝑓
�
Ψ2𝜉 + Ψ1Σ0𝜉

†
�
Ψ𝑅 + h.c. , (3.21)

where 𝜉 = 𝑒𝑖Π/𝑓 and transforms under T-parity as 𝜉 → Ω𝜉†Ω. The mass of the heavy T-odd vector-

like fermions is given by 𝑚𝜓𝐻 =
√
2𝑘 𝑓 [104, 108]. Note that 𝑘 is not necessarily universal and can in

principle have flavour indices [104].

Within the fermionic sector, CSB is only included for the top quark. This is done by including yet

another pair of heavy fermions, 𝑇1 and𝑇2, and including them in the original Ψ1,2 of Eq. (3.19) such that

Ψ1 =
����
𝑞1𝐿

𝑇1

0

����
and Ψ2 =

����
0

𝑇2

𝑞2𝐿

����
. (3.22)

The Lagrangian responsible for the mass generation of the remaning fermions is given by

L𝑌 =
𝑖𝜆1

2
√
2
𝑓 𝜖𝑥𝑦𝑧𝜖𝑟𝑠

�
(Ψ1)𝑥 (Σ)𝑟𝑦 (Σ)𝑠𝑧 + (Ψ2Σ0Ω)𝑥 (�Σ)𝑟𝑦 (�Σ)𝑠𝑧� 𝑡𝑅

+ 𝜆2𝑓
�
𝑇1𝐿𝑇1𝑅 +𝑇2𝐿𝑇2𝑅

�
h.c. , (3.23)

where Σ
T−→ �Σ = ΩΣ0Σ

†Σ0Ω and 𝑥,𝑦, 𝑧 and 𝑟 , 𝑠 sum over the indices {3, 4, 5} and {1, 2} respectively.

The terms in Eq. (3.23) exist for all SM fermions except for the term proportional to 𝜆2 which is only present

for the top sector to introduce CSB. If only 𝜆2 is non-zero the Higgs is decoupled from the top-sector; if

𝜆1 is the only non-zero coupling, a 𝑆𝑈 (3) symmetry remains which would protect the Higgs mass.

3.2 Vector-like leptons with exotic decays

The LHT introduced several new particles, providing a rich phenomenological landscape. Amid the ex-

pected signatures, vector-like fermions (VLFs) are among the most interesting as they are prevalent in
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many other CHMs realizations. For instance, in partial compositeness, the main source of explicit sym-

metry breaking arises from linear couplings between the SM fermions and heavy vector-like fermionic

partners which are therefore crucial in generating the Higgs mass and Yukawa terms [110].

Furthermore, new heavy fermions are well motivated from a phenomenological perspective as they

can function as mediators between the SM and a dark sector [111, 112]; they can help explain the

anomalous magnetic moment of the muon [113, 114]; they can be related with explanations of LFUV

anomalies [115–117] or of the mass generation of neutrinos [118, 119], etc.

For these reasons, the phenomenological implications of VLFs have been studied in the literature,

with a particular focus on vector-like quarks (VLQs) which can be strongly produced at proton-proton

colliders. On the other hand, VLLs have received much less attention due to their lower cross-section

through electroweak pair production. Moreover, their mixing with the SM leptons is constrained by EWPO

[120, 121], reducing the possibility of sizable single-production at colliders. This has resulted in modest

limits obtained for VLLs [122–126] (when compared with VLQs), which is why we will focus on developing

a strategy to probe VLLs at current and future collider experiments.

Within currently available experimental searches for VLLs, these have always been assumed to decay

to SM final states through a mixing term between the VLL and a SM lepton. However, this is not always

the case as, when considering the VLL as part of a fully-fledged model, other predicted BSM states can

drastically change its phenomenology. As we saw in the LHT, T-parity actually forbids VLLs from decaying

solely to SM particles; instead, VLLs decay to the neutral heavy gauge boson, 𝐴𝐻 , and a SM lepton.

Taking 𝐴𝐻 as the lightest T-odd particle, the pair-production of VLLs results in a signature of MET and

2 SM leptons, similarly to what happens in slepton pair-production [127] (up to the spin of the particles

involved).

More interestingly, in this section we develop a strategy which expands upon these scenarios to

consider a phenomenological setup in which VLLs decay with arbitrary branching ratios (BRs) to 𝑊𝜈ℓ ,

𝑍ℓ , 𝐻ℓ and 𝐴𝐻ℓ , where ℓ = 𝑒 , 𝜇. This general scenario has not been studied in the past from the

collider point of view and is well motivated by LHT with T-parity violation [108, 128, 129] or FIMP DM

models [112]. Nonetheless, given that the results can be presented as a function of arbitrary branching

ratios, the original limiting scenarios such as the SM decaying VLL or the LHT VLL can be easily recovered.

Furthermore, if𝐴𝐻 has a lifetime larger than the age of the Universe (besides being stable at detector

scales) it is a viable dark matter candidate. This is exactly the case of the LHT, in which 𝐴𝐻 is stabilized

through T-parity. As such, we will also explore this scenario, studying the complementarity between

astrophysical bounds from DM experiments and collider searches.

3.2.1 Setup

The generic setup consists of a VLL singlet1 with electric charge -1, 𝐸𝐿,𝑅 , and mass 𝑀𝐸 , and a massive

vector boson 𝐴𝜇
𝐻 , which is taken to be stable at detector scales with mass 𝑀𝐴𝐻 < 𝑀𝐸 , so that the decay

1As will be noted in the section 3.2.4, results are easily applied to a doublet.
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of 𝐸 into 𝐴𝐻 and a SM lepton is kinematically possible.

To show that arbitrary branching ratios can arise, an explicit realization of our model is given in

Appendix A – details are, however, not relevant for the collider analysis. We will assume that 𝐸 decays

are given by the branching ratios BR(𝐸 → ℓ𝐻 ), BR(𝐸 → 𝜈ℓ𝑊 ), BR(𝐸 → ℓ𝑍 ) and BR(𝐸 → ℓ𝐴𝐻 ),
where ℓ stands for either electron or muon2. These 4 BRs add to unity but are otherwise arbitrary; decays

into SM particles are usually taken to be fixed by the quantum numbers of the VLL but mixing between

heavy states can lead to different decay patterns [133].

We consider Drell-Yan pair production of 𝐸. From the possible decay channels, the easiest to detect

are 𝐸 → ℓ𝑍 and 𝐸 → ℓ𝐴𝐻 . The decay into 𝜈ℓ𝑊 is challenging to distinguish from the overwhelming

𝑊 + jets background whereas the one into ℓ𝐻 suffers from similarly overwhelming backgrounds (and

a small BR of the Higgs to easy to detect final states). Thus, we will focus on the cleaner channels

BR(𝐸 → ℓ𝑍 ) and BR(𝐸 → ℓ𝐴𝐻 ); regardless we will show that our results are mostly insensitive to the

two extra BRs.

There are experimental analyses sensitive to these discovery channels: searches for VLLs which

decay into ℓ𝑍 [124] and slepton searches [127]. We need to recast both since they do not account for

the contamination of the other decay channels in our general setup. We will also update the analysis to

ℓ𝑍 to take advantage of the current higher center of mass energy.

3.2.2 Recasting existing analyses

Given that we aim to interpolate between the cases in which the VLL decays 100% of the time through

the MET channel or 100% to SM final states, our starting point is to reproduce searches for these two

limiting scenarios. For event simulation we follow the approach introduced in section 2.4.2. The VLL

model is implemented in FeynRules [76] and event generation (at leading order) is performed with

MadGraph5_aMC@NLO [78] using the NNPDF23LO [134] parton distribution functions. Due to the large

statistics required for these analysis, we perform cuts at the level of generation. These cuts (which are

always mentioned along the text) were tested to verify their minimal impact on the final yield of events

after the selection cuts. Showering and hadronization are done using Pythia8 [79], while the detector

response is simulated with Delphes 3 [80]. The default CMS detector card is used for the LHC analysis

and the HL-LHC detector card for the
√
𝑠 = 27 TeV. The 95% C.L. limits are calculated following the 𝐶𝐿𝑠

[81] method using OpTHyLic [82].

3.2.2.1 Decays into SM particles

To explore the limiting case of a VLL decaying only to SM particles we reproduce the analysis in Ref.

[135], an ATLAS analysis performed at
√
𝑠 = 8 TeV and an integrated luminosity of L = 20.3 fb−1,

searching for a multi-lepton final state arising from a singlet VLL decaying to 𝑍ℓ . The production and

2Decays to SM final states with taus have been considered in [130–132].
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Figure 4: Drell-Yan pair production of 𝐸 (VLL singlet) and the corresponding decay channels.

decay processes are shown in figure 4. The strategy which the analysis follows is to select 2 opposite sign

same flavour (OSSF) leptons that reconstruct a 𝑍 boson and a third lepton with a Δ𝑅 < 3 away from the

reconstructed 𝑍 boson. We will call this third lepton, which respects the Δ𝑅 condition, the off-𝑍 lepton.

The description of all considered cuts and the corresponding efficiencies are presented in table 3.

The discriminant variable is chosen to be Δ𝑚 =𝑚3ℓ−𝑚ℓℓ , where𝑚ℓℓ , the mass of the reconstructed

𝑍 boson, is subtracted from𝑚3ℓ , the invariant mass of the 3-lepton system. Moreover, signal events will

be distinguished in 3 exclusive signal regions:

• 4-lepton (4ℓ) region, in case the event has at least 4 identified leptons;

• 3-lepton + 𝑗 𝑗 (3ℓ + 𝑗 𝑗 ) region, when precisely 3 leptons are identified together with 2 jets, 𝑗 , with

an invariant mass, 𝑚𝑗 𝑗 , which respect 𝑚𝑊 − 20 GeV < 𝑚𝑗 𝑗 < 150 GeV, where 𝑚𝑊 is the𝑊

boson mass;

• 3-lepton (3ℓ) only region, for events in which exactly 3 leptons are identified but which do not fit in

the previous criteria.

The analysis is performed separately for a VLL coupling to first or second generation leptons which

corresponds to the off-𝑍 lepton being either an electron or a muon. The most important backgrounds to

consider are𝑍𝑍 ,𝑊𝑍 and𝑍𝛾 , for which the simulation accurately reproduces the shape presented by the

Selection Cuts 𝑍𝑍 𝑊𝑍 𝑍𝛾

OSSF lepton pair with
|𝑚ℓℓ −𝑚𝑍 | < 10 GeV

0.25 0.19 0.0024

𝑝ℓ1𝑇 > 26 GeV 0.25 0.19 0.0023
Δ𝑅(𝑍 , off−𝑍 lepton) < 3 0.17 0.11 0.0008

Table 3: Cumulative efficiencies of the selection cuts when applied to the background events for the
analysis done at

√
𝑠 = 8 TeV. Efficiencies are defined as the number of events selected over the initial

number of events.
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Figure 5: Comparison between the recast of the VLL search and the ATLAS collaboration results. We
show the case of an electron off-𝑍 lepton, with the 1 (green) and 2 (yellow) sigma exclusion region from
our simulation and the expected limit quoted by the ATLAS analysis (solid blue line) and the theoretical
pair production cross section in the dashed red line.

𝑍𝑍 𝑊𝑍 𝑍𝛾 (×10−2)
Selection cuts A B C A B C A B C

OSSF lepton pair with
|𝑚ℓℓ −𝑚𝑍 | < 10 GeV

0.25 0.25 0.25 0.18 0.18 0.18 0.48 0.48 0.48

Δ𝑅(𝑍 , off−𝑍 lepton) < 3 0.16 0.16 0.16 0.10 0.10 0.10 0.14 0.14 0.14
𝑝ℓ1𝑇 > {80, 100, 120} 0.054 0.029 0.0098 0.029 0.015 0.0052 0.05 0.02 0.01
𝑝ℓ2𝑇 > {20, 40, 60} 0.054 0.025 0.0073 0.029 0.012 0.0035 0.05 0.02 0.01
𝑝ℓ3𝑇 > {0, 0, 20} 0.054 0.025 0.0067 0.029 0.012 0.0031 0.05 0.02 <0.01
off-𝑍 lepton = 𝑒 0.029 0.013 0.0034 0.013 0.0053 0.0014 0.03 0.01 <0.01

𝑚𝑇 < 160 GeV (3𝑙 𝑗 𝑗 ) 0.0079 0.0043 0.0014 0.0013 0.0009 0.0004 0.01 0.01 <0.01

Table 4: Cumulative efficiencies of the selection cuts when applied to background events for the new
analysis performed at

√
𝑠 = 13 TeV. Efficiencies are defined as the number of events selected over the

initial number of events. The regions denoted by {𝐴,𝐵,𝐶} correspond to different values of the mass of
the VLL, {𝑀E < 300, 300 ≤ 𝑀E < 400, 𝑀E ≥ 400}, in GeV.

ATLAS collaboration. The simulated backgrounds are normalized to the values quoted in the experimental

publication, which amounts to applying a factor between 1.4 and 3.5, which depends on the signal region

and that includes the corresponding K-factor to account for the NLO cross-section considered in the original

analysis. In figure 5 we show the comparison of our 1- and 2-sigma exclusion plot with the expected limit

quoted by the ATLAS collaboration, together with the pair production cross-section of the VLL. This result

is shown for an electron as the off-𝑍 lepton, but the result for the muon case is very similar. The resulting

limit on the VLL mass of 𝑀E � 160 GeV represents a difference of ∼ 7% when compared with the one

obtained in the original analysis.
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Figure 6: Limits on the mass of a VLL singlet decaying into electrons (muons) on the left (right) panel at√
𝑠 = 13 TeV and an integrated luminosity of 139 fb−1 following the improved analysis. We present the

1 (green) and 2 (yellow) sigma exclusion regions and the theoretical pair production cross-section in the
dashed red line.

To study the limits obtained with current data, at
√
𝑠 = 13 TeV and L = 139 fb−1, we should

take advantage of the higher center of mass energy to impose more stringent cuts, particularly on the

transverse momentum of the identified leptons. Because the 𝑝𝑇 of the identified leptons in signal events

increases as the VLL mass increases, we have defined 3 clusters of masses to vary the selection threshold

for 𝑝𝑇 of observed leptons. These are presented in table 4 as well as the efficiencies of all selection cuts.

Following these more stringent selections, we also applied generation level cuts on the 𝑍𝛾 background,

simulating events in which the lepton with leading 𝑝𝑇 respects 𝑝𝑇 > 62GeV.

Furthermore, at these higher center of mass energies, almost the entirety of the 𝑊𝑍 background

can be removed by applying a cut on the transverse mass, 𝑚𝑇 , of the reconstructed 𝑊 boson. The

effectiveness of this cut is a result of the fact that for events from 𝑊𝑍 → ℓ𝜈ℓℓ , the off-𝑍 lepton is, in

theory, coming from the 𝑊 decay, whereas all the missing energy of the event, /𝐸𝑇 , originates from the

neutrino (again in theory). For events arising from the𝑊𝑍 background, we expect to have

𝑚𝑇 =
�
2
�/𝐸𝑇𝑝𝑇ℓ − /𝐸T.pTℓ

� ≤ 𝑚𝑊 , (3.24)

where 𝑝𝑇ℓ is the transverse momentum of the off-𝑍 lepton. Therefore, the transverse mass calculated in

this way should, in principle, be at most the mass of the 𝑊 boson. To retain as many signal events as

possible, this cut is only performed on the 3ℓ signal region, where most of𝑊𝑍 background lies. Figure

6 shows the limits obtained with this new analysis. Assuming that the expected background corresponds

to observed data, one could probe a VLL with a mass up to 410 GeV (420 GeV) for the case in which

the off-𝑍 lepton is an electron (muon). Due to this similarity between the limits obtained for electron or

muon off-𝑍 lepton we will only consider the former case from now on.

Despite being developed for a singlet VLL, this analysis can be applied for an 𝑆𝑈 (2) doublet, 𝐿,

of hypercharge −1/2. In this scenario pair production of the neutral component, 𝑝 𝑝 → 𝑁𝑁 , and

associated production of the neutral and charged components 𝑝 𝑝 → 𝐸±𝑁 are also relevant. In the limit
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Figure 7: Limits on the mass of a VLL doublet decaying into electrons (or electron neutrinos) at
√
𝑠 =

13 TeV and an integrated luminosity of 139 fb−1 following our improved analysis. We present the 1 (green)
and 2 (yellow) sigma exclusion regions and the theoretical pair production cross section in the dashed
red line.

of large masses, and taking the neutral and charged components to have the same mass, the charged

component decays with the same BR to ℓ𝑍 and ℓ𝐻 , while the neutral one only decays to 𝜈𝑊 . Therefore,

the relevant background remains the same and the analysis can be recast, resulting in the limits shown

in figure 7. As expected by the larger cross-section, much more stringent bounds can be obtained when

comparing with the singlet case, with masses up to ∼ 820 GeV being excluded.

The CMS collaboration has performed an analysis searching for VLL doublets in Ref. [136] with an

integrated luminosity L = 77 fb−1. The bound on 𝑀𝐿 ≥ 790 GeV was obtained in this analysis from the

observed data, but the expected limit, which is the fair comparison to the bound we are able to compute,

corresponded to 𝑀expected
𝐿 ≥ 690 GeV. Rescaling our results to the same integrated luminosity we find

𝑀L=77 fb−1
𝐿 ≥ 730 GeV, very close to the expected limit in the CMS search3.

3.2.2.2 Decays with missing energy

For the case in which the VLL decays into a SM lepton and MET (originated by 𝐴𝐻 in our case), we

consider an ATLAS analysis [137] at
√
𝑠 = 13 TeV and an integrated luminosity of L = 36.1 fb−1

searching for pair produced sleptons. The analysis considers the sleptons decaying into a SM lepton and

a neutralino, as shown in figure 8. The analysis strategy is to select events with 2 OSSF leptons (𝑒, 𝜇) with

an invariant mass 𝑚ℓℓ > 40 GeV. Several inclusive and exclusive signal regions are defined in which

different requirements are chosen for𝑚ℓℓ and the𝑚𝑇 2 variable [138, 139];𝑚𝑇 2 is called the stransverse

mass and is defined by

𝑚𝑇 2 = minqT [max(𝑚𝑇 (pT1, qT),𝑚𝑇 (pT2, /𝐸T − qT)] , (3.25)
3This analysis targeted tau decays meaning that the comparison between limits is not immediate.
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Figure 8: Pair production and subsequent decay of sleptons, where ℓ̃ corresponds to the charged slepton
and 𝜒01 is the lightest neutralino.

Selection Cuts 𝑍𝑍 𝑊𝑍 𝑊𝑊 𝑡𝑡

OSSF lepton pair 0.33 0.33 0.23 0.53
𝑚ℓℓ > 40 GeV 0.31 0.28 0.11 0.53
𝑝ℓ1𝑇 > 25 GeV 0.31 0.28 0.11 0.53
𝑝ℓ2𝑇 > 20 GeV 0.28 0.26 0.095 0.51

𝑝𝑏− 𝑗𝑒𝑡𝑇 < 20 GeV 0.24 0.24 0.093 0.13
𝑝 𝑗𝑒𝑡
𝑇 < 60 GeV 0.15 0.14 0.081 0.061

𝑚𝑇 2 > 100 GeV 0.0064 0.003 0.0002 0.0001
𝑚ℓℓ > 110 GeV 0.0016 0.001 0.0002 0.0001

Table 5: Cumulative efficiencies of the selection cuts when applied to the background events for the
slepton search [137] done at

√
𝑠 = 13 TeV. Efficiencies are defined as the number of events selected

over the initial number of events.

where pT1,2 denote the transverse momentum of each of the leptons and qT is the vector that minimizes

the maximum value of both transverse masses which are defined as

𝑚𝑇 (pT, qT) =
�
2(𝑝𝑇𝑞𝑇 − pTqT) . (3.26)

The most relevant backgrounds for this search are diboson processes (𝑍𝑍 ,𝑊𝑊 and𝑊𝑍 ) and 𝑡𝑡 .

To maximize the obtained statistics we require 2 leptons respecting 𝑚ℓℓ > 95 GeV at the generator

level in the final state during background simulation. The full set of selection cuts and their efficiencies

are presented in table 5. We considered all signal regions of the original analysis to validate our results;

however, new results are calculated considering only the signal region of 𝑚ℓℓ > 111 GeV and 𝑚𝑇 2 >

100 GeV as we found the difference when considered all regions to not be significant.

For the validation of the analysis we implemented a slepton-neutralino model and fixed the neutralino

mass to be 𝑀𝜒01
= 1 GeV. The obtained results are presented in figure 9, where we show a limit

𝑀ℓ̃ ≥ 565 GeV, similar to the expected limit obtained by the ATLAS collaboration, which was ∼ 570 GeV.

Having validated the analysis, we can apply it to the VLL model. Unlike in the purely SM decays

scenario, in this case we have an extra parameter in our analysis, the mass of the other new particle,
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Figure 9: Obtained limit on the slepton mass, 𝑀ℓ̃ , for a neutralino mass 𝑀𝜒01
= 1 GeV after recasting

the analysis in [137]. We present the 1 (green) and 2 (yellow) sigma exclusion regions and the theoretical
pair production cross section in the dashed red line.

Figure 10: Limits in the 𝑀𝐸 −𝑀𝐴𝐻 plane from the analysis in [137]. The expected limit is given by the
solid black line and green band is the 1-sigma exclusion limit.

𝑀𝐴𝐻 . Different models can predict different values; for instance, the LHT predicts it to be around the the

EW scale, Eq. (3.18), whereas FIMP models require sub-GeV masses [112]. Therefore, for each mass

point of the VLL, we vary 𝑀𝐴𝐻 from 1 GeV up to the mass of the VLL. The obtained results are presented

for
√
𝑠 = 13 TeV and an integrated luminosity L = 139 fb−1 in figure 10. As expected, a lighter 𝐴𝐻

results in final state leptons with larger 𝑝𝑇 , which corresponds to points which can be better constrained.

As the difference between the mass of the VLL and 𝐴𝐻 decreases, final state leptons become softer and

more difficult to identify. For 𝑀𝐸 � 900 GeV the production cross-section is too low to be constrained,

regardless of 𝑀𝐴𝐻 .
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Figure 11: Dependence of the obtained signal strength, 𝜇up ≡ 𝜎up/𝜎 th, on BR(𝐸 → 𝑊𝜈), varying
the remaining parameters. The benchmark masses are 𝑀𝐸 = 500 GeV and 𝑀𝐴𝐻 = 98 GeV (𝑀𝐸 =
400 GeV and 𝑀𝐴𝐻 = 98 GeV) for the left (right) panels.

3.2.3 Constraints on vector-like leptons with general decays

After verifying the accuracy of our analysis setup, we are now in a position to recast these searches for

arbitrary branching fractions in the different channels. In order to avoid generating signal events for every

combination of BRs, we apply a weight to each signal event according to its generator-level decay. Firstly,

we generate a sample of pair-produced VLLs with BR𝑔 (𝐸 → 𝐴𝐻ℓ) = BR𝑔 (𝐸 → 𝑍ℓ) = BR𝑔 (𝐸 →
𝐻ℓ) = BR𝑔 (𝐸 → 𝑊𝜈) = 0.25, where the 𝑔 subscript describes the generated sample. To probe

different BRs, each event is then weighted according to BR𝑖𝑝/BR𝑖𝑔, where the 𝑝 subscript represents the

probed BR and the 𝑖 superscript corresponds to the specific decay – once again note that the particular

decay of each event is determined at generator level and has nothing to do with the analysis itself at the

detector level.

Depending on the particular value of the BR, either the SM decays analysis or the MET search can

be more constraining. However, since these analysis target final states of ℓ𝐴𝐻 or ℓ𝑍 , the results are

presented in the BR(𝐸 → 𝐴𝐻ℓ) vs BR(𝐸 → 𝑍ℓ) plane, while the other BRs are fixed to

BR𝑝 (𝐸 →𝑊𝜈) = 2BR𝑝 (𝐸 → 𝐻ℓ) = 2
3

�
1 − BR𝑝 (𝐸 → 𝐴𝐻ℓ) − BR𝑝 (𝐸 → 𝑍ℓ)� , (3.27)

which corresponds to the large 𝑀𝐸 limit for a singlet if BR(𝐸 → 𝐴𝐻ℓ) = 0.

We verified that the obtained bounds are relatively insensitive to this latter choice. The dependence

is mainly due to contamination between different channels into the defined signal regions. In figure 11,

we represent the change in the signal strength, 𝜇up, as a function of the BR into𝑊𝜈 , fixing the remaining

parameters for two benchmark points. The signal strength changes at most by 20%, resulting in a relatively

mild effect on the final limit on 𝑀𝐸 .

The final results are presented in figure 12 for two different values of 𝑀𝐴𝐻 = 1 GeV (left panel) and

𝑀𝐴𝐻 = 98 GeV (right panel). Both analyses were applied for each BR point, and the most constraining

result was picked. As expected, the effect of the𝐴𝐻 mass is more relevant when the MET signal dominates

and for lighter VLL, as the smaller mass difference results in softer leptons. Even so, the differences
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Figure 12: Bound on the VLL mass 𝑀𝐸 as a function of BR(𝐸 → 𝐴𝐻ℓ) and BR(𝐸 → 𝑍ℓ) considering
𝑀𝐴𝐻 = 1 GeV (left panel) and 𝑀𝐴𝐻 = 98 GeV (right panel). The limits are shown as contour plots for
fixed 𝑀𝐸 in which the regions above and to the right of the lines are excluded. The limits are taken by
applying the analyses described in the previous section with

√
𝑠 = 13 TeV and an integrated luminosity

of L = 139 fb−1.

between the two different 𝑀𝐴𝐻 points are minimal. Thus, henceforth we will report results for 𝑀𝐴𝐻 =

1 GeV.

The results are presented as contours for fixed 𝑀𝐸 , where the regions above and to the right of the

contours are excluded. The bound for a VLL singlet with SM decays can be obtained by looking at the

vertical axis (corresponding to BR(𝐸 → 𝐴𝐻ℓ) = 0) at the relevant (mass dependent) BR(𝐸 → 𝑍ℓ).
The most constraining bounds occur when the BRs are maximized, given the sensitivity of the chosen

searches to these channels. The bounds for these three relevant cases are

𝑀𝐸 �




405 GeV, [VLL singlet],
630 GeV, [BR(𝐸 → ℓ𝑍 ) = 1],
895 GeV, [BR(𝐸 → ℓ𝐴𝐻 ) = 1],

[√𝑠 = 13 TeV,L = 139 fb−1] . (3.28)

There is a slight difference between the bound obtained here for the VLL singlet, and the one quoted

in figure 6. This is a result of the fact that here the BR through the channel 𝑍ℓ is fixed to 25% whereas

before the BR was set by the couplings and masses of the model (the BR only tends to 25% in the large

mass limit).

3.2.4 Future projections

Figure 12 presented results with current data at the LHC. In this section we explore the reach at the

high-luminosity (HL-LHC) and high-energy (HE-LHC) configurations of the LHC. We will also investigate

the reach of a 100 TeV hh-FCC.

At the high-luminosity phase, HL-LHC, we consider
√
𝑠 = 13 TeV and an integrated luminosity of

L = 3 ab−1; we use the same analysis as described previously with the selection cuts detailed in

table 4 and we make sure to generate enough statistics for the chosen integrated luminosity. The result is
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Figure 13: Projected bounds on the mass of the VLL, 𝑀𝐸 , in the BR(𝐸 → 𝐴𝐻ℓ) and BR(𝐸 → 𝑍ℓ)
plane for the HL-LHC. Limits are shown as contour plots for fixed 𝑀𝐸 in which the regions above and to
the right of the lines are excluded.

presented, for 𝑀𝐴𝐻 = 1 GeV, in figure 13, following the same conventions as before. The corresponding

final reach of the HL-LHC in the three most relevant cases are

𝑀𝐸 �




785 GeV, [VLL singlet],
1090 GeV, [BR(𝐸 → ℓ𝑍 ) = 1],
1450 GeV, [BR(𝐸 → ℓ𝐴𝐻 ) = 1],

[HL-LHC] . (3.29)

At the HE-LHC, for which we consider
√
𝑠 = 27 TeV and L = 3 ab−1, we can once more impose more

stringent cuts on the different variables, in particular in the transverse momentum of the identified leptons.

For the SM decays analysis, we impose a generator-level cut on all backgrounds of 𝑝𝑇 > 75 GeV for the

leading lepton whereas for the MET decay analysis, the cut on the leading lepton was of 𝑝𝑇 > 100 GeV .

We also updated the selection threshold in table 5 to 𝑝ℓ1𝑇 > 120 GeV. The results are shown in figure 14.

The estimated bounds for the limiting cases is

𝑀𝐸 �




1295 GeV, [VLL singlet],
1770 GeV, [BR(𝐸 → ℓ𝑍 ) = 1],
1965 GeV, [BR(𝐸 → ℓ𝐴𝐻 ) = 1],

[HE-LHC] . (3.30)

A detailed study of the reach at the FCC considering the full simulation of backgrounds was beyond

the scope of this thesis. However, with the results already obtained, a simplified extrapolation can be

performed using the Collider Reach tool [140]. We verify the validity of this approach by extrapolating

the
√
𝑠 = 13 TeV and L = 139 fb−1 results, given in Eq. (3.28) to the HL-LHC and to the HE-LHC and
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Figure 14: Projected bounds on the mass of the VLL, 𝑀𝐸 , in the BR(𝐸 → 𝐴𝐻ℓ) and BR(𝐸 → 𝑍ℓ)
plane for the HE-LHC. Limits are shown as contour plots for fixed 𝑀𝐸 in which the regions above and to
the right of the lines are excluded.

comparing with what we obtained for these future colliders. We find that such an extrapolation agrees with

our detailed simulation within 6%(14%) for the HL-LHC for the SM decays analysis (MET decay analysis)

and within 6%(35%) at the HE-LHC for the SM decays analysis (MET decay analysis). The difference in

regards to the analysis focusing on MET decays drops to 14 % when we extrapolate from the HL-LHC

results instead.

Assuming
√
𝑠 = 100 TeV and L = 3 ab−1 at the hh-FCC, we extrapolate the results of Eq. (3.30)

and obtain the results shown in figure 15 and the following bounds:

𝑀𝐸 �




2525 GeV, [VLL singlet],
3665 GeV, [BR(𝐸 → ℓ𝑍 ) = 1],
3330 GeV, [BR(𝐸 → ℓ𝐴𝐻 ) = 1],

[hh-FCC (extrapolation)] . (3.31)

The results presented so far are completely general except for the assumption of the production

cross-section of a VLL singlet with hypercharge -1. For the sake of generality, we also provide in figure 16

the cross-sections used for the LHC, HE-LHC and hh-FCC searches so that one can easily translate the

obtained limits to generic VLLs (for example doublets) by rescaling the pair production cross-section.

3.2.5 A dark matter candidate

The collider analysis we performed assumed only that the lifetime of 𝐴𝐻 was large enough so that it

was stable at detector scales. However, 𝐴𝐻 can have a lifetime larger than the age of the Universe and
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Figure 15: Projected bounds on the mass of the VLL, 𝑀𝐸 , in the BR(𝐸 → 𝐴𝐻ℓ) and BR(𝐸 → 𝑍ℓ) plane
for the hh-FCC. Limits are obtained after extrapolating the previous results with the Collider Reach
tool [140]. Limits are shown as contour plots for fixed 𝑀𝐸 in which the regions above and to the right of
the lines are excluded.
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Figure 16: Cross-section of VLL singlet pair production at hadron colliders with
√
𝑠 = 13 , 27 , 100 TeV.
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Figure 17: Relevant processes for the annihilation of DM in the freeze-out scenario.

therefore be a suitable DM candidate. In this case, DM probes such as relic density and direct detection

experiments can be used to further constrain the model.

3.2.5.1 Standard freeze-out

The scenario which we find in the LHT is that of a DM candidate with a mass around the EW scale, Eq.

(3.18). For a DM particle with such a mass it needs a symmetry to stabilize it (T-parity in the LHT),

usually a discrete one, under which new particles are odd and the SM ones are even. In these cases the

VLL decays exclusively through the MET channel explored in the previous section. The relic abundance

of this DM candidate would be set through freeze-out. The relevant Lagrangian to study the freeze-out

mechanism is given by:

L = −𝑐𝐴𝐻ℎ𝑔�2
�√

2𝑣ℎ𝐴𝜇
𝐻𝐴𝐻𝜇 +

1
2
ℎℎ𝐴

𝜇
𝐻𝐴𝐻𝜇

�
+ 𝑞𝐻𝑔�[𝐸𝑅𝛾𝜇ℓ𝑅 + h.c.]𝐴𝜇

𝐻 + . . . , (3.32)

where 𝑣 ≈ 174 GeV and we factorized the 𝑈 (1)𝑌 gauge coupling 𝑔� to make the connection with the

LHT model more immediate. In the LHT model 𝑐𝐴𝐻ℎ = 1
8 and 𝑞𝐻 = 1

10 [141].

A DM model should predict a relic density equal (𝐴𝐻 accounts for all of DM) or smaller than (𝐴𝐻 is

only part of DM content) the observed value of Ωℎ2 ∼ 0.12 [142]. The processes which will dominate

the DM annihilation in our model correspond to 𝐴𝐻 annihilation to b-quarks,𝑊 +𝑊 − or 𝑍 bosons or top

quarks (depending on the mass of the DM candidate) through an s-channel exchange of a Higgs [105].

Annihilation into leptons through the exchange of the VLL can also be relevant. The annihilation diagrams

are shown in figure 17. The relic density calculation will therefore be dependent on the couplings of 𝐴𝐻 to

the Higgs and the coupling to the VLL and SM lepton introduced in Eq. (3.32). We will therefore calculate

the relic density for different values of these couplings. Note also that, when the s-channel annihilation is

subdominant, the mass difference between 𝐴𝐻 and the VLL is also important.

The computations of the relic density abundance and direct detection bounds are perfomed using

MadDM [143]. Results are shown in figure 18 for a fixed mass of the VLL of 𝑀𝐸 = 1 TeV in the

𝑀𝐴𝐻 − 𝑐𝐴𝐻ℎ plane for different values of 𝑞𝐻 . The curves correspond to points in which the calculated

relic abundance agrees with the observed value. The region below the curve is excluded as it corresponds

to overabundant DM and the one above corresponds to an underabundant DM candidate, requiring other

sources of DM. For small 𝑞𝐻 (< 1), the s-channel annihilation through the Higgs dominates; however, as

𝑞𝐻 increases, the VLL exchange channel becomes more relevant and a significant rise in the annihilation
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Figure 18: Contours corresponding Ωℎ2 = 0.12 for different values of 𝑞𝐻 and 𝑀E = 1 TeV. The region
below the curves is excluded as it results in an overabundant DM candidate. The grey region is excluded
through direct detection.

cross-section occurs for a 𝑞𝐻 ∼ 1.7 allowing for a large part of the depicted parameter space. For large

enough values of 𝑞𝐻 , as the mass difference between the VLL and the DM candidate decreases, the

VLL-mediated channel becomes dominant. The 𝑐𝐴𝐻ℎ coupling is also important for the direct detection

as it affects the scattering cross-section with nucleons; the dominant diagram is shown in figure 19. The

corresponding scattering cross-section was computed with MadDM and the excluded region is shown, in

shaded grey, in figure 18 using the XENON1T data [144] (assuming that 𝐴𝐻 is all the DM).

Varying 𝑞𝐻 also affects DM-nucleon scattering cross-section. In principle 𝑞𝐻 could be responsible

for a photon-mediated 1-loop DM nucleon process. However, as noted in Ref. [145], for a real DM

vector candidate, 2 DM particles and a photon can only couple through a dimension-6 operator, as the

dimension-4 𝐴𝐻𝜇𝐴𝐻𝜈𝐹
𝜇𝜈 vanishes due to the antisymmetry of 𝐹 𝜇𝜈 . Furthermore, the resulting amplitude

will be further suppressed in the non-relativistic limit. We will therefore neglect these contributions to

direct detection bounds.

The coupling 𝑞𝐻 is also responsible for generating a contribution to the the anomalous magnetic

moment of both the electron and the muon (depending on which of the leptons the VLL mixes with). The

latest experimental results are [36, 146]

Δ𝑎𝑒 = 𝑎
Exp
𝑒 − 𝑎𝑆𝑀𝑒 = −1.06(0.82) × 10−12 , (3.33)

Δ𝑎𝜇 = 𝑎
Exp
𝜇 − 𝑎𝑆𝑀𝜇 = 25.1(5.9) × 10−10 , (3.34)

where uncertainties include both the theoretical and experimental parts.
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Figure 19: Relevant process for the scattering of DM with nucleons.

The new physics contribution from a VLL and a heavy vector is given by [145],

𝑎ℓ = − 𝜖2

48𝜋2𝑟 2(1 − 𝑟 2)4𝑞
2
𝐻𝑔

�2 �5 − 14𝑟 2 + 39𝑟 4 − 38𝑟 6 + 8𝑟 8 + 18𝑟 4ln(𝑟 2)� + O(𝜖3) , (3.35)

where 𝜖 ≡ 𝑚ℓ/𝑀𝐸 and 𝑟 ≡ 𝑀𝐴𝐻 /𝑀𝐸 and 𝑚ℓ is the mass of the SM lepton for which the anomalous

magnetic moment is calculated. This contribution has a fixed negative sign and it can therefore not explain

the muon anomaly. Figure 20 shows the parameter space that can account for the apparent anomalous

𝑎𝑒 and for which the contribution to 𝑎𝜇 is smaller than the combination of the experimental and theoretical

uncertainties. For the muon case, the region above the lines is excluded.
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Figure 20: Region that can account for the 𝑎𝑒 anomaly for 𝑀𝐸 = 500 GeV (green) and 𝑀𝐸 = 1 TeV
(blue). The limits (2 sigma) from the contribution to 𝑎𝜇 are shown for 𝑀𝐸 = 500 GeV (yellow solid line)
and for 𝑀𝐸 = 1 TeV (red solid line). The regions above these lines are excluded.

The relic density results shown in figure 18 reflect a tension between the production of the observed

relic abundance through a Higgs portal and direct detection experiments for a WIMP. This tension can be
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Figure 21: Contours of Ωℎ2 = 0.12 for different values of the mass splitting, Δ. The solid curves
correspond to 𝑞𝐻 = 0.1 and the dashed curves correspond to 𝑞𝐻 = 0.2. The region to the right of the
curve is excluded since it results in an overabundant DM candidate. The shaded grey region is excluded
through direct detection.

relaxed if the VLL has a nearly degenerate (but slightly larger) mass than that of 𝐴𝐻 . This results in the

regime of co-annihilation [43] which increases the efficiency of the annihilation processes since processes

such as 𝐴𝐻𝐸 → 𝑆𝑀 𝑆𝑀 can also contribute significantly. These processes will be more relevant as the

mass difference decreases and also as the coupling 𝑞𝐻 increases. From the estimation done in section

2.3.2, the splitting should be Δ ∼ 0.05, where Δ ≡ (𝑀𝐸−𝑀𝐴𝐻 )/𝑀𝐴𝐻 , for co-annihilation to be relevant.

In figure 21 we show the results for relic density calculation considering co-annihilation. We consider

two values of 𝑞𝐻 = 0.1 (solid lines) and 𝑞𝐻 = 0.2 (dashed lines) and plot the contours of Ωℎ2 = 0.12

for different mass splittings. The region to the right of the curves is excluded as it corresponds to an

overabundant DM candidate. Again, direct detection bounds are shown in shaded grey. As expected,

only for Δ � 0.05 do we observe a significant deviation from the standard annihilation scenario.

To account also for the dependence on 𝑞𝐻 in the co-annihilation regime we present in figure 22 the

Ωℎ2 = 0.12 contours in the 𝑀𝐴𝐻 − 𝑞𝐻 plane, again for different values of the mass splitting, fixing

𝑐𝐴𝐻ℎ = 1. Direct detection exclusion is given by the shaded grey region. Before, as we increase Δ, the

curves collapsed to the non co-annihilating regime. In this case, even though co-annihilation is negligible

for Δ � 0.05, the annihilation process mediated by the VLL dominates and as such, the cross-section

depends strongly on Δ, even outside the co-annihilation regime.
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Figure 22: Contours of Ωℎ2 = 0.12 for different values of the mass splitting, Δ, and for a fixed value of
𝑐𝐴𝐻ℎ = 1. The region below each curve gives an overabundant DM candidate and is therefore exclided.
The shaded grey region is excluded through direct detection.

The co-annihilation scenario is complementary to the collider analysis explored previously. The small

mass difference between the BSM states results in very soft, and therefore difficult to identify, leptons.

More recently, analyses have focused on these compressed mass spectrums, particularly in the context

of sleptons [147]. These co-annihilation results show that such an effort in the context of VLLs is also

very well motivated.

3.2.5.2 Freeze-in in feebly interacting dark matter

For a very light DM candidate which couples very weakly with other particles, its abundance can be

generated through the freeze-in mechanism [148]. Within our setup, the relic abundance of 𝐴𝐻 is set

through the decay of the VLL. Such a possibility has been recently investigated in [112] focusing on the

DM phenomenology, therefore fixing the VLL mass to a conservative 𝑀𝐸 = 1 TeV avoiding any collider

constraint. Since the DM is light it can be stabilized kinematically and does not need a discrete symmetry,

meaning that all decay channels for the VLL are available. Let us see if our collider results can provide

any complementary information in this FIMP scenario.

This scenario can be realized by the explicit model shown in Appendix A. The relic density is given by

[112]:

Ωℎ2 ≈ 0.12 × 10−9
𝑀𝐸

𝑀𝐴𝐻

� 𝑔𝐻𝑠

5.3 × 10−17
�2
, (3.36)

where 𝑔𝐻 and 𝑠 are defined in Eqs. (A.0.4) and (A.0.7), respectively.
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Figure 23: Contours collider limits, for the LHC with
√
𝑠 = 13 TeV and L = 139 fb−1, for models with a

DM candidate whose relic density is set through the decay of a VLL, for different values of the mixing of
the VLL and the SM lepton, 𝑠. The region below the curves is excluded by collider searches, either looking
for SM decays (solid) or targeting decays through channels with missing energy (dotted). More details
can be read in the text and in Appendix A.

For each mass point, requiring that 𝐴𝐻 corresponds to all the DM, that is, Eq. (3.36) = 0.12, fixes

𝑔𝐻 × 𝑠. By choosing a particular value 𝑠, all BRs of the VLL are therefore fixed, allowing us to use the

collider bounds obtained in the previous section.

These results are shown in figures 23 and 24 for the search at
√
𝑠 = 13 TeV and L = 139 fb−1

and for L = 3 ab−1 respectively. For each mass point, all parameters are fixed in order to explain the

observed relic density, and the region below the curves can be excluded by collider searches. All lines

(one for each value of 𝑠) is displayed either with a solid or dotted style, to distinguish between the cases

in which the strongest constraint is a result of the analysis looking for SM decays or from the analysis

searching for the MET signature. This information is important since either 𝐸 → 𝑍ℓ or 𝐸 → 𝐴𝐻ℓ must

be prompt for the collider analysis to be usable. We consider that a flight distance of 1 cm corresponds

to a promptly decaying VLL.

Eq. (A.0.22) provides the minimum 𝑠 so that 𝐸 → 𝑍ℓ is prompt. Note that for the chosen values

of 𝑠, only a VLL that mixes with muons would decay promptly. For 𝐸 → 𝐴𝐻ℓ the value of 𝑔𝐻 (fixed for

each mass point by requiring the correct relic density) determines the flight distance. For the parameter

space probed in figures 23 and 24, no point corresponds to a prompt decay and as such, we cannot use

directly the bounds obtained by the analysis focusing on the MET signature. A detailed study focusing

on displaced vertices could in principle probe a significant region of the parameter space for this class of

models.
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Figure 24: Contours collider limits, for the LHC with
√
𝑠 = 13 TeV and L = 3 ab−1, for models with a

DM candidate whose relic density is set through the decay of a VLL, for different values of the mixing of
the VLL and the SM lepton, 𝑠. The region below the curves is excluded by collider searches, either looking
for SM decays (solid) or targeting decays through channels with missing energy (dotted). More details
can be read in the text and in Appendix A.

3.2.6 Next steps

As we saw in section 3.1.3, most of the new particles predicted in the LHT were T-odd. An exception to

this are the top partners, 𝑇1 and𝑇2, introduced in Eq. (3.22). Similarly to what happened to the doublets

introduced in Eq. (3.19), a linear combination of the top partners is going to be T-odd and the other one

T-even [103]. This has important phenomenological consequences since the T-even top partner, 𝑇 +, can

be singly produced at colliders.

While pair production of VLQs is more appealing due to its model-independence, as larger masses

of VLQs are probed, attention has shifted towards the study of single production [149–152]. The ATLAS

analysis of Ref. [153] studied the single-production of a VLQ which decayed to a SM final state with a

signature of a SM top and MET. This signature was assumed to result from 𝑇 + → 𝑍 (𝜈𝜈)𝑡 . Within the

LHT this signature would also arise but with a different twist. Instead of decaying directly to SM particles,

𝑇 + can decay to its T-odd partner 𝑇 − and the lightest T-odd particle, the gauge boson 𝐴𝐻 [103]. The

T-odd partner would then decay to another 𝐴𝐻 and a SM top [103] resulting in the signature explored in

the ATLAS search Ref. [153].

Following the spirit of the VLL search proposed in the previous section, in the future we aim to recast

the analysis of Ref. [153] parametrizing the decays of the VLQ so that it can be applicable to a wider

range of models, including the LHT scenario.
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4

Model-independent approach

4.1 A brief introduction to Effective Field Theories

The fundamental concept behind effective field theories is the idea that physics at different energy scales

decouples. That is, the description of physical observables at a given energy does not entail the full

knowledge of the underlying theory at much higher energies. While apparent in classical mechanics, this

statement is more subtle in QFT where loop integrals involve different energy scales; however, it has been

proven in the context of QFT through the Applequist-Carazzone decoupling theorem [154].

From this decoupling it follows that, making only use of degrees of freedom present at an energy scale,

𝑝, we can describe an experimental observation taking place at that energy, effectively integrating out any

heavy fields – by heavy we mean that their mass is much larger than 𝑝. The information on the interactions

of these heavy fields is given by the full theory, a theory needed to describe physics in the ultra-violet (UV).

Integrating these heavy fields out results in 𝑝/Λ suppressed contributions, with Λ representing the high-

energy scale (which can be understood as the mass of these heavy fields). Expanding these contributions

in powers of 𝑝/Λ results in local effects captured by the low-energy theory, the Effective Field Theory

(EFT) [9]. The EFT description is therefore only valid when 𝑝 � Λ.

In chapter 3 we followed the approach of looking for BSM physics by considering direct evidence from

the production of new particles at the LHC. That is, we considered that current or future experiments had

enough energy to produce BSM particles on-shell. On the other hand, following the EFT approach which

is only valid description at energies much lower than the mass of the BSM particle, we are actually looking

for deviations on low-energy observables from the SM predictions. These deviations are suppressed by

powers of the scale of new physics and as such, experimental precision must overcome this suppression

to observe them.

Furthermore, regardless of how general we aimed to be, in order to proceed with a direct search for

new physics we had to make bold assumptions on the nature of the BSM theory – in our case we focused

on signatures from CHMs. Since the EFT description is built from the low-energy degrees of freedom,

we can construct all allowed operators (respecting the symmetry considerations of the low-energy theory)
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without any mention of the underlying UV theory. In this way we are searching for new physics in a model

independent fashion; there is no need to assume a particular UV model, allowing us to probe a wide range

of BSM physics.

A prime example of the use of EFTs in particle physics is the Fermi theory. Without knowledge of any

particle other than leptons, Fermi’s theory accurately describes the muon decay to an electron and two

neutrinos by parametrizing it through the 4-fermion contact interaction

L𝐹 = −𝐺𝐹 (𝜓𝑖𝛾𝜇𝑃𝐿𝜓𝑗 ) (𝜓𝑘𝛾𝜇𝑃𝐿𝜓𝑙 ) , (4.1.1)

where 𝐺𝐹 is the Fermi constant. Nowadays, with experiments taking place at higher energy scales, we

know the muon decay is actually mediated by the𝑊 -boson. Eq. (4.1.1) is the effective description of the

process after integrating out this boson, and 𝐺𝐹 is set by enforcing that the Fermi theory reproduces the

SM prediction at a particular energy scale. In this effective approach, Fermi’s theory parametrized the

effects of a new heavier particle much before experiments could probe it directly. Hopefully, we can do

the same in the near future.

4.1.1 The Standard Model Effective Field Theory

As extensively pointed out in previous sections, there are several reasons pointing towards the existence

of BSM physics. The lack of evidence for physics BSM seems to point to two possibilities: either new

physics is light and couples feebly with the SM or it is heavier than the energy scales current experiments

have been able to probe1. In the latter case, a decoupling between the EW scale and the scale of new

physics, Λ, is present and, as such, the SM can be considered an effective theory, the Standard Model

Effective Field Theory (SMEFT) [155].

The SMEFT is constructed with the degrees of freedom of the SM and extends the SM Lagrangian

with local operators which parametrize the effects of high-energy physics:

LSMEFT = LSM + L(5)

Λ
+ L(6)

Λ2 + O(1/Λ3) (4.1.2)

where L(𝑑) are the 𝑑 -dimensional components of the Lagrangian. L(𝑑) is composed by all Lorentz and

SM gauge invariant operators at mass dimension 𝑑 , O(𝑑)
𝑖 , each multiplied by an arbitrary dimensionless

coefficient 𝑐 (𝑑)𝑖 , denoted as Wilson coefficient (WC). In principle, the Lagrangian of Eq. (4.1.2) contains

infinite terms since terms with increasing mass dimension can always be written; therefore, in order to
1We can also have a combination of the two scenarios, for instance, pNGBs originating from a ∼ TeV scale spontaneous

symmetry breaking which can be naturally light. This is the case of non-minimal CHMs.
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make use of this effective description, an order up to which effects will be considered needs to be chosen.

Commonly the order at which the effective expansion is truncated is related with the experimental precision

of the process we are interested in describing; as more precise measurements arise, more orders can be

included in the expansion. Therefore, once the truncation order is fixed, the SMEFT is a renormalisable

theory since all higher-order counter-terms are neglected.

At dimension-5 there is only one operator, the Weinberg operator [156],

L5 = 𝑐 (5)𝑖 𝑗 𝐻 (𝐿𝑖𝑐) (𝐿𝑗𝐻 ) + h.c. , (4.1.3)

which is a lepton number violating (LNV) interaction. This operator could be responsible for generating a

Majorana mass to neutrinos, with a high-energy scale Λ ∼ 1014 GeV for 𝑐 (5) ∼ O(1) in order to comply

with the bounds on neutrino masses.

The leading contribution from non-LNV new physics arises at dimension-6. Contributions at this order

have been widely studied in the literature [155]. The minimal set of operators to describe physics at

this order, comprised by 59 operators (neglecting flavour), is given in the well-known Warsaw basis [157],

presented in tables 6 and 7. This is not a unique basis, different sets of operators could have been chosen

[158–160]; however, the Warsaw basis has been by far the most used in the literature and the one we

will use throughout this thesis.

Knowing the SMEFT Lagrangian at order O(1/Λ2), its contributions to observables at this order can

be calculated. In this way low-energy experiments can provide bounds on the WCs of the operators of

the chosen basis, without any mention of the particular dynamics of UV physics. This approach which is

focused solely in the EFT is called the bottom-up approach.

Despite the model independence which characterizes the EFT approach, at some point it might be

pertinent to trade this description by a specific model. This is particularly relevant in case a set of WCs is

preferred to be non-zero by experimental data; the next question to answer would be about the nature of

the UV physics responsible for generating those WCs. We can trade the generality of the EFT description

by a particular UV model by requiring that the EFT reproduces the results of that particular UV theory at

low-energies (within the range of validity of the EFT), effectively writing the WC in terms of the parameters

of the UV theory. This is achieved through matching, which we will go into more detail in section 4.1.2. In

essence this allows the translation of bounds obtained on WCs onto the parameter space of the parameters

of a more complete theory. The study of the connection between the EFT description and particular SM

extensions is called the top-down approach. Results for the matching at tree-level onto the SMEFT (for

generic UV extensions of the SM) are given in [161].
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Class Operators Operators

�
𝜓𝐿𝜓𝐿

� �
𝜓𝑅𝜓𝑅

�
�
𝑙𝐿𝛾𝜇𝑙𝐿

� (𝑒𝑅𝛾𝜇𝑒𝑅) O𝑙𝑒
�
𝑞𝐿𝛾𝜇𝑞𝐿

� (𝑒𝑅𝛾𝜇𝑒𝑅) O𝑞𝑒�
𝑙𝐿𝛾𝜇𝑙𝐿

� (𝑢𝑅𝛾𝜇𝑢𝑅) O𝑙𝑢
�
𝑙𝐿𝛾𝜇𝑙𝐿

� �
𝑑𝑅𝛾

𝜇𝑑𝑅
� O𝑙𝑑�

𝑞𝐿𝛾𝜇𝑞𝐿
� (𝑢𝑅𝛾𝜇𝑢𝑅) O(1)

𝑞𝑢

�
𝑞𝐿𝛾𝜇𝑇𝐴𝑞𝐿

� (𝑢𝑅𝛾𝜇𝑇𝐴𝑢𝑅) O(8)
𝑞𝑢�

𝑞𝐿𝛾𝜇𝑞𝐿
� �
𝑑𝑅𝛾

𝜇𝑑𝑅
� O(1)

𝑞𝑑

�
𝑞𝐿𝛾𝜇𝑇𝐴𝑞𝐿

� �
𝑑𝑅𝛾

𝜇𝑇𝐴𝑑𝑅
� O(8)

𝑞𝑑

�
𝜓𝐿𝜓𝐿

� �
𝜓𝐿𝜓𝐿

� �
𝑙𝐿𝛾𝜇𝑙𝐿

� �
𝑙𝐿𝛾

𝜇𝑙𝐿
� O𝑙𝑙�

𝑞𝐿𝛾𝜇𝑞𝐿
� (𝑞𝐿𝛾𝜇𝑞𝐿) O(1)

𝑞𝑞

�
𝑞𝐿𝛾𝜇𝜎𝑎𝑞𝐿

� (𝑞𝐿𝛾𝜇𝜎𝑎𝑞𝐿) O(3)
𝑞𝑞�

𝑙𝐿𝛾𝜇𝑙𝐿
� (𝑞𝐿𝛾𝜇𝑞𝐿) O(1)

𝑙𝑞

�
𝑙𝐿𝛾𝜇𝜎𝑎𝑙𝐿

� (𝑞𝐿𝛾𝜇𝜎𝑎𝑞𝐿) O(3)
𝑙𝑞

�
𝜓𝑅𝜓𝑅

� �
𝜓𝑅𝜓𝑅

�
�
𝑒𝑅𝛾𝜇𝑒𝑅

� (𝑒𝑅𝛾𝜇𝑒𝑅) O𝑒𝑒�
𝑢𝑅𝛾𝜇𝑢𝑅

� (𝑢𝑅𝛾𝜇𝑢𝑅) O𝑢𝑢
�
𝑑𝑅𝛾𝜇𝑑𝑅

� �
𝑑𝑅𝛾

𝜇𝑑𝑅
� O𝑑𝑑�

𝑢𝑅𝛾𝜇𝑢𝑅
� �
𝑑𝑅𝛾

𝜇𝑑𝑅
� O(1)

𝑢𝑑

�
𝑢𝑅𝛾𝜇𝑇𝐴𝑢𝑅

� �
𝑑𝑅𝛾

𝜇𝑇𝐴𝑑𝑅
� O(8)

𝑢𝑑�
𝑒𝑅𝛾𝜇𝑒𝑅

� (𝑢𝑅𝛾𝜇𝑢𝑅) O𝑒𝑢
�
𝑒𝑅𝛾𝜇𝑒𝑅

� �
𝑑𝑅𝛾

𝜇𝑑𝑅
� O𝑒𝑑�

𝜓𝐿𝜓𝑅
� �
𝜓𝑅𝜓𝐿

� �
𝑙𝐿𝑒𝑅

� �
𝑑𝑅𝑞𝐿

� O𝑙𝑒𝑑𝑞

�
𝜓𝐿𝜓𝑅

� �
𝜓𝐿𝜓𝑅

� (𝑞𝐿𝑢𝑅) 𝑖𝜎2 (𝑞𝐿𝑑𝑅)T O(1)
𝑞𝑢𝑞𝑑

(𝑞𝐿𝑇𝐴𝑢𝑅) 𝑖𝜎2 (𝑞𝐿𝑇𝐴𝑑𝑅)T O(8)
𝑞𝑢𝑞𝑑�

𝑙𝐿𝑒𝑅
�
𝑖𝜎2 (𝑞𝐿𝑢𝑅)T O(1)

𝑙𝑒𝑞𝑢

�
𝑙𝐿𝜎𝜇𝜈𝑒𝑅

�
𝑖𝜎2 (𝑞𝐿𝜎𝜇𝜈𝑢𝑅)T O(3)

𝑙𝑒𝑞𝑢

Baryon number violating

𝜖𝐴𝐵𝐶
�
𝑑𝑐 𝐴𝑅 𝑢𝐵𝑅

� �
𝑞𝑐 𝐶𝐿 𝑖𝜎2𝑙𝐿

� O𝑑𝑢𝑞

𝜖𝐴𝐵𝐶
�
𝑞𝑐 𝐴𝐿 𝑖𝜎2𝑞

𝐵
𝐿

� �
𝑢𝑐 𝐶𝑅 𝑒𝑅

� O𝑞𝑞𝑢

𝜖𝐴𝐵𝐶
�
𝑑𝑐 𝐴𝑅 𝑢𝐵𝑅

� �
𝑢𝑐 𝐶𝑅 𝑒𝑅

� O𝑑𝑢𝑢

𝜖𝐴𝐵𝐶 (𝑖𝜎2)𝛼𝛿 (𝑖𝜎2)𝛽𝛾
�
𝑞𝑐 𝐴𝛼𝐿 𝑞

𝐵𝛽
𝐿

� �
𝑞
𝑐 𝐶𝛾
𝐿 𝑙𝛿𝐿

�
O𝑞𝑞𝑞

Table 6: Four-fermion operators of the Warsaw basis. We follow the notation of Ref. [161] and adapt the
tables therein. Flavour indices are absent.
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Class Operators Operators

𝑋 3 𝜀𝑎𝑏𝑐𝑊
𝑎𝜈
𝜇 𝑊

𝑏 𝜌
𝜈 𝑊

𝑐 𝜇
𝜌 O𝑊 𝜀𝑎𝑏𝑐�̃�

𝑎 𝜈
𝜇 𝑊

𝑏 𝜌
𝜈 𝑊

𝑐 𝜇
𝜌 O�̃�

𝑓𝐴𝐵𝐶𝐺
𝐴𝜈
𝜇 𝐺

𝐵 𝜌
𝜈 𝐺

𝐶 𝜇
𝜌 O𝐺 𝑓𝐴𝐵𝐶�̃�

𝐴𝜈
𝜇 𝐺

𝐵 𝜌
𝜈 𝐺

𝐶 𝜇
𝜌 O�̃�

𝜙6 �
𝜙†𝜙

�3 O𝜙

𝜙4𝐷2 �
𝜙†𝜙

�
�
�
𝜙†𝜙

� O𝜙�
�
𝜙†𝐷𝜇𝜙

� ((𝐷𝜇𝜙)† 𝜙) O𝜙𝐷

𝑋 2𝜙2

𝜙†𝜙𝐵𝜇𝜈𝐵𝜇𝜈 O𝜙𝐵 𝜙†𝜙�̃�𝜇𝜈𝐵𝜇𝜈 O𝜙�̃�

𝜙†𝜙𝑊𝑎
𝜇𝜈𝑊

𝑎 𝜇𝜈 O𝜙𝑊 𝜙†𝜙�̃� 𝑎
𝜇𝜈𝑊

𝑎 𝜇𝜈 O𝜙�̃�

𝜙†𝜎𝑎𝜙𝑊 𝑎
𝜇𝜈𝐵

𝜇𝜈 O𝜙𝑊𝐵 𝜙†𝜎𝑎𝜙�̃� 𝑎
𝜇𝜈𝐵

𝜇𝜈 O𝜙�̃� 𝐵

𝜙†𝜙𝐺𝐴
𝜇𝜈𝐺

𝐴 𝜇𝜈 O𝜙𝐺 𝜙†𝜙�̃�𝐴
𝜇𝜈𝐺

𝐴 𝜇𝜈 O𝜙�̃�

𝜓 2𝜙3
�
𝜙†𝜙

� �
𝑙𝐿𝜙𝑒𝑅

� O𝑒𝜙�
𝜙†𝜙

� (𝑞𝐿𝜙𝑑𝑅) O𝑑𝜙
�
𝜙†𝜙

� �
𝑞𝐿𝜙𝑢𝑅

�
O𝑢𝜙

𝜓 2𝑋𝜙

�
𝑙𝐿𝜎

𝜇𝜈𝑒𝑅
�
𝜙𝐵𝜇𝜈 O𝑒𝐵

�
𝑙𝐿𝜎

𝜇𝜈𝑒𝑅
�
𝜎𝑎𝜙𝑊 𝑎

𝜇𝜈 O𝑒𝑊

(𝑞𝐿𝜎𝜇𝜈𝑢𝑅) 𝜙𝐵𝜇𝜈 O𝑢𝐵 (𝑞𝐿𝜎𝜇𝜈𝑢𝑅) 𝜎𝑎𝜙𝑊 𝑎
𝜇𝜈 O𝑢𝑊

(𝑞𝐿𝜎𝜇𝜈𝑑𝑅) 𝜙𝐵𝜇𝜈 O𝑑𝐵 (𝑞𝐿𝜎𝜇𝜈𝑑𝑅) 𝜎𝑎𝜙𝑊 𝑎
𝜇𝜈 O𝑑𝑊

(𝑞𝐿𝜎𝜇𝜈𝑇𝐴𝑢𝑅) 𝜙𝐺𝐴
𝜇𝜈 O𝑢𝐺 (𝑞𝐿𝜎𝜇𝜈𝑇𝐴𝑑𝑅) 𝜙𝐺𝐴

𝜇𝜈 O𝑑𝐺

𝜓 2𝜙2𝐷

(𝜙†𝑖
↔
𝐷𝜇𝜙)

�
𝑙𝐿𝛾

𝜇𝑙𝐿
� O(1)

𝜙𝑙
(𝜙†𝑖

↔
𝐷
𝑎

𝜇𝜙)
�
𝑙𝐿𝛾

𝜇𝜎𝑎𝑙𝐿
� O(3)

𝜙𝑙

(𝜙†𝑖
↔
𝐷𝜇𝜙) (𝑒𝑅𝛾𝜇𝑒𝑅) O𝜙𝑒

(𝜙†𝑖
↔
𝐷𝜇𝜙) (𝑞𝐿𝛾𝜇𝑞𝐿) O(1)

𝜙𝑞
(𝜙†𝑖

↔
𝐷
𝑎

𝜇𝜙) (𝑞𝐿𝛾𝜇𝜎𝑎𝑞𝐿) O(3)
𝜙𝑞

(𝜙†𝑖
↔
𝐷𝜇𝜙) (𝑢𝑅𝛾𝜇𝑢𝑅) O𝜙𝑢 (𝜙†𝑖

↔
𝐷𝜇𝜙)

�
𝑑𝑅𝛾

𝜇𝑑𝑅
� O𝜙𝑑

(𝜙†𝑖𝐷𝜇𝜙) (𝑢𝑅𝛾𝜇𝑑𝑅) O𝜙𝑢𝑑

Table 7: Bosonic and 2-fermion operators of the Warsaw basis. We follow the notation of Ref. [161] and
adapt the tables therein. Flavour indices are absent.
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Due to the different energy scales at play in the EFT description, the knowledge of how the WCs

evolve with energy is fundamental; this evolution follows the renormalisation group equations (RGE),

whose calculation we will go over in section 4.1.4. Indeed, a significant amount of work has been done

in the computation of the RGEs of the SMEFT, in particular at dimension-6 [162–167].

The full power of the EFT approach can be seen when we combine these approaches: (1) The bottom-

up approach allows us to set experimental constraints on the WCs in a model-independent way; (2) Using

the RGEs, the value of the bounded WCs at the experimental scale can be calculated at any other energy,

namely at the matching scale; (3) Knowing the matching conditions of a particular UV theory to the SMEFT,

the bounds on the WCs can be traded by constraints on the parameter space of our favorite model.

An advantage of this setup is that each step can be worked on separately, and the loss of generality,

that is, the commitment to a particular UV model only occurs in step (3).

In this thesis, works which tackle each of these 3 steps are presented with the aim of extending the

current knowledge of the SMEFT. Before delving into the details of these works, let us present some of

the theoretical framework needed to do those calculations within the SMEFT.

4.1.2 UV matching

Trading the arbitrary WCs of the EFT by the parameters in a particular full theory is done by requiring that

the EFT reproduces the results of the UV theory at some energy scale. We mentioned an example of this

procedure in the Fermi theory in which, in order to set the value for 𝐺𝐹 , the muon decay calculated at

a determinate energy scale through the EFT 4-fermion interaction and through the𝑊 -boson exchange in

the full theory had to match.

In general, this matching can be achieved at the level of the Green’s functions, by requiring that the

Green’s functions with light external particles are the same in both theories. This amounts to equating

the light field dependent part of the generating functionals of both theories:

𝑍 [𝐽𝜙 , 𝐽Φ = 0] = 𝑍𝑒𝑓 𝑓 [𝐽𝜙 ] , (4.1.4)

where 𝐽𝜙 (𝐽Φ) is the source term for light (heavy) fields. Respecting this condition corresponds to cal-

culating the one-light-particle irreducible (1LPI) diagrams in the full theory for a particular process, and

matching them to the EFT 1PI diagrams of the same process, effectively setting the WCs matching con-

ditions at a particular energy scale. This is called off-shell matching.

The condition above can be further relaxed; since we are interested in observables and not exactly

in Green’s functions, the EFT can instead be required to reproduce the same S-matrix elements as the
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full theory in its regime of validity. For this calculation, we now need to compute all connected and

amputated diagrams for a given process for both theories and equate the results to obtain the WCs

matching conditions at a given energy scale. In this process, the external light-particles are on-shell and

therefore this is called on-shell matching.

From the LSZ formula, it can be seen that S-matrix elements are invariant under non-singular field re-

definitions [9, 168, 169]. As such, one can greatly reduce the number of operators in the EFT Lagrangian

needed to reproduce the full theory by applying appropriate field redefinitions. The operators which can

be removed by the use of field redefinitions are called redundant, whereas the remaining ones compose

the physical basis of effective operators. We will go over the removal of these redundant operators in

more detail in the section 4.1.3.

Since the end goal of any EFT calculation is to calculate observables, any obtained result can be

translated into the physical basis through field redefinitions. Given its minimality it is actually preferable

to work with a physical basis and that is why most results at dimension-6 are quoted in term of the WCs

of the physical Warsaw basis.

At first sight it might therefore seem counter intuitive to perform off-shell matching if results from on-

shell matching are directly obtained in terms of the minimal set of WCs. However, from the computational

point of view, on-shell matching demands the calculation of more diagrams, whose number scales much

faster as we go to higher dimensions with more external legs when comparing with the 1LPI calculations

of off-shell matching. On the other hand, the main argument against off-shell matching is that it requires

the knowledge of a larger set of operators – and how they are reduced to the minimal physical basis –

which are not trivial to construct; however, this work only has to be done once for a given EFT.

For these reasons, unless stated otherwise, in this thesis all EFT calculations will be done off-shell

and only at the end will we trade the redundant operators for those in the physical basis.

4.1.3 Constructing a minimal basis

When building the basis of EFT operators with which we perform calculations, we want to work with the

most minimal set of operators possible, that is, the smallest set of parameters which are independent

among themselves. There is no physical issue with working with an over-redundant set of operators,

however this just adds undesirable complexity to the computations.

When performing off-shell calculations, operators are related by algebraic or group-theory identities
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and also through integration by parts (IBP)2. The minimal set of operators that can be built with the low-

energy degrees of freedom which are not related through IBP or other identities is called the Green’s

basis.

As mentioned in the previous section, if we are interested in calculating observables, Green’s basis

operators can be further reduced through appropriate field redefinitions. The remaining more minimal

set of operators composes the physical, or on-shell, basis.

Let us illustrate this with a simple example of an EFT of a real light scalar, 𝜙 :

L =
1
2
𝜕𝜇𝜙𝜕

𝜇𝜙 − 𝑚2

2
𝜙2 − 𝜆𝜙4 + 𝑐 (6)1

Λ2 𝜙
6 + 𝑐 (6)2

Λ2 𝜙
3𝜕2𝜙 + O(1/Λ4) , (4.1.5)

where, for simplicity, we imposed a ℤ2 symmetry, so that only even powers of 𝜙 exist, and we only

considered 2 effective operators.

Knowing that observables are invariant under field redefinitions, we can apply the redefinition 𝜙 →
𝜙 + 𝑘

Λ2𝜙
3, such that

L → L + 𝑘

Λ2𝜙
3 �−𝜕2 −𝑚2 − 4𝜆𝜙2� 𝜙 + O(1/Λ4) . (4.1.6)

By taking 𝑘 = 𝑐 (6)2 we can remove the operator 𝜙3𝜕2𝜙 of Eq. (4.1.5), which is therefore a redundant

operator. The Lagrangian would now be given by:

L =
1
2
𝜕𝜇𝜙𝜕

𝜇𝜙 − 𝑚2

2
𝜙2 −

�
𝜆 − 𝑐 (6)2

Λ2 𝑚
2

�
𝜙4 +

�
𝑐 (6)1

Λ2 − 4𝜆
𝑐 (6)2

Λ2

�
𝜙6 + O(1/Λ4) , (4.1.7)

where it can be seen that, besides removing the redundant operator, contributions to the other non-

redundant operators are also generated.

Note that the quantity within the parenthesis in Eq. (4.1.6) is actually the EOM of 𝜙 , obtained with

the dimension-4 operators of Eq.(4.1.5); indeed, performing a field redefinition such as

𝜙 → 𝜙 + 𝑘𝐹 (𝜙) , (4.1.8)

where 𝐹 (𝜙) is a function of fields and derivatives, is equivalent to adding a term to the Lagrangian

proportional to the EOMs, or analogously, to applying the EOMs on redundant operators. This statement

is only true up to higher-order effects [170], that is, up to O(1/Λ4) in the example above.

2This is due to the vanishing of total derivatives when we integrate over space-time taking the limit of fields going to zero
at infinity (only valid up to topological effects).
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Indeed, in Eq. (4.1.6) we only showed explicitly the effects of the field redefinition when applied to the

dimension-4 terms; when applied instead to the dimension-6 operators it generates contributions linear in

𝑘 but of O(1/Λ4). These effects would not be captured by simply using the EOM of dimension-4 terms

but instead the EOMs of the dimension-6 Lagrangian would need to be taken into account. However, even

when using the higher-order EOMs, we would not capture the quadratic terms on 𝑘 , which once again,

since 𝑘 is suppressed by 1/Λ2 in order to remove an effective operator, would only show up at O(1/Λ4).
Let us make more explicit the origin of these 𝑘2 terms by considering the mass term of Eq. (4.1.5)

after applying the field redefinition of Eq. (4.1.8) where, once more, 𝐹 (𝜙) = 𝜙3:

𝑚2

2
𝜙2 → 𝑚2

2
𝜙2 +𝑚2 𝑘

Λ2𝜙
4 + 𝑚2

2
𝑘2

Λ4𝜙
6 , (4.1.9)

where we wrote 𝑘 as 𝑘/Λ2 to make the mass dimension clearer. The last term cannot be reproduced by

the use of EOMs, either at dimension-4 or at dimension-6. The only way to get a contribution proportional

to 𝑚2/Λ4 would be to apply the EOMs to a redundant dimension-8 operator, such as 𝜙5𝜕2𝜙 ; however,

this term would be proportional to the WC of the redundant dimension-8 operator, whereas 𝑘 is fixed to

remove a dimension-6 term (𝑘 = 𝑐 (6)2 above); therefore applying EOMs would not reproduce the result of

(4.1.9)3. This fact that EOMs and field-redefinitions are only equivalent at leading order has been recently

studied in [170].

However, in the case of one-loop computations – as is the case of a RGE calculation –, in which the

redundant WCs are suppressed by a loop factor, quadratic effects on 𝑘 are formally a two-loop effect. If

we are limiting our computation accuracy to one-loop then we can safely use EOMs to remove operators.

This is not the case for the calculation of the matching conditions of a UV extension onto the SMEFT

which involves also tree-level contributions. There are no clear reasons why quadratic terms in 𝑘 could

be neglected which invalidates the use of EOMs in favour of using the sometimes cumbersome field

redefinitions.

4.1.4 Renormalisation Group Equations

As has been pointed out throughout this chapter, EFTs deal with several energy scales, namely, the scale

at which the EFT is matched to an underlying UV completion and the energy scale at which experiments

to probe WCs take place. Therefore, for a coherent analysis, it is paramount to take into account how the

couplings of the SMEFT theory evolve with energy. This knowledge is important when we want to combine

3Note that in order to remove the term 𝑐 (8) /Λ4𝜙5𝜕2𝜙 from the Lagragian, a different field redefinition like Eq. (4.1.8)
would be needed, where 𝑘 would be of order 1/Λ4.
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experimental measurements at relatively different scales, for instance, bounds associated with B-meson

decays with probes of EWPO, or when we want to translate the bounds obtained in a global fit to limits

on the couplings of specific models at their matching scale. The evolution of the theory couplings with

energy is encoded in the RGEs; let us look at how to calculate them.

We perform calculations in the dimensional regularization scheme, where the dimensions of the theory

are analitically continued to 𝑑 = 4 − 2𝜖 and divergencies appear as 1/𝜖 -proportional terms from loop

diagrams. Within the MS scheme, these divergences are subtracted by introducing counterterms with

the appropriate coefficient (and loop-suppression factor) in order to cancel the generated divergency,

producing finite results. These counterterms can be seen as arising by a rescaling of the fields and

couplings on the original Lagrangian, the bare Lagrangian.

Let us show this more explicitly with a simple example of a theory of a massless real scalar, 𝜙 , with

an assumed ℤ2-symmetry where we rescale 𝜙0 → �
𝑍𝜙𝜙 and the quartic coupling 𝜆0 → 𝜆𝜇2𝜖𝑍𝜆:

L = (𝜕𝜇𝜙0) (𝜕𝜇𝜙0) + 𝜆0(𝜙0)4

= (𝜕𝜇𝜙) (𝜕𝜇𝜙) + 𝜇2𝜖𝜆𝜙4 + (𝑍𝜙 − 1) (𝜕𝜇𝜙) (𝜕𝜇𝜙) + 𝜇2𝜖𝜆(𝑍𝜆𝑍𝜙 − 1)𝜙4 , (4.1.10)

where the superscript 0 corresponds to bare quantities. We introduce the scale 𝜇 in order to have [L] =
4 − 2𝜖 while keeping 𝜆 dimensionless. The 𝑍𝜙 term – called the wave function renormalisation (WFR)

– is going to be fixed by requiring that it cancels the terms proportional to the pole 1/𝜖 in the 𝜙 → 𝜙

process, whereas 𝑍𝜆 is fixed by cancelling the divergences in the 𝜙𝜙 → 𝜙𝜙 process.

Let us now see how this works in an EFT scenario. Consider a generic Lagrangian at a certain fixed

scale constructed with operators of arbitrary mass dimensions, L =
�

𝑖 𝑐𝑖O𝑖 . This Lagrangian generates

divergences at 1-loop which can be absorbed by the appropriate counterterms such that:

L𝑑𝑖𝑣 =
𝛼𝑗

16𝜋2O𝑗 , (4.1.11)

where 𝛼𝑗 is a function of all couplings in the theory, not only the WC corresponding to O𝑗 . Note that the

operators present in the divergent Lagrangian can in fact contain operators which were not part of the

original Lagrangian. In principle, in order to capture all possible generated divergences, a basis (either

physical or off-shell depending on how we are performing calculations) is needed.

This divergent Lagrangian can be canceled by the rescaling of the bare couplings such that:

𝑐 (0)𝑖 O(0)
𝑖 = 𝜇𝑛 𝑗𝑍𝑗𝑐 𝑗𝑍

𝐹
𝑗 O𝑗 , (4.1.12)
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where once again 𝑛𝑗 is chosen so that the coupling keeps its mass dimension in 4 − 2𝜖 space-time

dimensions, 𝑍𝑗 is defined as

𝑍𝑗 = 1 + 𝑘𝑗

𝜖
, (4.1.13)

and 𝑍𝐹 corresponds to the WFR of the fields which constitute the operator O𝑗 , that is, the divergent

contribution to the kinetic terms of those fields, as we saw in Eq. (4.1.10). Therefore, the 𝑍𝐹 factors can

be removed by canonically normalizing the kinetic terms. In the following, we will consider that such a

canonical normalization is performed and therefore 𝑍𝐹 no longer appears explicitly.

In order to cancel the generated divergences we have 𝑘𝑗𝑐 𝑗 = −𝛼𝑗/(16𝜋2), where it becomes clear

that, as 𝛼𝑗 , 𝑘𝑗 can receive contributions from all couplings in the theory.

The RGE of a coefficient 𝑐 𝑗 follows from the condition that the bare coupling does not depend on the

introduced renormalisation scale, that is,

𝜇
𝑑

𝑑𝜇
𝑐0𝑗 ≡ �𝑐0𝑗 = 0

0 = 𝜇𝑛 𝑗𝜖
�
𝑛𝑗𝜖𝑍 𝑗𝑐 𝑗 + �𝑍𝑗𝑐 𝑗 + 𝑍𝑗 �𝑐 𝑗

�
. (4.1.14)

In general one can calculate 𝑛𝑗 as

𝑛𝑗 = 𝑁 𝑗
𝑋 + 𝑁 𝑗

𝑆 + 𝑁 𝑗
𝜓
− 2 , (4.1.15)

where 𝑁 𝑗
𝑋 , 𝑁 𝑗

𝑆 and 𝑁 𝑗
𝜓

correspond to the number of field strengths, scalars and fermions that constitute

O𝑗 respectively.

We can rewrite Eq. (4.1.14) as:

�𝑐 𝑗 = −𝑛𝑗𝜖𝑐 𝑗 − �𝑘𝑗
𝑐 𝑗

𝜖
, (4.1.16)

where the first term corresponds to a tree-level contribution (which is why 𝑛𝑗 is commonly called the

tree-level anomalous dimension) and the second term is a one-loop contribution. The latter term can be

expanded as:

−�𝑘𝑗
𝑐 𝑗

𝜖
= −𝜕𝑘𝑗

𝜕𝑐𝑙

�𝑐𝑙
𝑒
𝑐 𝑗 =

𝜕𝑘𝑗

𝜕𝑐𝑙
𝑛𝑙𝑐𝑙𝑐 𝑗 , (4.1.17)

where in the last equality we took �𝑐𝑙 = −𝑛𝑙𝜖𝑐𝑙 + · · · neglecting the second term in Eq. (4.1.16) because

it would result in a two-loop effect here.

Finally we can write a master formula for the calculation of the RGEs:

𝑑

𝑑𝜇
𝑐 𝑗 = 𝑐 𝑗

�
𝑙

𝜕𝑘 𝑗

𝜕𝑐𝑙
𝑛𝑙𝑐𝑙 , (4.1.18)

where 𝑐𝑙 sums over all couplings in the theory.
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Figure 25: A scheme of the WCs constrained by different classes of observables. Taken from [171].

4.1.5 Experimental constraints

While the EFT parametrization allows the study of a wide range of new physics models, this comes with

the added price of introducing a large number of free parameters to our theory.

This has become less of an issue in recent years due to the immense number of observables that

have been measured by the experimental community. Indeed, recent studies have considered more than

341 observations to constrain the SMEFT [171].

This process of fitting the SMEFT WCs with different experimental data is called a global fit. The WCs

are fitted to the values which minimize the difference between the SMEFT prediction and the experimental

measurement across a range of observations. By taking different observables at the same time, these

analyses not only constrain the allowed parameter space of the SMEFT but can also take into account

important correlations between WCs.

The minimization function can be written as a 𝜒2 function, defined as

𝜒2(𝜃 ) = [ �𝑂exp − �𝑂th(𝜃 )]𝑇𝑉 −1 [ �𝑂exp − �𝑂th(𝜃 )] , (4.1.19)

where 𝜃 are the free parameters of the theory – the WCs –, �𝑂exp are the observations, �𝑂th(𝜃 ) are

the corresponding theory predictions for a set of the WCs and 𝑉 is the covariance matrix, defined as

𝑉𝑖 𝑗 = 𝜎𝑖𝜌𝑖 𝑗𝜎𝑗 where 𝜎 are the experimental errors and 𝜌 the correlation matrix. Clearly, in order to

proceed with the minimization of Eq. (4.1.19) one needs to know the contribution of the free parameters,
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the WCs, to the considered observable. Predictions from the SMEFT at dimension-6 have been included

in several available tools [172–176].

A recent global fit has been performed in Ref. [171]. In this work the authors considered experimental

data from top physics, EWPO, Higgs physics and diboson processes, allowing them to constrain the

operators in figure 25.

Following the top-down approach, particular models can also be probed by trading the WCs by the

particular matching conditions of the corresponding UV extension and considering the degrees of freedom

– the 𝜃 in Eq. (4.1.19) which will minimize the 𝜒2 function – to be the model’s couplings and masses

instead of generic WCs. This will in general result in more stringent bounds since the correlations between

WCs are enforced from the matching conditions [171, 177].

4.1.6 Theoretical constraints

In the previous section we explored setting experimental bounds on WCs. However, assuming only the an-

alytical properties of scattering amplitudes and unitarity of the underlying theory, we can further constrain

the parameter space of the EFT theoretically by enforcing its consistency with these principles. These

constraints are commonly denoted positivity bounds since they imply positivity conditions on certain com-

binations of WCs [178–188].

Let us consider the forward limit of a 2 → 2 scattering process of scalars, such that the amplitude

is only a function of 𝑠, i.e., A(𝑠, 𝑡 = 0). The derivation of the positivity bounds is based on the fact that,

when written in terms of complex momenta, these scattering amplitudes are analytic, except for the single

poles and branch cuts along the real axis of 𝑠 [179]. Let us define the integral

I =
1
2𝜋𝑖

∮
𝐶

A(𝑠)
𝑠3

𝑑𝑠 , (4.1.20)

where 𝐶 denotes a circular contour around the origin. From Cauchy’s theorem, this contour integral

is given by the residue of A(𝑠)
𝑠3

at 𝑠 = 0, which will allow us to isolate the 𝑠2-proportional term of the

amplitude, i.e. the second derivative of the amplitude with respect to 𝑠 when evaluated at the origin.

Due to the analytic properties of A(𝑠), we can deform the circle 𝐶 to infinity wherever it does not

intersect discontinuities, resulting in the contour 𝐶� shown in figure 26. The Froissart bound [189] states

that the scattering amplitude evolves at most as A(𝑠) ∝ 𝑠 log2 𝑠; as such, the integrand in Eq. (4.1.20)

vanishes in the circular part of the contour 𝐶� as 𝑠 → ∞. We are then left only with the discontinuities
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near the real axis. The integral can then be solved as

I =
1
𝜋𝑖

∫ +∞

𝑠𝑑

lim
𝜖→0

(A(𝑠 + 𝑖𝜖) −A(𝑠 − 𝑖𝜖)) (4.1.21)

=
1
𝜋𝑖

∫ +∞

𝑠𝑑

𝑖2𝐼𝑚(A(𝑠)) , (4.1.22)

where 𝑠𝑑 corresponds to the beginning of the branch cut. We assumed a cross symmetric amplitude,

invariant under 𝑠 → −𝑠 which allows us to only consider the integral in the positive branch cut. In the

second equality we used the Schwarz reflection principle, A(𝑠∗) = [A(𝑠)]∗ [179]. Unitarity leads us to

the optical theorem which relates the imaginary part of an amplitude with the cross-section, such that:

I =
2
𝜋

∫ +∞

𝑠𝑑

𝜎 (𝑠)
𝑠2

𝑑𝑠 , (4.1.23)

which is always a positive quantity. Therefore, we finally conclude that

𝑑2A(𝑠)
𝑑𝑠

����
𝑠=0

≥ 0 . (4.1.24)

From this result, we can calculate a scattering amplitude in the SMEFT and infer positivity conditions

on WCs. Note that a 2 → 2 amplitude is dimensionless ([A] = 4 − 𝑛 = 0, where 𝑛 is the number of

external particles); therefore, the 𝑠2-proportional term in the amplitude must be suppressed by Λ4, that

is, the condition of Eq. (4.1.24) is only relevant for dimension-8 operators.

As an example, calculating at tree-level the scattering amplitudes 𝜙1𝜙2 → 𝜙1𝜙2, 𝜙1𝜙3 → 𝜙1𝜙3

and 𝜙1𝜙1 → 𝜙1𝜙1, where 𝜙𝑖 are the components of the Higgs doublet, 𝜙 = (𝜙1 + 𝑖𝜙2,𝜙3 + 𝑖𝜙4)𝑇 , the

following positivity constraints on dimension-8 4-Higgses WCs can be obtained [179]:

𝑐 (2)
𝜙4 ≥ 0 ,

𝑐 (1)
𝜙4 + 𝑐 (2)

𝜙4 ≥ 0 ,

𝑐 (1)
𝜙4 + 𝑐 (2)

𝜙4 + 𝑐 (3)
𝜙4 ≥ 0 , (4.1.25)

where the WCs correspond to the dimension-8 operators defined in table 19.

Further bounds can be derived from Eq. (4.1.24) by considering different processes [181, 190]; we

will explore some of those and the stability of Eq. (4.1.25) under one-loop effects in section 4.4.3.
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Figure 26: Analytical structure of the forward 2 → 2 scattering amplitude in the 𝑠 complex plane, where
the discontinuities (zigzag lines) can include branch cuts and poles. Taken from [179].

4.2 SMEFT at dimension-8

One direction in which to extend the SMEFT approach is to consider further orders in the 1/Λ expansion.

Most of the SMEFT studies done so far focus only on dimension-6 operators, that is up to 1/Λ2 order;

neglecting LNV operators, the next relevant contributions arise by dimension-8 terms.

While these contributions are expected to be less important due to the extra 1/Λ2 suppression, there

are several phenomenological reasons which motivate their study:

• Some observables can receive their leading contribution at dimension-8 either because dimension-

6 operators do not contribute or the relevant dimension-6 may not be generated at tree-level by

weakly-coupled UV theories. Examples of the former case are light-by-light scattering [191], which

has been observed recently by ATLAS [192], pure anomalous quartic gauge couplings [193–197]

– changes to the quartic gauge couplings which do not affect triple gauge couplings – or neutral

triple gauge couplings [198–200];

• The precision of several measurements is so large which, for a fixed Λ, allows the probing of

dimension-8 contributions [201–204].
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From the theoretical point of view there are also interesting factors which only come into play at this

order:

• Neglecting odd-dimensional operators, order 1/Λ4 is the first one in which co-leading contributions

arise: two insertions of dimension-6 operators or one dimension-8. A priori there are no reasons

to expect one to dominate over the other;

• Classes of dimension-8 WCs are subject to positivity bounds which limit the parameter space of the

SMEFT and can be used as priors on global fits, or give us windows to probe the building blocks

of the underlying QFT, that is, unitarity and analyticity [178].

Following these motivations, more recently, the interest within the SMEFT community has shifted

towards considering these dimension-8 contributions [205–208]. These efforts culminated in the con-

struction of the full dimension-8 on-shell basis [191, 209], which we present in Appendix B4. However,

as previously argued for, working off-shell offers many advantages; in particular, the amount of diagrams

needed to compute at dimension-8 (with up to 8 external legs) in an on-shell approach would be very

large.

Therefore, in order to begin our work towards extending the SMEFT at dimension-8, we will start by

the construction of a Green’s basis at this order which will allow us to compute quantities off-shell. Due

to the inherent challenge of this task – the Green’s basis at dimension-8 is comprised of 1649 operators

on top of the 993 of the physical basis [191, 209] — we will focus for now on the bosonic sector.

4.3 A Green’s basis for the bosonic SMEFT at dimension 8

Knowledge of the set of independent operators which form the Green’s basis is fundamental to perform

off-shell calculations in the SMEFT. Automatic tools that can count the number of operators which form

this basis exist, Basisgen [211] and Sym2Int [212]. In spite of this, the explicit construction of those

operators and their reduction to a defined physical basis is a task which is yet to be automatized – Ref.

[213] has been the latest development in this direction. Besides algebraic and group theory identities

relations, one must check whether the operators are independent under IBP, Fierz identities and Bianchi

identities, which read

𝐷𝜇𝐹
𝜈𝜌 + 𝐷𝜈𝐹

𝜌𝜇 + 𝐷𝜌𝐹
𝜇𝜈 = 0 , (4.3.1)

4We only present the classes of operators which will be relevant throughout this thesis, namely all bosonic operators and
the 2-fermion operators which can be generated at tree-level by weakly coupled UV theories [210]. We follow the notation of
Ref. [191] and adapt the tables therein. The purpose of this appendix is to keep the thesis as self-contained as possible.
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where 𝐹 is a field-strenght tensor.

While it might seem straightforward to check whether two operators are related under these identities,

it becomes quite cumbersome at dimension-8 when the operators are composed of several fields and

derivatives.

Therefore, in order to simplify the task at hand, we work in momentum space, where independent op-

erators contribute to 1PI tree-level amplitudes through independent kinematic invariants. In momentum

space, IBP is equivalent to enforcing momentum conservation, whereas other identities manifest auto-

matically through relations between different Feynman rules. This section is based on the work published

in Ref. [4].

4.3.1 Off-shell independence in momentum space

As hinted above, we will study operator independence by studying their contribution to a 1PI amplitude for

a given process. Let us take {O𝑖}𝑖=1...𝑁 as 𝑁 operators whose independence we are trying to ascertain,

and study their contribution to the amplitude A(𝑎 → 𝑏). One can write the contribution of each operator,

O𝑖 , to the process in terms of independent kinematics invariants {𝜅𝛼 }. At tree level:

A(𝑎 → 𝑏) = 𝑐𝑖
�
𝛼

𝑓 𝑖𝛼 (𝑔)𝜅𝛼 , (4.3.2)

where 𝑓 is a matrix which represents the contribution of an operator O𝑖 , as a function of the SM gauge

couplings, 𝑔, to the kinematic invariant 𝜅𝛼 .

For two operators to be independent, that is, to describe different off-shell physics, then there must

exist at least one process for which the corresponding 𝑓 𝑖𝛼 = (𝑓 𝑖𝛼1, 𝑓 𝑖𝛼2, ...) and 𝑓 𝑗𝛼 = (𝑓 𝑗𝛼1, 𝑓 𝑗𝛼2, ...) are

non-collinear vectors (since 𝜅 are independent). More generally, this means that if there is at least one

amplitude in which the associate matrix 𝑀 with elements (𝑀)𝑖 𝑗 = 𝑓 𝑖𝑗 has rank 𝑁 , then the operators

{O𝑖}𝑖=1...𝑁 are independent.

Let us exemplify this by considering the following dimension-8 hermitian six-Higgs operators:

O1 = (𝜙†𝜙)𝐷𝜇 (𝜙†𝜙)𝐷𝜇 (𝜙†𝜙) , (4.3.3)

O2 = (𝜙†𝜙)2(𝐷2𝜙†𝜙 + 𝜙†𝐷2𝜙) , (4.3.4)

O3 = (𝜙†𝜙)2𝐷𝜇𝜙
†𝐷𝜇𝜙 . (4.3.5)

The 1PI amplitude for 𝜑0(𝑝1) → 𝜑0(𝑝2)𝜑+(𝑝3)𝜑−(𝑝4)𝜑+(𝑝5)𝜑−(𝑝6) reads:

A = 2𝑖 𝑐1(2𝜅13 + 2𝜅14 + 2𝜅15 + 2𝜅16 − 2𝜅23 − 2𝜅24 − 2𝜅25 − 2𝜅26
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− 𝜅34 − 2𝜅35 − 𝜅36 − 𝜅45 − 2𝜅46 − 𝜅56)
− 4𝑖 𝑐2(𝜅11 + 𝜅22 + 𝜅33 + 𝜅44 + 𝜅55 + 𝜅66)
+ 2𝑖 𝑐3(2𝜅12 − 𝜅34 − 𝜅36 − 𝜅45 − 𝜅56) , (4.3.6)

where 𝜅𝑖 𝑗 = 𝑝𝑖 · 𝑝 𝑗 .
At first sight one might think the matrix 𝑀 associated with this process has rank 3. Indeed, taking for

simplicity the sub-matrix �̂� associated to the invariants 𝜅11, 𝜅12, 𝜅13

�̂� =


0 0 4𝑖

−4𝑖 0 0

0 4𝑖 0


=⇒ 3 ≥ Rank(𝑀) ≥ Rank(�̂�) = 3 . (4.3.7)

However, the kinematic invariants with which we wrote our amplitude are not independent. By momentum

conservation 𝑝1 = 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6, and therefore 𝜅𝑖1 can always be reduced to other kinematic

invariants. Taking this into account, we arrive at:

A = 2𝑖 𝑐1(2𝜅33 + 3𝜅43 + 2𝜅44 + 2𝜅53 + 3𝜅54 + 2𝜅55 + 3𝜅63 + 2𝜅64 + 3𝜅65 + 2𝜅66)
− 8𝑖 𝑐2(𝜅22 + 𝜅32 + 𝜅33 + 𝜅42 + 𝜅43 + 𝜅44 + 𝜅52 + 𝜅53 + 𝜅54 + 𝜅55 + 𝜅62 + 𝜅63

+ 𝜅64 + 𝜅65 + 𝜅66)
+ 2𝑖 𝑐3(2𝜅22 + 2𝜅32 + 2𝜅42 − 𝜅43 + 2𝜅52 − 𝜅54 + 2𝜅62 − 𝜅63 − 𝜅65) . (4.3.8)

The corresponding matrix now only has rank 2. This can be seen from the fact that the first and third

lines in the equation above add to minus half the second one. In other words, O2 = −2(O1 + O3). At

the Lagrangian level, this could be seen through IBP:

𝐷𝜇

�
(𝜙†𝜙)2𝐷𝜇 (𝜙†𝜙)

�
= 2(𝜙†𝜙)𝐷𝜇 (𝜙†𝜙)𝐷𝜇 (𝜙†𝜙)

+ (𝜙†𝜙)2(𝐷2𝜙†𝜙 + 𝜙†𝐷2𝜙)
+ 2(𝜙†𝜙)2𝐷𝜇𝜙

†𝐷𝜇𝜙 . (4.3.9)

Let us also explore a slightly more elaborated case. Let us consider the following three operators com-

posed of two Higgses and two 𝐵𝜇𝜈 :

O1 = 𝐷𝜇 (𝜙†𝜙)𝐷𝜈𝐵𝜇𝜌𝐵𝜈𝜌 , (4.3.10)

O2 = (𝐷2𝜙†𝜙 + 𝜙†𝐷2𝜙)𝐵𝜈𝜌𝐵𝜈𝜌 , (4.3.11)
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O3 = 𝐷𝜇𝜙
†𝐷𝜇𝜙𝐵𝜈𝜌𝐵𝜈𝜌 . (4.3.12)

The amplitude for the process 𝜑0(𝑝1) → 𝜑0(𝑝2)𝐵(𝑝3)𝐵(𝑝4) is given by:

A = −𝑖𝑐1(𝜅3334 + 2𝜅3434 + 𝜅3444 − 𝜅�4333 − 2𝜅�4334 − 𝜅�4344)
+ 4𝑖𝑐2(2𝜅2234 + 2𝜅2334 + 2𝜅2434 + 𝜅3334 + 2𝜅3434 + 𝜅3444 − 2𝜅�4322 − 2𝜅�4323

− 2𝜅�4324 − 𝜅�4333 − 2𝜅 − 2𝜅�4334 − 𝜅4344)
− 4𝑖𝑐3(𝜅2234 + 𝜅2334 + 𝜅2434 − 𝜅�4322 − 𝜅4323 − 𝜅4324) ; (4.3.13)

where we removed 𝑝1 using momentum conservation, and the kinematic invariants are: 𝜅𝑖 𝑗𝑘𝑙 = (𝜀3 ·
𝜀4) (𝑝𝑖 · 𝑝 𝑗 ) (𝑝𝑘 · 𝑝𝑙 ) and 𝜅�

𝑖 𝑗𝑘𝑙
= (𝜀3 · 𝑝𝑖) (𝜀4 · 𝑝 𝑗 ) (𝑝𝑘 · 𝑝𝑙 ), where 𝜀 represents a polarization vector.

The rank of the corresponding matrix is 2, so one of the operators is a linear combination of the other

two. From inspection of the equation above, one arrives at O1 = −1
4O2 − 1

2O3. This result can again be

obtained at the Lagrangian level through the following relations:

O1 = −𝐷𝜇 (𝜙†𝜙)𝐷𝜇𝐵𝜌𝜈𝐵𝜈𝜌 − 𝐷𝜇 (𝜙†𝜙)𝐷𝜌𝐵𝜈𝜇𝐵𝜈𝜌

= −𝐷𝜇 (𝜙†𝜙)𝐷𝜇𝐵𝜌𝜈𝐵𝜈𝜌 − 𝐷𝜇 (𝜙†𝜙)𝐷𝜈𝐵𝜇𝜌𝐵𝜈𝜌

= −𝐷𝜇 (𝜙†𝜙)𝐷𝜇𝐵𝜌𝜈𝐵𝜈𝜌 − O1

⇒ O1 = −1
2
𝐷𝜇 (𝜙†𝜙)𝐷𝜇𝐵𝜌𝜈𝐵𝜈𝜌

=
1
2
𝐷2(𝜙†𝜙)𝐵𝜌𝜈𝐵𝜈𝜌 − 1

2
𝐷𝜇 (𝜙†𝜙)𝐵𝜌𝜈𝐷𝜇𝐵𝜈𝜌

=
1
2
𝐷2(𝜙†𝜙)𝐵𝜌𝜈𝐵𝜈𝜌 − O1

⇒ O1 =
1
4
𝐷2(𝜙†𝜙)𝐵𝜌𝜈𝐵𝜈𝜌

= −1
4
(𝐷2𝜙†𝜙 + 𝜙†𝐷2𝜙)𝐵𝜈𝜌𝐵𝜈𝜌 − 1

4
(2𝐷𝜇𝜙

†𝐷𝜇𝜙)𝐵𝜈𝜌𝐵𝜈𝜌

= −1
4
O2 − 1

2
O3 . (4.3.14)

In the first equality we used the Bianchi identity whereas in the second we simply renamed the indices

as 𝜈 ↔ 𝜌 in the last operator; in the fifth equality we have integrated by parts the derivative acting on

𝐵𝜌𝜈 while in the penultimate equality we have simply expanded the derivative. In all steps, we have also

taken into account that 𝐵 is anti-symmetric: 𝐵𝜈𝜌 = −𝐵𝜌𝜈 .

These example calculations might look straightforward to address from the Lagrangian (position

space) perspective. However, as hinted in the second example, things can get more involved when several
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operators are involved. More importantly, the examples above demonstrate that, at the Lagrangian level,

relations between dependent operators can be derived; however, proving whether operators are indeed

independent at the Lagrangian level, entails proving that they are not related by whatever combination of

operations you can perform. The power of tackling this issue in momentum space is that through this

approach, calculating the rank of the corresponding matrix is enough to prove independence of operators.

One last issue to be taken care of when constructing the kinematic invariants has to do with the fact

that we are working in 4-dimensions. This applies only to operators which involve dual field strength

tensors, as the fully anti-symmetric Levi-Civita symbol 𝜖𝜇𝜈𝜌𝜆 is a 4-dimensional object which respects the

Schouten identity:

𝑔𝜇𝜈𝜖𝛼𝛽𝛾𝛿 + 𝑔𝜇𝛼𝜖𝛽𝛾𝛿𝜈 + 𝑔𝜇𝛽𝜖𝛾𝛿𝜈𝛼 + 𝑔𝜇𝛾𝜖𝛿𝜈𝛼𝛽 + 𝑔𝜇𝛿𝜖𝜈𝛼𝛽𝛾 = 0 . (4.3.15)

This can be translated into the following relations involving an arbitrary tensor𝑇 and field strength tensors,

𝑋 and 𝐹 :

𝑇[𝜇𝜈]𝑋
𝜇
𝜌
�𝐹𝜈𝜌 = 𝑇[𝜇𝜈]�𝑋𝜇

𝜌𝐹
𝜈𝜌 , (4.3.16)

𝑇{𝜇𝜈}𝑋
𝜇
𝜌
�𝐹𝜈𝜌 = −𝑇{𝜇𝜈}�𝑋𝜇

𝜌𝐹
𝜈𝜌 + 1

2
𝑇
𝜇
𝜇
�𝑋𝜈𝜌𝐹𝜈𝜌 , (4.3.17)

𝑇𝜇𝜈𝑋
𝜇𝜌�𝑋𝜈

𝜌 =
1
4
𝑇
𝜇
𝜇 𝑋

𝜈𝜌�𝑋𝜈𝜌 , (4.3.18)

where [𝜇𝜈] and {𝜇𝜈} denote, anti-symmetrisation and symmetrisation, respectively. The relations hold

in 𝐷 = 4 space-time dimensions, and as such, we need to impose this in momentum space. This is done

by requiring that momenta and polarization vectors involved are indeed four-vectors, that is, there can at

most be 4 independent Lorentz vectors, with the others being simply a linear combination of those 4. We

require this by writing, for instance:

𝑝4 = 𝑎1𝜀3 + 𝑎2𝜀4 + 𝑎3𝑝2 + 𝑎4𝑝3 , (4.3.19)

where 𝑎1 ,𝑎2 ,𝑎3 and 𝑎4 are arbitrary coefficients.

Let us see an example of using this condition, by considering the following operators:

O1 = 𝑖 (𝐷𝜇𝜙
†𝜎𝐼𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜎𝐼𝐷𝜇𝜙)𝐵𝜇
𝜌
�𝑊 𝐼𝜈𝜌 , (4.3.20)

O2 = 𝑖 (𝐷𝜇𝜙
†𝜎𝐼𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜎𝐼𝐷𝜇𝜙)�𝐵𝜇
𝜌𝑊

𝐼𝜈𝜌 , (4.3.21)

which are related through Eq. (4.3.16).

Let us calculate the amplitude associated with the process 𝜑0(𝑝1) → 𝜑0(𝑝2)𝑊 3(𝑝3)𝐵(𝑝4):

A = 𝑐1(−𝜅323443 − 𝜅323444 + 𝜅343424 + 𝜅342334 + 𝜅342344)
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+ 𝑐2(−𝜅423433 − 𝜅423434 − 𝜅343423 + 𝜅342433 + 𝜅342434) ; (4.3.22)

where 𝜅𝑖 𝑗𝑘𝑙𝑚𝑛 = 𝜖𝜇𝜈𝜌𝜆𝜀
𝜇
𝑖 𝑝

𝜈
𝑗 𝑝

𝜌
𝑘
𝑝𝜆
𝑙
(𝜀𝑚 · 𝑝𝑛) and 𝜅�

𝑖 𝑗𝑘𝑙𝑚𝑛
= 𝜖𝜇𝜈𝜌𝜆𝜀

𝜇
𝑖 𝜀

𝜈
𝑗 𝑝

𝜌
𝑘
𝑝𝜆
𝑙
(𝑝𝑚 · 𝑝𝑛) and we have already

applied momentum conservation in order to remove 𝑝1. By considering that the rank of the associated

matrix is 2 one would think that these operators are independent.

However, imposing 𝐷 = 4 through Eq. (4.3.19) results in

A = (𝑐1 + 𝑐2)
�
𝑎3𝜅342323 + 𝑎3(1 + 𝑎4)𝜅342323 + 𝑎4(1 + 𝑎4)𝜅342333

+ 𝑎1𝑎3𝜅342332 + 𝑎1(1 + 2𝑎4)𝜅342333 + 𝑎2𝑎4𝜅342343 + 𝑎21𝜅342333
�
. (4.3.23)

Clearly, both operators describe the same off-shell physics and are therefore not independent. The

difference between the two vanishes in 𝐷 = 4 and is therefore an evanescent term. Knowing now how to

prove operator independence, the strategy for finding the minimal set of operators in the Green’s basis is

to build all operators which can contribute to a particular process whose rank is the same as the number

of off-shell operators provided by Sym2Int and Basisgen and eliminating operators whose removal

does not affect the rank of the system.

4.3.2 Explicit form of the operators

We are expanding upon the on-shell basis showed in Appendix B [191], and as such, we will only include

here the redundant operators. There are 2 redundant operators in the class 𝜙6𝐷2, 10 in 𝜙4𝐷4, 1 in

𝜙2𝐷6, 4 in 𝑋𝜙4𝐷2, 44 in 𝑋 2𝜙2𝐷2, 6 in 𝑋𝜙2𝐷4, 16 in 𝑋 3𝐷2 and 3 in the class 𝑋 2𝐷4.

4.3.2.1 Operators in the class 𝝓6𝑫2

O(3)
𝜙6 = (𝜙†𝜙)2(𝜙†𝐷2𝜙 + h.c.) , (4.3.24)

O(4)
𝜙6 = (𝜙†𝜙)2𝐷𝜇 (𝜙†i

←→
𝐷 𝜇𝜙) . (4.3.25)

4.3.2.2 Operators in the class 𝝓4𝑫4

O(4)
𝜙4 = 𝐷𝜇𝜙

†𝐷𝜇𝜙 (𝜙†𝐷2𝜙 + h.c.) , (4.3.26)

O(5)
𝜙4 = 𝐷𝜇𝜙

†𝐷𝜇𝜙 (𝜙†i𝐷2𝜙 + h.c.) , (4.3.27)

O(6)
𝜙4 = (𝐷𝜇𝜙

†𝜙) (𝐷2𝜙†𝐷𝜇𝜙) + h.c. , (4.3.28)
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O(7)
𝜙4 = (𝐷𝜇𝜙

†𝜙) (𝐷2𝜙†i𝐷𝜇𝜙) + h.c. , (4.3.29)

O(8)
𝜙4 = (𝐷2𝜙†𝜙) (𝐷2𝜙†𝜙) + h.c. , (4.3.30)

O(9)
𝜙4 = (𝐷2𝜙†𝜙) (i𝐷2𝜙†𝜙) + h.c. , (4.3.31)

O(10)
𝜙4 = (𝐷2𝜙†𝐷2𝜙) (𝜙†𝜙) , (4.3.32)

O(11)
𝜙4 = (𝜙†𝐷2𝜙) (𝐷2𝜙†𝜙) , (4.3.33)

O(12)
𝜙4 = (𝐷𝜇𝜙

†𝜙) (𝐷𝜇𝜙†𝐷2𝜙) + h.c. , (4.3.34)

O(13)
𝜙4 = (𝐷𝜇𝜙

†𝜙) (𝐷𝜇𝜙†i𝐷2𝜙) + h.c. . (4.3.35)

4.3.2.3 Operators in the class 𝑿𝝓4𝑫2

O(5)
𝑊𝜙4𝐷2 = (𝜙†𝜙)𝐷𝜈𝑊

𝐼𝜇𝜈 (𝐷𝜇𝜙
†𝜎𝐼𝜙 + h.c.) , (4.3.36)

O(6)
𝑊𝜙4𝐷2 = (𝜙†𝜙)𝐷𝜈𝑊

𝐼𝜇𝜈 (𝐷𝜇𝜙
†i𝜎𝐼𝜙 + h.c.) , (4.3.37)

O(7)
𝑊𝜙4𝐷2 = 𝜖𝐼 𝐽𝐾 (𝐷𝜇𝜙

†𝜎𝐼𝜙) (𝜙†𝜎 𝐽𝐷𝜈𝜙)𝑊𝐾𝜇𝜈 , (4.3.38)

O(3)
𝐵𝜙4𝐷2 = (𝜙†𝜙)𝐷𝜈𝐵

𝜇𝜈 (𝐷𝜇𝜙
†i𝜙 + h.c.) . (4.3.39)

4.3.2.4 Operators in the class 𝝓2𝑫6

O𝜙2 = 𝐷2𝜙†𝐷𝜇𝐷𝜈𝐷
𝜇𝐷𝜈𝜙 . (4.3.40)

4.3.2.5 Operators in the class 𝑿𝝓2𝑫4

𝑿 = 𝑩

O(1)
𝐵𝜙2𝐷4 = 𝑖 (𝐷𝜈𝜙

†𝐷2𝜙 − 𝐷2𝜙†𝐷𝜈𝜙)𝐷𝜇𝐵
𝜇𝜈 , (4.3.41)

O(2)
𝐵𝜙2𝐷4 = (𝐷𝜈𝜙

†𝐷2𝜙 + 𝐷2𝜙†𝐷𝜈𝜙)𝐷𝜇𝐵
𝜇𝜈 , (4.3.42)

O(3)
𝐵𝜙2𝐷4 = 𝑖 (𝐷𝜌𝐷𝜈𝜙

†𝐷𝜌𝜙 − 𝐷𝜌𝜙†𝐷𝜌𝐷𝜈𝜙)𝐷𝜇𝐵
𝜇𝜈 . (4.3.43)

𝑿 =𝑾

O(1)
𝑊𝜙2𝐷4 = 𝑖 (𝐷𝜈𝜙

†𝜎𝐼𝐷2𝜙 − 𝐷2𝜙†𝜎𝐼𝐷𝜈𝜙)𝐷𝜇𝑊
𝐼𝜇𝜈 , (4.3.44)

O(2)
𝑊𝜙2𝐷4 = (𝐷𝜈𝜙

†𝜎𝐼𝐷2𝜙 + 𝐷2𝜙†𝜎𝐼𝐷𝜈𝜙)𝐷𝜇𝑊
𝐼𝜇𝜈 , (4.3.45)

O(3)
𝐵𝜙2𝐷4 = 𝑖 (𝐷𝜌𝐷𝜈𝜙

†𝜎𝐼𝐷𝜌𝜙 − 𝐷𝜌𝜙†𝜎𝐼𝐷𝜌𝐷𝜈𝜙)𝐷𝜇𝑊
𝐼𝜇𝜈 . (4.3.46)

67



CHAPTER 4. MODEL-INDEPENDENT APPROACH

4.3.2.6 Operators in the class 𝑿2𝝓2𝑫2

𝑿2 = 𝑩2

O(4)
𝐵2𝜙2𝐷2 = (𝐷𝜇𝜙

†𝜙 + 𝜙†𝐷𝜇𝜙)𝐷𝜈𝐵
𝜇𝜌𝐵𝜈𝜌 , (4.3.47)

O(5)
𝐵2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜇𝐷𝜈𝜙 − 𝐷𝜇𝐷𝜈𝜙

†𝜙)𝐵𝜇𝜌𝐵𝜈𝜌 , (4.3.48)

O(6)
𝐵2𝜙2𝐷2 = 𝜙†𝜙𝐷𝜇𝐷𝜈𝐵

𝜇𝜌𝐵𝜈𝜌 , (4.3.49)

O(7)
𝐵2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐵
𝜇𝜌𝐵𝜈𝜌 , (4.3.50)

O(8)
𝐵2𝜙2𝐷2 = (𝜙†𝐷𝜈𝜙 + 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐵
𝜇𝜌𝐵𝜈𝜌 , (4.3.51)

O(9)
𝐵2𝜙2𝐷2 = (𝜙†𝐷2𝜙 + 𝐷2𝜙†𝜙)𝐵𝜈𝜌�𝐵𝜈𝜌 , (4.3.52)

O(10)
𝐵2𝜙2𝐷2 = 𝑖 (𝜙†𝐷2𝜙 − 𝐷2𝜙†𝜙)𝐵𝜈𝜌�𝐵𝜈𝜌 (4.3.53)

O(11)
𝐵2𝜙2𝐷2 = (𝜙†𝐷𝜈𝜙 + 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐵
𝜇𝜌�𝐵𝜈𝜌 (4.3.54)

O(12)
𝐵2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐵
𝜇𝜌�𝐵𝜈𝜌 . (4.3.55)

𝑿2 =𝑾2

O(7)
𝑊 2𝜙2𝐷2 = 𝑖𝜖𝐼 𝐽𝐾 (𝜙†𝜎𝐼𝐷𝜈𝜙 − 𝐷𝜈𝜙†𝜎𝐼𝜙)𝐷𝜇𝑊

𝐽𝜇𝜌 �𝑊𝐾
𝜈𝜌 , (4.3.56)

O(8)
𝑊 2𝜙2𝐷2 = 𝜖𝐼 𝐽𝐾𝜙†𝜎𝐼𝜙𝐷𝜈𝐷𝜇𝑊

𝐽𝜇𝜌 �𝑊𝐾𝜈
𝜌 , (4.3.57)

O(9)
𝑊 2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝑊
𝐼𝜇𝜌 �𝑊 𝐼𝜈

𝜌 , (4.3.58)

O(10)
𝑊 2𝜙2𝐷2 = (𝜙†𝐷𝜈𝜙 + 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝑊
𝐼𝜇𝜌 �𝑊 𝐼𝜈

𝜌 , (4.3.59)

O(11)
𝑊 2𝜙2𝐷2 = (𝜙†𝐷𝜈𝜙 + 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝑊
𝐼𝜇𝜌𝑊 𝐼𝜈

𝜌 , (4.3.60)

O(12)
𝑊 2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝑊
𝐼𝜇𝜌𝑊 𝐼𝜈

𝜌 , (4.3.61)

O(13)
𝑊 2𝜙2𝐷2 = 𝜙†𝜙𝐷𝜇𝑊

𝐼𝜇𝜌𝐷𝜈𝑊
𝐼𝜈
𝜌 , (4.3.62)

O(14)
𝑊 2𝜙2𝐷2 = (𝐷𝜇𝜙

†𝜙 + 𝜙†𝐷𝜇𝜙)𝑊 𝐼𝜈𝜌𝐷𝜇𝑊 𝐼
𝜈𝜌 , (4.3.63)

O(15)
𝑊 2𝜙2𝐷2 = 𝑖 (𝐷𝜇𝜙

†𝜙 − 𝜙†𝐷𝜇𝜙)𝑊 𝐼𝜈𝜌𝐷𝜇𝑊 𝐼
𝜈𝜌 , (4.3.64)

O(16)
𝑊 2𝜙2𝐷2 = (𝐷𝜇𝜙

†𝜙 + 𝜙†𝐷𝜇𝜙)𝐷𝜇𝑊 𝐼𝜈𝜌 �𝑊 𝐼
𝜈𝜌 , (4.3.65)

O(17)
𝑊 2𝜙2𝐷2 = 𝑖 (𝐷𝜇𝜙

†𝜙 − 𝜙†𝐷𝜇𝜙)𝐷𝜇𝑊 𝐼𝜈𝜌 �𝑊 𝐼
𝜈𝜌 , (4.3.66)

O(18)
𝑊 2𝜙2𝐷2 = 𝜖𝐼 𝐽𝐾 (𝜙†𝜎𝐼𝐷𝜈𝜙 + 𝐷𝜈𝜙†𝜎𝐼𝜙)𝐷𝜇𝑊

𝐽𝜇𝜌𝑊 𝐾
𝜈𝜌 , (4.3.67)

O(19)
𝑊 2𝜙2𝐷2 = 𝑖𝜖𝐼 𝐽𝐾 (𝜙†𝜎𝐼𝐷𝜈𝜙 − 𝐷𝜈𝜙†𝜎𝐼𝜙)𝐷𝜇𝑊

𝐽𝜇𝜌𝑊 𝐾
𝜈𝜌 . (4.3.68)
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𝑿2 =𝑾𝑩

O(7)
𝑊𝐵𝜙2𝐷2 = 𝑖 (𝜙†𝜎𝐼𝐷𝜇𝜙 − 𝐷𝜇𝜙†𝜎𝐼𝜙)𝐷𝜇𝐵

𝜈𝜌𝑊 𝐼
𝜈𝜌 , (4.3.69)

O(8)
𝑊𝐵𝜙2𝐷2 = (𝜙†𝜎𝐼𝐷𝜈𝜙 + 𝐷𝜈𝜙†𝜎𝐼𝜙)𝐷𝜇𝐵

𝜇𝜌𝑊 𝐼
𝜈𝜌 , (4.3.70)

O(9)
𝑊𝐵𝜙2𝐷2 = 𝑖 (𝜙†𝜎𝐼𝐷𝜈𝜙 − 𝐷𝜈𝜙†𝜎𝐼𝜙)𝐷𝜇𝐵

𝜇𝜌𝑊 𝐼
𝜈𝜌 , (4.3.71)

O(10)
𝑊𝐵𝜙2𝐷2 = (𝜙†𝜎𝐼𝜙)𝐷𝜇𝐵𝜇𝜌𝐷𝜈𝑊

𝐼𝜈𝜌 , (4.3.72)

O(11)
𝑊𝐵𝜙2𝐷2 = (𝐷𝜈𝜙

†𝜎𝐼𝜙 + 𝜙†𝜎𝐼𝐷𝜈𝜙)𝐵𝜇𝜌𝐷𝜇𝑊 𝐼𝜈𝜌 , (4.3.73)

O(12)
𝑊𝐵𝜙2𝐷2 = 𝑖 (𝐷𝜈𝜙

†𝜎𝐼𝜙 − 𝜙†𝜎𝐼𝐷𝜈𝜙)𝐵𝜇𝜌𝐷𝜇𝑊 𝐼𝜈𝜌 , (4.3.74)

O(13)
𝑊𝐵𝜙2𝐷2 = (𝜙†𝜎𝐼𝜙)𝐵𝜇𝜌𝐷𝜈𝐷

𝜇𝑊 𝐼𝜈𝜌 , (4.3.75)

O(14)
𝑊𝐵𝜙2𝐷2 = 𝑖 (𝐷𝜈𝜙

†𝜎𝐼𝜙 − 𝜙†𝜎𝐼𝐷𝜈𝜙)𝐷𝜇𝐵𝜇𝜌 �𝑊 𝐼𝜈𝜌 , (4.3.76)

O(15)
𝑊𝐵𝜙2𝐷2 = 𝑖 (𝜙†𝜎𝐼𝐷𝜇𝜙 − 𝐷𝜇𝜙

†𝜎𝐼𝜙)𝐷𝜇𝐵𝜈𝜌 �𝑊 𝐼𝜈𝜌 , (4.3.77)

O(16)
𝑊𝐵𝜙2𝐷2 = (𝜙†𝜎𝐼𝜙) (𝐷2𝐵𝜈𝜌) �𝑊 𝐼

𝜈𝜌 , (4.3.78)

O(17)
𝑊𝐵𝜙2𝐷2 = (𝜙†𝜎𝐼𝜙) (𝐷𝜌𝐷𝜇𝑊

𝐼𝜇𝜈 )�𝐵𝜈𝜌 , (4.3.79)

O(18)
𝑊𝐵𝜙2𝐷2 = 𝑖 (𝐷𝜈𝜙†𝜎𝐼𝜙 − 𝜙†𝜎𝐼𝐷𝜈𝜙)�𝐵𝜇𝜌𝐷𝜇𝑊

𝐼
𝜈𝜌 , (4.3.80)

O(19)
𝑊𝐵𝜙2𝐷2 = (𝐷𝜈𝜙†𝜎𝐼𝜙 + 𝜙†𝜎𝐼𝐷𝜈𝜙)�𝐵𝜇𝜌𝐷𝜇𝑊

𝐼
𝜈𝜌 . (4.3.81)

𝑿2 = 𝑮2

O(4)
𝐺2𝜙2𝐷2 = (𝐷𝜇𝜙

†𝜙 + 𝜙†𝐷𝜇𝜙)𝐷𝜈𝐺
𝐴𝜇𝜌𝐺𝐴𝜈

𝜌 , (4.3.82)

O(5)
𝐺2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜇𝐷𝜈𝜙 − 𝐷𝜇𝐷𝜈𝜙

†𝜙)𝐺𝐴𝜇𝜌𝐺𝐴𝜈
𝜌 , (4.3.83)

O(6)
𝐺2𝜙2𝐷2 = 𝜙†𝜙𝐷𝜇𝐷𝜈𝐺

𝐴𝜇𝜌𝐺𝐴𝜈
𝜌 , (4.3.84)

O(7)
𝐺2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐺
𝐴𝜇𝜌𝐺𝐴𝜈

𝜌 , (4.3.85)

O(8)
𝐺2𝜙2𝐷2 = (𝜙†𝐷𝜈𝜙 + 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐺
𝐴𝜇𝜌𝐺𝐴𝜈

𝜌 , (4.3.86)

O(9)
𝐺2𝜙2𝐷2 = (𝜙†𝐷2𝜙 + 𝐷2𝜙†𝜙)𝐺𝐴𝜈𝜌 �𝐺𝐴𝜈

𝜌 , (4.3.87)

O(10)
𝐺2𝜙2𝐷2 = 𝑖 (𝜙†𝐷2𝜙 − 𝐷2𝜙†𝜙)𝐺𝐴𝜈𝜌 �𝐺𝐴

𝜈𝜌 (4.3.88)

O(11)
𝐺2𝜙2𝐷2 = (𝜙†𝐷𝜈𝜙 + 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐺
𝐴𝜇𝜌 �𝐺𝐴𝜈

𝜌 (4.3.89)

O(12)
𝐺2𝜙2𝐷2 = 𝑖 (𝜙†𝐷𝜈𝜙 − 𝐷𝜈𝜙

†𝜙)𝐷𝜇𝐺
𝐴𝜇𝜌 �𝐺𝐴𝜈

𝜌 . (4.3.90)
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4.3.2.7 Operators in the class 𝑿3𝑫2

𝑿3 =𝑾2𝑩

O(1)
𝑊 2𝐵𝐷2 = 𝐵𝜇𝜈𝐷𝜌𝑊

𝐼𝜇𝜈𝐷𝜎𝑊
𝐼𝜌𝜎 , (4.3.91)

O(2)
𝑊 2𝐵𝐷2 = 𝐵𝜇𝜈 (𝐷2𝑊 𝐼𝜇𝜌)𝑊 𝐼𝜈

𝜌 , (4.3.92)

O(3)
𝑊 2𝐵𝐷2 = �𝐵𝜇𝜈𝐷𝜌𝑊

𝐼𝜇𝜈𝐷𝜎𝑊
𝐼𝜌𝜎 , (4.3.93)

O(4)
𝑊 2𝐵𝐷2 = �𝐵𝜇𝜈 (𝐷2𝑊 𝐼𝜇𝜌)𝑊 𝐼𝜈

𝜌 . (4.3.94)

𝑿3 = 𝑮2𝑩

O(1)
𝐺2𝐵𝐷2 = 𝐵𝜇𝜈𝐷𝜌𝐺

𝐴𝜇𝜈𝐷𝜎𝐺
𝐴𝜌𝜎 , (4.3.95)

O(2)
𝐺2𝐵𝐷2 = 𝐵𝜇𝜈 (𝐷2𝐺𝐴𝜇𝜌)𝐺𝐴𝜈

𝜌 , (4.3.96)

O(3)
𝐺2𝐵𝐷2 = �𝐵𝜇𝜈𝐷𝜌𝐺

𝐴𝜇𝜈𝐷𝜎𝐺
𝐴𝜌𝜎 , (4.3.97)

O(4)
𝐺2𝐵𝐷2 = �𝐵𝜇𝜈 (𝐷2𝐺𝐴𝜇𝜌)𝐺𝐴𝜈

𝜌 . (4.3.98)

𝑿3 =𝑾3

O(1)
𝑊 3𝐷2 = 𝜖𝐼 𝐽𝐾𝑊 𝐼

𝜇𝜈𝐷𝜌𝑊
𝐽𝜇𝜈𝐷𝜎𝑊

𝐾𝜌𝜎 , (4.3.99)

O(2)
𝑊 3𝐷2 = 𝜖𝐼 𝐽𝐾𝑊 𝐼

𝜇𝜈𝐷𝜌𝑊
𝐽𝜌𝜇𝐷𝜎𝑊

𝐾𝜎𝜈 , (4.3.100)

O(3)
𝑊 3𝐷2 = 𝜖𝐼 𝐽𝐾 �𝑊 𝐼

𝜇𝜈𝐷𝜌𝑊
𝐽𝜇𝜈𝐷𝜎𝑊

𝐾𝜌𝜎 , (4.3.101)

O(4)
𝑊 3𝐷2 = 𝜖𝐼 𝐽𝐾 �𝑊 𝐼

𝜇𝜈𝐷𝜌𝑊
𝐽𝜌𝜇𝐷𝜎𝑊

𝐾𝜎𝜈 . (4.3.102)

𝑿3 = 𝑮3

O(1)
𝐺3𝐷2 = 𝑓 𝐴𝐵𝐶𝐺𝐴

𝜇𝜈𝐷𝜌𝐺
𝐵𝜇𝜈𝐷𝜎𝐺

𝐶𝜌𝜎 , (4.3.103)

O(2)
𝐺3𝐷2 = 𝑓 𝐴𝐵𝐶𝐺𝐴

𝜇𝜈𝐷𝜌𝐺
𝐵𝜌𝜇𝐷𝜎𝐺

𝐶𝜎𝜈 , (4.3.104)

O(3)
𝐺3𝐷2 = 𝑓 𝐴𝐵𝐶 �𝐺𝐴

𝜇𝜈𝐷𝜌𝐺
𝐵𝜇𝜈𝐷𝜎𝐺

𝐶𝜌𝜎 , (4.3.105)

O(4)
𝐺3𝐷2 = 𝑓 𝐴𝐵𝐶 �𝐺𝐴

𝜇𝜈𝐷𝜌𝐺
𝐵𝜌𝜇𝐷𝜎𝐺

𝐶𝜎𝜈 , (4.3.106)

4.3.2.8 Operators in the class 𝑿2𝑫4

𝑿 = 𝑩

O𝐵2𝐷4 = (𝐷𝜎𝐷𝜇𝐵
𝜇𝜈 ) (𝐷𝜎𝐷𝜌𝐵𝜌𝜈 ) . (4.3.107)
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𝑿 =𝑾

O𝑊 2𝐷4 = (𝐷𝜎𝐷𝜇𝑊
𝐼𝜇𝜈 ) (𝐷𝜎𝐷𝜌𝑊 𝐼

𝜌𝜈 ) . (4.3.108)

𝑿 = 𝑮

O𝐺2𝐷4 = (𝐷𝜎𝐷𝜇𝐺
𝐴𝜇𝜈 ) (𝐷𝜎𝐷𝜌𝐺𝐴

𝜌𝜈 ) . (4.3.109)

4.3.3 On-shell relations

For the RGEs calculations we will perform in the next sections, we can remove the redundant operators

by using the SM EOM. Neglecting fermions, the SM EOMs read:

𝐷2𝜙𝑖 = −2𝜆(𝜙†𝜙)𝜙𝑖 , (4.3.110)

𝜕𝜈𝐵𝜇𝜈 =
𝑔1
2
(𝜙†𝑖𝐷𝜇𝜙 − 𝐷𝜇𝜙

†𝑖𝜙) , (4.3.111)

𝐷𝜈𝑊 𝐼
𝜇𝜈 =

𝑔2
2
(𝜙†𝑖𝐷𝜇𝜎

𝐼𝜙 − 𝜙†𝑖𝜎𝐼𝐷𝜇𝜙) , (4.3.112)

where we neglected here the contribution proportional to 𝜇 in the Higgs EOM. The shift on the WCs of

on-shell operators from the removal of the redundant ones is given by:

𝑐𝜙8 → 𝑐𝜙8 − 1
2
𝑐𝐵2𝐷4𝑔21𝑔

2
2𝜆 +

1
2
𝑐 (8)
𝐵2𝜙2𝐷2𝑔

2
1𝜆 + 2𝑐 (1)

𝐵𝜙2𝐷4𝑔1𝜆
2 + 1

4
𝑐 (3)
𝐵𝜙2𝐷4𝑔1𝑔

2
2𝜆

− 2𝑐 (3)
𝐵𝜙2𝐷4𝑔1𝜆

2 + 𝑐 (3)
𝐵𝜙4𝐷2𝑔1𝜆 + 4𝑐 (10)

𝜙4 𝜆2 + 4𝑐 (11)
𝜙4 𝜆2 − 4𝑐 (12)

𝜙4 𝜆2 + 8𝑐 (8)
𝜙4 𝜆

2

− 𝑐𝑊 2𝐷4𝑔21𝑔
2
2𝜆 −

1
2
𝑐𝑊 2𝐷4𝑔42𝜆 +

1
2
𝑐 (11)
𝑊 2𝜙2𝐷2𝑔

2
2𝜆 −

1
2
𝑐 (13)
𝑊 2𝜙2𝐷2𝑔

2
2𝜆 − 𝑐 (19)

𝑊 2𝜙2𝐷2𝑔
2
2𝜆

− 𝑐 (1)
𝑊 3𝐷2𝑔

3
2𝜆 +

1
2
𝑐 (2)
𝑊 3𝐷2𝑔

3
2𝜆 −

1
2
𝑐 (10)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2𝜆 +

𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2𝜆

4
+ 𝑐 (13)

𝑊𝐵𝜙2𝐷2𝑔1𝑔2𝜆

+ 2𝑐 (1)
𝑊𝜙2𝐷4𝑔2𝜆

2 + 1
2
𝑐 (3)
𝑊𝜙2𝐷4𝑔

2
1𝑔2𝜆 − 2𝑐 (3)

𝑊𝜙2𝐷4𝑔2𝜆
2 + 𝑐 (6)

𝑊𝜙4𝐷2𝑔2𝜆 +
𝑐 (7)
𝑊𝜙4𝐷2𝑔2𝜆

2

− 4𝑐 (3)
𝜙6 𝜆 − 𝑐𝜙2

�
𝑔21𝜆

2 + 𝑔22𝜆2 + 32𝜆3
�
, (4.3.113)

𝑐 (1)
𝜙6 → 𝑐 (1)

𝜙6 + 𝑐𝐵2𝐷4𝑔21𝑔
2
2 −

3𝑐 (8)
𝐵2𝜙2𝐷2𝑔

2
1

4
− 3𝑐 (1)

𝐵𝜙2𝐷4𝑔1𝜆 −
1
2
𝑐 (3)
𝐵𝜙2𝐷4𝑔1𝑔

2
2 + 3𝑐 (3)

𝐵𝜙2𝐷4𝑔1𝜆

−
3𝑐 (3)

𝐵𝜙4𝐷2𝑔1

2
+ 3
2
𝑐𝜙2𝑔21𝜆 +

5
2
𝑐𝜙2𝑔22𝜆 + 8𝑐𝜙2𝜆2 + 4𝑐 (12)

𝜙4 𝜆 − 4𝑐 (4)
𝜙4 𝜆 − 2𝑐 (6)

𝜙4 𝜆

+ 3
2
𝑐𝑊 2𝐷4𝑔21𝑔

2
2 +

5𝑐𝑊 2𝐷4𝑔42
4

−
5𝑐 (11)

𝑊 2𝜙2𝐷2𝑔
2
2

4
+
5𝑐 (13)

𝑊 2𝜙2𝐷2𝑔
2
2

4
+
5𝑐 (19)

𝑊 2𝜙2𝐷2𝑔
2
2

2
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+
5𝑐 (1)

𝑊 3𝐷2𝑔
3
2

2
−
5𝑐 (2)

𝑊 3𝐷2𝑔
3
2

4
+
3𝑐 (10)

𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
−
𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
−
3𝑐 (13)

𝑊𝐵𝜙2𝐷2𝑔1𝑔2

2

+
𝑐 (8)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
− 5𝑐 (1)

𝑊𝜙2𝐷4𝑔2𝜆 −
3
4
𝑐 (3)
𝑊𝜙2𝐷4𝑔

2
1𝑔2 + 5𝑐 (3)

𝑊𝜙2𝐷4𝑔2𝜆 −
5𝑐 (6)

𝑊𝜙4𝐷2𝑔2

2

− 𝑐 (7)
𝑊𝜙4𝐷2𝑔2 , (4.3.114)

𝑐 (2)
𝜙6 → 𝑐 (2)

𝜙6 + 1
4
𝑐𝐵2𝐷4𝑔21𝑔

2
2 −

𝑐 (8)
𝐵2𝜙2𝐷2𝑔

2
1

2
− 2𝑐 (1)

𝐵𝜙2𝐷4𝑔1𝜆 −
1
8
𝑐 (3)
𝐵𝜙2𝐷4𝑔1𝑔

2
2 + 2𝑐 (3)

𝐵𝜙2𝐷4𝑔1𝜆

− 𝑐 (3)
𝐵𝜙4𝐷2𝑔1 + 𝑐𝜙2𝑔21𝜆 + 2𝑐 (12)

𝜙4 𝜆 − 2𝑐 (6)
𝜙4 𝜆 + 𝑐𝑊 2𝐷4𝑔21𝑔

2
2 +

𝑐 (10)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

2

−
𝑐 (8)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
−
3𝑐 (11)

𝑊𝐵𝜙2𝐷2𝑔1𝑔2

8
− 𝑐 (13)

𝑊𝐵𝜙2𝐷2𝑔1𝑔2 −
1
2
𝑐 (3)
𝑊𝜙2𝐷4𝑔

2
1𝑔2

−
𝑐 (7)
𝑊𝜙4𝐷2𝑔2

4
, (4.3.115)

𝑐 (1)
𝜙4 → 𝑐 (1)

𝜙4 + 𝑐𝐵2𝐷4𝑔21 − 𝑐 (3)
𝐵𝜙2𝐷4𝑔1 − 𝑐𝑊 2𝐷4𝑔22 + 𝑐 (3)𝑊𝜙2𝐷4𝑔2 , (4.3.116)

𝑐 (2)
𝜙4 → 𝑐 (2)

𝜙4 − 𝑐𝐵2𝐷4𝑔21 + 𝑐 (3)𝐵𝜙2𝐷4𝑔1 − 𝑐𝑊 2𝐷4𝑔22 + 𝑐 (3)𝑊𝜙2𝐷4𝑔2 , (4.3.117)

𝑐 (3)
𝜙4 → 𝑐 (3)

𝜙4 + 2𝑐𝑊 2𝐷4𝑔22 − 2𝑐 (3)
𝑊𝜙2𝐷4𝑔2 , (4.3.118)

𝑐 (1)
𝐺3𝜙2 → 𝑐 (1)

𝐺3𝜙2 + 𝑔3𝑐 (6)𝐺2𝜙2𝐷2 , (4.3.119)

𝑐 (1)
𝑊 3𝜙2 → 𝑐 (1)

𝑊 3𝜙2 −
𝑐 (1)
𝑊 3𝐷2𝑔

2
2

2
, (4.3.120)

𝑐 (2)
𝑊 3𝜙2 → 𝑐 (2)

𝑊 3𝜙2 −
𝑐 (3)
𝑊 3𝐷2𝑔

2
2

2
, (4.3.121)

𝑐 (1)
𝑊 2𝐵𝜙2 → 𝑐 (1)

𝑊 2𝐵𝜙2 −
𝑐 (1)
𝑊 3𝐷2𝑔1𝑔2

2
+
𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔2

2
+ 𝑐 (13)

𝑊𝐵𝜙2𝐷2𝑔2 , (4.3.122)

𝑐 (2)
𝑊 2𝐵𝜙2 → 𝑐 (2)

𝑊 2𝐵𝜙2 +
𝑐 (3)
𝑊 3𝐷2𝑔1𝑔2

4
+
𝑐 (19)
𝑊𝐵𝜙2𝐷2𝑔2

2
, (4.3.123)

𝑐 (1)
𝐺2𝜙4 → 𝑐 (1)

𝐺2𝜙4 + 𝜆𝑐 (4)𝐺2𝜙2𝐷2 , (4.3.124)

𝑐 (2)
𝐺2𝜙4 → 𝑐 (2)

𝐺2𝜙4 − 4𝜆𝑐 (9)
𝐺2𝜙2𝐷2 , (4.3.125)

𝑐 (1)
𝑊 2𝜙4 → 𝑐 (1)

𝑊 2𝜙4 −
1
8
𝑐𝐵2𝐷4𝑔21𝑔

2
2 +

1
16
𝑐 (3)
𝐵𝜙2𝐷4𝑔1𝑔

2
2 −

𝑐𝑊 2𝐷4𝑔42
8

+
𝑐 (11)
𝑊 2𝜙2𝐷2𝑔

2
2

4

+ 2𝑐 (14)
𝑊 2𝜙2𝐷2𝜆 −

𝑐 (19)
𝑊 2𝜙2𝐷2𝑔

2
2

2
−
𝑐 (1)
𝑊 3𝐷2𝑔

3
2

2
+
𝑐 (2)
𝑊 3𝐷2𝑔

3
2

4
−
𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

16
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−
𝑐 (8)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

8
+
𝑐 (7)
𝑊𝜙4𝐷2𝑔2

8
− 1
2
𝑐𝜙2𝑔22𝜆 , (4.3.126)

𝑐 (2)
𝑊 2𝜙4 → 𝑐 (2)

𝑊 2𝜙4 +
𝑐 (10)
𝑊 2𝜙2𝐷2𝑔

2
2

4
+ 2𝑐 (16)

𝑊 2𝜙2𝐷2𝜆 −
𝑐 (7)
𝑊 2𝜙2𝐷2𝑔

2
2

2
+
𝑐 (3)
𝑊 3𝐷2𝑔

3
2

2
+
𝑐 (4)
𝑊 3𝐷2𝑔

3
2

4

+
𝑐 (16)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
+
𝑐 (19)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

16
, (4.3.127)

𝑐 (3)
𝑊 2𝜙4 → 𝑐 (3)

𝑊 2𝜙4 +
1
16
𝑐 (3)
𝐵𝜙2𝐷4𝑔1𝑔

2
2 +

𝑐 (7)
𝑊𝜙4𝐷2𝑔2

8
+
𝑐 (8)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

8
+
𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

16
, (4.3.128)

𝑐 (4)
𝑊 2𝜙4 → 𝑐 (4)

𝑊 2𝜙4 −
𝑐 (16)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
−
𝑐 (19)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

16
, (4.3.129)

𝑐 (1)
𝑊𝐵𝜙4 → 𝑐 (1)

𝑊𝐵𝜙4 −
𝑐 (6)
𝐵2𝜙2𝐷2𝑔1𝑔2

4
+
𝑐 (8)
𝐵2𝜙2𝐷2𝑔1𝑔2

4
+ 1
8
𝑐 (3)
𝐵𝜙2𝐷4𝑔

2
1𝑔2 −

1
2
𝑐𝑊 2𝐷4𝑔1𝑔

3
2

+
𝑐 (11)
𝑊 2𝜙2𝐷2𝑔1𝑔2

4
−
𝑐 (19)
𝑊 2𝜙2𝐷2𝑔1𝑔2

2
− 1
2
𝑐 (1)
𝑊 3𝐷2𝑔1𝑔

2
2 +

1
4
𝑐 (2)
𝑊 3𝐷2𝑔1𝑔

2
2 +

𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔

2
2

8

+ 𝑐 (11)
𝑊𝐵𝜙2𝐷2𝜆 +

𝑐 (13)
𝑊𝐵𝜙2𝐷2𝑔

2
2

4
+ 1
4
𝑐 (3)
𝑊𝜙2𝐷4𝑔1𝑔

2
2 +

𝑐 (7)
𝑊𝜙4𝐷2𝑔1

4
− 𝑐𝜙2𝑔1𝑔2𝜆 , (4.3.130)

𝑐 (2)
𝑊𝐵𝜙4 → 𝑐 (2)

𝑊𝐵𝜙4 +
𝑐 (11)
𝐵2𝜙2𝐷2𝑔1𝑔2

4
+
𝑐 (10)
𝑊 2𝜙2𝐷2𝑔1𝑔2

4
−
𝑐 (7)
𝑊 2𝜙2𝐷2𝑔1𝑔2

2
+ 1
2
𝑐 (3)
𝑊 3𝐷2𝑔1𝑔

2
2

+ 1
4
𝑐 (4)
𝑊 3𝐷2𝑔1𝑔

2
2 −

𝑐 (19)
𝑊𝐵𝜙2𝐷2𝑔

2
2

4
+ 𝑐 (19)

𝑊𝐵𝜙2𝐷2𝜆 −
𝑐 (17)
𝑊𝐵𝜙2𝐷2𝑔

2
2

4
, (4.3.131)

𝑐 (1)
𝐵2𝜙4 → 𝑐 (1)

𝐵2𝜙4 +
𝑐𝐵2𝐷4𝑔41

8
+ 𝑐 (4)

𝐵2𝜙2𝐷2𝜆 −
𝑐 (6)
𝐵2𝜙2𝐷2𝑔

2
1

4
+
𝑐 (8)
𝐵2𝜙2𝐷2𝑔

2
1

4
− 3
8
𝑐𝑊 2𝐷4𝑔21𝑔

2
2

+
𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

8
+
𝑐 (13)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
+ 1
4
𝑐 (3)
𝑊𝜙2𝐷4𝑔

2
1𝑔2 −

1
2
𝑐𝜙2𝑔21𝜆 , (4.3.132)

𝑐 (2)
𝐵2𝜙4 → 𝑐 (2)

𝐵2𝜙4 +
𝑐 (11)
𝐵2𝜙2𝐷2𝑔

2
1

4
− 4𝑐 (9)

𝐵2𝜙2𝐷2𝜆 −
𝑐 (19)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
−
𝑐 (17)
𝑊𝐵𝜙2𝐷2𝑔1𝑔2

4
, (4.3.133)

𝑐 (2)
𝐺2𝜙2𝐷2 → 𝑐 (2)

𝐺2𝜙2𝐷2 −
1
2
𝑐 (4)
𝐺2𝜙2𝐷2 , (4.3.134)

𝑐 (2)
𝑊 2𝜙2𝐷2 → 𝑐 (2)

𝑊 2𝜙2𝐷2 − 𝑐 (14)
𝑊 2𝜙2𝐷2 , (4.3.135)

𝑐 (3)
𝑊 2𝜙2𝐷2 → 𝑐 (3)

𝑊 2𝜙2𝐷2 − 𝑐 (16)
𝑊 2𝜙2𝐷2 , (4.3.136)

𝑐 (4)
𝑊 2𝜙2𝐷2 → 𝑐 (4)

𝑊 2𝜙2𝐷2 − 2𝑐 (1)
𝑊 3𝐷2𝑔2 , (4.3.137)
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𝑐 (6)
𝑊 2𝜙2𝐷2 → 𝑐 (6)

𝑊 2𝜙2𝐷2 − 𝑐 (3)
𝑊 3𝐷2𝑔2 , (4.3.138)

𝑐 (1)
𝑊𝐵𝜙2𝐷2 → 𝑐 (1)

𝑊𝐵𝜙2𝐷2 −
𝑐 (11)
𝑊𝐵𝜙2𝐷2

2
, (4.3.139)

𝑐 (2)
𝑊𝐵𝜙2𝐷2 → 𝑐 (2)

𝑊𝐵𝜙2𝐷2 −
𝑐 (19)
𝑊𝐵𝜙2𝐷2

2
, (4.3.140)

𝑐 (3)
𝑊𝐵𝜙2𝐷2 → 𝑐 (3)

𝑊𝐵𝜙2𝐷2 − 𝑐 (1)
𝑊 2𝐵𝐷2𝑔2 + 𝑐 (2)𝑊 2𝐵𝐷2𝑔2 + 𝑐 (12)𝑊𝐵𝜙2𝐷2 + 2𝑐 (7)

𝑊𝐵𝜙2𝐷2 , (4.3.141)

𝑐 (5)
𝑊𝐵𝜙2𝐷2 → 𝑐 (5)

𝑊𝐵𝜙2𝐷2 − 𝑐 (3)
𝑊 2𝐵𝐷2𝑔2 +

3𝑐 (4)
𝑊 2𝐵𝐷2𝑔2

2
+ 2𝑐 (15)

𝑊𝐵𝜙2𝐷2 + 𝑐 (18)𝑊𝐵𝜙2𝐷2 , (4.3.142)

𝑐 (2)
𝐵2𝜙2𝐷2 → 𝑐 (2)

𝐵2𝜙2𝐷2 −
𝑐 (4)
𝐵2𝜙2𝐷2

2
, (4.3.143)

𝑐 (1)
𝑊𝜙4𝐷2 → 𝑐 (1)

𝑊𝜙4𝐷2 − 𝑐𝐵2𝐷4𝑔21𝑔2 +
𝑐 (3)
𝐵𝜙2𝐷4𝑔1𝑔2

2
− 𝑐𝑊 2𝐷4𝑔32 + 𝑐 (11)𝑊 2𝜙2𝐷2𝑔2 − 4𝑐 (19)

𝑊 2𝜙2𝐷2𝑔2

− 4𝑐 (1)
𝑊 3𝐷2𝑔

2
2 + 2𝑐 (2)

𝑊 3𝐷2𝑔
2
2 −

𝑐 (11)
𝑊𝐵𝜙2𝐷2𝑔1

2
− 𝑐 (8)

𝑊𝐵𝜙2𝐷2𝑔1 −
𝑐 (3)
𝑊𝜙2𝐷4𝑔

2
2

2

+ 2𝑐 (7)
𝑊𝜙4𝐷2 , (4.3.144)

𝑐 (2)
𝑊𝜙4𝐷2 → 𝑐 (2)

𝑊𝜙4𝐷2 + 𝑐 (10)𝑊 2𝜙2𝐷2𝑔2 − 4𝑐 (7)
𝑊 2𝜙2𝐷2𝑔2 + 4𝑐 (3)

𝑊 3𝐷2𝑔
2
2 + 2𝑐 (4)

𝑊 3𝐷2𝑔
2
2 + 2𝑐 (16)

𝑊𝐵𝜙2𝐷2𝑔1

+
𝑐 (19)
𝑊𝐵𝜙2𝐷2𝑔1

2
, (4.3.145)

𝑐 (3)
𝑊𝜙4𝐷2 → 𝑐 (3)

𝑊𝜙4𝐷2 +
𝑐 (1)
𝑊 2𝐵𝐷2𝑔1𝑔2

2
+ 𝑐 (12)

𝑊 2𝜙2𝐷2𝑔2 + 𝑐 (18)𝑊 2𝜙2𝐷2𝑔2 −
𝑐 (12)
𝑊𝐵𝜙2𝐷2𝑔1

2
− 𝑐 (7)

𝑊𝐵𝜙2𝐷2𝑔1

− 𝑐 (9)
𝑊𝐵𝜙2𝐷2𝑔1 , (4.3.146)

𝑐 (4)
𝑊𝜙4𝐷2 → 𝑐 (4)

𝑊𝜙4𝐷2 +
𝑐 (3)
𝑊 2𝐵𝐷2𝑔1𝑔2

2
+
𝑐 (4)
𝑊 2𝐵𝐷2𝑔1𝑔2

4
− 𝑐 (8)

𝑊 2𝜙2𝐷2𝑔2 + 𝑐 (9)𝑊 2𝜙2𝐷2𝑔2 + 𝑐 (14)𝑊𝐵𝜙2𝐷2𝑔1

− 𝑐 (15)
𝑊𝐵𝜙2𝐷2𝑔1 −

𝑐 (18)
𝑊𝐵𝜙2𝐷2𝑔1

2
, (4.3.147)

𝑐 (1)
𝐵𝜙4𝐷2 → 𝑐 (1)

𝐵𝜙4𝐷2 + 𝑐𝐵2𝐷4𝑔31 − 𝑐 (6)
𝐵2𝜙2𝐷2𝑔1 + 𝑐 (8)𝐵2𝜙2𝐷2𝑔1 −

𝑐 (3)
𝐵𝜙2𝐷4𝑔

2
1

2
− 3𝑐𝑊 2𝐷4𝑔1𝑔

2
2

+
3𝑐 (11)

𝑊𝐵𝜙2𝐷2𝑔2

2
+ 3𝑐 (13)

𝑊𝐵𝜙2𝐷2𝑔2 +
3𝑐 (3)

𝑊𝜙2𝐷4𝑔1𝑔2

2
, (4.3.148)

𝑐 (2)
𝐵𝜙4𝐷2 → 𝑐 (2)

𝐵𝜙4𝐷2 + 𝑐 (11)𝐵2𝜙2𝐷2𝑔1 − 3𝑐 (19)
𝑊𝐵𝜙2𝐷2𝑔2 − 3𝑐 (17)

𝑊𝐵𝜙2𝐷2𝑔2 . (4.3.149)
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4.3.4 Some applications

4.3.4.1 Automated one-loop matching

Recently, automated tools to calculate one-loop matching conditions of generic UV extensions onto the

SMEFT have been developed [214–217]. Of those, matchmakereft [217] performs off-shell matching

and as such, it requires knowledge of a Green’s basis of the SMEFT. The program already provides a

Green’s basis at dimension-6, but if the user wants to perform calculations at dimension-8, an off-shell

basis at this order must be provided as well as the reduction to the on-shell basis.

Let us perform the one-loop matching of a heavy singlet scalar, S ∼ (1, 1, 0), where the numbers

within parentheses represent the 𝑆𝑈 (3)𝑐 , 𝑆𝑈 (2)𝐿 quantum numbers and the hypercharge, respectively.

Let us also impose a ℤ2 symmetry S → −S. The full theory Lagrangian is given by:

LNP =
1
2
(𝐷𝜇S)(𝐷𝜇S) − 1

2
𝑚2

SS2 − 𝜆S𝜙S2𝜙†𝜙 − 𝜆SS4 . (4.3.150)

Due to the required ℤ2 symmetry, effective operators do not arise at tree-level. Thus, by implementing

this Lagrangian, together with the Green’s basis of dimension-8 operators and the reduction to the on-

shell basis in matchmakereft [217], one can automatically calculate the following one-loop matching

conditions.

𝑐 (1)
𝜙6

Λ4 =
1

1920𝑚4
S 𝜋

2
𝜆2S𝜙

�
5𝜆S𝜙 − 8𝜆

�
, (4.3.151)

𝑐 (3)
𝜙4

Λ4 =
1

960𝑚4
S 𝜋

2
𝜆2S𝜙 , (4.3.152)

where we have taken the limit 𝑔2 → 0 for simplicity.

Let us also present a more complex example in which we extend the SM with a quadruplet scalar,

Θ (1, 4, 1/2). The relevant full theory Lagrangian is given by:

LNP = 𝐷𝜇Θ
†𝐷𝜇Θ −𝑚2

ΘΘ
†Θ − 𝜆Θ(𝜙†𝜎𝐼𝜙)𝐶𝛼

𝐼𝛽𝜙
𝛽𝜖𝛼𝛾Θ

𝛾 + h.c. , (4.3.153)

where 𝐶𝛼
𝐼𝛽

is the Clebsh-Gordan needed to form a 𝑆𝑈 (2)𝐿 singlet from a quadruplet, a doublet and a

triplet. Ignoring for simplicity contributions proportional to 𝑔2, we obtain:

𝑐 (1)
𝐵4

Λ4 =
7𝑔41

92160𝑚4
Θ 𝜋

2
, (4.3.154)

𝑐 (2)
𝐵4

Λ4 =
𝑔41

92160𝑚4
Θ 𝜋

2
, (4.3.155)
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𝑐 (1)
𝜙6

Λ4 =
|𝜆Θ |2
3𝑚2

Θ

+ −6440𝑔21 |𝜆Θ |2 + 103040 |𝜆Θ |2𝜆
80640𝑚4

Θ 𝜋
2

, (4.3.156)

𝑐 (2)
𝜙6

Λ4 = − |𝜆Θ |2
2𝑚2

Θ

+ +3640𝑔21 |𝜆Θ |2 − 655200 |𝜆Θ |2 𝜆
483840𝑚4

Θ 𝜋
2

, (4.3.157)

𝑐 (1)
𝜙4

Λ4 =
4480 |𝜆Θ |2 − 3𝑔41
40320𝑚4

Θ 𝜋
2

, (4.3.158)

𝑐 (2)
𝜙4

Λ4 =
3𝑔41 + 1120 |𝜆Θ |2
40320𝑚4

Θ 𝜋
2

, (4.3.159)

𝑐 (3)
𝜙4

Λ4 = − |𝜆Θ |2
18𝑚4

Θ 𝜋
2
, (4.3.160)

𝑐 (1)
𝐵2𝜙4

Λ4 =
1960𝑔21 |𝜆Θ |2 − 3𝑔61
322560𝑚4

Θ 𝜋
2

, (4.3.161)

𝑐 (1)
𝐵𝜙4𝐷2

Λ4 = − 𝑔51
13440𝑚4

Θ 𝜋
2
. (4.3.162)

We find agreement with the tree-level contribution to 𝑐 (1)
𝜙6 and 𝑐 (2)

𝜙6 in Ref. [191] and with the contribution

to 𝑐 (1)
𝐵4 and 𝑐 (2)

𝐵4 previously computed in Refs. [179, 218].

4.3.4.2 Reduction to a physical basis

Another approach to matching is to use functional methods which integrate over the heavy dynamical

fields in the path integral [219–221]. One of the main advantages of this approach is that it does not

require the construction of an EFT basis. However, the drawback of this is that the matching result is

given in terms of redundant operators, whose reduction to a physical basis is not a priori known.

While automated tools to perform this matching at one-loop exist [214–216], the problem of obtaining

the matching result in a redundant set of operators can even be observed in simple models at tree-level.

Let us focus on an extension of the SM with a heavy vector triplet W ∼ (1, 3, 0), with the relevant

Lagrangian given by:

LNP =
1
2

�
𝐷𝜇W†

𝜈 𝐷
𝜈W𝜇 − 𝐷𝜇W†

𝜈 𝐷
𝜇W𝜈 +𝑚2

WW†
𝜇 W𝜇 + (𝑔𝜙WW𝜇𝜙𝐼†𝜎𝐼𝑖𝐷𝜇𝜙 + h.c.)

�
.

(4.3.163)
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The results for the tree-level matching of this theory (up to order 1/𝑚4
W ) with MatchingTools [222]

are given by:

L(8)
EFT =

(𝑔𝜙W)2
𝑚4

W

�
2(𝐷𝜇𝜙

†𝐷𝜈𝜙) (𝐷𝜇𝜙†𝐷𝜈𝜙) + 4(𝐷𝜈𝜙
†𝐷𝜈𝐷𝜇𝜙) (𝐷𝜇𝜙

†𝜙) − 2(𝐷𝜇𝜙
†𝐷𝜈𝜙) (𝜙†𝐷𝜇𝐷𝜈𝜙)

− 4(𝐷𝜇𝜙
†𝜙) (𝐷𝜇𝐷𝜈𝜙

†𝐷𝜈𝜙) + 2(𝐷𝜇𝜙
†𝐷𝜈𝜙) (𝐷𝜇𝐷𝜈𝜙†𝜙) − 4(𝐷𝜇𝜙

†𝐷𝜇𝜙) (𝐷𝜈𝜙
†𝐷𝜈𝜙)

+ 2(𝐷𝜇𝜙
†𝐷𝜈𝜙) (𝐷𝜈𝜙†𝐷𝜇𝜙) + 1

2
(𝜙†𝐷𝜇𝐷𝜈𝜙) (𝜙†𝐷𝜇𝐷𝜈𝜙) − 2(𝐷𝜈𝐷𝜌𝜙

†𝐷𝜈𝐷𝜌𝜙) (𝜙†𝜙)
+ (𝐷𝜇𝐷𝜈𝜙

†𝜙) (𝜙†𝐷𝜇𝐷𝜈𝜙) − 4(𝜙†𝐷𝜌𝜙) (𝐷𝜈𝜙
†𝐷𝜌𝐷𝜈𝜙) + 2(𝜙†𝐷𝜈𝐷𝜇𝜙) (𝐷𝜇𝜙†𝐷𝜈𝜙)

+ 1
2
(𝐷𝜇𝐷𝜈𝜙

†𝜙) (𝐷𝜇𝐷𝜈𝜙†𝜙) + 4(𝐷𝜌𝐷𝜈𝜙
†𝐷𝜌𝜙) (𝐷𝜈𝜙†𝜙) − 2(𝐷𝜈𝐷𝜇𝜙

†𝜙) (𝐷𝜇𝜙†𝐷𝜈𝜙)

− 1
2
(𝜙†𝐷𝜈𝐷𝜇𝜙) (𝜙†𝐷𝜇𝐷𝜈𝜙) + 2(𝐷𝜌𝐷𝜈𝜙

†𝐷𝜈𝐷𝜌𝜙) (𝜙†𝜙) − (𝐷𝜈𝐷𝜇𝜙†𝜙) (𝜙†𝐷𝜇𝐷𝜈𝜙)

− 1
2
(𝐷𝜈𝐷𝜇𝜙

†𝜙) (𝐷𝜇𝐷𝜈𝜙†𝜙)
�
.

We reproduce exactly the result given by the automatic calculation, even when operators are related

by renaming of the indices. Automating the reduction of such a result to a physical basis could be easily

done following our approach by exporting L(8)
EFT to FeynArts [223], calculating the needed 1PI tree-level

off-shell amplitudes and projecting the results onto our basis, which can then be reduced to the physical

basis through the relations presented in section 4.3.3. The much simpler result in the physical basis is

given by:

L(8)
EFT =

(𝑔𝜙W)2
𝑚4

W

�
2O(1)

𝜙4 + 2O(2)
𝜙4 − 4O(3)

𝜙4 − 1
4
𝑔22O(1)

𝑊 2𝜙4 +
1
2
𝑔1𝑔2O(1)

𝑊𝐵𝜙4

+ 3
4
𝑔21O(1)

𝐵2𝜙4 − 2𝑔2O(1)
𝑊𝜙4𝐷2 + 6𝑔1O(1)

𝐵𝜙4𝐷2 + 2𝑔1O(3)
𝐵𝜙4𝐷2

�
. (4.3.164)

Note that results from phenomenological studies of the SMEFT, such as global fits, are presented in

the most minimal basis, a physical basis. As such, if one wants to interpret these bottom-up studies as

bounds (or preferred regions) for the parameters of a particular model, the matching calculations must

be given in a physical basis and therefore, knowledge of a Green’s basis and its reduction to the physical

one can be useful even for functional methods.
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4.4 The renormalisation group equations of the bosonic

SMEFT at dimension-8

The importance of knowing a theory’s RGEs has already been stressed in section 4.1.4; let us furthermore

argue why they are important to be considered even at dimension-8:

• Even before explicitly calculating the RGEs, it is known that several classes of dimension-8 inter-

actions which are one-loop generated by weakly-coupled UV completions can be renormalised by

tree-level generated dimension-8 terms [210]5. This running might therefore be the leading con-

tribution for certain observables where loop-induced dimension-8 operators are the first SMEFT

correction;

• Neglecting odd-dimensional operators, dimension-8 is the lowest dimension at which there are

co-leading contributions to the RGEs: an insertion of a dimension-8 operator or 2 insertions of

dimension-6 terms. Non-renormalisation theorems have been derived for contributions of the first

kind [210], but in order to get any information on the second contribution, the RGEs have to be

explicitly calculated;

• Dimension-8 WCs can be subject to positivity bounds [179–181, 183, 184, 224, 225]. Studying

whether these relations hold when considering the one-loop running effects is also one of the aims

of studying the dimension-8 RGEs.

Following from these arguments, in this section we present the RGEs of the bosonic sector of the

dimension-8 SMEFT.

For the calculation of the divergences with which we will calculate the RGEs we use the background

field method and work in the Feynman gauge in dimensional regularisation with space-time dimension d =

4 − 2𝜖. The one-loop divergences are computed using dedicated routines that rely on FeynRules [76],

FeynArts [226] and FormCalc [227]. We have used matchmakereft [217] to cross-check most of

the calculations.

The co-leading contributions to the dimension-8 RGEs from a single insertion of a dimension-8 term

or 2 dimension-6 interactions are given by:

16𝜋2𝜇
𝑑𝑐 (8)𝑖

𝑑𝜇
= 𝛾 �𝑖 𝑗𝑘𝑐

(6)
𝑗 𝑐 (6)

𝑘
+ 𝛾𝑖 𝑗𝑐 (8)𝑗 . (4.4.1)

5This only happened in one case at dimension-6 for the loop-level induced operators of the class 𝑋𝜓 2𝜙 [210].
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We will study both contributions separately; in section 4.4.1 we will show the computation of the first

term in the right-hand side of Eq. (4.4.1), the structure of the resulting RGEs and some phenomenological

implications of those results. This section is based on the work published in Ref. [5]. In section 4.4.2,

a similar analysis will be conducted for the second term of Eq. (4.4.1) and it is based on the work

presented in Ref. [6]. Due to their large nature, we provide these RGEs in a mathematica notebook in

https://github.com/SMEFT-Dimension8-RGEs instead of in writing in order to ease their use for further

calculations. Regardless, we will consider parts of the RGEs when relevant for the discussion.

4.4.1 Insertion of pairs of dimension-6 terms

Let us start by considering the contribution to the dimension-8 RGEs from two insertions of dimension-6

interactions, the first term in the right-hand side of Eq. (4.4.1). As we are only focused on the renormal-

isation of the bosonic sector, we do not need to consider dimension-6 four-fermion operators since, at

one-loop, a process without fermions in the external legs is impossible to be generated from a four-fermion

vertex. Even considering generating redundant fermionic operators, these would never be reduced to only

bosonic operators as can be seen from the fermionic EOMs [228]. The opposite is not true since a bosonic

redundant operator can be turned into a fermionic operator under the use of the gauge bosons and Higgs

EOMs.

We will also limit ourselves to insertions of operators which can be generated at tree-level by weakly-

coupled UV completions of the SM; one-loop generated operators would formally result in a two-loops

contribution. With this in mind, the relevant dimension-6 Lagrangian can be written as

LUV = LSM + 1
Λ2

�
𝑐𝜙 (𝜙†𝜙)3 + 𝑐𝜙�(𝜙†𝜙)�(𝜙†𝜙) + 𝑐𝜙𝐷 (𝜙†𝐷𝜇𝜙)∗(𝜙†𝐷𝜇𝜙)

+ 𝑐 (1)
𝜙𝜓𝐿

(𝜙†𝑖
←→
𝐷 𝜇𝜙) (𝜓𝐿𝛾

𝜇𝜓𝐿) + 𝑐 (3)𝜙𝜓𝐿
(𝜙†𝑖

←→
𝐷 𝐼

𝜇𝜙) (𝜓𝐿𝛾
𝜇𝜎𝐼𝜓𝐿) + 𝑐𝜙𝜓𝑅 (𝜙†𝑖

←→
𝐷 𝜇𝜙) (𝜓𝑅𝛾𝜇𝜓𝑅)

+
�
𝑐𝜙𝑢𝑑 (�𝜙𝑖𝐷𝜇𝜙) (𝑢𝑅𝛾𝜇𝑑𝑅) + 𝑐𝜓𝑅𝜙 (𝜙†𝜙)𝜓𝐿

�𝜙𝜓𝑅 + h.c.
� �

, (4.4.2)

with 𝜓𝑅 = 𝑢𝑅,𝑑𝑅, 𝑒𝑅 and 𝜓𝐿 = 𝑞𝐿, 𝑙𝐿. Since we are restricting to the bosonic sector of the SMEFT,

only dimension-eight operators with Higgs bosons will be renormalised (at one-loop) from the constructed

Lagrangian.

The bosonic one-loop divergent Lagrangian, involving Higgs bosons, can be written as:

16𝜋2𝜖 LDIV = �̃�𝜙 (𝐷𝜇𝜙)†(𝐷𝜇𝜙) + �̃�2 |𝜙 |2 − �̃� |𝜙 |4 + 𝑐 (6)𝑖

O(6)
𝑖

Λ2 + 𝑐 (8)𝑗

O(8)
𝑗

Λ4 , (4.4.3)
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Figure 27: Illustrative diagrams responsible for renormalising the classes of operators 𝜙8 (first), 𝜙6𝐷2

(second), 𝜙4𝐷2 (third),𝑋 2𝜙4 (fourth) and𝑋𝜙4𝐷2 (fifth) through 2 insertions of dimension-6 terms, which
are denoted by the grey vertices.

where 𝑖 and 𝑗 run over operators in the Green’s basis of dimension-6 and dimension-8, respectively.

For the former we will consider the Warsaw basis and extend it with the redundant operators in table 8,

whereas for the latter we will use the dimension-8 Green’s basis constructed in section 4.3. In figure 27

we show an example of the diagrams which will be responsible for renormalising the dimension-8 WCs.

The removal of the contributions to redundant operators will follow from applying the dimension-6

SMEFT EOMs [228]:

𝐷2𝜙𝑖 = −𝜇2𝜙𝑖 − 2𝜆(𝜙†𝜙)𝜙𝑖 + 1
Λ2

�
3𝑐𝜙 (𝜙†𝜙)2𝜙𝑖 + 2𝑐𝜙�𝜙

𝑖�(𝜙†𝜙)

− 𝑐𝜙𝐷
�
(𝐷𝜇𝜙)𝑖

�
𝜙†←→𝐷 𝜇𝜙

�
+ 𝜙𝑖𝜕𝜇

�
𝜙†𝐷𝜇𝜙

�� �
+ · · · , (4.4.4)

𝜕𝜈𝐵𝜇𝜈 =
𝑔1
2
𝜙†𝑖

←→
𝐷 𝜇𝜙 + 𝑐𝜙𝐷

Λ2

𝑔1
2

�
𝜙†𝜙

� �
𝜙†𝑖

←→
𝐷 𝜇𝜙

�
+ · · · , (4.4.5)

𝐷𝜈𝑊 𝐼
𝜇𝜈 =

𝑔2
2
𝜙†𝑖

←→
𝐷 𝐼

𝜇𝜙 + 𝑐𝜙𝐷

Λ2 𝑔2
�
𝜙†𝜎𝐼𝜙

� �
𝜙†𝑖

←→
𝐷 𝜇𝜙

�
+ · · · , (4.4.6)

where the ellipses represent the neglected contributions from fermionic operators. Besides the dimen-

sionful term 𝜇2 which can reduce divergent contributions for dimension-8 (6) redundant operators into

dimension-6 (4) terms, these EOMs also have 1/Λ2 terms which can turn dimension-6 redundant contri-

butions into dimension-8 when projected onto the physical basis.

Because of these effects, in order to perform a full study of the contribution for the renormalisation

of bosonic operators at O(1/Λ4), we need to not only compute divergences at this order, but also the

contributions to redundant dimension-6 terms at O(1/Λ2). Furthermore, we also need the O(1/Λ2) for

the kinetic term of the Higgs which, under canonical normalisation, can also result in higher dimensional

contributions.

Applying the EOMs on the redundant dimension-6 and dimension-8 operators results in the following
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Operator Notation Operator Notation

𝝓2𝑫4 (𝐷𝜇𝐷
𝜇𝜙†)(𝐷𝜈𝐷

𝜈𝜙) O𝐷𝜙

𝝓4𝑫2 (𝜙†𝜙) (𝐷𝜇𝜙)†(𝐷𝜇𝜙) O�
𝜙𝐷

(𝜙†𝜙)𝐷𝜇 (𝜙†i
←→
𝐷 𝜇𝜙) O��

𝜙𝐷

𝑿𝝓2𝑫2 𝐷𝜈𝑊
𝐼𝜇𝜈 (𝜙†i

←→
𝐷 𝐼

𝜇𝜙) O𝑊𝐷𝜙 𝜕𝜈𝐵
𝜇𝜈 (𝜙†i

←→
𝐷 𝜇𝜙) O𝐵𝐷𝜙

Table 8: Redundant dimension-6 operators relevant for our calculations, following the notation of
Ref. [229].

shift for the physical dimension-4 and dimension-6 WCs:

𝜆 → 𝜆 − 𝜇2

Λ2𝑐
�
𝜙𝐷 − 𝜇4

Λ4

�
− 2

�
𝑐 (4)
𝜙4 − 𝑐 (8)

𝜙4

�
+ 𝑐 (10)

𝜙4 + 𝑐 (11)
𝜙4

�
, (4.4.7)

𝑐𝜙 → 𝑐𝜙 + 2𝜆𝑐�𝜙𝐷 + 𝜇2

2Λ4

�
3(𝑐𝜙𝐷 + 2𝑐𝜙�)𝑐𝜙 −

�
𝑐𝜙𝐷 − 8𝑐𝜙�

� (𝑐�𝜙𝐷 + 2𝑔2𝑐𝑊𝐷𝜙 )

− 2𝑔2𝑐𝜙𝐷𝑐𝑊𝐷𝜙 − 𝑔1𝑐𝜙𝐷𝑐𝐵𝐷𝜙 − 4𝑐 (3)
𝜙6 + 4𝜆

�
−2𝑐 (4)

𝜙4 + 4𝑐 (8)
𝜙4 + 2𝑐 (10)

𝜙4 + 2𝑐 (11)
𝜙4 − 𝑐 (12)

𝜙4

�
+ 𝑔2𝑐 (6)𝑊𝜙4𝐷2 +

𝑔2
2
𝑐 (7)
𝑊𝜙4𝐷2 + 𝑔1𝑐 (3)𝐵𝜙4𝐷2

�
, (4.4.8)

𝑐𝜙𝐷 → 𝑐𝜙𝐷 + 2
𝜇2

Λ4

�
1
2
(𝑐𝜙𝐷 + 2𝑐𝜙�)𝑐𝜙𝐷 − 𝑐 (6)

𝜙4 + 𝑐 (12)
𝜙4

�
, (4.4.9)

𝑐𝜙� → 𝑐𝜙� +
1
2
𝑐�𝜙𝐷 + 𝜇2

Λ4

�
(𝑐𝜙𝐷 + 2𝑐𝜙�)𝑐𝜙� − 𝑐 (4)

𝜙4 + 𝑐 (12)
𝜙4

�
, (4.4.10)

where we canonically normalised the Higgs kinetic term.

4.4.1.1 The renormalisation group equations

In this section we provide an overview of the structure of the RGEs of the dimension-8 WCs. Since these

contributions arise from the insertion of 2 dimension-6 terms, this structure is easily seen in a symmetric

matrix for each dimension-8 WC, 𝑐 (8)𝑖 , with the collumns and rows being the relevant dimension-6 WCs.

For each entry in the matrix, we denote with a × a non-zero contribution, with a 0 a trivial zero, that is, a

case in which all contributions in the Green’s basis vanish (for example if there are no possible diagrams),

and with a ∅ a non-trivial zero, for the cases in which the contribution is non-zero in the Green’s basis but

cancels once we reduce all redundant operators to the physical basis.
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The matrices for each dimension-8 WC are:

𝛾 �
c8
𝜙

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 × × × 0 × 0 × ×
𝑐𝜙𝐷 × × × × × × ×
𝑐𝜙� × 0 × 0 × ×
𝑐 (1)
𝜙𝜓𝐿

× × × 0 ×
𝑐 (3)
𝜙𝜓𝐿

× × 0 ×
𝑐𝜙𝜓𝑅 × 0 ×
𝑐𝜙𝑢𝑑 × 0

𝑐𝜓𝑅𝜙 ×

𝛾 �
c(1)
𝜙4

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 × × 0 0 0 0 0

𝑐𝜙� × 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

× 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

× 0 0 0

𝑐𝜙𝜓𝑅 × 0 0

𝑐𝜙𝑢𝑑 × 0

𝑐𝜓𝑅𝜙 0

(4.4.11)

𝛾 �
c(2)
𝜙4

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 × × 0 0 0 0 0

𝑐𝜙� × 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

× 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

× 0 0 0

𝑐𝜙𝜓𝑅 × 0 0

𝑐𝜙𝑢𝑑 0 0

𝑐𝜓𝑅𝜙 0

𝛾 �
c(3)
𝜙4

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 × × 0 0 0 0 0

𝑐𝜙� × 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

0 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

× 0 0 0

𝑐𝜙𝜓𝑅 0 0 0

𝑐𝜙𝑢𝑑 × 0

𝑐𝜓𝑅𝜙 0

(4.4.12)

𝛾 �
c(1)
𝜙6

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 × × 0 0 0 0 0

𝑐𝜙𝐷 × × × × × × ×
𝑐𝜙� × 0 × 0 × ×
𝑐 (1)
𝜙𝜓𝐿

× × × 0 ×
𝑐 (3)
𝜙𝜓𝐿

× × × ×
𝑐𝜙𝜓𝑅 × 0 ×
𝑐𝜙𝑢𝑑 × ×
𝑐𝜓𝑅𝜙 ×

𝛾 �
c(2)
𝜙6

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 × 0 0 0 0 0 0

𝑐𝜙𝐷 × × × × × × ×
𝑐𝜙� × 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

× × × 0 ×
𝑐 (3)
𝜙𝜓𝐿

× × × 0

𝑐𝜙𝜓𝑅 × 0 ×
𝑐𝜙𝑢𝑑 × ×
𝑐𝜓𝑅𝜙 ×

(4.4.13)
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𝛾 �
c(1)
W2𝜙4

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 × ∅ 0 0 0 0 0

𝑐𝜙� 0 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

× 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

× 0 0 0

𝑐𝜙𝜓𝑅 × 0 0

𝑐𝜙𝑢𝑑 × 0

𝑐𝜓𝑅𝜙 0

𝛾 �
c(3)
W2𝜙4

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 ∅ ∅ 0 0 0 0 0

𝑐𝜙� 0 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

∅ 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

0 0 0 0

𝑐𝜙𝜓𝑅 ∅ 0 0

𝑐𝜙𝑢𝑑 ∅ 0

𝑐𝜓𝑅𝜙 0

(4.4.14)

𝛾 �
c(1)
WB𝜙4

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 ∅ ∅ 0 0 0 0 0

𝑐𝜙� 0 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

∅ 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

0 0 0 0

𝑐𝜙𝜓𝑅 ∅ 0 0

𝑐𝜙𝑢𝑑 ∅ 0

𝑐𝜓𝑅𝜙 0

𝛾 �
c(1)
B2𝜙4

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 × 0 0 0 0 0 0

𝑐𝜙� 0 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

× 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

× 0 0 0

𝑐𝜙𝜓𝑅 × 0 0

𝑐𝜙𝑢𝑑 × 0

𝑐𝜓𝑅𝜙 0

(4.4.15)

𝛾 �
c(1)
W𝜙4D2

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 × ∅ 0 0 0 0 0

𝑐𝜙� 0 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

× 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

× 0 0 0

𝑐𝜙𝜓𝑅 × 0 0

𝑐𝜙𝑢𝑑 × 0

𝑐𝜓𝑅𝜙 0

𝛾 �
c(1)
B𝜙4D2

𝑐𝜙 𝑐𝜙𝐷 𝑐𝜙� 𝑐
(1)
𝜙𝜓𝐿

𝑐 (3)
𝜙𝜓𝐿

𝑐𝜙𝜓𝑅 𝑐𝜙𝑢𝑑 𝑐𝜓𝑅𝜙

𝑐𝜙 0 0 0 0 0 0 0 0

𝑐𝜙𝐷 × 0 0 0 0 0 0

𝑐𝜙� 0 0 0 0 0 0

𝑐 (1)
𝜙𝜓𝐿

× 0 0 0 0

𝑐 (3)
𝜙𝜓𝐿

× 0 0 0

𝑐𝜙𝜓𝑅 × 0 0

𝑐𝜙𝑢𝑑 × 0

𝑐𝜓𝑅𝜙 0

(4.4.16)

For all other 𝛾 � matrices their entries correspond to trivial zeros.

In table 9 we show another way to examinate the RGEs structure by representing for each pair of

dimension-6 terms the class of dimension-8 WCs which are renormalised by them.
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c
𝝓

c
𝝓
𝑫

c
𝝓
�

c
(1) 𝝓
𝝍
𝑳

c
(3) 𝝓
𝝍
𝑳

c
𝝓
𝝍
𝑹

c
𝝓
𝒖
𝒅
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𝝍
𝑹
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𝝓
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8
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4.4.1.2 Phenomenological implications

Let us discuss some of the implications of the results presented without the intention of being as compre-

hensive as possible:

• Dimension-8 operators which had non-zero contributions to their RGEs can be tree-level gener-

ated by weakly-coupled UV theories [210]. This is also true for dimension-6 bosonic operators

which results that, in the bosonic sector of the SMEFT, dimension-6 tree-level generated operators

do not mix into loop-level induced interactions to order 1/Λ4. This was already known at order

1/Λ2 [230]. However, this result could have been deduced beforehand; dimension-8 operators

which can only arise at loop level involve two Higgs fields, which one can not achieve with two

insertions of the tree-level dimension-6 operators considered.

• Several non-trivial zeros can be seen in the 𝛾 � matrices. Particularly, the RGEs associated with the

operators 𝑐 (3)
𝑊 2𝜙4 and 𝑐 (1)

𝑊𝐵𝜙4 are zero despite that not being the case off-shell. Such results maybe

better understood following the helicity-amplitude formalism [231, 232].

• The Peskin-Takeuchi parameters [233] 𝑆 and 𝑈 do not receive contributions through renormali-

sation at order 𝑣4/Λ4 (by tree-level generated dimension-6 operators). The contributions to these

parameters in the SMEFT are [191, 206]:

1
16𝜋

𝑆 =
𝑣2

Λ2

�
𝑐𝜙𝑊𝐵 + 𝑐 (1)𝑊𝐵𝜙4

𝑣4

Λ4

�
,

1
16𝜋

𝑈 =
𝑣4

Λ4𝑐
(3)
𝑊 2𝜙4 . (4.4.17)

From the results pointed out in the previous point, 𝑐 (1)
𝑊𝐵𝜙4 and 𝑐 (3)

𝑊 2𝜙4 do not renormalise on-shell.

Together with the known non-renormalisation of 𝑐𝜙𝑊𝐵 [167], means that these parameters are not

generated by tree-level induced dimension-6 operators.

• In the context of the Peskin-Takeuchi parameters, the 𝑇 parameter, defined by [191]

𝛼𝑇 = −1
2
𝑣2

Λ2

�
𝑐𝜙𝐷 + 𝑐 (2)

𝜙6

𝑣2

Λ2

�
, (4.4.18)

with 𝛼 ∼ 1/137 the fine-structure constant, receives the leading contribution from the operator

O𝜙𝑢𝑑 at order 𝑣4/Λ4 (𝑐𝜙𝐷 is not renormalised by one insertion of O𝜙𝑢𝑑 [166]). From the bounds
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on 𝑇 from Ref. [234], and assuming that only the flavour structure 𝑐𝜙𝑡𝑏 is non-vanishing, we con-

clude 𝑐𝜙𝑡𝑏 ≤ 5.9 for Λ = 1 TeV. This bound obtained through running is at the level of the one

quoted in Ref. [235], 𝑐𝜙𝑡𝑏 ≤ 5.3.

• Some of the numerical coefficients in the RGEs are significantly larger than the naive estimate of

O(1). To see how large their effect can be, let us see the importance of one-loop 𝑣4/Λ4 effects

for the EW phase transition (EWPT) occurring from modifications of the Higgs potential [236–241].

Assuming 𝑐𝜙 as the only non-zero WC in the UV (and neglecting gauge and Yukawa couplings), the

Higgs potential is given by running 𝑐𝜙 – defined at a high-energy scale, Λ – to the EW scale. At

the EW scale we have:

𝑉 ∼ −𝜇2 |𝜙 |2 + 𝜆 |𝜙 |4 + 𝑐𝜙

Λ2

�
1 − 108

16𝜋2𝜆 log
Λ

𝑣

�
|𝜙 |6 + 126

16𝜋2Λ4 log
Λ

𝑣
𝑐2𝜙 |𝜙 |8 , (4.4.19)

where we take the renormalisable couplings as scale-invariant for simplicity.

EW baryogenesis requires a first and strong order EWPT [242], which can occur if 500 GeV �

Λ/√𝑐eff � 750 GeV [241, 243], where 𝑐eff = 𝑐𝜙 + 3/2 𝑣2/Λ2𝑐𝜙8 . Taking Λ = 1 TeV, a first order

strong phase transition occurs for:

1.7 TeV−2 � 𝑐𝜙 � 3.7 TeV−2 (4.4.20)

without the 𝑐𝜙8 contribution. Considering it we obtain:

1.5 TeV−2 � 𝑐𝜙 � 2.6 TeV−2 . (4.4.21)

This 30 % change in the upper limit shows the potential value of including dimension-8 running in

phenomenological studies.

4.4.2 Insertions of a dimension-8 term

To complete the work done in the previous section, let us now focus on the contribution to the renormal-

isation of the SMEFT at dimension-8 by insertions of other dimension-8 operators, the second term in

the right-hand side of Eq. (4.4.1). Note that for this component, non-renormalisation theorems [210] are

already known which we will cross-check by explicit calculation.

Ref. [244] had already calculated some partial results, namely contributions up to quadratic order

in gauge or Yukawa couplings or linear order in 𝜆, following on-shell methods – in Appendix C we show
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how one can compare the results in our basis to theirs. However, considering higher orders in the SM

couplings results in mixing between certain classes of operators; moreover, in particular for the strong

coupling or the top Yukawa, there are no reasons to neglect higher orders in these couplings.

As was the case before, we will consider in the UV only operators which can be generated at tree-level

by weakly coupled extensions of the SM [210], with at most 2 fermions, which corresponds to the classes

𝜙8, 𝜙6𝐷2, 𝜙4𝐷4, 𝑋𝜙4𝐷2, 𝑋 2𝜙4,𝜓 2𝑋𝜙3,𝜓 2𝜙2𝐷3,𝜓 2𝜙5,𝜓 2𝜙4𝐷 ,𝜓 2𝑋𝜙2𝐷 ,𝜓 2𝜙3𝐷2.

We need to calculate the divergent contributions at order 1/Λ4 to be absorbed by the dimension-8

Green’s basis (introduced in section 4.3), the contributions proportional to 𝜇2/Λ4 which contribute to the

Green’s basis at dimension-6 (the Warsaw basis extended with the operators of table 8) and 𝜇4/Λ4 which

will contribute to renormalisable couplings.

Note that, unlike what happened when there were dimension-6 operators in the UV Lagrangian, in

this case using the SM EOMs to remove the redundant operators will suffice as all divergences must

already be suppressed by 4 powers of Λ. The shift in the WCs of dimension-8 (dimension-6 and below)

by removing redundant operators is given in section 4.3.3 (section 4.4.1).

We will also need the WFR factors, that is, the divergent contributions to the kinetic terms, given by:

𝑍𝜙 = 1 + 1
32𝜋2𝜖

�
𝑔21 + 3𝑔22 − 2𝛾 (𝑌 )

𝜙

�
,

𝑍𝐵 = 1 − 41𝑔21
96𝜋2𝜖

,

𝑍𝑊 = 1 + 19𝑔22
96𝜋2𝜖

,

𝑍𝐺 = 1 + 14𝑔23
32𝜋2𝜖

, (4.4.22)

where these 𝑍 -factors have been defined in section 4.1.4 and where we have defined

𝛾 (𝑌 )
𝜙

≡ Tr
�
𝑦𝑒 †𝑦𝑒 + 3𝑦𝑢 †𝑦𝑢 + 3𝑦𝑑 †𝑦𝑑

�
, (4.4.23)

In the next section we will comment on the structure of the obtained RGEs. Note that the full results,

including the contribution from the insertion of 2 dimension-6 terms, can be found in https://github.com/

SMEFT-Dimension8-RGEs.
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𝜙4𝐷4 𝐵𝜙4𝐷2 𝑊𝜙4𝐷2 𝐵2𝜙4 𝑊 2𝜙4 𝑊𝐵𝜙4 𝐺2𝜙4 𝜙6𝐷2 𝜙8

𝐵2𝜙2𝐷2 𝑔21 0 0 0 0 0 0 0 0

𝑊 2𝜙2𝐷2 𝑔22 0 0 0 0 0 0 0 0

𝑊𝐵𝜙2𝐷2 𝑔1𝑔2 0 0 0 0 0 0 0 0

𝐺2𝜙2𝐷2 0 0 0 0 0 0 0 0 0

𝑊 3𝜙2 0 0 0 0 0 0 0 0 0

𝑊 2𝐵𝜙2 0 0 0 0 0 0 0 0 0

𝐺3𝜙2 0 0 0 0 0 0 0 0 0

𝜙4𝐷4 𝑔22 0 0 0 0 0 0 0 0

𝐵𝜙4𝐷2 𝑔1𝑔
2
2 𝜆 0 0 0 0 0 0 0

𝑊𝜙4𝐷2 𝑔32 0 𝑔22 0 0 0 0 0 0

𝐵2𝜙4 𝑔21𝑔
2
2 𝑔1𝜆 𝑔21𝑔2 𝜆 0 𝑔1𝑔2 0 0 0

𝑊 2𝜙4 𝑔42 𝑔1𝑔
2
2 𝑔32 0 𝜆 𝑔1𝑔2 0 0 0

𝑊𝐵𝜙4 𝑔1𝑔
3
2 𝑔2𝜆 𝑔1𝜆 𝑔1𝑔2 𝑔1𝑔2 𝜆 0 0 0

𝐺2𝜙4 0 0 0 0 0 0 𝑔23 0 0

𝜙6𝐷2 𝑔42 𝑔1𝜆 𝑔2𝜆 0 0 0 0 𝜆 0

𝜙8 𝜆3 𝑔1𝜆
2 𝑔2𝜆

2 𝑔21𝜆 𝑔22𝜆 𝑔1𝑔2𝜆 0 𝜆2 𝜆

Table 10: Structure of RGEs of the bosonic dimension-8 terms triggered by other bosonic dimension-8
terms. The entries correspond the order in SM couplings of the leading contribution. Entries in blue are
terms that deviate significantly from naive dimensional analysis. The WC in gray are loop-level generated
in weakly-coupled UV completions of the SMEFT.

4.4.2.1 Structure of the anomalous dimension matrix

The structure of the anomalous dimension matrix is depicted in tables 10 and 11 for insertions of bosonic

or fermionic operators respectively. Operators composed solely of gauge bosons are not renormalised

because insertions of the tree-level generated operators will result, at one-loop, in diagrams with external

Higgses. This happens because only two particles from these operators can be taken to be internal at

one-loop: for the fermionic operators these must be the 2 fermions while for the bosonic ones these are

all composed by at least four Higgses.

From looking at tables 10 and 11, it can be seen that terms which are responsible for mixing among
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𝜓 2𝐵𝜙3 𝜓 2𝑊𝜙3 𝜓 2𝐺𝜙3 𝜓 2𝜙2𝐷3 𝜓 2𝜙5 𝜓 2𝜙4𝐷 𝜓 2𝐵𝜙2𝐷 𝜓 2𝑊𝜙2𝐷 𝜓 2𝐺𝜙2𝐷 𝜓 2𝜙3𝐷2

𝐵2𝜙2𝐷2 0 0 0 𝑔21 0 0 0 0 0 0

𝑊 2𝜙2𝐷2 0 0 0 𝑔22 0 0 0 0 0 0

𝑊𝐵𝜙2𝐷2 0 0 0 𝑔1𝑔2 0 0 0 0 0 0

𝐺2𝜙2𝐷2 0 0 0 𝑔23 0 0 0 0 0 0

𝑊 3𝜙2 0 0 0 0 0 0 0 0 0 0

𝑊 2𝐵𝜙2 0 0 0 0 0 0 0 0 0 0

𝐺3𝜙2 0 0 0 0 0 0 0 0 0 0

𝜙4𝐷4 0 0 0 |𝑦𝑡 |2 0 0 0 0 0 0

𝐵𝜙4𝐷2 0 0 0 𝑔1 |𝑦𝑡 |2 0 0 |𝑦𝑡 |2 0 0 𝑔1𝑦
𝑡

𝑊𝜙4𝐷2 0 0 0 𝑔2 |𝑦𝑡 |2 0 0 0 |𝑦𝑡 |2 0 𝑔2𝑦
𝑡

𝐵2𝜙4 𝑔1𝑦
𝑡 0 0 𝑔21 |𝑦𝑡 |2 0 0 𝑔1 |𝑦𝑡 |2 0 0 𝑔21𝑦

𝑡

𝑊 2𝜙4 0 𝑔2𝑦
𝑡 0 𝑔22 |𝑦𝑡 |2 0 𝑔22 0 𝑔2 |𝑦𝑡 |2 0 𝑔22𝑦

𝑡

𝑊𝐵𝜙4 𝑔2𝑦
𝑡 𝑔1𝑦

𝑡 0 𝑔1𝑔2 |𝑦𝑡 |2 0 𝑔1𝑔2 𝑔2 |𝑦𝑡 |2 𝑔1 |𝑦𝑡 |2 0 𝑔1𝑔2𝑦
𝑡

𝐺2𝜙4 0 0 𝑔3𝑦
𝑡 0 0 0 0 0 0 0

𝜙6𝐷2 0 0 0 𝑔22 |𝑦𝑡 |2 0 |𝑦𝑡 |2 𝑔1 |𝑦𝑡 |2 𝑔2 |𝑦𝑡 |2 0 𝑦𝑡 |𝑦𝑡 |2
𝜙8 0 0 0 𝜆 |𝑦𝑡 |4 𝑦𝑡 |𝑦𝑡 |2 𝜆 |𝑦𝑡 |2 𝑔1𝜆 |𝑦𝑡 |2 𝑔2𝜆 |𝑦𝑡 |2 0 𝜆𝑦𝑡 |𝑦𝑡 |2

Table 11: Structure of RGEs of the bosonic dimension-8 terms triggered by fermionic dimension-8 terms.
The entries correspond the order in SM couplings of the leading contribution. Entries in blue are terms
that deviate significantly from naive dimensional analysis. The WC in gray are loop-level generated in
weakly-coupled UV completions of the SMEFT.

most classes only arises with higher order in gauge couplings or 𝜆 than what was calculated in Ref. [244].

There are several terms which deviate significantly from the naive estimate of 𝛾𝑖 𝑗 ∼ 1. We highlight in

blue those that respect 𝛾𝑖 𝑗 � 10.

A result that arises at dimension-8, which had been hinted at before, is that operators which only

arise at loop-level in weakly-coupled UV completions of the SM, are renormalised by tree-level generated

operators. An example of this is the renormalisation of the class 𝑋 2𝜙2𝐷2 by the class 𝜙4𝐷4.

Almost all zeros in tables 10 and 11 were expected from the results of Ref. [210]. Unlike what

happened with the insertion of pairs of dimension-6 operators, in this case only the RGE of the WC

O(1)
𝑊 2𝐵𝜙2 corresponds to a non-trivial zero, that is, a cancellation when reducing to the physical basis.

Off-shell we have:

𝑐 (1)
𝑊 2𝐵𝜙2 =

𝑔2
192𝜋2𝜖

𝑐 (1)
𝐵𝜙4𝐷2 , (4.4.24)

𝑐 (11)
𝑊𝐵𝜙2𝐷2 = 0 , (4.4.25)
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𝜙4𝐷4 𝐵𝜙4𝐷2 𝑊𝜙4𝐷2 𝐵2𝜙4 𝑊 2𝜙4 𝑊𝐵𝜙4 𝐺2𝜙4 𝜙6𝐷2 𝜙8

𝜙2 𝜇6 0 0 0 0 0 0 0 0

𝜙4 𝜆𝜇4 𝑔1𝜇
4 𝑔2𝜇

4 0 0 0 0 𝜇4 0

𝐵2𝜙2 𝑔21𝜇
2 𝑔1𝜇

2 0 𝜇2 0 0 0 0 0

𝑊 2𝜙2 𝑔22𝜇
2 0 𝑔2𝜇

2 0 𝜇2 0 0 0 0

𝑊𝐵𝜙2 𝑔1𝑔2𝜇
2 𝑔2𝜇

2 𝑔1𝜇
2 0 0 𝜇2 0 0 0

𝐺2𝜙2 0 0 0 0 0 0 𝜇2 0 0

𝜙4𝐷2 𝜆𝜇2 𝑔1𝜇
2 𝑔2𝜇

2 0 0 0 0 𝜇2 0

𝜙6 𝜆2𝜇2 𝜆𝑔1𝜇
2 𝜆𝑔2𝜇

2 𝑔21𝜇
2 𝑔22𝜇

2 𝑔1𝑔2𝜇
2 0 𝜆𝜇2 𝜇2

Table 12: Structure of RGEs of the bosonic dimension-6, dimension-4 and dimension-2 terms triggered by
bosonic dimension-8 terms. The entries correspond the order in SM couplings of the leading contribution.
Entries in blue are terms that deviate significantly from naive dimensional analysis. The WC in gray are
loop-level generated in weakly-coupled UV completions of the SMEFT.

𝑐 (13)
𝑊𝐵𝜙2𝐷2 = − 𝑔2

192𝜋2𝜖
𝑐 (1)
𝐵𝜙4𝐷2 . (4.4.26)

However, the WC 𝑐 (1)
𝑊 2𝐵𝜙2 is shifted on-shell to

𝑐 (1)
𝑊 2𝐵𝜙2 → 𝑐 (1)

𝑊 2𝐵𝜙2 +
𝑔2
2
𝑐 (11)
𝑊𝐵𝜙2𝐷2 + 𝑔2𝑐 (13)𝑊𝐵𝜙2𝐷2 , (4.4.27)

thus taking 𝑐 (1)
𝑊 2𝐵𝜙2 to zero on-shell.

In tables 12 and 13 we show the same results as in tables 10 and 11 but this time for the renor-

malisation of the bosonic SM Lagrangian terms and dimension-6 operators. Once again, loop-generated

dimension-6 operators can be renormalised by dimension-8 tree-level generated terms.

4.4.3 A discussion on positivity bounds

In this section we aim to discuss the effect of the RGEs of dimension-8 WCs, on the translation of the

positivity condition on the second derivative of the amplitude with respect to 𝑠, Eq. (4.1.24), to bounds

on the WCs of the SMEFT, for example, Eq. (4.1.25).

Following the strategy employed in Ref. [245], let us make explicit the fact that WCs can be generated

at different orders in the loop expansion by writing them as 𝑐 = 𝑐 tree + 𝑐 loop/(16𝜋2) + · · · , where 𝑐

90



4.4. THE RENORMALISATION GROUP EQUATIONS OF THE BOSONIC SMEFT AT DIMENSION-8

𝜓 2𝐵𝜙3 𝜓 2𝑊𝜙3 𝜓 2𝐺𝜙3 𝜓 2𝜙2𝐷3 𝜓 2𝜙5 𝜓 2𝜙4𝐷 𝜓 2𝐵𝜙2𝐷 𝜓 2𝑊𝜙2𝐷 𝜓 2𝐺𝜙2𝐷 𝜓 2𝜙3𝐷2

𝜙2 0 0 0 0 0 0 0 0 0 0

𝜙4 0 0 0 𝜇4 |𝑦𝑡 |2 0 0 0 0 0 𝜇4𝑦𝑡

𝐵2𝜙2 0 0 0 0 0 0 0 0 0 0

𝑊 2𝜙2 0 0 0 0 0 0 0 0 0 0

𝑊𝐵𝜙2 0 0 0 0 0 0 0 0 0 0

𝐺2𝜙2 0 0 0 0 0 0 0 0 0 0

𝜙4𝐷2 0 0 0 𝜇2 |𝑦𝑡 |2 0 0 0 0 0 𝜇2𝑦𝑡

𝜙6 0 0 0 𝜆𝜇2 |𝑦𝑡 |2 𝜇2𝑦𝑡 𝜇2 |𝑦𝑡 |2 𝜇2 |𝑦𝑡 |2 𝜇2 |𝑦𝑡 |2 0 𝜇2𝑦𝑡 |𝑦𝑡 |2

Table 13: Structure of RGEs of the bosonic dimension-6, dimension-4 and dimension-2 terms triggered
by fermionic dimension-8 terms. The entries correspond the order in SM couplings of the leading contri-
bution. Entries in blue are terms that deviate significantly from naive dimensional analysis. The WC in
gray are loop-level generated in weakly-coupled UV completions of the SMEFT.

corresponds to any coupling in the theory. A forward 2 → 2 cross-symmetric scattering amplitude of

Higgs doublet components reads, schematically:

A(𝑠) ∼ 𝜆tree +
�
𝜆loop

16𝜋2 +
(𝜆tree)2
16𝜋2 log

�
Λ2

𝑠

��

+

𝑐 (𝑖)tree
𝜙4 +

𝑐
(𝑖)loop
𝜙4

16𝜋2 − 𝜇
𝑑𝑐 (𝑖)

𝜙4

𝑑𝜇
log

�
Λ2

𝑠

�
𝑠2

Λ4 , (4.4.28)

where we ignored the particular numerical coefficients which accompany each term and, following Ref.

[245], neglected contributions with gauge couplings in order to simplify the analysis6. The combination

of coefficients 𝑐 (𝑖)
𝜙4 which participate in the amplitude depends on the particular components of the Higgs

doublet which are being scattered.

𝜙1𝜙2 → 𝜙1𝜙2 : 𝑐 (𝑖)
𝜙4 = 𝑐 (2)

𝜙4 ,

𝜙1𝜙3 → 𝜙1𝜙3 : 𝑐 (𝑖)
𝜙4 = 𝑐 (1)

𝜙4 + 𝑐 (2)
𝜙4 ,

𝜙1𝜙1 → 𝜙1𝜙1 : 𝑐 (𝑖)
𝜙4 = 𝑐 (1)

𝜙4 + 𝑐 (2)
𝜙4 + 𝑐 (3)

𝜙4 . (4.4.29)

The last term in Eq. (4.4.28) corresponds to the running of the relevant dimension-8 operators and

can be written as in Eq. (4.4.1), with contributions from 2 insertions of dimension-6 operators and 1

dimension-8 term.
6All conclusions can also be extrapolated for non-zero gauge couplings [245].
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To use the argument presented in section 4.1.6, we need to give a small mass, 𝑚, to the Higgs,

to avoid the branch cut from the logarithm to extend to 𝑠 = 0, which would not generate the needed

analytic structure [178, 245]. We can then study the limit of vanishing 𝑚 after expanding the logarithm

log[Λ2/(𝑠 +𝑚2)].
Let us look at Eq. (4.4.28) in the case7 of 𝜆tree = 0and 𝑐 (𝑖)tree

𝜙4 = 0; the leading contribution is given

by [245]:

A(𝑠) ∼ −𝛾 �𝑖 𝑗𝑐 (𝑖)(6)𝑐
( 𝑗)
(6) log

�
Λ2

𝑚2

�
𝑠2

Λ4 + · · · , (4.4.30)

where the · · · correspond to to higher order terms in 𝑠/𝑚2 from the expansion of the logarithm, 𝛾 �𝑖 𝑗 , is

the anomalous dimension matrix corresponding to the insertion of 2 dimension-6 terms – as defined in

Eq. (4.4.1) – and 𝑐 (𝑖)(6) correspond to the dimension-6 WCs which renormalise the relevant dimension-8

WCs. Respecting the positivity constraint on the scattering amplitude, Eq. (4.1.24), we can arrive at two

conclusions:

1. If the combination of 𝑐 (𝑖)
𝜙4 coeffcients contributing to the 2 → 2 scattering are only generated

at loop-level, given that the amplitude is then dominated by the RGE effects, 𝑐 (𝑖)
𝜙4 do not have to

respect the conditions of Eqs. (4.1.25).

2. The RGEs of the 𝑐 (𝑖)
𝜙4 driven by two insertions of dimension-6 terms must always respect

𝛾 �𝑖 𝑗𝑐
(𝑖)
(6)𝑐

( 𝑗)
(6) < 0 . (4.4.31)

In Appendix D we show an example of a UV completion in which arbitrary dimension-6 coefficients

can be generated compatible with 𝑐 (𝑖)tree
𝜙4 = 0, meaning that the result of Eq. (4.4.31) holds,

irrespective of the values of 𝑐 (𝑖)(6) .

Point 1. was verified in Ref. [245] where they show that a neutral scalar singlet or a scalar triplet do

not generate 𝑐 (2)
𝜙4 at tree-level, and at one-loop 𝑐 (2)

𝜙4 < 0 going against Eqs. (4.1.25). Furthermore they

also verify that in case no 4-Higgs operator is generated at tree-level (dimension-6 and dimension-8) but

only at loop-level – as is the case of heavy scalar quadruplets with hyprecharge 𝑌 = 1/2 or 𝑌 = 3/2 –

then Eqs. 4.1.25 are respected at one-loop.

Point 2. can be seen from the explicit results of the full RGEs. Let us rewrite here the RGEs of the

4-Higgs dimension-8 operators driven by 2 insertions of dimension-6 as:

7Note that this is can always be achieved by tuning of the renormalisable Lagrangian.
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16𝜋2𝛽 (1)
𝜙4 =

8
3

�
− 2(𝑐𝜙�)2 −

11
8
(𝑐𝜙𝐷)2 + 4𝑐 (1)

𝜙�𝑐𝜙𝐷

+3𝑐2𝜙𝑑 +𝑐2𝜙𝑒 +2(𝑐 (1)
𝜙𝑙

)2 − 2(𝑐 (3)
𝜙𝑙

)2+6(𝑐 (1)
𝜙𝑞

)2 − 6(𝑐 (3)
𝜙𝑞

)2 + 3𝑐2𝜙𝑢 − 3𝑐2𝜙𝑢𝑑

�
, (4.4.32)

16𝜋2𝛽 (2)
𝜙4 =

8
3

�
− 2(𝑐𝜙�)2 − 2𝑐𝜙�𝑐𝜙𝐷 − 5

8
(𝑐𝜙𝐷)2

−3𝑐2𝜙𝑑 −𝑐2𝜙𝑒 −2(𝑐 (1)
𝜙𝑙

)2 − 2(𝑐 (3)
𝜙𝑙

)2−6(𝑐 (1)
𝜙𝑞

)2 − 6(𝑐 (3)
𝜙𝑞

)2−3𝑐2𝜙𝑢
�
, (4.4.33)

16𝜋2𝛽 (3)
𝜙4 =

8
3

�
− 5(𝑐𝜙�)2 +

7
8
(𝑐𝜙𝐷 )2 − 2𝑐𝜙�𝑐𝜙𝐷 + 4(𝑐 (3)

𝜙𝑙
)2 + 12(𝑐 (3)

𝜙𝑞
)2 + 3𝑐2𝜙𝑢𝑑

�
, (4.4.34)

where the fermionic WCs squared should be read as the trace in flavour space, that is, 𝑐2 ≡ Tr[𝑐†𝑐].
The RGE of 𝑐 (2)

𝜙4 is always negative; for 𝑐 (1)
𝜙4 + 𝑐 (2)

𝜙4 , the definite negative sign arises from the cancelation

of the terms underlined (note that terms cancel according to the number of lines underneath them). For

the combination 𝑐 (1)
𝜙4 + 𝑐 (2)

𝜙4 + 𝑐 (3)
𝜙4 the fermionic terms with positive sign in Eq. (4.4.34) are canceled by

the remaining (not underlined) fermionic terms in Eqs. (4.4.32) and (4.4.33). Indeed we see that our

results agree with point 2., that is, the RGEs of 4-Higgs operators triggered by dimension-6 terms respect

Eq. (4.4.31).

Let us now consider the contribution from the RGE triggered by an insertion of a dimension-8 operator.

In this case, as confirmed in Ref. [245], since there are lower-dimensional operators which can contribute

at the same coupling order to the amplitude as the dimension-8 operator (and dominate the amplitude)

the RGE from the dimension-8 operator does not have a fixed sign. Let us show this with a simple example

taking 𝑐 (2)tree
𝜙4 = 0 and considering its renormalisation by the other 𝑐 (𝑖)

𝜙4 and 𝜆. Neglecting dimension-

6 contributions, which we already know fulfill Eq. (4.4.31), the part of the amplitude of the scattering

process 𝜙1𝜙2 → 𝜙1𝜙2 proportional to 𝑠2 reads:

A(𝑠) ∼
� (𝜆tree)2
16𝜋2

Λ4

𝑚4 − 𝛾𝑖𝜆
tree𝑐 (𝑖)tree

𝐻 4𝐷4 log

�
Λ2

𝑚2

��
𝑠2

Λ4 , (4.4.35)

where 𝛾𝑖 corresponds to anomalous dimension matrix from the renormalisation of 𝑐 (2)
𝜙4 through an inser-

tion of a dimension-8 term. Even if the term 𝜆 in the renormalisable Lagrangian is zero, the diagram

responsible for generating 𝑐 (𝑖)
𝜙4 can in principle also generate a contribution to 𝜆tree. The two terms will
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scale as 𝑐 (𝑖)
𝜙4 ∼ 𝜅2/𝑀2, and 𝜆tree ∼ 𝜅2/𝑀2, where 𝜅 is the coupling between 2 Higgs and whatever

heavy field was integrated out to generate these relevant operators and 𝑀 is the mass of said heavy field.

Therefore, first term in Eq. (4.4.35) scales as ∼ 𝜅4/𝑀4, while the second one as ∼ 𝜅4/𝑀8 (the extra

mass suppresion comes from the Λ4 of the effective operator which we are identifying with the mass of

the heavy particle). The amplitude is therefore dominated by the first term in this case. As such, nothing

can be said in general regarding the sign of 𝛾𝑖𝑐
(𝑖)tree
(8) .

Indeed, by looking at the contribution to the RGEs of 𝑐 (𝑖)tree
𝜙4 from tree-level generated dimension-8

terms, both in our full results and in Ref. [245], we concluded that there is no definite sign for the RGEs

of the 4-Higgs operators from insertions of other dimension-8 terms.

Positivity bounds have also been derived for the dimension-8 operators𝑋 2𝜙2𝐷2. These were obtained

in Ref. [181] through amplitudes𝑉1𝑉2 → 𝑉1𝑉2, with𝑉𝑖 =𝑊 ±,𝑍 ,𝛾 , in the broken phase of the SM. They

can also be derived from the amplitude 𝜙𝑉 → 𝜙𝑉 in the unbroken phase. For this amplitude, contrary

to what happened for the 4-Higgs scattering amplitude, no lower-dimensional operator can dominate the

amplitude in general, since the contributions from different dimension terms will always scale differently.

Furthermore the RGEs of 𝑋 2𝜙2𝐷2 WCs do not receive contributions from 2 insertions of dimension-6

operators. Given also that the WCs of the 𝑋 2𝜙2𝐷2 operators are not generated at tree-level by weakly-

coupled UV theories, the 𝑠2-proportional part of the amplitude 𝜙𝑉 → 𝜙𝑉 can in general be dominated

by the renormalisation of 𝑋 2𝜙2𝐷2 triggered by other dimension-8 terms, which should therefore have a

definite sign.

The relevant operators considered in Ref. [181] are in a different basis defined as O𝑀,𝑖 , for 𝑖 =

1, ..., 5, 7. The translation of their WCs to the ones in our basis is given by:

𝑓𝑀,0 = − 2

𝑔22
𝑐 (2)
𝑊 2𝜙2𝐷2 , 𝑓𝑀,1 =

2

𝑔22
(𝑐 (1)
𝑊 2𝜙2𝐷2 + 𝑐 (4)𝑊 2𝜙2𝐷2) , 𝑓𝑀,2 = − 4

𝑔21
𝑐 (2)
𝐵2𝜙2𝐷2 ,

𝑓𝑀,3 =
4

𝑔21
𝑐 (1)
𝐵2𝜙2𝐷2 , 𝑓𝑀,4 = − 4

𝑔1𝑔2
𝑐 (1)
𝑊𝐵𝜙2𝐷2 , 𝑓𝑀,5 = − 8

𝑔1𝑔2
𝑐 (4)
𝑊𝐵𝜙2𝐷2 , 𝑓𝑀,7 =

4

𝑔22
𝑐 (4)
𝑊 2𝜙2𝐷2 . (4.4.36)

The positivity bounds obtained by Ref [181], when translated to our basis, read:

𝑔21𝑐
(1)
𝐵2𝜙2𝐷2 + 𝑔22𝑐 (1)𝑊 2𝜙2𝐷2 + 2𝑔1𝑔2𝑐

(4)
𝑊𝐵𝜙2𝐷2 ≤ 0 , (4.4.37)

𝑔21𝑐
(1)
𝐵2𝜙2𝐷2 + 𝑔22𝑐 (1)𝑊 2𝜙2𝐷2 − 2𝑔1𝑔2𝑐

(4)
𝑊𝐵𝜙2𝐷2 ≤ 0 , (4.4.38)

𝑐 (1)
𝑊 2𝜙2𝐷2 ≤ 0 , (4.4.39)

𝑔21𝑐
(1)
𝑊 2𝜙2𝐷2 + 2𝑔1𝑔2𝑐

(4)
𝑊𝐵𝜙2𝐷2 + 𝑔22𝑐 (1)𝐵2𝜙2𝐷2 ≤ 0 , (4.4.40)

𝑔21𝑐
(1)
𝑊 2𝜙2𝐷2 − 2𝑔1𝑔2𝑐

(4)
𝑊𝐵𝜙2𝐷2 + 𝑔22𝑐 (1)𝐵2𝜙2𝐷2 ≤ 0 . (4.4.41)
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Given that these operators are not generated at tree-level, their value at energies much lower than the

matching scale is dominated by the running triggered by single insertions of (tree-level) dimension-8

operators. Considering the RGEs of the 𝑋 2𝜙2𝐷2 WCs, at leading-log, results in

2𝑐 (1)
𝜙4 + 3𝑐 (2)

𝜙4 + 𝑐 (3)
𝜙4 ≥ 0 , (4.4.42)

𝑐 (1)
𝜙4 + 2𝑐 (2)

𝜙4 + 𝑐 (3)
𝜙4 ≥ 0 , (4.4.43)

𝑐 (1)
𝜙4 + 𝑐 (2)

𝜙4 ≥ 0 , (4.4.44)�
𝑐 (1)
𝜓 2
𝑅𝜙

2𝐷3 + 𝑐 (2)𝜓 2
𝑅𝜙

2𝐷3

�
𝛼1,𝛼1

≤ 0 , (4.4.45)�
𝑐 (1)
𝜓 2
𝐿𝜙

2𝐷3 + 𝑐 (2)𝜓 2
𝐿𝜙

2𝐷3 + 𝑐 (3)𝜓 2
𝐿𝜙

2𝐷3 + 𝑐 (4)𝜓 2
𝐿𝜙

2𝐷3

�
𝛼1,𝛼1

≤ 0 , (4.4.46)�
𝑐 (1)
𝜓 2
𝐿𝜙

2𝐷3 + 𝑐 (2)𝜓 2
𝐿𝜙

2𝐷3 − 𝑐 (3)
𝜓 2
𝐿𝜙

2𝐷3 − 𝑐 (4)
𝜓 2
𝐿𝜙

2𝐷3

�
𝛼1,𝛼1

≤ 0 ; (4.4.47)

for 𝜓𝐿 = 𝑙,𝑞 and 𝜓𝑅 = 𝑒,𝑢,𝑑 . The WCs are defined at a high-energy (matching) scale. The first three

inequalities are simply linear combinations of the already presented positivity bounds in Eqs. (4.1.25) and

as such always hold true since all WCs in the equations above must be generated at tree-level. The last

three inequalities are equivalent to those obtained in Ref. [190] which have been obtained by applying the

positivity constrain to the amplitude 𝜙𝜓 → 𝜙𝜓 ; see Ref. [246] for the positivity of amplitudes involving

particles with spin. As such, we showed that for 𝑋 2𝜙2𝐷2 the positivity relations quoted in Eqs. (4.4.37

– 4.4.41) are always respected through one-loop running.

4.5 Running in the ALPs

An important assumption that has been present in our SMEFT analysis so far is that at low energies

there are no extra degrees of freedom besides the SM ones. However, it is possible that light particles

exist that have, for some reason, avoided direct detection so far. Singlets of the SM gauge groups which

couple feebly to the SM are good candidates of such particles since they cannot be EW produced and are

therefore very difficult to search for at colliders. In this section we will study the SMEFT+ALP, an extension

of the SMEFT with a light pseudo-scalar, 𝑠, which is commonly called an axion-like particle (ALP).

The clearest motivation to study ALPs comes from axions (hence the name ALP) which aim to solve

the strong CP problem [247–249]. CHMs also predict several light scalars (CP-odd or even) which arise

from the spontaneous breaking of the underlying global symmetry which can generate not only the Higgs,

but other pNGBs which are naturally light [250]. ALPs have also been studied as DM candidates [251,

252] or as part of several flavour theories [253, 254].
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In the literature, ALPs are generically taken to be endowed with a shift-symmetry, 𝑠 → 𝑠 + 𝑎, with

𝑎 being an arbitrary constant, broken only by its mass term. However, this shift-symmetry arises as a

consequence of the periodicity condition required to solve the strong CP-problem [255]; other motivations

for light pseudo-scalars, such as CHMs, do not require such a symmetry. Therefore, and for the sake

of generality, we will not enforce shift-symmetry in our theory; we will comment on this choice in section

4.5.1.

Given their ubiquitous theoretical motivation, the experimental effort in searching for ALPs has been

far-reaching, spanning a wide range of energy scales. In figure 28 we can see that bounds are obtained

from different experiments; heavier ALPs are mostly constrained by collider searches [256, 257], with a

center of mass energy of
√
𝑠 = 13 TeV, whereas lighter ones are constrained by astrophysical probes,

with, for instance, the observation of anomalous red giant cooling providing bounds at an energy scale

of around the keV [258]. In order to correctly interpret these bounds, knowledge of how the couplings

in the ALP theory vary with the energy scale (and how the couplings mix among themselves) is therefore

essential. In this section we will compute the RGEs of couplings in the SMEFT+ALP at dimension-5

assuming only CP conservation, and study some of the phenomenological implications of considering

these contributions. This section is based on the work published in Ref. [7].

4.5.1 Building the basis

The renormalisable Lagrangian of an extension of the SM with an ALP is given by:

L𝐷≤4 = L𝑆𝑀 + 1
2

�
𝜕𝜇𝑠

� (𝜕𝜇𝑠) − 1
2
𝑚2𝑠2 − 𝜅𝑠

3!
𝑠3 − 𝜆𝑠

4!
𝑠4 − 𝜅𝑠𝜙𝑠 |𝜙 |2 −

𝜆𝑠𝜙

2
𝑠2 |𝜙 |2 , (4.5.1)

with real coefficients.

Due to its singlet nature, the most interesting phenomenology of ALPs – its couplings to fermions

and gauge bosons – arises through dimension-5 operators, which, unlike in the SMEFT, are not LNV. We

will therefore perform our analysis up to O(1/Λ). We construct the Green’s basis at this order which is

shown in table 14.

We defined the operators in their hermitian form such that the WCs associated with operators with

flavour indices are followed by 3 × 3 real matrices, whereas the other WCs are real numbers. The

operators represented with an R are the redundant ones and can be reduced to the physical basis by

EOMs; since the renormalisable Lagrangian is no longer just the SM one, these EOMs are now given by:

𝜕2𝑠 = −𝑚2𝑠 − 𝜅𝑠
2
𝑠2 − 𝜆𝑠𝑠

3

3!
− 𝜅𝑠𝜙 |𝜙 |2 − 𝜆𝑠𝜙𝑠 |𝜙 |2 , (4.5.2)
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Figure 28: Illustration of the probes of the coupling between an ALP and photons as a function of the
mass of the ALP. Taken from [259].

𝐷2𝜙𝑘 = −𝜇2𝜙𝑘 − 2𝜆 |𝜙 |2𝜙𝑘 − 𝜅𝑠𝜙𝑠𝜙𝑘 −
𝜆𝑠𝜙

2
𝑠2𝜙𝑘 − 𝑦𝑢𝛼𝛽𝑞

𝛼
𝐿𝑗𝜖 𝑗𝑘𝑢

𝛽
𝑅 − 𝑦𝑑 ∗𝛼𝛽𝑑

𝛽
𝑅𝑞

𝛼
𝐿𝑘 − 𝑦𝑒 ∗𝛼𝛽𝑒

𝛽
𝑅𝑙

𝛼
𝐿𝑘 , (4.5.3)

𝑖 /𝐷𝑞𝛼𝐿𝑘 = 𝑦𝑑𝛼𝛽𝜙𝑘𝑑
𝛽
𝑅 + 𝑦𝑢𝛼𝛽�𝜙𝑘𝑢𝛽𝑅 , 𝑖 /𝐷𝑙𝛼𝐿𝑘 = 𝑦𝑒𝛼𝛽𝜙𝑘𝑒

𝛽
𝑅 , (4.5.4)

𝑖 /𝐷𝑢𝛼𝑅 = 𝑦𝑢 ∗𝛽𝛼 �𝜙†
𝑘
𝑞
𝛽
𝐿𝑘
, 𝑖 /𝐷𝑑𝛼𝑅 = 𝑦𝑑 ∗𝛽𝛼𝜙

†
𝑘
𝑞
𝛽
𝐿𝑘
, 𝑖 /𝐷𝑒𝛼𝑅 = 𝑦𝑒 ∗𝛽𝛼𝜙

†
𝑘
𝑙
𝛽
𝐿𝑘

. (4.5.5)

The resulting shift in the physical (CP-even) WCs read:

𝑎𝑠𝑢𝜙 → 𝑎𝑠𝑢𝜙 − 𝑟𝑠𝜙�𝑦
𝑢 − 𝑟𝑠𝑞𝑦

𝑢 + 𝑦𝑢𝑟 �T𝑠𝑢 , (4.5.6)

𝑎𝑠𝑑𝜙 → 𝑎𝑠𝑑𝜙 + 𝑟𝑠𝜙�𝑦𝑑 − 𝑟𝑠𝑞𝑦
𝑑 + 𝑦𝑑𝑟T

𝑠𝑑 , (4.5.7)

𝑎𝑠𝑒𝜙 → 𝑎𝑠𝑒𝜙 + 𝑟𝑠𝜙�𝑦𝑒 − 𝑟𝑠𝑙𝑦
𝑒 + 𝑦𝑒𝑟T

𝑠𝑒 . (4.5.8)

A comment regarding the choice of basis is in order [260]. In the literature it is common to find a

derivative basis to describe the SMEFT+ALP which is given by:

Lderivative =
�
Ψ

�
𝜕𝜇𝑠

�
Ψ𝐶Ψ𝛾

𝜇Ψ +𝐶𝐵𝑔
2
1𝑠𝐵𝜇𝜈�𝐵𝜇𝜈 +𝐶𝑊𝑔22𝑠𝑊

𝑎
𝜇𝜈
�𝑊 𝜇𝜈
𝑎 +𝐶𝐺𝑔

2
3𝑠𝐺

𝐴
𝜇𝜈
�𝐺𝜇𝜈
𝐴 , (4.5.9)

This choice stems from the shift-symmetry motivation for the ALP that we mentioned before; due to its

derivative nature, this basis explicitly respects this symmetry.
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Scalar Yukawa Derivative Gauge

O𝛼𝛽
𝑠𝑢𝜙

= i𝑠 (𝑞𝛼𝐿�𝜙𝑢𝛽𝑅 − 𝑢
𝛽
𝑅
�𝜙†𝑞𝛼𝐿 ) R𝑠𝜙� = i𝑠 (𝜙†𝐷2𝜙 − (𝐷2𝜙)†𝜙) O𝑠�𝐺 = 𝑠𝐺𝐴

𝜇𝜈
�𝐺𝜇𝜈
𝐴

O𝛼𝛽
𝑠𝑑𝜙

= i𝑠 (𝑞𝛼𝐿𝜙𝑑
𝛽
𝑅 − 𝑑

𝛽
𝑅𝜙

†𝑞𝛼𝐿 ) R𝛼𝛽
𝑠𝑞 = 𝑠 (𝑞𝛼𝐿 /𝐷𝑞

𝛽
𝐿 + 𝑞

𝛽
𝐿

←−/𝐷𝑞𝛼𝐿 ) O𝑠 �𝑊 = 𝑠𝑊 𝑎
𝜇𝜈
�𝑊 𝜇𝜈
𝑎

O𝛼𝛽
𝑠𝑒𝜙

= i𝑠 (𝑙𝛼𝐿𝜙𝑒
𝛽
𝑅 − 𝑒

𝛽
𝑅𝜙

†𝑙𝛼𝐿 ) R𝛼𝛽
𝑠𝑙

= 𝑠 (𝑙𝛼𝐿 /𝐷𝑙𝛽𝐿 + 𝑙 𝛽𝐿
←−/𝐷𝑙𝛼𝐿 ) O𝑠�𝐵 = 𝑠𝐵𝜇𝜈�𝐵𝜇𝜈

R𝛼𝛽
𝑠𝑢 = 𝑠 (𝑢𝛼𝑅 /𝐷𝑢

𝛽
𝑅 + 𝑢

𝛽
𝑅

←−/𝐷𝑢𝛼𝑅 )
R𝛼𝛽
𝑠𝑑

= 𝑠 (𝑑𝛼𝑅 /𝐷𝑑
𝛽
𝑅 + 𝑑𝛽𝑅

←−/𝐷𝑑𝛼𝑅 )
R𝛼𝛽
𝑠𝑒 = 𝑠 (𝑒𝛼𝑅 /𝐷𝑒

𝛽
𝑅 + 𝑒𝛽𝑅

←−/𝐷𝑒𝛼𝑅 )
O𝑠5 = 𝑠5 O𝛼𝛽�𝑠𝑢𝜙 = 𝑠 (𝑞𝛼𝐿�𝜙𝑢𝛽𝑅 + 𝑢𝛽𝑅�𝜙†𝑞𝛼𝐿 ) R𝑠� = 𝑠2𝜕𝜇𝜕

𝜇𝑠 O𝑠𝐺 = 𝑠𝐺𝐴
𝜇𝜈𝐺

𝜇𝜈
𝐴

O𝑠3 = 𝑠3 |𝜙 |2 O𝛼𝛽�𝑠𝑑𝜙 = 𝑠 (𝑞𝛼𝐿𝜙𝑑
𝛽
𝑅 + 𝑑𝛽𝑅𝜙†𝑞𝛼𝐿 ) R𝜙𝑠� = |𝜙 |2𝜕2𝑠 O𝑠𝑊 = 𝑠𝑊 𝑎

𝜇𝜈𝑊
𝜇𝜈
𝑎

O𝑠 = 𝑠 |𝜙 |4 O𝛼𝛽�𝑠𝑒𝜙 = 𝑠 (𝑙𝛼𝐿𝜙𝑒
𝛽
𝑅 + 𝑒𝛽𝑅𝜙†𝑙𝛼𝐿 ) R�𝑠𝜙� = 𝑠 (𝜙†𝐷2𝜙 + (𝐷2𝜙)†𝜙) O𝑠𝐵 = 𝑠𝐵𝜇𝜈𝐵

𝜇𝜈

R𝛼𝛽�𝑠𝑞 = 𝑠 (𝑞𝛼𝐿 i /𝐷𝑞
𝛽
𝐿 − 𝑞

𝛽
𝐿 i
←−/𝐷𝑞𝛼𝐿 )

R𝛼𝛽�𝑠𝑙 = 𝑠 (𝑙𝛼𝐿 i /𝐷𝑙
𝛽
𝐿 − 𝑙

𝛽
𝐿 i
←−/𝐷𝑙𝛼𝐿 )

R𝛼𝛽�𝑠𝑢 = 𝑠 (𝑢𝛼𝑅 i /𝐷𝑢
𝛽
𝑅 − 𝑢

𝛽
𝑅 i
←−/𝐷𝑢𝛼𝑅 )

R𝛼𝛽�𝑠𝑑 = 𝑠 (𝑑𝛼𝑅 i /𝐷𝑑
𝛽
𝑅 − 𝑑

𝛽
𝑅 i
←−/𝐷𝑑𝛼𝑅 )

R𝛼𝛽�𝑠𝑒 = 𝑠 (𝑒𝛼𝑅 i /𝐷𝑒
𝛽
𝑅 − 𝑒

𝛽
𝑅 i
←−/𝐷𝑒𝛼𝑅 )

Table 14: Green’s basis of SMEFT+ALP at dimension-5. All operators are hermitian (operators with flavour
indices are hermitian for each fixed value of 𝛼 and 𝛽 , (O𝛼𝛽)† = O𝛼𝛽 ). Operators in the top panel are
CP-conserving, whereas those in the bottom are CP-violating.

In order to simplify the analysis, let us look at the leptonic sector to compare both bases. The

basis introduced in table 14, which we will refer to as Yukawa-like, has 18 free parameters to describe

the leptonic sector from the operators O𝑠𝑒𝜙 and O�𝑠𝑒𝜙 . The derivative basis is also composed by 18

parameters from the WCs𝐶ℓ and𝐶𝑒 . However, the Yukawa-like basis describes both shift-symmetric and

shift-breaking physics; as such, using the same number of parameters it seems to describe a wider range

of physical models. However, at first sight it might seem counter-intuitive that the Yukawa-like operators

can also describe shift-invariant physics. To see this, let us consider the following Lagrangian:

L = −𝑙𝐿 (𝑦𝑙 − i𝑠𝛼𝑒)𝜙𝑒𝑅 + h.c. , (4.5.10)

where 𝛼𝑒 is an arbitrary matrix in flavour space of order 1/Λ. Shifting 𝑠 → 𝑠 + 𝜎 induces the following
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change:

L → L −
�
𝑙𝐿 (−i𝜎𝛼𝑒)𝜙𝑒𝑅 + h.c.

�
. (4.5.11)

We can now perform arbitrary chiral rotations which, to the order we are considering, read

𝑙𝐿 → (1 +𝐴𝐿)𝑙𝐿, 𝑒𝑅 → (1 +𝐴𝑅)𝑒𝑅 , (4.5.12)

where 𝐴𝐿,𝑅 are anti-hermitian matrices of order 𝜎/Λ, resulting in

L → L −
�
𝑙𝐿 (𝑦𝑒𝐴𝑒𝑅 −𝐴𝑙𝐿𝑦

𝑙 − i𝜎𝛼𝑒)𝜙𝑒𝑅 + h.c.
�
. (4.5.13)

A sufficient condition such that 𝛼𝑒 respects shift-symmetry is that

𝛼shift−inv
𝑒 = 𝐻𝑙𝐿𝑦

𝑙 + 𝑦𝑙𝐻𝑒𝑅 , (4.5.14)

with 𝐻𝑙𝐿,𝑒𝑅 being arbitrary hermitian matrices, corresponding to ±i𝐴𝑙𝐿,𝑒𝑅/𝜎 in Eq. (4.5.13), respectively.

Relating 𝛼𝑒 and the WCs in the Yukawa-like basis

𝑎𝑠𝑒𝜙 = Re𝛼𝑒, 𝑎�𝑠𝑒𝜙 = −Im𝛼𝑒 , (4.5.15)

(and expanding the same conclusions to the quark sector) we get the following constrains on the form of

the WCs so that they describe shift-invariant physics:

𝑎shift−inv𝑠𝑢𝜙 = Re(𝐻𝑞𝐿𝑦
𝑢 + 𝑦𝑢𝐻𝑢𝑅 ) , (4.5.16)

𝑎shift−inv�𝑠𝑢𝜙 = −Im(𝐻𝑞𝐿𝑦
𝑢 + 𝑦𝑢𝐻𝑢𝑅 ) , (4.5.17)

𝑎shift−inv𝑠𝑑𝜙 = Re(𝐻𝑞𝐿𝑦
𝑑 + 𝑦𝑑𝐻𝑑𝑅 ) , (4.5.18)

𝑎shift−inv�𝑠𝑑𝜙 = −Im(𝐻𝑞𝐿𝑦
𝑑 + 𝑦𝑑𝐻𝑑𝑅 ) , (4.5.19)

𝑎shift−inv𝑠𝑒𝜙 = Re(𝐻𝑙𝐿𝑦
𝑒 + 𝑦𝑒𝐻𝑒𝑅 ) , (4.5.20)

𝑎shift−inv�𝑠𝑒𝜙 = −Im(𝐻𝑙𝐿𝑦
𝑒 + 𝑦𝑒𝐻𝑒𝑅 ) , (4.5.21)

where once again 𝐻𝑞𝐿,𝑙𝐿,𝑢𝑅,𝑑𝑅,𝑒𝑅 are arbitrary hermitian matrices.

Knowing these conditions, we can repeat the comparison with the derivative basis considering how

both of them describe the same shift-invariant physics. Once again, considering the leptonic sector and

taking the further simplification of the ALP coupling only to 1 family, the derivative basis is composed

of 2 free parameters, one from 𝐶ℓ and one from 𝐶𝑒 . However, in this assumed limit, the Yukawa-like

basis has only one free parameter, 𝑎𝑠𝑒𝜙 (note that from the conditions derived in Eq. (4.5.21) the CP-odd
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component is zero in the 1 family case). As hinted before, this implies that there is some redundancy in

the derivative basis.

In general, we derive the following on-shell relation:

𝜕𝜇𝑠𝑙𝐿𝐶𝑙𝛾
𝜇𝑙𝐿 = 𝜕𝜇𝑠𝑒𝑅𝐻𝛾

𝜇𝑒𝑅 + 𝑠𝑒𝑅 (i𝐴)i
←→/𝐷 𝑒𝑅 , (4.5.22)

where
←→
𝐷𝜇 ≡ 𝐷𝜇 −←−

𝐷𝜇 and 𝐻 and 𝐴 are hermitian and anti-hermitian matrices, respectively, given by

𝐴 =
1
2

�
(𝑦𝑒)−1𝐶𝑙𝑦

𝑒 − 𝑦𝑒†𝐶𝑙 (𝑦𝑒)−1†
�
, (4.5.23)

𝐻 = −1
2

�
(𝑦𝑒)−1𝐶𝑙𝑦

𝑒 + 𝑦𝑒†𝐶𝑙 (𝑦𝑒)−1†
�
. (4.5.24)

If𝐴 vanishes, the operator corresponding to the LH and RH fermions are equivalent. A sufficient condition

for this is that the Yukawa commutes with 𝐶𝑙 , which can happen in the example explored before when

the ALP couples only to a single lepton family.

4.5.2 Renormalisation of the SMEFT+ALP

Following the same procedure as in the previous sections, we calculate the RGEs of the SMEFT+ALP.

Besides the WFRs presented in Eqs. (4.4.22) we also need the fermionic ones given by:

𝑍𝑞𝐿 = 1 − 1
96𝜋2𝜖

�
1
6
𝑔21 +

9
2
𝑔22 + 8𝑔23 + 3𝑦𝑢𝑦𝑢 † + 3𝑦𝑑𝑦𝑑 †

�
, (4.5.25)

𝑍𝑙𝐿 = 1 − 1
64𝜋2𝜖

�
𝑔21 + 3𝑔22 + 2𝑦𝑒𝑦𝑒 †

�
, (4.5.26)

𝑍𝑢𝑅 = 1 − 1
48𝜋2𝜖

�
4
3
𝑔21 + 4𝑔23 + 3𝑦𝑢 †𝑦𝑢

�
, (4.5.27)

𝑍𝑑𝑅 = 1 − 1
48𝜋2𝜖

�
1
3
𝑔21 + 4𝑔23 + 3𝑦𝑑 †𝑦𝑑

�
, (4.5.28)

𝑍𝑒𝑅 = 1 − 1
16𝜋2𝜖

�
𝑔21 + 𝑦𝑒 †𝑦𝑒

�
. (4.5.29)

Defining the beta function of an arbitrary coupling 𝑎𝑛 as

𝛽𝑎𝑛 = 16𝜋2𝜇
𝑑𝑎𝑛
𝑑𝜇

= 𝛾𝑛𝑚𝑎𝑚 , (4.5.30)

where 𝛾𝑛𝑚 is the anomalous dimension matrix, the resulting beta functions for the SMEFT+ALP theory

are given by:
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𝛽𝑎𝑠𝑢𝜙 = 2

��
𝜆𝑠𝜙 − 17𝑔21

24
− 9𝑔22

8
− 4𝑔23 +

1
2
𝛾 (𝑌 )
𝜙

�
𝑎𝑠𝑢𝜙

− 3
4
𝑦𝑑𝑦𝑑†𝑎𝑠𝑢𝜙 +

5
4
𝑦𝑢𝑦𝑢†𝑎𝑠𝑢𝜙 + 𝑎𝑠𝑢𝜙𝑦𝑢†𝑦𝑢 + 𝑦𝑑𝑎T

𝑠𝑑𝜙𝑦
𝑢 − 1

2
𝑎𝑠𝑑𝜙𝑦

𝑑†𝑦𝑢

−
�
17𝑔21
6

𝑎𝑠�𝐵 +
9𝑔22
2
𝑎𝑠 �𝑊 + 16𝑔23𝑎𝑠�𝐺 + Tr

�
𝑦𝑒𝑎T

𝑠𝑒𝜙 + 3𝑦𝑑𝑎T
𝑠𝑑𝜙 − 3𝑎𝑠𝑢𝜙𝑦

𝑢†)
� �
𝑦𝑢
�
, (4.5.31)

𝛽𝑎𝑠𝑑𝜙 = 2

��
𝜆𝑠𝜙 − 5𝑔21

24
− 9𝑔22

8
− 4𝑔23 +

1
2
𝛾 (𝑌 )
𝜙

�
𝑎𝑠𝑑𝜙

− 3
4
𝑦𝑢𝑦𝑢†𝑎𝑠𝑑𝜙 +

5
4
𝑦𝑑𝑦𝑑†𝑎𝑠𝑑𝜙 + 𝑎𝑠𝑑𝜙𝑦𝑑†𝑦𝑑 + 𝑦𝑢𝑎T

𝑠𝑢𝜙𝑦
𝑑 − 1

2
𝑎𝑠𝑢𝜙𝑦

𝑢†𝑦𝑑

−
�
5𝑔21
6
𝑎𝑠�𝐵 +

9𝑔22
2
𝑎𝑠 �𝑊 + 16𝑔23𝑎𝑠�𝐺 − Tr

�
𝑦𝑒𝑎T

𝑠𝑒𝜙 + 3𝑦𝑑𝑎T
𝑠𝑑𝜙 − 3𝑎𝑠𝑢𝜙𝑦

𝑢†)
� �
𝑦𝑑
�
, (4.5.32)

𝛽𝑎𝑠𝑒𝜙 = 2

�
𝑎𝑠𝑒𝜙

�
𝜆𝑠𝜙 − 15𝑔21

8
− 9𝑔22

8
+ 1
2
𝛾 (𝑌 )
𝜙

�
+ 5
4
𝑦𝑒𝑦𝑒†𝑎𝑠𝑒𝜙 + 𝑎𝑠𝑒𝜙𝑦𝑒†𝑦𝑒

−
�
15𝑔21
2

𝑎𝑠�𝐵 +
9𝑔22
2
𝑎𝑠 �𝑊 − Tr

�
𝑦𝑒𝑎T

𝑠𝑒𝜙 + 3𝑦𝑑𝑎T
𝑠𝑑𝜙 − 3𝑎𝑠𝑢𝜙𝑦

𝑢†)
� �
𝑦𝑒
�
, (4.5.33)

𝛽𝑎𝑠�𝐵 =
41
3
𝑔21𝑎𝑠�𝐵 , (4.5.34)

𝛽𝑎𝑠�𝑊 = −19
3
𝑔22𝑎𝑠 �𝑊 , (4.5.35)

𝛽𝑎𝑠 �𝐺 = −14𝑔23𝑎𝑠�𝐺 . (4.5.36)

A more illustrative picture of the operator mixing can be obtained by taking the limit of diagonal flavour

cuplings 𝑎𝛼𝛽 = 𝛿𝛼𝛽𝑎𝛼 (and neglecting off-diagonal Yukawa couplings as well). Writing 𝛾𝑛𝑚, where 𝑛 runs

over O𝛼
𝑠𝑢𝜙

, O𝛼
𝑠𝑑𝜙

, O𝛼
𝑠𝑒𝜙

, O𝑠�𝐺 , O𝑠 �𝑊 and O𝑠�𝐵 , and𝑚 over the same operators but with flavour index 𝜌 , we
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can express the anomalous dimensions in the following form:

𝛾 =

����������������������

𝛾11 + 6𝑦𝛼𝑢𝑦
𝜌
𝑢 𝑦𝛼

𝑑
𝑦𝛼𝑢 − 6𝑦𝛼𝑢𝑦

𝜌
𝑑

−2𝑦𝛼𝑢𝑦𝜌𝑒 −32𝑔23𝑦𝛼𝑢 −9𝑔22𝑦𝛼𝑢 −17
3 𝑔

2
1𝑦

𝛼
𝑢

𝑦𝛼𝑢𝑦
𝛼
𝑑
− 6𝑦𝛼

𝑑
𝑦
𝜌
𝑢 𝛾22 + 6𝑦𝛼

𝑑
𝑦
𝜌
𝑑

2𝑦𝛼
𝑑
𝑦
𝜌
𝑒 −32𝑔23𝑦𝛼𝑑 −9𝑔22𝑦𝛼𝑑 −5

3𝑔
2
1𝑦

𝛼
𝑑

−6𝑦𝛼𝑒 𝑦𝜌𝑢 6𝑦𝛼𝑒 𝑦
𝜌
𝑑

𝛾33 + 2𝑦𝛼𝑒 𝑦
𝜌
𝑒 0 −9𝑔22𝑦𝛼𝑒 −15𝑔21𝑦𝛼𝑒

0 0 0 −14𝑔23 0 0

0 0 0 0 −19
3 𝑔

2
2 0

0 0 0 0 0 41
3 𝑔

2
1

����������������������

, (4.5.37)

where a 𝛿𝛼𝜌 should be understood in every entry in which the 𝜌 -index does not explicitly appear, and we

have defined

𝛾11 = 2𝜆𝑠𝜙 − 3
2

�
𝑦𝛼𝑑
�2 + 9

2

�
𝑦𝛼𝑢
�2 − 17

12
𝑔21 −

9
4
𝑔22 − 8𝑔23 + 𝛾 (𝑌 )

𝜙
, (4.5.38)

𝛾22 = 2𝜆𝑠𝜙 − 3
2

�
𝑦𝛼𝑢
�2 + 9

2

�
𝑦𝛼𝑑
�2 − 5

12
𝑔21 −

9
4
𝑔22 − 8𝑔23 + 𝛾 (𝑌 )

𝜙
, (4.5.39)

𝛾33 = 2𝜆𝑠𝜙 + 9
2

�
𝑦𝛼𝑒
�2 − 15

4
𝑔21 −

9
4
𝑔22 + 𝛾 (𝑌 )

𝜙
. (4.5.40)

Note that, despite having considered flavour diagonal couplings, due to the contribution from 𝑟𝑠𝜙�, there

is inter-generational mixing. The choice of diagonal Wilson coefficients is radiatively stable (up to the small

non-diagonal terms in the SM Yukawa couplings).

The running of the renormalisable couplings was obtained with the tool Pyr@te [261], and is given

by:

𝛽𝑔1 =
41
6
𝑔31 , (4.5.41)

𝛽𝑔2 = −19
6
𝑔32 , (4.5.42)

𝛽𝑔3 = −7𝑔33 , (4.5.43)

𝛽𝑚2 = 4𝜆𝑠𝜙𝜇
2 + 𝜆𝑠𝑚2 , (4.5.44)

𝛽𝜇2 = 𝜆𝑠𝜙𝑚
2 +

�
2Tr(𝑦𝑒𝑦𝑒†) + 6Tr(𝑦𝑢𝑦𝑢†) + 6Tr(𝑦𝑑𝑦𝑑†) − 3

2
𝑔21 −

9
2
𝑔22 − 12𝜆

�
𝜇2 , (4.5.45)

𝛽𝜆𝑠 = 3𝜆2𝑠 + 12𝜆2𝑠𝜙 , (4.5.46)
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𝛽𝜆𝑠𝜙 =

�
𝜆𝑠 + 4𝜆𝑠𝜙 + 2Tr(𝑦𝑒𝑦𝑒†) + 6Tr(𝑦𝑢𝑦𝑢†) + 6Tr(𝑦𝑑𝑦𝑑†) + 12𝜆 − 3

2
𝑔21 −

9
2
𝑔22

�
𝜆𝑠𝜙 , (4.5.47)

𝛽𝜆 =
1
2
𝜆2𝑠𝜙 − 6Tr(𝑦𝑢𝑦𝑢†𝑦𝑢𝑦𝑢†) − 6Tr(𝑦𝑑𝑦𝑑†𝑦𝑑𝑦𝑑†) − 2Tr(𝑦𝑒𝑦𝑒†𝑦𝑒𝑦𝑒†) + 3

8
𝑔41 +

9
8
𝑔42 +

3
4
𝑔21𝑔

2
2

+
�
24𝜆 − 3𝑔21 − 9𝑔22 + 4Tr(𝑦𝑒𝑦𝑒†) + 12Tr(𝑦𝑢𝑦𝑢†) + 12Tr(𝑦𝑑𝑦𝑑†)

�
𝜆 , (4.5.48)

𝛽𝑦𝑢 =

�
3
2
𝑦𝑢𝑦𝑢† − 3

2
𝑦𝑑𝑦𝑑

† + 3
�
Tr(𝑦𝑢𝑦𝑢†) + Tr(𝑦𝑑𝑦𝑑†)

�
+ Tr(𝑦𝑒𝑦𝑒†) − 17

12
𝑔21 −

9
4
𝑔22 − 8𝑔23

�
𝑦𝑢 ,

(4.5.49)

𝛽𝑦𝑑 =

�
3
2
𝑦𝑑𝑦𝑑

† − 3
2
𝑦𝑢𝑦𝑢† + 3

�
Tr(𝑦𝑢𝑦𝑢†) + Tr(𝑦𝑑𝑦𝑑†)

�
+ Tr(𝑦𝑒𝑦𝑒†) − 5

12
𝑔21 −

9
4
𝑔22 − 8𝑔23

�
𝑦𝑑 ,

(4.5.50)

𝛽𝑦𝑒 =

�
3
2
𝑦𝑒𝑦𝑒† + 3

�
Tr(𝑦𝑢𝑦𝑢†) + Tr(𝑦𝑑𝑦𝑑†)

�
+ Tr(𝑦𝑒𝑦𝑒†) − 15

4
𝑔21 −

9
4
𝑔22

�
𝑦𝑒 . (4.5.51)

Given the wide usage of the derivative basis, we use the results of the previous sections to translate

the obtained RGEs to that basis. In the limit of vanishing complex phases for the Yukawa couplings we

arrive at:

𝛽𝐶𝑢 =𝑦
𝑢 †𝑦𝑢𝐶𝑢 + 2𝐶𝑢𝑦

𝑢 †𝑦𝑢 + 2𝜆𝑠𝜙𝐶𝑢 + (𝑦𝑢)−1𝑦𝑑𝐶𝑑𝑦
𝑑 †𝑦𝑢

+ 17
3
𝑔41𝐶𝐵 + 9𝑔42𝐶𝑊 + 32𝐶𝐺𝑔

4
3𝐶𝐺 − 2𝛾 � , (4.5.52)

𝛽𝐶𝑑 =𝑦
𝑑 †𝑦𝑑𝐶𝑑 + 2𝐶𝑑𝑦

𝑑 †𝑦𝑑 + 2𝜆𝑠𝜙𝐶𝑑 + (𝑦𝑑)−1𝑦𝑢𝐶𝑢𝑦𝑢 †𝑦𝑑

+ 5
3
𝑔41𝐶𝐵 + 9𝑔42𝐶𝑊 + 32𝑔43𝐶𝐺 + 2𝛾 � , (4.5.53)

𝛽𝐶𝑒 =𝑦
𝑒 †𝑦𝑒𝐶𝑒 + 2𝐶𝑒𝑦

𝑒 †𝑦𝑒 + 2𝜆𝑠𝜙𝐶𝑒 + 15𝑔41𝐶𝐵 + 9𝑔42𝐶𝑊 + 2𝛾 � , (4.5.54)

with

𝛾 � ≡ Tr
�
𝑦𝑒𝐶𝑒𝑦

𝑒 † + 3𝑦𝑑𝐶𝑑𝑦
𝑑 † − 3𝑦𝑢𝐶𝑢𝑦

𝑢 †
�
. (4.5.55)

4.5.3 Renormalisation of the LEFT+ALP

Below the EW scale, we can describe the ALP phenomenology by a low-energy theory, which we call

the ALP LEFT, in which the high-energy scale is now the vev of the Higgs and we integrated out the now

massive top quark, the Higgs, the𝑍 and the𝑊 bosons. Assuming still CP conservation, the corresponding

on-shell ALP LEFT Lagrangian, to dimension five, can be written as:

LLEFT =
1
2
(𝜕𝜇𝑠) (𝜕𝜇𝑠) − 1

2
�̃�2𝑠2 − �̃�𝑠

4!
𝑠4 − 1

4
𝐴𝜇𝜈𝐴

𝜇𝜈 − 1
4
𝐺𝐴
𝜇𝜈𝐺

𝐴 𝜇𝜈
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+
�

𝜓=𝑢,𝑑,𝑒

�
𝜓𝛼 i /𝐷𝜓𝛼 −

�
(�̃�𝜓 )𝛼𝛽𝜓𝛼

𝐿𝜓
𝛽
𝑅 − 𝑠 i(𝑐𝜓 )𝛼𝛽𝜓𝛼

𝐿𝜓
𝛽
𝑅 + h.c.

��

+ 𝑎𝑠�𝐺𝑠 𝐺𝐴
𝜇𝜈
�𝐺𝐴 𝜇𝜈 + 𝑎𝑠 �𝐴𝑠𝐴𝜇𝜈 �𝐴𝜇𝜈

+
�

𝜓=𝑢,𝑑,𝑒

�
(𝑎𝜓𝐴)𝛼𝛽𝜓𝛼

𝐿 𝜎
𝜇𝜈𝜓

𝛽
𝑅𝐴𝜇𝜈 + (𝑎𝜓𝐺 )𝛼𝛽𝜓𝛼

𝐿 𝜎
𝜇𝜈𝑇𝐴Ψ

𝛽
𝑅𝐺

𝐴
𝜇𝜈 + 𝑠2(𝑎𝜓 )𝛼𝛽𝜓𝛼

𝐿𝜓
𝛽
𝑅 + h.c.

�
,

(4.5.56)

where 𝛼, 𝛽 are flavour indices that run over the three families for 𝑑 and 𝑒 and over the lighter two families

for the case of 𝑢. The assumed CP invariance forces all coefficients to be real (matrices in case flavour is

involved). Contrary to what we saw before, there are now effective operators of the same dimension with

and without the ALP.

The following redundant operators should also be considered:

L𝑅 =
�

𝜓=𝑢,𝑑,𝑒

� �
𝑟𝜓�

�
𝛼𝛽 𝜓

𝛼
𝐿 𝐷

2𝜓
𝛽
𝑅 + i

�
𝑟𝑠𝜓𝐿

�
𝛼𝛽 𝑠𝜓

𝛼
𝐿 i /𝐷𝜓

𝛽
𝐿 + i

�
𝑟𝑠𝜓𝑅

�
𝛼𝛽 𝑠𝜓

𝛼
𝑅 i /𝐷𝜓

𝛽
𝑅 + h.c.

�
, (4.5.57)

where, due to CP invariance, we have real WCs. The purely SMEFT redundant operator can be removed

by making use of the relation

𝐷2 = /𝐷2 + 𝜎𝜇𝜈

2

�
𝑒𝑄𝐴𝜇𝜈 + 𝑔3𝐺𝜇𝜈

𝐴 𝑇𝐴
�
, (4.5.58)

and the fermion EOM

i /𝐷𝜓𝛼 =𝑚𝛼𝛽𝜓
𝛽
𝑅 +𝑚†

𝛼𝛽
𝜓
𝛽
𝐿 − i

�
𝑐𝜓
�
𝛼𝛽 𝑠𝜓

𝛽
𝑅 + i(𝑐†

𝜓
)𝛼𝛽𝑠𝜓𝛽

𝐿 . (4.5.59)

To fix the parameters of the ALP LEFT at the scale 𝜇 = 𝑣 , one has to choose which physics lies above

the EW scale. While all results in this section hold for general models above the EW scale, if we consider

that the SMEFT+ALP (the theory studied in section 4.5.2) is valid above the EW scale, then the matching

conditions at tree-level are given by:

𝑒 = 𝑔2𝑠𝑤 = 𝑔1𝑐𝑤 , �̃�2 =𝑚2 + 𝜆𝑠𝜙

2
𝑣2 , (4.5.60)

𝑔3 = 𝑔3 , �̃�𝑠 = 𝜆𝑠 − 3
𝑣2

𝑚2
ℎ

𝜆2𝑠𝜙 , (4.5.61)

(�̃�𝑢)𝛼𝛽 =
𝑣√
2
(𝑦𝑢)𝛼𝛽 , (𝑐𝑢)𝛼𝛽 =

𝑣√
2
(𝑎𝑠𝑢𝜙 )𝛼𝛽 , (4.5.62)
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(�̃�𝑑)𝛼𝛽 =
𝑣√
2
(𝑦𝑑)𝛼𝛽 , (𝑐𝑑)𝛼𝛽 =

𝑣√
2
(𝑎𝑠𝑑𝜙 )𝛼𝛽 , (4.5.63)

(�̃�𝑒)𝛼𝛽 =
𝑣√
2
(𝑦𝑒)𝛼𝛽 , (𝑐𝑒)𝛼𝛽 =

𝑣√
2
(𝑎𝑠𝑒𝜙 )𝛼𝛽 , (4.5.64)

𝑎𝑠�𝐺 = 𝑎𝑠�𝐺 , 𝑎𝑠 �𝐴 = 𝑎𝑠 �𝑊𝑠2𝑤 + 𝑎𝑠�𝐵𝑐2𝑤 ; (4.5.65)

where, as before, 𝛼 and 𝛽 are flavour indices that run over the three families for 𝑑 and 𝑒 and over the

first two for 𝑢. All the other Wilson coefficients vanish at the order we are computing.

As the energy scale approaches the mass of the fermions in the theory, we can integrate them out.

The effective Lagrangian is of the same form as in Eq. (4.5.56) except that the flavour indices now run

only over the remaining fermions and the WCs have to be matched at each mass threshold.

The WFRs needed to calculate the RGEs in ALP LEFT are given by:

𝑍𝑒𝐿 = 1 − 𝛼

4𝜋𝜖
− 1
32𝜋2𝜖

�
𝑐𝑒𝑐

†
𝑒

�
− 3𝑒
16𝜋2𝜖

�
𝑚𝑒𝑎

†
𝑒𝐴 + 𝑎𝑒𝐴𝑚†

𝑒

�
, (4.5.66)

𝑍𝑒𝑅 = 1 − 𝛼

4𝜋𝜖
− 1
32𝜋2𝜖

�
𝑐†𝑒 𝑐𝑒

�
− 3𝑒
16𝜋2𝜖

�
𝑎†𝑒𝐴𝑚𝑒 +𝑚†

𝑒𝑎𝑒𝐴
�
, (4.5.67)

𝑍𝑑𝐿 = 1 − 1
3𝜋𝜖

�
1
12
𝛼 + 𝛼𝑠

�
− 1
32𝜋2𝜖

�
𝑐𝑑𝑐

†
𝑑

�

− 𝑒

16𝜋2𝜖

�
𝑚𝑑𝑎

†
𝑑𝐴

+ 𝑎𝑑𝐴𝑚†
𝑑

�
+ 𝑔3
4𝜋2𝜖

�
𝑚𝑑𝑎

†
𝑑𝐺

+ 𝑎𝑑𝐺𝑚†
𝑑

�
, (4.5.68)

𝑍𝑑𝑅 = 1 − 1
3𝜋𝜖

�
1
12
𝛼 + 𝛼𝑠

�
− 1
32𝜋2𝜖

�
𝑐†
𝑑
𝑐𝑑
�

− 𝑒

16𝜋2𝜖

�
𝑎†
𝑑𝐴
𝑚𝑑 +𝑚†

𝑑
𝑎𝑑𝐴

�
+ 𝑔3
4𝜋2𝜖

�
𝑎†
𝑑𝐺
𝑚𝑑 +𝑚†

𝑑
𝑎𝑑𝐺

�
, (4.5.69)

𝑍𝑢𝐿 = 1 − 1
3𝜋𝜖

�
1
3
𝛼 + 𝛼𝑠

�
− 1
32𝜋2𝜖

�
𝑐𝑢𝑐

†
𝑢

�

+ 2𝑒
16𝜋2𝜖

�
𝑚𝑢𝑎

†
𝑢𝐴 + 𝑎𝑢𝐴𝑚†

𝑢

�
+ 𝑔3
4𝜋2𝜖

�
𝑚𝑢𝑎

†
𝑢𝐺 + 𝑎𝑢𝐺𝑚†

𝑢

�
, (4.5.70)

𝑍𝑢𝑅 = 1 − 1
3𝜋𝜖

�
1
3
𝛼 + 𝛼𝑠

�
− 1
32𝜋2𝜖

�
𝑐†𝑢𝑐𝑢

�

+ 2𝑒
16𝜋2𝜖

�
𝑎†𝑢𝐴𝑚𝑢 +𝑚†

𝑢𝑎𝑢𝐴
�
+ 𝑔3
4𝜋2𝜖

�
𝑎†𝑢𝐺𝑚𝑢 +𝑚†

𝑢𝑎𝑢𝐺
�
, (4.5.71)

𝑍𝐴 = 1 − 𝛼

3𝜋𝜖

�
𝑛ℓ + 1

3
𝑛𝑑 +

4
3
𝑛𝑢

�

+ 𝑒

2𝜋2𝜖
Tr

�
(𝑎†𝑒𝐴𝑚𝑒 +𝑚†

𝑒𝑎𝑒𝐴) − 2(𝑎†𝑢𝐴𝑚𝑢 +𝑚†
𝑢𝑎𝑢𝐴) + (𝑎†

𝑑𝐴
𝑚𝑑 +𝑚†

𝑑
𝑎𝑑𝐴)

�
, (4.5.72)
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𝑍𝐺 = 1 + 𝛼𝑠
4𝜋𝜖

�
11 − 2

3
(𝑛𝑢 + 𝑛𝑑)

�
− 𝑔3
4𝜋2𝜖

Tr
�
𝑎†
𝑑𝐺
𝑚𝑑 +𝑚†

𝑑
𝑎𝑑𝐺 + 𝑎†𝑢𝐺𝑚𝑢 +𝑚†

𝑢𝑎𝑢𝐺
�
, (4.5.73)

𝑍𝑠 = 1 − 1
8𝜋2𝜖

Tr
�
𝑐𝑒𝑐

†
𝑒 + 3

�
𝑐𝑑𝑐

†
𝑑
+ 𝑐𝑢𝑐†𝑢

��
. (4.5.74)

The WCs shifts originating from reducing the redundant operators of Eq. (4.5.57) are given by:

𝑐𝜓 →𝑐𝜓 +
�̃�𝜓𝑟

†
𝜓�𝑐𝜓 + 𝑐𝜓𝑟†𝜓��̃�𝜓

2
+ 𝑟𝑠𝜓𝐿�̃�𝜓 − �̃�𝜓𝑟

†
𝑠𝜓𝑅

, (4.5.75)

𝑎𝜓 →𝑎𝜓 + 𝑐𝜓𝑟†𝜓�𝑐𝜓 + 𝑟𝑠𝜓𝐿𝑐𝜓 − 𝑐𝜓𝑟
†
𝑠𝜓𝑅

, (4.5.76)

𝑎𝜓𝐴 →𝑎𝜓𝐴 + 𝑒𝑄𝜓𝑟𝜓�

2
, (4.5.77)

𝑎𝜓𝐺 →𝑎𝜓𝐺 + 𝑔3𝑟𝜓�

2
, (4.5.78)

Finally, the couplings in the ALP LEFT evolve following:

𝛽𝑒 =
4
3

�
𝑛ℓ + 1

3
𝑛𝑑 +

4
3
𝑛𝑢

�
𝑒3 (4.5.79)

+ 8𝑒2Tr

�
− (𝑎†𝑒𝐴�̃�𝑒 + �̃�†

𝑒𝑎𝑒𝐴) + 2(𝑎†𝑢𝐴�̃�𝑢 + �̃�†
𝑢𝑎𝑢𝐴) − (𝑎†

𝑑𝐴
�̃�𝑑 + �̃�†

𝑑
𝑎𝑑𝐴)

�
,

𝛽𝑔3 = [−11 + 2
3
(𝑛𝑢 + 𝑛𝑑)]𝑔33 + 4𝑔23Tr

�
𝑎†
𝑑𝐺
�̃�𝑑 + �̃�†

𝑑
𝑎𝑑𝐺 + 𝑎†𝑢𝐺�̃�𝑢 + �̃�†

𝑢𝑎𝑢𝐺
�
, (4.5.80)

𝛽�̃�𝑒 = − 6𝑒2�̃�𝑒 + 1
2
(�̃�𝑒𝑐

†
𝑒 𝑐𝑒 + 𝑐𝑒𝑐†𝑒�̃�𝑒 + 4𝑐𝑒�̃�

†
𝑒𝑐𝑒)

+ Tr(𝑐𝑒�̃�†
𝑒 + 𝑐†𝑒�̃�𝑒 + 3𝑐𝑢�̃�

†
𝑢 + 3𝑐†𝑢�̃�𝑢 + 3�̃�𝑑𝑐

†
𝑑
+ 3�̃�†

𝑑
𝑐𝑑)𝑐𝑒

+ 12𝑒
�
�̃�𝑒�̃�

†
𝑒𝑎𝑒𝐴 + 𝑎𝑒𝐴�̃�†

𝑒�̃�𝑒

�
− 2�̃�2𝑎𝑒 , (4.5.81)

𝛽�̃�𝑢 = − 8𝑔23�̃�𝑢 − 8
3
𝑒2�̃�𝑢 + 1

2
(�̃�𝑢𝑐

†
𝑢𝑐𝑢 + 𝑐𝑢𝑐†𝑢�̃�𝑢 + 4𝑐𝑢�̃�

†
𝑢𝑐𝑢)

+ Tr(𝑐𝑒�̃�†
𝑒 + 𝑐†𝑒�̃�𝑒 + 3𝑐𝑢�̃�

†
𝑢 + 3𝑐†𝑢�̃�𝑢 + 3�̃�𝑑𝑐

†
𝑑
+ 3�̃�†

𝑑
𝑐𝑑)𝑐𝑢

− 8𝑒
�
�̃�𝑢�̃�

†
𝑢𝑎𝑢𝐴 + 𝑎𝑢𝐴�̃�†

𝑢�̃�𝑢

�
− 16𝑔3

�
�̃�𝑢�̃�

†
𝑢𝑎𝑢𝐺 + 𝑎𝑢𝐺�̃�†

𝑢�̃�𝑢

�
− 2�̃�2𝑎𝑢 , (4.5.82)

𝛽�̃�𝑑 = − 8𝑔23�̃�𝑑 −
2
3
𝑒2�̃�𝑑 +

1
2
(�̃�𝑑𝑐

†
𝑑
𝑐𝑑 + 𝑐𝑑𝑐†𝑑�̃�𝑑 + 4𝑐𝑑�̃�

†
𝑑
𝑐𝑑)
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+ Tr(𝑐𝑒�̃�†
𝑒 + 𝑐†𝑒�̃�𝑒 + 3𝑐𝑢�̃�

†
𝑢 + 3𝑐†𝑢�̃�𝑢 + 3�̃�𝑑𝑐

†
𝑑
+ 3�̃�†

𝑑
𝑐𝑑)𝑐𝑢

4𝑒
�
�̃�𝑑�̃�

†
𝑑
𝑎𝑑𝐴 + 𝑎𝑑𝐴�̃�†

𝑑
�̃�𝑑

�
− 16𝑔3

�
�̃�𝑑�̃�

†
𝑑
𝑎𝑑𝐺 + 𝑎𝑑𝐺�̃�†

𝑑
�̃�𝑑

�
− 2�̃�2𝑎𝑑 , (4.5.83)

𝛽�̃�2 = �̃�𝑠�̃�
2 + 4�̃�2Tr(𝑐𝑒𝑐†𝑒 ) + 12�̃�2Tr(𝑐𝑑𝑐†𝑑 ) + 12�̃�2Tr(𝑐𝑢𝑐†𝑢)

− 24Tr(𝑐𝑢𝑐†𝑢�̃�𝑢�̃�
†
𝑢 + 𝑐𝑑𝑐†𝑑�̃�𝑑�̃�

†
𝑑
) − 18Tr(𝑐†𝑢𝑐𝑢�̃�†

𝑢�̃�𝑢 + 𝑐†𝑑𝑐𝑑�̃�
†
𝑑
�̃�𝑑)

− 12Tr(𝑐𝑢�̃�†
𝑢𝑐𝑢�̃�

†
𝑢 + 𝑐†𝑢�̃�𝑢𝑐

†
𝑢�̃�𝑢 + 𝑐𝑑�̃�†

𝑑
𝑐𝑑�̃�

†
𝑑
+ 𝑐†

𝑑
�̃�𝑑𝑐

†
𝑑
�̃�𝑑)

− 6Tr(𝑐𝑢�̃�†
𝑢�̃�𝑢𝑐

†
𝑢 + �̃�𝑑𝑐

†
𝑑
𝑐𝑑�̃�

†
𝑑
+ 𝑐†𝑒 𝑐𝑒�̃�†

𝑒�̃�𝑒)
− 2Tr(4𝑐𝑒𝑐†𝑒�̃�𝑒�̃�

†
𝑒 + 2𝑐𝑒�̃�

†
𝑒𝑐𝑒�̃�

†
𝑒 + 2𝑐†𝑒�̃�𝑒𝑐

†
𝑒�̃�𝑒 + 𝑐𝑒�̃�†

𝑒�̃�𝑒𝑐
†
𝑒 )

+ 8

�
3Tr

�
�̃�†

𝑑
𝑎𝑑�̃�

†
𝑑
�̃�𝑑 + �̃�†

𝑑
�̃�𝑑𝑎

†
𝑑
�̃�𝑑

�
+ 3Tr

�
�̃�†

𝑢𝑎𝑢�̃�
†
𝑢�̃�𝑢 + �̃�†

𝑢�̃�𝑢𝑎
†
𝑢�̃�𝑢

�

+ Tr
�
�̃�†

𝑒𝑎𝑒�̃�
†
𝑒�̃�𝑒 + �̃�†

𝑒�̃�𝑒𝑎
†
𝑒𝑚𝑒

� �
, (4.5.84)

𝛽�̃�𝑠 = 3�̃�2𝑠 − 144Tr(𝑐𝑑𝑐†𝑑𝑐𝑑𝑐
†
𝑑
) − 144Tr(𝑐𝑢𝑐†𝑢𝑐𝑢𝑐†𝑢) − 48Tr(𝑐𝑒𝑐†𝑒 𝑐𝑒𝑐†𝑒 )

+ 24�̃�𝑠Tr(𝑐𝑑𝑐†𝑑 ) + 24�̃�𝑠Tr(𝑐𝑢𝑐†𝑢) + 8�̃�𝑠Tr(𝑐𝑒𝑐†𝑒 ) + 96

�
Tr�̃�𝑒 + 3

�
Tr�̃�𝑢 + Tr�̃�𝑑

� �
, (4.5.85)

𝛽𝑐𝑢 = −24
9
(𝑒2 + 3𝑔23)𝑐𝑢 + 3𝑐𝑢𝑐

†
𝑢𝑐𝑢 + 2

�
Tr(𝑐𝑒𝑐†𝑒 ) + 3Tr(𝑐𝑑𝑐†𝑑 ) + 3Tr(𝑐𝑢𝑐†𝑢)

�
𝑐𝑢+

− 32

�
1
3
𝑒2𝑎𝑠�̃� + 𝑔23𝑎𝑠�̃�

�
�̃�𝑢 + 2

�
𝑎𝑢

�
𝑐†𝑢�̃�𝑢 − 2�̃�†

𝑢𝑐𝑢
�
+
�
�̃�𝑢𝑐

†
𝑢 − 2𝑐𝑢�̃�

†
𝑢

�
𝑎𝑢

�

+ 8𝑒

�
�̃�𝑢𝑐

†
𝑢𝑎𝑢𝐴 + 𝑎𝑢𝐴𝑐†𝑢�̃�𝑢 − 𝑐𝑢�̃�

†
𝑢𝑎𝑢𝐴 − 𝑎𝑢𝐴�̃�

†
𝑢𝑐𝑢

�

+ 16𝑔3

�
�̃�𝑢𝑐

†
𝑢𝑎𝑢𝐺 + 𝑎𝑢𝐺𝑐†𝑢�̃�𝑢 − 𝑐𝑢�̃�

†
𝑢𝑎𝑢𝐺 − 𝑎𝑢𝐺�̃�

†
𝑢𝑐𝑢

�
, (4.5.86)

𝛽𝑐𝑑 = −2
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�
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�
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�
𝑎𝑑
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𝑐†
𝑑
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†
𝑑
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𝑎𝑑

�
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�
�̃�𝑑𝑐

†
𝑑
𝑎𝑑𝐴 + 𝑎𝑑𝐴𝑐†𝑑�̃�𝑑 − 𝑐𝑑�̃�

†
𝑑
𝑎𝑑𝐴 − 𝑎𝑑𝐴�̃�

†
𝑑
𝑐𝑑

�

+ 16𝑔3

�
�̃�𝑑𝑐

†
𝑑
𝑎𝑑𝐺 + 𝑎𝑑𝐺𝑐†𝑑�̃�𝑑 − 𝑐𝑑�̃�

†
𝑑
𝑎𝑑𝐺 − 𝑎𝑑𝐺�̃�

†
𝑑
𝑐𝑑

�
, (4.5.87)
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𝛽𝑐𝑒 = −6𝑒2𝑐𝑒 + 3𝑐𝑒𝑐
†
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†
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†
𝑒𝑐𝑒

�
; (4.5.88)

for the renormalisable couplings, and we have used Pyr@te [261] with manual cross-checks to compute

the parts of the beta functions that depend only on renormalisable couplings.

For the non-renormalisable Wilson coefficients, the beta functions read:

𝛽𝑎𝑢 =

�
− 8
3
𝑒2 − 8𝑔23 + �̃�
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4
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�
, (4.5.89)
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, (4.5.90)
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𝛽𝑎𝑒𝐴 = 10𝑒2𝑎𝑒𝐴 + 4𝑒𝑐𝑒𝑎𝑠�̃� + 1
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�
𝑐𝑒𝑐

†
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�
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where 𝑛𝑢 , 𝑛𝑑 and 𝑛𝑒 are the number of dynamical up-type quarks, down-type quarks and charged leptons,

respectively, for the EFT we are considering.

Once again note that the equations above are fully generic, that is, they are valid regardless if the

theory in the UV is the one we have assumed in Section 4.5.2 that leads to the matching conditions in

Eqs. (4.5.60)–(4.5.64), or any other theory containing different degrees of freedom.

4.5.4 Some phenomenological applications

Mixing among different effective operators can have important phenomenological effects, in particular for

theories in which a WC is not generated at the matching scale but can originate from the running of other

WCs. As an example of such a case, let us look at the case of a photophobic ALP [262], whose Lagrangian

at Λ = 10 TeV is given by :

L = LSM + 1
2
𝜕𝜇𝑠𝜕

𝜇𝑠 + 1
2
�̃�2𝑠2 + 𝑎𝑠�𝑍

𝑐2𝜔 − 𝑠2𝜔
𝑠
�
𝑐2𝜔𝑊𝜇𝜈 �𝑊 𝜇𝜈 − 𝑠2𝜔𝐵𝜇𝜈�𝐵𝜇𝜈

�
, (4.5.99)

where LSM is the SM Lagrangian. From Eq. (4.5.99), the ALP couples to pairs of 𝑍 bosons but

not to pairs of photons. This theory is motivated by CHMs based with the symmetry breaking pattern

𝑆𝑂 (6)/𝑆𝑂 (5) [263]. The photophobic condition is stable, that is, 𝑎𝑠�̃� remains vanishing at all scales.
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Taking the the physical ALP mass to be O(keV), 𝑎𝑠�𝑍 can be directly bounded at colliders. From 𝑝𝑝 →
𝑍𝑠 searches with LHC Run II data values of 𝑎𝑠�𝑍 larger than 0.2 TeV−1 [264] can be excluded, whereas

for the High-Luminosity phase of the LHC 𝑎𝑠�𝑍 could be constrained to be less than 0.04 TeV−1 [264] .

However, the running of 𝑎𝑠�𝑍 generates other WCs, which can also be constrained. In particular,

𝑎𝑠�𝑍 generates 𝑎𝑠𝑒𝜙 – which can be seen from Eq. (4.5.33) – which is tightly bounded experimentally.

For ALPs with a mass ∼ keV the strongest constraint is the anomalous cooling of Red Giants from ALP

radiation. This observable constrains the ALP coupling to electrons (the coupling in the LEFT + ALP) to

be 𝑐𝑒 � 3 × 10−13, for a typical core temperature of 𝑇 ≈ 108 K [258].

Considering that above the EW scale only the ALP exists besides the SM, 𝑐𝑒 runs proportionally to

itself. Resumming Eqs. (4.5.80) and (4.5.88), at the EW scale, the bounded coupling reads:

𝑐𝑒 (𝑣) � 2.8 × 10−13, (4.5.100)

which translates into

𝑎𝑠𝑒𝜙 (𝑣) � 1.6 × 10−12 TeV−1 , (4.5.101)

from the matching conditions in Eq. (4.5.64).

Solving numerically Eqs. (4.5.31)-(4.5.36), (4.5.41)-(4.5.43) and (4.5.49)-(4.5.51) for 𝜆𝑠𝜙 = 0, we

can obtain a bound on 𝑎𝑠�𝑍 (10 TeV) of:

𝑎𝑠�𝑍 (10 TeV) � 4.8 × 10−6 TeV−1 . (4.5.102)

This result is four orders of magnitude more constraining than prospects from direct searches.

Another example is the case of a top-philic ALP at Λ = 10 TeV, with a Lagrangian

L = LSM + 1
2
𝜕𝜇𝑠𝜕

𝜇𝑠 + 1
2
�̃�2𝑠2 + 𝑎𝑡𝑠 [𝑖𝑞𝐿𝜙𝑡𝑅 + h.c.] , (4.5.103)

where 𝑞𝐿 stands for the third generation quark doublet and 𝑎𝑡 = (𝑎𝑠𝑢𝜙 )33. Once again, 𝑎𝑡 generates

through mixing a non-vanishing coupling with electrons. Following the same procedure as above, we

obtain 𝑎𝑡 (10 TeV) � 4.3 × 10−6 TeV−1 from the bound 𝑐𝑒 (𝜇 ∼ KeV) � 3 × 10−13.

Direct bounds on the coupling with a top quark could in principle be obtained from 𝑝𝑝 → 𝑡𝑡𝑠, but

they are likely to be very weak due to the difficulty in discriminating this signal from the overwhelming

𝑡𝑡 background. Other indirect constraints on 𝑎𝑡 have been studied in Ref. [265] but they are much less

constraining than the one obtained above.
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5

Connecting theory with experiment through the

SMEFT

In this section we follow the top-down approach within the SMEFT at dimension-6, in a sense combining

both approaches studied so far, as we will be looking at particular UV completions which can explain the

SMEFT results. The measurement of an anomalous magnetic moment of the muon can be parametrized

by a non-zero WC of the dipole operators in the SMEFT, in a model-independent way. Our goal in this

section is to study the matching conditions of this operator at one-loop, allowing us to study the specific

BSM scenarios (up to 3-field extensions) which can accomodate the observed anomaly. In section 5.2,

we will also perform a full one-loop phenomenological study of one of these 3-field extensions which can

also account for other flavour anomalies. The work presented in this chapter is based on Ref. [8].

5.1 Bridges – UV completions to explain the 𝒂𝝁 anomaly

The anomalous magnetic moment of the muon which we introduced in section 2.3.3, has received a lot of

attention, with a significant amount of work done to map the possible BSM scenarios which could account

for Δ𝑎𝜇 , given in Eq. (2.26). From an EFT prespective, the contribution to 𝑎𝜇 can be parametrized in the

Low-Energy Effective Field Theory (LEFT)1 of the SM, which is obtained after integrating out the top, the

𝑊 and 𝑍 bosons and the Higgs (similarly to what was done in the LEFT+ALP theory of section 4.5.3). In

the LEFT, at tree level, the contribution to 𝑎𝜇 is given by

Δ𝑎𝜇 = 𝑎NP𝜇 − 𝑎SM𝜇 =
4𝑚𝜇𝑣√
2𝑒

Re[𝛼2,2
𝑒𝛾 ] , (5.1.1)

1The RGEs of the LEFT have been calculated in Ref. [266] and the matching conditions of the SMEFT onto the LEFT have
been given in Ref. [267, 268].
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where𝑚𝜇 is the mass of the muon and 𝛼𝑖, 𝑗𝑒𝛾 𝑣/
√
2 is the WC of the photon dipole operator defined as [267]

L𝑖, 𝑗
𝑒𝛾 = (𝑙𝑖𝜎𝜇𝜈𝑒 𝑗 )𝐹𝜇𝜈 + h.c. , (5.1.2)

where 𝑖 and 𝑗 correspond to flavour indices.

The matching conditions, at tree-level, for the photon dipole operator at the EW scale with the SMEFT

result in:

𝛼𝑖, 𝑗𝑒𝛾 =
𝑣√
2

�
𝛼𝑖, 𝑗𝑒𝐵𝑐𝜔 − 𝛼𝑖, 𝑗𝑒𝑊 𝑠𝜔

�
(5.1.3)

where the SMEFT dipole operators are defined in table 7. The SMEFT dipole operators can only be

generated by weakly-coupled UV completions at loop-level [161, 210, 269]. As such, a complete one-

loop study of the contributions to 𝑎𝜇 should involve several other components:

• Tree-level generated operators which renormalise the dipole operators;

• One-loop matching conditions from the SMEFT to LEFT of the photon dipole;

• One-loop contributions to the observable 𝑎𝜇 from tree-level generated operators.

Ref. [270] took into consideration all of these contributions and, in Eq. (5.2) of that reference, it is

shown that, for an EFT with a cut-off Λ = 10 TeV, the only relevant SMEFT operators besides the dipoles

was O(3)
ℓ𝑒𝑞𝑢 . The contribution from this 4-fermion operator is already a one-loop effect and therefore,

for a coherent one-loop analysis, we only need to consider the tree-level generation of O(3)
ℓ𝑒𝑞𝑢 ; according

to Ref. [161], only the leptoquarks 𝑆1 ∼ (3, 1,−1/3) and 𝑆2 ∼ (3, 2,−7/6) – where the number in

parenthesis are the representations under (𝑆𝑈 (3)𝐶, 𝑆𝑈 (2)𝐿, 𝑈 (1)𝑌 ) – generate this operator at tree-

level. Given that this result is known in the literature, for the remainder of the chapter we will not mention

it and focus solely on possible UV extensions which generate the dipole operators at one-loop. Note

however, that when extensions with 𝑆1 and 𝑆2 are mentioned, one should also add the contribution from

O(3)
ℓ𝑒𝑞𝑢 .

A wide array of SM extensions (with different number of new fields) have been suggested to generate

the dipole operators – Ref. [271] (and references therein) offers a very comprehensive review on these

models and their status according to current experimental data. Given the large contribution needed to

explain the observed 𝑎𝜇 , any contribution to the dipole operators which is suppressed by a muon Yukawa

requires that the heavy particles running in the loop have a mass at most of O(100) GeV. In our SMEFT

analysis we are concerned with heavier particles with a clear decoupling between the scale of new physics

and the electroweak scale. Therefore, we will focus on chirally enhanced solutions, that is, UV extensions
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in which the NP contribution to 𝑎𝜇 is not suppressed by the muon Yukawa coupling. Refs. [117, 272–

276] have studied chirally enhanced solutions for several 3-field extensions of the SM.

This work will focus on the (chirally enhanced) contribution to 𝑎𝜇 generated through the diagram of

figure 30, which we will refer to as bridge hereafter. We will classify all SM extensions which can generate

such a topology. Regardless of the matching being performed (on-shell or off-shell matching), the particle

which connects the loop and 2 external states (the bridge) must be heavy, otherwise it would give rise to

a Yukawa coupling. Furthermore, one or both particles in the loop must be heavy, meaning that either 2-

or 3-field extensions can generate this diagram.

This bridge diagram has been considered in particular 2-field extensions with VLLs [277, 278]. How-

ever, we perform a complete classification of all 2- and 3-fields extensions of the SM responsible for

generating this topology. These extensions can sometimes also generate a box diagram2 which must also

be calculated when computing the full contribution of a particular model to 𝑎𝜇 .

Our approach in the SMEFT allows us to consider several 2-field extensions which have so far been

overlooked in the literature, where only the lepton Yukawa-suppressed contributions to 𝑎𝜇 from these

models were considered. This ended up excluding these models as viable explanations of the anomaly

(either because particles had to be very light or because the contribution had a fixed negative sign). By

also taking into account the bridge contribution from these 2-field extensions, we have restored as possible

solutions to the observed anomaly in 𝑎𝜇 .

The 3-field UV completions (which produced chirally enhanced contributions to 𝑎𝜇 ) considered in Refs.

[117, 272–276] generated the dipole operators through a box diagram, shown in figure 33. The heavy

fields which could generate such a topology are not the same as those which would generate a bridge

diagram. As such, we present a completely new class of 3-field extensions which can account for Δ𝑎𝜇 .

5.1.1 Computation of 𝒂𝝁

We will consider fermion and scalar3 extensions of the SM (with 2 or 3 fields) which can generate the

bridge diagram of figure 30 where the𝑊 or 𝐵 gauge bosons can couple to any of the internal propagators.

In practice, the calculation could be done directly with a photon insertion if the appropriate electric charge

is considered; however, in order to maintain our language within the SMEFT consistent, we always refer

to diagrams with the gauge bosons in the unbroken phase of the SM. Throughout all computations,

2In the LEFT, given that the Higgs takes a vev, this corresponds to the triangle diagram, which is what is usually mentioned
in the literature.

3Heavy vectors can also take the place of scalars with the same quantum numbers. However, we only show the explicit
results for scalars.
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contributions suppressed by lepton Yukawas will be neglected, as well as terms proportional to the Higgs

mass, of the form (𝑚𝜙/𝑀 ).

To compute the one-loop matching conditions for the dipole operators, the 4-point amplitude between

ℓ𝐿, 𝑒𝑅 , 𝜙 , and 𝐵/𝑊 is calculated, considering all momenta incoming. For simplicity, the momentum of

the Higgs, 𝑝𝜙 , is taken to zero. We equate the process in both the full theory (the SM extension) and the

SMEFT and focus on the kinematic structure /𝑞/𝜖 , where 𝑞 is the momentum of the gauge boson and 𝜖 its

polarization vector, since this is the structure which fixes the dipole operators WC. The following on-shell

relation is useful in the calculations:

𝑣ℓ /𝑞/𝜖 𝑢𝑒 = −𝑣ℓ (/𝑝ℓ + /𝑝𝑒)/𝜖 𝑢𝑒 = −2𝜖 · 𝑝𝑒 𝑣ℓ 𝑢𝑒 , (5.1.4)

where 𝑝𝑒 (ℓ) is the momentum of the right-handed (left-handed) lepton, and 𝑣ℓ ,𝑢𝑒 are the corresponding

external spinors. In order to apply the second equality we took the on-shell conditions 𝑣ℓ /𝑝ℓ = 0 and

/𝑝𝑒 𝑢𝑒 = 0 valid for massless fermions. This results in 𝜖 · 𝑝𝑒 being the only relevant kinematic structure

that must be calculated to arrive at the matching condiitions.

This matching calculation to the dipole operators is particularly efficient in the on-shell approach unlike

what has been done throughout this thesis. That is because, disregarding lepton Yukawa insertions, no

other connected diagram can arise. One could wonder whether attaching the gauge boson to the external

legs would give a contribution; however, this contribution is either proportional to /𝑝ℓ/𝜖 or /𝜖 /𝑝𝑒 , or, if the

gauge boson couples to the Higgs, proportional to 𝑞 · 𝜖 = 0 or 𝑝𝜙 · 𝜖 = 0.

We also do not need to consider the cases in which the gauge boson is attached to the fermionic

bridge since all contributions are proportional either to /𝑝ℓ/𝜖 or /𝜖 /𝑝𝑒 , which are zero in light of the previous

arguments. Therefore, only contributions where the gauge boson is coupling with the particles in the loop

must be taken into account.

Results presented in the following sections have been cross-checked with matchmakereft [217] 4.

As mentioned previously, this tool calculates the one-loop matching conditions for generic UV extensions

of the SM following the diagrammatic approach off-shell. In this case, as explored in section 4.1.2, results

are given in terms of operators in a Green’s basis, which should then be translated to the Warsaw basis.

When using matchmakereft the following relations can be used to move to the Warsaw basis:

𝛼𝑒𝐵 = 𝛼𝐺𝑒𝐵 −
𝑔1
8
𝛽𝐺𝑒𝐻𝐷2 +

𝑔1
8
𝛽𝐺𝑒𝐻𝐷4 −

𝑔1
2
𝛽𝐺𝑒𝐻𝐷3 , (5.1.5)

𝛼𝑒𝑊 = 𝛼𝐺𝑒𝑊 − 𝑔2
8
𝛽𝐺𝑒𝐻𝐷2 +

𝑔2
8
𝛽𝐺𝑒𝐻𝐷4 , (5.1.6)

4When results were available in the literature we also cross-checked against those in them.
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written in matchmakereft’s convention, where the superscript 𝐺 denotes WC of operators defined in

the Green’s basis. Yukawa-suppressed contributions and the evanescent operators were neglected.

5.1.2 General results

Before delving into the results for the bridge diagram, let us mention that some of the considered ex-

tensions can also contribute to 𝑎𝜇 through the usual box diagrams shown in figures 32 and 33. For

completeness, we present in Appendix E the contribution to 𝑎𝜇 for generic heavy fields. With those results

and the general results from the bridge topology contribution presented in this section, the full contribution

to 𝑎𝜇 can be calculated for arbitrary UV extensions of the SM.

The bridge topologies can be classified depending on the particle that connects the loop with the 2

external particles, that is, the particle in the bridge. This can never be a SM field as it would result in a

Yukawa-suppressed contribution. The possible representations for the heavy particles in the bridge are

fixed according to the SM particle with which it couples:

1. Scalar in the bridge

The heavy scalar in the bridge must couple to the left- and right-handed muon fixing its quantum

numbers to be those of the SM Higgs. However, all contributions to 𝑎𝜇 with a scalar bridge are

zero since they are always proportional to 𝜖 · 𝑞.

2. Fermion in the bridge coupled to right-handed muon

The heavy fermion must have the same quantum numbers as the SM left-handed lepton, Δ ∼
(1, 2,−1/2). These three numbers in parenthesis correspond to the representations of the heavy

fields under (𝑆𝑈 (3)𝑐 , 𝑆𝑈 (2)𝐿 and 𝑈 (1)𝑌 ).

3. Fermion in the bridge coupled to left-handed muon

The heavy fermion must either have the quantum numbers of a SM right-handed lepton, 𝐸 ∼
(1, 1,−1), or Σ ∼ (1, 3,−1).

For the case of a heavy fermion in the bridge, there are 3 possible combinations for the particles

within the loop: 1 extra heavy fermion, Ψ, and the SM Higgs, figure 29a; 1 heavy fermion and 1 heavy

scalar, Φ, figure 30; 1 heavy scalar and a SM fermion, figure 29b. The latter case of figure 29b does

not contribute to 𝑎𝜇 . This is so because a mass insertion in the bridge propagator is needed in order to

provide a non-zero result for the dipole operators which in turn, requires an extra mass insertion from the
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fermion in the loop to result in the correct chirality of the external fermions. Therefore, a heavy fermion

inside the loop is needed.

Once the particle in the bridge is fixed, we present the results of the contribution to 𝑎𝜇 for generic

representations of the remaining heavy fields in the next subsections.

For concreteness, we fix a particular orientation for the internal propagators shown in the diagrams

which avoids the presence of fermion-number violating terms. For some representations of the heavy

fields, one might need to consider the diagram with a flipped propagator; in this case adding a minus sign

in the contribution coming from the gauge boson insertion in the flipped propagator is enough.

5.1.2.1 VLL doublet bridge

Let us write a general Lagrangian which extends the SM with the VLL doublet, Δ, and extra fields such

that it can generate the bridge contribution. The relevant terms read:

L ⊃𝑔𝑌ΨΨ𝛾𝜇Ψ𝐵
𝜇 + 𝑔𝑊𝑇𝑊 ,Ψ

𝐼𝐾𝐼 � Ψ𝐼𝛾𝜇Ψ𝐼 �𝑊
𝜇
𝐾 (5.1.7)

− 𝑖𝑔𝑌Φ𝐵
𝜇 (𝜕𝜇Φ†Φ − Φ†𝜕𝜇Φ) − 𝑖𝑔𝑊𝑇

𝑊 ,Φ
𝐽𝐾 𝐽 �𝑊

𝜇
𝐾 (𝜕𝜇Φ†

𝐽Φ𝐽 � − Φ†
𝐽 𝜕𝜇Φ𝐽 �)

+ 𝑦𝑀Δ 𝑒𝑅 𝜙 +𝑇𝐼𝐾 𝐽
�
𝑦𝑅𝑏 Ψ𝐼 𝑃𝑅 Δ𝐾Φ𝐽 + 𝑦𝐿𝑏 Ψ𝐼 𝑃𝐿 Δ𝐾Φ𝐽

�
+ 𝑦𝐹 𝑇 �

𝐾𝐼 𝐽 ℓ𝐿,𝐾Ψ𝐼Φ
†
𝐽 + h.c. ,

where Φ can stand generically for a heavy scalar or the SM Higgs (𝜙 always stands for the SM Higgs), Ψ is

an extra heavy fermion (besides Δ) and ℓ𝐿 is the left-handed SM lepton. No family indices are considered

in the couplings with the SM leptons as we only need the couplings to the second generation. The indices

𝐼 (
�) , 𝐽 (

�) , 𝐾 (�) correspond to the SU(2) components of the fields, 𝑌Ψ(Φ) is the hypercharge of Ψ(Φ), and

𝑇𝑊 , 𝑇 and 𝑇 � are the Clebsch-Gordan coefficients of the corresponding interaction term, determined by

the representations of the fields comprising that term.

Following this notation and defining 𝑇𝛾,𝜓
𝑖 𝑗 ≡ 𝑌𝜓𝛿𝑖 𝑗 +𝑇𝑊 ,𝜓

𝑖3 𝑗
5, where𝜓 correpsonds to any particle, we

can now write the result for 𝛼𝑒𝛾 from the bridge topology generated by generic fields as:

𝛼2,2
𝑒𝛾 =

𝑖𝑁𝑒

4
𝑦𝑀𝑦𝐹𝑦

𝑅
𝑏

�
𝐼 𝐽

𝑇𝐼2𝐽
�
𝛾Ψ𝑇

𝛾,Ψ
𝐼 �𝐼 𝑇

�
2𝐽 𝐼 � + 𝛾Φ𝑇𝛾,Φ

𝐽 𝐽 � 𝑇
�
2𝐼 𝐽 �

�
, (5.1.8)

with 𝛾Ψ,Φ being kinematic factors which will be defined below. Each 𝛾 term corresponds to insertions of

the gauge boson in the fermion and scalar propagators within the loop. 𝑁 is the dimension of the 𝑆𝑈 (3)
representation of the particles within the loop.

5𝑇𝛾,𝜓 would be diagonal and proportional to the electric charge if the charge eigenstate basis is chosen for the𝜓 multiplet,
i.e., 𝑇𝑊 ,𝜓 is diagonal.

116



5.1. BRIDGES – UV COMPLETIONS TO EXPLAIN THE 𝑎𝜇 ANOMALY

(a) (b)

Figure 29: Left: Bridge diagram for a fermion in the bridge with a heavy fermion and the SM Higgs in the
loop. Right: Bridge diagram for a fermion in the bridge with a heavy scalar and a SM fermion in the loop.
In both diagrams, doubled (single) lines correspond to heavy (SM) particles. The 𝐵 or𝑊 bosons can be
attached to any of the internal lines.

The kinematic factors 𝛾Ψ,Φ are always expressed through two functions of the masses of the involved

particles:

𝑓 (𝑀𝐴,𝑀𝐵,𝑀𝐶) ≡ − 𝑖𝑀𝐵

(4𝜋)2𝑀𝐴

𝑀4
𝐵 − 4𝑀2

𝐵𝑀
2
𝐶 + 3𝑀4

𝐶 + 2𝑀4
𝐶Log[𝑀2

𝐵/𝑀2
𝐶]

(𝑀2
𝐵 −𝑀2

𝐶)3
, (5.1.9)

ℎ(𝑀𝐴,𝑀𝐵,𝑀𝐶) ≡ − 𝑖𝑀𝐵

(4𝜋)2𝑀𝐴

𝑀4
𝐵 −𝑀4

𝐶 − 2𝑀2
𝐵𝑀

2
𝐶Log[𝑀2

𝐵/𝑀2
𝐶]

(𝑀2
𝐵 −𝑀2

𝐶)3
. (5.1.10)

When inside the loop there is a heavy fermion, Ψ and the SM Higgs, figure 29a, the kinematic factors

in Eq. (5.1.8) are given by:

𝛾Ψ = 𝛾Φ = lim
𝑀Φ→0

𝑓 (𝑀Δ,𝑀Ψ,𝑀Φ) = −𝑖
(4𝜋)2𝑀Δ𝑀Ψ

. (5.1.11)

If the bridge diagram composed of three heavy propagators is generated, figure 30, the contribution

to 𝛼𝑒𝛾 is given with:

𝛾Ψ = 𝑓 (𝑀Δ,𝑀Ψ,𝑀Φ) , (5.1.12)

𝛾Φ =ℎ(𝑀Δ,𝑀Ψ,𝑀Φ) . (5.1.13)
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Figure 30: Bridge diagram with a fermion in the bridge and only heavy particles in the loop. Doubled
(single) lines correspond to heavy (SM) particles. The 𝐵 or 𝑊 bosons can be attached to any of the
internal lines.

5.1.2.2 VLL singlet (triplet) bridge

The relevant Lagrangian extending the SM with a VLL triplet, Σ, that can be responsible for generating

the bridge contribution can be written as:

L ⊃ 𝑦𝑀ℓ𝐿𝜎
𝐼𝜙𝑃𝑅Σ𝐼 + 𝑦𝐹Ψ𝐼Φ𝐼𝑒𝑅 +𝑇𝐾𝐼 𝐽

�
𝑦𝑅𝑏 Σ𝐾𝑃𝑅Ψ𝐼Φ

†
𝐽 + 𝑦𝐿𝑏 Σ𝐾𝑃𝐿Ψ𝐼Φ†

𝐽

�
+ h.c., (5.1.14)

where 𝜎𝐼 denotes the Pauli matrices and we use the same gauge conventions and general notation as

introduced previously in Eqs. (5.1.7) and (5.1.8).

The general result for the bridge contribution to 𝛼𝑒𝛾 is given by:

𝛼2,2
𝑒𝛾 =

−𝑖𝑁𝑒
4

𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

�
𝐼 𝐽

𝑇3𝐼 𝐽
�
𝛾Ψ𝑇

𝛾,Ψ
𝐼 𝐽 + 𝛾Φ𝑇𝛾,Φ

𝐼 𝐽

�
. (5.1.15)

The relevant Lagrangian for extending the SM with a singlet VLL which can generate the bridge diagram

is the following:

L ⊃ 𝑦𝑀ℓ𝐿𝜙𝑃𝑅𝐸 + 𝑦𝐹Ψ𝐼Φ𝐼𝑒𝑅 + 𝑦𝑅𝑏 𝐸𝑃𝑅Ψ𝐼Φ†
𝐼 + 𝑦𝐿𝑏 𝐸𝑃𝐿Ψ𝐼Φ†

𝐼 + h.c. , (5.1.16)

where, once again, the same conventions as in Eqs. (5.1.7),(5.1.8) are used. Contributions to 𝛼𝑒𝛾 are

given by:

𝛼2,2
𝑒𝛾 =

𝑖𝑁𝑒

4
𝑦𝑀𝑦𝐹𝑦

𝑅
𝑏

�
Tr[𝑇𝛾,Ψ]𝛾Ψ + Tr[𝑇𝛾,Φ]𝛾Φ

�
. (5.1.17)
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Table 15: SM extensions with 2 heavy fields which can generate the bridge topology, with two heavy
propagators. The presented 𝑎𝜇 result for these completions include all contributions (not only the one
generated through the bridge diagram).

Bridge Other Fermion 𝑎𝜇 result

𝐸 ∼ (1, 1,−1) Δ ∼ (1, 2,−1/2) Eq. (5.1.21)

Δ3 ∼ (1, 2,−3/2) Eq. (5.1.22)

Δ ∼ (1, 2,−1/2)
𝐸 ∼ (1, 1,−1) Eq. (5.1.21)

Σ ∼ (1, 3,−1) Eq. (5.1.23)

𝑁 ∼ (1, 1, 0) Eq. (5.1.24)

Σ0 ∼ (1, 3, 0) Eq. (5.1.25)

Σ ∼ (1, 3,−1) Δ ∼ (1, 2,−1/2) Eq. (5.1.23)

Δ3 ∼ (1, 2,−3/2) Eq. (5.1.26)

The kinematic factors are the same on both Eqs. (5.1.17) and (5.1.15) and, for the case of a heavy

fermion and the SM Higgs in the loop, are given by:

𝛾Ψ = 𝛾Φ = lim
𝑀Φ→0

𝑓 (𝑀𝐸 (Σ),𝑀Ψ,𝑀Φ) , (5.1.18)

whereas for a heavy fermion and a heavy scalar in the loop are given by:

𝛾𝜓 = 𝑓 (𝑀𝐸 (Σ),𝑀Ψ,𝑀Φ) , (5.1.19)

𝛾Φ =ℎ(𝑀𝐸 (Σ),𝑀Ψ,𝑀Φ) . (5.1.20)

5.1.3 Two-field extensions

Since the number of 2-field extensions which generate the bridge diagram is finite, we will calculate the

full contribution to 𝛼𝑒𝛾 for all these models. Such models are presented in table 15 for the case in which

the bridge diagram is generated with only one extra heavy propagator besides the bridge, figure 29a. In

this case, once the particle in the bridge is chosen, the quantum numbers of the extra heavy field are

fixed.

The contributions to 𝛼𝑒𝛾 are given below:
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1. 𝐸 ∼ (1, 1,−1) and Δ ∼ (1, 2,−1/2)
Two different diagrams must be taken into account for this completion: one with the VLL singlet

on the bridge and the VLL doublet in the loop, and vice-versa.

𝛼2,2
𝑒𝛾 = − 1

16𝜋2

𝑒 𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

4𝑀𝐸𝑀Δ
. (5.1.21)

The couplings above can be equivalently interpreted from the Lagrangian in Eq. (5.1.7) or Eq. (5.1.16).

2. 𝐸 ∼ (1, 1,−1) and Δ3 ∼ (1, 2,−3/2)

𝛼2,2
𝑒𝛾 = − 1

16𝜋2

5𝑒 𝑦𝑀𝑦𝐹𝑦𝑅𝑏
4𝑀𝐸𝑀Δ3

; (5.1.22)

3. Δ ∼ (1, 2,−1/2) and Σ ∼ (1, 3,−1)
Two different diagrams must be taken into account for this completion: one with the doublet on

the bridge and the triplet in the loop, and vice-versa.

𝛼2,2
𝑒𝛾 = − 1

16𝜋2

3𝑒 𝑦𝑀𝑦𝐹𝑦𝑅𝑏
4𝑀Δ𝑀Σ

. (5.1.23)

Both (5.1.7) and (5.1.14) can be used to interpret this result.

4. Δ ∼ (1, 2,−1/2) and 𝑁 ∼ (1, 1, 0)

𝛼2,2
𝑒𝛾 = 0 . (5.1.24)

This null result has been discussed in the literature in Refs. [277, 278].

5. Δ ∼ (1, 2,−1/2) and Σ0 ∼ (1, 3, 0)

𝛼2,2
𝑒𝛾 = − 1

16𝜋2

𝑒 𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

2𝑀Δ𝑀Σ0

; (5.1.25)

6. Σ ∼ (1, 3,−1) and Δ3 ∼ (1, 2,−3/2)

𝛼2,2
𝑒𝛾 = − 1

16𝜋2

5𝑒 𝑦𝑀𝑦𝐹𝑦𝑅𝑏
4𝑀Σ𝑀Δ3

. (5.1.26)
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A 2-field extension can be responsible for a bridge diagram with 3 heavy propagators if the bridge

fermion can also be the heavy fermion inside the loop, resulting in the diagram of figure 30. The repre-

sentations of heavy fields for which this can happen are listed in table 16 and their contributions to 𝛼𝑒𝛾
are given by:

1. 𝐸 ∼ (1, 1,−1) and S0 ∼ (1, 1, 0)

𝛼2,2
𝑒𝛾 = − 1

16𝜋2𝑒𝑦
𝑅
𝑏𝑦𝑀𝑦𝐹

𝑀4
𝐸 − 4𝑀2

𝐸𝑀
2
S0

+ 3𝑀4
S0

+ 2𝑀4
S0
Log[𝑀2

𝐸/𝑀2
S0
]

4(𝑀2
𝐸 −𝑀2

S0
)3 ; (5.1.27)

2. 𝐸 ∼ (1, 1,−1) and S2 ∼ (1, 1,−2)

𝛼2,2
𝑒𝛾 =

1
16𝜋2𝑒𝑦

𝑅
𝑏𝑦𝑀𝑦𝐹

3𝑀4
𝐸 − 4𝑀2

𝐸𝑀
2
S2

+𝑀4
S2

+ (2𝑀4
S2

− 4𝑀2
𝐸𝑀

2
S2
)Log[𝑀2

𝐸/𝑀2
S2
]

2(𝑀2
𝐸 −𝑀2

S2
)3 ;

(5.1.28)

3. Δ ∼ (1, 2,−1/2) and S0 ∼ (1, 1, 0)

𝛼2,2
𝑒𝛾 = − 1

16𝜋2𝑒𝑦
𝑅
𝑏𝑦𝑀𝑦𝐹

𝑀4
Δ − 4𝑀2

Δ𝑀
2
S0

+ 3𝑀4
S0

+ 2𝑀4
S0
Log[𝑀2

Δ/𝑀2
S0
]

4(𝑀2
Δ −𝑀2

S0
)3 ; (5.1.29)

4. Δ ∼ (1, 2,−1/2) and S1 ∼ (1, 1,−1)

𝛼2,2
𝑒𝛾 = 0 ; (5.1.30)

5. Δ ∼ (1, 2,−1/2) and Ξ0 ∼ (1, 3, 0)

𝛼2,2
𝑒𝛾 =

1
16𝜋2𝑒𝑦

𝑅
𝑏𝑦𝑀𝑦𝐹

𝑀4
Δ + 4𝑀2

Δ𝑀
2
Ξ0

− 5𝑀4
Ξ0

− (4𝑀2
Ξ0
𝑀2

Δ + 2𝑀4
Ξ0
)Log[𝑀2

Δ/𝑀2
Ξ0
]

4(𝑀2
Δ −𝑀2

Ξ0
)3 ;

(5.1.31)

6. Δ ∼ (1, 2,−1/2) and Ξ1 ∼ (1, 3,−1)

𝛼2,2
𝑒𝛾 = − 1

16𝜋2𝑒𝑦
𝑅
𝑏𝑦𝑀𝑦𝐹

7𝑀4
Δ − 8𝑀2

Δ𝑀
2
Ξ1

+𝑀4
Ξ1

+ (−10𝑀2
Ξ1
𝑀2

Δ + 4𝑀4
Ξ1
)Log[𝑀2

Δ/𝑀2
Ξ1
]

2(𝑀2
Δ −𝑀2

Ξ1
)3 ;

(5.1.32)

7. Σ ∼ (1, 3,−1) and Ξ0 ∼ (1, 3, 0)

𝛼2,2
𝑒𝛾 = − 1

16𝜋2𝑒𝑦
𝑅
𝑏𝑦𝑀𝑦𝐹

𝑀2
Σ −𝑀2

Ξ0
+𝑀2

Ξ0
Log[𝑀2

Ξ0
/𝑀2

Σ]
(𝑀2

Σ −𝑀2
Ξ0
)2 ; (5.1.33)
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8. Σ ∼ (1, 3,−1) and Ξ2 ∼ (1, 3,−2)
𝛼2,2
𝑒𝛾 = 0 . (5.1.34)

The zero obtained for completions (5.1.30) and (5.1.34) can be explained from the fact that the bridge

coupling 𝑦𝑏 involves two equal fields whereas the gauge symmetry of that interaction is antisymmetric

(this would not be true if we were dealing with more than 1 generation for the heavy fields). Furthermore,

note that for models (5.1.27), (5.1.29),(5.1.31) and (5.1.33), the operators associated with the couplings

𝑦𝑅
𝑏

and 𝑦𝐿
𝑏

are related by hermitian conjugation leading us to redefine 𝑦𝑅
𝑏
≡ 𝑦𝑅

𝑏
+𝑦𝐿 ∗

𝑏
as the right-handed

coupling.

The contribution from these models to Δ𝑎𝜇 had already been considered in the literature [114, 272,

279] (apart from the ones that involve fermion number violating (FNV) vertices). However, only the

Yukawa-proportional contribution had been calculated, which excluded these models as solutions to the

anomaly since the new particles had to be lighter than what is allowed by collider experiments. However,

by doing our computations in the unbroken phase of the SM (in the SMEFT) it becomes simpler to verify

the existence of the chirally enhanced contribution arising from the bridge diagram; this allows the BSM

particles to be heavier than before, restoring this class of models as viable explanations of the Δ𝑎𝜇

anomaly.

From these models, an interesting example is the Δ ∼ (1, 2,−1/2) + Ξ0 ∼ (1, 3, 0) extension whose

contribution was calculated to be always negative in the literature and would therefore be incapable of

accounting for the observed anomaly. However the contribution from the bridge diagram was neglected

and we see, from Eq. (5.1.31), this contribution from the bridge topology is proportional to 3 distinct

couplings, resulting in a contribution which does not have a fixed sign.

5.1.4 Three-field extensions

Due to the presence of a loop with heavy particles, the possible representations of three-field extensions

which can generate the bridge diagram of figure 30 are infinite. As such, we will present the conditions on

the gauge representation on the new fields such that the bridge diagram can be generated. All conditions

are shown by considering no FNV vertices; if a model has those interactions, the conditions should be

applied to the conjugate versions of the fields.

The extra heavy scalar, Φ, and heavy fermion, Ψ, must respect:

1. VLL singlet

𝑌Ψ − 𝑌Φ = −1 , (5.1.35)
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Table 16: SM extensions with 2 heavy fields (a fermion and a scalar) which generate the bridge topology
with 3 heavy propagators. The grey color corresponds to models with fermion number violating interac-
tions.

Fermion Scalar Result

𝐸 ∼ (1, 1,−1) S0 ∼ (1, 1, 0) Eq. (5.1.27)

S2 ∼ (1, 1,−2) Eq. (5.1.28)

Δ ∼ (1, 2,−1/2)
S0 ∼ (1, 1, 0) Eq. (5.1.29)

S1 ∼ (1, 1,−1) Eq. (5.1.30)

Ξ0 ∼ (1, 3, 0) Eq. (5.1.31)

Ξ1 ∼ (1, 3,−1) Eq. (5.1.32)

Σ ∼ (1, 3,−1) Ξ0 ∼ (1, 3, 0) Eq. (5.1.33)

Ξ2 ∼ (1, 3,−2) Eq. (5.1.34)

𝑆𝑈 (2)Φ ⊗ 𝑆𝑈 (2)Ψ = 1 ; (5.1.36)

2. VLL doublet

𝑌Ψ − 𝑌Φ = −1/2 , (5.1.37)

𝑆𝑈 (2)Φ ⊗ 𝑆𝑈 (2)Ψ = 2 ; (5.1.38)

3. VLL triplet

𝑌Ψ − 𝑌Φ = −1 , (5.1.39)

𝑆𝑈 (2)Φ ⊗ 𝑆𝑈 (2)Ψ = 3 , (5.1.40)

𝑆𝑈 (2)Φ ⊗ 𝑆𝑈 (2)Ψ = 1 , (5.1.41)

where Eq. (5.1.40) refers to the coupling with the bridge triplet and Eq. (5.1.41) to the coupling

with the SM right-handed muon.

The color charge of the heavy fields within the loop must always form a singlet. Larger color repre-

sentations result in an enhancement factor to the diagram, as mentioned in [275] for the case of box

diagrams.
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Table 17: SM extensions with 3 heavy fields which generate the bridge topology. We limited ourselves
to considering only singlet, doublet and triplet 𝑆𝑈 (2) representations. Only the 𝑆𝑈 (2) representation
of the 2 extra fields, Φ and Ψ, is shown since color representation must be the conjugate of each other
and hypercharge is constrained from the conditions specified in the text. Exchanging the assigned 𝑆𝑈 (2)
representations between Φ and Ψ gives also a valid extension.

Bridge (𝑆𝑈 (2)Ψ , 𝑆𝑈 (2)Φ) Result

𝐸 ∼ (1, 1,−1)
(1,1) Eq. (5.1.42)

(2,2) Eq. (5.1.43)

(3,3) Eq. (5.1.44)

Δ ∼ (1, 2,−1/2) (2,1) Eqs. (5.1.45), (5.1.46)

(2,3) Eqs. (5.1.47), (5.1.48)

Σ ∼ (1, 3,−1) (2,2) Eq. (5.1.49)

(3,3) Eq. (5.1.50)

Limiting the analysis to singlets, doublets and triplets of 𝑆𝑈 (2), the UV completions which can be

responsible for the bridge topology are listed in table 17.

None of these extensions is among the ones studied in Refs. [117, 272–276] and are therefore

novel extensions of the SM which can serve as an explanation to the 𝑎𝜇 anomaly. The contribution

to 𝛼𝑒𝛾 from these models is shown following the the notation introduced in Eqs. (5.1.7),(5.1.14) and

(5.1.16). Results are presented in terms of a generic hypercharge for Ψ, 𝑌Ψ, and we use the notation

(Ψ,Φ) ∼ (𝑆𝑈 (2)Ψ, 𝑆𝑈 (2)Φ) to denote the 𝑆𝑈 (2) representations of the fields, as listed in table 17.

1. 𝐸 ∼ (1, 1,−1) + (Ψ,Φ) ∼ (1, 1)

𝛼2,2
𝑒𝛾 =

1
16𝜋2

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

4𝑀𝐸 (𝑀2
Ψ −𝑀2

Φ)3
�
(𝑀2

Ψ −𝑀2
Φ) (𝑀2

Φ(1 − 2𝑌Ψ) +𝑀2
Ψ (1 + 2𝑌Ψ))

− 2(−𝑀4
Φ𝑌Ψ +𝑀2

Ψ𝑀
2
Φ(1 + 𝑌Ψ))Log[𝑀2

Ψ/𝑀2
Φ]
�
;

(5.1.42)
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2. 𝐸 ∼ (1, 1,−1) + (Ψ,Φ) ∼ (2, 2)

𝛼2,2
𝑒𝛾 =

1
16𝜋2

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

2𝑀𝐸 (𝑀2
Ψ −𝑀2

Φ)3
�
(𝑀2

Ψ −𝑀2
Φ) (𝑀2

Φ(1 − 2𝑌Ψ) +𝑀2
Ψ (1 + 2𝑌Ψ))

−2(−𝑀4
Φ𝑌Ψ +𝑀2

Ψ𝑀
2
Φ(1 + 𝑌Ψ))Log[𝑀2

Ψ/𝑀2
Φ]
�
;

(5.1.43)

3. 𝐸 ∼ (1, 1,−1) + (Ψ,Φ) ∼ (3, 3)

𝛼2,2
𝑒𝛾 =

1
16𝜋2

3𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

4𝑀𝐸 (𝑀2
Ψ −𝑀2

Φ)3
�
(𝑀2

Ψ −𝑀2
Φ) (𝑀2

Φ(1 − 2𝑌Ψ) +𝑀2
Ψ (1 + 2𝑌Ψ))

−2(−𝑀4
Φ𝑌Ψ +𝑀2

Ψ𝑀
2
Φ(1 + 𝑌Ψ))Log[𝑀2

Ψ/𝑀2
Φ]
�
;

(5.1.44)

4. Δ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (2, 1)

𝛼2,2
𝑒𝛾 =

1
16𝜋2

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

4𝑀Δ(𝑀2
Ψ −𝑀2

Φ)3
�
2(𝑀2

Ψ −𝑀2
Φ) (𝑀2

Φ(1 − 𝑌Ψ) +𝑀2
Ψ𝑌Ψ)

−(𝑀4
Φ(1 − 2𝑌Ψ) +𝑀2

Ψ𝑀
2
Φ(1 + 2𝑌Ψ))Log[𝑀2

Ψ/𝑀2
Φ]
�
;

(5.1.45)

5. Δ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (1, 2)

𝛼2,2
𝑒𝛾 =

1
16𝜋2

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

4𝑀Δ(𝑀2
Ψ −𝑀2

Φ)3
�
(𝑀2

Ψ −𝑀2
Φ) (𝑀2

Φ(1 − 2𝑌Ψ) +𝑀2
Ψ (1 + 2𝑌Ψ))

−2(−𝑀4
Φ𝑌Ψ +𝑀2

Ψ𝑀
2
Φ(1 + 𝑌Ψ))Log[𝑀2

Ψ/𝑀2
Φ]
�
;

(5.1.46)

6. Δ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (2, 3)

𝛼2,2
𝑒𝛾 =

1
16𝜋2

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

4𝑀Δ(𝑀2
Ψ −𝑀2

Φ)3
�
2(𝑀2

Ψ −𝑀2
Φ) (𝑀2

Φ(1 − 3𝑌Ψ) +𝑀2
Ψ (2 + 3𝑌Ψ))

+(𝑀4
Φ(1 + 6𝑌Ψ) −𝑀2

Ψ𝑀
2
Φ(7 + 6𝑌Ψ))Log[𝑀2

Ψ/𝑀2
Φ]
�
;

(5.1.47)

7. Δ ∼ (1, 2,−1/2) + (Ψ,Φ) ∼ (3, 2)

𝛼2,2
𝑒𝛾 =

1
16𝜋2 −

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

4𝑀Δ(𝑀2
Ψ −𝑀2

Φ)3
�
(𝑀2

Ψ −𝑀2
Φ) (𝑀2

Φ(7 − 6𝑌Ψ) +𝑀2
Ψ (−1 + 6𝑌Ψ))

−2(𝑀4
Φ(2 − 3𝑌Ψ) +𝑀2

Ψ𝑀
2
Φ(1 + 3𝑌Ψ))Log[𝑀2

Ψ/𝑀2
Φ]
�
;

(5.1.48)
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8. Σ ∼ (1, 3,−1) + (Ψ,Φ) ∼ (2, 2)

𝛼2,2
𝑒𝛾 =

1
16𝜋2 −

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

2𝑀Σ(𝑀2
Ψ −𝑀2

Φ)2
�
𝑀2

Ψ −𝑀2
Φ −𝑀2

ΦLog[𝑀2
Ψ/𝑀2

Φ]
�
; (5.1.49)

9. Σ ∼ (1, 3,−1) + (Ψ,Φ) ∼ (3, 3)

𝛼2,2
𝑒𝛾 =

1
16𝜋2 −

𝑒𝑁𝑀Ψ𝑦𝑀𝑦𝐹𝑦
𝑅
𝑏

𝑀Σ(𝑀2
Ψ −𝑀2

Φ)2
�
𝑀2

Ψ −𝑀2
Φ −𝑀2

ΦLog[𝑀2
Ψ/𝑀2

Φ]
�
. (5.1.50)

5.1.5 General phenomenological considerations

The VLL in the bridge is the most general feature of all the models presented thus far. Also since it mix

with the SM muon, it is bounded by electroweak precision observables (EWPO) [120, 121]:

𝑣

𝑀𝐸
𝑦𝑀 � 0.03 (0.04) , (5.1.51)

𝑣

𝑀Δ
𝑦𝑀 � 0.065 (0.075) , (5.1.52)

𝑣

𝑀Σ
𝑦𝑀 � 0.1 (0.11) , (5.1.53)

for the singlet, doublet and triplet of 𝑆𝑈 (2) respectively at 1 (2) 𝜎 confidence levels.

Collider searches for these VLLs can set lower limits on their masses. Indeed we have seen that in

section 3.2 and for a VLL decaying to SM final state we estimated that the HL phase of the LHC could

exclude masses lighter than 800 GeV for an 𝑆𝑈 (2) singlet. The doublet case has been more recently

searched by CMS [125], where masses below ∼ 800GeV were excluded; these are conservative results

since only tau decays were considered. For the triplet case, Ref. [280] estimates the discovery reach of

the LHC at 3 ab−1 at 5𝜎 to be of approximately 1.4 TeV.

Further direct bounds can be obtained from the heavy particles running in the loop, through EW or

QCD (when possible) pair production. However, this and other probes are very dependent on the particular

choice of model, and it is beyond the scope of this thesis to go over the particular implications of every

model.

A common issue which most chirally enhanced solutions to 𝑎𝜇 face is the generation of a large

contribution to the muon Yukawa coupling. This happens through the same diagrams which accounts for

𝑎𝜇 but without the gauge boson. Note that this is actually not a problem for the bridge solution when there

is a VLL triplet in the bridge; this is because in order to have a non-zero contribution, a𝑊 -boson insertion

is needed in this case. For the singlet and doublet VLL bridges, indeed a sizable contribution to the muon
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Yukawa should be expected which can result in a fine-tuning problem to explain the observed coupling.

Several UV scenarios have been explored in which the dipole operators and the Yukawa couplings have

the same origin [281–283].

5.2 The triple triplet model

The previous section introduced several new models and their contributions towards 𝑎𝜇 . However, given

the new degrees of freedom introduced by considering multi-field extensions, there is enough room to

accommodate other anomalous observations. This section shows how the bridge topology can connect

explanations of different anomalies.

Let us focus on 𝑅 (∗)
𝐾 and the CAA, introduced in section 2.3.3. In [284], it is shown that the CAA can

be directly related to a correction in the muonic vertex with the𝑊 boson, which we denote by 𝜖𝜇𝜇 .

To explain these two anomalies, we consider one specific realization of the last class of models in

table 17, in which the SM is extended with the VLL triplet, Σ, a triplet scalar leptoquark with hypercharge

−1/3, 𝑆3, and a triplet vector-like quark, Ψ𝑄 , with hypercharge −4/3.

The triplet leptoquark is a well-known solution to the neutral flavour anomalies at tree-level [285–288]

and the VLL triplet can account for the CAA, in spite of creating some tension with EWPO [121, 284]6.

Using the bridge to to explain 𝑎𝜇 including these two fields, fixes the quantum numbers of Ψ𝑄 .

The Lagrangian of this model is the following:

L ⊃ 𝑦𝑖𝑇 ℓ𝐿𝑖𝜙𝜎
𝐼Σ𝐼𝑅 + 𝑦𝑖𝑄Ψ

𝐼
𝑄𝐿𝑆

𝐼
3 𝑒𝑅𝑖 + 𝑖𝑦𝐿𝑏𝜖𝐼 𝐽𝐾Σ

𝐼
𝑅Ψ

𝐽
𝑄,𝐿𝑆

𝐾†
3 + 𝑖𝑦𝑅𝑏 𝜖𝐼 𝐽𝐾Σ

𝐼
𝐿Ψ

𝐽
𝑄,𝑅𝑆

𝐾†
3

+ 𝜆𝑖 𝑗𝑆 𝑞𝑐𝐿𝑖𝑖𝜎2𝜎𝐼 ℓ𝐿 𝑗𝑆
𝐼†
3 + 𝜆𝑖𝑈𝑢𝑅𝑖 Σ𝑐,𝐼𝑆𝐼3 + h.c.,

(5.2.1)

with 𝑞𝑐 ≡ C𝑞𝑇 and C the charge conjugation matrix. The SM 𝑆𝑈 (2) doublets 𝑞𝐿 and ℓ𝐿 are in the

down-quark and charged lepton diagonal basis, respectively.

We will consider the minimal set of couplings which explain the observed discrepancies in 𝐵-meson

decays,𝑉CKM unitarity and the anomalous magnetic moment of the muon, without mention of a possible

UV origin. Therefore, we assume that new physics only couples to the second generation of leptons. This

allows the evasion of constraints from the Lepton Flavour Violating (LFV) decay 𝜇 → 𝑒𝛾 . As for quarks,

we will only consider couplings with the second and third generations in 𝜆𝑖 𝑗𝑆 , namely 𝜆𝑠𝜇𝑆 and 𝜆𝑏𝜇𝑆 .

6The latest CDF II measurement of the 𝑊 -boson mass [289] has increased this tension between explaining CAA and
EWPO (see [290] for a recent analysis).
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The anomalies are explained in this model by the generation of O(1),(3)
ℓ𝑞 at tree-level by 𝑆3 exchange,

O(3)
𝐻ℓ also at tree-level by integrating Σ and a bridge-like one-loop contribution to Δ𝑎𝜇 . The matching

expressions for the relevant Wilson coefficients are:

[𝛼 (1)
ℓ𝑞 ]𝑖, 𝑗,𝑘,𝑙 =

3𝜆∗𝑘𝑖𝑆 𝜆𝑙 𝑗𝑆
4𝑀2

𝑆3

+ O( 1
16𝜋2 ) , (5.2.2)

[𝛼 (3)
ℓ𝑞 ]𝑖, 𝑗,𝑘,𝑙 =

𝜆∗𝑘𝑖𝑆 𝜆𝑙 𝑗𝑆
4𝑀2

𝑆3

+ O( 1
16𝜋2 ) , (5.2.3)

[𝛼 (3)
𝐻ℓ ]𝑖, 𝑗 =

𝑦𝑖𝑇𝑦
∗ 𝑗
𝑇

4𝑀2
Σ

+ O( 1
16𝜋2 ) , (5.2.4)

[𝛼𝑒𝐵]𝑖, 𝑗 � 0 , (5.2.5)

[𝛼𝑒𝑊 ]𝑖, 𝑗 �
3𝑔𝑊𝑦𝑅𝑏 𝑦

𝑖
𝑇𝑦

𝑗
𝑄

16𝜋2

𝑀Ψ𝑄

𝑀Σ

������

𝑀2
Ψ𝑄

−𝑀2
𝑆3
+𝑀2

𝑆3
Log

�
𝑀2
𝑆3

𝑀2
Ψ𝑄

�
(𝑀2

Ψ𝑄
−𝑀2

𝑆3
)2

������
, (5.2.6)

where the � means that we are neglecting Yukawa-suppressed contributions.

Explaining 𝑅 (∗)
𝐾 and CAA fixes the ratios 𝑥𝑆 ≡ 𝜆

∗𝑠𝜇
𝑆 𝜆

𝑏𝜇
𝑆 /𝑀2

𝑆 and 𝑥𝑇 ≡ 𝑦
𝜇
𝑇 /𝑀Σ, up to one-loop cor-

rections that break this scale invariance in couplings over masses. However, the loop factor suppression

makes it so that observables are relatively flat on the values of the masses (in a certain range). The 𝑥𝑇 ra-

tio also enters in the expression for Δ𝑎𝜇 , but the couplings 𝑦𝑅
𝑏

and 𝑥𝐹 ≡ 𝑦
𝜇
𝑄/𝑀𝐹 give us enough freedom

to fix both observables to the measured values. Since they couple only two and three heavy fields, both

𝑦𝑏 and 𝑥𝐹 always generate coefficients at one-loop order, so one can expect a wider parameter space in

comparison with other couplings.

To explore the one-loop low-energy phenomenology of this model, we computed the complete one-

loop matching with matchmakereft [217] – which was provided as an auxiliary notebook in Ref. [8]–

and used smelli [175, 291] to construct the 𝜒2 function from the observables at low energy in terms of

the WCs matched at a high scale. Then, we performed a fit, using the iminuit [292] python package,

to the mentioned anomalies, EWPO and quark-related observables like 𝐵 − 𝐵 mixing.

We considered couplings smaller than 1, and fixed the masses to 𝑀Σ = 3.4 TeV, 𝑀𝑆3 = 2 TeV and

𝑀Ψ𝑄 = 4.6 TeV. The observables were relatively insensitive to the masses between 1-5 TeV, so we chose

this hierarchy as a benchmark. Other hierarchies and values between 1-5 TeV would yield similar results.

128



5.2. THE TRIPLE TRIPLET MODEL

Table 18: Pulls from the SM and from the experimental value for the most relevant observables as given
by smelli.

Observable Pull experiment (𝜎 ) Pull SM (𝜎 )

𝑎𝜇 0.82 -4.16
�𝑅𝜇𝑒�(𝐵± → 𝐾±ℓ+ℓ−) [1.0,6.0] 1.41 -2.89
�𝑅𝜇𝑒�(𝐵0 → 𝐾∗0ℓ+ℓ−) [0.045,1.1] 1.98 -1.32
�𝑅𝜇𝑒�(𝐵0 → 𝐾∗0ℓ+ℓ−) [1.1,6.0] 1.04 -2.33

𝜖𝜇𝜇 1.20 -3.87
Δ𝑀𝑠 1.08 0.06
Δ𝑀𝑑 1.25 0.002
𝑀𝑊 2.28 1.50
𝐴𝑒 2.77 1.66

The best-fit point in this setup is:

𝑥𝐹 = 0.2 TeV−1,

𝑥𝑇 = 0.17 TeV−1,

𝑦𝐿𝑏 = 0.10,

𝑥𝑆 = 0.00078 TeV−2,

𝜆
𝑏𝜇
𝑆 = 0.07,

𝑦𝑅𝑏 = 0.13,

(5.2.7)

which corresponds to a global pull from the SM of 6.2 𝜎 . For the calculation of this pull we took the

observables that were fitted, i.e., the ones available in smelli in the classes EWPO, leptonic observables,

lepton flavour universality for neutral currents and quark flavour observables. In table 18, we present some

pulls for individual observables.

Finally, in figure 31 we show the 1- and 2-𝜎 regions from the best-fit point for the model parameters

𝑥𝑆 and 𝑥𝑇 obtained using the global likelihood provided by smelli. For each point, we minimize 𝜒2 by

varying the other parameters. The results for the rest of the variables are very similar to what one would

expect from only taking the tree level solutions, showing that the one loop effects give us enough freedom

to explain Δ𝑎𝜇 , without entering in tension with the tree-level solutions to the other anomalies.
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Figure 31: The 1 and 2-𝜎 regions in green and yellow, respectively, around the obtained best-fit point.
For each point in the grid, the other couplings were marginalized in order to minimize the 𝜒2 function. As
mentioned in the text, the observables included in the fit were the ones available in smelli in the classes
EWPO, leptonic observables, lepton flavour universality for neutral currents and quark flavour observables,
and 𝜖𝜇𝜇 .
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6

Summary and Conclusions

There is plenty of motivation to search for BSM physics, both from direct experimental evidence which

the SM cannot explain and also from theoretical questions to which the SM cannot answer. With the

vast amount of models for new physics being proposed in the literature to face these challenges, from

the phenomenological point of view, we are confronted with the difficult task of developing strategies to

search for BSM physics in a way that encompasses the largest possible number of models.

Our attempt at following a global approach for the search of BSM physics led us to two complemen-

tarity directions: a model-driven approach, focusing on signatures motivated by specific models; or a

model-independent approach, following the SMEFT paradigm, in which heavy new physics effects are

parametrized in terms of higher dimensional operators constructed from the degrees of freedom of the

SM.

In principle, following a model-independent approach seems preferable given its wider applicability;

however it is not always the case that the effective description of new physics is available. This is because

EFTs suppose a decoupling between the UV scale and the scale at which the experiment takes place. As

such, theories which predict light new physics cannot be described by the SMEFT. Furthermore, from the

collider perspective, the SMEFT also cannot account for processes in which the final state contains a heavy

(stable) particle since it can only contain operators with the SM fields. Therefore, choosing a particular

signature can be the best way to follow, particularly when the BSM resonances can be produced at current

experimental setups. Moreover, the EFT parametrization can only point to a direction of new physics, but

a priori it does not explain the structures that appear, which can only be predicted by specific models.

For example, if a particular WC with a specific flavour structure is preferred by data to be non-zero (for

example, the second diagonal entry in the WC of O𝑒𝐵,𝑊 to explain 𝑎𝜇 ), it is relevant to explain why this is

the flavour structure that arises (why the off-diagonal terms are suppressed to avoid 𝜇 → 𝑒𝛾 constraints)
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from a full UV model which, in turn, can point to new particles with a particular phenomenology that could

potentially be seen at future experiments. The highlights of each approach followed in this thesis are

presented below.

The model-driven approach

To follow the model-driven direction, we focused on CHMs, which explain the HP by considering the

Higgs as a pNGB arising from the SSB of a strongly interacting sector. The choice of CHMs as our object of

study boils down to the fact that a solution to the fine-tuning problem should lie at the TeV scale, predicting

resonances which could lie within the reach of current – or expected – collider experiments. Furthermore,

CHMs predict several new BSM fields which can also serve as solutions to other SM shortcomings. We

concretized the compositeness framework in the LHT, a model based on the collective symmetry breaking

mechanism which alleviates the contributions of heavy physics to the Higgs mass. Moreover, since this

model possesses a discrete symmetry under which most new fields are odd, the lightest odd field is a

suitable DM candidate.

We explored the signatures of VLLs not only because they are a generic prediction of composite

scenarios, but also because when included in complete models they can have a drastically different

phenomenology than what is covered by current searches, which focus on the VLL decaying to SM final

states. Indeed, due to T-parity in the LHT, VLLs cannot decay solely to SM particles, decaying instead to

a heavy neutral vector and a SM lepton. Therefore, we proposed dedicated analyses to test VLLs with

arbitrary BRs to the common SM decay channels and an exotic channel of a heavy vector (stable, resulting

in a MET signature) and a SM lepton. Given that the results were presented for arbitrary BRs, the analysis

can be easily interpreted in the limiting cases of a SM only decaying VLL, a VLL within the LHT which

decays solely through the exotic channel or any other model which can have the 4 channels available,

e.g. DM models where the relic density is set through freeze-in, by the decay of a VLL.

We showed that current LHC data can probe 𝑀𝐸 � 405GeV for a singlet VLL decaying to SM final

states whereas a VLL decaying solely through the exotic channel can be excluded up to 𝑀𝐸 � 895GeV.

We also studied the prospects for the high-luminosity phase of the LHC and for possible future proton-

proton colliders, running at a center of mass energy
√
𝑠 = 27 and 100 TeV.

Furthermore, we explored the case in which the heavy vector is not only stable at detector scales, but

also at cosmological scales, constituting a viable dark matter candidate. After showing that the standard

freeze-out scenario for generating the appropriate relic density presents tension with limits from direct

detection, resulting in only a small region of viable parameter space, we considered the possibility that

the VLL and the heavy vector have very similar masses. This leads to a successful generation of dark
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matter via co-annihilation, compatible with all current experimental limits. If the exotic vector is very light

and feebly interacting, it can generate the observed relic density through the freeze-in mechanism. We

have shown that in this case collider searches looking for displaced vertices can be very useful in probing

a large part of the parameter space.

The model-independent approach

For the model-independent approach we aimed to expand the current description of the SMEFT. The

first direction in the effort of improving the predictions of the SMEFT was to consider dimension-8 effects.

The study of the SMEFT at this order is not only relevant from the experimental point of view, as certain

observables receive their leading contribution from dimension-8 operators, but it is also interesting since

the parameter space for some WCs of dimension-8 operators is bounded solely from principles of unitarity

and analyticity, limiting the space of EFTs which can be UV completed.

While a physical basis of the SMEFT at dimension-8 had already been constructed in the literature,

performing calculations off-shell is sometimes preferable as they scale slower as the number of external

legs grows when compared with on-shell computations. The main bottleneck in the off-shell computation

is the knowledge of the extended Green’s basis and its reduction to the physical operators. As such, we

started our work by building the Green’s basis of the bosonic sector at dimension-8, extending the on-shell

bosonic sector with 86 new interactions. Their off-shell independence was verified in momentum space.

Knowing the Green’s basis of bosonic operators, we proceeded with the computation of the RGEs

of the WCs at dimension-8. The RGEs at this order have co-leading contributions from two insertions of

dimension-6 terms and one insertion of dimension-8 interactions. There were no renormalisation theo-

rems for the former contribution which made their explicit computation especially important. We verified

that no combination of tree-level generated dimension-6 operators renormalises dimension-8 operators

induced at loop-level. This results, for instance, in the conclusion that tree-level generated dimension-6

operators cannot contribute to the 𝑆 and𝑈 parameters (to one-loop accuracy) up to O(𝑣4/Λ4). Further-

more, we also observed several numerical factors which deviated significantly from naive power counting

which can result in non-negligible results when the RGE contribution is included; we showed this explicitly

by considering the SMEFT parameter space compatible with a strong first order EWPT.

As for the RGE component arising from a single insertion of dimension-8 operators, we verified that

one-loop generated operators can in general be renormalised by tree-level induced ones. Therefore, this

running effect can in principle be non-negligible when compared with the one-loop matching contribu-

tion from a UV model. Once again, we also found large coefficient in the RGEs of some WCs which

compensated in part the one-loop suppression, possibly resulting in significant effects.
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We also explored the stability of the positivity bounds obtained in the literature under one-loop running.

For the dimension-8 4-Higgs WCs, we concluded that the contribution with two insertions of dimension-6

operators respects the positivity bounds obtained at tree-level, while the contribution from one insertion

of dimension-8 operators does not need to respect the positivity condition in general. We also applied the

positivity condition to operators in the𝑋 2𝜙2𝐷2 class concluding that the RGE resulting from an insertion of

a dimension-8 operator respects the positivity conditions derived when considering only tree-level effects,

and therefore, these conditions hold at all scales at one-loop accuracy. This bolsters the idea that these

positivity restrictions can be used as priors in experimental fits looking to probe the WC of quartic-gauge

operators.

As mentioned before, light new physics cannot be described within the SMEFT. Therefore our second

step in extending the SMEFT was to include an extra light degree of freedom, a light pseudo-scalar,

resulting in the SMEFT+ALP theory. This scenario is motivated by the axion, a solution to the strong-CP

problem, but also by CHMs where, besides the Higgs, other pNGBs can arise with a naturally light mass.

Given that the experimental effort to look for these particles spans several orders of magnitude in energy

scale, we computed the RGEs of this theory to improve the interpretation of the obtained experimental

bounds. We applied the RGEs to specific cases, namely that of a photophobic ALP, obtaining an indirect

bound on the UV couplings of the ALP to 𝑍 bosons roughly 4 orders of magnitude stronger than direct

bounds from searches at colliders.

Finally, we studied the connection between experiment and UV extensions of the SM through the

SMEFT. We focused on the recent measurement of the anomalous magnetic moment of the muon which

seems to deviate significantly from the SM prediction, possibly pointing to a new physics contribution. In

the SMEFT, this observable is parametrized by the dipole operators involving muons and the 𝐵 and 𝑊

bosons, which can only be generated at one-loop by weakly-coupled renormalisable UV theories. Given that

Yukawa-suppressed contributions to 𝑎𝜇 demand light new physics, we instead studied chirally enhanced

contributions which could be generated through a particular Feynman diagram, the bridge. We classified

all possible representations of 2- and 3-field extensions which could generate the bridge diagram and

provided general results for their contribution to 𝑎𝜇 in terms of their representations under the SM gauge

groups. Through our approach within the SMEFT we proposed a class of 2-field UV extensions capable

of explaining the 𝑎𝜇 measurement, which had been neglected so far in the literature. Furthermore, we

presented a novel class of 3-field extensions which can also account for the observed anomaly. This study

shows the importance of systematically considering the one-loop matching contributions to the SMEFT in

order to accurately classify UV explanations of anomalies.

As theoretical predictions and experimental measurements abound, we showed the importance of
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extending the current efforts for searching for new physics beyond minimality, by exploring signatures

motivated in complete and non-oversimplified scenarios and by improving the accuracy of our model-

independent predictions, to ensure no stone is left unturned in our quest for physics BSM.
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A

An explicit realization of a vector-like lepton with

arbitrary branching ratios

The goal of this appendix is to demonstrate a minimal setup with a VLL with arbitrary BRs through the

SM decay channels and an extra channel 𝐴𝐻ℓ which motivates the dedicated analysis presented in 3.2.

The explicit realization described here follows from the FIMP DM candidate introduced in [112] 1. Let us

consider a model with the 𝑆𝑈 (3)𝐶 × 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 ×𝑈 (1)𝐻 gauge symmetry. The matter content

is given by the SM particles, neutral under 𝑈 (1)𝐻 , a VLL with the following quantum numbers (with the

notation (𝑆𝑈 (3)𝐶, 𝑆𝑈 (2)𝐿)𝑈 (1)𝑌 ,𝑈 (1)𝐻 ),

𝐸 (0)
𝐿,𝑅 ∼ (1, 1)−1,1, (A.0.1)

and a complex scalar

Φ ∼ (1, 1)0,1. (A.0.2)

The renormalisable Lagrangian for this model reads

L = LSM − 1
4
𝐹
𝜇𝜈
𝐻 𝐹𝐻 𝜇𝜈 + |𝐷𝜇Φ|2 −𝑉 (Φ) +𝐸 (0) (i /𝐷 −𝑀0)𝐸 (0) −Λ1(𝐸 (0)

𝐿 Φ𝑒 (0)𝑅 +h.c.) + . . . , (A.0.3)

where 𝑉 (Φ) is a potential that triggers the spontaneous breaking of 𝑈 (1)𝐻 and that makes the physical

Higgs scalar of such breaking much heavier than all other fields so that it can be safely neglected. For

simplicity we assume negligible kinetic mixing between the abelian group 2 and that the VLL only couples

to the right-handed electron (every conclusion could also be extrapolated for a coupling with a muon or

tau).
1Indeed this model can be translated to the one in [112] with the replacements: 𝑀0 → 𝑀𝐸,Λ1 → 𝑥𝐸,𝑉 → 𝜔/√2, 𝑠 →

𝜃𝑅 .
2The expected order of magnitude for kinetic mixing [293] is small enough in the parameter space we will consider [294].
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APPENDIX A. AN EXPLICIT REALIZATION OF A VECTOR-LIKE LEPTON WITH ARBITRARY BRANCHING RATIOS

The relevant part of the covariant derivative for the new fields reads

𝐷𝜇 = 𝜕𝜇 − i𝑔𝐻𝐴𝐻 𝜇, (A.0.4)

where we considered 𝑄𝐻 = 1.

After the spontaneous breaking of 𝑈 (1)𝐻 the corresponding gauge boson, 𝐴𝐻 , gains a mass term

𝑀𝐴𝐻 =
√
2𝑔𝐻𝑉 , (A.0.5)

where 𝑉 ≡ �Φ� is the vev of Φ, and 𝑒 (0)𝑅 and 𝐸 (0)
𝑅 mix through

L = −𝐸 (0)
𝐿 (Λ1𝑉𝑒

(0)
𝑅 +𝑀0𝐸

(0)
𝑅 ) + h.c. + . . . . (A.0.6)

To define the SM RH lepton we can rotate this mixing through�
𝑒 (0)𝑅

𝐸 (0)
𝑅

�
=

�
𝑐 𝑠

−𝑠 𝑐

� �
𝑒𝑅

𝐸𝑅

�
, (A.0.7)

where

𝑠 ≡ Λ1𝑉

𝑀
, 𝑐 ≡ 𝑀0

𝑀
, 𝑀 ≡

�
𝑀2

0 + Λ2
1𝑉

2. (A.0.8)

Denoting 𝐸 (0)
𝑅 ≡ 𝐸𝐿 we have extended the SM with a VLL singlet, resulting in the following mass matrix

for the charged leptons

L =
�
𝑒𝐿 𝐸𝐿

� �𝑚 𝑚�

0 𝑀

� �
𝑒𝑅

𝐸𝑅

�
+ . . . , (A.0.9)

where𝑚 and𝑚� arise after EWSB:
𝑚�

𝑚
=
𝑠

𝑐
. (A.0.10)

The couplings of 𝐴𝐻 are given by

L = 𝑔𝐻𝐴
𝜇
𝐻

�
𝑒 𝐸

�
𝛾𝜇

��
0 0

0 1

�
𝑃𝐿 +

�
𝑠2 −𝑠𝑐
−𝑠𝑐 𝑐2

�
𝑃𝑅

� �
𝑒

𝐸

�
+ . . . . (A.0.11)

The mixing effect of a VLL with a SM lepton is well known in the literature known [295]. Diagonalizing

the mass matrix in (A.0.9) gives rise to

L𝑍 =
𝑔

2𝑐𝑊
𝑍𝜇𝜓

𝑖
𝑄𝛾

𝜇 [𝑋𝑄𝐿
𝑖 𝑗 𝑃𝐿 + 𝑋𝑄𝑅

𝑖 𝑗 𝑃𝑅 − 2𝑠2𝑊𝑄𝛿𝑖 𝑗 ]𝜓 𝑗
𝑄 ,

L𝑊 =
𝑔√
2
𝑊 +

𝜇 𝜓
𝑖
𝑄𝛾

𝜇 [𝑉𝑄𝐿
𝑖 𝑗 𝑃𝐿 +𝑉𝑄𝑅

𝑖 𝑗 𝑃𝑅]𝜓 𝑗
𝑄−1 + h.c.,
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L𝐻 = − 𝐻√
2
𝜓𝑖
𝑄𝑌

𝑄
𝑖 𝑗 𝑃𝑅𝜓

𝑗
𝑄 + h.c.,

L𝐴𝐻 =𝑔𝐻𝐴𝐻 𝜇𝜓
𝑖
𝑄𝛾

𝜇 [𝑍𝑄𝐿
𝑖 𝑗 𝑃𝐿 + 𝑍𝑄𝑅

𝑖 𝑗 𝑃𝑅]𝜓 𝑗
𝑄 , (A.0.12)

where𝜓𝑖
𝑄 is a fermion of electric charge 𝑄 and 𝑖, 𝑗 are flavor indices. The couplings are given by

𝑋−1
𝐿 ≈

�
−1 −𝑚�

𝑀

−𝑚�
𝑀 −𝑚� 2

𝑀2

�
, 𝑋−1

𝑅 = (0),

𝑊 0
𝐿 ≈

�
𝑈𝑖1 𝑈𝑖,1

𝑚�
𝑀

�
, 𝑊 0

𝑅 ≈ (0),

𝑣𝑌−1 ≈
�
𝑚 𝑚�

𝑚𝑚�
𝑀

𝑚� 2
𝑀2

�
,

𝑍−1
𝐿 ≈

�
𝑚� 2
𝑀2 −𝑚�

𝑀

−𝑚�
𝑀 1

�
, 𝑍−1

𝑅 ≈
�

𝑠2 + 2𝑠𝑐𝑚𝑚
�

𝑀2 −𝑠𝑐 + (𝑠2 − 𝑐2)𝑚𝑚�
𝑀2

−𝑠𝑐 + (𝑠2 − 𝑐2)𝑚𝑚�
𝑀2 𝑐2 − 2𝑠𝑐𝑚𝑚

�
𝑀2

�
, (A.0.13)

where 𝑣 ≈ 174GeV is the Higgs vev, 𝑖 denotes the neutrino flavor. Note that these are only to leading

order in the 𝑚�/𝑀 expansion.

Our intended scenario needs 𝑀𝐴𝐻 < 𝑀𝐸 so that the VLL can decay to 𝑍𝑒, 𝐻𝑒,𝑊𝜈 and 𝐴𝐻𝑒. The

corresponding decay widths are given by

3�
𝑖=1

Γ(𝐸 →𝑊𝜈𝑖) ≈
�
𝑖

𝑔2

64𝜋

�
(𝑉 0

𝐿 )2𝑖𝐸 + (𝑉 0
𝑅 )2𝑖𝐸

� 𝑀3
𝐸

𝑚2
𝑊

≈ 𝑔2𝑠2

64𝜋𝑐2
𝑚2

𝑒𝑀𝐸

𝑚2
𝑊

, (A.0.14)

Γ(𝐸 → 𝑍𝑒) ≈ 𝑔2

128𝜋𝑐2𝑊

�
(𝑋−1

𝐿 )2𝑒𝐸 + (𝑋−1
𝑅 )2𝑒𝐸

�𝑀3
𝐸

𝑚2
𝑍

≈ 𝑔2𝑠2

128𝜋𝑐2𝑊𝑐2
𝑚2

𝑒𝑀𝐸

𝑚2
𝑍

, (A.0.15)

Γ(𝐸 → 𝐻𝑒) ≈ 1
64𝜋

�
| (𝑌−1)𝑒𝐸 |2 + |(𝑌−1)𝐸𝑒 |2

�
𝑀𝐸

�
1 − 2

𝑚2
𝐻

𝑀2
𝐸

�

≈ 𝑠2

64𝜋𝑐2
𝑚2

𝑒𝑀𝐸

𝑣2

�
1 − 2

𝑚2
𝐻

𝑀2
𝐸

�
, (A.0.16)

Γ(𝐸 → 𝐴𝐻𝑒) ≈
𝑔2𝐻
32𝜋

�
(𝑍−1

𝐿 )2𝑒𝐸 + (𝑍−1
𝑅 )2𝑒𝐸

� 𝑀3
𝐸

𝑀2
𝐴𝐻

≈ 𝑔2𝐻
32𝜋


𝑚�2

𝑀2
𝐸

+
�
−𝑠𝑐 + (𝑠2 − 𝑐2)𝑚𝑒𝑚

�

𝑀2
𝐸

�2
𝑀3

𝐸

𝑀2
𝐴𝐻

≈ 𝑔2𝐻𝑠
2𝑐2

32𝜋

𝑀3
𝐸

𝑀2
𝐴𝐻

, (A.0.17)

where we considered only the leading terms in the 𝑥/𝑀𝐸 , with 𝑥 =𝑚𝑒,𝑚𝑍 ,𝑚𝑊 ,𝑚𝐻 , except for the case
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of𝑚𝐻 , for which the subleading term is relevant for low 𝑀𝐸 . Considering

𝑚𝑊 =
𝑔𝑣√
2
= 𝑐𝑊𝑚𝑍 , (A.0.18)

we recover the standard 2 : 1 : 1 decay pattern into𝑊 , 𝑍 and 𝐻 for large masses of the VLL.

If 𝑀𝐴𝐻 � 2𝑚𝑒 then the gauge boson can decay to 𝑒𝑒 with the decay width

Γ(𝐴𝐻 → 𝑒+𝑒−) ≈ 𝑔2𝐻
24𝜋

�(𝑍−1
𝐿 )2𝑒𝑒 + (𝑍−1

𝑅 )2𝑒𝑒
�
𝑀𝐴𝐻

≈ 𝑔2𝐻
24𝜋


�
𝑚�2

𝑀2
𝐸

�2
+
�
𝑠2 + 2𝑠𝑐

𝑚𝑒𝑚
�

𝑀2
𝐸

�2
𝑀𝐴𝐻 ≈ 𝑔2𝐻𝑠

4

24𝜋
𝑀𝐴𝐻 . (A.0.19)

𝐴𝐻 needs to be stable at detector scales, 𝐸 should decay promptly and the branching ratios of 𝐸

should be of similar order. Considering a decay length larger than ∼ 10 m for 𝐴𝐻 (for it not to decay in

the detector) and smaller than 10−2 m for 𝐸 (in order to be prompt), these conditions translate into

Γ(𝐴𝐻 → 𝑒+𝑒−) � 2 × 10−17 GeV, (Invisible 𝐴𝐻 ), (A.0.20)

Γ(𝐸 → 𝑍𝑒,𝐴𝐻𝑒) � 2 × 10−14 GeV, (Prompt 𝐸 decays). (A.0.21)

Knowing the decay widths, we can find for each value of 𝑀𝐸 and 𝑀𝐴𝐻 , the allowed values of 𝑔𝐻 and

𝑠. Requiring prompt 𝐸 → 𝑍𝑒 decays results in

𝑠

𝑐
�

�
128𝜋𝑐2𝑊

𝑔2
𝑚2

𝑍

𝑚2
𝑒𝑀𝐸

2 × 10−14 GeV

� 1
2

=




3.1 × 10−2
�

500 GeV
𝑀𝐸

, electron,

1.5 × 10−4
�

500 GeV
𝑀𝐸

, muon.
(A.0.22)

In the electron case this is close to the bounds obtained by electroweak precision data [120, 121]; for

the muon there is still room.

Requiring that𝐴𝐻 does not decay within the detector and that the decay 𝐸 → 𝐴𝐻𝑒 is prompt provides

an upper limit on 𝑠

Γ(𝐴𝐻 → 𝑒+𝑒−)
Γ(𝐸 → 𝐴𝐻𝑒) ≤ 10−3 ⇒ 𝑠

𝑐
� 2.7 × 10−2

�
𝑀𝐸

𝑀𝐴𝐻

� 3
2

. (A.0.23)

Note that for the values of 𝑀𝐸 we are interested, unless 𝑀𝐴𝐻 is very close to 𝑀𝐸 , the obtained two

limits are always compatible. Provided 𝑠 is fixed in the allowed range, requiring 𝐸 → 𝐴𝐻𝑒 to be prompt

can fix a minimum value for 𝑔𝐻 such that

𝑔𝐻 �

�
32𝜋
𝑠2𝑐2

𝑀2
𝐴𝐻

𝑀3
𝐸

2 × 10−14GeV

� 1
2

≈ 1.3 × 10−8

𝑠𝑐

𝑀𝐴𝐻

100 GeV

�
500 GeV
𝑀𝐸

� 3
2

. (A.0.24)

168



Requiring 𝐴𝐻 to be stable at detector scales results in an upper bound given by

𝑔𝐻 �
�
24𝜋
𝑠4

2 × 10−17

𝑀𝐴𝐻

� 1
2

≈ 4 × 10−9

𝑠2

�
100 GeV
𝑀𝐴𝐻

� 1
2

. (A.0.25)

The relative decay of 𝐸 into 𝐴𝐻 and 𝑍 is also fixed, once 𝑔𝐻 and 𝑠 are chosen, up to the dependence

on the masses involved. For the muon case we get

R ≡ Γ(𝐸 → 𝑍𝜇)
Γ(𝐸 → 𝐴𝐻𝜇) ≈ 𝑔2

4𝑐2𝑊𝑐4𝑔2𝐻

𝑀2
𝐴𝐻

𝑚2
𝑍

𝑚2
𝜇

𝑀2
𝐸

≈ 7.3 × 10−9

𝑔2𝐻𝑐
4

�
𝑀𝐴𝐻

100 GeV

�2 �500 GeV
𝑀𝐸

�2
. (A.0.26)

Taking the minimum and maximum values of 𝑔𝐻 we arrive at

4.5 × 108
𝑠4

𝑐4

�
𝑀𝐴𝐻

100 GeV

�3 �500GeV
𝑀𝐸

�2
� R � 4.3 × 107

𝑠2

𝑐2

�
𝑀𝐸

500 GeV

�
. (A.0.27)

As an example, let us take 𝑀𝐸 = 500GeV and 𝑀𝐴𝐻 = 100 GeV resulting in

1.5 × 10−4 �
𝑠

𝑐
� 0.3. (A.0.28)

Choosing for instance 𝑠 = 10−3 results in

1.3 × 10−5 � 𝑔𝐻 � 4.4 × 10−3, (A.0.29)

and

4.5 × 10−4 � R � 43. (A.0.30)

Had we considered an electron instead of a muon mixing would decrease R by a factor (𝑚𝑒/𝑚𝜇)2 ≈
2.3 × 10−5 and increases the lower limit of 𝑠/𝑐 by a factor 𝑚𝜇/𝑚𝑒 ≈ 210.
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B

Dimension-8 Operators

𝝓8

O𝜙8 (𝜙†𝜙)4
𝝓6𝑫2

O(1)
𝜙6 (𝜙†𝜙)2(𝐷𝜇𝜙†𝐷𝜇𝜙)

O(2)
𝜙6 (𝜙†𝜙) (𝜙†𝜏 𝐼𝜙) (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜇𝜙)

𝝓4𝑫4

O(1)
𝜙4 (𝐷𝜇𝜙†𝐷𝜈𝜙) (𝐷𝜈𝜙†𝐷𝜇𝜙)

O(2)
𝜙4 (𝐷𝜇𝜙†𝐷𝜈𝜙) (𝐷𝜇𝜙†𝐷𝜈𝜙)

O(3)
𝜙4 (𝐷𝜇𝜙†𝐷𝜇𝜙) (𝐷𝜈𝜙†𝐷𝜈𝜙)

𝑿3𝝓2

O(1)
𝐺3𝜙2 𝑓 𝐴𝐵𝐶 (𝜙†𝜙)𝐺𝐴𝜈𝜇 𝐺

𝐵𝜌
𝜈 𝐺

𝐶𝜇
𝜌

O(2)
𝐺3𝜙2 𝑓 𝐴𝐵𝐶 (𝜙†𝜙)𝐺𝐴𝜈𝜇 𝐺

𝐵𝜌
𝜈
�𝐺𝐶𝜇𝜌

O(1)
𝑊 3𝜙2 𝜖𝐼 𝐽 𝐾 (𝜙†𝜙)𝑊 𝐼 𝜈

𝜇 𝑊
𝐽 𝜌
𝜈 𝑊

𝐾𝜇
𝜌

O(2)
𝑊 3𝜙2 𝜖𝐼 𝐽 𝐾 (𝜙†𝜙)𝑊 𝐼 𝜈

𝜇 𝑊
𝐽 𝜌
𝜈

�𝑊 𝐾𝜇
𝜌

O(1)
𝑊 2𝐵𝜙2 𝜖𝐼 𝐽 𝐾 (𝜙†𝜏 𝐼𝜙)𝐵 𝜈𝜇𝑊 𝐽 𝜌

𝜈 𝑊
𝐾𝜇
𝜌

O(2)
𝑊 2𝐵𝜙2 𝜖𝐼 𝐽 𝐾 (𝜙†𝜏 𝐼𝜙) (�𝐵𝜇𝜈𝑊 𝐽

𝜈𝜌𝑊
𝐾𝜌
𝜇 + 𝐵𝜇𝜈𝑊 𝐽

𝜈𝜌
�𝑊 𝐾𝜌
𝜇 )

𝑿2𝝓4

O(1)
𝐺2𝜙4 (𝜙†𝜙)2𝐺𝐴𝜇𝜈𝐺𝐴𝜇𝜈

O(2)
𝐺2𝜙4 (𝜙†𝜙)2�𝐺𝐴𝜇𝜈𝐺𝐴𝜇𝜈

O(1)
𝑊 2𝜙4 (𝜙†𝜙)2𝑊 𝐼

𝜇𝜈𝑊
𝐼 𝜇𝜈

O(2)
𝑊 2𝜙4 (𝜙†𝜙)2 �𝑊 𝐼

𝜇𝜈𝑊
𝐼 𝜇𝜈

O(3)
𝑊 2𝜙4 (𝜙†𝜏 𝐼𝜙) (𝜙†𝜏 𝐽𝜙)𝑊 𝐼

𝜇𝜈𝑊
𝐽 𝜇𝜈

O(4)
𝑊 2𝜙4 (𝜙†𝜏 𝐼𝜙) (𝜙†𝜏 𝐽𝜙) �𝑊 𝐼

𝜇𝜈𝑊
𝐽 𝜇𝜈

O(1)
𝑊𝐵𝜙4 (𝜙†𝜙) (𝜙†𝜏 𝐼𝜙)𝑊 𝐼

𝜇𝜈𝐵
𝜇𝜈

O(2)
𝑊𝐵𝜙4 (𝜙†𝜙) (𝜙†𝜏 𝐼𝜙) �𝑊 𝐼

𝜇𝜈𝐵
𝜇𝜈

O(1)
𝐵2𝜙4 (𝜙†𝜙)2𝐵𝜇𝜈𝐵𝜇𝜈

O(2)
𝐵2𝜙4 (𝜙†𝜙)2�𝐵𝜇𝜈𝐵𝜇𝜈

Table 19: Table with the dimension-8 operators of the classes 𝜙8, 𝜙6𝐷2, 𝜙4𝐷4, 𝑋 3𝜙2 and 𝑋 2𝜙4.
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𝑿2𝝓2𝑫2

O(1)
𝐺2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜈𝜙)𝐺𝐴𝜇𝜌𝐺𝐴𝜌𝜈

O(2)
𝐺2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙)𝐺𝐴𝜈𝜌𝐺𝐴𝜈𝜌

O(3)
𝐺2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙)𝐺𝐴𝜈𝜌 �𝐺𝐴𝜈𝜌

O(1)
𝑊 2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜈𝜙)𝑊 𝐼

𝜇𝜌𝑊
𝐼 𝜌
𝜈

O(2)
𝑊 2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙)𝑊 𝐼

𝜈𝜌𝑊
𝐼 𝜈𝜌

O(3)
𝑊 2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙)𝑊 𝐼

𝜈𝜌
�𝑊 𝐼 𝜈𝜌

O(4)
𝑊 2𝜙2𝐷2 𝑖𝜖𝐼 𝐽 𝐾 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙)𝑊 𝐽

𝜇𝜌𝑊
𝐾𝜌
𝜈

O(5)
𝑊 2𝜙2𝐷2 𝜖𝐼 𝐽 𝐾 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝑊 𝐽

𝜇𝜌
�𝑊 𝐾𝜌
𝜈 − �𝑊 𝐽

𝜇𝜌𝑊
𝐾𝜌
𝜈 )

O(6)
𝑊 2𝜙2𝐷2 𝑖𝜖𝐼 𝐽 𝐾 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝑊 𝐽

𝜇𝜌
�𝑊 𝐾𝜌
𝜈 + �𝑊 𝐽

𝜇𝜌𝑊
𝐾𝜌
𝜈 )

O(1)
𝑊𝐵𝜙2𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜇𝜙)𝐵𝜈𝜌𝑊 𝐼 𝜈𝜌

O(2)
𝑊𝐵𝜙2𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜇𝜙)𝐵𝜈𝜌 �𝑊 𝐼 𝜈𝜌

O(3)
𝑊𝐵𝜙2𝐷2 𝑖 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝐵𝜇𝜌𝑊 𝐼 𝜌

𝜈 − 𝐵𝜈𝜌𝑊
𝐼 𝜌
𝜇 )

O(4)
𝑊𝐵𝜙2𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝐵𝜇𝜌𝑊 𝐼 𝜌

𝜈 + 𝐵𝜈𝜌𝑊 𝐼 𝜌
𝜇 )

O(5)
𝑊𝐵𝜙2𝐷2 𝑖 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝐵𝜇𝜌 �𝑊 𝐼 𝜌

𝜈 − 𝐵𝜈𝜌 �𝑊 𝐼 𝜌
𝜇 )

O(6)
𝑊𝐵𝜙2𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝐵𝜇𝜌 �𝑊 𝐼 𝜌

𝜈 + 𝐵𝜈𝜌 �𝑊 𝐼 𝜌
𝜇 )

O(1)
𝐵2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜈𝜙)𝐵𝜇𝜌𝐵 𝜌

𝜈

O(2)
𝐵2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙)𝐵𝜈𝜌𝐵𝜈𝜌

O(3)
𝐵2𝜙2𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙)𝐵𝜈𝜌�𝐵𝜈𝜌

𝑿𝝓4𝑫2

O(1)
𝑊𝜙4𝐷2 (𝜙†𝜙) (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙)𝑊 𝐼

𝜇𝜈

O(2)
𝑊𝜙4𝐷2 (𝜙†𝜙) (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) �𝑊 𝐼

𝜇𝜈

O(3)
𝑊𝜙4𝐷2 𝜖𝐼 𝐽 𝐾 (𝜙†𝜏 𝐼𝜙) (𝐷𝜇𝜙†𝜏 𝐽𝐷𝜈𝜙)𝑊 𝐾

𝜇𝜈

O(4)
𝑊𝜙4𝐷2 𝜖𝐼 𝐽 𝐾 (𝜙†𝜏 𝐼𝜙) (𝐷𝜇𝜙†𝜏 𝐽𝐷𝜈𝜙) �𝑊 𝐾

𝜇𝜈

O(1)
𝐵𝜙4𝐷2 (𝜙†𝜙) (𝐷𝜇𝜙†𝐷𝜈𝜙)𝐵𝜇𝜈

O(2)
𝐵𝜙4𝐷2 (𝜙†𝜙) (𝐷𝜇𝜙†𝐷𝜈𝜙)�𝐵𝜇𝜈

Table 20: Table with the dimension-8 operators of the classes 𝑋 2𝜙2𝐷2 and 𝑋𝜙4𝐷2.
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𝝍2𝑿𝝓3 + h.c.

O(1)
𝑙𝑒𝑊𝜙3 (𝑙𝑝𝜎𝜇𝜈𝑒𝑟 )𝜏 𝐼𝜙 (𝜙†𝜙)𝑊 𝐼

𝜇𝜈

O(2)
𝑙𝑒𝑊𝜙3 (𝑙𝑝𝜎𝜇𝜈𝑒𝑟 )𝜙 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼

𝜇𝜈

O𝑙𝑒𝐵𝜙3 (𝑙𝑝𝜎𝜇𝜈𝑒𝑟 )𝜙 (𝜙†𝜙)𝐵𝜇𝜈
O𝑞𝑢𝐺𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑇𝐴𝑢𝑟 )�𝜙 (𝜙†𝜙)𝐺𝐴𝜇𝜈
O(1)
𝑞𝑢𝑊𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑢𝑟 )𝜏 𝐼 �𝜙 (𝜙†𝜙)𝑊 𝐼

𝜇𝜈

O(2)
𝑞𝑢𝑊𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑢𝑟 )�𝜙 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼

𝜇𝜈

O𝑞𝑢𝐵𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑢𝑟 )�𝜙 (𝜙†𝜙)𝐵𝜇𝜈
O𝑞𝑑𝐺𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑇𝐴𝑑𝑟 )𝜙 (𝜙†𝜙)𝐺𝐴𝜇𝜈
O(1)
𝑞𝑑𝑊𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑑𝑟 )𝜏 𝐼𝜙 (𝜙†𝜙)𝑊 𝐼

𝜇𝜈

O(2)
𝑞𝑑𝑊𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑑𝑟 )𝜙 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼

𝜇𝜈

O𝑞𝑑𝐵𝜙3 (𝑞𝑝𝜎𝜇𝜈𝑑𝑟 )𝜙 (𝜙†𝜙)𝐵𝜇𝜈

𝝍2𝝓2𝑫3

O(1)
𝑙2𝜙2𝐷3 𝑖 (𝑙𝑝𝛾𝜇𝐷𝜈𝑙𝑟 ) (𝐷 (𝜇𝐷𝜈 )𝜙†𝜙)

O(2)
𝑙2𝜙2𝐷3 𝑖 (𝑙𝑝𝛾𝜇𝐷𝜈𝑙𝑟 ) (𝜙†𝐷 (𝜇𝐷𝜈 )𝜙)

O(3)
𝑙2𝜙2𝐷3 𝑖 (𝑙𝑝𝛾𝜇𝜏 𝐼𝐷𝜈𝑙𝑟 ) (𝐷 (𝜇𝐷𝜈 )𝜙†𝜏 𝐼𝜙)

O(4)
𝑙2𝜙2𝐷3 𝑖 (𝑙𝑝𝛾𝜇𝜏 𝐼𝐷𝜈𝑙𝑟 ) (𝜙†𝜏 𝐼𝐷 (𝜇𝐷𝜈 )𝜙)

O(1)
𝑒2𝜙2𝐷3 𝑖 (𝑒𝑝𝛾𝜇𝐷𝜈𝑒𝑟 ) (𝐷 (𝜇𝐷𝜈 )𝜙†𝜙)

O(2)
𝑒2𝜙2𝐷3 𝑖 (𝑒𝑝𝛾𝜇𝐷𝜈𝑒𝑟 ) (𝜙†𝐷 (𝜇𝐷𝜈 )𝜙)

O(1)
𝑞2𝜙2𝐷3 𝑖 (𝑞𝑝𝛾𝜇𝐷𝜈𝑞𝑟 ) (𝐷 (𝜇𝐷𝜈 )𝜙†𝜙)

O(2)
𝑞2𝜙2𝐷3 𝑖 (𝑞𝑝𝛾𝜇𝐷𝜈𝑞𝑟 ) (𝜙†𝐷 (𝜇𝐷𝜈 )𝜙)

O(3)
𝑞2𝜙2𝐷3 𝑖 (𝑞𝑝𝛾𝜇𝜏 𝐼𝐷𝜈𝑞𝑟 ) (𝐷 (𝜇𝐷𝜈 )𝜙†𝜏 𝐼𝜙)

O(4)
𝑞2𝜙2𝐷2 𝑖 (𝑞𝑝𝛾𝜇𝜏 𝐼𝐷𝜈𝑞𝑟 ) (𝜙†𝜏 𝐼𝐷 (𝜇𝐷𝜈 )𝜙)

O(1)
𝑢2𝜙2𝐷3 𝑖 (𝑢𝑝𝛾𝜇𝐷𝜈𝑢𝑟 ) (𝐷 (𝜇𝐷𝜈 )𝜙†𝜙)

O(2)
𝑢2𝜙2𝐷3 𝑖 (𝑢𝑝𝛾𝜇𝐷𝜈𝑢𝑟 ) (𝜙†𝐷 (𝜇𝐷𝜈 )𝜙)

O(1)
𝑑2𝜙2𝐷3 𝑖 (𝑑𝑝𝛾𝜇𝐷𝜈𝑑𝑟 ) (𝐷 (𝜇𝐷𝜈 )𝜙†𝜙)

O(2)
𝑑2𝜙2𝐷3 𝑖 (𝑑𝑝𝛾𝜇𝐷𝜈𝑑𝑟 ) (𝜙†𝐷 (𝜇𝐷𝜈 )𝜙)

O𝑢𝑑𝜙2𝐷3 + h.c. 𝑖 (𝑢𝑝𝛾𝜇𝐷𝜈𝑑𝑟 ) (�𝜙†𝐷 (𝜇𝐷𝜈 )𝜙)

Table 21: Table with the dimension-8 operators of the classes 𝜓 2𝑋𝜙3 and𝜓 2𝜙2𝐷3.
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(𝝍𝑹𝝍𝑹)𝑿𝝓2𝑫

O(1)
𝑒2𝑊𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼
𝜇𝜈

O(2)
𝑒2𝑊𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙) �𝑊 𝐼
𝜇𝜈

O(3)
𝑒2𝑊𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝑊 𝐼
𝜇𝜈

O(4)
𝑒2𝑊𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙) �𝑊 𝐼
𝜇𝜈

O(1)
𝑒2𝐵𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 )𝐷𝜇 (𝜙†𝜙)𝐵𝜇𝜈
O(2)
𝑒2𝐵𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐵𝜇𝜈
O(3)
𝑒2𝐵𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐵𝜇𝜈
O(4)
𝑒2𝐵𝜙2𝐷

(𝑒𝑝𝛾 𝜈𝑒𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐵𝜇𝜈
O(1)
𝑢2𝐺𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑇𝐴𝑢𝑟 )𝐷𝜇 (𝜙†𝜙)𝐺𝐴𝜇𝜈
O(2)
𝑢2𝐺𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑇𝐴𝑢𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐺𝐴𝜇𝜈
O(3)
𝑢2𝐺𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑇𝐴𝑢𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐺𝐴𝜇𝜈
O(4)
𝑢2𝐺𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑇𝐴𝑢𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐺𝐴𝜇𝜈
O(1)
𝑢2𝑊𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼
𝜇𝜈

O(2)
𝑢2𝑊𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙) �𝑊 𝐼
𝜇𝜈

O(3)
𝑢2𝑊𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝑊 𝐼
𝜇𝜈

O(4)
𝑢2𝑊𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙) �𝑊 𝐼
𝜇𝜈

O(1)
𝑢2𝐵𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 )𝐷𝜇 (𝜙†𝜙)𝐵𝜇𝜈
O(2)
𝑢2𝐵𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐵𝜇𝜈
O(3)
𝑢2𝐵𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐵𝜇𝜈
O(4)
𝑢2𝐵𝜙2𝐷

(𝑢𝑝𝛾 𝜈𝑢𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐵𝜇𝜈

(𝝍𝑹𝝍𝑹)𝑿𝝓2𝑫

O(1)
𝑑2𝐺𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑇𝐴𝑑𝑟 )𝐷𝜇 (𝜙†𝜙)𝐺𝐴𝜇𝜈
O(2)
𝑑2𝐺𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑇𝐴𝑑𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐺𝐴𝜇𝜈
O(3)
𝑑2𝐺𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑇𝐴𝑑𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐺𝐴𝜇𝜈
O(4)
𝑑2𝐺𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑇𝐴𝑑𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐺𝐴𝜇𝜈
O(1)
𝑑2𝑊𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼
𝜇𝜈

O(2)
𝑑2𝑊𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙) �𝑊 𝐼
𝜇𝜈

O(3)
𝑑2𝑊𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝑊 𝐼
𝜇𝜈

O(4)
𝑑2𝑊𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙) �𝑊 𝐼
𝜇𝜈

O(1)
𝑑2𝐵𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 )𝐷𝜇 (𝜙†𝜙)𝐵𝜇𝜈
O(2)
𝑑2𝐵𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐵𝜇𝜈
O(3)
𝑑2𝐵𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐵𝜇𝜈
O(4)
𝑑2𝐵𝜙2𝐷

(𝑑𝑝𝛾 𝜈𝑑𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐵𝜇𝜈
O(1)
𝑢𝑑𝐺𝜙2 + h.c. (𝑢𝑝𝛾 𝜈𝑇𝐴𝑑𝑟 ) (�𝜙†←→𝐷 𝜇𝜙)𝐺𝐴𝜇𝜈

O(2)
𝑢𝑑𝐺𝜙2 + h.c. (𝑢𝑝𝛾 𝜈𝑇𝐴𝑑𝑟 ) (�𝜙†←→𝐷 𝜇𝜙)�𝐺𝐴𝜇𝜈

O(1)
𝑢𝑑𝑊𝜙2 + h.c. (𝑢𝑝𝛾 𝜈𝑑𝑟 ) (�𝜙†←→𝐷 𝐼 𝜇𝜙)𝑊 𝐼

𝜇𝜈

O(2)
𝑢𝑑𝑊𝜙2 + h.c. (𝑢𝑝𝛾 𝜈𝑑𝑟 ) (�𝜙†←→𝐷 𝐼 𝜇𝜙) �𝑊 𝐼

𝜇𝜈

O(1)
𝑢𝑑𝐵𝜙2 + h.c. (𝑢𝑝𝛾 𝜈𝑑𝑟 ) (�𝜙†←→𝐷 𝜇𝜙)𝐵𝜇𝜈

O(2)
𝑢𝑑𝐵𝜙2 + h.c. (𝑢𝑝𝛾 𝜈𝑑𝑟 ) (�𝜙†←→𝐷 𝜇𝜙)�𝐵𝜇𝜈

Table 22: Table with the dimension-8 operators of the class (𝜓𝑅𝜓𝑅)𝑋𝜙2𝐷 .
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(𝝍𝑳𝝍𝑳)𝑿𝝓2𝑫

O(1)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼
𝜇𝜈

O(2)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙) �𝑊 𝐼
𝜇𝜈

O(3)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝑊 𝐼
𝜇𝜈

O(4)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙) �𝑊 𝐼
𝜇𝜈

O(5)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 )𝐷𝜇 (𝜙†𝜙)𝑊 𝐼
𝜇𝜈

O(6)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 )𝐷𝜇 (𝜙†𝜙) �𝑊 𝐼
𝜇𝜈

O(7)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝑊 𝐼
𝜇𝜈

O(8)
𝑙2𝑊𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 ) (𝜙†←→𝐷 𝜇𝜙) �𝑊 𝐼
𝜇𝜈

O(9)
𝑙2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 )𝐷𝜇 (𝜙†𝜏 𝐽𝜙)𝑊 𝐾
𝜇𝜈

O(10)
𝑙2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 )𝐷𝜇 (𝜙†𝜏 𝐽𝜙) �𝑊 𝐾
𝜇𝜈

O(11)
𝑙2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 ) (𝜙†←→𝐷 𝐽 𝜇𝜙)𝑊 𝐾
𝜇𝜈

O(12)
𝑙2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 ) (𝜙†←→𝐷 𝐽 𝜇𝜙) �𝑊 𝐾
𝜇𝜈

O(1)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝐵𝜇𝜈
O(2)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)�𝐵𝜇𝜈
O(3)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝐵𝜇𝜈
O(4)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝜏 𝐼 𝑙𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)�𝐵𝜇𝜈
O(5)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 )𝐷𝜇 (𝜙†𝜙)𝐵𝜇𝜈
O(6)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐵𝜇𝜈
O(7)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐵𝜇𝜈
O(8)
𝑙2𝐵𝜙2𝐷

(𝑙𝑝𝛾 𝜈𝑙𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐵𝜇𝜈
O(4)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)�𝐵𝜇𝜈
O(5)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 )𝐷𝜇 (𝜙†𝜙)𝐵𝜇𝜈
O(6)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐵𝜇𝜈
O(7)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐵𝜇𝜈
O(8)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐵𝜇𝜈

(𝝍𝑳𝝍𝑳)𝑿𝝓2𝑫

O(1)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝐺𝐴𝜇𝜈
O(2)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)�𝐺𝐴𝜇𝜈
O(3)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝐺𝐴𝜇𝜈
O(4)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)�𝐺𝐴𝜇𝜈
O(5)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝑞𝑟 )𝐷𝜇 (𝜙†𝜙)𝐺𝐴𝜇𝜈
O(6)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝑞𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐺𝐴𝜇𝜈
O(7)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐺𝐴𝜇𝜈
O(8)
𝑞2𝐺𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑇𝐴𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐺𝐴𝜇𝜈
O(1)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝑊 𝐼
𝜇𝜈

O(2)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙) �𝑊 𝐼
𝜇𝜈

O(3)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝑊 𝐼
𝜇𝜈

O(4)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙) �𝑊 𝐼
𝜇𝜈

O(5)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜙)𝑊 𝐼
𝜇𝜈

O(6)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜙) �𝑊 𝐼
𝜇𝜈

O(7)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝑊 𝐼
𝜇𝜈

O(8)
𝑞2𝑊𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙) �𝑊 𝐼
𝜇𝜈

O(9)
𝑞2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐽𝜙)𝑊 𝐾
𝜇𝜈

O(10)
𝑞2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐽𝜙) �𝑊 𝐾
𝜇𝜈

O(11)
𝑞2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐽 𝜇𝜙)𝑊 𝐾
𝜇𝜈

O(12)
𝑞2𝑊𝜙2𝐷

𝜖𝐼 𝐽 𝐾 (𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐽 𝜇𝜙) �𝑊 𝐾
𝜇𝜈

Table 23: Table with the dimension-8 operators of the class (𝜓𝐿𝜓𝐿)𝑋𝜙2𝐷 .
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(𝝍𝑳𝝍𝑳)𝑿𝝓2𝑫

O(1)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)𝐵𝜇𝜈
O(2)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 )𝐷𝜇 (𝜙†𝜏 𝐼𝜙)�𝐵𝜇𝜈
O(3)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)𝐵𝜇𝜈
O(4)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐼 𝜇𝜙)�𝐵𝜇𝜈
O(5)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 )𝐷𝜇 (𝜙†𝜙)𝐵𝜇𝜈
O(6)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 )𝐷𝜇 (𝜙†𝜙)�𝐵𝜇𝜈
O(7)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙)𝐵𝜇𝜈
O(8)
𝑞2𝐵𝜙2𝐷

(𝑞𝑝𝛾 𝜈𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙)�𝐵𝜇𝜈

𝝍2𝝓3𝑫2 + h.c.

O(1)
𝑙𝑒𝜙3𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙) (𝑙𝑝𝑒𝑟𝜙)

O(2)
𝑙𝑒𝜙3𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜇𝜙) (𝑙𝑝𝑒𝑟𝜏 𝐼𝜙)

O(3)
𝑙𝑒𝜙3𝐷2 (𝐷𝜇𝜙†𝐷𝜈𝜙) (𝑙𝑝𝜎𝜇𝜈𝑒𝑟𝜙)

O(4)
𝑙𝑒𝜙3𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝑙𝑝𝜎𝜇𝜈𝑒𝑟𝜏 𝐼𝜙)

O(5)
𝑙𝑒𝜙3𝐷2 (𝜙†𝐷𝜇𝜙) (𝑙𝑝𝑒𝑟𝐷𝜇𝜙)

O(6)
𝑙𝑒𝜙3𝐷2 (𝜙†𝐷𝜇𝜙) (𝑙𝑝𝜎𝜇𝜈𝑒𝑟𝐷𝜈𝜙)

O(1)
𝑞𝑢𝜙3𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙) (𝑞𝑝𝑢𝑟 �𝜙)

O(2)
𝑞𝑢𝜙3𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜇𝜙) (𝑞𝑝𝑢𝑟𝜏 𝐼 �𝜙)

O(3)
𝑞𝑢𝜙3𝐷2 (𝐷𝜇𝜙†𝐷𝜈𝜙) (𝑞𝑝𝜎𝜇𝜈𝑢𝑟 �𝜙)

O(4)
𝑞𝑢𝜙3𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝑞𝑝𝜎𝜇𝜈𝑢𝑟𝜏 𝐼 �𝜙)

O(5)
𝑞𝑢𝜙3𝐷2 (𝐷𝜇𝜙†𝜙) (𝑞𝑝𝑢𝑟𝐷𝜇�𝜙)

O(6)
𝑞𝑢𝜙3𝐷2 (𝐷𝜇𝜙†𝜙) (𝑞𝑝𝜎𝜇𝜈𝑢𝑟𝐷𝜈�𝜙)

O(1)
𝑞𝑑𝜙3𝐷2 (𝐷𝜇𝜙†𝐷𝜇𝜙) (𝑞𝑝𝑑𝑟𝜙)

O(2)
𝑞𝑑𝜙3𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜇𝜙) (𝑞𝑝𝑑𝑟𝜏 𝐼𝜙)

O(3)
𝑞𝑑𝜙3𝐷2 (𝐷𝜇𝜙†𝐷𝜈𝜙) (𝑞𝑝𝜎𝜇𝜈𝑑𝑟𝜙)

O(4)
𝑞𝑑𝜙3𝐷2 (𝐷𝜇𝜙†𝜏 𝐼𝐷𝜈𝜙) (𝑞𝑝𝜎𝜇𝜈𝑑𝑟𝜏 𝐼𝜙)

O(5)
𝑞𝑑𝜙3𝐷2 (𝜙†𝐷𝜇𝜙) (𝑞𝑝𝑑𝑟𝐷𝜇𝜙)

O(6)
𝑞𝑑𝜙3𝐷2 (𝜙†𝐷𝜇𝜙) (𝑞𝑝𝜎𝜇𝜈𝑑𝑟𝐷𝜈𝜙)

Table 24: Table with the dimension-8 operators of the classes (𝜓𝐿𝜓𝐿)𝑋𝜙2𝐷 and𝜓 2𝜙3𝐷2.
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APPENDIX B. DIMENSION-8 OPERATORS

𝝍2𝝓4𝑫

O(1)
𝑙2𝜙4𝐷

𝑖 (𝑙𝑝𝛾𝜇𝑙𝑟 ) (𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜙)
O(2)
𝑙2𝜙4𝐷

𝑖 (𝑙𝑝𝛾𝜇𝜏 𝐼 𝑙𝑟 ) [(𝜙†←→𝐷 𝐼
𝜇𝜙) (𝜙†𝜙) + (𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜏 𝐼𝜙)]

O(3)
𝑙2𝜙4𝐷

𝑖𝜖𝐼 𝐽 𝐾 (𝑙𝑝𝛾𝜇𝜏 𝐼 𝑙𝑟 ) (𝜙†←→𝐷 𝐽
𝜇𝜙) (𝜙†𝜏𝐾𝜙)

O(4)
𝑙2𝜙4𝐷

𝜖𝐼 𝐽 𝐾 (𝑙𝑝𝛾𝜇𝜏 𝐼 𝑙𝑟 ) (𝜙†𝜏 𝐽𝜙)𝐷𝜇 (𝜙†𝜏𝐾𝜙)
O𝑒2𝜙4𝐷 𝑖 (𝑒𝑝𝛾𝜇𝑒𝑟 ) (𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜙)
O(1)
𝑞2𝜙4𝐷

𝑖 (𝑞𝑝𝛾𝜇𝑞𝑟 ) (𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜙)
O(2)
𝑞2𝜙4𝐷

𝑖 (𝑞𝑝𝛾𝜇𝜏 𝐼𝑞𝑟 ) [(𝜙†←→𝐷 𝐼
𝜇𝜙) (𝜙†𝜙) + (𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜏 𝐼𝜙)]

O(3)
𝑞2𝜙4𝐷

𝑖𝜖𝐼 𝐽 𝐾 (𝑞𝑝𝛾𝜇𝜏 𝐼𝑞𝑟 ) (𝜙†←→𝐷 𝐽
𝜇𝜙) (𝜙†𝜏𝐾𝜙)

O(4)
𝑞2𝜙4𝐷

𝜖𝐼 𝐽 𝐾 (𝑞𝑝𝛾𝜇𝜏 𝐼𝑞𝑟 ) (𝜙†𝜏 𝐽𝜙)𝐷𝜇 (𝜙†𝜏𝐾𝜙)
O𝑢2𝜙4𝐷 𝑖 (𝑢𝑝𝛾𝜇𝑢𝑟 ) (𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜙)
O𝑑2𝜙4𝐷 𝑖 (𝑑𝑝𝛾𝜇𝑑𝑟 ) (𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜙)

O𝑢𝑑𝜙4𝐷 + h.c. 𝑖 (𝑢𝑝𝛾𝜇𝑑𝑟 ) (�𝜙†←→𝐷 𝜇𝜙) (𝜙†𝜙)

𝝍2𝝓5 + h.c.

O𝑙𝑒𝜙5 (𝜙†𝜙)2(𝑙𝑝𝑒𝑟𝜙)
O𝑞𝑢𝜙5 (𝜙†𝜙)2(𝑞𝑝𝑢𝑟 �𝜙)
O𝑞𝑑𝜙5 (𝜙†𝜙)2(𝑞𝑝𝑑𝑟𝜙)

Table 25: Table with the dimension-8 operators of the classes 𝜓 2𝜙4𝐷 and𝜓 2𝜙5 .
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C

Comparison with the dimension-8 basis of

Ref. [244]

The O(𝑔2, 𝜆) contributions to the RGEs of the dimension-8 WCs were calculated in Ref. [244], using a

completely distinct approach than the one we present in 4.4.2. Here we check the consistency between

both results.

Let us show the method considering only the sub-matrix of the RGEs defined by the operators 𝜙8,

𝜙6𝐷2, 𝜙4𝐷4, 𝑋 2𝜙4, 𝑋𝜙4𝐷2. In Ref. [244], these operators correspond to the minimal amplitudes A𝑖 ,

𝑖 = 1, 19, 18, 44, 45, 46, 11, 10, 8, 6, 9, 7, 5, 4, 3, 2, 43, 41, 42, 40, 25, 24. The rotation matrix that moves

the corresponding WCs in our work to the WCs considered in Ref. [244] reads:

P =

��������
�

1

𝑃𝜙6𝐷2

𝑃𝜙4𝐷4

𝑃𝑋 2𝜙4

𝑃𝑋𝜙4𝐷2

��������
�
, (C.0.1)

with

𝑃𝜙6𝐷2 =

�
−1 2

−1 1

�
, 𝑃𝜙4𝐷2 =

����
1 1 0

1 0 1

2 0 0

����
, (C.0.2)
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APPENDIX C. COMPARISON WITH THE DIMENSION-8 BASIS OF REF. [244]

𝑃𝑋 2𝜙4 =

���������

𝑄

𝑄 𝑄

4𝑄

𝑄

𝑄

���������
, 𝑃𝑋𝜙4𝐷2 =

1
2

���
�
𝑄 𝑄

−𝑄 𝑄

2𝑄

���
�
, (C.0.3)

whereas

𝑄 =

�
1 −𝑖
1 𝑖

�
. (C.0.4)

Only if our results agree with those in Ref. [244], can our RGE matrix 𝛾 truncated to order O(𝑔2, 𝜆) be

related to theirs, 𝛾 , through:

𝑃−1𝛾𝑃 = 𝛾 . (C.0.5)

We have checked that Eq. (C.0.5) holds.
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D

A completion of the Standard Model

This appendix serves the purpose of proving the existence of a UV completion of the SM that generates

arbitrary values of 𝑐𝜙 , 𝑐𝜙𝐷 and 𝑐𝜙�. Let us extend the SM with three uncolored scalars: S ∼ (1, 1)0, Ξ0 ∼
(1, 3)0 and Ξ1 ∼ (1, 3)1. The numbers in parenthesis and the subscript indicate the representations of

𝑆𝑈 (3)𝑐 , 𝑆𝑈 (2)𝐿 and 𝑈 (1)𝑌 , respectively.

Let us assume that these fields all have the same mass 𝑀 much larger than the EW scale, and that

the full theory Lagrangian is:

LNP = 𝜅SS𝜙†𝜙 + 𝜆SS2𝜙†𝜙 + 𝜅Ξ0𝜙
†Ξ𝑎

0𝜎𝑎𝜙 +
�
𝜅Ξ1Ξ

𝑎†
1 𝜙

†𝜎𝑎𝜙 + h.c.
�
. (D.0.1)

(We ignored other terms for simplicity.) Integrating out the heavy fields at tree level at the scale 𝑀 , we

obtain [296]:

𝑐𝜙

Λ2 = −𝜆S
𝜅2S
𝑀4 ,

𝑐𝜙𝐷

Λ2 =
2
𝑀4 (2𝜅2Ξ1

− 𝜅2Ξ0
) ,

𝑐𝜙�

Λ2 =
1

2𝑀4 (4𝜅2Ξ1
+ 𝜅2Ξ0

− 𝜅2S) . (D.0.2)

The signs of the three tree-level generated dimension-6 WCs can be seen to be arbitrary and uncorrelated.

Note that dimension-eight operators arise too. Using MatchingTools [222], we find that (see also

Ref. [179]):

𝑐 (1)
𝜙4

Λ4 = 4
𝜅2Ξ0

𝑀6 ,
𝑐 (2)
𝜙4

Λ4 = 8
𝜅2Ξ1

𝑀6 ,
𝑐 (3)
𝜙4

Λ4 =
2
𝑀6 (𝜅2S − 𝜅2Ξ0

) . (D.0.3)
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APPENDIX D. A COMPLETION OF THE STANDARD MODEL

These couplings fullfill the positivity bounds 𝑐 (2)
𝜙4 ≥ 0, 𝑐 (1)

𝜙4 + 𝑐 (2)
𝜙4 ≥ 0 and 𝑐 (1)

𝜙4 + 𝑐 (2)
𝜙4 + 𝑐 (3)

𝜙4 ≥ 0 obtained

in Ref. [179] for arbitrary values of the 𝜅s. Note also that dimension-8 couplings can be zero, for instance

𝑐 (2)
𝜙4 , with non-zero dimension-6 WCs.
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E

Results for the box diagram

In this appendix we present the contribution to 𝑎𝜇 from box diagrams. These contributions are the ones

commonly considered in the literature.

For the box diagram with two heavy fermion propagators, figure 32a, the relevant (schematic) La-

grangian reads

L ⊃𝑦𝑅𝑇𝐼 𝐽Ψ1𝐼𝜙𝐽𝑒𝑅 + 𝑦𝐿𝑇𝐼 𝐽𝐾ℓ𝐿,𝐼𝜙†
𝐽Ψ2𝐾 + 𝑦𝑅𝐻𝑇𝐻

𝐼 𝐽𝐾Ψ2𝐼𝜙𝐽𝑃𝑅Ψ1𝐾

+𝑇𝐻
𝐼 𝐽𝐾𝑦

𝐿
𝐻Ψ2𝐼𝜙𝐽𝑃𝐿Ψ1𝐾 + h.c. , (E.0.1)

(a) (b)

Figure 32: Left: Box diagram which can contribute to 𝛼𝑒𝛾 with 2 heavy fermions. Right: Box diagram
which can contribute to 𝛼𝑒𝛾 with 1 heavy fermion and 1 heavy scalar. Doubled (single) lines correspond
to heavy (SM) particles. The 𝐵 or𝑊 bosons can be attached to any of the internal lines.
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APPENDIX E. RESULTS FOR THE BOX DIAGRAM

Figure 33: Box diagram which can contribute to 𝛼𝑒𝛾 with all heavy internal propagators. Doubled (single)
lines correspond to heavy (SM) particles. The 𝐵 or𝑊 bosons can be attached to any of the internal lines.

where we kept the same conventions for the gauge interactions of Ψ and Φ as in Eq. (5.1.7).

The contribution to 𝛼𝑒𝛾 is given by:

𝛼2,2
𝑒𝛾 =

�
𝑖

4

�
𝑒𝑦𝑅𝑦𝐿

�
𝜒=𝑅,𝐿

𝑦
𝜒
𝐻

�
𝑇𝐼 𝐽𝑇2𝐽𝐾𝑇

𝛾
𝐼 �𝐼𝑇

𝐻
𝐾2𝐼 �𝛾

𝜒
Ψ1

+𝑇𝐼 𝐽𝑇2𝐽𝐾𝑇𝐻
𝐾 �2𝐼𝑇

𝛾
𝐾𝐾 �𝛾

𝜒
Ψ2

+𝑇𝐼 𝐽𝑇2𝐽 �𝐾𝑇𝐻
𝐾2𝐼𝑇

𝛾
𝐽 � 𝐽𝛾

𝜒
𝜙

�
, (E.0.2)

where 𝜒 sums over the RH and LH chiralities and the kinematic factors read:

𝛾𝐿Ψ1
= 0 ,

𝛾𝑅Ψ1
= − 𝑖

16𝜋2

𝑀Ψ2

�
𝑀2

Ψ1
Log

�
𝑀2

Ψ1

𝑀2
Ψ2

�
−𝑀2

Ψ1
+𝑀2

Ψ2

�

𝑀Ψ1

�
𝑀2

Ψ1
−𝑀2

Ψ2

�2 ,

𝛾𝐿Ψ2
= 0 ,

𝛾𝑅Ψ2
= − 𝑖

16𝜋2

𝑀Ψ1

�
−𝑀2

Ψ2
Log

�
𝑀2

Ψ1

𝑀2
Ψ2

�
+𝑀2

Ψ1
−𝑀2

Ψ2

�

𝑀Ψ2

�
𝑀2

Ψ1
−𝑀2

Ψ2

�2 ,

𝛾𝐿Φ = 0 ,
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𝛾𝑅Φ =
−𝑖

16𝜋2𝑀Ψ1𝑀Ψ2

. (E.0.3)

For the box diagram with a light fermion and in which the heavy fermion couples to the RH muon, the

relevant Lagrangian reads:

L ⊃𝑦𝑅𝑇𝑒
𝐼 𝐽Ψ1𝐼Φ𝐽 𝑒𝑅 + 𝑦𝐿𝑇 1

𝐼 𝐽𝜓𝜙𝐽𝑃𝐿Ψ1𝐼 + 𝑦Φ𝑇Φ
𝐼 𝐽 ℓ𝐿𝐼Φ

†
𝐽 𝑃𝑅𝜓 + h.c. , (E.0.4)

where𝜓 is any light SM fermion which fits with the heavy field representations. The resulting contribution

to 𝛼𝑒𝛾 is:

𝛼22
𝑒𝛾 =

�
𝑖

4

�
𝑒𝑁𝑦𝑅𝑦𝐿𝑦Φ

�
𝑇𝑒
𝐼 𝐽𝑇

𝛾
𝐼 �𝐼𝑇

1
𝐼 �2𝑇

Φ
2𝐽𝛾Ψ

+𝑇𝑒
𝐼 𝐽𝑇

1
𝐼2𝑌𝜓𝑇

Φ
2𝐽𝛾𝜓 +𝑇𝑒

𝐼 𝐽𝑇
1
𝐼2𝑇

𝛾
𝐽 𝐽 �𝑇

Φ
2𝐽 �𝛾Φ

�
, (E.0.5)

with the following kinematic factors:

𝛾Ψ = −
𝑀2

Φ

� �
𝑀2

Ψ +𝑀2
Φ

�
Log

�
𝑀2

Ψ

𝑀2
Φ

�
− 2𝑀2

Ψ + 2𝑀2
Φ

�
�
𝑀2

Φ −𝑀2
Ψ

�3 ,

𝛾𝜓 =
−𝑀2

ΦLog
�
𝑀2

Ψ

𝑀2
Φ

�
+𝑀2

Ψ −𝑀2
Φ�

𝑀2
Ψ −𝑀2

Φ

�2 ,

𝛾Φ =
𝑀4

Ψ − 2𝑀2
Ψ𝑀

2
ΦLog

�
𝑀2

Ψ

𝑀2
Φ

�
−𝑀4

Φ�
𝑀2

Ψ −𝑀2
Φ

�3 . (E.0.6)

In the case the heavy fermion couples with the LH muon, the Lagrangian can be written as:

L ⊃𝑦𝑅𝑇 ℓ
𝐼 𝐽𝐾ℓ𝐿𝐼Φ

†
𝐽Ψ1𝐾 + 𝑦𝐿𝑇 2

𝐼 𝐽𝐾Ψ𝐼𝜙𝐽𝑃𝐿𝜓𝐾 + 𝑦Φ𝑇Φ
𝐼 𝐽𝜓 𝐼Φ𝐽 𝑒𝑅 + h.c. , (E.0.7)

resulting in the following contribution to 𝛼𝑒𝛾 :

𝛼22
𝑒𝛾 =

�
𝑖

4

�
𝑒𝑁𝑦𝑅𝑦𝐿𝑦Φ

�
𝑇 ℓ
2𝐽 𝐼𝑇

𝛾
𝐼𝐼 �𝑇

2
𝐼 �2𝐾𝑇

Φ
𝐾𝐽𝛾Ψ

+𝑇 ℓ
2𝐽 𝐼𝑇

2
𝐼2𝐾𝑇

𝛾
𝐾𝐾 �𝑇

Φ
𝐾 � 𝐽𝛾𝜓 +𝑇 ℓ

2𝐽 𝐼𝑇
2
𝐼2𝐾𝑇

Φ
𝐾𝐽 �𝑇

𝛾
𝐽 � 𝐽𝛾Φ

�
, (E.0.8)

where

𝛾Ψ =

𝑀2
Φ

��
𝑀2

Ψ1
+𝑀2

Φ

�
Log

�
𝑀2

Ψ1

𝑀2
Φ

�
− 2𝑀2

Ψ1
+ 2𝑀2

Φ

�
�
𝑀2

Ψ1
−𝑀2

Φ

�3 ,
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𝛾𝜓 = −

�
𝑀2

Ψ1
Log

�
𝑀2

Ψ1

𝑀2
Φ

�
−𝑀2

Ψ1
+𝑀2

Φ

�
�
𝑀2

Ψ1
−𝑀2

Φ

�2 ,

𝛾Φ =
𝑀4

Ψ − 2𝑀2
Ψ𝑀

2
ΦLog

�
𝑀2

Ψ

𝑀2
Φ

�
−𝑀4

Φ�
𝑀2

Ψ −𝑀2
Φ

�3 . (E.0.9)

When there are 3 heavy propagators in the box diagram, as shown in figure 33, the Lagrangian reads:

L ⊃ 𝑦𝑅𝑇
1
𝐼 𝐽Ψ1𝐼Φ𝐽 𝑒𝑅 + 𝑦𝐿𝑇 2

𝐼 𝐽 ℓ𝐿Ψ2𝐼Φ
†
𝐽 + 𝑦𝑅𝐻𝑇𝐼 𝐽𝐾Ψ2𝐼𝜙𝐽𝑃𝑅Ψ1𝐾

+ 𝑦𝐿𝐻𝑇𝐼 𝐽𝐾Ψ2𝐼𝜙𝐽𝑃𝐿Ψ1𝐾 + h.c., (E.0.10)

and the resulting 𝛼𝑒𝛾 is given by:

𝛼22
𝑒𝛾 =

�
𝑖

4

�
𝑦𝑅𝑦𝐿

�
𝜒=𝑅,𝐿

𝑦
𝜒
𝐻

�
𝑇 2
𝐼 𝐽𝑇

𝐻
𝐼2𝐾𝑇

𝛾
𝐾𝐾 �𝑇

1
𝐾 � 𝐽𝛾

𝜒
Ψ1

+𝑇 2
𝐼 𝐽𝑇

𝛾
𝐼𝐼 �𝑇𝐼 �2𝐾𝑇

1
𝐾𝐽𝛾

𝜒
Ψ2

+𝑇 2
𝐼 𝐽𝑇𝐼2𝐾𝑇𝐾𝐽 �2𝑇

𝛾
𝐽 𝐽 �𝛾

𝜒
Φ

�
, (E.0.11)

where

𝛾𝐿Ψ1
=

𝑖

16𝜋2𝑀
2
Φ

�
((𝑀Ψ2 −𝑀Ψ1) (𝑀Ψ1 +𝑀Ψ2)

�
𝑀2

Φ(𝑀Ψ2 −𝑀Ψ1) (𝑀Ψ1 +𝑀Ψ2)
�
𝑀2

Ψ1

�
𝑀2

Φ − 2𝑀2
Ψ2

�

+𝑀4
Φ

�
Log

�
𝑀2

Ψ1

𝑀2
Φ

�
− (𝑀Φ −𝑀Ψ1) (𝑀Ψ1 +𝑀Φ) (𝑀Ψ2 −𝑀Φ) (𝑀Ψ2 +𝑀Φ)

�
𝑀2

Ψ1

�
𝑀2

Ψ2
− 2𝑀2

Φ

�

+𝑀2
Ψ2
𝑀2

Φ

��
+𝑀4

Ψ2

�
𝑀2

Ψ1
−𝑀2

Φ

�3
Log

�
𝑀2

Ψ1

𝑀2
Ψ2

� �
×

1

(𝑀Ψ1 −𝑀Ψ2)2(𝑀Ψ1 +𝑀Ψ2)2
�
𝑀2

Φ −𝑀2
Ψ1

�3
(𝑀Ψ2 −𝑀Φ)2(𝑀Ψ2 +𝑀Φ)2

, (E.0.12)

𝛾𝑅Ψ1
=

𝑖

16𝜋2𝑀Ψ1

�
𝑀Ψ2 (𝑀Ψ2 −𝑀Ψ1) (𝑀Ψ1 +𝑀Ψ2)

�(𝑀Ψ1 −𝑀Φ) (𝑀Ψ1 +𝑀Φ)

(𝑀Ψ2 −𝑀Φ) (𝑀Ψ2 +𝑀Φ)
�
𝑀2
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Φ + 2𝑀4
Φ

�
+𝑀4
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Φ

�
Log
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��
×
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1
(𝑀Ψ1 −𝑀Ψ2)2(𝑀Ψ1 +𝑀Ψ2)2(𝑀Ψ1 −𝑀Φ)3(𝑀Ψ1 +𝑀Φ)3(𝑀Ψ2 −𝑀Φ)2(𝑀Ψ2 +𝑀Φ)2 ,

(E.0.13)
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We cross-checked this last result considering a box diagram with only heavy internal propagators with

Eq. (4.4) of Ref. [275] and found perfect agreement in the limit of degenerate masses.
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