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Abstract 

     We present results of theoretical study of elastic shear modulus of magnetic gels, consisting 

of single non Brownian magnetic particles, homogeneously (gas-like) distributed in an elastic 

matrix. The composite is placed in magnetic field, perpendicular to the direction of the sample 

shear. Effect of both, magnetically hard and soft particles is studied. In order to get 

mathematically rigorous results, we have restricted ourselves by the analysis of the composites 

with low concentration of the particles and neglected any interactions between them. Only small 

deformations of the system were considered.  Analysis shows that effect of magnetic field on the 

macroscopic (measurable) shear modulus of the composite can be comparable with that, 

provided by the presence of the rigid inclusions in the elastic matrix. The suggested asymptotic 

model can be a robust background for the study of the systems with moderate or high 

concentration of the particles.  

Keywords: Magnetic gels; shear deformations; elastic modulus 

I. Introduction.  

Magnetic gels and elastomers are composites of fine magnetic particles in soft polymer 

matrixes. Coupling of rich set of physical properties of polymer and magnetic materials is 

very promising for many modern and perspective technologies. Discussions of technical and 

biomedical application of these systems can be found, for example, in [1-12]. A short 

overview of works on mechanical properties and behavior of magnetic polymers is given in 

[13].   

    Uniaxial elongation and magnetostriction effects in magnetic gels have been studied in 

many works (see, for example [13-19]). The shear deformations of these systems also present 

significant interest both from scientific and practical points of view. Theoretical studies of the 

shear effects in the composites with the particles, united in linear chain-like aggregates, have 

been done in [20-22]. The general conclusion of these works is that an external magnetic field 

can significantly increase the shear modulus of these composites. 



3 
 

      As a rule, the chain-like aggregates appear in magnetic polymers on the stage preceding 

the composite curing due to the action of an external magnetic field (field of polymerization). 

On the other hand, very often magnetic gels are prepared without this field. The spatial 

distribution of particles in these systems is rather random and isotropic (see, for example, 

[15,17,23]). The aim of this work is theoretical study of effect of an external magnetic field on 

the  shear elastic modulus of magnetic gels with homogeneous and isotropic distribution of 

non Brownian particles in a continuous  matrix.  It should be noted that usually the Brownian 

effects are negligible for the magnetic particles with the diameter 100nm and more. 

Composites with the particles of these sizes present the main interest from the point of view 

of the magnetomechanic effects, since these effects, in the systems with the smaller particles, 

as a rule, are very weak. 

     The matrix is supposed elastic with the linear law of deformation and incompressible. It 

should be noted that the last condition is fulfilled not for all gels; however it allows us to 

restrict calculations and to get the final results in transparent forms. Analysis of effects of the 

composite compressibility can be considered as a natural generalization of this model.  

     The principal and not overcome problem of the theory of composite materials is account of 

multiparticle interactions, both the direct ones and interactions through the perturbations of 

the current matrix Usually these effects are taken into account by using various empirical and 

semi empirical approaches, which accuracy a priory is unknown [24].  

     In order to achieve mathematically rigorous results, here we will consider the systems with 

low concentration of the particles and neglect any interactions between them. One needs to 

admit that the low-concentrated systems are not very interesting from the practical point of 

view. However this limiting model allows us to avoid intuitive and heuristic constructions. 

That is why the strict results can be considered as a robust asymptotic background for the 

analysis of the concentrated system with the interacting particles.  

   The structure of the paper is the following. In the part II we study the composite with 

identical spherical magnetically hard particles; each particle has a permanent magnetic 

moment bounded with the particle body. Part III deals with the systems of magnetically soft 

ellipsoidal particles with random orientations of the ellipsoids axes.  

 

II. Magnetically hard spherical particles.  

    We consider a system of identical spherical non Brownian particles embedded in an elastic 

continuous medium. All particles have the permanent magnetic moment m “frozen” in the 

particle body. This means that the moment can turn round only with the particle. We suppose 
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that the volume concentration 𝜑 of the particles is low and will neglect any interactions between 

them. Additionally, for the maximal simplification of calculations, we suppose the strong 

coupling between the particles and the host gel, i.e. the no-slipping condition on the particles 

surface.   

      Let us suppose that the composite is placed in a uniform magnetic field H and experiences 

the small shear deformation in the plane, perpendicular to the field.  Since the concentration of 

the particles in the composite is supposed small, we will not take into account the difference 

between   the external field H and the field inside the sample. 

    It is convenient to introduce a Cartesian coordinate system with the axis Oz in the field 

direction and the axis Ox in the direction of the shear.  By using the mathematical similarity 

between the stationary Navier – Stokes equation of Newtonian incompressible fluid at the low 

Reynolds number and the Lame equation of deformation of an elastic poorly compressible 

medium [24], as  well as the results of theory of dilute magnetic fluids (see, for example, [25]), 

one can present the needed component of the macroscopic (measurable) stress 𝝈 in the 

composite as: 

𝜎 = 𝐺0(1 + 2.5𝜑)𝛾 + 𝜇0
𝑚

2𝑣
< 𝑒𝑥 > 𝐻 ,   𝜎 = 𝜎𝑥𝑧                                                                     (1) 

     Here 𝐺0 is the shear modulus of the pure polymer matrix, =
𝜕𝑢𝑥

𝜕𝑧
 , 𝑢𝑥  is the component of the 

macroscopic (measurable) vector  u of the composite displacement, 𝜇0 is the magnetic 

permeability of vacuum, 𝑣 is volume of the particle, 𝑒𝑥 is the component of the unit vector 𝒆, 

directed along the magnetic moment m of a particle, the angle brackets  <…>  mean averaging 

over the orientations of all particles.  Our aim now is to determine the mean component < 𝑒𝑥 >.  

      To this end we will consider an arbitrary particle situated in the field H and denote by  𝒆0its 

initial (before the composite deformation) vector  𝒆 .  Equation for this vector can be obtained by 

using equations [25-27] of magnetic particle rotation in a viscous fluid and the mathematical 

identity of the Navier-Stokes and Lame equations. 

    In the chosen Cartesian coordinate system equations [25-27] for the components of the vector    

e can be presented as: 

𝑑𝑒𝑥

𝑑𝑡
=

1

2
𝛾̇𝑒𝑧 − 𝑠𝑒𝑥𝑒𝑧,                                                                                                              (2) 

𝑑𝑒𝑧

𝑑𝑡
= −

1

2
𝛾̇𝑒𝑥 + 𝑠(1 − 𝑒𝑧

2)  
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𝑠 =
𝜇0𝑚𝐻

6𝜂0𝑣
 

     Here 𝛾̇  is the shear rate of the suspension flow, 𝜂0 is viscosity of the current fluid. These 

equations, in the inertialess approximation, correspond to the balance between the hydrodynamic 

and magnetic torques, acting on the particle. 

    To get the equations for the particle turn in an elastic medium, we must replace the shear rate 

𝛾̇ to the shear strain  𝛾; the viscosity 𝜂0 to the matrix shear modulus G0; the derivates 
𝑑𝑒𝑖

𝑑𝑡
 to the 

deviations 𝛿𝑒𝑖 = 𝑒𝑖 − 𝑒𝑖0 of the vector 𝒆 components from their  initial (before the macroscopic 

deformation and the  field application) magnitudes 𝑒𝑖0 [24].  As a result, the needed equations 

read:  

𝛿𝑒𝑥 =
1

2
𝛾𝑒𝑧 − 𝜅𝑒𝑥𝑒𝑧 ,                                                                                                              (2) 

𝛿𝑒𝑧 = −
1

2
𝛾𝑒𝑥 + 𝜅(1 − 𝑒𝑧

2)  

𝜅 =
𝜇0𝑚𝐻

6𝐺0𝑣
 

    The classical Lame equations correspond to the linear Hook approximation with respect to the 

matrix deformation. Keeping it in mind, in the linear approximation with respect to  𝛾 after 

transformations we get:  

𝛿𝑒𝑥 =
1

2
𝛾 (

𝑒𝑧0

1+𝜅𝑒𝑧0
+

1−𝑒𝑧0
2 +𝑒𝑥0

2

(1+𝜅𝑒𝑧0)(1+2𝜅𝑒𝑧0)
) − 𝜅2 𝑒𝑥0(1−𝑒𝑧0

2 )

(1+𝜅𝑒𝑧0)(1+2𝜅𝑒𝑧0)
                                                  (3) 

    We suppose that initially the particles had random orientation of their magnetic moments, i.e. 

< 𝑒𝑥0 > = 0.  Therefore 

< 𝑒𝑥 >=< 𝑒𝑥0 > +< 𝛿𝑒𝑥0 > =< 𝛿𝑒𝑥0 >.                                                                             (4) 

This is convenient to introduce the spherical coordinate system with the polar 𝜃 and azimuthal 𝜙 

angles, so that: 

𝑒𝑧0 = cos 𝜃 ;   𝑒𝑥0 = sin 𝜃 cos 𝜙                                                                                              (5) 

By using (5), one can get: 

< 𝛿𝑒𝑥 >=  
1

4𝜋
∫ sin 𝜃𝑑𝜃

𝜋

0
∫ 𝛿𝑒𝑥𝑑𝜙

2𝜋

0
                                                                                         (6) 

Substituting (3) and (5) into (6), we obtain: 
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< 𝛿𝑒𝑥 >=
1

4
𝛾 (∫

𝑥

1+𝜅𝑥
𝑑𝑥 + 1.5 ∫

1−𝑥2

(1+𝜅𝑥)(1+2𝜅𝑥)
𝑑𝑥

1

−1

1

−1
)                                                             (7) 

The integrals  (7) can be calculated analytically; however they have cumbersome forms, that is 

why we omit these forms here.  

    Parameter 𝜅 presents the ratio of the magnetic and elastic torques, acting on the particle. The 

Lame equations of the elastic deformation of a continuum are valid only in the case of small 

deformations of this medium. In part, this means that the angle of the particle turn, under the 

action of the magnetic and elastic torques, must be small for these equations applicability. This 

leads to the condition 𝜅 < 1 of restriction of the linear approximation. 

     Combining eqs. (7) and (1), we come to the following relations: 

𝜎 = 𝐺1𝛾;                                                                                                                                   (8) 

𝐺1 = 𝐺0(1 +
5

2
𝜑 + 𝑞(𝜅)𝜑)    

𝑞(𝜅) =
3

4
𝜅 (∫

𝑥

1 + 𝜅𝑥
𝑑𝑥 + 1.5 ∫

1 − 𝑥2

(1 + 𝜅𝑥)(1 + 2𝜅𝑥)
𝑑𝑥

1

−1

1

−1

) 

Parameter G1 is the effective shear modulus of the composite with the magnetically hard spheres, 

q reflects the addition to G1 due to the magnetic field effect.   Results of this parameter 

calculation are shown in Fig.1.  

 

Fig.1 Parameter q in (8) vs. the dimensionless magnetic field  

   In the frame of the used approximation, effect of magnetic field on the effective shear modulus 

of the composite can achieve about one fourth of the effect of the solid inclusions, described by 

the Einstein term 2.5. It should be noted that the situation when  𝜅~1 or more is beyond of the 
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approximation of small deformation inside the elastic matrix. The linear Lame equations cannot 

be used for description of the particle rotation under the magnetic and mechanic torques for the 

large values of . Analysis of this case requires numerical solution of non linear equations of the 

polymer matrix deformation.  

III. Ellipsoidal magnetically soft particles. 

    In this part we consider a system of ellipsoidal magnetically soft particles randomly 

distributed in an elastic matrix. For the maximal simplification of calculations and to get 

transparent physical results, we will restrict ourselves by the approximation of the linearly 

magnetizable particles.  We suppose again the strong coupling of the particles with the polymer 

matrix and the non slipping condition on the particles surface.  The generalization to the non 

linear magnetization as well as to the finite coupling is not difficult, but leads to cumbersome 

calculations and final results.  

    

We again suppose that the composite experiences the deformation of simple shear with the mean 

displacement u  in the direction Ox and the gradient of the displacement along the axis Oz . 

Magnetic field H is aligned along the axis Oz.  

     The analytical form for the components of the stress tensor in suspension of ellipsoidal 

particles is given in [26,27]. In order to get the expression for the stress in the elastic composite, 

we replace, in the relation [26,27], the shear rate 𝛾̇ to the shear strain 𝛾  and coefficient of the 

current fluid viscosity 𝜂0  to the shear modulus 𝐺0  of the elastic matrix. As a result, instead of 

eq. (1), we get 

 𝜎 = 𝐺0 {1 + 𝜑 [𝛼 +
1

2
[(𝜉 + 𝛽𝜆 )(< 𝑒𝑥

2 > +< 𝑒𝑧
2 >) + 𝛽(< 𝑒𝑧

2 > −< 𝑒𝑥
2 >) + 2(𝜒 − 2𝜆𝛽) −

< 𝑒𝑥
2𝑒𝑧

2 >]𝛾 + 𝜑𝑔ℎ2 < 𝑒𝑥𝑒𝑧 >]} ,                                                                                               (9)                                

   𝜎 = 𝜎𝑥𝑧 ; 𝛾 =
𝜕𝑢𝑥

𝜕𝑧
 ,       𝑔(𝑟) =

(𝜇𝑝−1)
2

(𝑁⊥−𝑁∥)

(1+(𝜇𝑝−1)𝑁⊥)(1+(𝜇𝑝−1)𝑁∥)
,      ℎ = √

𝜇0𝐻2

2𝐺0
 

                                                     

Here 𝒆  is the unit vector aligned along the particle axis of symmetry;   𝛼, 𝛽, 𝜆, 𝜉 and 𝜒 are 

functions on the aspect ratio r of the ellipsoidal particle (the ratio of the particle axis of 

symmetry to its diameter),  𝜇𝑝 is the particle relative magnetic permeability, 𝑁∥  and 𝑁⊥ are the 

demagnetizing factors of the particle along and perpendicularly its axis of symmetry 

respectively.  The explicit forms of the shape-functions 𝛼, 𝛽, 𝜆, 𝜉, 𝜒  as well as of the factors  𝑁∥  

and 𝑁⊥ are given in the Appendix.   

    We will present again the components of the vector 𝒆 of an arbitrary particle as  
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𝑒𝑖 = 𝑒𝑖0 + 𝛿𝑒𝑖, i=x,z.  Because of the initial random orientation of the particles, we get: 

< 𝑒𝑖0
2 >=

1

3
;  < 𝑒𝑥0𝑒𝑧0 >= 0; < 𝑒𝑥0

2 𝑒𝑧0
2 >=

1

15
.  By using these relations in (9), in the linear 

approximation with respect to 𝛾 one can obtain: 

𝜎 = 𝐺0 {1 + 𝜑[𝛼 +
1

3
(𝜉 + 𝛽𝜆 ) +

1

15
(𝜒 − 2𝜆𝛽)]𝛾 + 𝜑𝑔ℎ2(< 𝑒𝑥0𝛿𝑒𝑧 > +< 𝑒𝑧0𝛿𝑒𝑥 >)} (10) 

 

   Equations [27] for the vector 𝒆  of a magnetizable ellipsoid in a viscous fluid  can be written  

down as: 

𝑑𝑒𝑥

𝑑𝑡
=

1

2
𝛾̇[𝜆(1 − 2𝑒𝑥

2) + 1]𝑒𝑧 − Ψ𝑒𝑥𝑒𝑧
2,                                                                                    

𝑑𝑒𝑧

𝑑𝑡
=

1

2
𝛾̇[𝜆(1 − 2𝑒𝑧

2) − 1]𝑒𝑥 + Ψ(𝑒𝑧 − 𝑒𝑧
3)  

Ψ(𝑟) =
𝜇0𝐻2

2𝜂0

𝑔(𝑟)

3𝛿(𝑟)
 

 

Here 𝛾̇  and 𝜂0    are the shear rate and viscosity of the fluid;   𝛿(𝑟)  is a function of the particle 

aspect ratio r (don’t miss with the Dirac function). The explicit form of this function is given in 

the Appendix.   

Replacing again  𝛾̇ to 𝛾; 𝜂0 to 𝐺0 and 
𝑑𝑒𝑖

𝑑𝑡
  to 𝛿𝑒𝑖, we get: 

 

𝛿𝑒𝑥 =
1

2
𝛾[𝜆(1 − 2𝑒𝑥

2) + 1]𝑒𝑧 − 𝜓𝑒𝑥𝑒𝑧
2,                                                                                   (11) 

𝛿𝑒𝑧 =
1

2
𝛾[𝜆(1 − 2𝑒𝑧

2) − 1]𝑒𝑥 + 𝜓(𝑒𝑧 − 𝑒𝑧
3)  

𝜓(𝑟) = ℎ2 𝑔(𝑟)

3𝛿(𝑟)
                                                                                                                          (12) 

Parameter h  presents the ratio of the magnetic and elastic torques, acting on the particle in the 

non deformed composite. Similar to the previous case of the magnetically hard particles, the 

linear Lame equations of the small deformations of the elastic matrix are applicable only when 

the inequality h<1 is held.  

    Substituting the form  𝑒𝑖 = 𝑒𝑖0 + 𝛿𝑒𝑖 into eq. (11), after simple transformations, in the linear 

approximation in  , we come to the relations: 

< 𝑒𝑧0𝛿𝑒𝑥 >=
1

2
𝛾 [<

𝐴𝑒𝑧0

1−𝜓𝑒𝑧0
3 > −𝜓 <

2𝐵𝑒𝑥0𝑒𝑧0

(1−𝜓𝑒𝑧0
3 )(1−𝜓(1−3𝑒𝑧0

2 ))
>]                                           (13) 

< 𝑒𝑥0𝛿𝑒𝑧 >=
1

2
𝛾 <

𝑒𝑥0𝐵

1−𝜓(1−3𝑒𝑧0
2 )

>,                                                                                        

Here 

𝐴 = [𝜆(1 − 2𝑒𝑥0
2 ) + 1]𝑒𝑧0 , 𝐵 = [𝜆(1 − 2𝑒𝑧0

2 ) − 1]𝑒𝑥0 
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Combining (10) and (13), we get: 

𝜎 = 𝐺2𝛾,                                                                                                                                      (14) 

𝐺2 = 𝐺0{1 + 𝜑𝑓(𝑟, ℎ)},     

𝑓(𝑟, ℎ) = [𝑓1(𝑟) + 𝑓2(𝑟, ℎ)] 

𝑓1 = 𝛼 +
1

3
(𝜉 + 𝛽𝜆 ) +

1

15
(𝜒 − 2𝜆𝛽) 

𝑓2 =
3

2
𝜓𝛿(𝑟) [<

𝐴𝑒𝑧0

1 − 𝜓𝑒𝑧0
3 > −ℎ2 <

2𝐵𝑒𝑥0𝑒𝑧0

(1 − 𝜓𝑒𝑧0
3 )(1 − 𝜓(1 − 3𝑒𝑧0

2 ))
+<

𝑒𝑥0𝐵

1 − 𝜓(1 − 3𝑒𝑧0
2 )

>] 

 

Here G2  is the effective shear modulus for the composite with the magnetically soft ellipsoidal 

particles. The terms   f1  describes effect of the rigid randomly oriented particles on this modulus; 

the term f2  reflects the influence of the magnetic field H on G2,  f  indicates the total effect of the  

particles on the elastic modulus G2 . For the spherical particles (𝑟 = 1) the relations, given in the 

Appendix, read:  𝛼 =
5

2
;  𝛽, 𝜆, 𝜉, 𝜒, 𝜓 =0. Therefore, the Einstein formula  𝐺2 = 𝐺0 (1 +

5

2
𝜑)  for 

these particles is fulfilled.  

Some results of calculations of the terms f,  f1 and f2   , vs. the dimensionless magnetic field h as 

well as vs. the particle aspect ratio r , are shown in Figs. 2 and 3 respectively.  

 

Fig.2. Parameters 𝑓1, 𝑓2   and 𝑓, which determine  the effective shear modulus  G2  in eq. (14) of 

the composite with the magnetically soft ellipsoids vs. the dimensionless magnetic field h. (a) 

and (b) – the particle aspect ratio r = 0.01 and 10 respectively. Figures near the curves: 1 – 𝑓1;  2 

-  𝑓2; 3 – 𝑓 = 𝑓1 + 𝑓2 
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Fig.3. Parameters 𝑓1, 𝑓2,𝑓 vs. the particle aspect ratio r.  The dimensionless magnetic field  h=1. 

Figures near curves mean the same as in Fig.2.  

 

   These results demonstrate that the “magnetic” term  𝑓2  can give contribution to 𝐺2 very close 

to the ”rigid particles”  term  𝑓1. This contribution is especially significant for the highly 

elongated particles  (r>>1).  For the oblate particles (r<1) and the relatively weak fields (h<1) 

the term 𝑓2 is much less than 𝑓1.  

 

Conclusion.  

We present results of theoretical study of effect of uniform magnetic field on the shear modulus 

of a ferrogels, consisting of magnetic particles randomly distributed in a polymer matrix. In 

order to achieve mathematically strict results, we have restricted ourselves by analysis of the 

dilute systems and neglected any interactions between the particles. The results show that 

magnetic field increases the modulus and this effect can be quite comparable with that, provided 

by the particles as rigid inclusions in the composite. We believe that the results, obtained in the 

limiting case of the low concentrated systems, can be a robust background for the development 

of theory of the moderately and highly concentrated soft magnetic composites. It should be 

noted, that the we restricted ourselves by the spherical shape of the magnetically hard particles 

just for maximal simplification of mathematical part of the work. Combining the approaches, 

considered in the parts II and III, one can easily generalize this analysis for the magnetically hard 

ellipsoids.  
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APPENDIX 

The shape-coefficients ,… , as functions of the particle aspect ratio r , have the 

following forms [25]: 

0

1
)(





=

r
r , 

( )
( )00

2

2 12
)(




+

−
=

rr

r
r , 
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
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+
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−



=

rrrr
r , 

1

1
)(

2

2

+

−
=

r

r
r , 𝛿(𝑟) =

𝛽(𝑟)

3𝜆(𝑟)
 

Here 

( )







−−−

−
+

−
−= 1212ln

1

12

1

1 22

220 rrr
rrr

 , 

( )







−+−

−
−

−
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1

1

1 22

220 rrr
r

r
r

 , 

( )
( ) ( )








−−−

−
−−

−
= 1212ln

12

3
52

14

1 22

2

2

22
0 rrr
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rr

r
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( )
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






−+−

−
−

+

−
= 1212ln

12

32

1

1 22

2

2

22
0 rrr
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The demagnetizing shape-factors 𝑁∥ and 𝑁⊥ are [28] 
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