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Abstract 

     The paper deals with theoretical study of elastic shear properties of  a magnetic gel, consisting 

of  single magnetizable particles, homogeneously (gas-like) distributed in an elastic matrix.  We 

suppose that the composite is placed in magnetic field, perpendicular to the direction of the 

sample shear. In order to get mathematically rigorous results, we have restricted ourselves by the 

analysis of the system with low concentration of the particles.  Magnetic end elastic (through the 

matrix deformation) interaction between them is taken into account in the framework of the 

regular approximation of the pair interaction. Analysis shows that external magnetic field 

decreases macroscopic shear modulus of the composite with law concentration of the particles 

and increases this modulus if the particles concentration exceeds some threshold magnitude. The 

decreasing dependence of the modulus on the macroscopic shear is estimated.   We believe that 

the suggested rigorous approach can be a robust background for the study of the systems with  

high concentration of the particles.  
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I. Introduction.  

Magnetic gels are composites of fine magnetic particles in soft polymer matrixes. Coupling of 

rich set of physical properties of polymer and magnetic materials is very promising for many 

modern and perspective technologies. Discussions of technical and biomedical applications of 

these systems can be found, for example, in [1-12].  

Macroscopic mechanic properties of these composites and effect of external magnetic field on 

these properties and behavior of these materials is actively discussed and studied problem.   A 

short overview of works on this subject is given in [13].   

    Uniaxial elongation and magnetostriction effects in magnetic gels have been studied in 

many works (see, for example [13-19]). The shear deformations of these systems also present 
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significant interest both from scientific and practical points of view. Theoretical studies of the 

shear effects in the composites with the particles, united in the linear chain-like aggregates, 

have been done in [20-22]. The general conclusion of these works is that an external magnetic 

field can significantly increase stiffnes of these composites. 

      The chain-like structures appear in magnetic polymers on the stage preceding the 

composite curing due to the action of an external magnetic field (field of polymerization). On 

the other hand, very often magnetic gels are prepared without the field. The spatial 

distribution of particles in these systems is rather random and isotropic (see, for example, 

[15,17,23]).  

     The aim of this work is theoretical study of effect of external magnetic field on the shear 

elastic modulus of magnetic gels with homogeneous and isotropic distribution of magnetic 

particles in the polymer matrix.  It should be noted that many factors affect the macroscopic 

properties of the composite materials: shape of the particles; their magnetic properties and law 

of magnetization; the ratio of the particles size to the size of the host polymer cell; the 

chemical interaction between the particles with the polymer macromolecules.  To achieve the 

deep insight of the microscopic nature of the macroscopic properties of magnetic polymers, 

these factors must be thoroughly studied.   

    In this work we focus on the effect of magnetic interaction between spherical, linearly 

magnetizable particles, randomly distributed in an elastic continuous media. This means, in 

part, we suppose that the size of the particles is much more than the size of the polymer cell. 

This situation is quite typical for the synthetic magnetic gels with micron-sized particles of 

the magnetic filler.  We will suppose also that the macroscopic shear of the composite is small 

and the matrix obeys the linear law of deformations.  Next, we assume that the gel is 

incompressible. It should be noted that the condition of the host polymer incompressibility is 

fulfilled not for all magnetic gels. However it allows us to restrict calculations and to get the 

final results in the transparent forms. Analysis of effects of the composite compressibility can 

be considered as a natural generalization of this model.  

     The principal and not overcome problem of the theory of composite materials is account of 

effects of multiparticle interactions [24]. Usually these interactions are taken into account by 

using various empirical and semi empirical approaches, whose accuracy, a’ priory, is 

unknown.  

     In order to achieve mathematically rigorous results, we will consider the systems with 

moderate and low concentrations of the particles; effects of the interparticle interactions will 

be taken into account in the framework of the regular pair approximation.  This approach 

allows us to avoid intuitive and heuristic theoretical constructions. That is why it can be 
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considered as necessary robust background for the development of theoretical approaches for 

study of the concentrated systems where the multiparticle interactions are very significant. 

 

II. Physical model and main approximations.  

    We consider a system of identical spherical non Brownian magnetizable particles embedded in 

an elastic continuous medium.  For maximal simplification of the mathematics, we restrict 

ourselves by the analysis of the case of moderate or low magnetic fields and suppose the linear 

dependence of the particle magnetization on the local magnetic field.  

     Let us suppose that the composite is placed in a uniform magnetic field H and experiences the 

small shear deformation in the plane, perpendicular to the field (see Fig.1).  

 

Fig.1. Illustration of the system under consideration. 

 

    It is convenient to introduce a Cartesian coordinate system with the axis Oz in the field 

direction and the axis Ox in the direction of the shear.  By using the well known results of theory 

of magnetizable media (see, for example, [25,26]), as well as the similarity between the Navier – 

Stokes equation of a Newtonian incompressible fluid flow and the Lame equation of deformation 

of an elastic incompressible medium [24,], one can present the needed component of  the 

macroscopic (measurable) stress 𝝈 in the composite as:       

𝜎 = 𝐺𝑒𝑙𝛾 +
1

2
𝜑𝜇0 < 𝑀𝑥 > 𝐻                                                                                              (1)                    
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Here 𝑀𝑥 is x component of a particle magnetization, the angle brackets mean averaging over all 

relative positions of the particles,  𝐺𝑒𝑙 is a part of the composite effective shear modulus, 

provided by the presence of the rigid spherical inclusions, 𝛾 =
𝜕𝑢𝑥

𝜕𝑧
 , 𝑢𝑥  is the component of the 

macroscopic (measurable) vector  u of the composite displacement, 𝜑 is volume concentration of 

the particles,   𝜇0 is the vacuum magnetic permeability. By using the Batchelor and Green results  

[27], for a low or moderately concentrated composites one can write down 

𝐺𝑒𝑙 = 𝐺0(1 + 2.5𝜑 + 5.2𝜑2)                                                                                                      (2)                                                       

where 𝐺0 is the shear modulus of the pure polymer matrix.  Usually this formula leads to good 

agreement with experiments till the concentrations 𝜑~10 − 15%. 

 One needs to note that, in principle, the solid particles can change the conformation of the 

macromolecules of the host polymer and, therefore, the matrix elastic modulus. The possibility 

of these transformations and their effect on the mechanic properties of the composites has been 

discussed, for example, in [28].  It was supposed that these transformations were induced by the 

chemical interaction of the ions, dissoluted from the particles surface, and the polymer 

macromolecules. Here we will neglect these effects and focus on the mechanic and magnetic 

interactions between the particles.   

    Our main goal now is to determine the component  <Mx > of the particle magnetization.   In 

order to get the mathematically rigorous results, we will estimate  <Mx > taking into account 

interaction only between two particles, ignoring the effect of any third one. It should be noted 

that the Batchelor – Green formula (2) has been derived in the framework of the pair 

approximation, taking into account mechanic interaction between the particles through 

perturbations of the carrier medium.  

    Let us consider two particles and put the origin of the Cartesian coordinate system, shown in 

Fig.1, in the center of one of them.  We will denote the radius vector of the center of the second 

particle by r . This situation is illustrated in Fig.2; the coordinate axis Oy is not shown for 

simplicity.  
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Fig.2. Two interacting particles and the used coordinate system. 

The vector u of the macroscopic displacement of the composite is aligned along the axis Ox, its 

gradient – in the Oz direction.   

     The component Mx  of magnetization of a particle, shown in Fig.2, appears because of 

magnetic interaction and mutual magnetization of the particles. The simplest way to take this 

interaction into account is to use the well known dipole-dipole approximation.  However, this 

approximation describes quite well interaction between the particles only when they are far from 

each other and the distance r between their centers significantly exceeds diameter d of the 

particle. At the same time the effects of the mutual magnetization are especially strong at the 

particles close dispositions.  At the small distances  r the interaction is multipolar.  We will 

estimate the energy U(r) of the particles magnetic interaction, by using the extrapolation 

formula, obtained in [29] from the results of numerical study of the problem on two linearly 

magnetizable  particles:  

    𝑈 = −3𝜇0𝜇𝑓𝐻2𝑣 ∑ (
𝛼−1

𝛼+2
)

𝑝𝑘

[
𝑎𝑘

(𝑞−𝑏𝑘)𝑘
+

𝑐𝑘

(𝑞−𝑑𝑘)𝑘
cos2 𝜃]7

𝑘=3                                                (4) 

Here q=2r/d;  𝛼 = 𝜇𝑝/𝜇𝑓 , where 𝜇𝑝 is magnetic permeability of the particle; 𝑣 = 𝜋𝑑3/6 is the 

particle volume; pk, ak…dk are parameters, whose values are tabulated in [29]. For q>>1 the fit 

formula (4) coincides with the well known formula for the dipole-dipole approximation.    

      The y-component of the torque 𝚪, acting on the cluster of the particles, can be calculated 

from two general relations. On the one hand Γy = −
𝜕𝑈

𝜕θ
cos 𝜙 [29,30]; on the other one  Γy =

−2𝜇0𝑣𝑀𝑥𝐻 [26] (multiplier 2 appears here because we deal with a cluster, consisting of two 

particles). Equating these relations for y, taking into account the relations  𝜇𝑓 = 1, 𝛼 ≫ 1 are 
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fulfilled for typical magnetic polymers, we find Mx for the given relative disposition of the 

particles: 

𝑀𝑥 = 3𝐻 ∑
𝑐𝑘

(𝑞−𝑑𝑘)𝑘
sin 𝜃 cos 𝜃 cos 𝜙7

𝑘=3                                                                                (5) 

Here 𝜙 is the azimuth angle, not shown in Fig.2 for brevity.   

    Let 𝑔(𝒓) be the function of statistic distribution over relative positions of the particles. For the 

convenience we suppose that the following normalization condition 𝑔 → 1 when 𝑟 → ∞ is held.  

The in the frame of the pair approximation, the average x-component of a particle magnetization 

can be presented as: 

< 𝑀𝑥 >= 𝑛 ∫ 𝑀𝑥(𝒓)𝑔(𝒓)𝑑𝒓 ,  𝑛 =
𝜑

𝑣
 

Here n is number of the particles in a unite volume of the composite. The distribution function 𝑔 

can be presented as: 𝑔 = 𝑔0 + 𝛿𝑔, where 𝑔0 corresponds to the non deformed composite; 𝛿𝑔 

reflects the change of the function because of the sample deformation. One can show easily that 

in the isotropic composite, where 𝑔0 depends only on the absolute value r of the radius vector r, 

the equality  

∫ 𝑀𝑥(𝒓)𝑔0(𝒓)𝑑𝒓 = 0 

is held. Therefore: 

< 𝑀𝑥 >=
𝜑

𝑣
∫ 𝑀𝑥(𝒓)𝛿𝑔(𝒓)𝑑𝒓                                                                                          (6) 

The function 𝛿𝑔 can be determined from the following equation [31]: 

𝛿𝑔 = −𝑑𝑖𝑣(𝑔 𝒘)                                                                                                               (7) 

Here  𝒘  is vector of the relative displacement of the particles. This vector can be determined by 

using the identity of the Navier – Stokes and Lame equations [24], as well as the relation [27] for 

the relative motion of two particles in a suspension. The result reads: 

𝑤𝑥 = 𝛾𝑧 [1 + (𝐵 − 𝐴)
𝑥2

𝑟2 −
1

2
𝐵]                                                                                                 (8) 

𝑤𝑦 = 𝛾
𝑥𝑦𝑧

𝑟2
(𝐵 − 𝐴)   

𝑤𝑧 = 𝛾𝑥 [(𝐵 − 𝐴)
𝑧2

𝑟2 −
1

2
𝐵]  
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Here 𝐴(𝑟) and 𝐵(𝑟) are functions of r, tabulated in [27];  𝛾 is the macroscopic dimensionless 

shear of the sample.  

We suppose that 𝛾  is small and present 𝛿𝑔 in the form of the power series: 

𝛿𝑔 ≡ 𝑔 − 𝑔0 = 𝛾𝑞1 + 𝛾2𝑞2 + 𝛾3𝑞3 + ⋯                                                                                  (9)              

Substituting (9) into (7), combining the terms with the same power of  𝛾 , one can get 

𝛾𝑞1 = −𝑑𝑖𝑣(𝑔0𝒘)                                                                                                                      (10)   

𝛾2𝑞2 = −𝛾𝑑𝑖𝑣(𝑞1𝒘) = 𝑑𝑖𝑣(𝒘𝑑𝑖𝑣(𝑔0𝒘))       

𝛾3𝑞3 = −𝛾𝑑𝑖𝑣(𝑞2𝒘) = −𝑑𝑖𝑣[𝒘𝑑𝑖𝑣(𝒘𝑑𝑖𝑣(𝑔0𝒘))]       

By using (9) and (10) in (6), we come to the following relation:  

  < 𝑀𝑥 >= −
𝜑

𝑣
{∫ 𝑀𝑥(𝒓)𝑑𝑖𝑣(𝑔0𝒘)𝑑𝒓 + ∫ 𝑀𝑥(𝒓)𝑑𝑖𝑣[𝒘𝑑𝑖𝑣(𝒘𝑑𝑖𝑣(𝑔0𝒘))]𝑑𝒓}                   (11) 

                                                                                                       

Taking into account that 𝑀𝑥~𝑟−3  and 𝑑𝑖𝑣𝒘 → 0  when 𝑟 → ∞, by using the Ostrogradskii-

Gauss theorem, after some transformations one can present (11) in the form: 

< 𝑀𝑥 >= −
𝜑

𝑣
{∫ 𝑀𝑥(𝒓)𝑔0𝑤𝑟𝑑𝒓 − ∫ 𝑔0(𝑤 ∙ ∇)

𝑉𝑆
𝑀𝑥(𝒓)𝑑𝒓 + ∫ 𝑔0𝑆

(𝑤 ∙ ∇)[(𝑤 ∙

∇)𝑀𝑥(𝑟)]𝑑𝒓 − ∫ 𝑔0𝑉
(𝑤 ∙ ∇)[(𝑤 ∙ ∇)[(𝑤 ∙ ∇)𝑀𝑥(𝒓)]]𝑑𝒓}                                                                          

(12) 

    This form is more convenient for calculations, than (11). 

Here S means the surface of a sphere with infinite radius and  center in the center of the given 

particle; V is volume of this sphere.   

III. Results and discussion. 

   It is convenient to use the spherical coordinate system (𝑟, 𝜃, 𝜙) with the origin in the center of 

one of the particles, shown in Fig.1 and the polar axis aligned along Oz. The following relations 

between the Cartesian and the spherical components of the vector r are true:  

𝑥 = 𝑟 sin θ cos 𝜙 ,    𝑦 = 𝑟 sin 𝜃 sin 𝜙,    𝑧 = 𝑟 cos 𝜃                                                             

In this coordinate system, the components of the vector 𝒘 read: 
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𝑤𝑟 = 𝛾𝑟(1 − 𝐴) sin 𝜃 cos 𝜃 cos 𝜙                                                                                         (13) 

𝑤𝜃 = 𝛾𝑟 (𝑐𝑜𝑠2 𝜃 +
1

2
𝐵(𝑠𝑖𝑛2𝜃 − 𝑐𝑜𝑠2𝜃)) cos 𝜙               

𝑤𝜙 = −𝛾𝑟 (1 −
1

2
𝐵 ) cos 𝜃 sin 𝜙 

    Note that the equality 𝐴(𝑟)=1 is held at 𝑟 = 𝑑  [27]. Thus the condition 𝑤𝑟(𝑟 = 𝑑) = 0 of the 

particles non intersection is fulfilled in (13). At the same time the components 𝑤𝜃 and 𝑤𝜙 are not 

zero at 𝑟 = 𝑑. This means that the particles can slip over each other being in the physical contact.   

    We will chose the distribution function 𝑔0 of the hard spheres in the non deformed composite 

by using  the simplest form which takes into account the steric interaction between the particles 

and the short range order, created by this interaction [32] : 

     𝑔0 = drd

dr

d

r

d

r

dr

2,

2,1

164

3
181

,0

3

3













+−+



                                                                           (14) 

Combining (12,13,) and (14), after simple but cumbersome calculations we get:  

1

2
𝜑𝜇0 < 𝑀𝑥 > 𝐻 = 𝜇0𝜑2𝐻2(𝑄1 − 𝑄2𝛾2)𝛾,                                                                             (15)            

𝑄1 ≈ (−0.417 + 0.614𝜑);    𝑄2 ≈ 9.6 − 1.26𝜑  

Substituting (15) into (1), one can rewrite the last relation as: 

𝜎 = 𝐺𝛾;                                                                                                                                     (16) 

𝐺 = 𝐺𝑒𝑙 + 𝐺𝑚 

Here G is the elastic shear modulus of the composite, the modulus Gel  is estimated in eq. (2) and 

𝐺𝑚 = 𝜇0𝜑2𝐻2(𝑄1 − 𝑄2𝛾2)                                                                                                     (17)                                    

    Parameter Gm  reflects the contribution of the magnetic effects to the shear modulus G.  Since 

the derivation of (17) is based on the power expansion (9), this relation is fulfilled only for small 

deformations, when the inequality  𝑄1 > 𝑄2𝛾2 is held.   

     The relations (15,16) show that Gm  is negative for small concentrations 𝜑 and can be positive 

only when 𝜑 is large enough. Therefore, the total shear modulus G  must decrease with magnetic 
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field in the low concentrated composites and  increase with the field when the concentration 

exceeds some critical magnitude.  The microscopic physical cause of this, might, unexpected 

result, is illustrated in Fig. 3. 

 

Fig. 3. Sketch of the interacting particles. White and black circles – positions of the particle 2 

before and after the macroscopic shear respectively. 

    Let us suppose that we determine the component Mx  of the particle 1 in Figure 3. This 

component appears due to magnetic interaction between the particle 1 and some particle 2. 

Because the initial spatial distribution of the particles is isotropic, the particle 2, with the equal 

probabilities, can be situated either left, or symmetrically right from the axis Oz. Obviously, if 

the particle 2 is left from this axis, the magnetization vector M of the first particle deviates left 

(i.e. Mx is negative); if the particle 2 is situated right from Oz, the component Mx is positive. 

Bcause of the symmetrical positions of the second particles in the non deformed sample, the 

resulted value of Mx  , before deformation, is zero. However after the shear, the left particle 2 

becomes closer to the particle 1, than the right particle.  That is why its influence on the 

magnetization M is stronger than effect of the right particle. As a consequence, the resulted 

vector M  is deviated left from the axis Oz, i.e. the resulted component  Mx  is negative. This 

leads to the negative sign of the first term in the relation (15) for Q1.   

    The second term 614𝜑  in this relation takes place due to the term, proportional to   , in the 

formula (14) for 𝑔0 .  This term reflects the interparticle correlations  in non ideal gas of hard 

spheres [32]. Because of these correlations, the distribution function (14) has a maximum at r=d  

(i.e. when the particles are in the direct contact). In this position the particles can slip over each 

other (𝑤𝑟 = 0, 𝑤𝜃, 𝑤𝜙 ≠ 0 at = 𝑑 ). Analysis shows that this slip leads to the resulted inclination 

right of the magnetization M, therefore, to the positive sign of the resulted component Mx. That 

is why, the term, proportional to 𝜑 in the relation for Q1, is positive. Since the maximum of the 

distribution function 𝑔0 increases with 𝜑, the effect of the particles slip enhances and second 

term in the relation for Q1 dominates when 𝜑 is high enough. 
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    It should be noted that the approximation (4) corresponds to the gas of hard spheres with 

moderate or low concentrations of the particles. For higher concentrations more complicated 

relations for 𝑔0 must be used. Unfortunately, their explicit analytical forms are not determined; 

as a rule, these functions are calculated from solution of special non-linear integro-differential 

equations (see discussion in [32]).   

    The relations (15,16) demonstrate that the term Gm , therefore, the total shear modulus G 

decreases with the macroscopic shear 𝛾  , even when the elastic matrix obeys the linear law of 

deformation. Decreasing dependences of the composite shear modulus on the shear strain have 

been detected in experiments [33,34]. 

 Discussion. 

We present results of analysis of effect of magnetic and elastic (through the host matrix) 

interactions between spherical magnetizable particles, randomly distributed in the matrix, on the 

macroscopic shear modulus of magnetopolymer composites. Our analysis is based on the 

mathematically rigorous two-particle approach and does not contain any intuitive or heuristic 

construction. The results show that, in the low concentrated composites, the  interparticle 

interaction leads to decreasing dependence of the shear modulus on the applied magnetic field. In 

the systems with high enough concentration of the particles, one can expect increase of the 

modulus with the field.  The effective shear modulus decreases with the macroscopic shear of the 

composite. 

     The accurate estimate of the threshold  concentration, corresponding to the inversion of the 

dependence of the modulus on the field, requires solution of multiparticle problem. That is rather 

impossible by using only analytical methods of theoretical physics, however can be done by 

using the modern methods of computer simulations.   

     One needs to note that the conclusion on the decreasing dependence of the modulus on the 

applied field is is a direct consequence of the assumptions on the random, gas-like spatial 

distribution of the magnetically soft spherical particles. In the real magnetic gels these effects 

can be masked by the non-spherical shape, at least, of a part of the particles; by the presence of 

magnetically hard particles with some remnant magnetization; by anisotropic agglomerates (say, 

doublets), consisting of the particles, linked by non magnetic forces. It should be noted that these 

agglomerates very often appear on the stage of the gels synthesis. All these factors must lead to 

the mechanical rotation (turn round) of the particles (agglomerates) under the action of the 
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macroscopic shear.   Preliminary estimates show that this rotation effect must lead to increase of 

the composite shear modulus with the applied field.  

We believe that the deep insight in the problem of determination of macroscopic properties of 

the magnetic composites requires detailed analysis of various microscopic factors which affect 

these properties. Here we present the results of study of one of them (effects on the interparticle 

interaction). Analysis of the other ones can be subject of separate works.  
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