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Abstract

This thesis is concerned with the high-energy, small-x domain of Quantum Chromo-

dynamics. The relevant physics is that of dense partonic systems, for which the in-

teractions between partons cannot be neglected. These interactions lead, in the case

of nuclear collisions, to coherence phenomena that shadow the structure function of a

nucleus with respect to that of its constituents nucleons. A phenomenological model

for nuclear shadowing based on its relation with diffractive processes, given by the

Abramovsky-Gribov-Kancheli cutting rules, is presented in the first part of the the-

sis. Comparison with experimental data, as well as predictions for the reduction of

multiplicities at the LHC experimental program on heavy ion collisions, are given.

The second part of the thesis is dedicated to the study of small-x non-linear evolution.

At high energies, the fast growth of gluon densities predicted by linear evolution is

expected to be slowed down by gluon recombination processes. This phenomenon,

known as saturation of the hadron wavefunction, is one of the main features of high-

energy evolution and is expected to restore unitarity of hadronic cross sections at

ultra-high energies. The discussion is centered on the Balitsky-Kovchegov equation

in the local approximation as the simplest, most basic non-linear evolution equation,

both in coordinate and momentum representation. Numerical solutions and analytical

estimates for the Balitsky-Kovchegov equation are provided, including in an effective

way next-to-leading logarithmic corrections emerging from the running of the coupling.

A detailed study of the geometric scaling property of the solution, found both in fixed

and running coupling evolution, as well as the energy and nuclear size dependence of

the saturation scale, are given.

Finally, the behaviour of the Cronin effect —the observed enhancement in the particle

yield at intermediate transverse momenta in proton-nucleus collisions with respect to

proton-proton collisions— is studied. It is shown that small-x evolution erases any such

enhancement present in the initial condition, turning into a relative suppression with

increasing rapidity.
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Universidad de Córdoba por todas las facilidades que me ha dado y por su comprensión

hacia mi sempiterna ausencia.

No puedo olvidarme de mis amigos, de los que, muy a mi pesar, he tenido que separarme

para poder hacer esta tesis, pero que siempre han estado a mi lado. Gracias a Jorge,

a Javi, a Vı́ctor, a Rubén, a Carlos, a Pepe ...

Este trabajo ha sido financiado por el Ministerio de Educación y Ciencia mediante

la concesión de una beca FPU (referencia AP-3333-2001). Las estancias en el CERN

fueron posibles gracias a los beneficios complementarios de dicha beca: ayudas para

estancias breves, de febrero a agosto del 2003, y al traslado temporal de la beca a dicho

centro durante el año 2004. Las estancias en la Universidad de Granada para cursar

3



el Programa de Doctorado Fisymat fueron posibles gracias a la concesión de una beca

de movilidad para alumnos de tercer ciclo por parte del Ministerio de Educación y

Ciencia.

Quiero dedicar esta tesis a mis padres, Javier y Caridad, y a mis hermanas, Itziar y
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1 Introduction

The full understanding of the internal structure of hadrons is one of the most fun-

damental unresolved problems in the physics of elementary interactions. Quantum

Chromodynamics (QCD) is the relativistic quantum field theory for strong interac-

tions. It is formulated in terms of quarks and gluons, both of them carriers of strong

charge, as the fundamental degrees of freedom.

One of the most remarkable properties of QCD is that of asymptotic freedom, by

which the strong coupling diminishes at small distances. This makes perturbative

methods well suited for the study of processes involving large momentum transfers

i.e. those dominated by small distance phenomena. Indeed, all available experimental

data for such processes: DIS at moderate Bjorken-x, Drell-Yan and jet production are

consistently described with great accuracy.

However, the study of hadron structure cannot be directly addressed by perturbative

techniques, since it is determined by long-range (small momentum) physics, where the

strong coupling is large, making meaningless the perturbative expansion. Moreover,

there is no fundamental explanation for the problem of confinement: Although QCD

is expressed in terms of quarks and gluons as the fundamental degrees of freedom of

the theory, only hadrons – colourless combinations of quarks and gluons – are experi-

mentally observed.

Despite this relative failure, perturbative QCD is very successful in determining the

evolution of hadron structure. Perturbative evolution equations resum quantum cor-

rections emerging from the variation of energy and momentum scales of the collisions

in deep inelastic scattering experiments, where the hadron structure is measured.

So far, the best known and most oftenly used in practical applications, are linear

evolution schemes in which the evolution is driven just by radiative processes. This

is the case of DGLAP and BFKL evolution equations. However, at sufficiently large

energies the hadron becomes a dense system, due to the increasing number of partons

added to its wavefunction, and the possibility of gluon recombination processes has to

be accounted for. This amounts to include non-linear terms in evolution equations.

The role of the non-linearities is to tame the fast increase of gluon densities predicted

by linear evolution. They reflect the fact that gluon occupation numbers reach a
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maximum value beyond which further growth is suppressed by gluon self-interactions.

This phenomenon is commonly refered to as saturation of the hadron wavefunction.

This aim has been largely pursued in the last years in different frameworks. Noticeably,

all the approaches to the understanding of the saturation phenomenon converge in the

Balitsky-Kovchegov equation, which has been established as the starting point for

the study of high-density, saturation effects in high-energy QCD. Its solutions and

properties, as well as phenomenological applications, will be discussed in detail all

along this thesis.

The need for considering saturation effects is more evident in the case of nuclear colli-

sions, where a large number of gluons is present already at moderate energies. Besides,

high-energy nuclear collisions let us study the space-time development of the underly-

ing microscopic processes as well as the presence of coherent collective effects. This is

due to the composite nature of nuclei and would be an impossible task in the case of

simpler objects i.e. isolated nucleons. One of these collective effects is nuclear shadow-

ing, by which the small-x components of nuclear distribution functions are suppressed

with respect to that of its constituent nucleons. A phenomenological model based on

its relation with diffractive processes will be presented.

The interest in the small-x domain of QCD has been largely enhanced by two large

experimental programs, small-x Deep Inelastic Scattering (DIS) at HERA1 and nu-

clear collisions at RHIC2 and the LHC3. In them, the kinematical region in which the

saturation phenomenon may show up becomes experimentally accessible.

This memory is structured as follows: In section 2, the basics of the QCD formalism,

DIS experiments and the parton model are reviewed, considering the nuclear processes

and nuclear shadowing as a particular case. In section 3, the concept of perturbative

evolution and standard DGLAP and BFKL schemes are presented, making special

emphasis in the small-x problem, as a motivation for the need of non-linear extensions

of linear evolution. Section 4 is dedicated to present the different approaches to the

study of the small-x, non-linear regime of QCD. Special attention is paid to the BK

1Electron-proton collider at the Deutsches Elektronnen-Synchrotron (DESY) in Hamburg, Ger-

many.
2Relativistic Heavy Ion Collider at the Brookhaven National Laboratory in Upton NY, USA.
3Large Hadron Collider at the European Organization for Nuclear Research (CERN) in Geneva,

Switzerland.
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equation, its physical content and analytical properties. In the last section current

phenomenological applications of the saturation-based formalisms are discussed. Then

I present the conclusions of this work. Finally, in the appendix A the Abramovsky-

Gribov-Kancheli cutting rules, a key ingredient in the model for nuclear shadowing,

are explained.

Three articles published in refereed journals are attached at the end of the memory.

In them, the results of the research work that have led to this doctoral thesis, are

presented and discussed.
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2 QCD, DIS and the parton model

2.1 Quantum Chromodynamics

Quantum Chromodynamics is the theory of strong interactions. For a general reference

see e.g. [1]. It is a non-abelian gauge field theory. The gauge symmetry group is

SU(Nc), Nc = 3. QCD describes the dynamics of adjoint gauge bosons (gluons),

coupled to coloured fundamental fermions (quarks), and is defined by the Lagrangian

density:

LQCD = −1

4
Fµν,aF

µν,a +
∑

f

ψ̄i,f (iγµD
µ −mf )ijψj,f . (1)

Here, the quark fields ψ of flavour f 4 and mass mf are labeled by colour indexes

i, j = 1, 2, 35. The covariant derivative is Dµ = ∂µ + igtaA
µ
a , where g is the QCD

coupling constant, and the ta are the generators of SU(3) in the fundamental represen-

tation (a = 1, ..., 8). The gluon field strength tensor is F µν
a = ∂µAν

a−∂νAµ
a−gfabcA

µ
bA

ν
c ,

where fabc are the SU(3) structure constants that determine the ta commutation rela-

tions: [ta, tb] = ifabctc.

As in any renormalizable field theory, the strength of QCD interactions depends on

the energy scale. Noticeably, in QCD the renormalized coupling diminishes with in-

creasing momentum transfer. This property, known as asymptotic freedom [2,3], allows

for perturbative methods to be used reliably in the computation of high-energy QCD

processes. The running of the strong coupling, to leading order, is given by

αs(Q
2) =

g2
ren

4π
=

4π

b0 ln(Q2/Λ2)
, (2)

where b0 = (11Nc − 2Nf )/3Nc. Nf is the number of quark flavours which can be as-

sumed massless at the energy scale Q2. Λ is the scale introduced by the renormalization

procedure. Its magnitude is set by the typical size of a hadron, Λ ∼ 200 MeV.

4f=(u)p, (d)own, (c)harm, (s)strange, (b)ottom, (t)op.
5Alternatively, (R)ed, (G)reen, (B)lue.
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2.2 Deep Inelastic Scattering

The electromagnetic interaction of leptons is very well understood, making lepton-

hadron experiments, Figure 1, the cleanest and most obvious ground for probing the

structure of hadrons. The effective probe is the exchanged vector boson of momentum

q = k − k′. The resolution scale of the probe can be estimated from the uncertainty

principle6:

λ ∼ 1

Q
, with Q2 = −q2 > 0. (3)

In Deep Inelastic Scattering (DIS) experiments a lepton is scattered off a hadronic

target7 [4]:

MP

*γ,
l, k

l, k’

q

X

Figure 1: Picture of a DIS process.

Here, k (k′) is the momentum of the incoming (outgoing) lepton. The momentum of

the virtual exchanged photon is q = k− k′, P is the momentum of the hadronic target

of mass M , and pX = P + q the momentum of the final state hadronic system.

This process is best described in term of the following Lorentz invariants:

s = (P + k)2, (4)

the center-of-mass energy squared;

6In what follows natural units will be used: ~ = c = 1, ε0 = 1.
7In general, the lepton can also be a neutrino. In the most general case the exchanged boson is

either a photon or a Z0 for neutral currents, and a W± boson for charged currents. However, for

energies much below the Z0 and W± threshold this possibility is strongly suppressed. From now on

we shall consider just photon exchange.
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Q2 = −q2 > 0, (5)

the virtuality of the exchanged photon; and

W 2 = M2
X = (P + q)2, (6)

the invariant mass of the hadronic system X. It is also useful to define scaling variables

x =
Q2

2P · q
=

Q2

W 2 +Q2 −M2
, (7)

y =
P · q
P · k

=
W 2 +Q2 −M2

s−M2
, (8)

where the mass of the leptons has been neglected. x is the Bjorken variable, measuring

the inelasticity of the process, and y is a measure of the amount of energy transfered

between the lepton and the hadron.

The inclusive double differential cross section for the process in Figure 1 is

d2σ

dxdQ2
=

2πα2

Q4x

[
1 + (1− y)2F2(x,Q

2)− y2F2(x,Q
2)− 2xF1(x,Q

2)
]
, (9)

where all the information about the structure of the hadron is encoded in the structure

functions F1 and F2. In eq. (9) the recoil of the hadron has been neglected. A

full description of the hadron structure amounts, therefore, to the knowledge of the

structure functions for all x and Q2.

The investigation of the deep structure of hadrons began with the SLAC-MIT exper-

iments of the late 1960s (for a review of these experiments, see [5–7]), where 20 GeV

electrons were scattered off proton and deuterium targets.

The picture of nucleons prevalent at that moment was that of extended objects – seen

in elastic electron-nucleon scattering – with a diffuse internal structure consistent with

the results from pion and proton scattering. By resolving smaller distances than ever

before, the SLAC-MIT experiment revealed a new, and conceptually very different,

layer on the structure of hadrons. The rate of electrons scattered at large angles was

much larger than what could be expected from the diffuse picture, strongly suggesting
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that the scattering happened off hard point-like constituents inside the nucleon [8].

Furthermore, scaling of the structure functions was observed [9,10]. Scaling is the fact

that the structure functions depend only on one single variable, x, rather than on two

as allowed by kinematics. Scaling had been predicted by Bjorken [11] as a result of

studies in the framework of current algebras.

2.3 The parton model and parton distribution functions

The parton model, introduced by Feynman, provides an intuitive physical picture of

DIS, and a transparent understanding of scaling. Historically it preceded QCD and,

by establishing the crucial link between DIS and the quark model of Gell-Mann and

Zweig [12, 13], was one of the key developments leading to the formulation of QCD as

the theory of strong interactions.

Motivated by the SLAC-MIT results, Feynman assumed the existence of point-like con-

stituents – partons – within the hadron. In a reference frame in which the hadron moves

at high velocity, the time scale characteristic of interactions between the partons is far

larger, due to Lorentz time-dilation, than that characteristic of the interaction with the

virtual photon (∆t ∼ 1/Q). A key point in the parton model is that the scattering of

the hadron is due entirely to the incoherent elastic scattering of its constituents, which

behave as free during the interaction. This is the impulse approximation and is one of

the crucial assumptions in the quark parton model. Thus, the DIS cross section can

be written as

d2σ

dxdQ2
=

∑
f

∫ 1

0

dξ φf |p(ξ)
d2σ̂

dxdQ2
(l, f), (10)

where φf |p are the parton distribution functions (p.d.f.’s) i. e. the probability of finding

a parton of type f (quark, anti-quark or gluon) in the hadron (p) carrying a fraction

ξ of the hadron total longitudinal momentum. Note that the probabilistic character

of the p.d.f. is due to the incoherent character of the process and, therefore, to the

absence of interference terms. Finally, σ̂ is the elastic lepton-parton cross section.

In the Born approximation, only quarks couple to the virtual photon. The structure

functions can then be written as
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F2(x) =
∑

q

e2qx [q(x) + q̄(x)] , (11)

where eq is the electric charge of the quark q8. q(x) (q̄(x)) is the quark (anti-quark)

distribution function.

Bjorken scaling is the manifestation of the fact that the scattering occurs off point-like

non-interacting constituents. If this were not true, the structure functions would not

be independent of Q2, but rather depend on the ratio Q/Q0, with 1/Q0 being some

length scale characteristic of the partons.

Another important feature of the parton model is the Callan-Gross relation [14]

F2(x) = 2xF1(x), (12)

which implies the vanishing of the longitudinal structure function FL(x) = F2(x) −
2xF1(x). This result is a direct consequence of the spin-1/2 nature of the partons

(quarks) with which the probe interacts. In fact, the vanishing of the longitudinal cross

section in the SLAC-MIT data permitted the identification of partons with quarks.

Gluons do not have electromagnetic charge, so they do not couple directly to photons

and are not directly measured in DIS experiments.

The parton model is not a field theory. Although it provides a clear and successful

picture of DIS, the proper theoretical description rests with QCD. The parton model is,

indeed, the zeroth order approximation of a QCD description of the hadron structure

(in the perturbative domain).

In eq. (10) the parton distribution functions have been factorized from the elementary

cross section. In other words, long-distance and small-distance physics have been fac-

torized. This factorization has been proven exactly in QCD in the framework of the

Operator Product Expansion [15], and together with the concept of evolution consti-

tutes the basis of perturbative QCD (pQCD). While the calculation of parton distribu-

tion functions from first principles is intrinsically non-perturbative, their rate of change

with the relevant physical scales in the process i.e. energy and momentum transfer,

8eq = +2/3 for q=u,c,t and eq = −1/3 for q=d,s,b. The electric charge of an anti-quark f̄ is the

opposite to that of the quark f .
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can be computed perturbatively. Thus, a complete description of the hadronic struc-

ture amounts to knowing the parton distribution functions at a certain scale and their

evolution laws.

The analysis of the vast amount of experimental data collected in the last thirty years

has provided sets of parton distribution functions which can be used reliably as input

for any process involving strong interactions at high energy9.

2.4 Deep Inelastic Scattering on nucleus

The use of nuclei instead of protons in high-energy scattering experiments, such as

DIS, provides unique possibilities to study the space-time development of strongly

interacting systems. In experiments with nucleon targets the products of the scattering

processes can only be observed by a detector that is far away from the collision point,

whereas a nuclear target can serve as a detector directly located at the place where the

microscopic interaction takes place. Consequently, with nuclei one can study coherence

effects in QCD which are not accessible in DIS off nucleons.

2.4.1 Coherence effects: Nuclear shadowing

When considering DIS on a nuclear target one may expect that the resulting nuclear

structure functions were very similar to those measured off a nucleon target. This is

so because the nucleons are very loosely tighted inside a nucleus, and the interaction

between the external probe, the virtual photon, and the constituent nucleons could be

expected to be incoherent.

However, the experimental data indicate that the ratio

RAN(x,Q2) =
F2A(x,Q2)

AF2N(x,Q2)
, (13)

where F2A (F2N) is the nuclear (nucleon) structure function, and A is the mass number

of the nucleus i.e. the number of nucleons inside the nucleus is, in general, different

from one. The observed difference between the nuclear structure function and that

9For details on the background and results of these global fits, see e.g. [16].
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corresponding to the simple addition of its constituent nucleons is commonly refered

to as the EMC effect [17,18].

Whether there is enhancement or suppression of the nuclear structure functions with

respect to those of the nucleon depends on the kinematical region of interest. The

general Bjorken-x dependence of such modification is as follows:

RNA

1

x

• RAN > 1 for x→ 1.

• RAN < 1 for 0.3 . x . 0.8.

• RAN > 1 for 0.1 . x . 0.25.

• RAN < 1 for x . 0.05

At high energies, small-x, nuclear structure functions are suppressed with respect to

those in a nucleon. This phenomenon is known as nuclear shadowing, and its physical

interpretation depends strongly on the choice of the reference frame. In a frame in

which the nucleus is fast moving, the infinite momentum frame, the constituent nucle-

ons necessarily overlap due to Lorentz contraction and partons associated to different

nucleons can interact with each other, as shown in Figure 2, which can result in gluon

recombination.

���
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A A

γ∗ γ∗

Ν Ν
. . .

~ 1/(m  x) >>RN Alc

 
v

R/ γR

IMF r. f. at rest

Figure 2: Picture of nuclear shadowing in the infinite momentum frame (left), and in

a reference system at rest (right).
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In a frame in which the nucleus is at rest, the dipole frame, the virtual photon fluctuates

into a quark-antiquark pair long before reaching the nucleus and then multiply scatters

with the constituent nucleons. The uncertainty principle lets us estimate the charac-

teristic coherence length of this hadronic fluctuation, lc ∼ 1/(xmN), where mN ≈ 1

GeV is the nucleon mass. The amplitude for this process receives contributions from

arbitrary number of rescatterings. When lc happens to be much larger than the nuclear

radius (RA ∼ A1/3), individual nucleons are not resolved individually, and the inter-

action is strongly coherent, which leads to the appearance of interference terms that

strongly suppress the total cross section, and, therefore, the nuclear structure function.

2.5 Multiple scattering and diffraction

Diffractive processes are those in which the colliding hadron survives to the collision i.e.

those in which its internal quantum numbers remain unchanged after the collision. The

existence of such processes is due to the internal structure of hadrons, and is difficult

to conciliate with the simple partonic interpretation of standard DIS processes. In the

latter a quark is struck by the virtual photon and expulsed outside the proton, a colour

flux is produced and the proton loses its colour neutrality, which is restored by soft

processes, transforming it in a different hadronic state. Thus, the exchanged object in

diffractive processes cannot be a quark nor a gluon, because none of them have trivial

quantum numbers, but an object with the same quantum numbers as the vacuum.

Such an object is called the pomeron [19].

Though there are several theoretical realizations of the pomeron within QCD (the best

known one identifies the pomeron with a gluon ladder [20,21]), it remains a mysterious,

not very well understood object. Thus, diffractive processes can be defined as those

mediated by the exchange of a pomeron. Analogously to standard DIS, diffractive DIS

processes are characterized by the diffractive structure function, FD
2 .

Nuclear shadowing is intimately related to diffraction by means of the Abramovsky-

Gribov-Kancheli (AGK) cutting rules [22] (see also Appendix A), which relate a given

amplitude with the cross section that can be obtained from it by cutting10 the propaga-

10Here, the meaning of ’cut’ is to put the exchanged particles on their mass-shell i.e. make them

satisfy the relativistic dispersion relation for a free particle, p2 = m2.
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tors. These rules, shown in particular cases and postulated in others, make it possible

to sum up the contributions arising from different cuts through a simple combinatorial

calculation.

In particular, the AGK rules relate the two-scattering amplitude with the cross section

for diffractive processes in photon-nucleon scattering [23, 24]. This is very interesting,

since this relation links two different physical phenomena.

A model for nuclear shadowing based on this relation is presented in article I. A good

description of experimental data is obtained with no free parameters, the only ansatz

being the unitarization of the total cross-section i.e. the n-order scattering terms in

the expansion of the total scattering amplitude beyond the first and second terms.

Two different ways have been considered: Unitarization ’à la Schwimmer’ and eikonal

unitarization. Within this same formalism we also obtain the factor for multiplicity

reduction in nucleus-nucleus collisions, due to the inherent shadowing of their respective

wave functions, as well as its dependence on energy, rapidity, impact parameter, atomic

size and transverse mass of the produced particles.

3 QCD evolution I: Linear evolution equations

Bjorken scaling in the parton model is a consequence of the non-interacting character of

hadron constituents assumed by this model, and is violated once quantum corrections

are taken into account. This violation reflects the fact that the quark struck by the

virtual photon may have a story prior to the interaction i.e. it may come from a

radiation process or have radiated itself new gluons. The differential probability for

the emission of a new parton is:

dPi ∼ αs
dxi

xi

d2kt

k2
t

, (14)

where kt and xi are the transverse momentum and the fraction of longitudinal momen-

tum of the newly created parton respectively. This probability, when integrated over

the available phase space, leads to logarithmic singularities. However one must also

include in the calculation quantum loop corrections which are of the same order in the

perturbative expansion as those terms for real particle emission. Once it is done, it can
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be shown that the singularities coming from the real and virtual quantum corrections

exactly cancel each other.

The value of the quantum corrections depends on the energy scales of the DIS process,

x and Q2. Essentially, in spite of the smallness of the coupling, at high scales the phase

space for additional emissions increases rapidly and makes the perturbative expansion

ill-behaved. The solution to this problem is to resum the leading logarithms coming

from quantum corrections to all orders, thus rearranging the perturbative expansion

into a more rapidly convergent series. Equivalently, pQCD evolution equations provide

the rate of change of parton distributions functions with the variation of the energy

scales of the collision.

3.1 DGLAP

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution [25–27] is the most

familiar resummation strategy. It provides the evolution of hadron structure to higher

values of Q. Such processes are dominated by diagrams where the transverse momenta

of the successive emitted partons are strongly ordered,

1

Rh

� kt1 � kt2 · · · � ktn � Q . s, (15)

where Rh is the length scale of the order of the hadron size, whereas the longitudinal

momenta are less constrained:

xB ≤ xn · · · ≤ x2 ≤ x1. (16)

The kt-ordering gives rise to large logarithms lnQ2. DGLAP resums terms αs lnQ2 ∼
1 to all orders. Subleading terms are suppressed by extra factors of αs. It relates

the probability of finding a parton a in the hadron with a fraction of longitudinal

momentum x to that of finding another parton b with fraction y > x, at a given scale

Q2, by means of the splitting function Pab
11:

∂a(x,Q2)

∂ lnQ2
=
α(Q2)

2π

∫ 1

x

dy

y
Pab(x/y)b(y,Q

2). (17)

11Here, a and b denote a quark, an anti-quark or a gluon.
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The splitting functions are calculated perturbatively as a power series in αs. Their

explicit expressions can be found in [1, 4].

The complete DGLAP evolution equations can be written in a compact matrix way

that explicitly shows how different components are mixed through evolution:

∂

∂ lnQ2

 Σ(x,Q2)

g(x,Q2)

 =
αs(Q

2)

2π

 Pqq 2NfPqg

Pgq Pgg

⊗
 Σ(y,Q2)

g(y,Q2)

 , (18)

where Σ(x,Q2) = q(x,Q2) + q̄(x,Q2).

3.2 BFKL

At asymptotically large energies, it is believed that the theoretically correct descrip-

tion of the structure function of DIS processes is given by the Balitsky-Fadin-Kuraev-

Lipatov (BFKL) equation [20, 21]. It provides the evolution of hadron structure with

increasing center of mass energy of the virtual photon-hadron system, W 2, for a fixed

value of the photon virtuality, Q2. The high-energy limit in which it is formally derived

is defined by the conditions

W 2 →∞ , Q2 fixed,

x ' Q2

W 2 → 0 , Y = ln(1/x) →∞,
(19)

where Y is the rapidity variable. In this limit of very small values of Bjorken-x, the

relevant degrees of freedom are gluons, and gluon radiation is the leading mechanism

for evolution. Contrary to DGLAP, the leading contribution for BFKL evolution comes

from diagrams in which the longitudinal momenta of the successively radiated gluons

are strongly ordered, so that each new gluon takes a very small fraction of the energy

of the propagating gluon,

x1 � x2 · · · � xn. (20)

The transverse momenta of the gluons in the radiative cascade are no longer ordered,

contrary to the case for DGLAP evolution. Rather, they describe a random walk in kt-

space, which leads to a diffusion of the initial distribution to larger and smaller values

of kt.
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Under these conditions BFKL resums leading terms αs ln 1/x to all orders.

At leading logarithmic accuracy, the BFKL equation reads [28]:

∂φ(k, Y )

∂ ln(1/x)
=
αsNc

π

∫
d2q

(k − q)2

[
φ(q, Y )

q2
− φ(k, Y )

q2 + (k − q)2

]
. (21)

The evolved object is the unintegrated gluon distribution function, φ(x, k). It gives

the probability of finding a gluon in the parent hadron with fraction of longitudinal

momentum x and a transverse momentum k. The unintegrated gluon density can be

related to the usual integrated one xG(x,Q2) by

xG(x,Q2) '
∫ Q2

d2kφ(x, k). (22)

The sign ' in the above equation indicates that there is not a strict equality between

integrated and unintegrated distributions, as neither are observables. Indeed, a precise

definition of them requires the use of light-front quantization [29].

3.3 Small-x solutions

In order to extract the small-x behaviour of the parton distributions from the DGLAP

equations, one has to consider the case where both logarithms, lnQ2 and ln 1/x, are

large. This approximation, the double logarithm approximation of DGLAP (DLA), is

valid in the kinematical region where both longitudinal and transverse momenta are

strongly ordered:

kt1 � kt2 · · · � ktn � Q . s, (23)

x1 � x2 · · · � xn. (24)

The DLA solution for the gluon distribution for running coupling is [30,31]

xGDLA(x,Q2) ∼ exp

{(
48

11− 2
3
Nf

ln
lnQ2/Λ2

lnQ2
0/Λ

2
ln 1/x

)1/2
}
, (25)

showing a fast increase with decreasing x.
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In the case of BFKL with fixed coupling, for which the equation is derived, the gluon

distribution behaves in an even more singular way

xGBFKL(x,Q2) ∼ x−4Nc ln 2αs
π ∼ x−0.5, for αs ∼ 0.2. (26)

3.4 The small-x problem

As discussed in the previous section, both linear evolution schemes, DGLAP and BFKL,

predict a sharp rise of gluon densities at high energies (small-x). This singular behaviour

for the distribution of soft gluons poses many theoretical problems. The most important

one is that it leads to the violation of unitarity, an essential property of quantum field

theories.

The energy dependence of total hadron-hadron cross sections is constrained by the

Froissart bound [32], which establishes that they cannot grow faster than a logarithm

squared of the center of mass energy of the collision, s,

σhh(s) .
1

m2
π

ln2 s, (27)

where mπ is the pion mass.

This bound is obtained from unitarity, analiticity properties of the scattering amplitude

and from the short range nature of hadronic interactions. Despite the fact that the

Froissart bound is not directly applicable to DIS processes, the small-x behaviour of

the solutions of linear evolution equations indicate a stronger energy dependence than

allowed by this bound, thus violating unitarity.

The strong growth of gluon distributions is rooted in the linearity of evolution equa-

tions. In them, only radiative processes that increase the number of partons in the

hadron wave function are taken into account, and they implicitly assume that the vir-

tual photon interacts with a single parton in the hadron. Such a picture is only valid if

the average distance between partons is larger than the resolution power of the probe

or, in other words, if the hadron is a dilute system and parton-parton interactions can

be safely neglected. However, due to the radiative processes that drive the evolution

to higher energies, more and more partons add to the hadron wave function and a
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dense system with a large number of partons is created, see e.g. [33], and gluon fusion

processes become important.

Equivalently, as the density grows the distance between partons gets smaller than the

resolution length of the probe, which no longer resolves isolated partons. On the con-

trary, the interaction is now coherent, appearing destructive interference terms which

account for gluon recombination processes. The packing factor i.e. the probability

of gluon-gluon interaction, serves as an estimator of when saturation effects become

sizable:

κ =
αs(Q

2)xG(x,Q2)

Q2R2
h

. (28)

It is equal to the typical cross section for gluon interactions (αs/Q
2) times the gluon

density per unit of transverse area (xG(x,Q2)/R2
h, with Rh the radius of the hadron).

Note that at very high energies, a hadron is essentially a two-dimensional system due

to Lorentz contraction in the longitudinal direction. The packing factor becomes of

order 1 when evaluated at the saturation momentum, Qs:

Q2
s(x) = αsNc

1

πR2
h

xG(x,Q2
s). (29)

Thus, the saturation scale has the meaning of the average colour charge squared of the

gluons in the hadron wavefunction per unit of transverse area.

For nuclear collisions, assuming that the nuclear gluon distribution is A times that of

a nucleon, which may have an anomalous dimension γ, and given the relation between

radii RA = A1/3Rp, we get that the packing factor for a nucleus is

κA =
αs(Q

2)AxG(x,Q2)

Q2A2/3R2
h

= A1/3(1−γ)κ. (30)

Thus, it is enhanced by a factor A1/3(1−γ) with respect to that of a nucleon. This is

why saturation effects are expected to set in at lower energies in nuclear collisions.

The saturation mechanism tame the endless growth of gluon occupation numbers and

is expected to restore unitarity.
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4 QCD evolution II: Non-linear evolution equations

As discussed in the previous sections, a right description of the evolution of hadron

structure to high energies requires the inclusion of non-linear terms in the evolution

equations. This aim has been pursued during the last 25 years by many groups.

Apart from its intrinsic interest as a theoretical problem, a deeper study of the small-x

domain has also been triggered by experimental needs. A good knowledge of parton

distribution functions at small-x is relevant in the analysis of data coming from several

currently active experimental programs:

On one hand, saturation-based models successfully account for a wide range of data

from DIS and Diffractive Deep Inelastic Scattering (DDIS) at small-x from the HERA

experimental program.

On the other hand, small-x physics is important in determining the initial conditions

for heavy ion collisions. In such collisions it is believed that the Quark Gluon Plasma

is formed [34–36].

All these approaches share a common goal of attempting to improve, in one form or

another, the standard linear evolution schemes to make them suitable for the descrip-

tion of the non-linearities characteristic of the high-energy domain, see Figure 3. In

this section I will review some of these approaches.
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Figure 3: Scheme of evolution equations in the ln 1/x− lnQ plane.
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4.1 GLRMQ

Historically, the first step in that direction dates back to the early eighties. Gribov,

Levin and Ryskin [37] developed a picture of parton recombination, introduced the con-

cept of saturation and proposed the first non-linear evolution equation. This equation

includes non-linear gluon fusion terms by resuming multiple pomeron exchange in the

double logarithmic approximation and in the large-Nc limit. The resulting equation,

with the coefficient of the non-linear term determined by Mueller and Qiu [38] for a

low density picture of a spherical proton of radius R, reads

∂2xG(x,Q2)

∂ ln(1/x)∂ lnQ2
=
αsNc

π
xG(x,Q2)− 4α2

sNc

3CFR2

1

Q2
[xG(x,Q2)]2. (31)

The more refined analysis by Muller and Qiu also includes non-linear modifications to

the sea quark distributions. The linear limit of eq. (31) reproduces the DLA-DGLAP

equation.

4.2 The Color Glass Condensate

Another approach for the study of systems with large gluon densities relies in the

applicability of semi-classical methods. In such multiparticle systems, the occupation

numbers of gluons with transverse momentum smaller than the saturation momentum,

Nk with k < Qs, are large, larger than the Heisenberg commutator for creation, a(k),

and annihilation, a†(k), operators:

[a, a†] = 1; aa† ∼ Nk � 1. (32)

These conditions define a classical system and allow to treat the small-x gluons as clas-

sical gauge fields. Besides, a dense gluon system is characterized by a large saturation

momentum, so one may expect that it would also be the relevant scale for the running

of the coupling. For large values of Qs we are in a weak coupling regime, αs(Qs) � 1,

so pQCD methods can be applied.
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4.2.1 The Classical Theory. The MV model

Such approach was pioneered by McLerran and Venugopalan [39–41] (MV) as an at-

tempt to calculate, from first principles, the parton distribution functions at small-x

for a large ultrarelativistic nucleus. The MV model makes a sharp distinction between

fast and soft modes in the hadron wavefunction. The fast modes correspond to the

energetic partons (valence quarks), those carrying a large fraction of momentum of the

parent hadron, whereas the small-x gluons are the soft modes.

The separation between fast and soft modes is more precisely done in terms of their

light cone (LC) momentum12, p+. Partons with p+ > Λ+ are considered fast and those

with q+ < Λ+, soft. Λ+ = xP+ is an arbitrary scale at which the theory is defined and

P+ is the LC momentum of the parent hadron. This separation of modes is physically

justified in a frame in which the hadron is fast moving, the infinite momentum frame

(IMF). In this frame the hadron LC momentum is large P µ = (P+, 0−, 0⊥), with P+ �
ΛQCD. The fast partons move in the z direction with large longitudinal momentum, p+.

As quantum fields they are delocalized within a distance λ ∼ 1/p+, much smaller than

that corresponding to the soft gluons, 1/q+, so they appear to be sharply localized

in the light-cone. The fast partons can either emit or absorb soft gluons, but in

a first approximation they do not deviate from their light-cone trajectories x+ = 0

(eikonal approximation), so that they are integrated out and no longer considered

as dynamical modes. Thus they generate a colour current only in the + direction,

Jµ
a = δµ+ρa(x

−, x⊥).

In the MV model, one assumes that the soft gluons can be described as classical colour

fields, Aa
µ, found after solving the Yang-Mills equations of motion with the static source:

DνF
µν = δµ+ρa(x

−, x⊥). (33)

Fast partons are treated as a random variable. All the information about them is

12For an arbitrary 4-vector aµ = (a0, a1, a2, a3) the LC coordinates aµ = (a+, a−, a⊥) are defined

as follows:

a+ =
a0 + a3√

2
, a− =

a0 − a3√
2

, a⊥ = (a1, a2).

The scalar product reads a · b = a+b− + a−b+ − a⊥ · b⊥. The p− and p+ component are commonly

refered to as LC energy and longitudinal momentum respectively, and x+ and x− as the LC time and

longitudinal coordinate.
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encoded in a functional weight WΛ[ρ] that gives the probability of having a certain

configuration of the source in the hadron at a scale Λ+. In order to compute any phys-

ical observable involving the small-x gluons, O(Aa
µ), one must first solve the equations

(33) for the classical gluon fields and then average over all possible configurations of

the sources:

〈O(Aa
µ[ρ])〉Λ =

∫
DρWΛ[ρ]O(A[ρ]). (34)

Even though the MV model is a leading order approximation in the strong coupling,

it is intrinsically non-perturbative. A standard perturbative expansion is not only a

expansion in powers of the coupling, but also in powers of the charge density. In the

MV model, the charge density is not assumed to be small. On the contrary, interesting

non-linear saturation effects are expected when the density is large, of order α−1
s .

Noticeably, the unintegarated distribution functions found in the MV model with a

gaussian ansatz for the statistical weight, WΛ, saturate i.e. they show a power-like,

perturbative behaviour for large values of the transverse momentum, while they show

a much milder logarithmic behaviour for small transverse momentum (smaller than the

saturation momentum):

φMV (x, k⊥) ∼

 ln(k2
⊥/Q

2
s) for k⊥ � Qs,

Q2
s/k

2
⊥ for k⊥ � Qs.

(35)

4.2.2 The Quantum Theory. The Renormalization Group Equation

The MV model is purely classic. It is well suited to describe gluon modes with a value

of x close to that at which the classical action is defined, x . Λ+/P+. However, the

quantum corrections to this classical approximation are large if one tries to describe

modes with a much smaller value of x. For x′ = bx, they are of order ln 1/b and,

therefore, become large for b � 1. This is due to the fact that the separation scale

between hard and soft modes is totally arbitrary, and the interactions do not disappear

as we move away from this scale.

These corrections can, however, be resumed by means of a renormalization group pro-

cedure in which quantum fluctuations inside the momentum strip Λ+ > p+ > bΛ+
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are integrated out and incorporated in the effective theory by renormalizing the colour

sources, ρa, and its correlations (that is, the statistical weight WΛ[ρ]). In this way the

classical + quantum calculation can be reproduced by a purely classical calculation,

but with a modified statistical weight WbΛ, whose variation with the scale is given by

a Renormalization Group Equation (RGE). The resulting evolution equation is

∂Wx[ρ]

∂ ln 1/x
= αs

{
1

2

δ2

δρa
x(x⊥)δρb

x(y⊥)
[Wxχ

ab
xy]−

δ

δρa
x(x⊥)

[Wxσ
a
x]

}
. (36)

The resummation is done at leading logarithmic accuracy, αs ln 1/x, but to all orders in

the strong background fields. The quantities χ[ρ] and σ[ρ] in eq. (36) have the meaning

of the mean fluctuation and the average value of the extra charge density induced by

the high longitudinal momentum modes that have been integrated out.

Eq. (36) was first derived by Jalilian-Marian, Kovner, McLerran and Weigert in [42],

and has been further analyzed and discussed in many works [43–48].

In the low density, or weak field, limit this equation linearizes and reduces to the BFKL

equation, as shown in ref. [49].

4.2.3 The Balitsky hierarchy

In the Color Glass Condensate (CGC) approach, the evolution of the dense glue is ob-

tained by boosting the target, which induces additional gluon radiation. An alternative

formalism to the CGC approach to study unitarization at high energy was developed

by Balitsky from the operator product expansion for high-energy scattering [50]. In

this approach the target is not evolving, but is taken to be a high-density system repre-

sented by strong colour fields, and the evolution is achieved by boosting the projectile.

The projectile is assumed to have quark and gluon components, whose propagation

through the dense target is given, in the eikonal approximation, by Wilson lines:

V (x) = P exp

{
ig

∫
dx−A−

a (x−, x)ta

}
, (37)

where ta are in the fundamental (adjoint) representation for quarks (gluons), and A−

the target colour fields, in the light-cone gauge A+ = 0.

More precisely, Balitsky’s equations form an infinite hierarchy of coupled equations
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for correlators of these Wilson lines. Weigert showed in [51] the complete equivalence

between JIMWLK equations and the Balitsky hierarchy.

4.3 BK equation

The infinite set of coupled equations given by the JIMWLK-Balitsky hierarchy is very

difficult to handle in practice. Their solutions are not known analytically nor easy to

find numerically [52].

The mean-field version of JIMWLK-Balitsky hierarchy was derived by Kovchegov in

the limit of large number of colours as a single closed non-linear evolution equation

for the imaginary part of the dipole scattering amplitude off a hadronic target [53].

The resulting equation, known as the Balitsky-Kovchegov (BK) equation, has become,

despite its approximate nature, the starting point for the study of unitarity effects in

high energy evolution of hadron structure.

Kovchegov’s derivation relies in the Mueller dipole picture for high energy evolution

[54,55]. It exploits the equivalence betweens gluons and zero-size quark-antiquark pairs

given by the large-Nc limit. This equivalence is straightforward from the Fierz identity

∑
a

taij t
a
kl =

1

2
δil δjk −

1

2Nc

δij δkl, (38)

large Nc q
q

Figure 4: Equivalence between gluons and qq̄ pairs in the large-Nc limit.

so that quark and gluons are replaced by dipoles as the effective degrees of freedom at

small-x.

The relation between the dipole scattering amplitude and hadron structure becomes

clear in the dipole picture of DIS [56], in which the process factorizes into two pieces:

First the virtual photon fluctuates into a quark-antiquark pair long before reaching

the nucleus. The quark and antiquark are located at transverse positions x and y
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respectively. The probability for such splitting is given by the virtual photon-dipole

wavefunction squared. Then the dipole scatters off the hadron at fixed transverse

positions (eikonal approximation) with a cross section σdip(r, x) given by the integral

of the imaginary part13 of the dipole scattering amplitude over the impact parameter

b:

σγ∗h(x,Q2) =

∫ 1

0

dz

∫
d2r|Ψγ∗

TL(z, r, Q2)|2σdip(r, x), (39)

σdip(r, x) = 2

∫
d2bN (r,b, x). (40)

Here, ΨTL are the perturbatively computed transverse and longitudinal wavefunctions

for the γ∗ − qq̄ system, z is the fraction of the virtual photon’s light-cone momentum

carried by the quark, r the dipole size and b the impact parameter:

r = x− y, b =
x + y

2
. (41)

The energy evolution of the collision is by achieved boosting the qq̄-dipole to higher

rapidity. After the boost gluon emission either by the quark or by the antiquark may

take place with a probability

dP =
αsNc

2π2

(x− y)2

(x− z)2(y − z)2
dY d2z, (42)

where z is the transverse position of the emitted gluon.

By means of the gluon-dipole equivalence provided by the large-Nc limit the system

after the emission can be seen as an ensemble of dipoles: the pre-existing one and two

new dipoles, the one formed by the parent quark and the antiquark line of the gluon

(x, z), and other with the antiquark and the quark line of the gluon, (y, z). Within

this picture further evolution can be interpreted as a dipole branching process.

Thus the scattering amplitude grows due to the contribution of the two newly created

dipoles. The BK equation reads:

13The dipole scattering amplitude is assumed to be purely imaginary.

28



γ∗

q y

xq

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

z
γ∗

q y

xq

q

q
γ∗

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

y

x

q

q

z

large Nc �������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

dY

Figure 5: Picture of the evolution encoded in the BK equation.

∂N (x,y)

∂Y
=
αsNc

π

∫
d2z

2π

(x− y)2

(x− z)2(y − z)2

[
N (x, z)+N (y, z)−N (x,y)−N (x, z)N (y, z)

]
(43)

The meaning of this equation is straightforward: The two first terms in (43) account for

the separate interaction of the two newly created dipoles. The third term corresponds

to the probability of no gluon emission, whereas the non-linear term correspond to the

simultaneous interaction of the two new dipoles. This term must be substracted in

order to avoid double counting and prevents the amplitude to grow boundlessly with

rapidity.

The mean field character of BK equation is understood as follows: In order to get the

physical scattering amplitude one has to average the propagation of the quark and

antiquark over all possible target configurations,

N (x,y) = 〈N(x,y)〉target =
1

Nc

〈1− V (x)V †(y)〉, (44)

where a summation over colour indexes is understood. In the large-Nc limit the four-
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point correlator factorizes into the product of two-point correlators:

〈N(x,y)N(y, z)〉 = 〈N(x,y)〉〈N(y, z)〉+O(1/N2
c ) = N (x, z)N (y, z)+O(1/N2

c ). (45)

In this way the evolution equation for the two-point function decouples of the one for

the four-point function and one gets a single, and relatively simple, closed non-linear

evolution equation.

BK is an asymmetric equation in the sense that it does not account for high-density

effects in the projectile wavefunction. Indeed, the evolution for the projectile only

includes radiative terms and is, therefore, linear. The approximation that the projectile

is a dilute object sets the validity of the BK equation and, obviously, breaks down at

sufficiently high energy, when the dipole becomes crowded through successive gluon

emission. Equivalently, pomeron loops are not included in the BK equation. The

non-linearities in BK equation merge from simultaneous multiple scattering and just

reflect the gluon recombination processes that occur in the high-density target. The

inclusion of non-linear effects in the projectile evolution is a major topic of discussion

nowadays [57–60].

The BK equation can also be written in transverse momentum space as an evolution

equation for the unintegrated gluon distribution [61]:

∂φ(k, Y )

∂Y
=
αsNc

π2
k2

∫
d2q

(k− q)2

[
φ(q, Y )

q2
− φ(k, Y )

q2 + (k− q)2

]
− αsNc

π
φ2(k, Y ). (46)

The dipole scattering amplitude and the unintegrated gluon distribution are related by

a Fourier transform:

φ(k) =

∫
d2r

2πr2
eik·rN (r). (47)

The advantage of working in momentum space is that, assuming no azimuth depen-

dence of the φ(x,k), the angular integral in eq. (46) can be done analytically, so that

one is left with an equation with a single integral,
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∂φ(k2, Y )

∂Y
=
αsNc

π
k2

∫
dq2

q2

[
φ(q2, Y )− φ(k2, Y )

|q2 − k2|
+

φ(k2, Y )√
4q4 + k4

]
− αsNc

π
φ2(k2, Y ),

(48)

which is very advantageous for numerical purposes. The impact parameter dependence

in equations (46), (47) and (48) is implicit.

4.3.1 Analytical Structure

The BK equation (43) has a rich symmetry structure. Introducing complex notation

for the transverse vectors i.e. x = x1 + ix2, x̄ = x1 − ix2, for x = (x1, x2), it can be

shown that the measure in eq. (43),

αsNc

2π2

(x− y)2

(x− z)2(y − z)2
d2z, (49)

is invariant under Möbius transformations14:

x −→ ax+ b

cx+ d
, x̄ −→ āx̄+ b̄

c̄x̄+ d̄
, (50)

where the parameters a, b, c, d ∈ C and ad− bc 6= 0. Identical transformations are also

applied to y(ȳ) and z(z̄). In particular, BK is invariant under the following elementary

transformations:

• global two-dimensional translations by a vector b: x→ x+ b;

• global two-dimensional rotations by an angle φ: x→ O(φ)x;

• scale transformations with a real, positive parameter λ: x→ λx;

• inversion (in complex notation): x→ 1/x.

Noticeably, if the initial condition, N 0(x,y), is invariant under any of the previous

transformations, the solutions of the BK equation preserve the corresponding symme-

try. In particular, if the initial condition is invariant under translations and rotations,

14Provided that the strong coupling constant is fixed.
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N 0(x,y) = N 0(|x − y|) i.e. it only depends on the dipole size r = |x − y| and not

on the impact parameter b, then the solution at an arbitrary rapidity Y possesses the

same property. The problem of finding the solutions of BK equation simplifies enor-

mously in this case, since only one degree of freedom is relevant, namely the dipole size

r. Physically, this approximation, called the local approximation, implies assuming an

infinitely large and homogeneous target. This is only meaningful for very small dipoles

compared to the target size, sitting close to the center of the target. Moreover, it leads

to infinite cross-sections. However, many of the studies both analytical and numerical

of the BK equation rely on this approximation as a first approach to the problem.

The scale-invariance of the BK kernel also allows the existence of scaling solutions i.e.

solutions that are no longer functions of r, b and x separately, but of a single variable

τ = rQs(x, b), the scaling variable. In them, all the energy and impact parameter

dependence is absorbed in the saturation momentum. Under the local approximation

the scaling variable is defined as τ = rQs(x).

The scaling property of dipole scattering amplitude can be traced back to scaling of

the DIS cross section, σγ∗h, by means of eq. (39). This is so because the wavefunctions

ΨT,L are proportional to Q2 times a function of r2Q2. Consequently, if scaling holds

for the dipole scattering amplitude, σγ∗h depends solely on τ = Q/Qs.

The non-linearities of the BK equation ensure unitarity at the level of the amplitude,

i.e. provided that the initial condition does not violate the black-disk limit value,

N 0(x, y) ≤ 1, this property will be preserved by evolution, ∂N/∂Y ≤ 0 for N = 1.

The BK kernel is divergent for zero-size emitted dipoles. These infrared singularities

can be mapped to ultraviolet divergences through the inversion transformation, x −→
1/x. However, BK and BFKL are divergence-free if the initial condition falls steep

enough, N (r → 0) ∼ rδ with δ > 0.

4.3.2 Next-to-leading-log corrections

As discussed in the previous sections, the BK equation includes non-linear corrections

to BFKL dynamics. However, BK is derived at leading logarithmic accuracy, and next-

to-leading order (NLO) corrections are expected to be large, as it is the case for the

BFKL equation [62–66]. Importantly, unitarity effects are expected to become sizable
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at lower values of rapidity,

YU ∼
1

αP

ln
1

αs

, (51)

where αP = 1 + 4αsNc

π
ln 2 is the LO pomeron intercept, than next-to-leading order

corrections emerging from the running of the coupling which have been estimated to

become important at larger rapidities

YNLO ∼
1

α
5/3
s

. (52)

Thus, YU � YNLO for parametrically small αs, and NLO effects can be considered

subleading with respect to saturation effects in small-x dynamics.

Nowadays there is no a fundamental derivation of NLO BK equation, and NLO ef-

fects can only be considered in a phenomenological way. Two main sources for such

corrections have been identified: The running of the coupling and kinematical con-

straints. Both effects are expected to decrease the energy dependence of the saturation

momentum with respect to fixed coupling evolution.

Essentially, the running of the coupling suppresses the emission of large transverse

momentum gluons (small size dipoles). This retards the growth of the non-saturated

part of the gluon distribution, thus slowing down the evolution and taming the increase

of the saturation momentum with energy. In the article III, NLO corrections arising

from the running of the strong coupling have been included in an effective way through

different modifications of the original BK kernel.

Kinematical constraints are addressed by the introduction of a physical rapidity sep-

aration parameter ∆, so that successive emitted gluons in the radiative cascade are

enforced to have a minimum separation in rapidity, Yi+i − Yi > ∆.

None of these effects modify the global picture of the evolution, but they are known

to be numerically large and, therefore, must be taken into account for realistic phe-

nomenological applications of the BK equation.

4.3.3 Properties of the solution

In spite of the relative simplicity of the BK equation, its exact analytical solutions are

not known. In the last years general properties of its solutions have been extensively
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studied through a combination of both analytical and numerical methods. Here I will

summarize some of these properties.

From dimensional arguments, it is natural to expect scaling of the solution in the region

of small momenta, kt ≤ Qs, where the hadron is characterized by a single dimensionful

scale, Qs [67, 68]. However, analytical estimates [69] suggest that the scaling property

extends to a larger kinematical region, where the system is dilute and evolution is

governed by linear schemes. This region, known as the extended scaling window, is

bounded as

Qs ≤ kt ≤
Q2

s(Y )

Q0

, (53)

where Q0 is the initial value of the saturation momentum.

Using non-trivial mathematical properties of a class of non-linear evolution equations,

it is possible to obtain the universal terms in the asymptotic expansion in rapidity of the

saturation scale and of the unintegrated gluon density (forward scattering amplitude).

The meaning of ’universality’ is twofold: They are independent of the details of both

the non-linear terms in the nonlinear evolution equation and of the initial conditions.

These equations admit traveling wave solutions i.e. scaling solutions. Their existence

is possible due to the damping non-linear terms, although most of their asymptotic

properties are governed by the linearized equation, being relatively insensitive to the

saturating terms. This is why these expansions are valid for a broad range of non-linear

equations sharing the same linear limit.

In the case of the BK equation:

∂YN = αχ (−∂L)N − αN 2, (54)

where L = ln(k2/ΛQCD), and the function χ is the Mellin transform15 of the BFKL

15The Mellin transform of a function f(x) is defined as:

f̃(ω) =
∫

dxe−ωxf(x),

and the inverse transformation as

f(x) =
∫ +i∞

−i∞

dω

2πi
eωxf̃(ω).
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kernel:

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ), (55)

where ψ(γ) = d ln Γ(γ)/dγ and Γ(γ) is the Euler gamma function.

The function χ (−∂L) is an integro-differential operator which can be expanded:

χ (−∂L) = χ (γ0) + χ′ (γ0) (−∂L − γ0) +
1

2
χ′′ (γ0) (−∂L − γ0)

2 + . . . (56)

for some value γ0 between 0 and 1 i.e. for the principal branch of the function χ.

Retaining only up to the quadratic term in the expansion for χ(−∂L) (this is known as

the ’diffusive’ approximation), introducing the notation ω = χ
(

1
2

)
, D = χ′′′

(
1
2

)
, and

defining γ̄ = 1− 1
2

√
1 + 8ω/D, the change of variables

t =
ᾱD

2
(1− γ̄)2 Y , x = (1− γ̄)

(
L+

ᾱD

2

)
, (57)

u(t, x) =
2

D(1− γ̄)2
N

(
2t

ᾱD(1− γ̄)2
,

x

1− γ̄
− t

(1− γ̄)2

)
, (58)

brings BK equation into the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equa-

tion [70,71] for u:

∂tu(t, x) = ∂2
xu(t, x) + u(t, x) [1− u(t, x)] . (59)

It has been proven that FKPP equation, and therefore BK under the diffusive ap-

proximation, admits traveling wave solutions at large rapidities. That means that

asymptotic solutions are a function w of a single variable such that

N (Y →∞) = w
[
ln k2 − lnQ2

s(Y )
]
. (60)

Universal expansions, in the sense defined above, both for the dipole scattering am-

plitude in the transition region and for the rapidity dependence of the saturation mo-

mentum have been determined [72]:

N (k, Y ) = C

(
k2

Q2
s(Y )

)−γc
[
γc ln

(
k2

Q2
s(Y )

)
+ f(z, γc, χ, χ

′′, χ(3)) +O(1/
√
Y )

]
e−z2

,

(61)

with z being a small parameter that controls the pattern of scaling violations,
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z =
ln (k2/Q2

s(Y ))√
2ᾱsχ′′(γc)Y

, (62)

and the leading exponent γc = 0.627 . . . is the solution of the implicit equation

χ(γc) = γcχ
′(γc). (63)

This expansion is valid for the transition between the ’front interior’, defined by the

condition z � 1, and the ’leading edge’, z ∼ 1. The behaviour of the saturation scale

is

lnQ2
s(Y ) = ᾱ

χ(γc)

γc

Y − 3

2γc

lnY − 3

γ2
c

√
2π

ᾱχ′′(γc)

1√
Y
. (64)

Theoretical estimations have also been made for running coupling evolution. It has

been argued that the extended scaling also holds for running coupling. The proposed

asymptotic expansions for the dipole solutions of BK equation and for the rapidity

dependence of the saturation momentum are [69,73]:

N (k, Y ) = C

(
k2

Q2
s(Y )

)−γc
[
ln

(
k2

Q2
s(Y )

)
+

1

γc

]
, (65)

lnQ2
s(Y ) = aY 1/2 + bY 1/6 + c. (66)

Noticeably, the leading behaviour of the solution estimated for running and fixed cou-

pling evolution coincide. It is equal to a power, with the same value of the exponent,

times a logarithmic correction.

The nuclear size dependence of the saturation momentum has also been object of

research. It is encoded in the initial condition

Q2
sA(Y = 0) = h(A)Q2

sp(Y = 0), (67)

where QsA(p) stands for the saturation momentum of a nucleus (proton), and h(A) is

some function of its mass number, A.
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This dependence is strictly preserved by fixed coupling evolution, provided scale invari-

ance of the initial condition, whereas for running coupling, it has been proposed [74]

that, at asymptotically large energies, it would be completely wiped out by running

coupling evolution:

ln

(
Q2

sA(Y )

Q2
sp(Y )

)
=

ln2
[

hQ2
s(Y =0)
Λ2

]
2
√

∆′2Y
−→ 0. (68)

This is a very attractive result which would imply universality oh high-energy hadronic

processes i.e. independence of the particular class of hadrons involved in the collision.

All the analytical estimations exposed in this section are only valid for the asymptotic

and do not keep track of the dependence on the initial conditions, whose influence is

extremely important in the early stages of the evolution and, therefore, for phenomeno-

logical applications16.

Most of them have been rederived and checked numerically in the article III, where

numerical solutions both for fixed and running coupling evolution up to ultra-high

rapidities are provided, as well as a detailed study of their asymptotic properties. In

this work, traveling ’soliton-like’ wave solutions at asymptotically large energies have

been found both for fixed and running coupling evolution. Remarkably, the asymptotic

shape of the solutions is different in both cases. This result is contrary to the analytical

estimates and needs to be better understood. The energy and atomic mass dependence

of the saturation scale derived from our results is in agreement with the expectations

shown above.

5 Phenomenology of Saturation

There are two main sources of experimental data with which confront our present

knowledge about the saturation phenomenon: Deep Inelastic Scattering experiments

at HERA and heavy ion collisions experiments at RHIC. Both situations involve a

large number of participating gluons, generated by small-x evolution. In the nuclear

16The highest value of rapidity studied at RHIC is Y ∼ 3, while at HERA it is Y ∼ 9. At the LHC

a maximum measurable value Y ∼ 5÷ 6 is expected.

37



case, this evolution is enhanced since the nuclear wavefunction contains many gluons

already at moderate values of energy.

It was expected that non-linear corrections should already be considerable at HERA.

Indeed, saturation models [75,76] are very successful describing many observables mea-

sured at HERA. Nevertheless, present HERA data can also be described rather well

both by the simple linear evolution and by models that explicitly exclude satura-

tion [77]. Consequently, no definite statement about the presence of saturation effects

in present HERA data can be done.

This can be explained by the fact that HERA data is not extensive in the region of

interest. The smallest values of x measured at HERA are ∼ 10−5 for Q2 = 1 GeV2.

A similar situation happens in current heavy ion collision experiments. Estimations

indicate that the relevant value of x in gold-gold collisions at a center of mass energy
√
sNN = 200 GeV per nucleon at RHIC is x ∼ 10−2. These values are not small

enough for the eikonal approximation, underlying in all the formalisms developed for

saturation physics, to be plenty reliable, and there may be some ground for finite

energy corrections in present data. Moreover, it is questionable whether the saturation

momentum associated to these values of x is large enough for perturbative techniques

to be safely applied.

With the advent in the next years of the LHC heavy ion program the full coherence

domain will be reached and the saturation-based formalisms could be better checked.

Besides, the ideal experimental ground to study saturation physics would be in an

electron-nucleus collider, where nuclear parton distributions could be directly measured

[78–81].

In this section I will discuss the accumulated evidence for the presence of saturation

effects in currently available experimental data.

5.1 Saturation in DIS

The dipole formalism has established as a useful tool for the study of deep inelastic

and related diffractive cross sections in γ∗p scattering. In it, the photon wavefunction

constitutes the calculable part of the process whereas the reminder, the dipole cross

section, encodes all the information about the hadronic interactions, including unita-
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rization effects. The latter is substantially influenced by nonperturbative contributions

and needs to be modeled. The most successful model for the dipole cross section is the

one proposed by Golec-Biernat and Wüstoff (GBW) [75]. The GBW model includes

saturation effects and is very economical in the number of parameters which are used.

5.1.1 GBW model

Golec-Biernat and Wüsthoff proposed the following ansatz for the dipole cross section

σdip(r, x) = σ0

(
1− exp

{
−r

2Q2
s(x)

4

})
, (69)

where Qs(x) plays the role of the saturation momentum parametrized as Q2
s(x) =

(x0/x)
λ GeV2. σ0 is a global normalization factor that accounts for the lack of impact

parameter dependence on the model. The three free parameters of the model are

determined from a global fit to small-x DIS data from HERA (x ≤ 0.01 and Q2 ≤ 45

GeV2). Their values are:

σ0 = 23.03 mb, λ = 0.288, x0 = 3.04× 10−4, (70)

if only three lights quarks are assumed for the virtual photon wavefunction. These

parameters vary slightly if one also considers the charm quark.

This model includes the main features expected for σdip. Saturation is visible in the

fact that the dipole scattering amplitude

N (r, x) = 1− exp

{
−r

2Q2
s(x)

4

}
(71)

approaches the unitarity bound N = 1 for dipoles sizes larger than a characteristic

size 1/Qs(x). Oppositely, small dipoles are very little interacting and the dipole cross

section vanishes as r2 for small r, leading to Bjorken scaling. This is the well-known

property of colour transparency.

The GBW model gives a rather good description of HERA data, both for the inclusive

and diffractive structure functions.

More recently a new CGC-inspired saturation model for the dipole cross section was

proposed in [76]. It includes gluon saturation effects via an approximate solution of
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the BK equation. The resulting dipole cross section is very similar to the GBW one

and it has been shown that it leads to similar, successful predictions for DIS and DDIS

data.

5.1.2 Geometric scaling

Geometric scaling is the observation that DIS cross section no longer depends on two

separate variables, Q2 and x. Rather it becomes a function on a single variable, τ =

Q2/Q2
s(x). Thus, the energy dependence is completely absorbed by the saturation

momentum,

σγ∗p(x,Q2) −→ σγ∗p
[
τ = Q2/Q2

s(x)
]
. (72)

This scaling has been identified in deep inelastic scattering both on proton [82] and

nuclear [83] targets at small-x, Figure 6, and reflects in the fact that all data lie

within a same universal curve when plotted versus the scaling variable. The atomic

size dependence of the saturation momentum extracted from fits to nuclear data is

Q2
sA ' A4/9Q2

sp.

As was discussed in section 3.3, the BK equation allows for the existence of scaling

solutions, so geometric scaling is one of the most compelling indications of the existence

of saturation effects in present DIS data. However it remains an open question to

elucidate whether this scaling is indeed dynamically generated by non-linear evolution.

5.1.3 Structure functions

Using the dipole picture, the structure function F2 can be well described by saturation

models. The results for the description of the data are remarkably good for x ≤ 10−2

and Q2 ≤ 450 GeV2. One should note that this description includes both the low

and high Q2 data. Descriptions based on DGLAP evolution can account only for data

within its applicability domain, Q2 > 1 GeV2.
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Figure 6: Geometric scaling found in DIS on proton (top) and nuclear (bottom) data.

5.1.4 Diffractive and quasi-elastic processes

The dipole model can also be applied to describe diffractive DIS processes,

γ∗ + p −→ p+X (73)

and diffractive exclusive processes17, including Deeply Virtual Compton Scattering

(DVCS),

γ∗ + p −→ γ + p (74)

and vector meson (Vµ) production,

γ∗ + p −→ Vµ + p. (75)

To compute the DVCS cross-section within the dipole model one must evaluate the

light-cone wavefunction of the outgoing real photon at Q2 = 0. This means that the

contribution due to longitudinally polarized photons vanishes and the process is purely

transverse. Similarly, to compute the cross section for vector meson production one

needs the meson light-cone wavefunction, which is usually modeled upon that of the

photon.

17For a general reference on exclusive processes see e.g. [84].
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5.2 Relativistic Heavy Ion Collisions

The experimental programs in relativistic ions started in the mid-seventies using the

Bevalac18 and SIS19 facilities at LBL20, and then continued over the years at the Al-

ternating Gradient Synchrotron (AGS) at BNL and the Super Proton Synchrotron

(SPS) at CERN. Presently, such collisions are performed at much higher energies at

RHIC, which is designed for gold-gold collisions at a center of mass energy per nucleon
√
sNN = 200 GeV.
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Figure 7: Pictorical representation of heavy ion collisions.

The general picture of heavy ion scattering consists of three stages: First, two energetic

nuclei collide, depositing a large ammount of energy in a very small volume. Thus, the

initial energy density is very large, eventually larger than the critical energy density21

required for a phase transition between hadronized matter and deconfined quarks and

gluons to take place. It is believed that this system of free quarks and gluons thermal-

izes, giving rise to a new state of matter, the Quark-Gluon Plasma (QGP). Afterwards

the system expands, cools down, the energy density diminishes and, finally, the system

hadronizes into the experimentally measured particles.

Deuteron-gold collisions are also performed at RHIC. In them, the initial energy density

is not high enough for the QGP formation. Therefore, final state effects are strongly

reduced with respect to gold-gold collisions and initial state effects can be more easily

isolated.

18The Bevalac resulted from the coupling of the synchrotron Bevatron to the Super Heavy Ion

Linear Accelerator, Super-HILAC.
19Heavy Ion Synchrotron.
20Lawrence Berkeley Laboratory at Berkeley, USA.
21Lattice QCD calculations estimate that the deconfined phase transitions occurs at energy density

εc > 1 GeV/fm3.
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A significant effort has been done to analyze RHIC data in terms of saturated ini-

tial conditions. Two of the experimentally measured signals where saturation can be

identified are the intermediate transverse momentum spectrum and the total particle

multiplicity.

5.2.1 The Cronin effect

The observed enhancement of particle yields at intermediate transverse momenta in

proton-nucleus collisions with respect to proton-proton collisions is commonly refered

to as the Cronin effect [85]. It is usually attributed to multiple scattering of the

projectile partons propagating through the nucleus before the hard collision that will

give rise to the detected particles takes place, which results in a kt-broadening. The

average transverse momentum gained by the projectile is expected to be of the order

of the characteristic momentum scale of nucleus, that is, of the order of the saturation

momentum.

kt

Figure 8: Cronin effect.

The Cronin peak has been observed in deuteron-gold collisions at central rapidity

(Y = 0) at RHIC. It is usually quantified by means of the nuclear modification factor,

RpA:

RpA =

dNpA

dyd2pd2b

Ncoll
dNpp

dyd2p d2b

, (76)

where Ncoll is the number of nucleon-nucleon collisions. RpA is equal to one in the

absence of collective nuclear effects.

However, when measured at higher rapidities, the Cronin enhancement tends to dis-

appear and turn into a relative suppression of the produced particle yield [86]. Cal-

culations based on multiple scattering cannot account for this suppression at forward
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Figure 9: Evolution of the Cronin effect at RHIC measured by the Brahms collabora-

tion.

rapidities. It is the result of the article II that this is a consequence of quantum

non-linear evolution.

Oppositely to deuteron-gold collisions, the intermediate pt hadron spectra at central

rapidity is strongly suppressed in gold-gold collisions. The determination of the Cronin

effect as an initial state effect was of the uttermost importance to identify the strong

suppression of particles with large transverse momentum in Au-Au collisions as a final

state effect [87].

5.2.2 Multiplicities

Most of the produced particles at RHIC have a low transverse momentum, below 1

GeV, which is close to the saturation momentum estimated for RHIC, Q2
s ∼ 1 ÷ 2

GeV2. Therefore, it is tempting trying to understand the rapidity spectrum dN/dη as

a manifestation of the saturated gluon distributions in the colliding nuclei. The gross

features of the multiplicity distribution are reproduced by saturation based calculations

[88, 89]. They rely on the transverse momentum factorization ansatz for the inclusive

production of gluons [90]:

dNg

dyd2ptd2b
=

4πNc

N2
c − 1

αs

p2
t

×
∫
d2ktφA(y, k2, b)φB(y, (k − p2

t ), b), (77)

where φA,B are the unintegrated gluon distributions of the colliding hadrons. It is

also assumed local hadron-parton duality. Remarkably, calculations based just in the

geometrical scaling found in DIS data and in the factorized expression (77) reproduce
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very well the yield of particle produced at RHIC [83]. In all these calculations the

energy dependence of the multiplicity is directly given by the energy dependence of the

saturation scale, so predictions for the LHC are straightforward22.

Ideally, the parton multiplicity computed within saturation-based formalisms could

serve as initial condition for subsequent evolution of the system towards a thermalized

medium, as it is done in hydrodynamical calculations. These consist in a dynamical

mapping of a given initial condition to a final spectra through the equation of state.

22This is not the only framework in which multiplicity in heavy ion collisions can be understood,

see e.g. [91,92].
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6 Conclusions

One main conclusion can be drawn from this thesis: Coherence effects are of the utter-

most importance in the high-energy domain of QCD, both for a proper, self-consistent

theoretical description of such processes and for phenomenological applications.

These effects play an important role in systems characterized by large gluon densities,

in which gluon self-interactions must be taken into account. Special attention has been

paid to the nuclear case, in which the coherence effects are already present at not very

high energies, due to the large gluon numbers existing in the nucleus wavefunction at

moderate energies.

In this work, the following aspects of small-x physics have been analyzed:

• Article I: A phenomenological model for shadowing of nuclear structure functions

based on its relation to diffractive processes in proton targets has been presented.

Within this formalism we predict a substantial reduction of the particle yield

produced in nucleus-nucleus collisions due to the inherent shadowing of their

respective wavefunctions. The agreement between the parameter-free results of

the model and the experimental data verifies the validity of the approach and

greatly constraints future developements.

• Article II: A semiquantitative study of the behaviour of the Cronin enhancement

under small-x evolution has been performed. It is the result of this work that the

disappearance of the Cronin effect observed at RHIC is mainly due to small-x

dynamics.

• Article III: Non-linear small-x dynamics has been further analyzed, providing an-

alytical estimates and numerical solutions of the Balitsky-Kovchegov equation,

the simplest perturbative evolution equation that includes non-linear recombina-

tion effects. A detailed characterization of its asymptotic properties and compar-

ison with analytical estimates is performed. Their main features exhibit a clear

departure from those of the linear dynamics. We also see that the approach to

the asymptotics is very slow.

In spite of the recent progress done in this field, as new experimental data from

RHIC [93–96] and the LHC become available, the need for a better understanding
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of the small-x domain will increase in importance. It is therefore essential for the

undergoing theoretical effort to result in a framework capable of yielding phenomeno-

logical predictions. To this concern, there are two major problems to be faced in the

near future:

On one hand, the current formalism must be extended beyond the leading approxima-

tions at which it is derived. This amounts to the symmetrization of evolution equations

by including high-density effects in the projectile i.e. pomeron fusion terms, and to

a better theoretical control on the role of fluctuations and on next-to-leading order

corrections, whose importance has been shown in this thesis. Finite energy corrections

due to breakdown of the eikonal approximation should also be taken into account for

a realistic comparison with experimental data at present energies.

On the other hand, it is necessary a better determination of the initial conditions,

which are presently very badly constrained and that determine the initial steps of the

evolution up to a large extent, as has been pointed out in this thesis.

The non-linear nature of the small-x problem makes extremely difficult to obtain exact

analytical solutions. Thus, numerical methods have played and will continue to play a

crucial role to obtain explicit solutions of the evolution equations. Most of the progress

done in the understanding of the high-density regime and some major breakthroughs,

as the discovery of scaling solutions, have been managed numerically.
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A AGK Rules

The AGK rules [22] provide a precise relation between a given amplitude and all the

cross-sections that can be derived from it by cutting, putting on-shell, the propaga-

tors in all possible ways: between the exchanged objects and the exchanged objects

themselves.

CA

CB

...
B

A

Figure 10: Multiple pomeron exchange in hadron-hadron collisions.

The original AGK work is centered in the analysis of multiple pomeron exchange in

high-energy hadron-hadron scattering, Figure (10). It makes use of the Sommerfeld-

Watson, or complex angular momentum, representation for the scattering amplitude

TAB(s, t) =

∫
dω

2i
ξ(ω)s1+ωF(ω, t), (78)

with

ξ(ω) =
τ − exp{−iπω}

sin πω
, (79)

where τ = ±1 is the signature factor. The partial wave F(ω, t) has singularities in

the complex ω-plane. In the frame of Regge theory each singularity corresponds to a

reggeon exchange. In particular, pomerons are reggeons with τ = +1 and intercept,

see below, close to one. The central goal of the AGK analysis is the decomposition of

the n-pomeron exchange contribution in terms of s-channel intermediate states. More

precisely, one is interested in the total cross-section i.e. in the discontinuity with respect

to energy of the scattering amplitude. It is quite obvious that the absorptive part of the
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amplitude will consist of several different contributions: each one corresponding to a

particular cuttting of a line in Figure 10, and that there are several ways of performing

such cut.

The general formula for the discontinuity accross this cut is

discn
ω

[
F(ω, t)

]
= 2πi

∫
dΩn

n!
γ{βj} CA

n ({kj};ω) CB
n ({kj};ω) δ(ω −

∑
j

βj), (80)

with

dΩn = (2π)2δ2(q −
∑

j

kj)
n∏

j=1

d2kj

(2π)2
, (81)

where CA(B)
n ({kj};ω) is the n-pomeron coupling to the external particle A(B). kj(j =

1, . . . , n) denotes the transverse momentum of the j-th Regge pole, q is the sum over

all transverse momentum with q2 = −t, and α(−k2
j ) = αj = 1 + βj is the Regge pole

trajectory function. The factor which determines the overall sign has the form

γ{βj} = (−1)n−1
cos

[
π
2

∑
j

(
βj +

1−τj

2

)]∏
j cos

[
π
2

∑
j

(
βj +

1−τj

2

)] . (82)

Thus, the contribution of the contribution of the n-pomeron cut to the scattering

amplitude reads

T n−cut
AB (s, t) =

∫
dω

2i
ξ(ω)s1+ωdisc(n)

ω

[
F(ω, t)

]
. (83)

Doing the ω-integral we arrive at

T n−cut
AB (s, t) =

∫
dΩn

n!
γ{βj}ξ(β)s1+βCA

n CB
n , (84)

where β ≡ β({kj}) =
∑n

j=1 βj and CA,B
n ≡ CA,B

n ({kj}; β).

When relating an isolated contribution to the to the full diagram one requires a cut

version of the reggeon particle coupling, Cn. The basis of the AGK analysis is the

observation that, under very general assumptions for the underlying dynamical theory,
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the couplings Cn are fully symmetric under the exchange of reggeons, and all their cuts

versions are identical. This property then allows to find simple relations between the

different cut contributions, and to derive a set of counting rules.

One of the main results of AGK states that the s-discontinuity of the n-cut contribution

to the amplitude, disc
[
T n−cut

AB (s, t)
]
, can be written as a sum over the number k of cut

pomerons (k = 1, . . . , n),

σn(s, t) = discs

[
T n−cut

AB (s, t)
]

=
n∑

k=0

σn
k (s, t), (85)

and the terms in the sum are

σn
k (s, t) = 2πi

∫
dΩn

n!
Pn

k s
1+βCA

n CB
n , (86)

where we have introduced the AGK factors:

Pn
k =

 (−1)n 2n−1 + γ{βj} if k = 0,

(−1)n−k 2n−1
(

n
k

)
if k > 0.

(87)

This way the total cross section reads

σtot =
∑

n

σn(s, t). (88)

The simplest case corresponds to the two-pomeron exchange. This process has three

contributions, illustrated in Figure 11: The diffractive cut (left), in which all the

pomerons are left uncut, the single multiplicity cut (center), in which a single pomeron

has been cut and, finally, two pomerons cuts (right). Neglecting the real part of the

pomeron signature factor, eq. (79), it reduces to the imaginary unit i, and the γ factor,

eq. (82), is just (−1)n−1. From eq. (87) we obtain the following AGK weight factors:

1 : diffractive (k = 0)

−4 : single multiplicity (k = 1)

2 : double multiplicity (k = 2)

(89)
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Figure 11: Contributions to the two-scattering γ∗A cross-section and their relative

AGK weights: Diffractive cut (left), one pomeron cut (center) and two pomeron cut

(right).

From this result it is strightforward to derive the relation used in article I:

σ
2)
γ∗A = −σdiff

γ∗p (90)
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Abstract. Nuclear structure functions at small x and small or moderate Q2 are studied using the relation
with diffraction on nucleons which arises from Gribov’s reggeon calculus. A reasonable description of the
experimental data is obtained with no fitted parameters. A comparison with other models and predictions
for future lepton–ion colliders are provided. Consequences for the reduction of multiplicities in nucleus–
nucleus collisions at energies of RHIC and LHC are examined.

1 Introduction

The study of nuclear structure functions has become a
fashionable subject. Apart from its intrinsic interest, such
analysis has a great impact on the interpretation of re-
sults from heavy ion experiments. At small values of the
Bjorken variable x (<∼ 0.01, shadowing region), the struc-
ture function F2 per nucleon turns out to be smaller in
nuclei than in a free nucleon [1,2]. Several explanations to
this shadowing have been proposed.

On the one hand, some models use the fact that in
the rest frame of the nucleus the incoming photon splits
into a qq̄ pair long before reaching the nucleus, and this qq̄
pair interacts with it with typical hadronic cross sections,
which results in absorption [3–9]. Thus nuclear shadowing
is a consequence of multiple scattering which in turn is
related to diffraction [6,10,11]. This relationship will be
developed in this paper. Equivalently, in a frame in which
the nucleus is moving fast, gluon recombination due to
the overlap of the gluon clouds from different nucleons
reduces the gluon density in the nucleus [12,13]. These
studies have received a great theoretical impulse with the
development of semiclassical ideas in QCD and the ap-
pearance of non-linear equations for evolution in x in this
framework (see [14–17] and references therein; also [18] for
a simple geometrical approach in this framework).

On the other hand, other approaches [19–21] do not ad-
dress the origin of shadowing but only its evolution with

a e-mail: Nestor.Armesto.Perez@cern.ch
b e-mail: Alphonse.Capella@th.u-psud.fr
c e-mail: kaidalov@heron.itep.ru
d e-mail: Javier.Lopez.Albacete@cern.ch
e e-mail: Carlos.Salgado@cern.ch

lnQ2: parton densities inside the nucleus are parameter-
ized at some scale Q2

0 and then evolved using the DGLAP
[22] evolution equations.

The results from different models usually depend on
phenomenological assumptions and their predictions (no-
tably for small values of x which are of the utmost impor-
tance to compute particle production at RHIC and LHC)
turn out to be very different. For example, concerning the
Q2-dependence of shadowing, it can be either constant
[4–9], or die out logarithmically [19–21] or behave as a
higher-twist [12,13].

In this paper we will use the relation of diffraction to
nuclear shadowing which arises from Gribov theory [23],
reggeon calculus [24] and the AGK rules [25]. In this way
we obtain a parameter-free description of nuclear struc-
ture functions in the shadowing region valid for x < 0.01
and Q2 < 10 GeV2, using a model for F2 and F2D [26,
27]. The same strategy has been used in [10,11], but our
extrapolation to smaller x or higher W 2 is more reliable
than that of [10] due to the model employed for the nu-
cleon; besides, our description is valid for small Q2 while
that of [11] applies to Q2 ≥ 4 GeV2. In Sect. 2 the model
will be described. In Sect. 3 numerical results will be pre-
sented together with comparisons with experimental data
and with other models. In Sect. 4 the model will be ap-
plied to calculate the multiplicity reduction factors [28,
29] relevant to compute particle production in heavy ion
collisions at RHIC and LHC. Finally, the last section will
contain our conclusions.

2 Description of the model
We assume that nuclei are made of nucleons in the spirit
of the Glauber model. In order to relate diffraction on
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Fig. 1. Diagram showing diffractive DIS with the correspond-
ing kinematical variables in the infinite momentum frame (left)
and its equivalence in the rest frame of the nucleon (right)

=
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Fig. 2. Diagram showing the equivalence between diffractive
DIS and two exchanged amplitudes with a cut between the
amplitudes

nucleons with nuclear shadowing, we will follow the pro-
cedure explained in [10]. The γ∗–nucleus cross section can
be expanded in a multiple scattering series containing the
contribution from 1, 2, . . . scatterings:

σA = σ
(1)
A + σ

(2)
A + · · · . (1)

σ
(1)
A is simply equal to Aσnucleon. Let us consider now

the first correction to the non-additivity of cross sections
which comes from the second-order rescattering σ

(2)
A . In

Fig. 1 diffractive DIS is shown in both the infinite mo-
mentum frame and in the rest frame of the nucleon. In
Fig. 2 it becomes clear that the square of such a contribu-
tion is equivalent to a double exchange with a cut between
the exchanged amplitudes, a so-called diffractive cut. To
compute the first contribution to nuclear shadowing σ

(2)
A ,

which comes from these two exchanges, we need its to-
tal contribution to the γ∗–nucleon cross section, which
arises from cutting the two-exchange amplitude in all pos-
sible ways (between the amplitudes and the amplitudes
themselves in all possible manners). For purely imaginary
amplitudes, it can be shown [24,25] that this total con-
tribution is identical to minus the contribution from the
diffractive cut. Thus diffractive DIS is directly related to
the first contribution to nuclear shadowing. The final ex-
pression reads

σ
(2)
A = −4πA(A − 1) (2)

×
∫

d2b T 2
A(b)

∫ M2
max

M2
min

dM2 dσD
γ∗p

dM2dt

∣∣∣∣∣
t=0

F 2
A(tmin),

with TA(b) =
∫ +∞

−∞ dzρA(b, z) the nuclear profile func-
tion normalized to 1,

∫
d2b TA(b) = 1, and M2 the mass

of the diffractively produced system. The usual variables
for diffractive DIS: Q2, x, M2 and t, or xP = x/β, β =

Q2

Q2+M2 , are shown in Fig. 1.
Coherence effects, i.e. the coherence length of the qq̄

fluctuation of the incoming virtual photon, is taken into
account through

FA(tmin) =
∫

d2b J0(b
√−tmin)TA(b), (3)

with tmin = −m2
Nx2

P and mN the nucleon mass. This func-
tion is equal to 1 at x → 0 and decreases with increasing
x due to the loss of coherence for x > xcrit ∼ (mNRA)−1.

Let us briefly examine (2). Here the real part of the
pomeron amplitude, which is small for the value of the
intercept which will be used [27], ∆ = αP(t = 0)−1 = 0.2,
has not been taken into account. Also it has been deduced
under the approximation R2

A � R2
N , so the t-dependence

of the γ∗–nucleon cross section has been neglected.
For A > 20 a nuclear density in the form of a 3-

parameter Fermi distribution with parameters taken from
[30] will be employed to compute both TA(b) and (3). For
2 < A ≤ 20 a Gaussian profile function is used [31]:

TA(b) =
3

2πR2
A

exp
(

− 3b2

2R2
A

)
, RA = 0.82A1/3+0.58 fm,

(4)
but, in order to take into account the t-dependence for
these light nuclei, we make in the computation of the form
factors (3) the substitution

R2
A −→ R2

A + R2
N , RN = 0.8 fm. (5)

Finally, for the deuteron the double rescattering contribu-
tion has the form

σ
(2)
A = −2

∫ tmin

−∞
dt

×
∫ M2

max

M2
min

dM2 dσD
γ∗nucleon

dM2dt

∣∣∣∣∣
t=0

FD(t), (6)

where FD(t) = eat, a = 40 GeV−2.
The lower integration limit in (2) and (6) is M2

min =
4m2

π = 0.08 GeV2, while the upper one is taken from the
condition

xP = x

(
M2 + Q2

Q2

)
≤ xPmax =⇒ M2

max

= Q2
(xPmax

x
− 1

)
, (7)

with xPmax = 0.1; this value was used in [27] motivated
by the fact that the model is only valid for M2 � W 2 or
xP � 1, i.e. a large rapidity gap is required. In our case,
variations of xPmax by a factor 2 do not affect the de-
scription of nuclear shadowing at x < 0.01, but the choice
xPmax = 0.1 is convenient as it guarantees the disappear-
ance of nuclear shadowing at x ∼ 0.1 (see below) as in the
experimental data.
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The relation between
dσD

γ∗p
dM2dt

∣∣∣∣
t=0

and xPF
(3)
2D (Q2, xP, β)

is provided by the model [27]

xPF
(3)
2D (Q2, xP, β)

= xP
Q2

4π2αem

∫ 0

−∞
dt

dσD
γ∗p(Q2, xP, β, t)

dxPdt
=⇒
dσD

γ∗p(Q2, xP, β)
dM2dt

∣∣∣∣∣
t=0

=
4π2αemB

Q2(Q2 + M2)
xPF

(3)
2D (Q2, xP, β), (8)

where the usual factorization has been assumed:

dσD
γ∗p(x, Q2, M2, t)

dM2dt
=

dσD
γ∗p(x, Q2, M2)

dM2dt

∣∣∣∣∣
t=0

eBt, (9)

with B = 6 GeV−2 (as in [32], see the discussion there;
this value is slightly smaller than the experimental values
7.2 ± 1.1(stat.)+0.7

−0.9(syst.) GeV−2 [33] at 〈Q2〉 = 8 GeV2

and 6.8 ± 0.9(stat.)+1.2
−1.1(syst.) GeV−2 [34] for photopro-

duction). Note that
dσD

γ∗p(x,Q2,M2)
dM2dt

∣∣∣∣
t=0

can be obtained

directly from σtot. However, the model for diffraction we
are using [27] has mainly been tested after integration in t
(most available data are integrated in t). For this reason,
we use the integrated expression together with the exper-
imental value of B. While this is legitimate at present val-
ues of x, it can lead to an underestimation of shadowing
at very small x, due to the increase of B with energy1.

The model in [27] is based on the dipole picture of the
photon and contains two components. The small-distance
(S) component corresponds to transverse distances r be-
tween the q and the q̄ of the dipole such that r < r0,
and the large-distance (L) component to r > r0, with
r0 = 0.2 fm. In each component a quasi-eikonal iteration
is introduced in order to enforce unitarity. Reggeon and
pomeron exchanges are allowed. For diffraction, a third
component is used, namely a contribution from the triple
interaction of reggeons and pomerons. This model has
been designed to describe the small x < 10−2, small or
moderate Q2 < 10 GeV2 region, and it contains the basic
ingredients which allow one to make a safe extrapolation2

to very small x or high W 2.
1 Nevertheless, the effect is not too large: we have checked

that an increase of B from 6 to 7.2 GeV−2 produces an increase
of shadowing for Pb of at most 10% at x = 10−7. As estimates
indicate an increase <∼50% in B for the smallest x we have
studied, x = 10−7, the increase of shadowing due to this effect
would be at most ∼ 25% for these values of x

2 In order to use the model for larger x, 0.01 < x < 0.1, we
have made some modifications in [27]: there, in (26) βmin in
the normalization denominators has been set to 0, and in (25)
the reggeon–reggeon contribution has been ignored. These two
changes slightly modify the description of diffraction but we
have checked that the agreement with experimental data is as
good as in the original version of the model

Equation (2) corresponds to the case with only two
scatterings. Its extension to include higher-order rescat-
terings is model-dependent. We will use two models: a
Schwimmer unitarization [35] which is obtained from a
summation of fan diagrams with triple pomeron interac-
tions,

σSch
γ∗A = σγ∗nucleon

×
∫

d2b
ATA(b)

1 + (A − 1)f(x, Q2)TA(b)
, (10)

and an eikonal unitarization,

σeik
γ∗A = σγ∗nucleon

∫
d2b

A

2(A − 1)f(x, Q2)
× {

1 − exp
[−2(A − 1)TA(b)f(x, Q2)

]}
, (11)

where we use the relation σγ∗nucleon = 4π2αem
Q2 F2(x, Q2),

valid at small x. Here, F2(x, Q2) is the nucleon structure
function, taken from [27]. Both expressions (10) and (11),
expanded to the first non-trivial order, reproduce the sec-
ond rescattering result (2). Eikonal unitarization will pro-
duce larger shadowing than Schwimmer, as can be ex-
pected by comparing the second non-trivial order in the
expansion of both expressions. Finally,

f(x, Q2) =
4π

σγ∗nucleon

×
∫ M2

max

M2
min

dM2 dσD
γ∗p

dM2dt

∣∣∣∣∣
t=0

F 2
A(tmin), (12)

as required by consistency with (2).
The shadowing in nuclei is usually studied through the

ratios of cross sections per nucleon for different nuclei,
defined as

R(A/B) =
B

A

σγ∗A

σγ∗B
. (13)

In the simplest case of the ratio over the nucleon (equiva-
lent to the proton at small x where the valence contribu-
tion can be neglected), we get

RSch(A/nucleon)

=
∫

d2b
TA(b)

1 + (A − 1)f(x, Q2)TA(b)
, (14)

Reik(A/nucleon) =
∫

d2b
1

2(A − 1)f(x, Q2)
× {

1 − exp
[−2(A − 1)TA(b)f(x, Q2)

]}
. (15)

To calculate shadowing in photoproduction, x is no longer
a relevant kinematical variable. Instead we use the γ∗–
nucleon center of mass energy W 2.

In our framework shadowing can also be studied as a
function of the impact parameter b:

R(A/nucleon)Sch(b) =
1

1 + (A − 1)f(x, Q2)TA(b)
, (16)
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Fig. 3. Results of the model using Schwimmer (solid lines)
and eikonal (dashed lines) unitarization compared with exper-
imental data versus x, for the ratios C/D, Ca/D, Pb/D [36]
and Xe/D [37] (filled circles correspond to the analysis with
hadron requirement and open circles to that with electromag-
netic cuts; see the experimental paper for more details)

R(A/nucleon)eik(b) =
1

2(A − 1)TA(b)f(x, Q2)
× {

1 − exp
[−2(A − 1)TA(b)f(x, Q2)

]}
. (17)

Finally, the region of applicability of our model is the
same as that of the model for diffraction on the nucleon
[27], i.e. small x<∼0.01 and small or moderate Q2<∼10 GeV2,
including photoproduction.

3 Numerical results

In our model and in [27] we work in the small x region and
thus no distinction is made between protons and neutrons.
Although usually joined with straight lines, our results are
computed at the same 〈x〉 and 〈Q2〉 as the experimental
data. For the latter, inner error bars show statistical er-
rors, and outer error bars correspond to statistical and
systematical errors added in quadrature.

In Figs. 3–6 a comparison with the experimental data
at small x from E665 [36,37] and NMC [38–40] is pre-
sented. As expected, eikonal unitarization produces larger
shadowing than Schwimmer. The agreement with the ex-
perimental data is quite reasonable taking into account
that no parameters have been fitted to reproduce the data.
Two comments are in order: First, for C/D and Ca/D in
Fig. 3 which shows the comparison with the E665 data,
shadowing looks overestimated for x ∼ 0.01, while in Fig. 5
which shows the comparison with the NMC data, it looks
underestimated. This corresponds to the known difference
between the results of both experiments for ratios over D,

Fig. 4. Results of the model using Schwimmer (open circles)
and eikonal (open triangles) unitarization compared with ex-
perimental data versus A, for the ratios Be/C, Al/C, Ca/C,
Fe/C, Sn/C and Pb/C [38] at two fixed values of x

Fig. 5. Id. to Fig. 3 but for the ratios He/D, C/D and
Ca/D [39]

while the compatibility is restored [38] when ratios are
computed over C. Second, from Fig. 6 it becomes clear
that the evolution with Q2 in the model is too slow at
x ∼ 0.01, a problem related with the lack of DGLAP evo-
lution in the model [27] (see [10,11,41] for an application
of DGLAP evolution to initial conditions).
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Fig. 6. Results of the model using Schwimmer (solid lines)
and eikonal (dashed lines) unitarization compared with exper-
imental data versus Q2, for the ratio Sn/C [40] at two fixed
values of x

In Fig. 7 a comparison of the results of our model with
those of others is shown, for Q2 = 3 GeV2 (except the re-
sults of [11] which are at Q2 = 4 GeV2). It can be seen
that the results of different models agree within 15% at
x ∼ 0.01 where experimental data exist, while they differ
up to a factor 0.6 at x = 10−5. At this x, our results are the
lowest ones but roughly agree with those of [19] and with
one set of [11], while the results from [21] are the highest
ones, and those of [8,42,43] and the second set of [11] lie
in between. Let us briefly comment on these models: In
[19,21] an initial condition is parameterized at some Q2

0
and then evolved using DGLAP; the initial condition is
fitted from the comparison of the evolved results with ex-
perimental data (see [44] for a comparison between these
two models). Reference [8] is a model which uses a satu-
rating ansatz for the total γ∗–nucleon cross section in the
proton, which is introduced in a Glauber expression for
its extension to the nuclear case. In [11] some parameter-
ization of hard diffraction at Q2

0, which as in the present
work gives nuclear shadowing through Gribov’s reggeon
calculus, is employed; this nuclear shadowing computed
at Q2

0 is used as initial condition for DGLAP evolution.
In [42] a Glauber ansatz provides with the initial condi-
tion for DGLAP evolution. Finally, in [43] a non-linear
equation for small x evolution is numerically solved [45]
and used in the nuclear case. In view of the differences at
small x among different models, a measurement of F2 in
nuclei with ∼ 10% precision would be a sensitive test to
discriminate among them. Lepton–ion colliders [46] could
provide us with such data.

In Fig. 8 our predictions for the ratios D, He, Li, C, Ca,
Sn and Pb over the nucleon for Q2 = 0.5, 2 and 5 GeV2

Fig. 7. Comparison of the results of our model using Schwim-
mer (solid lines) and eikonal (dashed lines) unitarization for
the ratio Pb/nucleon with other models, versus x at fixed
Q2 = 3 GeV2. HKM are the results from [21], Sarcevic from
[42], Bartels from [43], Frankfurt from [11] (at Q2 = 4 GeV2),
Armesto from [8] and EKS98 from [19]

Fig. 8. Results of the model using Schwimmer (solid lines) and
eikonal (dashed lines) unitarization for the ratios D/nucleon,
He/nucleon, Li/nucleon, C/nucleon, Ca/nucleon, Sn/nucleon
and Pb/nucleon versus x at Q2 = 0.5, 2 and 5 GeV2

are given for x > 10−8. Let us notice that our model is de-
signed for the small x region and that no antishadowing
or any other effects relevant for x>∼0.1 have been intro-
duced. The disappearance of shadowing at x ∼ 0.1 is a
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Fig. 9. Results of the model for Q2 = 0 using Schwim-
mer (solid lines) and eikonal (dashed lines) unitarization for
the ratios D/nucleon, He/nucleon, Li/nucleon, C/nucleon,
Ca/nucleon, Sn/nucleon and Pb/nucleon (upper plot), and for
different impact parameters b for the ratios C/nucleon (plot in
the middle) and Pb/nucleon (lower plot), versus W 2

consequence of both the coherence effects in (3) and the
vanishing integration domain in (2); see (7). In Fig. 9 re-
sults in photoproduction for the same ratios as in Fig. 8
are given for W 2 < 105 GeV2, together with predictions
for the evolution of the ratios C and Pb over nucleon with
impact parameter b. Values as low as 0.3 are reached for
central Pb/nucleon. This evolution with centrality is very
important to compute the corresponding evolution of par-
ticle production in nuclear collisions, and could also be
measured in lepton–ion colliders [46].

As a last comment in this section, let us discuss the
twist structure of the model (i.e. its structure in powers
of 1/Q2). In the model of [27] the unitarity corrections
to the L component are all of order 1/Q2. On the con-
trary, in the S component the unitarity corrections are
higher-twist (they can be expanded as a sum of terms, each
one containing an additional factor 1/Q2 as compared to
the previous one). The fact that diffraction is related to
the unitarity corrections allows one to study the 1/Q2 be-
havior of shadowing in this model. In order to keep only
the leading-twist contribution (terms ∝ 1/Q2 in the cross
section) we ignore the higher-twist contribution of the S
component to the diffractive cross section3. The results
are given in Fig. 10. One can see that neglecting these
terms introduces only a small difference. The fact that
nuclear shadowing corrections are predominantly leading-

3 Concretely, we ignore the S component in (17) of [27], and
in (20) of [27] we set the exponential containing χS to 1

Fig. 10. Results for Q2 = 0.5 (upper plot) and 5 (lower plot)
GeV2 using Schwimmer unitarization for the ratio Pb/nucleon
versus x of the model without modifications (solid lines), with-
out the higher-twist contribution in the short-distance compo-
nent (dashed lines), and without the higher-twist contribution
in the short-distance component plus some modification in pa-
rameters (dotted lines) to check the sensibility of the results;
see text

twist is not unexpected, as the diffractive cross section
is also leading-twist for the relevant kinematical region
(indeed, in the model of [27] the S component diffrac-
tion is almost negligible for small Q2 and/or large M2).
This is also seen in the fact that the ratio of diffractive
to inclusive cross sections does not show any strong Q2-
dependence for large M2 [47]. Here a comment is in order:
in [27] a parameter s0 is introduced in x and β to control
the limit Q2 → 0, so that all the equations are written for
x̄ = x+s0/(W 2+Q2), β̄ = β+s0/(M2+Q2). These terms
could mimic higher-twist corrections. In Fig. 10 we check
that the effect of varying this parameter4 from the original
s0 = 0.79 GeV2 to s0 = 0.2 GeV2 is also very small. So,
we can conclude that the contribution from higher-twist
terms to the shadowing of F2 is small. In contrast, in [11] a
large higher-twist correction for the shadowing is claimed.
The approach in this reference is very similar to ours: the
authors also compute shadowing from the diffractive cross
section, but using the H1 parameterization [48]. The shad-
owing obtained in this way for Q2

0 = 4 GeV2 is then em-
ployed as initial condition for DGLAP evolution, taking
the shadowing for valence quarks from [19]. When evolved
downwards to Q2 = 3 GeV2 a disagreement is found with
experimental data on the ratio Ca over D. This disagree-
ment is attributed to higher-twist contributions.

4 And setting c = 0 in (27) of [27]
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Fig. 11. Diagram showing the contribution to particle pro-
duction in the central region in AB collisions

4 Multiplicity reduction
in nucleus–nucleus collisions

In this framework it is also possible to study the reduc-
tion of multiplicities in nucleus–nucleus collisions [49,28,
29]. We will denote the rapidity of the produced system in
the center of mass frame by y∗. Shadowing as a function
of the rapidity of the produced particle can be computed
taking into account the general relation with the diffrac-
tive variables:

y = ln
(

1
xP

)
= ln

( s

M2

)
. (18)

Then the factor for reduction of multiplicities at fixed
impact parameter b is [49,28,29]

RAB(b) =
∫

d2s RA(s)RB(b − s)
TAB(b)

. (19)

RA(B)(b) is given by the r.h.s. of (16) multiplied by
TA(B)(b) and with f(x, Q2) substituted by F (s, y∗) (see
below), and

TAB(b) =
∫

d2s TA(s)TB(b − s). (20)

Equation (19) takes into account the summation of
Schwimmer’s fan-like diagrams for the projectile and tar-
get, which are joined by a single pomeron whose cut gives
rise to the produced particle (Fig. 11). It follows from
AGK cancellation [25] that this is the only contribution of
this type (more complicated diagrams with lines joining
upper and lower parts of the diagram cancel). This pro-
vides the justification for the factorized expression (19),
which is true even if more general rescattering diagrams
are taken into account.

The reduction factor as a function of the rapidity of the
produced particles F (s, y∗), can be calculated in several
ways. The first one is using (12), but with the integration
limits inspired by the parton model for hard processes: for
projectile A (target B),

xA(B) =
mT√

s
e±y∗

, (21)

Fig. 12. Results of the model for the multiplicity reduction
factor versus impact parameter b at y∗ = 0, for AuAu colli-
sions at

√
s = 19, 130 and 200 GeV per nucleon, and for PbPb

collisions at
√

s = 5500 GeV per nucleon, in the parton model-
like realization (solid lines) and for [C = 0.31 fm2, ∆ = 0.13]
(dashed lines)

Fig. 13. Id. to Fig. 12 but for AuAu collisions at
√

s = 200 GeV
per nucleon and for PbPb collisions at

√
s = 5500 GeV per

nucleon, for y∗ = 1, 2 and 3

with y∗ > 0 for the projectile hemisphere and y∗ < 0
for the target one, and mT =

√
m2 + p2

T the transverse
mass of the produced particle. Substituting in the general
relation for M2

max, (7), we get



538 N. Armesto et al.: Nuclear structure functions at small x from inelastic shadowing and diffraction

Fig. 14. Results of the model for the multiplicity reduction
factor versus impact parameter b at y∗ = 0, for AuAu collisions
at

√
s = 200 GeV per nucleon, in the parton model-like real-

ization (upper plot) and for [C = 0.31 fm2, ∆ = 0.13] (lower
plot). In each plot, lines from bottom to top correspond to
m2

T = 0.16, 1, 2, 3, 4 and 5 GeV2

M2(A(B))
max = Q2

(
xPmax

xA(B)
− 1

)

= Q2
(

xPmax
√

s

mT
e∓y∗ − 1

)
, (22)

while M2
min remains fixed and equal to 0.08 GeV2, and

Q2 = m2
T.

On the other hand, we can also compute the reduction
factor from the formulas [28,29]

F (s, y∗) = 4π

∫ ymax

ymin

dy
1

σP(s)
dσPPP

dydt

∣∣∣∣
t=0

F 2
A(tmin), (23)

where σP(s) is the single pomeron exchange cross sec-
tion and dσPPP

dydt the triple pomeron cross section. Using
the standard triple pomeron formula for the latter, we get

1
σP(s)

dσPPP

dydt

∣∣∣∣
t=0

= C∆ exp (∆y), (24)

with C = gP
pp(0)rPPP(0)

4∆ , gP
pp(0) the pomeron–proton cou-

pling and rPPP(0) the triple pomeron coupling, both eval-
uated at t = 0. In this case, the same integration limits
used above correspond to

y
(A(B))
min = ln

(
s

M
2(A(B))
max

)
, (25)

with M
2(A(B))
max given by (22), and

y(A(B))
max =

1
2

ln
(

s

m2
T

)
∓ y∗. (26)

In the calculations we have used [C = 0.31 fm2, ∆ = 0.13]
taken from [50] (used in [28,29]). A value mT = 0.4 GeV
is employed by default (in [28,29] the nucleon mass mN

was used). The sensibility of our results to variations in
mT will be examined.

In Fig. 12 our results at y∗ = 0 are presented for AuAu
at RHIC energies and for PbPb collisions at the LHC,
versus impact parameter. Reductions of multiplicities at
b = 0 by factors ∼ 1/2 for RHIC and ∼ 1/3 for LHC are
found, with a clear increase of the suppression with in-
creasing energy. In Fig. 13 results are presented for AuAu
at RHIC and PbPb at LHC for different y∗. Finally, in
Fig. 14 the variation with mT of the results at y∗ = 0 for
AuAu at RHIC is studied. A reduction of the suppression
with increasing mT is seen, as expected. Let us make two
comments: First, our results for the reduction factors are
very similar to the ones estimated in [28,29]. It has been
shown in [28,29] that when these reduction factors are
used to correct the results of the dual parton model, one
obtains a good description of the RHIC data on multiplic-
ities and their evolution with centrality. Thus, our results
provide a detailed calculation of these reduction factors,
which confirms the estimations in [28,29].

Second, our results are important in studying particle
production in heavy ion collisions. In particular, the de-
pendence of the reduction factors on mT gives the varia-
tion of shadowing corrections with the pT of the produced
particle5.

5 Conclusions

In this paper, we have used the relation which arises from
reggeon calculus and the AGK rules, between the diffrac-
tive cross section measured in DIS on nucleons and the
first contribution (i.e. double scattering) to nuclear shad-
owing. The next contributions have been estimated using
two different methods for unitarization. In this way we
have obtained a description of nuclear shadowing, based
on the model of [27] for diffraction, which agrees with the
existing experimental data without any fitted parameter.
The model is designed for the region of x < 0.01 and
Q2 < 10 GeV2, i.e. small x and small or moderate Q2.

The same method has been applied in [10,11]. In [10],
a model for diffraction [50] has been used that takes into
account unitarization effects in an effective manner, so the
extrapolation to smaller x or larger W 2 is not so reliable as
in the full unitarization program followed in [27]; further-
more, the description of diffraction in the model we use
is substantially better due to the inclusion in the fits of
new, more precise experimental data. In [11], a model for
diffraction is used in order to obtain an initial condition for
DGLAP evolution at Q2

0 = 4 GeV2, so their leading-twist
description for nuclear shadowing is not valid at small Q2.

5 For reduction factors based on other mechanisms, see
[51,52]
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On the contrary, we develop a model valid for the full low
Q2 region which does not correspond to any definite twist
but contains contributions from all twist orders.

Nevertheless, it turns out that, as discussed at the
end of Sect. 3, the leading-twist contribution is the domi-
nant one in our model, which is in reasonable agreement
with the existing experimental data. Precise data on the
Q2-dependence of nuclear structure functions should dis-
entangle these two possibilities. The existing data from
NMC [40] can be well reproduced within the leading-twist
DGLAP evolution [19] with an appropriate set of initial
conditions.

An extension of our results using DGLAP evolution
for large values of Q2 is thus a natural continuation of our
work [41].

In this framework we have also obtained the factor for
multiplicity reduction in nucleus–nucleus collisions. This
factor reaches values ∼ 1/2 and ∼ 1/3 for central AuAu
and PbPb collisions at RHIC and LHC respectively. It is
therefore a very important ingredient for the computation
of particle production at these energies which should be
taken into account together with other possible effects.

Comparison among models shows differences of a fac-
tor 0.6 for the ratio of structure functions Pb/nucleon at
x = 10−5 and Q2 = 3 GeV2. These differences have a large
impact on the computation of particle production in nu-
clear collisions at the energies of RHIC and LHC. They
should be testable in future lepton–ion colliders [46].

To conclude, the method which we have followed of-
fers a natural link between the measurements of nucleon
diffractive structure functions and nuclear shadowing, and
between the latter and the suppression of particle produc-
tion in nuclear collisions. In this way the study of low x
physics at HERA is linked to that of nuclear structure
functions at future lepton–ion colliders and with heavy
ion physics at RHIC and LHC [15].
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The nonlinear evolution of dense partonic systems has been suggested as a novel physics mechanism
relevant for the dynamics of p-A and A-A collisions at collider energies. Here we study to what extent
the description of Cronin enhancement in the framework of this nonlinear evolution is consistent with
the recent observation in

���
s

p
� 200 GeV d-Au collisions at the Relativistic Heavy Ion Collider. We

solve the Balitsky-Kovchegov evolution equation numerically for several initial conditions encoding
Cronin enhancement.We find that the properly normalized nuclear gluon distribution is suppressed at all
momenta relative to that of a single nucleon. For the resulting spectrum of produced gluons in p-A and
A-A collisions, the nonlinear QCD evolution is unable to generate a Cronin-type enhancement, and it
quickly erases any such enhancement which may be present at lower energies.

DOI: 10.1103/PhysRevLett.92.082001 PACS numbers: 12.38.Bx
enhancement encoded in the initial condition of a nuclear better than 2% in the entire range of k discussed below.
The observation that the ratio of particle yields in p-A
and A-A, scaled by the number of collisions, exceeds
unity in an intermediate transverse momentum range of
a few GeV is commonly referred to as Cronin effect. The
effect was first seen at lower fixed target energies [1] and
has recently been confirmed in

���
s

p
� 200 GeV d-Au col-

lisions at Relativistic Heavy Ion Collider (RHIC) [2]. The
current interest focuses mainly on comparing this Cronin
enhancement in d-Au to the relative suppression of pro-
duced hadrons in Au-Au collisions at the same center of
mass energy and in the same transverse momentum range
[3]. The opposite trend of the two effects and their cen-
trality dependence suggests that d-Au data may serve as
an efficient benchmark measurement to distinguish be-
tween the two different physical mechanisms suggested
for the relative suppression of hadron spectra in Au-Au
collisions: initial state parton saturation [4] and final state
jet quenching [5].

In particular, it has been suggested that, due to quan-
tum evolution, saturation effects can account for the
suppression of the high-pT hadronic spectra in Au-Au
collisions at RHIC above the saturation scale [4]. On the
other hand, it is known that saturation models based on
multiple scattering (the so-called Glauber-Mueller [6] or
McLerran-Venugopalan [7] models) exhibit Cronin en-
hancement in p-A [8–10] and A-A [9,11]. In these models,
quantum evolution is not implemented, and the saturation
of low pT gluons is the result of a redistribution of gluons
in transverse phase space [12,13] which does not change
the total number of gluons, thus resulting in a compensat-
ing enhancement at momenta just above the saturation
momentum Qs. These models are now being used to
understand bulk properties of ultrarelativistic heavy ion
collisions such as the multiplicity, rapidity distribution,
and centrality dependence of particle production [14].
What is not fully understood is (i) whether such Cronin
0031-9007=04=92(8)=082001(4)$22.50 
wave function persists in the nonlinear perturbative QCD
evolution to higher energy and (ii) whether such Cronin
enhancement can be generated by the nonlinear evolution
itself. This Letter goes beyond earlier discussions [9–11]
by providing the first complete (numerical) answer to
these questions. We do not address other approaches to
Cronin enhancement [15].

We start from the Balitsky-Kovchegov (BK) evolution
equation [16,17], which describes the evolution of the
forward scattering amplitude N�r; y� of a QCD dipole of
transverse size jrj with rapidity Y and y � ��s Nc=��Y,

dN�jrj; y�
dy

�
1

2�

Z
d2z

r2

�r� z�2 z2

� �N�jr� zj� 	 N�jzj� � N�jrj�

� N�jr� zj�N�jzj�
: (1)

The unintegrated gluon distribution is related to the in-
clusive gluon distribution ��k� / fd�xG�x; k2�
g=�d2kd2b�
and is given in terms of the dipole amplitude

��k� �
Z d2r

2�r2
expfir � kgN�r�: (2)

In the following, we also use the modified gluon
distribution

h�k� � k2r2
k��k�: (3)

The two definitions coincide for the leading order pertur-
bative distribution ��k� / 1=k2, but are different in gen-
eral, and especially at low momenta.

Using the second order Runge-Kutta algorithm [18],
we solve the BK Eq. (1) numerically with 8000 equally
spaced intervals in lnk space between �15 and 35 and a
step � y � 0:0025. The accuracy of this algorithm is
2004 The American Physical Society 082001-1
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We evolve two initial conditions given by the McLerran-
Venugopalan [7] (MV) and Golec-Biernat –Wüsthoff [19]
(GBW) model, respectively:

NQsMV � 1� exp

�
�
Q2
sr

2

4
ln

�
1

r2�2
QCD

	 e
��
; (4)

NQsGBW � 1� exp

�
�
Q2
sr

2

4

�
; (5)

where �QCD � 0:2 GeV. For momenta k � O�1 GeV�,
the sensitivity on the infrared cutoff e is negligible. The
amplitudes NMV and NGBW are similar for momenta of
order Qs, but differ strongly in their high k behavior;
�GBW�k� decays exponentially while �MV has a power-
like tail 1=k2.

Figure 1 shows the evolution of h�k; y� and ��k; y� for
different initial conditions. The solutions for h�k; y�
quickly approach a universal solitonlike shape and do not
change further except uniformly moving in k on the loga-
rithmic plot. The position of the maximum is the evolved
value of the saturation momentum Qs�y�. The solutions
for different initial conditions and different rapidities
scale as a function of the scaling variable � � k=Qs�y�.
The shape of the initial condition affects only the value of
the saturation momentum Qs�y�, but not the shape of the
FIG. 1. Solutions of the BK equation. Upper left: h�k� evolved
(left to right) from y � 0 to 5 and 10 for different initial
conditions: GBW with Q2

s�0:36GeV2 (solid lines), MV with
Q2
s � 4 GeV2 (dashed lines), and MV with Q2

s � 100 GeV2

(dotted lines). Upper right: The same as upper left for ��k�.
Lower left: The scaled function h��� versus � � k=Qs for y �
4, 6, 8, and 10, and the same initial conditions and conventions
(lines cannot be distinguished). Lower right: Ratio of h�y; ��=
h�y; � � 1� over h�y � 10; ��=h�y � 10; � � 1� for y � 4
(solid line), 6 (dashed line), 8 (dotted line), and 10 (dash-
dotted line), and initial condition MV with Q2

s � 4 GeV2.

082001-2
evolved function h��; y�. The y dependence of h��; y� is
very weak: The function evolves fast towards a scaling
form h���. As the rapidity changes between y � 4 and
y � 10, the ratio h��; y1�=h��; y2� varies by at most 40%
over 3 orders of magnitude of the scaling variable �.
Similar behavior was found for � (results not shown).
This is consistent with previous numerical works [20,21].

To get a quantitative idea of the behavior of the scaling
solution, we fitted the numerical solution of ���� to two
analytical expressions: s1��� � a�2�1��� and s2��� �
a ln�b���2�1��� for � > 5. The functional form s1 with
� � 0:37 and lnQs / y describes the scaling behavior of
solutions of the linear Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [22]. It was argued in Ref. [23] that s2
with the same value of � and lnQs/f�2����
=�1���gy�
f3=�2�1���
g lny accounts for the effects of nonlineari-
ties in (1). We find that s1 does not give an acceptable fit
to ���� in any extended range of �. For values of �
between 1 and 103, the value of � varies between 0.39
and 0.46. This is in contrast to the BFKL equation, where
we find numerically that s1 with � � 0:37 does indeed
approximate the solution over several orders of magnitude
with very good accuracy (results not shown). On the other
hand, for 5< �< 1000, s2 gives a good fit with � � 0:32.
If, following [23], we fix � � 0:37, the fit is still good.

To study the effect of the evolution on the Cronin en-
hancement, we consider two initial conditions, NqMV�r�
andNQMV�r� with q2 � 0:1 GeV2 andQ2 � 2 GeV2. Since
q��QCD and Q is of the order of the estimated satura-
tion momentum for a gold nucleus [14], this choice
mimics the gluon distributions of a proton and of a
nucleus, respectively. At large transverse momenta, the
ratio of the corresponding Fourier transforms is given by
the ratio of the saturation momenta,

hQ�k; y � 0�

hq�k; y � 0�
�
Q2

q2
� A1=3: (6)

This relation also holds for �. As discussed in [9,10],
these initial conditions exhibit Cronin enhancement,
namely, �hQ�k;y� 0�
=�A1=3hq�k;y� 0�
> 1 for k�Q.
We solve the BK equation with these two initial con-
ditions and construct the ratio R�k; y� � hQ�k; y�=
A1=3hq�k; y� and the corresponding ratio for � (see
Fig. 2). The initial Cronin enhancement at rapidity y�0
is seen to be wiped out very quickly by the evolution.
Within less than half a unit of rapidity y, the ratios
show uniform suppression for all values of transverse
momentum. The observed behavior persists if different
amounts of Cronin enhancement are included in the
initial condition.

As seen in the lower panel of Fig. 2, the Cronin en-
hancement also disappears rapidly with rapidity when
gluon distributions are evolved according to the linear
BFKL equation. Qualitative differences between the
BFKL and BK dynamics are only visible at momenta
k < Qs, where saturation effects are important. For larger
082001-2



FIG. 3. Ratios RpA and RAA of gluon yields in p-A (upper plot)
and A-A (lower plot) for BK evolution, with MV as initial
condition with Q2

s � 0:1 GeV2 for p and 2 GeV2 for A. Lines
from top to bottom correspond to y � 0, 0.05, 0.1, 0.2, 0.4, 0.6,
1, 1.4, and 2.

FIG. 2. Ratio of distributions � and h in nucleus and proton,
normalized to 1 at k! 1. Upper plots: BK evolution, with MV
as initial condition with Q2

s � 0:1 GeV2 for p and 2 GeV2 for
A. Lines from top to bottom correspond to y � 0, 0.05, 0.1, 0.2,
0.4, 0.6, 1, 1.4, and 2. Lower plots: BFKL evolution, with MV
as initial condition with Q2

s � 4 GeV2 for p and 100 GeV2 for
A. Lines from top to bottom correspond to y � 0, 1, and 4.
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momenta k, the ratios are very similar for linear and
nonlinear QCD evolution. We, thus, conclude that the
wiping out of the initial enhancement is primarily driven
by the linear BFKL dynamics which is contained in the
BK equation as well.

For the evolved gluon distributions determined above,
we have calculated the yield of produced gluons in p-A
and A-A collisions at central rapidity according to the
factorized expressions [24]

dNpA
dyd2pd2b

/
1

p2

Z
d2k hq�y; k�hQ�y;p� k�; (7)

dNAA
dy d2pd2b

/
A2=3

p2

Z
d2k hQ�y; k�hQ�y;p� k�: (8)

From these spectra we compute the p- and y-dependent
ratios

RpA �

dNpA
dyd2pd2b

A1=3 dNpp
dyd2pd2b

; RAA �
dNAA

dyd2pd2b

A4=3 dNpp
dyd2pd2b

:

As seen in Fig. 3, the nonlinear BK evolution quickly
wipes out any initial Cronin enhancement not only on the
level of single parton distribution functions but also on
the level of particle spectra. We performed several checks
to establish that this behavior is generic. First, we
checked the disappearance of Cronin enhancement by
evolving different initial conditions corresponding to
different initial amounts of enhancement. Second, we
note that, in some calculations of gluon production in
082001-3
p-A, the gluon distribution � [25] rather than h
[24,26,27] enters the right-hand side of (7). Results using
� were found to be close to those shown in Fig. 3. Third,
different calculations of (7) employ h defined in terms of
the scattering amplitude either of the fundamental [24]
dipole used here, or of the adjoint [10,26,27] one. By
expressing the adjoint dipole amplitude in terms of the
fundamental one, Nadj � 2N � N2, we checked that our
results remain qualitatively the same for the adjoint case.
To summarize, the expressions (7) and (8) are subject to
uncertainties as discussed in more detail in [9]. However,
our conclusion about the disappearance of Cronin en-
hancement during QCD evolution is likely to persist in
more refined ways of calculating particle spectra, since it
is rooted directly in the rapidity dependence of gluon
distributions [9].

We now comment on a recent formal argument
which — in contrast to our numerical findings — suggests
enhancement survives the nonlinear evolution. It is
based on the observation that at very short distances
r! 0,N�r� is not affected by evolution. Thus, the integral
of � over the transverse momentum is expected to be
rapidity independent,Z

d2k��k� �
1

r2
N�r�jr�0: (9)

One thus obtains the sum ruleZ
d2k�A�k; y� � A1=3

Z
d2k�p�k; y�; (10)

valid for any rapidity, since it is satisfied by the initial
condition �MV. Since the nonlinear evolution leads to the
082001-3
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depletion of the gluon distribution �A�k� relative to
A1=3�p�k� at low momenta, it must follow that in some
range of momenta this effect is compensated by enhance-
ment of �A. However, this argument breaks down since
the quantity defined in (9) is infinite. As such, (10) relates
only the (UV) divergent parts of the integrals, and carries
no information about possible behavior at finite momen-
tum. To be more specific, we use the scaling property
��k; y� � ��k=Qs�y�
 of the solution of the BK equation
established above. It is known that the ratio of the satu-
ration momenta for any two solutions is preserved by the
BK evolution [20–22]. For our two solutions representing
a nucleus and a nucleon, this implies �QAs �y�
=�Q

p
s �y�
 �

A1=6. We now rewrite the sum rule (10) by regulating the
divergent integrals with a large but finite UV cutoff
aQAs �y�,Z a2�QAs �2

0
d2k�A�k; y� � �QAs �2

Z a2

0
d2�����

� A1=3�Qps �2
Z a2

0
d2�����

� A1=3
Z a2�Qps �2

0
d2k�p�k; y�: (11)

The formal limit a! 1 recovers Eq. (10). However,
since QAs � Qps , the regularized sum rule (11) is satisfied
even if the nuclear distribution is suppressed relative to
that of a single nucleon uniformly at all momenta. Thus,
the sum rule (10) carries no information about either
presence or absence of Cronin enhancement.

In summary, we have found that the nonlinear QCD
evolution to high energy is very efficient in erasing any
Cronin-type enhancement which may be present in the
initial conditions. For ‘‘realistic’’ initial conditions, this
disappearance occurs within half a unit of rapidity. We
note that in our units the evolution from 130 to 200 GeV
corresponds to #y ’ 0:1 for �s � 0:2, and thus is not
sufficient to completely eliminate an initial enhancement
at central rapidity. For forward rapidity, #y is greater. The
evolution to the LHC energy corresponds to #y� 1. Thus,
the BK evolution suggests the reduction of the Cronin
effect in d-Au for forward rapidities at RHIC and predicts
its disappearance for p-A collisions at LHC.
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Note added.—After appearance of this work,
Refs. [9,10] were revised. Reference [10] no longer invokes
the sum rule argument criticized above, and both now
agree with our main conclusion.
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We study the effects of including a running coupling constant in high-density QCD evolution. For fixed
coupling constant, QCD evolution preserves the initial dependence of the saturation momentum Qs on the
nuclear size A and results in an exponential dependence on rapidity Y, Q2

s�Y� � Q2
s�Y0� exp� ��sd�Y �

Y0��. For the running coupling case, we rederive analytical estimates for the A and Y dependences of the
saturation scale and test them numerically. The A dependence of Qs vanishes / 1=

����
Y

p
for large A and Y.

The Y dependence is reduced to Q2
s�Y� / exp��0

��������������
Y 
 X

p
�, where we find numerically �0 ’ 3:2. We study

the behavior of the gluon distribution at large transverse momentum, characterizing it by an anomalous
dimension 1� 
, which we define in a fixed region of small dipole sizes. In contrast to previous analytical
work, we find a marked difference between the fixed coupling (
 ’ 0:65) and running coupling (
� 0:85)
results. Our numerical findings show that both a scaling function depending only on the variable rQs and
the perturbative double-leading-logarithmic expression provide equally good descriptions of the numeri-
cal solutions for very small r values below the so-called scaling window.

DOI: 10.1103/PhysRevD.71.014003 PACS numbers: 12.38.Bx
I. INTRODUCTION

High-density QCD [1]—the regime of large gluon den-
sities—provides an experimentally accessible testing
ground for our understanding of QCD beyond standard
perturbation theory. The Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [2,3] is the perturbative framework in
which the evolution of parton densities with decreasing
Bjorken-x (increasing energy) is usually discussed. In the
BFKL equation it is implicitly assumed that the system
remains dilute throughout evolution and, hence, correla-
tions between partons can be neglected. The fast growth of
the gluon density predicted by the BFKL equation and
experimentally observed at the Hadron Electron Ring
Accelerator (HERA) located at the Deutsches
Elektronen-Synchrotron, eventually leads to a situation in
which individual partons necessarily overlap and, there-
fore, finite density effects need to be included in the
evolution. These effects enter the evolution nonlinearly,
taming the growth of the gluon density.

The need for and role played by saturation effects was
first discussed in Refs. [4,5]. It was later argued [6–8] that
in the high-density domain a hadronic object (hadron or
nucleus) can be described in terms of an ensemble of
classical gluon fields and that the number of gluons with
momenta smaller than the so-called saturation scale is as
high as it may be (i.e., saturated). The quantum evolution
of the hadronic ensemble can be written in terms of a
nonlinear functional equation [9–15] where the density
effects are treated nonperturbatively (see also [16,17]).

An alternative approach, followed by Balitsky [18],
relies on the operator product expansion for high-energy
QCD to derive a hierarchy of coupled evolution equations
(see [19] for a more compact derivation). In the limit of a
05=71(1)=014003(12)$23.00 014003
large number of colors, the hierarchy reduces to one closed
equation. This equation was derived independently by
Kovchegov [20] in the dipole model of high-energy scat-
tering [21–23].

The relation between these two approaches has been
extensively discussed [13–15,24–27]. Apart from possible
differences between the evolution equations in the kine-
matical region where the projectile becomes dense [24],
the different approaches yield the same result, usually
known as the Balitsky-Kovchegov (BK) equation. This
equation has served as the starting point for a large number
of analytical and numerical studies. It has also been derived
in the S-matrix approach of Ref. [28] and as the large-Nc
limit of the sum of fan diagrams of BFKL ladders [29,30].
It corresponds, as BFKL, to a resummation of the leading
terms in �s ln�s=s0� (leading-log approximation).

Although the full analytical solution of the BK equation
is not known, several of its general properties, such as the
existence and form of limiting solutions, have been iden-
tified in both analytical [31–37] and numerical [29,38–43]
studies. Most of them refer to the fixed coupling case
without impact parameter dependence, but analyses of
the effect of a running coupling [42,44– 48] and of the
dependence on impact parameter [49–51] have also been
carried out. Besides, there have been attempts to go beyond
the large-Nc limit, either by analytical arguments [52–54]
or by numerically solving the full hierarchy of evolution
equations [47]. In this latter work, nonleading Nc correc-
tions are found to give a contribution smaller than 10%–
15%, in qualitative agreement with what could be naively
expected from a numerical correction of O�1=N2

c�. From a
phenomenological point of view, studies of the BK equa-
tion are motivated by the geometrical scaling phenomenon
observed in lepton-proton [55] and lepton-nucleus data
-1  2005 The American Physical Society
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[56,57] which has been related to the scaling properties of
the solution of the BK equation (see, e.g., [58,59] for recent
numerical analyses of HERA data based on nonlinear
evolution). Further interest comes from the study of nu-
clear collisions [60], where saturation physics is argued
[61] to underlie a large body of data including multiplicity
distributions [57,62–66] and the rapidity dependence of
the Cronin effect [43,67–70].

Next-to-leading-log contributions [71,72] are known to
have a strong impact on the BFKL equation [73–77]. Both
the choice of scale in the coupling constant [78] and the
implementation of kinematical cuts for gluon emission
[42,79,80], together with physically motivated modifica-
tions of the kernel [81–83], have been proposed to mend
some observed pathologies of next-to-leading-log BFKL.
It is usually expected that the unitarity corrections included
in the BK equation become of importance for parametri-
cally smaller rapidities [74,75] than those for which run-
ning coupling effects must be included [84]. This can be
definitively established only once next-to-leading-log con-
tributions are fully computed for BK (see [85] for a first
step in this direction). However, the inclusion of running
coupling effects in BK may offer a hint of some of the
effects induced at next-to-leading log, as has been previ-
ously the case for BFKL. It may also help to reconcile the
results of the equation with phenomenology [45,57].

In this paper, we investigate numerically the influence of
the running coupling on the solution of the BK equation
without impact parameter dependence, leaving this last
point for a future publication. We go beyond previous
numerical studies [42,46,47] by making a detailed com-
parison between analytical estimates and our numerical
solution of the BK equation and analyzing the Y and A
dependence of the saturation scale. Our key results are the
confirmation of the Y and A dependence of the saturation
scale proposed analytically [32–34] and the novel finding
that the anomalous dimension (extracted for dipole sizes
smaller than the inverse saturation scale) is different in the
fixed and running coupling cases. To compare to analytical
results which have been derived for asymptotically large
energies, we shall evolve numerically to very large rapid-
ities (up to Y � 80), significantly beyond the experimen-
tally accessible range.

The plan of the paper is as follows. We first introduce the
BK equation in Sec. II and the different implementations of
the running of the coupling constant in Sec. III. In Sec. IV
we explain the numerical method used to solve the BK
equation. In Sec. V we present our numerical results, and
we compare with previous numerical works and with ana-
lytical estimates. Finally, we summarize and discuss our
main conclusions.
q
_

q
_ yy

z

FIG. 1 (color online). Diagrams for gluon emission in the
evolution of a dipole and its Nc ! 1 limit.
II. THE BALITSKY-KOVCHEGOV EQUATION

The BK equation gives the evolution with rapidity Y �
ln�s=s0� � ln�x0=x� of the scattering probability N� ~x; ~y; Y�
014003
of a q �q dipole with a hadronic target, where ~x ( ~y) is the
position of the q ( �q) in transverse space with respect to the
center of the target. We define

~r � ~x� ~y; ~b �
~x
 ~y
2

; ~r1 � ~x� ~z;

~r2 � ~y� ~z:
(1)

If one neglects the impact parameter dependence (which is
justified for r 
 b, i.e., an homogeneous target with radius
much larger than any dipole size to be considered), the BK
equation reads (r � j ~rj)

@N�r; Y�
@Y

�
Z d2z

2�
K� ~r; ~r1; ~r2��N�r1; Y� 
 N�r2; Y�

� N�r; Y� � N�r1; Y�N�r2; Y��; (2)

where the BFKL kernel is

K� ~r; ~r1; ~r2� � ��s
r2

r21r
2
2

; ��s �
�sNc

�
: (3)

The coupling constant is fixed and the kernel is confor-
mally invariant. This implies that no impact parameter can
be generated if not present in the initial condition. Also,
there is no divergence for r1; r2 ! 0 provided N�r; Y� / r�

for r ! 0 with �> 0. This comes from the cancellation
between real and virtual corrections inherited from the
BFKL equation. The azimuthally symmetric form of the
BFKL equation, which gives the dominant contribution at
high energies, corresponds to Eq. (2) without the nonlinear
term.

The BK equation has the following probabilistic inter-
pretation [24] (see Fig. 1): When evolved in rapidity, the
parent dipole with ends located at ~x and ~y emits a gluon,
which corresponds in the large-Nc limit to two dipoles with
ends � ~x; ~z� and �~z; ~y�, respectively. The probability of such
emission is given by the BFKL kernel (3) and weighted by
the scattering probability of the new dipoles minus the
scattering probability of the parent dipole (as the variation
with rapidity of the latter is computed). The nonlinear term
is subtracted in order to avoid double counting. It is this
nonlinear term which prevents, in contrast to BFKL, the
amplitude from growing boundlessly with rapidity. The
-2
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BK equation ensures unitarity locally in transverse con-
figuration space, jN�r; Y�j � 1. This is guaranteed since,
for N�r; Y� � 1, the derivative with respect to Y in (2)
cannot be positive.
III. RUNNING COUPLING

The BK equation (2) was derived at leading order in
�s ln�s=s0� for a fixed coupling constant �s. An important
part of the next-to-leading-log corrections is expected to
come, as in BFKL, from the running of the coupling. The
scale of the running coupling can be determined only when
the next-to-leading-log calculation is available. In this
paper, we introduce heuristically the running of the cou-
pling, as done previously in BFKL (see, e.g., [86,87]); we
will use different prescriptions for the scales in order to
check the sensitivity of the results. To motivate our
choices, we recall the interpretation of the BFKL kernel
(3) as the Weizsäcker-Williams probability for gluon emis-
sion written in a dipolar form,

K� ~r; ~r1; ~r2� � K0� ~r; ~r1; ~r2� �
�sNc

�
r2

r21r
2
2

�
Nc

4�2

��������gs ~r1r21
�

gs ~r2
r22

��������2
; (4)

with gs �
������������
4��s

p
.

Three distance scales appear in this kernel: an ‘‘exter-
nal’’ one, the size of the parent dipole r, and two ‘‘internal’’
ones, the sizes of the two newly created dipoles r1 and r2.
The latter depend on the transverse position of the emitted
gluon ~z and on ~r through (1). We study three different
prescriptions for implementing these scales in a running
coupling constant in the BFKL kernel (4):
(1) I
n the first modified kernel, K1, the scale at which
the running of the coupling is evaluated is taken to
be that of the size of the parent dipole r. This choice
amounts to the substitution �s ! �s�r� in Eq. (4),

K1�~r; ~r1; ~r2� �
�s�r�Nc

�
r2

r21r
2
2

: (5)
(2) T
o implement the running of the coupling at the
internal scale, we alternatively modify the emission
amplitude in (4) before squaring it,

K2� ~r; ~r1; ~r2� �
Nc

4�2

��������gs�r1�~r1r21
�

gs�r2� ~r2
r22

��������2
: (6)
(3) I
n order to check the sensitivity of the results to the
Coulomb tails of the kernel, we further modify the
kernel K2 by imposing short range interactions, so
that the emission of large size dipoles is suppressed.
To do this, we weight the gluon emission vertex by
exponential (Yukawa-like) terms,
014003-3
K3�~r; ~r1; ~r2� �
Nc

4�2

��������e
��r1=2gs�r1� ~r1

r21

�
e��r2=2gs�r2� ~r2

r22

��������2
; (7)

with � � �QCD.

Let us anticipate that the different prescriptions K1, K2,

and K3 lead to very similar results for the evolution. This
can be traced back to the fact that all the geometrical
dependence on ~z is integrated out so that only the r
dependence in the running of the coupling survives. Even
the introduction of the exponential damping has little
effect, unless the range of the interaction is chosen un-
physically small (i.e., � � �QCD). However, the inclusion
of a short range damping effect is known [49,50] to alter
significantly the solution of the BK equation with impact
parameter dependence, which we do not consider in the
present work.

For the qualitative properties of BK evolution studied in
this paper, the precise value and running of the coupling
constant is unimportant. To be specific, we use the standard
one-loop expression

�s�r� � �s�k � 2=r� �
12�

�0 ln� 4
r2�2

QCD

 ��

; (8)

where � is an infrared regulator and �0 � 11Nc � 2Nf

with Nf � 3. Both � and �QCD are determined from the
conditions �s�r � 1� � �0, �s�r � 2=MZ0� � 0:118,
where MZ0 is the mass of the Z0 boson. In our work, this
choice is not motivated by phenomenology but by its use in
related works, e.g., [32,45], to which we want to compare.
From now on, when comparing fixed and running coupling
results, it will be understood that the value for the fixed
coupling is the same as the one at which the running
coupling is frozen, �0.

IV. NUMERICAL METHOD AND
INITIAL CONDITIONS

To solve the integro-differential equation (2), we employ
a second-order Runge-Kutta method with a step size �Y �
0:1. We discretize the variable j ~rj into 1200 points equally
separated in logarithmic space between rmin � 10�12 and
rmax � 102. The numerical values of these limits are dic-
tated by the initial conditions and �QCD. Throughout this
paper, the units of r will be GeV�1 and those of Qs will be
GeV. The integrals in (2) are performed with the Simpson
method. Inside the grid, a linear interpolation is used. For
points lying outside the grid with r < rmin, a power-law
extrapolation is used, while for points with r > rmax, the
saturated value of the scattering probability is held con-
stant, N�r� � N�rmax� � 1. While the initial conditions of
N�r� give negligible values for r small but much larger than
rmin, the evolution leads to a gradual filling of values close
to rmin with increasing rapidity, which would result even-



-910 -710 -510 -310 -110

0

0.2

0.4

0.6

0.8

1

1.2

 Y=0,6,12,18

Fixed, K0

Running, K1

(Y=0)GBWN

N(r)

r
-310 -210 -110 1

0

0.2

0.4

0.6

0.8

1

1.2

 Y=0,6,12,18K1

K2

(Y=0)GBWN

K3

r

FIG. 2 (color online). Solutions of the BK equation for GBW
initial condition (dotted line) for rapidities Y � 6, 12, and 18
with ��0 � 0:4. Left plot: Evolution with fixed (K0, solid lines)
and running coupling (K1, dashed lines). Right plot: evolution
with running coupling for kernel modifications K1 (solid lines),
K2 (dashed lines), and K3 (dashed-dotted lines).
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tually in numerical inaccuracies. To solve this problem and
push the evolution to very large rapidity, we rescale, in the
fixed coupling case, the variable r in the solutions at
intermediate values of Y and use them as initial condition
(a power-law extrapolation is used for small values of r in
order to cover the r range lost in the rescaling procedure).
In this way, we are able to evolve initial conditions with
Qs � 1 GeV up to Y � 36 for ��s � 0:4 and up to Y � 72
for ��s � 0:2. In the running coupling case, the evolution is
much slower and this rescaling is not needed to get to large
rapidities. The accuracy of our numerical solution for all r
values inside the grid is better than 4% up to the largest
rapidities. It is much better than 4% in most of the r region
studied. We have checked this numerical accuracy by
varying the step size in Y by comparing our results to those
of a fourth-order Runge-Kutta method, by varying the
limits of the grid, by doubling the number of points used
to discretize the function in the grid, and by using different
integration, extrapolation, and interpolation methods.

We evolve three different initial conditions starting from
some fixed value of x0 (in practice, one usually takes x0 �
0:01). The first initial condition we refer to as GBW since it
shows at fixed x0 the same r dependence as the Golec-
Biernat–Wüsthoff model [88]:

NGBW�r� � 1� exp
�
�
r2Q02

s

4

�
: (9)

However, in contrast to the GBW model [88], our x de-
pendence comes from BK evolution and we do not impose
a power-law parametrization of the x dependence of Q0

s.
Here and in the other initial conditions (10) and (11) below,
we denote as Q0

s what is usually called the saturation scale.
Our definition of the saturation scale Qs is somewhat
different [see Eq. (13) below] but the relation between
both scales is straightforward, e.g., in GBW, Q02

s �
�4 ln�1 � $�Q2

s . The second initial condition takes the
form given by the McLerran-Venugopalan (MV) model
[6,7]:

NMV�r� � 1� exp
�
�
r2Q02

s

4
ln
�

1

r2�2
QCD


 e
��
: (10)

These initial conditions have been used in previous works,
e.g., [39,43]. For transverse momenta k� 1=r �
O�1 GeV�, the sensitivity to the infrared cutoff e is negli-
gible. The amplitudes NGBW and NMV are similar for
momenta of order Q0

s but differ strongly in their high-k
behavior. The corresponding unintegrated gluon distribu-
tion %�k� �

R
�d2r=2�r2�ei~r� ~kN�r� decays exponentially

for NGBW but has a power-law tail �1=k2 for NMV. As a
third initial condition, which we denote as AS in the
following, we consider

NAS�r� � 1� exp���rQ0
s�
c�: (11)

The interest in this ansatz is that the small-r behavior
NAS / rc corresponds to an anomalous dimension 1 �
014003

 � 1� c=2 of the unintegrated gluon distribution at large
transverse momentum. This anomalous dimension can be
chosen to differ significantly from that of the initial con-
ditions NGBW and NMV. Our choices c � 1:17 and c �
0:84 are somewhat arbitrary. They can be motivated a
posteriori by the observation that the anomalous dimen-
sion of the evolved BK solution for both fixed and running
coupling lies between the anomalous dimension of the
initial conditions NAS and NGBW (or NMV). Thus, the
choice of NAS is very convenient to establish generic
properties of the solution of the BK equation. The values
of Q0

s in Eqs. (9)–(11) are 1.4 GeV for GBW, 4.6 GeV for
MV, 0.7 GeV for AS with c � 1:17 and 0.6 GeV for AS
with c � 0:84. These values have been used in all our
studies except in those on the A dependence in Sec. V D,
where Q0

s has been rescaled with the nuclear size as dis-
cussed in that section.

V. RESULTS

In this section, we discuss our numerical results and how
they compare to previous numerical work and analytical
estimates.

A. Evolution: Insensitivity to details of
running coupling prescription

Figure 2 shows the evolution of the dipole scattering
probability for GBW initial condition with fixed and run-
ning coupling. The evolution is much faster for fixed
coupling than for running coupling, as already known
from previous numerical studies [42,46,47]. Remarkably,
the solution is rather insensitive to the precise prescription
with which running coupling effects are implemented in
the modified BFKL kernels K1, K2, and K3. These differ-
ences are very small compared to those between fixed and
running coupling.
-4
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FIG. 3 (color online). Scaling solutions of BK for Y � 0, 20,
30, and 40 (plots on the left) and Y � 0, 40, 60, and 80 (plots on
the right). Upper left: evolution for fixed (solid line) and running
coupling (K1, dashed line) for GBW initial conditions. Upper
right: solutions for the kernels K1 (solid line), K2 (dashed line),
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with two different values of frozen coupling, ��0 � 0:4 (solid
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with running coupling (K1) for two different initial conditions,
GBW (solid line) and MV (dashed line). In all plots the initial
conditions correspond to the dotted lines and ��0 � 0:4 unless
otherwise stated.
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The small differences arising from the use of different
kernels can be understood qualitatively. For example, com-
pared to K1, the results obtained for K2 are enhanced at
small values of r and suppressed at large values of r. This is
due to the fact that, e.g., for a typical size �1=Qs of the
emitted dipoles r1, r2, a larger size r > 1=Qs of the parent
dipole amounts to a larger coupling gs�r� entering the
kernel K1 than the couplings gs�r1�, gs�r2� entering K2.
Thus, at large r the evolution is slower for K2, which
results in the observed relative suppression. The analogous
argument implies a relative enhancement obtained from
the kernel K2 for small r < 1=Qs.

Figure 2 also shows that the effects of imposing short
range interactions, K3, are very small (unless the range of
the interaction is unphysically small). As expected, effects
from short range interactions included in K3 are larger for
larger values of r. It is conceivable that the main next-to-
leading-log effects on the original BK kernel are those of
the running of the coupling constant included here and that
further modifications, such as kinematical constraints
[42,79,80], are comparatively small [89].

B. Scaling

In the limit Y ! 1, the solutions of the BK evolution are
no longer functions of the variables r and Y separately, but
instead they depend on a single scaling variable

' � rQs�Y�: (12)

Here the saturation momentum Qs�Y� determines the trans-
verse momentum below which the unintegrated gluon
distribution is saturated. It can be characterized by the
position of the falloff in N�r�, e.g., via the definition

N�r � 1=Qs�Y�; Y� � $; (13)

where $ is a constant which is smaller than, but of order,
one. We have checked that different choices such as $ �
1=2 and $ � 1=e lead to negligible differences in the
determination of Qs�Y�. The results given below have
been obtained for $ � 1=2.

In the fixed coupling case, the scaling property
N�r; Y� ! N�'� has been quantified in previous numerical
works [39,41,43] and confirmed by analytical calculations
[35–37]. In the running coupling case, the scale invariance
of the BFKL kernel is broken by the scale �QCD and it is a
priori unclear whether scaling persists. However, when the
two scales in the problem are separated widely due to
evolution to large rapidity, Qs�Y� � �QCD, one may ex-
pect that the scaling property of the BK solution is restored.
In agreement with previous numerical works [46,47], we
confirm this expectation: for all modifications K1, K2, and
K3 of the BFKL kernel, the solutions tend to universal
scaling forms as rapidity increases. Moreover, with in-
creasing rapidity the sensitivity to the choice of scales in
the kernel and its short range modification, as well as to the
014003
initial condition and to the value of the coupling constant in
the infrared, becomes eventually negligible (see Fig. 3).

As seen in Fig. 3, the shape of the scaling solution differs
significantly for fixed and running coupling as observed
already in Ref. [46]. The running of the coupling sup-
presses the emission of dipoles of small transverse size
(i.e., small ' and large transverse momenta). This leads to
an enhancement in the large ' region of N�'� which is seen
for the running coupling case in Fig. 3.

The accuracy of scaling at small r has been studied in a
previous work [43] for the fixed coupling case. Here we
check scaling for both fixed and running coupling by
comparing our numerical results to the scaling forms pro-
posed in Ref. [33]. There it was argued that, in the so-called
scaling window 'sw < '< 1, the asymptotic solution of
N�r; Y� takes the following scaling forms for fixed and
running coupling, respectively [33]:

f1��'� � a'2
�ln'2 
 )�; (14)

f2��'� � a'2

�
ln'2 


1




�
: (15)

Here 1� 
 is usually called the anomalous dimension
which governs the leading large-k behavior of the uninte-
grated gluon distribution. We define 
 from a fit of our
numerical results to the functions (14) and (15) in the
Y-independent region 10�5 < '< 10�1, i.e., for 105Qs >
1=r > 10Qs, with a, 
, and ) as free parameters. The
-5
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results given below were found to be insensitive to a
variation of the lower limit of this fitting range.

For the case of fixed coupling constant, we find that the
function f1� provides a very good fit to the evolved solu-
tions. In Fig. 4, we show the fit values of the parameter 
,
obtained for fixed coupling constant from the evolution of
different initial conditions NGBW, NMV, and NAS for differ-
ent values of c. At initial rapidity, these distributions have
widely different anomalous dimensions but evolution
drives them to a common value, 
 ’ 0:65, which lies close
to the theoretically conjectured one [32,33] of 0:628. For a
small fixed coupling constant ��0 � 0:2, this asymptotic
behavior is reached at Y � 70, while for a larger coupling
constant ��0 � 0:4 the approach to this asymptotic value
takes half the length of evolution (results not shown). For
fixed coupling solutions, f2� does not provide a good fit to
our numerical results.

We have repeated this comparison for all running cou-
pling solutions. We found that both f1� and f2� provide
good fits and yield very similar values of 
. The results for
K3 are numerically indistinguishable from those for K2
and will not be shown in what follows. Also, the value of 

was found to be independent of the coupling constant ��0 at
r ! 1. As a fitting function, f1� is more general than f2�

and describes well the solutions of BK in all considered
cases. To avoid possible differences in the determination of

 due to the use of different fitting forms in the fixed and
running coupling cases, in Fig. 4 we show the 
 values
extracted in both cases from a fit to f1�. Irrespective of the
initial condition, they approach a common asymptotic
value 
� 0:85. While our numerical findings for NAS

with c � 0:84 are not inconsistent with the approach to
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FIG. 4 (color online). The rapidity dependence of the parame-
ter 
, characterizing the anomalous dimension 1� 
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with ��0 � 0:4 and two versions of the kernel K1 (empty
symbols) and K2 (solid symbols).

014003
this asymptotic value, no firm conclusions can be drawn.
This initial condition just starts too far away from the
asymptotic scaling solution to reach it within the numeri-
cally accessible rapidity range. In this case, the monotonic
increase of 
 with rapidity at large Y is smaller than the
increase for NAS with c � 1:17 at comparable values of 
,
indicating that the rapidity evolution of the anomalous
dimension depends, in general, not only on the small-r
behavior but on the full shape of the scattering probability.

The value 
� 0:85 is considerably larger than the one
found in fixed coupling evolution. This is in agreement
with previous numerical results [46] but in contrast to
theoretical expectations [32,33,45] which predict the
same value of 
 for the fixed and running coupling cases.
As an additional check, we have performed running cou-
pling evolution from an initial condition given by the
solution at large rapidity of fixed coupling evolution (for
which 
 ’ 0:65). We find that, even with this initial con-
dition, running coupling evolution leads to a value of 
�
0:85.

It has been argued [32,33] that expressions (14) and (15)
are valid only for values of ' inside the scaling window,
'sw � �QCD=Qs�Y�< ' & 1 with Y0 the initial rapidity,
and that the dipole scattering probability returns to the
double-leading-log (DLL) expression

NDLL�r� � a�Y�r2�� ln�r2�2���3=4

� exp
�
b�Y�

�����������������������
� ln�r2�2�

q �
; (16)

with a�Y� / Y1=4 and b�Y� /
����
Y

p
, for values ' < 'sw. We

have checked that this form provides a good fit (fit and
numerical solution differ by less than �10%) to the fixed
coupling solution of BK for ' < 'sw � �=Qs�Y�, ��
0:2 GeV; see Fig. 5. Our comparison is limited to rapidities
Y � 20, since the scaling window starts to extend over the
entire numerically accessible r space for Y > 20. Up to
Y � 20, the coefficients a�Y� and b�Y� follow the expected
DLL Y behavior; see Fig. 5. However, the scaling ansatz
f1� provides an equally good fit to the BK solutions for ' <
'sw. This is the reason why in previous numerical studies
[43] no upper bound for a scaling window was found.
When the solutions of BK are fitted to f1� within the
scaling window, the values of 
 at Y � 0 for both initial
conditions are & 20% smaller than those found when the
fit is done within a fixed ' window. But for larger Y the
values of 
 extracted from fits within either the scaling
window or some fixed ' window approach each other and
quickly coincide.

C. Rapidity dependence of the saturation scale

In the scaling region, for large Y where Qs�Y� � �QCD,
the BK equation (2) for fixed coupling constant can be
written in terms of the rescaled variables ~' � Qs�Y�~r, ~'1 �
Qs�Y�~r1, and ~'2 � Qs�Y� ~r2. The Y dependence of
-6
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FIG. 5 (color online). Plot on the left: solutions of the BK
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N�r; Y� � N�'� is then contained in Qs�Y�. Rewriting the
derivative on the left-hand side of (2),

@N�'�
@Y

�
@Qs�Y�
@Y

r
@N
@'

�
@ ln�Q2

s�Y�=�2�

@Y
r2
@N

@r2
; (17)

one finds [32]

Z d2r

r2
@N�'�
@Y

� �
@ ln�Q2

s�Y�=�
2�

@Y
�N�1� � N�0��

� �
@ ln�Q2

s�Y�=�2�

@Y
: (18)

Performing the same integration over d2r=r2 � d2'='2 on
the right-hand side of (2), one finds a number

d �
Z d2'd2'1

2�2

1

'2
1'

2
2

�N�'1� 
 N�'2� � N�'�

� N�'1�N�'2��; (19)

which is independent of Y. The numerical value of d
cannot be obtained without the knowledge of the scaling
solution N�'�, and several approximations have been pro-
posed [32,33] which we will compare with our numerical
results. Combining Eqs. (2), (18), and (19), the Y depen-
dence of the saturation scale is determined [32] by

@ ln�Q2
s�Y�=�

2�

@Y
� d ��s: (20)

Thus, for the case of a fixed coupling constant, the satura-
tion scale grows exponentially with rapidity,

Q2
s�Y� � Q2

0 exp��Y�; (21)
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where ��s � ��0 � constant, � � d ��0, and Q2
0 � Q2

s�Y �
0� (i.e., the evolution starts at Y � 0).

For running coupling, the momentum scale is expected
to be �Qs�Y�. This suggests the substitution ��s !
��s�Qs�Y�� in Eq. (20). To see this explicitly, let us include,
as in K1, the coupling constant ��s�r� in the integrand of
(19), which leads to

d ��s !
12Nc

�0

Z d2'd2'1

2�2

1

'2
1� ~'� ~'1�

2

�
1

ln�Q2
s�Y�=�2

QCD� � ln�'2=4�

� �N�'1� 
 N�j ~'� ~'1j� � N�'�

� N�'1�N�j ~'� ~'1j��: (22)

For ' � 1, the integrand vanishes. For ' 
 1, the integral
in d2'1 is finite and the remaining d2' suppresses the
contribution of small '. So we conclude that the dominant
region is that of '� 1 and thus it is legitimate to approxi-
mate

12Nc

�0

Z d2'd2'1

2�2

1

'2
1� ~'� ~'1�

2

�
1

ln�Q2
s�Y�=�2

QCD� � ln�'2=4�

� �N�'1� 
 N�j ~'� ~'1j�

� N�'� � N�'1�N�j ~'� ~'1j��

’ d ��s�Qs�Y��: (23)

This approximation is also supported by numerical results
[29,39,42] which show that in momentum space the typical
transverse momentum of the gluons is �Qs. Because of the
similarities in the evolution shown previously, this should
also hold for other implementation of the scale of the
coupling constant such as K2 and K3. The logarithmic
dependence of the coupling constant on Qs�Y� in (23),
combined with Eq. (20), leads to [32]

Q2
s�Y� � �2 exp

�
�0

��������������
Y 
 X

p �
; (24)

where ��0�2 � 24Ncd=�0 and X � ��0��2 ln�Q2
0=�

2�.
This estimate indicates that the rapidity dependence of
the saturation scale is much weaker for running than for
fixed coupling constant.

Figure 6 shows the Y dependence of Q2
s for several

initial conditions and different choices of ��0, calculated
for all the kernels considered in this work. The rise of Qs is
much faster for fixed than for running coupling, as already
observed in Refs. [42,44–48,83,89].

For fixed coupling constant, Q2
s exhibits with good

accuracy an exponential behavior for high-enough values
of Y. The value of the slope extracted from a fit to the
function (21) is � ’ 1:83 for ��0 � 0:4. As expected, for
-7
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��0 � 0:2 this value is reduced by a factor two, � ’ 0:91.
For the constant (19), we find d ’ 4:57, in agreement with
previous numerical studies at very high rapidities [43] but
slightly smaller than the theoretical expectation d � 4:88
[32,33]. In previous numerical studies [39,40,42], an even
smaller value of d� 4:1 was obtained. We have checked
that this is due to the fact that the rapidity region for the fit
in our case corresponds to much larger Y.

For the case of a running coupling constant, an expo-
nential fit can be done only for a very limited Y region. For
example, for Y � 10 we find a logarithmic slope �0:28 for
GBW or MV initial conditions with Q0 � 1 GeV, in agree-
ment with the results of Ref. [45] but smaller than the
values found in Ref. [83] (see also [48,89]). The exponen-
tial function (21) is unable to fit the full Y range. In
contrast, the weaker rapidity dependence of (24) does
provide a good fit in the full Y range. The fit to (24) yields
�0 ’ 3:2, while the theoretical expectation [32,33] is
slightly larger, �0 � 3:6. We finally note that in Ref. [47]
the Y derivative of lnQ2

s�Y� has been found numerically to
be proportional to

���������������������
�s�Qs�Y��

p
in a much more restricted

range of Y. We have been unable to fit our results over the
full Y range to the corresponding Y dependence, Q2

s�Y� /
expY2=3.

We have found very little sensitivity of the values of �
and �0 to the fitting region, provided Y was chosen large
enough. Our fits typically started at Y � 15, where the
asymptotic behavior is approached, and explored the high-
est rapidities numerically accessible. Also, our results for
running coupling do not depend on the choice of the kernel
K1, K2, or K3, on the initial condition, or on the value of
��0. However, the AS initial condition with c � 0:84 is not
included in our study since it does not approach the
014003
asymptotics within the numerically accessible rapidity
range.

In Refs. [33,35–37,45] subleading terms in the Y be-
havior of Qs have been presented. A form of the type
d lnQ2

s�Y�=dY � ��sa� bY�1 
 cY�3=2=�2
������
��s

p
� has been

proposed in the fixed coupling case, with a � 4:88, b �
2:39, and c � 2:74. This function contains all terms for the
Y evolution of the saturation scale that are universal, i.e.,
independent of the initial condition (see also [90] for a
comparison of solutions of BK to this functional form).
The constant term corresponds to Eq. (21). We have used
this functional form to fit the results of fixed coupling
evolution on d lnQ2

s�Y�=dY for different rapidity regions
within Y � 5–40 (72) for ��s � 0:4 (0.2), for the GBW and
MV initial conditions, respectively. First, we have used our
definition of the saturation scale (13) with $ � 1=2. From a
simple comparison to the proposed expression (using the
theoretical coefficients provided in Ref. [37]), we are able
to clearly identify in our numerical results the presence of
the first two terms. On the contrary, the presence of the
third term is disfavored. Fitting our numerical results to the
first plus second terms, the value of a we find, a ’ 4:9, is
quite stable with respect to variations of the fitting region.
It is higher than the value of d we extract with only the
linear term (21), d ’ 4:57, and closer to the theoretical
expectation d � 4:88 [32,33]. In this two-parameter fit
we get a value of b ’ 2:4–2:5, varying slightly with the Y
region of the fit. This value is quite close to the theoretical
expectation 2.39. On the other hand, in a three-parameter fit
the values of b and c we extract are very unstable (even
changing signs) with respect to variations of the lower
limit of the fitting region between Y � 5 and 20. We
have also tried to get the value of c from a fit to
d=dY�Yd lnQ2

s�Y�=dY� � ��sa� cY�3=2=�4
������
��s

p
�. While

we find again a value of a ’ 4:9, the value of c turns out
to depend, as in the previous analysis, considerably on the
fitted Y region. Second, we have used the definition of the
saturation scale (13) but now with $ � 0:01 (i.e., we define
Qs in a point in which the dipole scattering probability is
far from its unitarity limit). In this case, a simple compari-
son to the proposed expression using the theoretical coef-
ficients provided in Ref. [37] allows us to clearly identify
in our numerical results the presence of the three terms.
Still, a three-parameter fit to our numerical results does not
provide values of b and c stable with respect to changes in
the fitting region. This influence of the definition of the
saturation scale on the determination of the subleading
corrections to its Y behavior is consistent with the finding
in Ref. [90].

D. Nuclear size dependence of the saturation scale

The nuclear size enters the initial condition. The ques-
tion is whether the BK evolution modifies or preserves this
initial A dependence. For realistic nuclei, the impact pa-
rameter is likely to have an important effect on this A
-8
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dependence. This has been examined partially in
Refs. [50,51]. However, the question is already of interest
for the case without impact parameter dependence
[34,39,40], which we study here.

Let us first assume some arbitrary A dependence, which
we include in the initial condition by the rescaling factor

r2 ! hr2 (25)

(this is true for GBW and AS initial conditions but not for
MV due to the presence of the logarithm; however, the
numerical results for the A dependence obtained with MV
initial conditions are, for all purposes, equivalent to those
with GBW). Here h contains the information about the
nuclear size, and Eq. (20) reads

@ ln�Q2
s�Y�=�

2�

@Y
� d ��s

� ���
h

p
Qs�Y�

�
: (26)

In the case of a fixed coupling constant, the dilatation
invariance of the BK equation (2) allows one to scale out
any nuclear dependence included in the initial condition.
Thus, the A dependence of the saturation scale is unaf-
fected by evolution. To explore the case of a running
coupling constant, we use the one-loop expression for �s
and write

Q2
s�Y� �

�2

h
exp

���������������������������������������������������������
��0�2Y 
 ln2

�
hQ2

s�Y � 0�

�2

�s
: (27)

Multiplying by h for the nucleus to undo the rescaling and
setting h � 1 for the proton, we get

Q2
sA�Y�

Q2
sp�Y�

� exp

( ���������������������������������������������������������
��0�2Y 
 ln2

�
hQ2

s�Y � 0�

�2

�s

�

������������������������������������������������������
��0�2Y 
 ln2

�
Q2

s�Y � 0�

�2

�s )
: (28)

If we assume the hierarchy

��0�2Y � ln2

�
hQ2

s�Y � 0�

�2

�
� ln2

�
Q2

s�Y � 0�

�2

�
; (29)

so A � 1, we find

ln
Q2

sA�Y�

Q2
sp�Y�

’
ln2�hQ

2
s �Y�0�
�2 �

2
��������������
��0�2Y

p : (30)

Here hQ2
s�Y � 0� is the initial saturation momentum for

the nucleus, and Eq. (30) coincides with Eq. (44) of
Ref. [34] with ��0�2 as defined below Eq. (24) (see also
[47,64,91] for related discussions). This result suggests
that any information about the initial A dependence of
the saturation scale is gradually lost during evolution:
albeit at extremely large rapidities, all hadronic targets
look the same. Usually, one assumes an A1=3 dependence
of the saturation scale for the initial condition [6,7] h /
014003
A1=3. However, other A dependencies have been proposed;
see, e.g., [92].

Figure 7 shows that fixed coupling evolution preserves
the A dependence of the saturation scale irrespective of
whether this dependence is / A1=3 as for the GBW or MV
initial conditions (which produces numerical results for the
A dependence which are very close to those obtained for
GBW) or it differs from / A1=3 due to an anomalous
dimension included, e.g., in the AS initial condition. On
the other hand, running coupling evolution is seen to
reduce the A dependence with increasing rapidity. We
find that, if fitted in a wide rapidity range, the dependence
of ln�Q2

sA�Y�=Q
2
sp�Y�� on Y is �Y�0:4. However, for large

values of A and Y, the decrease with increasing Y is /

1=
����
Y

p
and thus well described by (30) [34].

Combining the rescaling argument based in (25) with the
observation that the DLL solution is approached for small r
or large transverse momentum k, one is led to an interest-
ing implication for the large-k behavior of the ratios of
gluon densities in nuclei over nucleon (or central over
peripheral nucleus) [43,68–70]. In fixed coupling evolu-
tion the rescaling of the initial condition (25) trivially
implies the same rescaling in the evolved solution, which
we will consider to be DLL for sufficiently large k. Thus,
one gets for the ratio R of the gluon densities in transverse
momentum space for nuclei over nucleon
-9
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R ’

�
ln�k2=�2� � lnh

ln�k2=�2�

�
�3=4

exp
�
b�Y�

� ����������������������������������
ln�k2=�2� � lnh

q

�
���������������������
ln�k2=�2�

q ��
: (31)

This ratio tends very slowly to one for k ! 1. We have
checked that the results of this formula agree with the
numerical computations in Ref. [43] and thus it provides
justification to the apparent absence of a return to the
collinear limit, R � 1 at k ! 1, found in this reference
for the largest studied k values.

VI. CONCLUSIONS

The inclusion of a running coupling constant may be
expected to account for important next-to-leading-log ef-
fects in the BK equation, as has been previously the case
for BFKL. This motivates the present numerical study of
the BK equation without impact parameter dependence.
Our main results are insensitive to details of the imple-
mentation of running coupling effects, the infrared regula-
tion of the coupling constant, and the choice of initial
conditions which are evolved. They can be summarized
as follows:
(1) T
he rapidity dependence of the saturation momen-
tum is much faster for the fixed coupling constant
than for the running one, as observed previously
[42,44,46,47]. It is well described by Q2

s�Y� /
exp� ��sdY� for fixed coupling and by Q2

s�Y� /
exp��0

��������������
Y 
 X

p
� for running coupling. For large rap-

idities, we find d ’ 4:57, which is slightly smaller
than the theoretical expectation d � 4:88 [32,33].
For running coupling, we find �0 ’ 3:2, slightly
smaller than the expected value �0 ’ 3:6
[32,33,45]. For a very limited region of Y, a fit to
the exponential form Q2

s�Y� / exp�DY� works even
for running coupling, but it cannot account for the
entire Y range. For the fixed coupling case, we have
checked the existence of the subleading terms in the
Y dependence of the saturation scale proposed in
Refs. [33,35–37]. As found in Ref. [90], their pre-
cise determination depends on the definition of the
saturation scale.
(2) F
or sufficiently large rapidity, the solution of the BK
equation with fixed coupling is known to show
scaling [39,41,43]. We confirm scaling for the run-
ning coupling case in agreement with Refs. [46,47].
The approach to the scaling solution is faster with
fixed than with running coupling.
(3) A
s observed previously [46] and at variance with
analytical estimates [32,33,45], the behavior of N�r�
at small r differs for the cases of fixed and running
coupling. For small r < 1=Qs�Y�, forms of the type
�rQs�

2
 ln�CrQs� [33] describe the solutions at suf-
ficiently high rapidity, where 
, defined in a
Y-independent fitting region, is ’ 0:65 for the fixed
014003-10
coupling constant but 
� 0:85 for running cou-
pling. These values are for the limit Y ! 1.
(4) A
rguments in Refs. [32,33] suggest a lower limit to
the scaling window rQs�Y� � �QCD=Qs�Y� below
which N�r� returns to the perturbative double-lead-
ing-logarithmic expression. Remarkably, the scaling
forms (14) proposed in Refs. [33,45] give good fits
to the solutions of BK even outside the scaling
window, for r <�=Q2

s�Y�, �� 0:2 GeV. Hence, it
is not possible to establish numerically the limit of
the scaling region as a deviation from scaling.
However, the double-leading-log approximation
provides an equally good description of the numeri-
cal solution in the r region below the scaling
window.
(5) F
or fixed coupling, the scale invariance of the kernel
preserves any A dependence of the initial condition
during BK evolution. For running coupling and for
very large energies and nuclear sizes, we have re-
derived and checked numerically Eq. (30): the A
dependence decreases with increasing rapidity like
1=

����
Y

p
[34].
The above results have been established by evolving
over many orders of magnitude in energy. Thus, any phe-
nomenological application of these findings has to assume
that initial conditions can be fixed at (and perturbatively
evolved from) a sufficiently small energy scale for the
nonlinear evolution to be effective in an experimentally
accessible regime. Moreover, phenomenology based on the
BK equation will face at least some of the problems known
from applications of BFKL such as the question of whether
and how to implement kinematical cuts for gluon emission.
Despite these caveats, it is interesting to compare the
numerical results found here to the general trends in the
data. A comparison of saturation-inspired parametrizations
with data on lepton-proton, lepton-nucleus, and nuclear
collisions at high energies suggests a saturation scale
Q2

sA / A� exp�DY� with D ’ 0:29 [88] and � ’

4=9> 1=3 [57] (for related phenomenological studies,
see [55,56]).

Our results allow us to discuss to what extent existing
data, showing geometric scaling, differ from the asymp-
totic BK scaling behavior. In particular, the strong A de-
pendence of the saturation scale seen in the data indicates,
at variance with the result from the BK scaling solution
with running coupling, that the properties of the initial
nuclear condition have not yet been washed out by non-
linear small-x evolution. The kinematic range of the
lepton-nucleus data studied in Refs. [56,57] is too small
to test this evolution. Also, the exponential Y dependence
of the saturation scale with D� 0:3 seen in the data can
appear naturally from BK evolution of reasonable initial
conditions over some units in rapidity in the running
coupling case. But this value of D is not a property of
the asymptotic solution for running coupling. For fixed
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coupling, it can be obtained only with unrealistically small
values of the coupling constant.

None of these facts contradicts nonlinear BK evolu-
tion—they simply illustrate that the evolution observed
in experimental data has not yet reached its asymptotic
behavior. To further advance our understanding of satura-
tion effects in QCD dynamics at high energies, both theo-
retical and experimental studies are required. In the context
of the BK equation, this requires the study of solutions
under more realistic conditions. In particular, the impact
parameter dependence may have a significant effect on the
A dependence of the saturation scale, a point which we
plan to study in the future. On the experimental side, the
forward rapidity measurements at the Relativistic Heavy
Ion Collider located at the Brookhaven National
Laboratory give access to a kinematic window interesting
for small-x evolution studies. These studies are at the very
beginning. Also, in the near future measurements at the
CERN Large Hadron Collider will provide more stringent
014003
tests of small-x evolution, extending the kinematic reach
by at least 3 orders of magnitude further down in the
momentum fraction x.
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