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Abstract

RFM is a model used to analyze the behavior of customer by means of three variables: Recency, Frequency and Monetary. 
The scores of these variables are expressed by an integer number, typically, in the range 1..5. The fuzzy linguistic approach 
is a tool intended for modeling qualitative information in a problem. In this paper, we propose to manage these RFM scores
using the 2–tuple model which is a fuzzy linguistic model of information representation that carries out processes of 
“computing with words” without the loss of information. The proposed model permits us an easy linguistic interpretability 
and let us obtain a more precise representation of the RFM scores. Therefore, by interpreting these linguistic scores, decision 
makers can effectively identify valuable customers and consequently develop more effective marketing strategy. Additionally, 
we present an IBM SPSS Modeler implementation of this model. As a particular case study, we show an application example
in order to select the customer of a loyalty campaign.
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1. Introduction

RFM (Recency, Frequency and Monetary) is a model used to analyze the behavior of customer proposed by 
Hughes in 1994. “Recency” represents the length of a time period since the last purchase, while “Frequency”
denotes the number of purchase within a specified time period and “Monetary” means the amount of money spent 
in this specified time period. In fact, these three variables belong to the behavioral variables and can be used to
make predictions based on the conduct in the transactional database [1]. Therefore, in a RFM process, the goal 
is to obtain the customer purchase behavior (the most loyal customers, dormant customers…) from transactional 
data to proactively trigger appropriate marketing actions (retention, reactivation campaigns…) [2].
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The scores of these RFM variables are expressed by an ordinal number. The most common scale is the set 
{1,...,5} that refer to the customer contributions to revenue for enterprises. The 5 refers to the most customer 
contribution to revenue and 1 refers to the least contribution to revenue [3].

The fuzzy linguistic approach is a tool intended for modeling qualitative information in a problem. It is based 
on the concept of linguistic variable and has been satisfactorily used in many problems. The 2-tuple fuzzy 
linguistic approach [4, 5] is a model of information representation that carries out processes of “computing with 
words” without the loss of information.

In this paper, we propose to represent these RFM scales using the 2–tuples model. This yields a greater 
interpretability of these scores. Therefore, interpreting these linguistic scores, decision makers can effectively 
identify valuable customers and consequently develop more effective marketing strategy. Another further point 
is the fact that using the 2-tuple model we also obtain better accuracy of the results. Additionally, we present an
IBM SPSS Modeler [6] implementation of this model. This makes us able to be widely applied at a practical level 
and not only at a theoretical one. As an example of use, we apply the new model to select the customer of a 
loyalty campaign.

The rest of the paper is organized as follows: Section 2 revises the preliminary concepts, i.e., the RFM model 
and the 2-tuple linguistic modeling. In Section 3 we propose to incorporate the 2-tuple model to RFM analysis
and we show an implementation and use case of this new model using IBM SPSS Modeler. Finally, we point out 
some concluding remarks and future work.

2. Preliminaries

2.1. RFM Model

The RFM analytic approach is a common model that identifies customer purchase behavior, i.e., that 
differentiates important customers from large data by three variables [2]:

Recency (R): The time (in units such as days, months, years…) since the most recent purchase transaction or 
shopping visit.
Frequency (F): The total number of purchase transactions or shopping visits in the period examined.
Monetary (M): The total value of the purchases within the period examined.
Following, we explain the typically stages of a RFM analytic based on [2]:

1. Data acquisition and preparation. Once, we have chosen the period to analyze, the customers are selected 
if they have at least shopped during this period. Transactional data on these customers must be retrieved, 
audited, cleaned, and prepared for subsequent operations. Let Transactions (CustomerID, Date, Amount) be 
the table where these transactional data on purchases are included.

2. RFM aggregation. Transactional data is aggregated at a customer level, i. e., on the CustomerID attribute. 
Thus, we obtain the table CustomerTransactions (CustomerID, Recency, Frequency, Monetary) with the RFM 
information summarized for each customer.

3. RFM scores computation. Customers are sorted according to the respective RFM measure and are grouped 
in classes of equal size, typically quintiles. Customers are sorted independently according to each of the 
individual RFM components and then binned into five groups of 20%. This result is included into the table 
CustomerRFM (CustomerID, RecencyScore, FrequencyScore, MonetaryScore, RFMScore) with 
RecencyScore, FrequencyScore, MonetaryScore {1,…,5}. Therefore the RFM measures are transformed 
into ordinal scores such that the value 1 includes the 20% of customers with the worst values and the 5 the 
20% of customers with the best values in the corresponding measure. Especially for the Recency attribute, the 
scale of the derived ordinal score, RecencyScore, should be reversed so that larger scores represent the most 
recent buyers. Sometimes it can be useful to have a unique measure, RFMScore, which characterizes together 
the RFM scores. In order to provide this continuous RFM score, the R, F, and M bins are summed, with 
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appropriate user-defined weights, i.e., wR, wF, wM. The RFM score is the weighted average of its individual 
components and is calculated as follows:

RFMScore = RecencyScore × wR + FrequencyScore × wF + MonetaryScore × wM (1)
4. RFM deployment. Once the results of the previous step are validated, the marketers of the enterprise apply 

this RFM knowledge obtained in some business processes: retention, churn, segmentations… Often, these 
RFM results are used for a new data mining process.

This described approach can be solved with several data mining tools. In the Fig. 1 we show an example using 
IBM SPSS Modeler [6]. Following, we explain each stage of this stream:

Fig. 1. Example of a RFM analytic with IBM SPSS Modeler

1. Data acquisition and preparation. Transactional data of the last year (2014) were retrieved, audited, cleaned, 
and prepared (casting to date type) for subsequent stages. Inactive customers with no purchases during 2014 
were not included into the Transactions table.

2. RFM aggregation. For this step we use the RFM Aggregate node (see Fig. 2) that simplifies the computation 
of this stage. We only have to designate the required transaction fields (CustomerID, Date and Amount) and 
the fixed date to compute Recency as the time of difference (days, hours, minutes or seconds) between Date
and this date (2015-01-01). 

Fig. 2. Detail of the RFM Aggregate node settings

3. RFM scores computation. IBM SPSS Modeler also offers a node named RFM Analysis (Fig. 3) that can 
directly group the R, F, and M measures into the selected number of quantiles (five in our case). This node 
also computes the RFMScore using the Eq. (1) (with wR=.15, wF=.1 and wM= .75).
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Fig. 3. Detail of the RFM Analysis node settings

4. RFM deployment. We apply the RFM results to select the customer of a loyalty campaign choosing the 1000
highest RFMScore. As can be seen in Fig. 4, there are many clients with equal score because when grouping 
customers in quintiles the procedure results in a total of 5 × 5 × 5 = 125 distinct values as much of RFMScore.
This lack of precision can be a problem when selecting customers.

Fig. 4. Detail of the RFM results table (extract of the CustomerRFM table)

2.2. The 2-Tuple Fuzzy Linguistic Approach

Let S = {s0,…,sT} be a linguistic term set with odd cardinality, where the mid-term represents a indifference 
value and the rest of terms are symmetric with respect to it. We assume that the semantics of labels is given by 
means of triangular membership functions and consider all terms distributed on a scale on which a total order is 
defined, i.e. si sj i < j. In this fuzzy linguistic context, if a symbolic method aggregating linguistic information 
obtains a value b [0,T], and b {0,…,T}, then an approximation function is used to express the result in S.
DEFINITION 1 [4]. Let b be the result of an aggregation of the indexes of a set of labels assessed in a linguistic 
term set S, i.e. the result of a symbolic aggregation operation, b [0,T]. Let i = round(b) and = b-i be two 
values, such that i [0,T [-0.5,0.5), then is called a Symbolic Translation.

The 2-tuple fuzzy linguistic approach [2] is developed from the concept of symbolic translation by 
representing the linguistic information by means of 2-tuple (si i), si S i [-0.5,0.5), where si represents 

i is a numerical value expressing the value of the translation from the 
original result b to the closest index label, i, in the linguistic term set S. This model defines a set of transformation 
functions between numeric values and 2-tuple:
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DEFINITION 2. Let S = {s1,…,sT} be a linguistic term set and b [0,T] a value representing the result of a 
symbolic aggregation operation, then the 2-tuple that expresses the equivalent information to b is obtained with 
the following function:

T] S × [-0.5,0.5)
b) = (si with si, i = round(b) and b – i [-0.5,0.5) (2)

where round( ) is the usual round operation, si has the closest index label to b and is the value of the symbolic 
translation.

For all there exists -1, defined as -1(si, i (3)
The negation operator is defined as neg((si ) = (T – ( -1(si, )). (4)
Below, we describe the aggregation operators which we use in our model:

DEFINITION 3 [5]. Let A = {(l1, 1),…, (ln, n)} be a set of linguistic 2-tuple and W = {w1,…, wn} be their associated 
weights. The 2-tuple weighted average w is:

w [(l1, 1),…, (ln, n)
n

i

n

i
i

i

i

w

w

1

1 , (5)

3. Using the 2-Tuple Fuzzy Linguistic Approach to RFM analysis

Although RFM analysis is an useful tool, it does have its limitations such as its lack of precision in the 
calculation of scores. This is due to the representation as an ordinal number of these RFM scores (for example,
see the Fig. 4 where you cannot identify which are really the best customer). In this section, we propose to 
incorporate the 2-tuple model to RFM analysis in order to obtain a higher precision and an easier linguistic 
interpretability of the model results. Additionally, we present an IBM SPSS Modeler [6] implementation of this 
model.

The basic idea is to compute and store the scores included into the output table, i.e., RecencyScore,
FrequencyScore, MonetaryScore and RFMScore using the 2-tuple model. First, we need to define the symmetric
and uniformly distributed domain S using five linguistic labels. These labels must have a semantic meaning for 
the four variables to model: S = {s0,…, sT}, T = 4: s0 = Very Low = VL, s1 = Low = L, s2 = Medium = M, s3 = High 
= H, and s4 = Very High = VH (see Fig. 5). 

Fig. 5. Definition of the set S
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The first two stages of the RFM analytic process are the same as we have shown in Section 2.1. Following,
we explain the third and fourth stages:
3. 2-tuple RFM scores computation. Customers are sorted according to the respective RFM measure and are 

grouped in classes of equal p size, i.e., p-quantiles. Customers are sorted independently according to each of 
the individual RFM components and then binned into p groups of 1 p%. The higher the p value, the greater 
the accuracy of the results, although its maximum value depends on the distinct values of each RFM variable.
Each B, with B {Recency, Frequency, Monetary}, measure is transformed into an ordinal number q, with q

{1,..,p}. The final 2-tuple score A, with A {RecencyScore, FrequencyScore, MonetaryScore}, is obtained 
as following:

norm0T (q)), if B {Frequency, Monetary}
A = (6)

neg( norm0T (q))), otherwise
where norm0T( ) is the usual min-max (min=1 and max=p) normalization function to the interval [0,T] and ( )
and neg( ) have been defined in Section 2.2 (Eq. 2 and 4 respectively). We use the negation function on 
Recency because the larger scores represent the most recent buyers. 
The 2-tuple RFMScore which characterizes together the RFM scores is calculated using the Eq. (5) as follows:

RFMScore = w, with user-defined weights W = {wR, wF, wM} (7)
4. RFM deployment. The scores obtained in the previous step are 2-tuple values, therefore before applying any 

conventional numerical operation we have to transform these values using the corresponding function -1 (Eq. 
3).

In [7] we have proposed both a representation data type 2-tuple as the implementation of the functions and 
-1 using IBM SPSS Modeler. Using these tools, the RFM 2-tuple approach proposed in this paper has been 

implemented. Thus, the stream to solve the example of the Section 1.1 is showed in the Fig. 6.

Fig. 6. Example of a 2-tuple RFM analytic with IBM SPSS Modeler

This stream is very similar to the presented in the Fig. 1 to solve a conventional RFM process. The main 
difference is the implementation of the third stage. For this purpose we have created a super node (symbolized 
by ) named RFM Scores Computation (shown in Fig. 7). A super node is similar to a procedure with inputs 
(labeled with From Stream) and/or outputs values (labeled with To Stream). This super node computes de 2-tuple
RFM scores (using the Eq. 6 and 7) and it also computes the corresponding -1 function (Eq. 3) on these values 
to apply conventional numerical operations necessary in the fourth stage.
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Fig. 7. IBM SPSS super node for RFM scores computation

We execute the new version of the stream (Fig. 6) with p = 100 on the same input data and the same user-
defined weights (wR, wF, wM) used on the conventional stream (Fig. 1). The selection of the 1000 best customers,
i.e., the highest -1(RFMScore) presented in the Table 1 is different now. Also in the Table 1, we show the RFM 
scores that were obtained according to the conventional process (Fig. 1). In the 2-tuple implementation the
interpretability of the scores is easier as they are expressed by linguistic labels instead of ordinal numbers. Also 
the accuracy of such scores is greater, owing the 2-tuple model, allowing a better prioritization (selection) of the 
best customer.

Table 1. Comparison of the results of the conventional RFM process vs the 2-tuple RFM process

4. Concluding remarks and future work

We have presented a general RFM analytic process that incorporates the 2-tuple model in order to obtain a 
higher precision and an easier linguistic interpretability of the RFM model results. Additionally, we have 
presented an IBM SPSS Modeler implementation of this model. In such a way, our proposal could be widely 
applied at a practical level on several types of marketing problems: segmentation, retention, reactivation 
campaigns, etc. As an example, we have applied the implemented model to select the customer of a loyalty 
campaign, verifying the advantages of the new model regarding the conventional RFM model.

We are currently focusing on the use of this model to several marketing problems, especially for the calculation 
of the customer lifetime value.
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