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1. Introduction

This work is concerned with the asymptotic behaviour of the linear homogeneous Boltzmann equation 
in the less explored case of soft potential interactions, and with a cut-off assumption (the precise definition 
of all the above will be given shortly). We are interested in the application of entropy techniques to study 
the approach to equilibrium in the relative entropy sense, and in the application of entropy inequalities to 
estimate its rate. Our results complement a previous work by two of the authors [5], where the case of hard 
potentials was studied following the same techniques.

Our motivation comes partly from the study of the linear Boltzmann equation itself, which is a basic 
model in kinetic theory describing the collisional interaction of a set of particles with a thermal bath at 
a fixed temperature. Interactions among the particles themselves are neglected, and thus the equation is 
linear. Various versions of the linear Boltzmann equation are used to model phenomena such as neutron 
scattering [27,28], radiative transfer [1] and cometary flows [16] (we refer to [13, Chapter XXI] for a de-
tailed presentation of the mathematical theory of linear collisional kinetic equations), and appears in some 
non-linear models as a background interaction term [4,10,17]. On the other hand, a technical motivation 
for our results is that inequalities relating the logarithmic entropy to its production rate are interesting by 
themselves, and are helpful in the study of non-linear models involving a linear Boltzmann term. These 
inequalities are intriguing and have been studied in [5] in the case of hard potentials; we intend to complete 
these ideas by looking at the case of soft potentials. Our strategy of proof is close to that in [11] (which 
applies to the non-linear Boltzmann equation), and is based on this type of inequalities.

The linear Boltzmann equation we consider here has been studied in several previous works [5,23,24,31]. 
Its spectral gap properties are understood since [19], with constructive estimates on the size of the spectral 
gap in L2(M−1) (where M is the equilibrium) for hard potentials given in [24]. Semigroup techniques were 
used in [23,27] to obtain convergence to equilibrium for all initial conditions in L1, without explicit rates. 
An important related equation is the linearised Boltzmann equation, which has been treated for example 
in [3,8,22,29,30]. Roughly speaking, the spectral gap properties of both equations (linear and linearised) 
are now understood in a variety of spaces. The difference in our present approach is that it is based on 
functional inequalities for the logarithmic entropy, which have their own interest and are more robust when 
applied to models with mixed linear and non-linear terms [4,10].

Similar questions for the non-linear space-homogeneous Boltzmann equation have also been considered 
in the literature, and we refer to [15] for an overview and to [11] for convergence results with soft potentials. 
Mathematical questions are more involved in the non-linear setting, and of course the picture becomes more 
complete in the linear case. However, the question remains open regarding the validity of some functional 
inequalities in the non-cutoff case; we comment on this at the end of this introduction.

1.1. The linear Boltzmann operator

In this work we will be interested in properties of the solution to the following spatially homogeneous 
Boltzmann equation
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{
∂tf(t, v) = Lγf(t, v) := Qγ(f(t, ·),M)(v) t ≥ 0
f(0, v) = f0(v)

(1.1)

where M is the Maxwellian with the same mass as f0, and Qγ(f, g) denotes the bilinear Boltzmann collision 
operator

Qγ(f, g) =
∫

Rd×Sd−1

Bγ(v − v∗, cos θ) (f(v′)g(v′∗) − f(v)g(v∗)) dv∗ dσ (1.2)

associated to a given interaction kernel of the form

Bγ(v − v∗, cos θ) = |v − v∗|γ b(cos θ) (1.3)

with γ ∈ (−d, 0), and a given even nonnegative function on [−1, 1], b, that satisfies

‖b‖1 =
∫

Sd−1

b(cos θ) dσ = |Sd−2|
1∫

−1

b(s)
(
1 − s2) d−3

2 ds < ∞ (1.4)

(the so-called Grad’s angular cut-off assumption). For simplicity, we will assume that ‖b‖1 = 1. The linear 
Boltzmann operator is then defined by

Lγf = Qγ(f,M).

In the above, v′ and v′∗ are the pre-collisional velocities which result, respectively, in the velocities v and v∗
after the elastic collision, expressed by the equation

v′ = v + v∗
2 + |v − v∗|

2 σ, v′∗ = v + v∗
2 − |v − v∗|

2 σ , (1.5)

for a random unit vector σ. The deviation angle, which appears in (1.3), is defined by

cos θ = (v′∗ − v′) · (v∗ − v)
|v∗ − v|2 = v − v∗

|v − v∗|
· σ.

The function f considered in (1.2) is assumed to be a non-negative function with unit mass. As such, the 
associated normalised Maxwellian is given by

M(v) = 1
(2π)d/2

exp
(
−|v|2

2

)
, v ∈ R

d . (1.6)

Our study concerns itself with collision kernels of the form (1.3) with γ ∈ (−d, 0). We will use the following, 
well known, terminology:

1) If γ > 0 and b satisfies (1.4), we are in the case of hard potentials with angular cut-off.
2) If γ = 0 and b satisfies (1.4), we are in the case of Maxwell interactions with angular cut-off.
3) If −d < γ < 0 and b satisfies (1.4), we are in the case of soft potentials with angular cut-off.

Our quantitative investigation of the rate of decay to equilibrium of solutions to equation (1.1) uses the 
so-called entropy method. The study of this method for the case of hard potentials has been explored in [5], 
and the goal of this work is to extend this study to the soft potentials case.
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Before we present the main result of our work we recall in the next section a few known facts about the 
linear Boltzmann equation.

1.2. Known properties of the linear Boltzmann equation

Basic results regarding equation (1.1) are its well-posedness and the long time behaviour of the Cauchy 
problem (see for instance [23]):

Proposition 1.1. Assume that B(v − v∗, σ) = |v − v∗|γb(cos θ) where γ ∈ (−d, 0) and b : [−1, 1] → R
+ is 

an even function that satisfies (1.4). Then, the operator Lγ is a bounded operator in L1(Rd) and, as such, 
generates a C0-semigroup (U(t))t≥0 of positive operators in L1(Rd). Consequently, for any non-negative 
f0 ∈ L1(Rd) there exists a unique (mild) solution f(t, ·) to (1.1) with f(0, ·) = f0, given by f(t) = U(t)f0. 
Moreover, (U(t)t≥0 is a stochastic semigroup, i.e.

∫
Rd

U(t)f0(v) dv =
∫
Rd

f(t, v) dv =
∫
Rd

f0(v) dv ∀t ≥ 0,

and for any f0 ∈ L1(Rd)

lim
t→∞

‖U(t)f0 − �0M‖L1(Rd) = 0

where �0 =
∫
Rd

f0(v) dv.

Notice that the above long-time behaviour of the solution to (1.1) does not require any additional as-
sumption on the initial datum. However, it does not provide any kind of rate of convergence for such general 
initial datum. In fact, we will show in the Appendix B that, without additional assumptions on the initial 
datum, the rate of convergence can be arbitrarily slow.

From this point onwards, unless stated otherwise, we will assume that

�0 =
∫
Rd

f0(v) dv = 1.

The first important observation in the study of the rate of convergence to equilibrium is the fact that 
linear Boltzmann equation (1.1) admits infinitely many Lyapunov functionals.

Lemma 1.2. Let Φ : R+ → R
+ be a convex function and let f(t, v) be non-negative solution to (1.1). Then 

the functional

HΦ(f(t)|M) =
∫
Rd

M(v)Φ
(
f(t, v)
M(v)

)
dv

is non-increasing.

We refer to the Appendix A for a formal proof of that property which is a general property of stochastic 
semigroups (see [25]). For the particular choice Φ(x) = x log x − x + 1, one recovers the famous Boltzmann 
relative entropy, which we will denote by H(f |M) and concludes the H-Theorem:
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d
dt

H(f(t)|M) ≤ 0 ∀t ≥ 0

for any solution f(t, v) to (1.1) with unit mass and initial data in an appropriate weighted space. The rate 
at which the relative entropy decreases is fundamental for the understanding of the large time behaviour 
of f(t, ·). Defining the entropy production as:

Dγ(f) = −
∫
Rd

Lγ(f) log
(

f(v)
M(v)

)
dv,

which is obtained by the minus of the formal derivative of the entropy under the flow of the equation, the 
entropy method seeks to find a general functional inequality that connects the entropy and the entropy 
production. Such inequality is transformed into a differential inequality along the flow of the equation, from 
which a concrete rate of convergence to equilibrium can be obtained.

The definition of Dγ can easily be extended to any linear Boltzmann operator Lγ with γ > −d. More 
generally, we will denote the entropy production associated to a linear operator Q(f, M) with collision 
kernel B(v − v∗, σ). by DB(f), and an easy computation shows that

DB(f) = 1
2

∫
Rd×Rd×Sd−1

B(v − v∗, σ)M(v)M(v∗) (h(v′) − h(v)) log h(v′)
h(v) dv dv∗ dσ (1.7)

where h = f
M . In particular, as expected, DB(f) ≥ 0.

The study of the entropy method is more developed for the Maxwellian and hard potentials case. In 
particular, we state the following theorem from [5], which will play an important role in our own study:

Theorem 1.3. Consider a collision kernel B(v − v∗, σ) associated to Maxwell interactions

B(v − v∗, σ) = b(cos θ),

where b : [−1, 1] → R is an even function satisfying (1.4). Then, there exists λ0 > 0, depending only on b
such that

D0(f) ≥ λ0H (f |M) , (1.8)

for any non-negative f with unit mass such that∫
Rd

(
1 + |v|2

)
f(v) |log f(v)| dv < ∞.

In general, we don’t expect a linear inequality like (1.8) relating the entropy production to the relative 
entropy in the case of soft potentials. Indeed, such an inequality would imply the existence of a positive 
spectral gap in the space L2(M−1) for the operator Lγ , which is known to be false (see [8] for the linearised 
case and [23] for the linear case). This is since the essential spectrum of Lγ can be shown to contain a whole 
interval of the type [−ν0, 0] (see Remark 2.2 for more details and references on this topic).

The next type of functional inequality one may explore is the following weaker inequality:

Dγ(f) ≥ CδH(f |M)1+δ (1.9)

for some large class of probability densities f and for some explicit δ > 0 and Cδ > 0. In fact, to quantify 
the long time behaviour of the linear Boltzmann equation, it is enough for an inequality of the form (1.9)
to be valid along the flow of solutions to (1.1).
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Next, we describe the main result of the present work.

1.3. Main results

Before stating our main results we will introduce some convenient notation. Given a non-negative mea-
surable function f , we denote the k-th moment, and generalised k-th moment, of f by

mk(f) =
∫
Rd

|v|kf(v) dv Mk(f) =
∫
Rd

〈v〉kf(v) dv ∀k ∈ R

where 〈v〉 =
√

1 + |v|2 for any v ∈ R
d. Moreover, given s ∈ R and p ∈ (1, ∞), we set

Ms,p(f) = Ms(|f |p),

and notice that M0,p(f) = ‖f‖p. For a given s ≥ 0 we denote by

‖f‖L1
s

= Ms (|f |)

and

‖f‖L1
s log L =

∫
Rd

〈v〉s|f(v)| | log |f(v) ||dv,

and define the function spaces

L1
s = L1

s(Rd) =
{
f : Rd → R | f measurable and ‖f‖L1

s
< ∞

}
L1
s logL =

{
f : Rd → R | f is measurable and ‖f‖L1

s log L < ∞
}
.

Even if ‖ · ‖L1
s log L is not a norm, this notation is commonly seen in the literature.

We are now ready to state our first main result.

Theorem 1.4. Take p > 1 and −d < γ < 0, and let f0 ∈ L1
s

(
R

d
)
∩ Lp(Rd) be a non-negative function with 

unit mass, for s ≥ sp,d,γ , where sp,d,γ > 2 + |γ| is an explicit constant that depends only on p, d and γ. Let 
f = f(t) be the solution to equation (1.1) with a bounded angular kernel b. Then for any

σ < −1 + s− 2
|γ|

there exists a uniform constant C0 > 0 depending only on d, γ, p, s, σ, ‖f0‖L1
s
, ‖f0‖p and H (f0|M) such that

H (f(t)|M) ≤ C0 (1 + t)−σ
, (1.10)

for all t ≥ 0.

The strategy of the proof is to obtain the inequality

Dγ(f) ≥ D0(f)
μ−γ
μ Dμ(f)

γ
μ

for some γ < 0 < μ by means of interpolation estimates and deduce from it the inequality
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Dγ(f) ≥ C(f)
γ
μ H(f |M)1−

γ
μ (1.11)

where C(f) is an explicit functional involving norms of f in appropriate L1
κ1

and L1
κ2

logL spaces, for a 
suitable κ1, κ2. To use this inequality to deduce Theorem 1.4 one needs to control C(f) along the flow of 
the equation. This is achieved by obtaining the following:

(i) Explicit time dependent upper bound on the moments ms(f(t)) of the solutions.
(ii) Explicit time dependent upper bound on the Lp-norms ‖f(t)‖p.
(iii) Pointwise Gaussian lower bounds for the solutions f(t, v).

The methods we use to obtain the above estimations are inspired by the works [11] and [32], that deal with 
a similar problem related to the non-linear Boltzmann equation.

Our second main result concerns the decay of the solution to (1.1) for a more restrictive class of initial 
datum satisfying a strong Gaussian control of the form

∫
Rd

M(v)1−pf0(v)p dv < ∞

for some p > 1. In this case, one can obtain a better rate of decay – one of the form of a stretched exponential:

Theorem 1.5. Let f0 ∈ L1 (
R

d
)

be a non-negative function such that f0 ∈ Lp
(
R

d
)

for some p > 1 and where 
d ≥ 2. Assume that the angular kernel, b, is bounded and satisfies

b(x) ≥ b0
(
1 − x2) ν

2 , (1.12)

for some b0 > 0, 0 ≤ ν ≤ 1. Then, if

Hp(f0) =
∫
Rd

M(v)1−pf0(v)p dv < ∞

we have that for any t0 > 0 there exist two uniform constants C(1)
t0 , C(2)

t0 > 0 depending only on d, γ, p, b0, ν, t0
and Hp(f0) such that any non-negative solution to (1.1) with initial data f0, f(t), satisfies

Dγ(f(t)) ≥
C

(1)
t0 H (f(t)|M)∣∣∣log

(
C

(2)
t0 H (f(t)|M)

)∣∣∣ |γ|
2
, ∀t ≥ t0. (1.13)

As a consequence we can find appropriate constants C1, λ1 > 0 depending on d, γ, p, b0 such that

H (f(t)|M) ≤ C1 exp
(
−λ1t

2
2+|γ|

)
. (1.14)

The above decay rate is similar to that obtained for the linearised Boltzmann equation in [8], yet with 
a less restrictive condition on the initial datum. Indeed, the condition in [8] involves a pointwise Gaussian 
decay of the type

sup
v∈Rd

exp
(
a|v|2

)
|f(v)| < ∞

for some a ∈ (0, 1/4).
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The proof of Theorem 1.5 uses a suitable improvement of the interpolation inequality between Dγ and D0, 
which involves now the entropy production associated to some (non-physical) interaction kernel of the form

B(v − v∗, σ) = exp(a|v − v∗|) b(cos θ).

This is reminiscent of a similar approach used in the study of the entropy production associated to the 
Becker–Döring equation in [9]. An additional ingredient of the proof is the instantaneous generation of a 
Maxwellian lower bound to the solutions of (1.1), which is the reason why assumption (1.12) is needed.

We also consider the non-cutoff case briefly in Section 6. If one assumes that

c0|θ|−(d−1)−ν ≤ b(cos θ) ≤ c1|θ|−(d−1)−ν , ν ∈ (0, 2) (1.15)

for certain positive constants c1 ≥ c0 > 0 then the cutoff assumption (1.4) is not satisfied. The spectral 
gap properties of the linearised Boltzmann equation are well-understood also in this case [30,20], and by 
following the technique in [30] we show a analogous result for the linear Boltzmann equation: if γ + ν > 0
the operator Lγ has a spectral gap in the space L2(M−1) (see Proposition 6.1). Since we are interested in 
inequalities involving the logarithmic entropy, we may wonder whether a similar linear inequality holds true 
for the entropy production

D(f) = −
∫
Rd

Lf log
(

f

M

)
dv.

While we have not been able to prove this, we conjecture that it is indeed the case. More precisely:

Conjecture 1. For a non cut-off collision kernel B(v − v∗, σ) = |v − v∗|γb(cos θ) with γ ∈ (−d, 0) and b(·)
satisfying (1.15) such that

γ + ν > 0

there exists λγ,b > 0 such that

D(f) ≥ λγ,bH(f |M) (1.16)

for all f ≥ 0 with unit mass.

A linear inequality like (1.16) is usually refer to as a modified Logarithmic Sobolev inequality and is 
known to be equivalent to the exponential decay of H(f(t)|M) along the flow of solutions to the Boltzmann 
equation

d
dtf(t, v) = Lf(t, v), f(0, ·) = f0 ∈ L1

2 logL (1.17)

(see for instance [6]). Such a modified Logarithmic Sobolev inequality would imply the spectral gap inequality 
(6.2) with

λ ≥ λγ,b

2

(but is not equivalent to it).
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1.4. Organization of the paper

The structure of the paper is as follows: Section 2 is dedicated to the main entropy–entropy production 
inequality of the type (1.11) and to the investigation of points (i)–(iii), leading to the proof of our first main 
result in Section 3. In Section 4 we show the creation of pointwise Maxwellian lower bounds under certain 
restrictions on the angular kernel. This will not only give an alternative to point (iii) (which will not improve 
the rate of convergence for Theorem 1.4), but will be crucial in the proof of Theorem 1.5, which we will give 
in Section 5. In Section 6, we discuss the case of the linear Boltzmann equation with soft potential without 
the cut-off assumption and show the existence of a spectral gap for a certain range of the parameters. This 
is done by an adaptation of similar results from [30]. The last pages of the paper are dedicated to several 
Appendices that provide additional details that we felt would hinder the flow of the main work.

2. The entropy inequality and technical estimates

The goal of this section is to find an appropriate entropy–entropy production inequality associated to Lγ , 
from which we will be able to obtain a quantitative estimation on the rate of convergence to equilibrium.

In order to achieve this we start by rewriting the operator Lγ as the sum of a gain and a loss operators. 
Due to the cut-off assumption (1.4) the operator Lγ can be decomposed in the following way:

Lγf(v) = Kγf(v) − Σγ(v)f(v),

where

Kγf(v) =
∫

Rd×Sd−1

|v − v∗|γ b (cos θ) f (v′)M (v′∗) dv∗ dσ (2.1)

and the collision frequency Σγ is given by

Σγ(v) =
∫

Rd×Sd−1

b(cos θ) |v − v∗|γ M (v∗) dv∗ dσ =
∫
Rd

|v − v∗|γ M (v∗) dv∗. (2.2)

The loss operator, of a simpler nature, satisfies the following (see [8] or [11, Lemma 6.1] for a detailed proof):

Lemma 2.1. For any γ ∈ R there exists explicit constants C1, C2 > 0, depending only on γ, d and ‖b‖1 such 
that

C1 (1 + |v|)γ ≤ Σγ(v) ≤ C2 (1 + |v|)γ . (2.3)

Remark 2.2. From the above estimate one can easily infer that the range of the mapping −Σγ is given by 
[−ν0, 0) for ν0 = infv∈Rd Σγ(v). Using the fact that Kγ is a compact operator in the space L2(M−1) (see 
for instance [8] or [21,22] for the proof in the linearised setting), one deduces that the essential spectrum of 
Lγ in that space contains [−ν0, 0). In particular, Lγ does not exhibit a spectral gap in that space.

We are now ready to state our main entropy inequality.

Theorem 2.3. Let γ ∈ (−d, 0) and let f ∈ L1
μ logL 

(
R

d
)
∩ L1

μ+2(Rd) for some μ > 0, be a non-negative 
function with unit mass. Then

Dγ(f) ≥ D0(f)
μ−γ
μ Dμ(f)

γ
μ ≥ λ

1− γ
μ

0 Dμ(f)
γ
μ H (f |M)1−

γ
μ , (2.4)
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and it also holds that

Dμ(f) ≥ Cs,d

(∫
Rd

(1 + |v|)μ f(v) log f(v) dv +
∫
Rd

(1 + |v|)μ+2
f(v) dv −

∫
Rd

Kμ(f)(v) log f(v) dv
)

(2.5)

where Cμ,d is a universal constant that depends only on μ and d, and λ0 is the positive parameter (depending 
on b) appearing in Theorem 1.3 for Maxwell molecules.

Proof. Recall that, for all α > −d

Dα(f) = 1
2

∫
Rd×Rd×Sd−1

|v − v∗|αb(cos θ)M(v)M(v∗) (h(v′) − h(v)) log h(v′)
h(v) dv dv∗ dσ.

Introducing the measure dν(v, v∗, σ) = 1
2b(cos θ)M(v)M(v∗) (h(v′) − h(v)) log h(v′)

h(v) dv dv∗ dσ on Rd×R
d×

S
d−1 one has

Dα(f) =
∫

Rd×Rd×Sd−1

|v − v∗|α dν(v, v∗, σ)

and, using Hölder’s inequality on

D0(f) =
∫
Rd

|v − v∗|
μγ

μ−γ |v − v∗|
−μγ
μ−γ dν(v, v∗, σ)

with p = μ−γ
μ , q = −μ−γ

γ we get

Dγ(f) ≥ D0(f)
μ−γ
μ Dμ(f)

γ
μ . (2.6)

Next, as Dμ(f) = − 
∫
Rd

Lμ(f) log(f/M) dv we have that

Dμ(f) ≤
∫
Rd

Σμ(v)f(v) log f(v) dv +
∫
Rd

Kμ(f)(v) logM(v) dv

−
∫
Rd

Σμ(v)(f) logM(v) dv −
∫
Rd

Kμ(f)(v) log f(v) dv.

Since log (M(v)) = −d
2 log (2π) − |v|2 /2 < 0 and Kμ(f)(v) ≥ 0 when f is non-negative we conclude that ∫

Rd

Kμ(f)(v) logM(v) dv ≤ 0. Moreover, using Lemma 2.1 we find C1, C2 > 0, depending only on d and μ

such that

Dμ(f) ≤ C2

∫
Rd

(1 + |v|)μ f(v) log f(v) dv + d

2 log (2π)C2

∫
Rd

(1 + |v|)μ f(v) dv

+ C2

2

∫
Rd

(1 + |v|)μ+2
f(v) dv −

∫
Rd

Kμ(f)(v) log (f(v)) dv.

The above, together with (2.6) and Theorem 1.3 complete the proof. �
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The above Theorem is the reason for us to investigate the evolution of moments and Lp norms of f , as 
well as pointwise lower bounds of f . These are the topics of the following subsections. From now on, we 
shall always assume that γ ∈ (−d, 0).

2.1. The evolution of moments

The study of moments and their time evolution is fundamental in many kinetic equations (and other 
PDEs where “energy methods” are applicable). In the case of the Boltzmann equation, the study of creation 
and propagation of moments for soft and hard potentials with angular cut-off is radically different. The 
linear Boltzmann equation we study here exhibits properties that reflect a similar moment growth as its 
non-linear counterpart.

We recall that notations for the moments of f have been introduced in subsection 1.3. To simplify writing, 
we will denote by

ms(t) = ms(f(t, ·)), Ms(t) = Ms(f(t, ·)) ∀t ≥ 0, s ∈ R.

For a given s ∈ R we define the function

ws(v) =
∫
Rd

|v − v∗|γ |v∗|s M(v∗) dv∗, (2.7)

which will play an important role in the sequel and which satisfies the following estimate (similar in nature 
to Lemma 2.1):

Lemma 2.4. For any s ≥ 0 and γ > −d, ws is a bounded function. That is,

sup
v∈Rd

ws(v) := ‖ws‖∞ < ∞. (2.8)

The main theorem we prove in this section is the following:

Theorem 2.5. Let f0 ∈ L1
s

(
R

d
)

for s = 2 or s > 2 max (|γ| , 1) such that f0 has unit mass and let f(t) be 
the unique solution for (1.1). If b ∈ L∞(Sd−1) and ‖b‖1 = 1 there exists a constant Cs, depending only on 
s, γ, d, the collision kernel and ‖f0‖L1

s(Rd) such that

ms(t) ≤ Cs(1 + t), ∀t ≥ 0. (2.9)

In order to prove the above theorem we will need to use the so-called Povzner’s Lemma (see [26]). The 
version we present here can be found in greater generality in [7].

Lemma 2.6. Assume that the angular kernel b(·) is a bounded function and let s > 2. Setting

Is(v, v∗) =
∫

Sd−1

b (cos θ)
(
|v′|s + |v′∗|

s − |v|s − |v∗|s
)

dσ, v, v∗ ∈ R
d

we have that

Is(v, v∗) ≤ C(1)
s |v|

s
2 |v∗|

s
2 − C(2)

s (|v|s + |v∗|s)
(
1 − 1 |v|

2 ≤|v∗|≤2|v|(v, v∗)
)
, (2.10)

where C(1)
s , C(2)

s are positive constants that depend only on d, s and the angular kernel, and where 1A is the 
indicator function of the set A.
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The reason we use this version of Povzner’s Lemma rather than others (such as the one in [18]) is due to 
the fact that it gives a minimal order of growth in terms of |v|. As any order of growth in |v∗| is absorbed 
by the Maxwellian, the result obtained with this version of the lemma is optimal in our setting.

Proof of Theorem 2.5. We start with considering the case s = 2 as it doesn’t require the boundedness of b, 
due to the special geometry in this case. Using the natural pre-post collision change of variables we find 
that

d
dtm2(t) =

∫
Rd×Rd×Sd−1

|v − v∗|γ b (cos θ) f(t, v)M(v∗)
(
|v′|2 − |v|2

)
dv dv∗ dσ.

As

|v′|2 − |v|2 = |v∗|2 − |v′∗|
2

and ‖b‖1 = 1, we find that

d
dtm2(t) ≤

∫
Rd

f(t, v)w2(v) dv ≤ ‖w2‖∞,

where we have used the mass conservation property of the equation. Thus

m2(t) ≤ max (m2(0), ‖w2‖∞) (1 + t) . (2.11)

Next, we consider s > 2. Similar to the above we find that

d
dtms(t) =

∫
Rd×Rd×Sd−1

|v − v∗|γ b (cos θ) f(t, v)M(v∗)
(
|v′|s − |v|s

)
dv dv∗ dσ

=
∫

Rd×Rd×Sd−1

|v − v∗|γ b (cos θ) f(t, v)M(v∗)
(
|v′|s + |v′∗|

s − |v|s − |v∗|s
)

dv dv∗ dσ

+
∫

Rd×Rd×Sd−1

|v − v∗|γ b (cos θ) f(t, v)M(v∗)
(
|v∗|s − |v′∗|

s) dv dv∗ dσ

≤
∫

Rd×Rd

|v − v∗|γ f(t, v)M(v∗)Is(v, v∗) dv dv∗ + ‖ws‖∞.

Using Lemma 2.6, together with the fact that

(|v|s + |v∗|s)1 |v|
2 ≤|v∗|≤2|v|(v, v∗) ≤ (2s + 1) |v∗|s ,

we conclude that there exist appropriate universal constants Ci (i = 1, 2, 3) that depends only on γ, d and 
the angular kernel such that

d
dtms(t) ≤ C(1)

s ‖w s
2
‖∞m s

2
(t) − C(2)

s

∫
Rd×Rd

|v − v∗|γ |v|s f(t, v)M(v∗) dv dv∗

+
(
C(2)

s (2s + 1) + 1
)
‖ws‖∞

≤ C1m s
2
(t) − C2

∫
Σγ(v) |v|s f(t, v) dv + C3.
Rd
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Using Lemma 2.1 we find that, using abusive notations for the constants,

d
dt

ms(t) ≤ C1m s
2
(t) − C2

∫
Rd

(1 + |v|)γ |v|s f(t, v) dv + C3

= C1m s
2
(t) − C2

∫
Rd

〈v〉γ (1 + |v|s) f(t, v) dv + C2

∫
Rd

〈v〉γf(t, v) dv + C3

i.e.

d
dtms(t) ≤ C1m s

2
(t) − C2Ms+γ(t) + C3.

Since s > 2 |γ| we see that s + γ > s/2 and as such

m s
2
(t) ≤ M s

2
(t) ≤ Ms+γ(t)

s
2(s+γ) .

Thus, in our settings,

d
dtms(t) ≤ Ms+γ(t)−

s+2γ
2(s+γ)

(
C1Ms+γ(t) − C2Ms+γ(t)1+

s+2γ
2(s+γ)

)
+ C3.

Since for any δ > 0 the exists a constant C(a, b, δ) > 0 such that

sup
x>0

(
ax− bx1+δ

)
≤ C(a, b, δ),

and since s + 2γ > 0 and Ms(f) ≥ m0(f), we conclude that there exists appropriate constants such that

d

dt
ms(t) ≤ C1Ms+γ(t)−

s+2γ
2(s+γ) + C3 ≤ Cs,

completing the proof. �
Theorem 2.5 gives us the tools to improve any growth estimation of a given moment, as long as the initial 

data has higher moments.

Corollary 2.7. Let s1 = 2 or s1 > 2 max (1, |γ|), and let s2 ≥ s1. Then, if f0 ∈ L1
s2

(
R

d
)

with a unit mass, 
and b ∈ L∞(Sd−1) such that ‖b‖1 = 1, we have that

ms1(t) ≤ Cs2 (1 + t)
s1
s2 , ∀t ≥ 0, (2.12)

for some constant Cs2 , depending only on s2, γ, d, the collision kernel b(·) and ‖f0‖L1
s2 (Rd).

Proof. This follows from simple interpolation. �
2.2. Lp estimates

The goal of this subsection is to show the propagation of Lp bounds – as long as one has enough moments. 
The approach we present here follows that of [32]. The main result we will show is:
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Theorem 2.8. Let f0 ∈ L1 (
R

d
)
∩ Lp

(
R

d
)

for some p > 1 and let f = f(t, v) be a non-negative solution 
to (1.1). There exists a constant Cp,d,γ depending only on p, d and γ and r > 1 such that

‖f(t, ·)‖pp ≤ ‖f0‖pp + Cp,d,γ

t∫
0

Mp
r (τ) dτ. (2.13)

Remark 2.9. Under the assumptions of the above Theorem, setting

η0 := min

⎛
⎝p− 1, (p− 1)2

(2 − p)+
,

p2√
1

(p−1)2 + p2 + 1
p−1

,
p2√

1(
1+ γ

d

)2 + p2 + 1
1+ γ

d

⎞
⎠

where a+ = max(a, 0), we can deduce from the proof that, for any 0 < η < η0, one can chose

r = |γ|
η

max (p− 1 − η, (p + η)(p− 2) + 1) . (2.14)

It is easy to see that p − 1 − η < (p + η)(p − 2) + 1 if and only if η > 2 − p. This means that whenever 
p ≥ 2 we have

r = −γ

η
((p + η)(p− 2) + 1) .

In addition, we notice that if p → 1+, one has η0 � 1
2 (p − 1)2. Choosing η � η0 we get

r �p→1+ − 2γ
(p− 1)2

(
p− 1 − (p− 1)2

2

)
� − 2γ

p− 1 .

Remark 2.10. Before we set the stage for the proof of Theorem 2.8, we would like to note an important 
difference between the study of the linear Boltzmann equation and the fully non-linear equation in this 
setting. The work [32] deals with collision kernels of the form B(v − v∗, σ) = Φ(|v − v∗|)b(cos θ) where

(1 + r)γ ≤ Φ(r) ≤ c2(1 + r)γ

for some c1, c2 > 0. Our version of the Lp bound propagation, however, deals directly with φ(r) = rγ . The 
reason we are able to do that is the presence of the Maxwellian in the collision operator, acting as a mollifier 
to the singularity.

The proof of this Theorem relies on the following integrability property of Kγ that can be found in [2]:

Theorem 2.11. Let γ ∈ (−d, 0) and 1 < r, q, � < ∞ with

1
q

+ 1
�

= 1 + γ

d
+ 1

r
. (2.15)

Then the gain operator Kγ satisfies

‖Kγ(f)‖r ≤ C ‖f‖q ‖M‖� (2.16)

where C = C(r, q, �, γ, d) > 0 is a uniform constant that depends only on r, q, �, γ and d.
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Proof of Theorem 2.8. We recall the notation Mp,s(f) = Ms (|f |p) and, as before, set Mp,s(t) = Mp,s(f(t, ·))
for any t ≥ 0, where f(t, v) is the unique solution to (1.1). We have that:

d
dt

1
p
‖f(t)‖pp =

∫
Rd

Kγ(f(t))(v)fp−1(t, v) dv −
∫
Rd

Σγ(v)fp(t, v) dv.

Using Lemma 2.1, the equivalence of (1 + |v|)γ and 〈v〉γ , and taking r, r′ > 1 to be Hölder conjugates (with 
r to be determined shortly) we find that

d
dt

1
p
‖f(t)‖pp ≤ ‖Kγ(f(t))‖r ‖f(t)‖p−1

r′(p−1) − cγMp,γ(t),

for some appropriate constant cγ . Using Theorem 2.11 with q, � > 1 to be fixed later, we conclude that

d
dt

1
p
‖f(t)‖pp ≤ C ‖f(t)‖q ‖f(t)‖p−1

r′(p−1) − cγMp,γ(t), (2.17)

for some uniform constant C, depending only on r, q, �, γ and d satisfying (2.15). As our goal is to control 
the Lp growth by a high enough moment, we will now focus our attention on showing that ‖f(t)‖r′(p−1)
and ‖f(t)‖q can both be controlled by powers of Mp,γ(t) and Mr(t), for some explicit r, in a certain range 
of parameters. For any 1 < q < p we define

α = −γ
q − 1
p− 1 < −γ,

and find that, for any measurable function f :
∫
Rd

|f(v)|q dv =
∫
Rd

〈v〉α
〈v〉α |f(v)|−

αp
γ |f(v)|

α+γ
γ dv

≤

⎛
⎝∫
Rd

〈v〉γ |f(v)|p dv

⎞
⎠

−α
γ
⎛
⎝∫
Rd

〈v〉
αγ

α+γ |f(v)| dv

⎞
⎠

α+γ
γ

.

Thus, introducing the notation a = −γ q−1
p−q

‖f(t)‖q ≤ Mp,γ(t)
q−1

q(p−1)Ma(t)
p−q

q(p−1) . (2.18)

We would like to explore the special case q = r′(p − 1), which we need to verify is possible. We notice that 
if r > p then r′(p − 1) < p. Also, in order for r′(p − 1) to be greater than 1 we only need that

r <

{
1

2−p 1 < p < 2
∞ p ≥ 2.

Since for 1 < p < 2 we always have that p < 1/(2 − p), a choice of r > p such that 1 < r′(p − 1) < p is 
indeed always possible. With this choice, setting b = −γ r(p−2)+1

r−p , we find that

‖f(t)‖p−1
r′(p−1) ≤ Mp,γ(t)1−

r−1
r(p−1)Mb(t)

r−p
r(p−1) . (2.19)

Plugging (2.18), (2.19) in (2.17) we find that
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d
dt

1
p
‖f(t)‖pp ≤ CMp,γ(t)1−

r−q
rq(p−1)Ma(t)

p−q
q(p−1)Mb(t)

r−p
r(p−1) − cγMp,γ(t). (2.20)

Since for any 0 < δ < 1 and a, b > 0, we have that supx>0
(
ax1−δ − bx

)
=

( 1−δ
b a

) 1
δ , we see that if 

0 < r−q
rq(p−1) < 1

d
dt

1
p
‖f(t)‖pp ≤ Cp,r,q,γ

(
Ma(t)

p−q
q(p−1)Mb(t)

r−p
r(p−1)

) rq(p−1)
r−q ≤ Cp,r,q,γMmax(a,b)(t)p. (2.21)

This will give us the desired result as long as we can choose 1 < r, q, � < ∞ such that

q < p < r, (2 − p)r < 1, 1
q

+ 1
�

= 1 + γ

d
+ 1

r
, and r − q

rq(p− 1) < 1.

As � only appears in (2.16) in the norm ‖M‖�, we can choose it to be as large as we want. In particular, 
for our setting, we can replace (2.15) with

1
q
< 1 + γ

d
+ 1

r
, (2.22)

and then choose � accordingly. We will choose r = p + η, q = p − η and see what conditions we must have 
for η > 0:

– For q > 1 we require that η < p − 1.
– The condition (2 − p)r < 1 is only valid when 1 < p < 2. In that case any η < (p−1)2

2−p will do.
– Demanding that r − q < rq(p − 1) in this setting is equivalent to 2η <

(
p2 − η2) (p − 1) which is valid 

when

η <
p2√

1
(p−1)2 + p2 + 1

p−1

.

– Lastly, inequality (2.22) is equivalent to 2η <
(
1 + γ

d

) (
p2 − η2), which is valid when

η <
p2√

1(
1+ γ

d

)2 + p2 + 1
1+ γ

d

.

This concludes the proof with the choice r = max (a, b). �
2.3. Lower bounds – modification of the solution

In most studies connected to the entropy method for kinetic equations, a lower bound on the function is 
needed. In this subsection we will adapt a method from [11] to achieve such a bound by a forced modification 
of the solution. We will then investigate the relation between the entropy and entropy production of it and 
the original solution.

Given a non-negative and measurable function f and 0 < δ < 1 we define

fδ(v) = (1 − δ) f(v) + δM(v). (2.23)

A simple, yet important observation is that if f is integrable and of unit mass, the same occurs for fδ. 
Moreover, Lγfδ = (1 − δ)Lγf since Lγ(M) = 0.



J.A. Cañizo et al. / J. Math. Anal. Appl. 462 (2018) 801–839 817
Lemma 2.12. Let f ∈ L1 (
R

d
)

be of unit mass. For all 0 < δ < 1 we have that

H (f |M) ≤ H (fδ|M)
1 − δ

+ δ

1 − δ

(
log

(
1
δ

)
− (1 − δ) log (1 − δ)

δ

)
. (2.24)

Proof. We start by noticing that since the function φ(x) = x log x satisfies

φ(x + y) ≥ φ(x) + φ(y),

for any x, y > 0, we have that

H (fδ) ≥ H ((1 − δ) f) + H(δM) = (1 − δ) log (1 − δ) + δ log δ + (1 − δ)H(f) + δH(M), (2.25)

where H(f) =
∫
Rd f(v) log f(v)dv. On the other hand as

H (f |M) = H(f) −
∫
Rd

f(v) logM(v) dv = H(f) −H(M) −
∫
Rd

(f(v) −M(v)) logM(v) dv (2.26)

we find that

(1 − δ)H(f) + δH(M) = (1 − δ)H (f |M) + H (M) + (1 − δ)
∫
Rd

(f(v) −M(v)) logM(v) dv

= (1 − δ)H (f |M) + (1 − δ)
∫
Rd

f(v) logM(v) dv + δH (M) .
(2.27)

Using (2.26) again for fδ yields

H (fδ) = H (fδ|M) + (1 − δ)
∫
Rd

f(v) logM(v) dv + δH (M) . (2.28)

Thus, combining (2.27) and (2.28) yields

(1 − δ)H(f) + δH(M) = (1 − δ)H (f |M) + H (fδ) −H (fδ|M) .

Plugging this into (2.25) we find that

(1 − δ)H (f |M) ≤ H (fδ|M) − (1 − δ) log (1 − δ) − δ log δ

from which the result follows. �
The next step in our study will be to understand how the entropy dissipation of fδ(t) behaves with 

respect to the entropy dissipation of f(t). From this point onwards we will assume that δ = δ(t) is a smooth 
function of t.

Lemma 2.13. Let f(t, v) be a non-negative solution to (1.1) that has a unit mass and let g(t, ·) = fδ(t)(t, ·)
be defined as in (2.23). Then, if δ(t) is a non-increasing function, we have that

d
dtH (g(t)) ≤ −Dγ (g(t)) − δ′(t)H (f(t)|M) + δ′(t) log (δ(t))

1 − δ(t) (2.29)

where δ′(t) = d δ(t).
dt
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Proof. To begin with, we notice that g(t, ·) solves the following equation:

∂tg(t, v) = Lγg(t, v) −
δ′(t)

1 − δ(t) (g(t, v) −M(v)) . (2.30)

Thus,

d
dtH (g(t)|M) = −Dγ (g(t)) − δ′(t)

1 − δ(t)

∫
Rd

(g(t, v) −M(v)) log
(
g(t, v)
M(v)

)
dv (2.31)

since g(t, v) has a unit mass for all t. Using the convexity of the relative entropy we see that
∫
Rd

g(t, v) log
(
g(t, v)
M(v)

)
dv = H (g(t)|M) ≤ (1 − δ(t))H (f(t)|M) .

Also, since g(t, v) ≥ δ(t)M(v)

−
∫
Rd

M(v) log
(
g(t, v)
M(v)

)
dv ≤ log

(
1

δ(t)

)
.

Combining the above with (2.31) and using the fact that δ′(t) ≤ 0 we conclude the result. �
We now have all the tools we need to prove Theorem 1.4.

3. Algebraic rate of convergence to equilibrium

The key to proving Theorem 1.4 is the entropy inequality (2.5). We start the section with a couple of 
simple lemmas that evaluate the terms in that inequality.

Lemma 3.1. Let f be a non-negative function of unit mass.

1) Let μ > 0 and p > 1. Then for any ε > 0 there exists a uniform constant, Cμ,d,p,ε > 0, depending only 
on μ, d, p and ε such that

∫
f(t,v)≥1

(1 + |v|)μ f(v) log f(v) dv ≤ Cμ,d,p,ε

(
1 + m(1+ε)μ(f)

) 1
1+ε ‖f‖

pε
1+ε
p .

2) For any μ > 0, it holds
∫
Rd

(1 + |v|)μ+2
f(v) dv ≤ 2μ+1 (1 + mμ+2(f)) .

3) If f(v) ≥ A exp
(
−B |v|2

)
for some A, B > 0 we have that

−
∫
Rd

Kμf(v) log f(v) dv ≤ Cμ,d,γ (|logA| (1 + mμ(f)) + B(1 + mμ+2(f))) ,

where Cμ,d,γ is a uniform constant depending only on μ, d and γ.
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Proof. To prove 1) we notice that by Hölder’s inequality

∫
f(t,v)≥1

(1 + |v|)μ f(v) log f(v) dv ≤

⎛
⎝∫
Rd

(1 + |v|)(1+ε)μ
f(v) dv

⎞
⎠

1
1+ε

⎛
⎜⎝ ∫
f≥1

(log f(v))
1+ε
ε f(v) dv

⎞
⎟⎠

ε
1+ε

≤ 2μ
(

sup
x>1

|log x|(1+ε)/ε
x1−p

) ε
1+ε (

1 + m(1+ε)μ(f)
) 1

1+ε ‖f‖
pε

1+ε
p ,

showing the desired result. The second point 2) is obvious, and to show 3) we notice that under the condition 
on f one has that

−
∫
Rd

Kμ(f)(v) log f(v) dv ≤ − logA
∫
Rd

Kμf(v) dv + B

∫
Rd

|v|2 Kμf(v) dv.

Now, as
∫
Rd

φ(v)Kμ(v) dv =
∫

Rd×Rd×Sd−1

|v − v∗|μ b (cos θ) f(v)M(v∗)φ (v′) dv dv∗ dσ

we find that ∫
Rd

Kμf(v) dv =
∫
Rd

Σμ(v)f(v) dv ≤ C(1 + mμ(f)),

for some uniform constant C, due to Lemma 2.1. For φ(v) = |v|2 we use the fact that |v′|2 ≤ |v|2 + |v∗|2

and conclude that ∫
Rd

|v|2 Kμ(v) dv ≤ C (1 + mμ+2(f)) .

This completes the proof. �
Lemma 3.2. Assume that b ∈ L∞(Sd−1) with ‖b‖1 = 1. Let f0 ∈ L1 (

R
d
)

be a non-negative function with unit 
mass. Assume in addition that there exists p > 1 such that f0 ∈ Lp

(
R

d
)
∩L1

s(Rd) for some s > 2 max (1, |γ|)
such that s ≥ r, with r as in (2.14).

Consider μ, ε > 0 such that (1 + ε)μ ≤ s and μ +2 ≤ s, and let f(t, v) be a non-negative solution to (1.1). 
Define

g(t, v) = fδ(t)(t, v) = (1 − δ(t))f(t, v) + δ(t)M(v)

where 0 ≤ δ(t) ≤ 1 is a smooth decreasing function.

(i) Then there exists a uniform constant C0, depending only on d, γ, p, s, μ, ε and ‖f0‖p and ‖f0‖L1
s

such 
that ∫

Rd

(1 + |v|)μ g(t, v) log g(t, v) dv +
∫
Rd

(1 + |v|)μ+2
g(t, v) dv ≤ C0 (1 + t)� (3.1)

where � := μ + max
(

2 , ε
(
rp + 1

))
.
s s 1+ε s
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(ii) There exists a uniform constant C1, depending only on d, γ, s and ‖f0‖L1
s

such that

−
∫
Rd

Kμg(t, v) log g(t, v) dv ≤ C1

(
− log (δ(t)) + (1 + t)

μ+2
s

)
. (3.2)

Proof. Using Corollary 2.7, Theorem 2.8 and Lemma 3.1 and the conditions on η and s we find that there 
exists a universal constant C, depending on the appropriate parameters and norms, such that

∫
f(t,v)≥1

(1 + |v|)μ f(t, v) log f(t, v) dv +
∫
Rd

(1 + |v|)μ+2
f(t, v) dv

≤ C1 (1 + t)
μ
s (1 + t)

ε
1+ε

(
rp
s +1

)
+ C2 (1 + t)

μ+2
s

showing that (3.1) holds for the solution f(t, v). Since φ(x) = x log x is convex on R+

g(t) log g(t) ≤ (1 − δ(t)) f(t) log f(t) + δ(t)M logM.

Thus ∫
Rd

(1 + |v|)μ g(t, v) log g(t, v) dv +
∫
Rd

(1 + |v|)μ+2
g(t, v) dv

≤
∫

f(t,v)≥1

(1 + |v|)μ f(t, v) log f(t, v) dv +
∫
Rd

(1 + |v|)μ+2
f(t, v) dv + CM,

with CM independent of δ or t, concluding the proof of (i).
To show (ii) we remind ourselves that g(t, v) ≥ δ(t)M(v), and using part 3) of Lemma 3.1 we find that

−
∫
Rd

Kμg(t, v) log g(t, v) dv ≤ Cμ,d,γ (− log (δ(t)) + mμ+2 (g(t)))

= Cμ,d,γ (− log (δ(t)) + (1 − δ(t))mμ+2 (f(t)) + δ(t)) ≤ Cμ,d,γ

(
− log (δ(t)) + (1 + t)

2+μ
s

)
. �

To complete the proof of Theorem 1.4, we need the following Lemma which is reminiscent of [11, 
Lemma 7.2]. As the proof is an easy adaptation, we omit the details here.

Lemma 3.3. Let α, β > 0 such that α < 1. Consider the differential inequality

u′(t) ≤ −C (1 + t)−α
u(t)1+β + ξ(t), t ≥ 0.

If u(t) is an absolutely continuous function satisfying the above, and if

Cξ = sup
t≥0

(1 + t)
β+1−α

β ξ(t) < ∞

then

u(t) ≤ max
(

1, u(0),
(

1 − α + βCξ

βC

) 1
β

)
(1 + t)−

1−α
β .
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We are finally ready to prove our main theorem.

Proof of Theorem 1.4. As the previous lemmas indicate, we start by identifying sp,d,γ in the theorem as r, 
defined in (2.14). We start by choosing ε, μ > 0 small enough such that (1 + ε)μ ≤ s − 2 and

ε

1 + ε

(rp
s

+ 1
)
≤ 2

s
.

In such a case, � = μ+2
2 where � is defined in Lemma 3.2. Consider the function

δ(t) = 1
2 exp

(
− (1 + t)

μ+2
s

)
.

As before, set g(t, v) = fδ(t, v) = (1 − δ(t))f(t, v) + δ(t)M(v). Using Theorem 2.3 with Lemma 3.2, we find 
that there exists a uniform constant, C = C(f0, d, γ, p, s, μ) that depends on the appropriate parameters 
and norms, as well as λ0 from Theorem 1.3, such that

Dγ (g(t)) ≥ C
(
(1 + t)

μ+2
s + (1 + t)

2
s

) γ
μ

H (g(t)|M)1−
γ
μ

≥ 2
γ
μC (1 + t)

μ+2
s

γ
μ H (g(t)|M)1−

γ
μ .

Combining the above with Lemma 2.13, and using the fact that H(f(t)|M) ≤ H(f0|M) for any t ≥ 0, we 
find that

d
dtH (g(t)|M) ≤ −C0,d,γ,p,s,μ (1 + t)

μ+2
s

γ
μ H (g(t)|M)1−

γ
μ + ξ(t)

where we introduced

ξ(t) = μ + 2
2s (1 + t)

μ+2
s −1 exp

(
− (1 + t)

μ+2
s

)(
H (f0|M) + 2 (1 + t)

(μ+2)
s

)
.

From the above differential inequality, applying Lemma 3.3 with

α = −μ + 2
s

γ

μ
, β = −γ

μ

we see that, provided α < 1, there exists a constant C > 0 that depends only on the appropriate parameters 
such that

H (g(t)|M) ≤ C (1 + t)−
1−α
β ∀t ≥ 0.

Choosing

μ = s− 2
1 + ε

,

for an appropriate ε sufficiently small, in order to maximise the convergence rate, we see that α = |γ|
s−2 +

2ε |γ|
s(s−2) < 1 provided that |γ| < s − 2 and ε small enough. This is indeed valid in our setting and In that 

case, −1−α
β = s−2

(1+ε)γ + s+2ε
(1+ε)s and

H (g(t)|M) ≤ C (1 + t)
s−2

(1+ε)γ + s+2ε
(1+ε)s ∀t ≥ 0
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for some constant C > 0 depending only on ‖f0‖p, ‖f0‖L1
s

and the parameters. Using the above with (2.24)
we conclude that

H (f(t)|M) ≤ 2C (1 + t)
s−2

(1+ε)γ + s+2ε
(1+ε)s + exp

(
− (1 + t)

s+2ε
(1+ε)s

)(
(1 + t)

s+2ε
(1+ε)s + sup

0<x<1

(x− 1) log (1 − x)
x

)
,

concluding the proof. �
Using the decay rate in Theorem 1.4 one can easily obtain by interpolation the boundedness of moments 

and Lp norms, using a technique sometimes known as “slowly growing a priori bounds” (see for example 
[14,32]). We start by showing that moments are uniformly bounded in time, if a sufficiently high moment 
is initially bounded:

Theorem 3.4. Take p > 1 and −d < γ < 0, and let f0 ∈ L1
s

(
R

d
)
∩ Lp(Rd) be a non-negative function with 

unit mass, for some s ≥ sp,d,γ (where sp,d,γ is the constant from Theorem 1.4). Let f = f(t) be the solution 
to equation (1.1) with a bounded angular kernel b.

Given k > 0, there exists β > k depending only on k, d, s, γ such that if additionally we have 
Mβ(f0) < +∞ then it holds that

Mk(f(t)) ≤ Ck for all t ≥ 0,

for some constant Ck > 0 that depends only on k, p, s, d, γ, Mβ(f0) and ‖f0‖p.

Proof. According to Theorem 2.5 we have

Mβ(f(t)) ≤ Cβ(1 + t) for t ≥ 0.

On the other hand, fixing 0 < σ < −1 + s−2
|γ| (for definiteness, take σ := −1

2 + s−2
2|γ| ), we can apply Theorem 1.4

and the Csiszár–Kullback inequality to get

‖f(t) −M‖2
1 ≤ H(f(t)|M) ≤ C0(1 + t)−σ for t ≥ 0. (3.3)

Now, by interpolation, for θ ∈ (0, 1) given by β(1 − θ) = k, that is

θ = β − k

β
,

we have

Mk(|f(t) −M|) ≤ ‖f(t) −M‖θ1 Mβ(|f(t) −M|)1−θ

≤ C
θ
2
0 (1 + t)− θσ

2
(
Mβ(f(t)) + Mβ(M)

)1−θ

≤ C(1 + t)− θσ
2 (1 + t)1−θ = C(1 + t)− θσ

2 +1−θ,

for some C > 0 depending on the allowed quantities. Taking β large, θ becomes close to 1 and we can choose 
β so that

−θσ

2 + 1 − θ < 0,

which corresponds to β satisfying β > k(2+σ) . This gives
σ
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Mk(|f(t) −M|) ≤ C for all t ≥ 0,

which gives the result since Mk(f(t)) ≤ Mk(|f(t) −M|) + Mk(M) ≤ C + Mk(M). �
We turn now to the boundedness of Lp norms:

Theorem 3.5. Take p > 1 and −d < γ < 0, and let f0 ∈ L1
s

(
R

d
)
∩ Lp(Rd) be a non-negative function with 

unit mass, for some s ≥ sp,d,γ (where sp,d,γ is the constant from Theorem 1.4). Let f = f(t) be the solution 
to equation (1.1) with a bounded angular kernel b.

Given q > 0, there exists r > 1 depending only on q, d, s, γ such that if additionally we have ‖f0‖r < +∞
then it holds that

‖f(t)‖q ≤ Cq for all t ≥ 0,

for some constant Cq > 0 that depends only on q, p, s, d, γ and ‖f0‖r.

Proof. The proof is similar to the previous one. Using Theorems 2.8 and 2.5 we have

‖f(t)‖r ≤ C(1 + t)2 for t ≥ 0,

for some C > 0 depending on the allowed quantities. By interpolation, for θ ∈ (0, 1) given by

θ = q − r

q(r − 1) ,

we have, using also (3.3) (with the same choice of σ),

‖f(t) −M‖q ≤ ‖f(t) −M‖θ1 ‖f(t) −M‖1−θ
r

≤ C
θ
2
0 (1 + t)− θσ

2
(
‖f(t)‖r + ‖M‖r

)1−θ

≤ C(1 + t)− θσ
2 (1 + t)2(1−θ) = C(1 + t)− θσ

2 +2(1−θ),

for some C > 0 depending on the allowed quantities only. Taking r large, θ approaches 1 so we can choose 
r so that

−θσ

2 + 2(1 − θ) < 0.

With this choice,

‖f(t) −M‖q ≤ C for all t ≥ 0,

which proves the result by noticing that ‖f(t)‖q ≤ ‖f(t) −M‖q + ‖M‖q. �
Remark 3.6. The previous bounds can be now used in the proof of Theorem 1.4 to improve the decay 
exponent. We do not give the details of this improvement since we do not believe it to be optimal, and the 
exponent σ depends anyway on sp,d,γ , which has a complicated explicit expression.
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4. Instantaneous generation of Maxwellian lower bounds

In this Section we will investigate the phenomena of instantaneous creation of a Maxwellian lower bound 
to the solution of our linear Boltzmann equation, a property that is well understood for the fully non-linear 
Boltzmann equation. We arrive at this result by a careful investigation of the gain operator, Kγ . The 
following Lemma, whose proof is left to Appendix A.1, is the first step in this direction.

Lemma 4.1. For a collision kernel of the form (1.3), the gain part operator Kγ = Q+(·, M) admits the 
following representation:

Kγf(v) =
∫
Rd

kγ(v, w)f(w) dw, v, w ∈ R
d,

with

kγ(v, w) = 2d−1

(2π)
d
2 |v − w|

exp

⎛
⎝−1

8

(
|v − w| + |v|2 − |w|2

|v − w|

)2
⎞
⎠ ∫

(v−w)⊥

ξb,γ (z, v, w) dz (4.1)

where

ξb,γ(z, v, w) = exp
(
−|V⊥ + z|2

2

)
b

(
|z|2 − |v − w|2

|z|2 + |v − w|2

)
|z − (v − w)|γ−(d−2)

, (4.2)

with V⊥ being the projection of V = v+w
2 on the subspace that is perpendicular to v − w.

In what follows, we will assume that γ ∈ (−d, 0] is given. The key ingredient in establishing the creation 
of a lower bound is in estimating the term

Ib(v, w) =
∫

(v−w)⊥

ξb,γ (z, v, w) dz, (4.3)

which will be the purpose of our next lemma. For b = 1, we simply use the notation I(v, w) to denote 
Ib(v, w).

Lemma 4.2. Consider Ib(v, w) as defined in (4.3). Then

(i) If b = 1 and β ≤ 0 then

|v − w|β I(v, w) ≥ Cd,γ,β exp
(
−
(
|v|2 + |w|2

))
, (4.4)

where Cd,γ,β > 0 is a universal constant depending only on d, γ and β.

(ii) If b(x) ≥ b0

(
1 − |x|2

) ν
2 for some b0 > 0, 0 ≤ ν ≤ 1, and if d ≥ 2 then

|v − w|−1 Ib(v, w) ≥ Cd,γ,b0,ν exp

⎛
⎝−

(2ν + d− γ − 2)
(
|v|2 + |w|2

)
(d− γ − 2)

⎞
⎠ , (4.5)

where Cd,γ,b0,ν > 0 is a universal constant depending only on d, γ, b0 and ν.
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Proof. As z ⊥ v − w we have that

|v − w|β ≥
(
|z|2 + |v − w|2

) β
2 = |z − (v − w)|β .

Since |V⊥| ≤ |V | ≤ |v|+|w|
2 , and since |x± y|2 ≤ 2 

(
|x|2 + |y|2

)
we find that

exp
(
−|V⊥ + z|2

2

)
≥ exp

(
−|v|2 + |w|2

2

)
exp

(
− |z|2

)
.

As such

|v − w|β I(v, w) ≥ exp
(
−|v|2 + |w|2

2

) ∫
(v−w)⊥

exp
(
− |z|2

)(
|z|2 + |v − w|2

) γ−d+2+β
2 dz.

If β ≥ d − 2 − γ then

|v − w|β I(v, w) ≥ exp
(
−|v|2 + |w|2

2

) ∫
Rd−1

|z|γ−d+2+β exp
(
− |z|2

)
dz,

while if β < d − 2 − γ then, for a given ε > 0, we can find a universal constant Cε,d,γ,β such that

(
|z|2 + |v − w|2

) γ−d+2+β
2 ≥ Cε,d,γ,β exp

(
−ε

(
|z|2 + |v − w|2

))
,

from which we find that

|v − w|β I(v, w) ≥ Cε,d,γ,β exp
(
−|v|2 + |w|2

2

)
exp

(
−ε |v − w|2

) ∫
Rd−1

exp
(
−(1 + ε) |z|2

)
dz,

completing the proof of (i) with the choice of ε = 1
4 .

To show (ii) we start by noticing that

b

(
|z|2 − |v − w|2

|z|2 + |v − w|2

)
≥ 2νb0

|z|ν |v − w|ν(
|z|2 + |v − w|2

)ν .

Next, using Hölder inequality we find that for any 0 < α < 1, to be chosen at a later stage, one has that

I(v, w) =
∫

(v−w)⊥

ξγ(z, v, w)b
(
|z|2 − |v − w|2

|z|2 + |v − w|2

)α

b

(
|z|2 − |v − w|2

|z|2 + |v − w|2

)−α

dz

≤ Ib(v, w)αIb−α/(1−α)(v, w)1−α.

(4.6)

Due to the lower bound on b we have that

Ib−α/(1−α)(v, w) ≤ (2νb0)−
α

1−α |v − w|−
αν

1−α

∫
(v−w)⊥

exp
(
−|V⊥ + z|2

2

)(
|z|2 + |v − w|2

) γ−d+2
2 + αν

1−α |z|−
αν

1−α dz.
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We now choose

α = d− 2 − γ

2ν + d− 2 − γ
, (4.7)

which satisfies that 0 < α < 1 as well as αν
1−α = d−2−γ

2 . With this in hand we get that

Ib−α/(1−α)(v, w) ≤ (2νb0)−
α

1−α |v − w|−
αν

1−α

∫
(v−w)⊥

exp
(
−|V⊥ + z|2

2

)
|z|−

d−2−γ
2 dz.

Splitting the integral according to |z| > 1 or |z| ≤ 1, it is easy to see that

sup
v,w

∫
(v−w)⊥

exp
(
−|V⊥ + z|2

2

)
|z|−

d−2−γ
2 dz ≤ Cd,γ

for some positive constant Cd,γ > 0 depending only on d and γ > −d. Then, there is some positive constant C
(depending on d, γ, ν and b0) such that

Ib−α/(1−α)(v, w) ≤ C |v − w|−
αν

1−α .

Going back to (4.6), we find that

|v − w|−1 Ib(v, w) ≥ Cd,γ,ν,b0 |v − w|ν−1 I(v, w) 1
α

for some Cd,γ,ν,b0 > 0. The result now follows from (i) if ν ≤ 1 where we recall that α is given 
by (4.7). �
Remark 4.3. It is interesting to notice that the above constant Cd,γ,ν,b0 can be written as Cd,γ,ν,b0 = Cd,γ,ν b0
for some universal constant Cd,γ,ν depending only on d, γ and ν ∈ [0, 1].

Corollary 4.4. Assume that d ≥ 2 and that the angular kernel b(·) satisfies

b(x) ≥ b0

(
1 − |x|2

) ν
2
, x ∈ (−1, 1)

for some b0 > 0 and 0 ≤ ν ≤ 1. Then, for all v, w ∈ R
d,

kγ(v, w) ≥ Cd,γ,b0,ν exp
(
−λ1 |v|2

)
exp

(
−λ2 |w|2

)
,

where Cd,γ,b0,ν > 0 is a universal constant depending only on d, γ, b0 and ν and

λ1 = 3
4 + 2ν + d− γ − 2

d− γ − 2 > 0, λ2 = 1
4 + 2ν + d− γ − 2

d− γ − 2 > 0.

Proof. We start by noticing that |v − w|2 ≤ 2 
(
|v|2 + |w|2

)
, and

(
|v|2 − |w|2

)2

2 =
(
|(v − w)(v + w)|

|v − w|

)2

≤ |v + w|2 ≤ 2
(
|v|2 + |w|2

)
.

|v − w|
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As such

1
4

(
|v − w| + |v|2 − |w|2

|v − w|

)2

=

(
|v|2 − |w|2

)2

4 |v − w|2
+ |v|2 − |w|2

2 + |v − w|2

4

≤ |v|2 + |w|2 + |v|2 − |w|2

2 = 3 |v|2

2 + |w|2

2 .

The result now follows from (4.1) and Lemma 4.2. �
We are now ready to prove the main theorem of this section:

Theorem 4.5. Let f0 ∈ L1 (
R

d
)

be a non-negative function with unit mass and finite second moment. Let 
f(t, v) be a non-negative solution to (1.1) with angular kernel b that satisfies

b(x) ≥ b0

(
1 − |x|2

) ν
2
, x ∈ (−1, 1)

for some b0 > 0 and 0 ≤ ν ≤ 1. Then, if d ≥ 2, there exists a constant Cd,γ,b0,ν > 0, depending only on 
d, γ, b0 and ν, such that for any s > 0, v ∈ R

d and t > t0 > 0 we have that

f(t, v) ≥ Cd,γ,b0,ν

(
1 − exp

(
−‖Σγ‖∞ t0

))
exp

(
−λ1

(
|v|2 + sup

τ≤t
(2ms(τ))

2
s

))
, (4.8)

where Cd,γ,b0,ν is a constant that depends only on d, γ, b0 and ν, and λ1 is defined in Corollary 4.4.

Proof. As f(t, v) is the solution to (1.1) we find that

∂tf(t, v) + Σγ(v)f(t, v) = Kγ(f)(v).

Using Lemma 4.1 and Corollary 4.4 we can conclude that

∂tf(t, v) + ‖Σγ‖∞f(t, v) ≥ Cd,γ,b0,ν exp
(
−λ1 |v|2

)∫
Rd

exp
(
−λ2 |w|2

)
f(t, w) dw

≥ Cd,γ,b0,ν exp
(
−λ1

(
|v|2 + R2

)) ∫
|w|<R

f(t, w) dw,

for any R > 0. For any s > 0, we know that

∫
|w|<R

f(t, w) dw = 1 −
∫

|w|≥R

f(t, w) dw ≥ 1 − 1
Rs

∫
|w|>R

|w|s f(t, w) dw ≥ 1 − ms(t)
Rs

.

Using the above, and choosing R = (2ms(t))
1
s , we find that for any s > 0

∂tf(t, v) + ‖Σγ‖∞f(t, v) ≥ Cd,γ,b0,ν

2 exp
(
−λ1

(
|v|2 + (2ms(t))

2
s

))
. (4.9)

Solving the above inequality and using that f0 is nonnegative yields the result. �
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Remark 4.6. Note that if there exists a, B > 0 such that f0(v) ≥ B exp
(
−a |v|2

)
then solving the differential 

inequality (4.9) yields now

f(t, v) ≥ C exp
(
−λ

(
|v|2 + sup

ξ≤t
(2ms(ξ))

2
s

))

for some explicit C = C(a, B, d, γ, b0, ν) and λ = λ(d, γ, ν, a) and all t ≥ 0.

A simple consequence of the above estimate is the following

Corollary 4.7. Under the assumption of Theorem 4.5, the nonnegative solution f(t, v) to (1.1) with a bounded 
angular kernel b is such that, for any t0 > 0 and μ > 0,

−
∫
Rd

Kμf(t, v) log f(t, v) dv ≤ C2 (1 + t)
2+μ
s , (4.10)

where C2 is a uniform constant depending only on d, γ, b0, ν, s and t0. If there exists A, B > 0 such that 
f0(v) ≥ A exp

(
−B |v|2

)
then the above is valid from t0 = 0 and the constant will also depend on A and B.

Proof. The proof follows immediately from Theorem 2.5, Lemma 3.1 and Theorem 4.5. �
5. Stretched-exponential rate of convergence to equilibrium

At this section we will investigate the rate of decay for equilibrium under the additional assumption 
of having an exponential moment. We start by noticing the following simple result which we deduce from 
Lemma 1.2 for the convex function Φ(x) = xp.

Proposition 5.1. Let p > 1 and consider the functional

Hp(f) =
∫
Rd

M(v)1−p |f(v)|p dv.

Then, if Hp(f0) < ∞ we have that any non-negative solution f(t, v) to (1.1) with initial data f0 satisfies

Hp(f(t)) ≤ Hp(f0) < ∞ ∀t ≥ 0.

We will now want to explore how the above Hp can improves our rate of convergence to equilibrium. We 
start by improving the interpolation inequality between Dγ and D0 provided by inequality (2.6):

Lemma 5.2. For a given a > 0 and q ≥ 1 define

Γa,q(f) = 1
2

∫
Rd×Rd×Sd−1

b (cos θ) exp (a |v − v∗|q)M(v)M(v∗)Ψ (h(v), h (v′)) dv dv∗ dσ,

with Ψ(x, y) = (x− y) log (x/y) and h = f
M . Then for any γ < 0 one has that

Dγ(f) ≥ a
|γ|
q

2 D0(f)
(

log 2Γa,q(f)
D0(f)

) γ
q

. (5.1)
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Proof. For a given R > 0 we set Za,R =
{

(v, v∗) ∈ R
d × R

d ; |v − v∗| ≤
(
R
a

) 1
q

}
and denote by Zc

a,R its 
complementary in R2d. We have that

D0(f) = 1
2

∫
Za,R×Sd−1

b (cos θ) |v − v∗||γ| |v − v∗|γ M(v)M(v∗)Ψ (h(v), h (v′)) dv dv∗ dσ

+ 1
2

∫
Zc

a,R×Sd−1

b (cos θ) exp (−a |v − v∗|q) exp (a |v − v∗|q)M(v)M(v∗)Ψ (h(v), h (v′)) dv dv∗ dσ

≤
(
R

a

) |γ|
q

Dγ(f) + exp(−R)Γa,q(f).

We also notice that for any a, q > 0 we have that 1 ≤ exp (a |v − v∗|q) and as such D0(f) ≤ Γa,q(f). Thus, 
the choice

R = log
(

2Γa,q(f)
D0(f)

)
> log 2 > 0,

is valid and yields

D0(f)
2 ≤ a

γ
q

(
log

(
2Γa,q(f)
D0(f)

)) |γ|
q

Dγ(f)

which completes the proof. �
Corollary 5.3. Under the same conditions of Lemma 5.2 we have that if f(t, v) is a non-negative solution to 
(1.1) such that

Γ∗
a,q = sup

t≥0
Γa,q(f(t)) < ∞

then

Dγ(f(t)) ≥ a
|γ|
q λ0H(f(t)|M)

2
(

log
( 2Γ∗

a,q

λ0H(f(t)|M)

)) |γ|
q

(5.2)

Proof. This follows immediately from Theorem 1.3 and Lemma 5.2. �
In order to be able to conclude the desired rate of convergence to equilibrium we will need to connect 

Hp(f(t) and Γa,b(f(t)). To do so we notice the following:

Lemma 5.4. Let a > 0, p > 1 and 1 < q ≤ 2 (with the additional assumption that, a < 1/4 whenever q = 2). 
Then, for any non-negative function f(v) we have that

Γa,q(f) ≤ Ca,q,p,d

∫
Rd

exp (2qa |v|q) f(v)p dv

− ‖b‖∞
∫

f(v′)≤1

exp
(
2q−1a |v|q

)
f(v) exp

(
2q−1a |v∗|q

)
M(v∗) log (f (v′)) dv dv∗ dσ

(5.3)

for a uniform constant Ca,q,p,d > 0 that depends only on a, q, p and d.
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Proof. We start by noticing that since |v − v∗|q ≤ 2q−1 (|v|q + |v∗|q) and |v − v∗| = |v′ − v′∗| we have that, 
for any v, v∗, σ ∈ R

d × R
d × S

d−1:

exp (a |v − v∗|q) ≤ min
(
exp

(
2q−1a (|v|q + |v∗|q)

)
, exp

(
2q−1a

(
|v′|q + |v′∗|

q)))
.

Next, since

Γa,q(f) ≤ ‖b‖∞
∫

exp (a |v − v∗|q) f(v)M(v∗)
(

log
(

f(v)
M(v)

)
− log

(
f(v′)
M(v′)

))
dv dv∗ dσ

we see that

Γa,q(f) ≤ ‖b‖∞
∣∣Sd−1∣∣Cp

∫
f(v)≥1

exp
(
2q−1a |v|q

)
f(v)p exp

(
2q−1a |v∗|q

)
M(v∗) dv dv∗

+ ‖b‖∞
∣∣Sd−1∣∣ ∫

R2d

f(v)
(
d log (2π)

2 + |v|2

2

)
exp

(
2q−1a (|v∗|q + |v|q)

)
M(v∗) dv dv∗

− ‖b‖∞
∫

f(v′)≤1

f(v) exp
(
2q−1a (|v∗|q + |v|q)

)
M(v∗) log (f (v′)) dv dv∗ dσ

where we discarded the term involving logM(v′) which is nonpositive. Under the additional requirement 
that 2q−1a < 1

2 if q = 2 we see that we can find a constant Ca,q,p,d > 0 that depends only on a, q, p and d
such that

Γa,q(f) ≤ Ca,q,p,d

∫
f(v)≥1

exp (2qa |v|q) (f(v)p + f(v)) dv

− ‖b‖∞
∫

f(v′)≤1

exp
(
2q−1a |v|q

)
f(v) exp

(
2q−1a |v∗|q

)
M(v∗) log (f (v′)) dv dv∗ dσ

≤ 2Ca,q,p,d

∫
Rd

exp (2qa |v|q) f(v)p dv

− ‖b‖∞
∫

f(v′)≤1

exp
(
2q−1a |v|q

)
f(v) exp

(
2q−1a |v∗|q

)
M(v∗) log (f (v′)) dv dv∗ dσ

which concludes the proof. �
Corollary 5.5. Let p > 1 and 0 < a < min

(
1
8 ,

p−1
8p

)
. Then for any non-negative f such that

f(v) ≥ A exp
(
−B |v|2

)
,

for some A, B > 0 we have that

Γa,2(f) ≤ Ca,p,d

(
Hp(f) + (|logA| + 2B)Hp(f)

1
p

)
, (5.4)

for a uniform constant Ca,p,d that depends only on a, p, ‖b‖∞ and d.



J.A. Cañizo et al. / J. Math. Anal. Appl. 462 (2018) 801–839 831
Proof. As a < p−1
8 we find that

∫
Rd

exp
(
4a |v|2

)
f(v)p dv ≤ (2π)

d
2 Hp(f).

Next, due to the lower bound on f we find that

− log f (v′) ≤ − logA + B |v′|2 ≤ |logA| + B
(
|v|2 + |v∗|2

)
and as such

−
∫

f(v′)≤1

exp
(
2a |v|2

)
f(v) exp

(
2a |v∗|2

)
M(v∗) log f (v′) dv dv∗ dσ

≤ (|logA| + 2B)Ca,d

∫
Rd×Rd

exp
(
4a |v|2

)
f(v) exp

(
4a |v∗|2

)
M(v∗) dv dv∗

= (|logA| + 2B)Ca,d

∫
Rd

exp
(
4a |v|2

)
M(v)

p−1
p M(v)

1−p
p f(v) dv

≤ (|logA| + 2B)Ca,d

⎛
⎝∫
Rd

exp
(

4ap
p− 1 |v|2

)
M(v) dv

⎞
⎠

p−1
p

Hp(f)
1
p .

The result follows from Lemma 5.4 since a < p−1
8p . �

Lastly, before proving Theorem 1.5, we show the following simple lemma:

Lemma 5.6. Let f be a non-negative function and let s ≥ 0. Then

ms(f) ≤ m sp
p−1

(M)
p−1
p Hp(f)

1
p . (5.5)

Proof. We have that

ms(f) =
∫
Rd

|v|s M(v)
p−1
p M(v)

1−p
p f(v) dv ≤

⎛
⎝∫
Rd

|v|
sp

p−1 M(v) dv

⎞
⎠

p−1
p

Hp(f)
1
p ,

completing the proof. �
Proof of Theorem 1.5. Since Hp(f0) < ∞ we know, due to Corollary 5.1 that

Hp(f(t)) ≤ Hp(f0) < ∞.

This implies, by Lemma 5.6 that f(t, v) has bounded moments of any order. Using this together with 
Theorem 4.5 we conclude that for any t0 > 0 we can find appropriate constants such that

f(t, v) ≥ A1 exp
(
−B1 |v|2

)
.

This, together with Corollaries 5.3 and 5.5 with the choice of a = 1−p
16p shows inequality (1.13). As Dγ(f(t)) =

− d H (f(t)|M) the aforementioned inequality implies the desired convergence for t ≥ t0.
dt
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We are only left to show the correct rate of decay for t < t0. Since all the moments exist, we can use 
Theorem 1.4 (since Hp(f) controls ‖f‖p) to find that for t ≤ t0.

H (f(t)|M) ≤ C3 (1 + t)−1 ≤ C3

⎛
⎜⎜⎝sup

t≤t0

exp
(
λt

1
1+ |γ|

2

)
1 + t

⎞
⎟⎟⎠ exp

(
−λt

1
1+ |γ|

2

)

form some constant C3. This, together with our rate of decay for t > t0, concludes the proof. �
6. About the non cut-off case

In this final section we aim to discuss a few preliminary results for the linear Boltzmann equation with 
soft potential and without angular cut off assumption. More precisely, we will assume that there exist two 
positive constants c1 ≥ c0 > 0 such that

c0|θ|−(d−1)−ν ≤ b(cos θ) ≤ c1|θ|−(d−1)−ν , ν ∈ (0, 2). (6.1)

In this case, it is simple to check that ∫
Sd−1

b(cos θ) dσ = ∞.

The divergence of the above integral means that we are not able to split our linear operator into a gain and 
loss parts.

However, the study of the non-linear Boltzmann equation for soft potentials without cut-off [20], and 
in particular the spectral analysis its linearised version (see for instance [30]), suggests that the long-time 
behaviour of the linear Boltzmann equation should, for some range of the parameters γ, ν, be similar to the 
one of the Boltzmann equation for hard potentials. In particular, we will show in the next subsection the 
existence of a spectral gap as soon as γ + ν > 0.

6.1. Existence of a spectral gap

We still assume here that b(·) satisfies (6.1) and we denote by D(f) the Dirichlet form associated to the 
linear Boltzmann operator, LB :

D(f) = 1
2

∫
Rd×Rd×Sd−1

b(cos θ)|v − v∗|γM(v)M(v∗) (h(v) − h(v′))2 dv dv∗ dσ

where h = f
M .

An adaptation of the approach appearing in [30] yields the following:

Proposition 6.1. For any ε > 0 there is an explicit constant C = C(B, ε) > 0 such that

D(f) ≥ C ‖f − �fM‖2
L2(〈v〉γ+ν−εM−1) .

In particular, if γ + ν > 0 there is λ > 0 so that

D(f) ≥ λ‖f − �fM‖2
L2(M−1), (6.2)

i.e. LB admits a spectral gap of size λ in the space L2(M−1).
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Proof. As was mentioned earlier, this result is a direct adaptation of [30, Proposition 3.1]. We sketch the 
proof here for completion.

Using the fact that D(f − �fM) = D(f), one can assume without loss of generality that �f = 0. Since, 
from (6.1), there exists c0 > 0 such that

b(cos θ) ≥ c0(sin θ/2)−(d−1)−ν

it suffices to prove the result for

B(v − v∗, σ) = |v − v∗|γ (sin θ/2)−(d−1)−ν . (6.3)

For a given v, v∗ ∈ R
2d, and for 0 < β < d − 1 + ν to be chosen later, we define the set

Cβ = Cβ(v, v∗) =
{
σ ∈ S

d−1 ; (sin θ/2)−(d−1)−ν ≥ |v − v∗|β
}
.

Since the set Cβ is invariant under the transformation σ → −σ and (v, v∗) → (v′, v′∗)

D(f) ≥ 1
2

∫
Rd×Rd

dv dv∗
∫

Cβ(v,v∗)

b(cos θ)|v − v∗|γM(v)M(v∗) (h(v) − h(v′))2 dv dv∗ dσ

≥ 1
2

∫
Rd×Rd×Cβ

|v − v∗|γ+βM(v)M(v∗) (h(v) − h(v′))2 dv dv∗ dσ

=
∫

R2d×Cβ

|v − v∗|γ+βM(v)M(v∗)h2(v) dv dv∗ dσ

−
∫

R2d×Cβ

|v − v∗|γ+β M(v)M(v∗)h(v)h(v′) dv dv∗ dσ = D1 −D2.

Now,

D1 =
∫

R2d×Cβ

|v − v∗|γ+βM(v)M(v∗)h2(v) dv dv∗ dσ

=
∫
Rd

f2(v)M−1(v) dv
∫
Rd

M(v∗)|v − v∗|γ+β dv∗
∫
Cβ

dσ.

As (see [30]) there is some universal constant c = cd > 0 such that

∫
Cβ

dσ ≥ c |v − v∗|−
β(d−1)
ν+d−1

for any given v, v∗ ∈ R
d, we find that

D1 ≥ c

∫
R2d

f2(v) dv
∫
Rd

M(v∗) |v − v∗|γ+ βν
ν+d−1 dv∗

which, according to Lemma 2.1 yields the existence of some explicit constant Cν,β > 0 such that
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D1 ≥ Cν,β

∫
Rd

f2(v)〈v〉γ+ βν
ν+d−1 dv.

Next, we notice that

|D2| ≤
∫

R2d×Sd−1

|v − v∗|γ+βM(v)M(v∗)h(v)h(v′) dv dv∗

=
∫

R2d×Sd−1

|v − v∗|γ+βf(v)M(v∗)M−1(v′)f(v′) dv dv∗

=
∫
Rd

f(v)M−1(v)Kγ+βf(v) dv

where Kγ+β is the gain operator of the linear Boltzmann operator associated to the (cut-off) kernel B(v−
v∗, cos θ) = |v − v∗|γ+β . Recalling that (see Lemma 4.1)

Kγ+βf(v) =
∫
Rd

kγ+β(v, w)f(w) dw,

we find that

|D2| ≤
∫

R2d

f(v)M−1(v)kγ+β(v, w)f(w) dv dw.

Following [30] again, one can show that

|D2| ≤ C

∫
Rd

f(v)2〈v〉γ+β−(d−1)M−1(v) dv

as soon as d − 1 < β < d − 1 + ν. Since this condition on β implies that

γ < γ + β − (d− 1) < γ + βν

ν + d− 1

we find that for any δ > 0 there exists Cδ > 0 such that

|D2| ≤ Cδ

∫
Rd

f2(v)〈v〉γ M−1(v) dv + δ

∫
Rd

f2(v)〈v〉γ+ βν
ν+d−1 M−1(v) dv.

Therefore, choosing δ > 0 small enough, one gets

D(f) ≥ D1 −D2 ≥ C1

∫
Rd

f2(v)〈v〉γ+ βν
ν+d−1M−1(v) dv − C2

∫
Rd

f2(v)〈v〉γ M−1(v) dv

for some C1, C2 > 0. Since in addition, one can show that (again, see [30])

D(f) ≥ Cγ‖f‖2
L2(〈v〉γM−1),
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we conclude that

D(f) ≥ C3

∫
Rd

f2(v)〈v〉γ+ βν
ν+d−1M−1(v) dv

for some explicit constant C3 depending on γ, β, ν. At this point we will choose

β = (ν + d− 1)
(
1 − ε

ν

)
for ε > 0 small enough, and conclude the desired result. �
Appendix A. Basic properties of the linear Boltzmann equation

We collect here some of the technical properties of the linear Boltzmann operator used in the core of the 
text. We begin with the proof of Lemma 1.2 given in the Introduction:

Proof of Lemma 1.2. The fact that HΦ(·|M) is a Lyapunov functional of (1.1) for any convex function Φ
is a general property of stochastic semigroups. A rigorous proof can be found in [25]. We will only provide 
a formal proof of this property. Differentiating HΦ(f(t)|M) under the flow of the equation and denoting by 
h = f/M, we find that

d
dtHΦ(f(t)|M) =

∫
Rd

∂tf(t, v)Φ′ (h(t, v)) dv

where Φ′ denotes the derivative of Φ. Then

d
dtHΦ(f(t)|M) = −

∫
Rd×Rd×Sd−1

B (|v − v∗| , σ)M(v)M(v∗) (h(t, v) − h (t, v′))Φ′ (h(t, v)) dv dv∗ dσ

where we have used the fact that M(v)M(v∗) = M (v′)M (v′∗). Using the usual pre-post collision change 
of variables yields

d
dtHΦ(f(t)|M) = −1

2

∫
Rd×Rd×Sd−1

B (|v − v∗| , σ)M(v)M(v∗)×

× (h(t, v) − h(t, v′))
(
Φ′ (h(t, v)) − Φ′ (h (t, v′))

)
dv dv∗ dσ.

The latter is nonnegative due to the convexity of Φ. �
A.1. Carleman’s representation

We now recall the Carleman’s representation (see [12,33]) of the gain operator for general interactions 
which we used in Section 4:

Lemma A.1. For any α ∈ R the gain operator Kα = Q+
α (·, M) can be written as

Kαf(v) =
∫
Rd

kα(v, w)f(w) dw, (A.1)

where, for any v, w ∈ R
2d,
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kα(v, w) = 2d−1 |v − w|−1
∫

(v−w)⊥

|z − (v − w)|α−(d−2)
b

(
|z|2 − |v − w|2

|z|2 + |v − w|2

)
M(z + v) dπ(z) (A.2)

with (v − w)⊥ denoting the hyperplane orthogonal to (v − w) and dπ(z) is the Lebesgue measure on that 
hyperplane. Moreover,

kα(v, w)M(w) = kα(w, v)M(v) ∀v, w ∈ R
d × R

d.

Proof. We start by recalling Carleman representation (see [18, Appendix C] for the derivation of the present 
expression): for a given interaction kernel B(v − v∗, σ) and given measurable functions f, g

∫
Rd×Sd−1

B (v − v∗, σ) f (v′∗) g (v′) dv∗ dσ = 2d−1
∫
Rd

f(w)
|v − w| dw

∫
Ev,w

B
(
2v − z − w, z−w

|z−w|

)
g(z)

|2v − z − w|d−2 dπ(z),

(A.3)

where Ev,w is the hyperplane that passes through v and is perpendicular to v − w. Applying this to 
B(v − v�, σ) = |v − v∗|α b(cos θ), one notes that, due to symmetry (recall that b is even), it holds

Kαf(v) = 2d−1
∫
Rd

f(w)
|v − w| dw

∫
Ev,w

B
(
2v − z − w,− z−w

|z−w|

)
M(z)

|2v − z − w|d−2 dπ(z)

= 2d−1
∫
Rd

f(w)
|v − w| dw

∫
(v−w)⊥

|v − z − w|α b
(

v−z−w
|v−z−w| ·

w−z−v
|w−z−v|

)
M(z + v)

|v − z − w|d−2 dπ(z)

= 2d−1
∫
Rd

f(w)
|v − w| dw

∫
(v−w)⊥

|v − z − w|α−(d−2)
b

(
|z|2 − |v − w|2

|z|2 + |v − w|2

)
M(z + v) dπ(z),

where we used the fact that z ⊥ (v − w) in the one before last expression.
This proves (A.1) and (A.2). In addition, for any z ∈ (v − w)⊥, we have 〈z, v〉 = 〈z, w〉, which implies 

that

|z + v|2 + |w|2 = |z + w|2 + |v|2 .

Thus, on (v − w)⊥ we have that M(z + w)M(v) = M(z + v)M(w). This, together with (A.2), shows that 
kα(v, w)M(w) = kα(w, v)M(v). �
Remark A.2. We would like to point out at this point that the above representation of the gain part allows 
to establish an alternative form of the entropy production associated to a convex mapping Φ : R

+ �→ R
+. 

Indeed, for any α > −d, let DΦ
α be the associated Φ-entropy production of Lα:

DΦ
α (f) = −

∫
Rd

Lαf(v)Φ′
(

f(v)
M(v)

)
dv.

Then, one can proves easily that
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DΦ
α (f) = 1

2

∫
Rd×Rd

kα(v, w)M(w) (h(v) − h(w))
(
Φ′(h(v)) − Φ′(h(w))

)
dv dw

where h = f/M and Φ′ denotes the derivative of Φ.
As the above expression is actually valid for any α ∈ R, one can use it to give an alternative proof to the 

interpolation inequality (2.4) by showing that for γ ∈ (−d, 0) and μ > 0,

k0(v, w) ≤ kγ(v, w)
μ

μ−γ kμ (v, w)−
γ

μ−γ ,

holds for a.e. v, w ∈ R
d.

With the representation of kγ at hand, we can now show Lemma 4.1. The proof is a simple adaptation 
of a similar study in [12,23].

Proof of Lemma 4.1. We start by writing V = v+ω
2 as V = V0 + V⊥, where V⊥ is the projection of V on 

(v − ω)⊥ and V0 is parallel to v − w. Then v = V + v−w
2 and for any z ∈ (v − w)⊥

|v + z|2 =
∣∣∣∣
(
V0 + v − w

2

)
+ (V⊥ + z)

∣∣∣∣
2

=
∣∣∣∣V0 + v − w

2

∣∣∣∣
2

+ |V⊥ + z|2

= |V0|2 + V0 · (v − w) + |v − w|2

4 + |V⊥ + z|2 .

As

|v|2 − |w|2

2 = V · (v − w) = V0 · (v − w) = ± |V0| |v − w|

we can conclude that

|V0|2 =

(
|v|2 − |w|2

)2

4 |v − w|2
.

Thus,

|v + z|2 =

(
|v|2 − |w|2

)2

4 |v − w|2
+ |v|2 − |w|2

2 + |v − w|2

4 + |V⊥ + z|2

= 1
4

(
|v − w| + |v|2 − |w|2

|v − w|

)2

+ |V⊥ + z|2 ,

which completes the proof. �
Appendix B. Slow convergence to equilibrium

In this Appendix we show that the rate of convergence to equilibrium in (1.1) is naturally prescribed by 
the tails of the initial datum f0. Our main result is a simple adaptation of the analogue Theorem from [11]
for the non-linear Boltzmann equation:



838 J.A. Cañizo et al. / J. Math. Anal. Appl. 462 (2018) 801–839
Theorem B.1. Let f0 ∈ L1(Rd) be a non-negative initial datum with unit mass and let f(t, ·) denotes the 
solution to (1.1). For any k ≥ 0, there exist explicit constants C1 > 0 and C2,k > 0 such that

‖f(t) −M‖L1
k
≥ C1

∫
|v|>t

1
|γ|

〈v〉kf0(v) dv − C2,k exp
(
− t

2
|γ|

4

)
∀t ≥ 0.

Proof. Using Duhamel’s formula, one has, for a given t > 0,

f(t, v) = exp (−Σγ(v)t) f0(v) +
t∫

0

Kγf(s, v) exp (−Σγ(v)(t− s)) ds for a.e. v ∈ R
d.

In particular, since f(t, ·) is nonnegative

f(t, v) ≥ exp (−Σγ(v)t) f0(v) for a.e. v ∈ R
d, t > 0.

Using the fact that Σγ(v) ≤ cγ(1 + |v|)γ ≤ cγ |v|γ for any v ∈ R
d, one gets

f(t, v) ≥ exp (−cγ |v|γt) f0(v) for a.e. v ∈ R
d, t > 0

and, in particular, setting α = 1/|γ|, one sees that

f(t, v) ≥ exp (−cγ) f0(v) for a.e. |v| > tα.

Consequently,

‖f(t) −M‖L1
k
≥

∫
|v|>tα

|f(t, v) −M(v)|〈v〉k dv ≥
∫

|v|>tα

〈v〉kf(t, v) dv −
∫

|v|>tα

〈v〉kM(v) dv

≥ exp (−cγ)
∫

|v|>tα

〈v〉kf0(v) dv − (2π)−
d
2

∫
|v|>tα

〈v〉k exp
(
−|v|2

2

)
dv.

Since
∫

|v|>tα

〈v〉k exp
(
−|v|2

2

)
dv ≤ exp

(
− t2α

4

)∫
Rd

〈v〉k exp
(
−|v|2

4

)
dv

the proof is complete. �
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