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D. Juan Carlos Angulo Ibáñez, Doctor en F́ısica y Profesor Titular del Departamento
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Teórica y Computacional de la Universidad de Granada.

Granada, 20 de Mayo de 2010

Fdo.: Juan Carlos Angulo Ibáñez
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meses, no sólo en el ámbito profesional, porque entre todos (no olvido a tu familia y a
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mitido llevar a cabo mi labor, asistir a congresos y realizar estancias de investigación.
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Foreword

This Thesis is a contribution to the debate on the implications of the information theory

of quantum systems for the description of numerous quantum phenomena of the elec-

tronic structure. It contains several applications of the basic concepts, techniques and

relations of the information theory to selected problems of atomic and molecular struc-

ture and chemical reactivity. Such treatment gives rise to the information-entropic repre-

sentation of the atomic and molecular states, which complements the familiar energy-

representation of the density-functional and wave-function-based theories. The most

important role in this treatment is played by the concepts of information, complexity

and divergence.

The Thesis is structured in three Parts and two Appendices. Each part is composed by

four Chapters, which are deeply self-contained with their own Introduction and Conclu-

sions. They correspond to one (Chapters 3 and 8 and App. A), two (Chapters 4, 6, 10,

11) and three (Chapters 2, 7, 12) scientific publications.

In the following we briefly outline the contents of the Thesis. A more detailed introduc-

tion and motivation can be found at the beginning of the respective parts and chapters.

Part I, which is entitled “Entropic functionals of some selected quantum systems”, is

devoted to the study of some physical and chemical systems and processes in terms of

different information-theoretic measures. This Part starts with the presentation and dis-

cussion of the concept of “information” in Chapter 1, where some of the information mea-

sures that will be used throughout this Thesis are defined (i.e. the standard deviation,

the Shannon, Rényi and Tsallis entropies, the Fisher information as well as the entropic

moments), their properties and distinctive characteristics are pointed out. Then, in

Chapter 2, we carry out the analytical determination of the single information-theoretic

measures and their associated uncertainty relations for multidimensional hydrogenic

systems. The spreading properties of the ground and excited states of d-dimensional

hydrogenic systems by means of these information measures are investigated in terms

of their quantum numbers. Emphasis on the circular and Rydberg states is made. In

Chapter 3, the Fisher information is used to study a one- and a two-step simple chemical

reactions; namely, a typical nucleophilic substitution reaction and the radical abstraction

1



2 CONTENTS

reaction involving a free radical (atomic hydrogen) as an intermediate reactive, respec-

tively. We will show that this measure seems to be very useful in order to analyze the

course of the chemical reaction because, due to its local character, the Fisher informa-

tion is able to detect the relevant points in the reaction path (such as transition state or

bond breaking/forming regions) which are not so clear from the energy profile. Finally,

in Chapter 4, the multidimensional extremization problems of the Shannon, Tsallis and

Fisher information measures subject to a radial expectation value as main constraint are

analyzed and applied to all ground-state neutral atoms from Hydrogen to Lawrencium.

In addition, the existence conditions for the d-dimensional Maximum Entropy problem

problem are found, which extends a number of results previously encountered by various

authors for the one-dimensional case.

Part II, which is called “Complexity measures of atomic and molecular systems”, is

devoted to the study of the complexity. Although there is no general agreement about

what complexity is, there exist various technical notions of this quantity which have

been shown to be very useful for the quantum mechanical interpretation of numerous

physical and chemical phenomena of atomic and molecular systems. This Part begins in

Chapter 5 with a discussion of the concept of complexity and its description by means

of three product-like measures of complexity (the LMC shape, the Fisher-Shannon

and the Cramér-Rao complexities) and their generalizations: the Shape-Rényi and the

Fisher-Rényi complexities. Then, in Chapter 6, we explore the analytical properties

of these measures as well as the associated uncertainty-like inequalities. Moreover, the

generalized complexities defined in the previous chapter are employed in order to analyze

atomic electron densities. In Chapter 7, we study both analytically and numerically

the Fisher-Shannon and LMC shape complexities of the multidimensional hydrogenic

systems, emphasizing the realistic hydrogenic atoms in position space. In addition we

study the relativistic effects of Klein-Gordon type in the aforementioned measures of

complexity. Finally, in Chapter 8, we perform a numerical study of the complexity

measures and the information planes of some molecular systems, finding interesting

trends in the behaviour of molecular complexities when these quantities are interpreted

according to the molecular structure and composition, reactivity, etc.

Part III, entitled “Divergence measures of atomic systems and processes”, is devoted to

the study of the divergence measures. In the previous Parts I and II we have focused

in the quantification of the information features of a given systems and their connection

with its physical or chemical properties. In this Part we will analyze the similarity or

dissimilarity between two or more systems in terms of the divergence measures. We start

with the elucidation of the concept of divergence and other related information-theoretic

indices in Chapter 9, giving the definition of the measures that will be used in this Part,

i.e, the quadratic distance, the quantum similarity index as well as Jensen-like and Fisher

divergences. Then, in Chapter 10, we study the dissimilarity or divergence between

neutrals and/or ions throughout the Periodic Table by using the Jensen-Shannon and
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Fisher divergence. These quantities are found to show the complex organization and

the shell-filling patterns throughout the Periodic Table. In Chapter 11 we propose an

extension of the Jensen-Shannon divergence by means of the use of the Shannon entropy

generalizations, i.e., the Rényi and Tsallis entropies, from which the Jensen-Rényi and

the Jensen-Tsallis divergences, respectively, are defined. Application of these measures

to the study of the dissimilarity among neutral atoms are also carried out. Finally, in

Chapter 12 we present other applications of the divergence measures. We start analyzing

the interelectronic repulsion by means of the computation of the divergence between

atomic densities with the Hartree-Fock and Bare-Coulomb-Field models. Then, we use

the generalization of the Jensen-like divergences for a set of distributions in order to

provide a very useful tool for quantifying the information content of a composite system

with respect to that of their constituents.





Prefacio

En esta Tesis se utiliza la teoŕıa de información en la descripción cuántica de numerosos

fenómenos relacionados con la estructura electrónica de sistemas atómicos y molecu-

lares. Contiene varias aplicaciones de los conceptos básicos, técnicas y relaciones de

la teoŕıa de información a varios problemas relacionados con la estructura atómica y

molecular y la reactividad qúımica. Este tratamiento proporciona una representación

teórico-informacional de los estados atómicos y moleculares, que complementa a la rep-

resentación energética proporcionada por las teoŕıas basadas en la función de onda y los

métodos funcionales de la densidad.

La Tesis está dividida en tres partes y dos apéndices. Cada parte está compuesta por

cuatro caṕıtulos, que son autocontenidos en gran medida, con su propia introducción

y conclusiones. Cada caṕıtulo corresponde a una (Caṕıtulos 3, 8, y Apéndice A), dos

(Caṕıtulos 4, 6, 10, 11) o tres (Caṕıtulos 2, 7, 12) publicaciones cient́ıficas.

A continuación se hace una breve descripción de los contenidos de la Tesis. Una intro-

ducción más detallada junto con la motivación del trabajo puede encontrarse al inicio

de cada una de las partes.

La Parte I, titulada “Funcionales entrópicos de sistemas cuánticos”, está dedicada al

estudio de varios sistemas f́ısicos multidimensionales y reacciones qúımicas, en términos

de medidas teórico-informacionales. Esta parte comienza con la presentación y dis-

cussión del significado del concepto de información en el Caṕıtulo 1, donde se definen

las medidas de información y de dispersión que se usarán durante el resto de la tesis

(desviación estándar, entroṕıas de Shannon, Rényi y Tsallis, información de Fisher,

momentos entrópicos de la densidad), aśı como sus propiedades más relevantes. A

continuación, en el Caṕıtulo 2 se lleva a cabo un estudio anaĺıtico de las medidas de

información, aśı como de las relaciones de incertidumbre, de los sistemas hidrogenóides

multidimensionals. Se obtienen las propiedades de esparcimiento del estado fundamen-

tal y de los estados excitados de los sistemas hidrogenoides d-dimensionales en términos

de los números cuánticos que caracterizan el estado, haciendo especial hincapié en los

estados circulares y en los estados Rydberg. En el Caṕıtulo 3 se utiliza la información

de Fisher para describir dos reacciones qúımicas sencillas: una reacción de sustitución
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nucleof́ılica y una reacción de abstración (con un átomo de hidrógeno como radical li-

bre). Se mostrará que esta medida de información parece ser muy útil a la hora de

analizar el curso de una reacción qúımica, ya que, debido a su marcado carácter local,

la información de Fisher es capaz de detectar puntos relevantes del camino de reacción

(como puede ser el estado de transición o las regiones de rotura/formación de enlaces)

que se pierden en el perfil energético. Para finalizar, en el Caṕıtulo 4, se analizan los

problemas de extremización de las entroṕıas de Shannon y Tsallis aśı como de la infor-

mación de Fisher en sistemas multidimensionales cuando las ligaduras del mismo vienen

dadas por valores esperados radiales, aplicando los resultados al estado fundamental de

los sistemas atómicos de la Tabla Periódica. Además se obtienen las condiciones de

existencia de las densidades que maximizan la entroṕıa de Shannon (problema maxEnt)

en d dimensiones, extendiendo los resultados obtenidos previamente por varios autores

para el caso unidimensional.

La segunda parte de la Tesis, Parte II, “Medidas de complejidad de sistemas atómicos y

moleculares”, está dedicada al estudio de la complejidad. Aunque hasta ahora no hay un

acuerdo generalizado acerca del significado del término complejidad, existen evidencias

que han mostrado su utilidad para la interpretación desde el punto de vista cuántico

de numerosos fenómenos f́ısicos y qúımicos en sistemas atómicos y moleculares. Esta

parte comienza con el Caṕıtulo 5 donde se trata de clarificar el concepto de compleji-

dad y se definen las medidas de la misma que se usarán en los estudios posteriores (las

complejidades LMC, Fisher-Shannon y Cramér-Rao), aśı como sus generalizaciones en

términos de la entroṕıa de Rényi (las complejidades Shape-Rényi y Fisher-Rényi). Pos-

teriormente, en el Caṕıtulo 6, se obtienen una serie de propiedades anaĺıticas y relaciones

de incertidumbre que verifican las complejidades anteriormente descritas. Además, se

usarán las complejidades generalizadas para analizar las densidades de sistemas atómicos

tanto en el espacio de configuración (espacio de posiciones) como en su espacio conju-

gado (espacio de momentos). En el Caṕıtulo 7 se estudia de forma anaĺıtica y numérica

las complejidades de forma LMC y de Fisher-Shannon en sistemas hidrogenoides d-

dimensionales haciendo especial hincapié en el átomo de Hidrógeno (d = 3) en su es-

pacio de configuración. En este mismo caṕıtulo se estudiarán los efectos relativistas

de tipo Klein-Gordon en las medidas de complejidad previamente estudiadas en los sis-

temas hidrogenoides. Finalmente, en el Caṕıtulo 8 se realiza un estudio numérico de

diferentes complejidades y planos de información en una serie de sistemas moleculares,

encontrando tendencias relevantes en el comportamiento dichas medidas en comparación

con la estructura molecular, su composición, su reactividad, etc.

La última parte, Parte III, se titula “Medidas de divergencia de sistemas y procesos

atómicos”. En las dos partes anteriores de este trabajo nos hemos centrado en la cuan-

tificación de las propiedades teórico-informacionales de los sistemas, relacionándolas con

sus propiedades f́ısicas y qúımicas. En esta parte analizaremos la similitudes y diferencias
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entre dos o más sistemas en terminos de diferentes medidas de divergencia. Empezare-

mos con la definición del concepto de divergencia en el Caṕıtulo 9, proporcionando la

definición de las diferentes medidas que se usarán durante esta parte, como son la distan-

cia cuadrática, el ı́ndice de similitud cuántica, aśı como las divergencias de tipo Jensen y

la divergencia de Fisher. En el Caṕıtulo 10 estudiamos las similitudes y diferencias entre

átomos neutros y/o iones a lo largo de la Tabla Periódica a través del cálculo numérico

de las divergencias de Jensen-Shannon y de Fisher. Se ha encontrado que estas medidas

muestran la compleja organización y los patrones del proceso de llenado de capas en la

Tabla Periódica. En el Caṕıtulo 11 proponemos una serie de extensiones de la divergen-

cia de Jensen-Shannon basada en las generalizaciones de la entroṕıa de Shannon, a saber,

las entroṕıas de Rényi y de Tsallis, definiendo entonces las divergencias de Jensen-Rényi

y Jensen-Tsallis respectivamente y aplicándolas al estudio de las similitudes y diferen-

cias entre átomos neutros. Por último, en el Caṕıtulo 12, presentamos otras posibles

aplicaciones de las medidas de divergencia utilizadas en los caṕıtulos previos. Primero,

analizamos la repulsión interelectrónica a través del cálculo de las medidas de divergencia

entre las densidades atómicas proporcionadas por el modelo Hartree-Fock y el modelo

de campo Coulombiano desnudo. Tras esto, utilizamos la generalización de las divergen-

cias de tipo Jensen para el estudio de las similitidues entre un conjunto de tres o más

densidades con el fin de proporcionar una herramienta útil para cuantificar el contenido

teórico-informacional de un sistema compuesto por varias partes frente al proporcionado

por cada uno de sus componentes.
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J.S. Dehesa, S. López-Rosa and D. Manzano, Configuration complexities of hydrogenic

atoms. European Physical Journal D 55 (2009) 539. [Ch. 7]

9



10 CONTENTS
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Introduction

The Information Theory was developed by Claude E. Shannon in 1940s to find funda-

mental limits on signal processing operations such as compressing data as well as on

reliably storing and communicating data. He applied the word “information”, only in

a descriptive sense, to the output of an information source within the framework of

telecommunications. Shannon further developed works of Hartley [1] and Nyquist [2],

who introduced fundamental ideas related to the transmission of information in the con-

text of the telegraph as a communication system during the ninety twenties. In fact,

the word information was already used in 1925 by Fisher [3] in a qualitatively different

way within the theory of statistical inference.

Information Theory arises as a branch of applied mathematics and electrical engineering

involving the quantification of information. Since its beginning, it has found applications

in many other areas, including statistical inference [4, 5], natural language processing

[6], cryptography [7], networks [8], neurobiology [9], cognitive psychology [10], model

selection in ecology [11], atomic and molecular physics [12–14], quantum computing [15]

and different forms of data analysis, among others. In fact, during the last seventy

years, scientists have created a bulk of information theories: Shannon’s statistical [16,

17], information theory, Fisher’s [3], philosophy [18] semantic [19], dynamic [20] and

economical [21] information theories, among others.

The concept of information is currently playing an increasing role in Physics, following

the rapid growth of the information theory of the quantum physics, which is on the

basis of the fields of quantum information and quantum computation (see e.g. Ref.

[15]). These are new and exciting fields of physics whose interests concern primarily

with the foundations and conceptual status of quantum mechanics but, as well, with a

deeper insight of the physico-chemical interpretation of numerous classical and quantum

phenomena ranging from atomic and molecular physics and chemistry to cosmology,

cryptography, condensed matter and, of course, statistical mechanics. Concentration on

the possible ways of using the distinctively quantum-mechanical properties of systems for

the purposes of carrying and processing information has led to a considerable deepening

of our understanding of quantum theory. This is best illustrated with the phenomena

of uncertainty and entanglement.

15
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Moreover, there is a feeling that the advent of the information theory of quantum systems

heralds a new way of doing physics and supports the view that information should play

a more central role in our picture of the world. In its extreme form, the thought is

that information is perhaps the fundamental category from which all else flows, and

that the new task of Physics is to describe how this information evolves, manifests itself

and can be manipulated [22]. It seems natural to believe that the information theory of

quantum systems has much to say about the physical and chemical properties of atoms

and molecules, since the measurement problem is in many ways the central interpretative

problem in the quantum description of these systems and that measurement is a transfer

of information, an attempt to gain knowledge.

In this sense, it is crucial to distinguish between the everyday notion and the technical

notions of information (information-theoretic measures) provided by information theory

such as those derived from the work of Shannon, Rényi, Tsallis, Fisher, von Neumann,

Kullback and Leibler, Wehrl, Maasen and Uffink, among others. Information, we might

say, is what is provided when somebody is informed about something; then, the everyday

notion of information is closely associated to the concepts of knowledge, language and

meaning.

The technical notions of information are, by contrast, specified by use of a purely mathe-

matical and physical vocabulary. A technical notion of information might be concerned

with describing correlations and the statistical features of signals, as in communication

theory with the Shannon concept, or it might be concerned with statistical inference

(e.g., Fisher, Kullback and Leibler). Other technical notions of information have been

introduced to capture certain abstract notions of structure and organization such as

complexity and divergence (see Parts II and III of this Thesis) or functional role [23].

Generally, there is no a priori preferred technical notion of information, information-

theoretic measure, in physical applications and its specific choice appears to be purpose-

dependent. The development of their properties and applications of the diverse technical

notions of information has been done by a large number of people: Majernik (see e.g.,

[24–27]), Frieden, Nalewajski, Sen, A. Plastino, A.R. Plastino, Dehesa, Esquivel, Angulo,

Antolin, Romera, Petz (see e.g., [28–30]), Massen, Nalewajski, Vignat, Zozor, Bercher,

Bilaynicki-Birula, Geerlings, Harremoës, Nagy, López-Rúız, Panos, etc.

Throughout this Thesis, we will apply the concept of information based on the statis-

tical information theory (in the Shannon sense) to study a great variety of quantum

phenomena encountered in different physical and chemical systems. In this context,

Information is the removed uncertainty. Quantum Mechanics is a probabilistic theory,

i.e., the theory does not in general predict exactly what will happen in a physical exper-

iment, but it specifies only the probability of possible outcomes. With each experiment

we may associate a characteristic degree of predictability, or an amount of uncertainty.

This degree of predictability is high when the probability distribution is concentrated

and it is low when the distribution is roughly uniform. Information theory provides us
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with different measures which quantify this uncertainty [31], e.g. Shannon [32], Rényi

[33] and Tsallis [34] entropies or Fisher information [3], among others (for further details

about their definition and meanings see Chapter 1).

Let us remark that the extremization techniques of these information-theoretic measures

are very useful constructive methods which objectively estimate the unknown distribu-

tion when only incomplete data are available. Jaynes was the first one who showed that

the maximum Shannon entropy hypothesis provides a method for constructing the whole

of the conventional or extensive statistical thermodynamics [4, 5, 35]. More recently,

the maximization of the Tsallis entropy has been shown to be the basis of the modern

non-extensive statistical mechanics [36]. On the other hand, the minimization of the

Fisher information (or the closely related extremization physical information of Frieden

[37]) gives rise to a differential equation and hence to multiple solutions specified by

appropriate boundary conditions. As claimed by Frieden, only the Fisher information

is able to provide the fundamental wave equations and the conservation laws of natural

systems at small and large scales by means of a single unifying principle, that of extreme

physical information (EPI), which is related to the theory of measurement. Indeed, from

EPI he derived Maxwell’s equations, the Einstein field equations, the Klein-Gordon and

Dirac equations, various laws of statistial physics, and even a few previously undiscov-

ered laws governing nearly incompressible turbulent fluid flows. Moreover, Nalewajski

[38, 39] has recently derived from this principle the well-known Kohn-Sham equation

of the Density Functional Theory (DFT) and has explored the entropic principles of

Daudel’s loge theory [40, 41] of the molecular electronic structure [42].

This first part of the Thesis contains two applications of the Information Theory to some

atomic systems (emphasizing the hydrogenic systems with standard and non-standard

dimensionalities) and chemical reactions. It is composed of four chapters. In Chapter 1,

the standard deviation and the main single information-theoretic measures used through-

out this work are defined (i.e., Shannon, Rényi and Tsallis entropies, Fisher information

and entropic moments), and their distinctive characteristics and uncertainty relations

are pointed out. Then, in Chapter 2 these measures and their uncertainty relations are

analytically studied in both ground and excited states of the d-dimensional hydrogenic

systems, emphasizing the circular and Rydberg cases for which numerous experimen-

tal results are being provided at present. In Chapter 3, the Fisher information is used

to study a one-step and a two-step elementary chemical reactions; namely, a typical

nucleophilic substitution reaction and the simplest radical abstraction reaction invol-

ving a free radical (atomic hydrogen) as an intermediate reactive, respectively. Finally,

in Chapter 4, the multidimensional extremization problems of the Shannon, Tsallis and

Fisher information measures subject to radial expectation values as main constraints are

analyzed and applied to all ground-state neutral atoms with nuclear charge Z = 1−103.

In addition, the existence conditions for the d-dimensional maxEnt problem are found,
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what extends a number of results previously encountered by various authors [43] for the

one-dimensional case.



Chapter 1

Information-theoretic measures:

Concepts and definitions

The physical and chemical properties of atoms and molecules strongly depend on the

spread of the probability density which characterizes their allowed quantum-mechanical

states. This spread can be differently grasped and complementary quantified by various

information-theoretic measures beyond the celebrated standard deviation or its square,

the variance.

The determination of these information-theoretic quantities is a main goal of the informa-

tion theory of the finite quantum systems, which is the strongest support of the modern

information and computation [15]. Moreover, these measures and the related notions

of uncertainty, randomness, disorder and localization are basic ingredients encountered

to play a relevant role for the identification and description of numerous quantum phe-

nomena in physical systems and chemical processes. This was initially pointed out by

Bialynicki-Birula and Mycielski [44], Gadre, Parr and Sears et al [45–49], Levine [50] and

the members of the Granada [12, 51–53] and Kingston [14, 54, 55] groups, who make

profit of ideas and methods of Fisher [3], Frieden [37], Jaynes [4, 5, 35, 56, 57], Rényi

[58], Shannon [16], Tsallis [34], Stam [59] and Kolmogorov [60], among others, previ-

ously developed in statistics, statistical mechanics, communication theory and classical

information theory.

In this Chapter we consider the single information-theoretic measures used throughout

this work which complementarily describe the spreading of a probability distribution all

over its domain of definition beyond the celebrated standard deviation (or its square,

the variance), giving their definitions and interpretations. It is divided into three parts.

First, in Section 1.1, we consider the measures of global character which quantify the

total extent of the probability density in various ways according to their different analytic

structure; namely, they are described by means of power (entropic moments, Rényi and

Tsallis) and logarithmic (Shannon) functionals of the density. Then, in Section 1.2, the

19
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Fisher information is discussed. This is a qualitatively different quantity because it is

a functional of the gradient of the probability density, so being very sensitive to the

point-wise analytic behaviour of the density; it is a measure of local character in this

sense. A brieg comparisong among these measures is carried out in Section 1.3. Finally,

in Section 1.4, some uncertainty relations corresponding to the information measures

defined in this chapter are given.

1.1 Global measures

Let us here briefly discuss the main spatial delocalization or spreading quantities of global

character which are often used as quantum uncertainty measures; namely, the standard

deviation, the entropic moments and the single information-theoretic measures of Sha-

nnon, Rényi and Tsallis types. As well, we will briefly survey the uncertainty relations

associated to these measures in quantum systems of any dimensionality. It is worth

emphasizing that we do not attempt to define an information content of the physical

system as a whole, but rather we wish to set an appropriate measure of uncertainty and

information for concrete pure states of a quantum system.

Standard deviation

For a random variable X with N possible values {Xi}Ni=1 with probabilities {pi}Ni=1, the

uncertainty in the result of a measurement is given by the standard deviation σ = ∆x

which is defined by the square root of the variance:

V [X] ≡
〈
X2
〉
− 〈X〉2 , (1.1)

where 〈X〉 is the mean value defined as

〈X〉 =
N∑

i=1

piXi. (1.2)

and similarly for
〈
X2
〉

in terms of X2
i .

We can see that the variance is defined in terms of a sum for all possible values multiplied

by its probabilities; so it does not depend on the order one takes these values. This is

related to its global character.

The variance can be straightforwardly generalized to continuous variables. Indeed for a

continuous variabes we have a probability density ρ(x) with x ∈ [a, b], the variance is

V [ρ] =
〈
x2
〉
− 〈x〉2 , (1.3)
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where the mean value of a function f(x) is given by

〈f(x)〉 =

∫ b

a
f(x)ρ(x)dx. (1.4)

The standard deviation ∆x =
√
V gives a good quantification of the spreading of the

probability density around its centroid. It is a measure of the separation of the region(s)

of concentration from a particular point of the distribution (the mean value), rather than

a measure of the extent to which the distribution is in fact concentrated. Moreover,

this quantity is a direct measure of spreading in the sense of having the same units

as the random variable, and has the virtues of being invariant under translations and

reflections, scaling linearly with x (∆y = a∆x for y = ax), and vanishing in the limit

that the random variable has some definite value. So, the standard deviation vanishes

for a Dirac delta distribution and its value is increasing when one goes away from it. In

the Gaussian case, the standard deviation is closely related to the width-at-half-height

of the density. These observations have supported the use of the standard deviation as

a measure of uncertainty all over the years. Nowadays, this use is strongly questioned

because it is inappropriate and, moreover, it is arbitrary in the sense that it is not based

on an axiomatics. Concerning to the former, the standard deviation is a good estimation

of the uncertainty for Gaussian and quasigaussian distributions, but in other cases it is

not so good; let us consider, e.g., the sine-squared and the Cauchy distribution given by

p(x) =
1

π

(
sinx

x

)2

(1.5)

and

p(x, α) =
α

π(x− a)2 + α2
, (1.6)

respectively, where the standard deviation diverges for all possible non-negative values

of the parameter α in spite of the fact that this density becomes arbitrarily concentrated

as α → 0, i.e., that p(x) tends towards the Dirac delta distribution when α > 0. Ac-

tually, the standard deviation is neither a natural nor a generally adequate measure of

quantum uncertainty and the Heisenberg, or better, Kennard-Weyl-Heisenberg inequal-

ity [61], ∆x∆p ≥ 1/2, though mathematically correct, is not always an appropriate

expression of the uncertainty principle. The reason for this inadequacy arises because

the standard deviation gives an ever increasing weight to the tails of a distribution.

Indeed, because of this strong tail dependence of the standard deviation, a probability

distribution may approach a Dirac delta function while its standard deviation remains

arbitrarily large. Thus, a very slight contribution to the probability density, provided

that is located very far from the mean value, may cause the standard deviation to blow

up. This dependence is not relevant when the tails fall off exponentially, as it occurs for

a Gaussian distribution, but for quantum-mechanical probability distributions the stan-

dard deviation generally does not express what one intuitively interprets as the width
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of the distribution [62]. Following Hilgevoord, an adequate measure of the width is the

length of the smallest interval on which the main part of the distribution is placed. It

is worth to mention that there exist exact uncertainty relations which hold for this kind

of width as was first obtained by Landau and Pollak [63] in 1961 and later on by other

authors using information-theoretic quantities, expressing the intuitive content of the

uncertainty principle.

This definition can be extended to an arbitrary number d of dimensions in a straight-

forward manner. Indeed, for a d-dimensional probability density, ρ(~r), defined on the

domain ∆ ⊆ ℜd, the variance is

V [ρ] ≡
〈
r2
〉
− 〈r〉2 , (1.7)

where r = |~r| and the expectation value of a function f(~r) is given by

〈f(~r)〉 =

∫

∆
f(~r)ρ(~r)d~r. (1.8)

Shannon entropy

One of the most relevant concepts in this Thesis, the Shannon entropy, finds its roots in

the context of communication theory. In the nineteen forties Claude Elwood Shannon

proposed a set of reasonable assumptions that should satisfy a candidate for being an

appropriate measure of average uncertainty contained in the probability distribution for

a finite set of observational events; i.e. the outcomes of a measurement or a detection of

a signal in a communication channel. For a random variable X with N possible values,

{Xi}Ni=1, described by the probability distribution {pi}Ni=1, these conditions are:

• The uncertainty must be a continuous and symmetric function of {pi}Ni=1, i.e., small

variations of the probabilities should cause only small changes of the uncertainty.

• When all probabilities are equal, p1 = p2 = · · · = pN = 1
N , the uncertainty measure

should reach its maximum value, being also an increasing function of N , i.e., in the

equiprobability situation, the higher number of possibilities (N) for the random

variable X, the higher the uncertainty is.

• The uncertainty associated to {pi}Ni=1 should be equal than the uncertainty asso-

ciated to {pi}Mi=1 if pN+1 = pN+2 = · · · = pM = 0, i.e., adding an arbitrary set of

possible values with null probability to the variable X keeps the uncertainty of the

measure.

Shannon showed [16, 32] that these assumptions are only satisfied by the expression

H[X] ≡ −k
N∑

i=1

pi ln pi, (1.9)
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in which pi ln pi = 0 for pi = 0 and with k being an arbitrary positive constant, choosing

in what follows the value k = 1 for the sake of simplicity. This definition can be naturally

generalized to a continuous probability density p(x), x ∈ ∆ ⊆ ℜ, as proposed by Shannon

himself, in the form

H[X] = −
∫

∆
p(x) ln p(x)dx, (1.10)

where it is assumed that p(x) ln p(x) = 0 for those values x for which p(x) = 0. This

concept is often known as differential entropy. The values of this quantity for an ex-

tensive list of continuous probability densities are gathered in Ref. [64]. Later on, this

notion was axiomatically obtained by Hatori [65] in a similar way as in the discrete ver-

sion. It can also be deduced by discretizing the continuous distribution by means of the

partition of the supporting interval ∆ in subintervals, considering the discrete entropy

and then taking its limit when the width of the subintervals tends to zero, though one

has to renormalize the final result as explained in section 9.3 of Ref. [64]. The extension

to multidimensional probability distribution ρ(~r) given as

S [ρ] = −
∫

∆
ρ(~r) ln ρ(~r)d~r, (1.11)

where ∆ ⊆ ℜd, is straightforward.

Shannon introduced the name entropy for these expressions, referring to them also as

a measures for information and uncertainty. Notions of entropy, information and un-

certainty are intertwined and cannot be sharply differentiated. In normal parlance the

terms “information” and “uncertainty” are considered as opposites of each other, rather

than synonyms. By contrast, entropy is introduced by Shannon as the uncertainty on

the outcome of an experiment based on a given probability distribution. Then, it is a

measure of ignorance or lack of information concerning the outcome of the experiment,

since the uncertainty appears, of course, because this probability distribution does not

enable us to predict exactly what the actual outcome will be; so, the terms entropy

and uncertainty are synonymous to some extent. On the other hand, the uncertainty is,

of course, removed when the experiment is performed and the actual outcome becomes

known. This shows that another way of thinking about the Shannon entropy is as a mea-

sure of the amount of information that we expect to gain on performing a probabilistic

experiment. Thus, when the information is small (i.e., when one cannot almost predict

the outcome of an experiment from the given probability distribution), the information

gained by the performance of the experiment is also small. Summarizing, the Shannon

entropy is a measure of the uncertainty of a probability distribution as well as a measure

of information. Normally, the growth of uncertainty is identified with an increase of the

entropy, which in turn is interpreted as an information loss.

Although the differential entropy has a number of properties which are quite different

from those of its discrete counterpart (e.g., it may take negative values), the differential

entropy is actually very useful. In fact, it retains enough properties of its discrete
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analogue, such as the Schur concavity [66] (i.e., it is non decreasing under a doubly

stochastic transformation) and it provides a lower bound for the standard deviation σ

of all probability densities, given by

H[ρ] ≤ lnσ
√

2πe, (1.12)

with equality holding for Gaussian distributions. This result is quite useful for the

study of quantum-mechanical uncertainty relations. Moreover, let us also mention that

the potential negativity does not pose any trouble in practice because it is always true

that the lesser uncertainty, the lesser the entropy is; the only point now is that the

more concentrated is the probability density (the lesser uncertainty), the entropy more

approaches towards minus infinity. To avoid this trouble and to guaranty that the

uncertainty is non-negative, it is more convenient to use the exponential entropy defined

as

L [ρ] ≡ eS[ρ], (1.13)

as a measure of uncertainty. Notice, in addition, that this exponential entropy has the

same dimensions as the standard deviation and its transformation under the coordinate

change x→ y = ax takes a more natural form than the differential entropy.

Rényi entropy

The Shannon entropy is distinguished by several unique properties, as already men-

tioned, but it is often convenient to introduce the generalized Rényi entropy which is

parametrized by a continuous parameter α > 0. They are defined as

R(α)[X] ≡ 1

1 − α
ln

(
N∑

i=1

pαi

)
, (1.14)

for a discrete probability distribution {pi; i = 1, ., N}, which consists of non-negative

numbers summing to unity. Rényi called this quantity the measure of information of

order α associated with the probability distribution {pi; i = 1, ., N}.

The continuous version is given by

R(α) [ρ] =
1

1 − α
ln

∫

∆
ρα(~r)d~r, (1.15)

where ρ(~r) is a probability density defined over the domain ∆ ⊆ ℜd. The Rényi mea-

sures of information may be also viewed as measures of uncertainty since after all the

uncertainty is the missing of information as previously discussed.

The allowed range of values for the characteristic parameter α of the Rényi entropy in

the continuous case is determined by the convergence conditions on the integral in the
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definition, being imposed by the short- and long-range behaviours of the distribution

ρ(~r). Apart from the necessary (but not sufficient) condition α > 0 for the finiteness of

R(α), the particular value α = 1 appears as a limiting case, because both the numerator

and the denominator in Eq. (1.15) vanish, the limit giving rise to

R(1) [ρ] = S [ρ] = −
∫

∆
ρ(~r) ln ρ(~r)d~r, (1.16)

that is, the Rényi entropy of order 1 is the Shannon entropy S; so that, the Rényi entropy

R(α) represents an extension or generalization of the Shannon entropy. Often particular

Rényi entropies with parameter other than one have relevant applications by their own

as recently discussed [67–69]. See also Ref. [67] for a survey of their basic properties.

This measure has been applied in biology, medicine, genetics, lingüistics, electrical engi-

neering, computer science and economics. Moreover, the Rényi entropy has been widely

used in quantum physics, such as in the analysis of quantum entanglement [70, 71],

quantum communications [72], atomic ionization properties [73], quantum revivals [74]

and localization properties [75], among others.

Tsallis entropy

The Rényi method to generalize the Shannon entropy is by far not the only one as

it is extensively described in the monograph of Kapur [76] and Arndt [31]. Havrda

and Charvat [77] in 1967 and Tsallis [34] in 1988 introduced the following generalized

measure [78]:

T (α)[X] ≡ 1

α− 1

(
1 −

N∑

i=1

pαi

)
, (1.17)

which is usually referred as Tsallis entropy for discrete probability distributions. This

quantity has also been extended to the continuous variable ~r ∈ ∆ ⊆ ℜd as follows:

T (α) [ρ] =
1

α− 1

(
1 −

∫

∆
ρ(~r)αd~r

)
. (1.18)

where ρ(~r) is a probability density defined over the domain ∆ ⊆ ℜd. Remark that

the Tsallis expression may be seen as a linearization of the Renyi expression. For an

exhaustive review of the basic properties and physical applications of this quantity, see

the recent monograph of Tsallis [36].

As in the case of the Rényi entropy, the limit α → 1 provides the Shannon entropy,

T (1) [ρ] = S [ρ]. The same comments regarding the convergence conditions for the Rényi

entropy apply also for the Tsallis one.

In contrast to the Rényi entropy, it has been shown that by a suitable definition of

average values, namely 〈A〉T =

∫
A(x)ρα(x)dx, this information-theoretic measure has



26 Chapter 1

important variational properties of the type associated with the usual Shannon entropy

for extensive systems. In particular, it is always a concave function of the density for

α > 1 (and convex for α < 1), whereas the Rényi entropy does not. Hence, the Tsal-

lis maximizing distributions, under some specific constraints, are uniquely defined for

α > 0. For instance, when the constraint is that the distribution is finitely supported,

then the Tsallis maximizing distribution is uniform. More interestingly, for any dimen-

sion d ≥ 1, the Tsallis maximizing distribution with a given covariance matrix has a

multidimensional Student-t form if d/(d + 2) < α < 1 [79]. This result generalizes

the well-known property that Shannon entropy is maximized for the normal distribu-

tion. On the other hand, while the Shannon entropy is additive (i.e., for a system

composed of any two probabilistically independent subsystems, the Shannon entropy of

the sum is equal to the sum of the entropies), the Tsallis entropy violates this property

and, therefore, it is non-additive. The Tsallis entropies are in fact pseudoadditive (i.e.

T (α) [ρ1 ⊗ ρ2] = T (α) [ρ1] +T (α) [ρ2] + (1−α)T (α) [ρ1]T
(α) [ρ2]). Moreover, in thermody-

namical terms, while the Boltzmann-Gibbs-Shannon entropy was specifically designed

to be applicable to extensive systems, the Tsallis entropy extends it to the nonextensive

systems. Let us bring here that the entropy of a system or a subsystem is said to be

extensive if, for a large number N of its elements (probabilistically independent or not),

the entropy is (asymptotically) proportional to N ; otherwise, it is nonextensive. Let us

also point out that the second order Tsallis entropy, i.e.

T (2)[ρ] = 1 − ω(2)[ρ] = 1 −
∫

∆
[ρ(~r)]2 d~r (1.19)

is the simplest entropy, providing a good alternative to the Shannon entropy in many

cases. In fact, it is more than that; it refers directly to the experimental results of

mutually complementary measurements, so opposite to the Shannon entropy which is

applicable when the measurements exhibit a preexisting symmetry [80]. It is called

linear or linearized entropy [81], having been used not only as an impurity measure of

the quantum state but also as measure of decoherence, entanglement, complexity and

mixedness of three-dimensional quantum systems.

Entropic moments

The Shannon, Rényi and Tsallis entropies are measures of uncertainty of a probability

distribution as well as measures of information. A measure of uncertainty is a quantita-

tive measure of the lack of concentration of a probability distribution; this is called an

uncertainty because it quantifies our uncertainty about what the outcome of an experi-

ment completely described by the probability distribution in question will be. Uffink [66]

provided an axiomatic derivation of measures of uncertainty, deriving a class of quanti-

ties whose key property is Schur concavity; for details see [15, 82, 83]. These expressions
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are essentially the so-called frequency or entropic moments of the (d-dimensional) pro-

bability density, defined by

ω(α) [ρ] ≡
∫

∆
ρα(~r)d~r, (1.20)

with ~r ∈ ∆ ⊆ ℜd. It is straightforward to see that the Rényi, Tsallis and Shannon

entropies can be easily derived from these quantities. In fact the entropic moments were

early considered by mathematicians [84, 85] and statisticians [86, 87], but its usefulness

in finite quantum systems was discovered much later, especially with the advent of the

Density Tunctional Theory [88, 89]. Let us only point out that they describe, save for a

proportionality factor, the atomic Thomas-Fermi and the Dirac exchange energy when

α is equal to 5/3 and 4/3, respectively; see Ref. [90] for further physico-mathematical

details and connections with other density functionals.

The power α of the distribution in Eq. (1.20), allows to enhance or diminish, by increa-

sing or decreasing its value, the contribution of the integrand over different regions to

the whole integral and, consequently, to the frequency moments and the Rényi, R(α),

and Tsallis, T (α), entropies. Higher values of α make the function ρα(~r) to concentrate

around the local maxima of the distribution, while the lower values have the effect of

smoothing that function over its whole domain. It is in that sense that the parameter

α provide us with a powerful tool in order to get information on the structure of the

distribution by means of the Rényi and Tsallis entropies.

A relevant particular case of the frequency moments corresponds to α = 2, from which

arises the definition of disequilibrium D as the second-order frequency moment ω(2),

namely

D [ρ] ≡ ω(2) [ρ] =

∫

∆
ρ2(~r)d~r, (1.21)

which is a well-known descriptor of the level of departure from uniformity of the distri-

bution [83, 91].

1.2 Local measures: Fisher information

The quantities defined in the previous section have a global character, i.e., they are very

little sensitive to strong changes on the distribution over a small-sized region. So, it

appears useful to have at our disposal measures that could be able to detect these local

changes of the density in order to better describe the system in an information-theoretical

way.

Let us keep in mind that the term information, as it is used here following Shannon

concept, refers to information about the outcome of an experiment, governed by a given

probability distribution. This is to be contrasted with the technical notion of information

concerned with statistical inference, the so-called parametric Fisher information [3],
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which was introduced by Ronald A. Fisher, a British biostatistician who was among

the first one to develop and employ in genetics and eugenics methods such as maximum

likelihood, the analysis of variance and the design of experiments. The parametric Fisher

information refers to the information about an unknown parameter in the probability

distribution estimated from observed outcomes.

Let us suppose that we want to estimate a parameter θ doing N measures in an exper-

iment. These data, ~y ≡ {yi}Ni=1, obey yi = θ + xi where ~x ≡ {xi}Ni=1 are added noise

values. The noise ~x is assumed to be intrinsic to the parameter θ under measurement

(θ has a definite but unknown value). This system is specified by a conditional proba-

bility law pθ(~y|θ) = p(y1, y2, · · · , yN |θ) and θ̂(~y|θ) is, on average, a better estimate of θ

as compared to any of the data observables, θ̂(~y) = θ. In this case, we can define the

Fisher information as

I ≡
∫ [

∂ ln pθ(~y)|θ
∂θ

]2

pθ(~y|θ)d~y, (1.22)

which fulfils the consequence of the Cauchy-Schwartz inequality known as the Cramér-

Rao inequality [64]

σ2 × I ≥ 1, (1.23)

where σ2 is the mean-square error given by

σ2 =

∫ [
θ̂(~y) − θ

]2
pθ(~y)d~y. (1.24)

Then, the parametric Fisher information measures the ability to estimate a parameter,

that is, it gives the minimum error in estimating θ from the given probability density

p(~y |θ )

In the particular case of N = 1, pθ(~y|θ) = p(y|θ) and the fluctuations x are invariant to

the size of θ, pθ(y|θ) = px(y − θ) with x = y − θ (i.e. shift invariance); one has

I =

∫ [
∂ ln p(x)

∂x

]2

p(x)dx, (1.25)

which is the so-called (translationally-invariant) Fisher information. This quantity mea-

sures the gradient content of the probability distribution which describes the system; so,

it reflects the irregularities of the density and then, it is a measure of systems disorder.

The one-dimensional Fisher information can be generalized for d-dimensional densities

ρ(~r), with ~r ∈ ∆ ⊆ ℜd, in the following way:

I [ρ] =

∫

∆

∣∣∣~∇d ln ρ(~r)
∣∣∣
2
ρ(~r)d~r =

∫

∆

∣∣∣~∇dρ(~r)
∣∣∣
2

ρ(~r)
d~r, (1.26)
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where ~∇d is the d-dimensional gradient operator given by

~∇d =
∂

∂r
r̂ +

1

r

d−2∑

i=1

1
∏i−1
k=1 sin θk

∂

∂θi
θ̂i +

1

r
∏d−2
i=1 sin θi

∂

∂ϕ
ϕ̂, (1.27)

where the symbol â denotes the unit vector associated to the corresponding coordinate.

This formula defines a convex and isotropic functional. Moreover, being the scalar pro-

duct of two vectors, it is independent of the reference frame [92]. The Frieden monograph

[37] presents the most detailed discussion of the basic properties of the Fisher informa-

tion, gleaned from branches of physics as diverse as classical and fluid mechanics, electro-

and thermodynamics, quantum theory and general relativity, in which this notion appe-

ars. Moreover, Frieden compares Fisher information with the Shannon, Boltzmann and

Kullback-Leibler definitions of entropy, which likewise represent attempts to identify

scalar measures of information. The comparison is most easily made with the Shannon

entropy. In contrast to the Shannon entropy, which measures the spread of the proba-

bility distribution and it is a global quantity because of its logarithmic-functional form,

the Fisher information measures the narrowness of the distribution and it has a property

of locality because of its gradient-functional form.

Let us finally remark that the Shannon entropy and Fisher information are the basic

variables of two extremization procedures: the maximum entropy method [93] and the

principle of extreme physical information [37], respectively, as it will be shown in Chapter

4. Moreover, both measures (i) are closely related to fundamental and/or experimen-

tally measurable quantities of finite electronic and nucleonic systems [45, 51, 52, 93–95],

(ii) they have been used to identify the most distinctive nonlinear phenomena (avoided

crossings) encountered in atomic and molecular spectra under external fields [96, 97],

and (iii) they are the cornerstones of two alternative formulations of the classical ther-

modynamics [57, 98].

This concept was firstly introduced for one-dimensional random variables in statistical

estimation [3] but nowadays it is playing an increasing role in numerous fields [37], in

particular, for many-electron systems, partially because of its formal resemblance with

kinetic [37, 45, 94, 99, 100] and Weiszäcker [52, 101] energies. The Fisher information,

contrary to the Rényi, Shannon and Tsallis entropies, is a local measure of spreading

of the density ρ(~r) because it is a gradient functional of ρ(~r). The higher this quantity

is, the more localized is the density, the smaller is the uncertainty and the higher is

the accuracy in estimating the localization of the particle. However, it has an intrinsic

connection with Shannon entropy via the de Bruijn inequality [64, 102] as well as a

simple connection with the precision (variance V [ρ]) of the experiments by means of the

celebrated Cramér-Rao inequality [64, 102, 103]

I [ρ] × V [ρ] ≥ d2, (1.28)
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The notion of Fisher information has been shown to be very fertile to identify, character-

ize and interpret numerous phenomena and processes in atomic and molecular physics

such as e.g., correlation properties in atoms, spectral avoided crossings of atoms in ex-

ternal fields [97], the periodicity and shell structure in the Periodic Table of chemical

elements [104] and the transition state and other stationary points in chemical reactions

[105] (see Chapter 3). Moreover, it has been used for the variational characterization of

quantum equations of motion [37] as well as to rederive the classical thermodynamics

without requiring the usual concept of Boltzmann’s entropy [106]. As well, Fisher infor-

mation has been shown to be a versatile tool to describe the evolution laws of physical

systems [37, 107], to accurately describe the behaviour of dynamic systems and to char-

acterize the complex signals generated by these systems [108]. Later on, this observation

has been used to characterize the dynamics of electroencephalographic (EEG) [109] and

earthquake-related geoelectrical [110] signals.

1.3 Comparison among information measures

The purpose of this section is to mutually compare some of the global and local spreading

measures mentioned above. Let us start highlighting the differences between some global

spreading measures (variance, disequilibrium and Shannon entropy) and a local quantity

such as the Fisher information by calculating them in two simple, but illustrative, proba-

bility distributions given by the exponential density f(x) of the form e−ax and a similar

density modified by a small sinusoidal perturbation, g(x), given by e−ax + ǫ sin2nx

They are depicted in Figure 1.1, where we notice that both density functions have a

similar global shape. The results are gathered in Table 1.1. Therein, we observe that

not only the standard deviation, but also the disequilibrium and the Shannon entropy,

have very similar values for the two functions; this is mainly due to the fact that all

these measures have a global character because they quantify the probability density

as a whole; this is because of their analytical structure in terms of the density which

has a powerlike (variance, disequilibrium; see Eqs. (1.7) and (1.21), respectively) and

logarithmic (Shannon entropy; see Eq. (1.10)) form.
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Figure 1.1: Representation of f(x) ∼ e−ax and g(x) ∼ e−ax + ǫsin2nx.

Function Shannon entropy Variance Disequilibrium Fisher information

f(x) 1.3485 0.07962 0.2690 9.3 × 10−1

g(x) 1.3476 0.07966 0.2695 3.7 × 103

Table 1.1: Information-theoretic measures of f(x) and g(x)

By contrast the Fisher information have very different numerical values for these two

functions, being much higher for g(x) than for f(x). As we can see in the figure, this

is due to the highly oscillatory behaviour for large n which g(x) possesses. The Fisher

information has a gradient functional form, what makes this measure very sensitive to

strong local changes (as in the present example) of the distribution.
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Figure 1.2: Representation of f(x) =
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)
.

Secondly, let us now choose another couple of probability densities where one can disen-

tangle between the roles of the Shannon entropy and the variance more appropriately.
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We have taken two finitely supported density functions on the interval x ∈ [−π/2, π/2],
namely the cosine function f(x) =

2

π
cos2(x), and the shifted cosine function given by

g(x) =
2

π
cos2

(
x+

π

4

)
which are represented in Figure 1.2. Therein, we observe that

both functions have the same Shannon entropy, but in this case the variances differ. As

we mentioned before in Section 1.1, the variance measures the spread of the distribution

with respect to its centroid (depicted in the figure); so, depending on the position of this

centroid, 〈x〉, the variance has different values for each distribution. Let us remark that

the Fisher information for both functions have the same values, as also occurs with the

disequilibrium

1.4 Uncertainty relations

In this Section we shall give the uncertainty relations corresponding to the power, loga-

rithmic and entropic moments together with those associated to the Rényi, Shannon and

Tsallis entropies and the Fisher information of general d-dimensional quantum systems.

These relations are different mathematical formulations of the quantum-mechanical un-

certainty principle which describes a characteristic feature of quantum mechanics and

states the limitations to perform measurements on a system without disturbing it. More-

over, since the two canonically conjugate observables involved in the uncertainty relations

here considered -position and momentum- do not conmute, both observables cannot be

precisely determined in any quantum state of the system.

The d-dimensional position-momentum Heisenberg-like uncertainty relation is known

[111] to have the form

〈
rd/α

〉α 〈
pd/β

〉β
≥ ααββ

Γ2
(
1 + d

2

)

Γ (1 + α) Γ (1 + β)
ed−α−β ; α, β > 0, (1.29)

obtained by using information-theoretic methods. For α = β = d/2, this expression

simplifies to the familiar d-dimensional form of Heisenberg inequality

〈
r2
〉 〈
p2
〉
≥ d2

4
, (1.30)

which shows that the more accurately the position is known, the less accurately is the

momentum determined, and vice-versa. For completeness let us quote here that Eq.

(1.29) for d = 3 can be cast in the form

〈rα〉1/α
〈
pβ
〉1/β

≥


 παβ

16Γ
(

3
α

)
Γ
(

3
β

)




1/3(
3

α

) 1
α
(

3

β

) 1
β

e1−
1
α
− 1

β ; α, β > 0, (1.31)
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which for the specially interesting case a = b > 0 takes the form

〈rα〉 〈pα〉 ≥





(
27π

16αΓ
(

3
α

)
) 1

3 (αe
3

)1− 2
α





α

, α > 0, (1.32)

Note that for a = 2 this inequality reduces to Eq. (1.30) with d = 3. For alternative

forms of these two inequalities in terms of variances or even in terms of moments around

a point other than the origin, see Eqs. (2.9) and next ones of Ref. [112].

A generalization of the (power-moments-based) Heisenberg-like uncertainty relation was

obtained by Rajagopal [113] by use of the entropic moments in position and momen-

tum spaces. He extended to d dimensions and improve the one-dimensional results of

Maassen-Uffink [82], obtaining the following entropic-moment-based uncertainty relation

(see also [114, 115]):

{
ω(α+1) [ρ]

}− 1
α ×

{
ω(β+1) [γ]

}− 1
β ≥

[
π(1 + 2α)1+

1
2α

1 + α

]d
, (1.33)

which is valid for α ≥ −1

2
and β = − α

1 + 2α
. For α = β = 0 it reduces to the (Shannon-

entropy-based) entropic uncertainty relation

S [ρ] + S [γ] ≥ d (1 + lnπ) , (1.34)

first derived by Hirschman [116] and later improved independently by Beckner [117] and

Bialynicki-Birula and Mycielski [44]. This expression indicates that the total uncertainty

in position and momentum cannot be decreased beyond the value given by Eq. (1.34).

The entropic uncertainty relation can be recast into the form

J [ρ] × J [γ] ≥ 1

4
, (1.35)

where the position Shannon entropic power is defined by

J [ρ] ≡ 1

2πe
e

2
d
S[ρ], (1.36)

and similarly for the momentum Shannon entropy power J [γ]. Let us point out here

that the Shannon-entropy sum S[ρ] + S[γ] has shown its usefulness for numerous phys-

ical issues (e.g., to study the correlation energy of atomic systems [118]), having been

postulated a new entropy maximization principle based in it by Gadre [93]. This author

and his collaborators [119] have numerically shown some interesting properties of this

entropy sum for atoms in a Hartree-Fock framework; in particular, it has a minimum

value for the ground state which is scale invariant while the individual entropies are not.
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The expressions (1.18) and (1.33) have allowed Rajagopal [113] to obtain the Tsallis-

entropy-based uncertainty relation as

{
1 + (1 − p)T (p)[ρ]

}− 1
2p ×

{
1 + (1 − q)T (q)[γ]

} 1
2q ≥

( q
π

) d
4q
( p
π

)− d
4p
, (1.37)

with 1
p + 1

q = 2. Finally, let us quote here the Rényi-entropy-based uncertainty relation

found by Bialynicky-Birula [120] and independently by Zozor and Vignat [121]. They

obtained it in the one-dimensional case as

R(α−1)[ρ] +R(β−1)[γ] ≥ − 1

2(1 − α)
ln
α

π
− 1

2(1 − β)
ln
β

π
, (1.38)

for α > β. The extension to d dimensions has been recently found by Zozor et al [122].

Finally, let us discuss the uncertainty relations which involve the Fisher informations.

Since the nineteen fifties [59] the Stam inequalities are known:

I [ρ] ≤ 4
〈
p2
〉
; I [γ] ≤ 4

〈
r2
〉
, (1.39)

which link the position (momentum) Fisher information and the momentum (position)

radial expectation value
〈
p2
〉

(respectively
〈
r2
〉
). See also Ref. [104] for its generalization

to finite many-electron systems. Recently, the Fisher-information-based uncertainty

relation has been found [123] to be

I [ρ] × I [γ] ≥ 4d2, (1.40)

which is valid not only for one-dimensional [124] but also for d-dimensional [125] real-

valued wavefunctions.



Chapter 2

Information-theoretic study of

d-dimensional hydrogenic systems

The hydrogenic system (i.e. a negatively-charged particle moving around a positively-

charged core which electromagnetically binds it in its orbit), with standard (d = 3) and

non-standard dimensionalities, plays a central role in d-dimensional Quantum Physics

and Chemistry [126]. It includes not only a large variety of three-dimensional physi-

cal systems (e.g., hydrogenic atoms and ions, exotic atoms, antimatter atoms, Rydberg

atoms,) but also a number of nanoobjects so much useful in semiconductor nanostruc-

tures (e.g., quantum wells, wires and dots) [127, 128] and quantum computation (e.g.,

qubits) [129, 130]. Its deeper knowledge is basic not only to gain full a insight into the

intimate structure of matter but also for numerous phenomena of quantum cosmology

[131], nanotechnology [127, 128] (e.g., for low dimensional semiconductor nanostructures

such as quantum wells, wires and dots), quantum computation [130, 132] (e.g., one- and

two-dimensional hydrogenic atoms which have been proposed as qubits), d-dimensional

physics [126, 133–138] and quantum field theory [137, 139–141]. Let us also remark

that the existence of hydrogenic systems with non-standard dimensionalities has been

proved for d < 3 [128] and suggested for d > 3 [133]. We should also highlight the use

of d-dimensional hydrogenic wavefunctions as complete orthonormal sets for many-body

problems [142, 143] in both position and momentum spaces, explicitly for three-body

Coulomb systems (e.g. the hydrogen molecular ion and the helium atom); generaliza-

tions are indeed possible in momentum-space orbitals as well as attending to their role

as Sturmians in configuration spaces.

Since the early days of Quantum Mechanics the hydrogenic system has played a central

role, mainly because its Schrödinger equation can be solved analytically. Although nu-

merous known results about the macroscopic and spectroscopic properties of this system

are scattered in the literature, the exact expressions for the radial expectation values

of their quantum-mechanical states in position [144] and momentum [145, 146] spaces

35
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have not been obtained until very recently. Moreover, tremendous advances [147–150]

have been witnessed since the seventies up to now in understanding the spectroscopic

properties of three-dimensional Rydberg hydrogenic atoms (i.e., hydrogenlike atoms in

states with high principal quantum number). In particular, the production of Rydberg

atoms in circular states (i.e., states with angular quantum numbers l = |ml| = n− 1) by

using electron excitation and the creation of localized electron wavepackets by means of

weak static electric fields has provided an experimental basis for numerous fascinating

investigations on fundamentals of Quantum Mechanics.

The information theory of d-dimensional hydrogenic systems includes the description

of their macroscopic and spectroscopic properties by means of information-theoretical

techniques. Here we investigate the spatial extension or spreading of the electronic

position and momentum probability densities of a d-dimensional atom far beyond the

variance, by means of the power and logarithmic moments and the information-theoretic

measures of global and local character; namely, the Shannon entropy

Sr [ρ] = −
∫
ρ (~r) ln ρ (~r) d~r, (2.1)

and the Fisher information

Ir [ρ] =

∫
∣∣∣~∇dρ(~r)

∣∣∣
2

ρ(~r)
d~r, (2.2)

respectively, for the position space density ρ(~r). The symbol ~∇d denotes the d-dimensional

gradient operator given by Eq. (1.27). The same quantities are defined similarly for the

momentum density γ(~p).

The structure of this chapter is the following. First, in Section 2.1 we solve the Schrödinger

equation in order to obtain the probability densities in position and momentum spaces

which describe hydrogenic systems. Then, in Section 2.2 we analyze various theoret-

ical tools which quantify the multidimensional spreading of d-dimensional hydrogenic

system in position and momentum spaces, including diverse expectation values (such

as the power and logarithmic moments), global information measures (the variance and

the Shannon entropy) and the Fisher information which has the property of locality. In

Section 2.3, we discuss the associated uncertainty relationships in the light of the im-

provement recently discovered for central potentials [125]. Section 2.4 is devoted to the

explicit calculation of the spreading measures of d-dimensional circular states. In Sec-

tion 2.5, we obtain the Heisenberg, Shannon and Fisher spreading measures of Rydberg

atoms in d dimensions. Finally, in Section 2.6, some conclusions are given.
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2.1 Probability distributions of hydrogenic systems

In this section we fix the notation and we describe in hyperspherical polar coordinates

the wave functions of the d-dimensional hydrogenic orbitals (i.e., the solutions of the

nonrelativistic, time-independent Schrödinger equation in d dimensions describing the

quantum mechanics for the motion of an electron in the Coulomb field of a nucleus

with charge +Ze, where e refers to the absolute value of the electron charge) in the

configuration (or position) and momentum spaces, as well as the associated probability

densities. In what follows, atomic units will be used (i.e. m = e = ~ = a0 = 1, m and

a0 = ~
2

me2
being the electron mass and Borh radius, respectively)

2.1.1 Position orbitals

Let us consider an electron moving under the action of the d-dimensional (d > 2)

Coulomb potential V (~r) = −Z
r

, where ~r = (r, θ1, θ2, ..., θd−2, ϕ) denotes the electronic

vector position in polar coordinates with the nucleus (located) at the origin, and Z is

the nuclear charge. The electronic probability density of the stationary states for the

d-dimensional hydrogenic system is given by ρ (~r) = |Ψ (~r)|2, where the wavefunction

Ψ (~r) is the physical solution of the time-independet Schrödinger equation

(
−1

2
~∇2
d −

Z

r

)
Ψ (~r) = EΨ (~r) . (2.3)

with E being the total energy of the system.

Besides, the vector position is written ~r = (r, θ1, θ2, ..., θd−1 ≡ ϕ) in polar coordinates

and the d-dimensional gradient operator is given by Eq. (1.27).

It is known [129] that the energies belonging to the discrete spectrum are

E = − Z2

2η2
, η = n+

d− 3

2
; n = 1, 2, 3, ..., (2.4)

and the associated wavefunction can be expressed as

Ψn,l,{µ}(~r) = Rn,l(r)Yl,{µ}(Ωd−1), (2.5)

where (l, {µ}) ≡ (l ≡ µ1, µ2, ..., µd−1) denote the hyperquantum numbers associated to

the angular variables Ωd−1 ≡ (θ1, θ2, ..., θd−1), which may take all values consistent with

the inequalities l ≡ µ1 ≥ µ2 ≥ ... ≥ |µd−1| ≡ |m| ≥ 0. The radial wavefunction is given
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by

Rn,l(r) = Nn,l

[
ω2L+1(r̃)

r̃d−2

]1/2

L2L+1
η−L−1(r̃) (2.6)

=

(
λ−d

2η

)1/2 [
ω2L+1(r̃)

r̃d−2

]1/2

L̃2L+1
η−L−1(r̃),

where the “grand orbital angular momentum quantum number” L and the adimensional

parameter r̃ are

L = l +
d− 3

2
, l = 0, 1, 2, . . . (2.7)

r̃ =
r

λ
, λ =

η

2Z
. (2.8)

The normalization constant is given by

Nn,l = λ−d/2
{

(η − L− 1)!

2η [(η + L)!]

}1/2

, (2.9)

in such a way that
∫ ∣∣Ψn,l,{µ}(~r)

∣∣2 d~r = 1

The symbols Lαm(x) and L̃αm(x) denote the orthogonal and orthonormal, respectively,

Laguerre polynomials with respect to the weight ωα(x) = xαe−x on the interval [0,∞),

so that

L̃αm(x) =

(
m!

Γ(m+ α+ 1)

)1/2

Lαm(x). (2.10)

The angular part of the wavefunction is given by the hyperspherical harmonics Yl,{µ}(Ωd−1),

which have the following expression [151–153]:

Yl,{µ}(Ωd−1) = Al,{µ}e
imϕ

d−2∏

j=1

C
αj+µj+1

µj−µj+1
(cos θj)(sin θj)

µj+1

=
1√
2π
eimϕ

d−2∏

j=1

C̃
αj+µj+1

µj−µj+1
(cos θj) (sin θj)

µj+1 , (2.11)

with αj = (d− j − 1)/2, and the normalization constant is

∣∣Al,{µ}
∣∣2 =

1

2π

d−2∏

j=1

(αj + µj)(µj − µj+1)! [Γ(αj + µj+1)]
2

π21−2αj−2µj+1Γ(2αj + µj + µj+1)

≡ 1

2π

d−2∏

j=1

A(j)
µj ,µj+1

. (2.12)

The symbols Cαm(x) and C̃αm(x) denote, respectively, the orthogonal and orthonormal

Gegenbauer polynomials with respect to the weight funciont ω∗
α(x) = (1 − x2)α−

1
2 on
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the interval [−1,+1], so that

C̃αm(x) =

(
m!(m+ α)Γ2(α)

π21−2αΓ(2α+m)

)1/2

Cαm(x). (2.13)

Then, the electronic probability density of d-dimensional hydrogenic systems in config-

uration space is

ρ(~r) =
∣∣Ψn,l,{µ} (~r)

∣∣2 = R2
n,l (r)

∣∣Yl,{µ}(Ωd−1)
∣∣2 . (2.14)

It is worth noticing that this expression simplifies as

ρ(~r)(ns) =
22d−1ZdΓ

(
d
2

)

π
d
2 (2n+ d− 3)d+1

e−
r
λ

∣∣∣L̃d−2
n−1

( r
λ

)∣∣∣
2
, (2.15)

for the linear or ns-states (i.e. when µi = 0, ∀ i = 1, . . . , d− 1 ), and

ρ(~r)(g.s.) =

(
2Z

d− 1

)d 1

π
d−1
2 Γ

(
d+1
2

)e−
4Z

d−1
r, (2.16)

for the ground state (i.e. n = 1, l = 0).

2.1.2 Momentum orbitals

On the other hand, the probability density in momentum spaces γ(~p) is obtained by

squaring the d-dimensional Fourier transform of the configuration eigenfunction, i.e.,

the momentum wavefunction [151, 153]

Ψ̃n,l,{µ}(~p) = Mn,l(p)Yl{µ}(Ωd−1), (2.17)

where the radial momentum wavefunction is

Mn.l(p) = Kn,l
(ηp̃)l

(1 + η2p̃2)L+2
CL+1
η−L−1

(
1 − η2p̃2

1 + η2p̃2

)

=
( η
Z

)d/2
(1 + y)3/2

(
1 + y

1 − y

) d−2
4 √

ω∗
L+1(y)C̃

L+1
η−L−1(y). (2.18)

The normalization constant is given by

Kn,l = Z−d/222L+3

(
(η − L− 1)!

2π(η + L)!

)1/2

Γ (L+ 1) η
d+1
2 , (2.19)

and y ≡ (1 − η2p̃2)/(1 + η2p̃2).
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Then, the momentum probability density is

γ(~p) =
∣∣∣Ψ̃n,l,{µ} (~p)

∣∣∣
2

= M2
n,l(p)

[
Yl{µ}(Ωd−1)

]2
, (2.20)

which normalization as
∫
γ(~p)d~p = 1 arises from the value of the constant given by Eq.

(2.19).

It is worth noting that this expression simplifies as

γ(~p)(ns) =
(2n + d− 3)dΓ

(
d
2

)

8π
d
2Zd

[
C̃

d−1
2

n−1

(
1 − η2p̃2

1 + η2p̃2

)]2
, (2.21)

for the ns-states, and

γ(~p)(g.s.) =
(d− 1)dΓ

(
d+1
2

)

Zdπ
d+1
2

1
(
1 + (d−1)2

4 p̃2
)d+1

, (2.22)

for the ground state.

Finally, let us mention here that alternative (but equivalent) expressions for the po-

sition and momentum wavefunctions of the d-dimensional hydrogenic atom have been

published elsewhere [134, 135], and that for the particular case d = 3 the expressions

(2.14) and (2.20) reduce to the well-known position and momentum probability densities

of the three-dimensional hydrogenic atom [145, 154–157].

2.2 Information-theoretic measures of hydrogenic systems

In this section we will obtain (i) some expectation values such as power moments and

logarithmic expectation values, and (ii) some information measures, i.e. the Shannon

entropy and the Fisher information, for the d-dimensional hydrogenic systems in both

position and momentum spaces

2.2.1 Power moments and logarithmic expectation values

As we have noticed in the previous chapter (Section 1.1), the most common and familiar

way to quantify the spreading of the probability density in position space, ρ(~r), is the

standard desviation △r, whose square is the variance

V [ρ] =
〈
r2
〉
− 〈r〉2 , (2.23)
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where 〈rα〉, α ǫ ℜ, denotes the radial expectation value of order α, given by

〈rα〉 ≡
∫
rαρ(~r)d~r =

∫ ∞

0
rα+d−1R2

nl (r) dr

=
1

2η

( η

2Z

)α ∫ ∞

0
ω2L+1 (r̃)

[
L̃(2L+1)
nr

(r̃)
]2
r̃α+1dr̃, (2.24)

with the radial hyperquantum numbers nr ≡ η−L−1 = n− l−1 and 2L+1 = 2l+d−2.

This expression is valid for any α > −2L−3, constraint which arises from the convergence

of the integral at the lower boundary. In the second equality we have taken into account

the solid-angle element

d~r = rd−1drdΩd−1, dΩd−1 =



d−2∏

j=1

sin2αj θjdθj


 dϕ, (2.25)

with αj = (d − j − 1)/2, and the orthonormalization relations of the hyperspherical

harmonics Yl,{µj}(Ωd−1) [153]. The quantities 〈rα〉 have been shown to have the following

expressions [144]:

(
2Z

η

)α
〈rα〉 =

Γ (2L+ α+ 3)

2ηΓ (2L+ 2)
3F2

(
−η + L+ 1, −α− 1, α+ 2

2L+ 2, 1
1

)
(2.26)

=
1

2n+ d− 3

(n− l − 1)!

(n+ l + d− 3)!

×
n−l−1∑

i=0

(
α+ 1

n− l − i− 1

)2
Γ (α+ 2l + d+ i)

i!
, (2.27)

where 2L + α + 3 = 2l + d + α > 0. Moreover these quantities satisfy the recursion

relation [158]

Z

η2

〈
rs−1

〉
=

2s− 1

s

〈
rs−2

〉
− 1

Z

s− 1

4s

[
(2L+ 1)2 − (s− 1)2

] 〈
rs−3

〉
, (2.28)

for s > −2L. From Eqs. (2.26), (2.27) or (2.28) one obtains [158] that

〈r〉 =
1

2Z

[
3η2 − L(L+ 1)

]
, (2.29)

〈
r2
〉

=
η2

2Z2

[
5η2 − 3L(L+ 1) + 1

]
, (2.30)

so that the variance (2.23) has the value

V [ρ] =
η2(η2 + 2) − L2(L+ 1)2

4Z2
. (2.31)
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It is worth noticing that for d = 3 this expression reduces to the known expression for

the variance of a hydrogenlike atom [145, 156, 157]

V [ρ] (d = 3) =
1

4Z2

[
n2(n2 + 2) − l2(l + 1)2

]
. (2.32)

In momentum space we can operate similarly to quantify the spreading of the corres-

ponding probability density γ(~p) by means of the radial expectation values 〈pα〉, given

by

〈pα〉 :=

∫
pαγ(~p)d~p =

∫ ∞

0
pα+d−1M2

nl (p) dp

=

(
Z

η

)α ∫ 1

−1
ω∗
ν(y)

[
C̃νk (y)

]2
(1 − y)

α
2 (1 + y)1−

α
2 dy, (2.33)

where we have used ν ≡ L+1 = l+ d−1
2 and k = n− l−1 for mathematical convenience.

It is knwon [146] that

〈pα〉 =
21−2νZα

√
π

k! ηα−1

Γ (k + 2ν) Γ
(
ν + α+1

2

)
Γ
(
ν + 3−α

2

)

Γ2
(
ν + 1

2

)
Γ (ν + 1) Γ

(
ν + 3

2

)

× 5F 4

(
−k, k + 2ν, ν, ν + α+1

2 , ν + 3−α
2

2ν, ν + 1
2 , ν + 1, ν + 3

2

1

)
, (2.34)

valid for α ǫ (−2l − d, 2l + d + 2). Let us remark that this expression for 〈pα〉 is a

single sum (as Eq. (2.27) for 〈rα〉), since it involves a terminating and Saalschutzian (or

balanced) 5F4(1) hypergeometric function. It can be easily shown that
〈
p0
〉

= 1 and

that
〈
p2
〉

=
Z2

η2
;

〈
p4
〉

=
Z4

η4

8η − 3(2L+ 1)

2L+ 1
. (2.35)

Moreover, algebraic manipulation of the hypergeometric function involved in Eq. (2.34)

allows one to find the reflection formula

( η
Z

)2−α 〈
p2−α〉 =

( η
Z

)α
〈pα〉 , (2.36)

which is not trivial for α 6= 1. The use of this formula allows to find additionally the

momentum expectation value

〈
p−2
〉

=
η2

Z2

8η − 3(2L+ 1)

2L+ 1
. (2.37)

For the ground state (n = 1 and l = 0 or, equivalently, ν = d−1
2 and k = 0), the

momentum expectation values (2.34) simplify as

〈pα〉g.s. =
(

2Z

d− 1

)α 2Γ
(
d−α

2 + 1
)
Γ
(
d+α

2

)

dΓ2
(
d
2

) ; −d < α < d+ 2 (2.38)
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so that

〈p〉g.s. =
4Z

d(d− 1)

Γ2
(
d+1
2

)

Γ2
(
d
2

) ,
〈
p2
〉
g.s.

=

(
2Z

d− 1

)2

, (2.39)

and the variance becomes

V [γ] (g.s.) =

(
2Z

d− 1

)2

1 − 4

d2

(
Γ
(
d+1
2

)

Γ
(
d
2

)
)4

 . (2.40)

Moreover, from Eq. (2.38), the ground-state momentum expectation values of hydro-

genic atoms and ions (d = 3) have the values

〈pα〉g.s. (d = 3) =
8ZαΓ

(
5−α

2

)
Γ
(

3+α
2

)

3π
, (2.41)

so that

〈p〉g.s. (d = 3) =
8Z

3π
,

〈
p2
〉
g.s.

(d = 3) = Z2, (2.42)

and the variance being consequently

V [γ] (g.s.; d = 3) =

(
1 − 64

9π2

)
Z2. (2.43)

Not trivially, we have obtained in the large dimensionality limit the following behaviour:

〈rα〉 =

(
d2

4Z

)α(
1 +

α(α+ 1)

2d
+O

(
d−2
))

, (2.44)

for the position power moments [159], and

〈pα〉 =

(
Z

η

)α(
1 +

α(α− 2)(2n − 2l − 1)

2d
+O

(
d−2
))

, (2.45)

for the momentum ones of an arbitrary hydrogenic state for given hyperquantum num-

bers (n, l, {µ}).

An alternative manner to quantify the spreading of a d-dimensional hydrogenlike atom

in the two conjugated spaces is provided by the position and momentum logarithmic

expectation values, which are given by

〈ln r〉 =

∫
(ln r) ρ(~r) d~r, (2.46)

and

〈ln p〉 =

∫
(ln p) γ(~p) d~p, (2.47)

respectively. Often these quantities are spreading measures more appropiate than the

variance, because they weight the different regions of the density all over the integration

domain in a more balance way.
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Taking into account the algebraic properties of the Laguerre and Gegenbauer polyno-

mials it is possible to find the following values for these measures [146]:

〈ln r〉 = ln η +
2η − 2L− 1

2η
+ ψ(η + L+ 1) − ln 2 − lnZ

= ln

(
n+

d− 3

2

)
+

2n− 2l − 1

2n+ d− 3
+ ψ(n+ l + d− 2) − ln 2 − lnZ, (2.48)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function, and

〈ln p〉 = − ln η +
2η(2L + 1)

4η2 − 1
− 1 + lnZ

= − ln

(
n+

d− 3

2

)
+

(2n + d− 3)(2l + d− 2)

(2n + d− 3)2 − 1
− 1 + lnZ (2.49)

Notice that for the ground state (n = 1, l = 0) the logarithmic expectation values are

〈ln r〉g.s. = ln(d− 1) − 2 ln 2 + ψ(d) − lnZ, (2.50)

and

〈ln p〉g.s. = − ln(d− 1) + ln 2 − 1

d
+ lnZ. (2.51)

On the other hand the logarithmic expectation values for a generic state (n, l,m) of

three-dimensional hydrogenlike atoms are

〈ln r〉 (d = 3) = lnn+
2n− 2l − 1

2n
+ ψ(n+ l + 1) − ln (2Z) , (2.52)

〈ln p〉 (d = 3) = − lnn+
2n(2l + 1)

4n2 − 1
− 1 + lnZ, (2.53)

in the position and momentum spaces, respectively.

2.2.2 The Shannon entropy

Let us now deal with the analytical expresion of the Shannon entropy of d-dimensional

hydrogenic systems. In doing so, the decomposition of the densities as a product of a

radial and an angular factor will be essential.

Position space

The global or bulk extent of the position probability density for d-dimensional hydrogenic

atoms is best measured by the Shannon entropy S [ρ] given by Eq. (2.1). From Eqs.
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(2.1) and (2.5) one has for the state (n, l, {µ}) that

S [ρ] = S [Rn,l] + S
[
Yl,{µ}

]
, (2.54)

where

S [Rn,l] ≡ −
∫ ∞

0
rd−1R2

n,l(r) lnR2
n,l(r)dr, (2.55)

is the radial Shannon entropy, and

S
[
Yl,{µ}

]
≡ −

∫

Sd−1

∣∣Yl,{µ} (Ωd−1)
∣∣2 ln

∣∣Yl,{µ} (Ωd−1)
∣∣2 dΩd−1, (2.56)

is the angular Shannon entropy. It is worth noticing that the radial entropy does not

depend on the magnetic quantum numbers nor the angular entropy on the principal

quantum number because of the spherical symmetry of the Coulomb potential. Employ-

ing Eqs. (2.6) and (2.55), the radial entropy has been shown [53, 160, 161] to have the

expression

S [Rn,l] = A0(n, l, d) +
(η − L− 1)!

2η(η + L)!
E1

(
L2L+1
η−L−1

)
− d lnZ (2.57)

= A1(n, l, d) +
1

2η
E1

(
L̃2L+1
η−L−1

)
− d lnZ, (2.58)

where the terms Ai(n, l, d), i = 0, 1 have the values

A0(n, l, d) = − ln

[
2d−1(η − L− 1)!

ηd+1(η + L)!

]
+

3η2 − L(L+ 1)

η

− 2l

[
2η − 2L− 1

2η
+ ψ(η + L+ 1)

]
, (2.59)

and

A1(n, l, d) = A0(n, l, d) + ln

[
(η − L− 1)!

(η + L)!

]
. (2.60)

The symbol E1(yn) denotes the entropic integral

E1(yn) ≡ −
∫ ∞

0
xω∗

2L+1(x)y
2
n(x) ln y2

n(x)dx, (2.61)

so that E1(L) and E1(L̃) are the entropic integrals corresponding to the orthogonal and

orthonormal Laguerre polynomials, respectively. Let us point out that for circular states

(l = m = n− 1), the radial entropy, given by Eq. (2.57), reduces as

S [Rn,n−1] = A0(n, l = n− 1, d) − d lnZ

= − ln

[
2d−1

ηd+1(2η − 1)!

]
− 2(n − 1)

[
1

2η
+ ψ(2η)

]
+ 2η + 1 − d lnZ. (2.62)
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Then, the radial entropy for the ground state (n = 1, l = 0) turns out to be

S [R1,0] = d− ln
22d

(d− 1)d+1(d− 2)!
− d lnZ, (2.63)

so that for d = 3 one has that

S [R1,0] (d = 3) = 3 − 2 ln 2 − 3 lnZ. (2.64)

On the other hand, taking into account Eqs. (2.11), (2.12) and (2.56) the angular

entropy S(Y) can be expressed [162] for d ≥ 2 as

S
[
Yl,{µ}

]
= B0(l, {µ} , d) +

d−2∑

j=1

Aj
l,{µ}E

(
C
αj+µj+1

µj−µj+1

)
(2.65)

= B1(l, {µ} , d) +

d−2∑

j=1

E
(
C̃
αj+µj+1

µj−µj+1

)
, (2.66)

where the terms Bi(l, {µ} , d), i = 0 and 1, have the values

B0(l, {µ} , d) := B1(l, {µ} , d) −
d−2∑

j=1

lnAjl,{µ}, (2.67)

and

B1(l, {µ} , d) = ln 2π − 2

d−2∑

j=1

µj+1 [ψ(2αj + µj + µj+1

−ψ(αj + µj) − ln 2 − 1

2(αj + µj)

]
, (2.68)

and the symbol E(yn) denotes the Shannon entropy of the polynomial yn(x) defined by

E(yn) = −
∫
ω∗
λ(x)y

2
n(x) ln y2

n(x)dx, (2.69)

so that E(C
(λ)
n ) and E(C̃

(λ)
n ) are the entropies corresponding to the orthogonal and

orthonormal Gegenbauer polynomials with respect to the weight function ω∗
λ(x) =

(1 − x2)λ−1/2. The explicit values for the angular entropy S [Y] given by Eqs. (2.65) or

(2.66) for any multi-index (l, {µ}) are not known because the calculation of the Shannon

entropy for the Gegenbauer polynomials is a formidable analytical task, not yet accom-

plished except for some particular cases despite numerous recent efforts. Nevertheless,

an algorithm has been recently proposed which determines very efficiently the numerical

values of the angular entropy [163]. From the analytical standpoint let us remark a

few cases. For d = 2 the sum involved in Eq. (2.65) is empty, so that the angular en-

tropy S(Y) = ln 2π. For d ≥ 3 we can calculate explicitly this quantity whenever either
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µj−µj+1 = 0 and 1, or αj+µj+1 = 0, 1 and 2 for every j within the range 1 ≤ j ≤ d−2;

so, for the states (l, {l}) the degree of the involved Gegenbauer polynomial is zero and

its entropy vanishes, giving rise to the angular entropy

S
[
Yl,{l}

]
= B0(l, {l} , d)

= ln

[
22l(d−2)+1πd/2l!

Γ
(
l + d

2

)
]

− 2l

d−2∑

j=1

[
ψ(2αj + 2l) − ψ(αj + l) − 1

2(αj + l)

]
. (2.70)

In particular, for the ns states (i.e., l = 0) the angular entropy is given by

S
[
Y0,{0}

]
= ln

2πd/2

Γ
(
d
2

) , (2.71)

which is the maximum value for the angular entropy (for further details see Appendix

A). It is worth noticing that the last two expressions simplify for three-dimensional

systems as follows:

S [Yl,l] (d = 3) = ln

[
22l+1π3/2l!

Γ
(
l + 3

2

)
]
− 2l

[
ψ(2l + 1) − ψ

(
l +

1

2

)
− 1

2l + 1

]
, (2.72)

and

S [Y0,0] (d = 3) = ln(4π). (2.73)

Finally, let us combine the expressions (2.54), (2.58) and (2.66). We obtain that the

total position Shannon entropy has the value

S [ρ] = A1(n, l, d) +
1

2η
E1

(
L̃2L+1
η−L−1

)
+ S

[
Yl,{µ}

]
− d lnZ (2.74)

= A1(n, l, d) +B1(l, {µ} , d) +
1

2η
E1

(
L̃2L+1
η−L−1

)
+

d−2∑

j=1

E
(
C̃
αj+µj+1

µj−µj+1

)
− d lnZ.

(2.75)

Although the involved entropic integrals of orthonormal Laguerre and Gegenbauer po-

lynomials can be numerically computed quite accurately [163], their analytical determi-

nation is not yet possible except for very special cases. In particular, for the ground

state one obtains

S [ρ] (g.s.) = ln

[
(d− 1)d

2d
π

d−1
2 Γ

(
d+ 1

2

)]
+ d− d lnZ, (2.76)

for the position Shannon entropy.
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Momentum space

A similar procedure for the momentum probability density γ(~p) given by Eq. (2.20)

allows one to find the global multidimensional extent in momentum space of the hydro-

genlike state (n, l, {µ}) by means of the momentum Shannon entropy

S [γ] = −
∫
γ(~p) ln γ(~p)d~p = S [Mn,l] + S

[
Yl,{µ}

]
, (2.77)

according to Eq. (2.17), where the angular part S(Y) is the entropy of hyperspherical

harmonics previously discussed, and the radial part is given by

S [Mn,l] = −
∫ ∞

0
pd−1M2

n,l(p) lnM2
n,l(p)dp. (2.78)

Taking into account the functionals of Gegenbauer polynomials given by Theorems 3

and 4 of Ref. [146], we find the following expression for the momentum radial entropy:

S [Mn,l] = F0(n, l, d) + d lnZ +
22L+1η(η − L− 1)!Γ2(L+ 1)

π(η + L)!
E
(
C

(L+1)
η−L−1

)
(2.79)

= F1(n, l, d) + E
(
C̃

(L+1)
η−L−1

)
+ d lnZ, (2.80)

with

F0(n, l, d) = F1(n, l, d) − ln

(
22L+1η(η − L− 1)!Γ2(L+ 1)

π(η + L)!

)
, (2.81)

and

F1(n, l, d) = − ln
ηd

22L+4
− (2L+ 4) [ψ(η + L+ 1) − ψ(η)]

+
L+ 2

η
− (d+ 1)

[
1 − 2η(2L+ 1)

4η2 − 1

]
. (2.82)

The symbols E(C
(λ)
m ) and E(C̃

(λ)
m ) denote, as defined by Eq. (2.69), the Shannon entropy

of the orthogonal and orthonormal Gegenbauer polynomials, respectively.

Finally, we gather the relations (2.77), (2.80) and (2.66) to find the following expression

for the total momentum Shannon entropy:

S [γ] = F1(n, l, d) + E
(
C̃L+1
η−L−1

)
+ S

[
Yl,{µ}

]
+ d lnZ (2.83)

= F1(n, l, d) +B1(l, {µ} , d) + E
(
C̃L+1
η−L−1

)
+

d−2∑

j=1

E
(
C̃
αj+µj+1

µj−µj+1

)
+ d lnZ. (2.84)

The entropy of the orthonormal Gegenbauer polynomial can be numerically computed

by use of the highly efficient algorithm of Buyarov et al [163]; however, its analytical

calculation has not yet been done except for a few cases. In particular, it can be
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analytically determined for n− l−1 = 0 and 1. So, for circular states (i.e. for l = n−1)

one finds from Eq. (2.79) that

S [Mn,n−1] = 1 +
1

η
− d+ 1

2η + 1
− ln

ηdΓ (η + 1)√
π22η+1Γ (η + 1/2)

− 2 (η + 1) [ψ(2η) − ψ(η)] + d lnZ. (2.85)

Then, for the ground state (i.e. when n = 1, l = 0) the radial entropy is

S [M1,0] =
d+ 1

d(d+ 1)
− ln

(d− 1)dΓ
(
d−1
2

)
√
π22d+1Γ (d/2)

− (d+ 3)

− (d+ 1)

[
ψ(d− 1) − ψ

(
d− 1

2

)]
+ d lnZ. (2.86)

Therefore, according to Eqs. (2.71) and (2.86), we find the value

S [γ] (g.s.) = S [M1,0] + S
[
Y0,{0}

]

= ln
22d+1π

d+1
2

(d− 1)dΓ
(
d+1
2

) + d lnZ +
d+ 1

d(d − 1)
− (d+ 1)

[
ψ(d− 1) − ψ

(
d− 1

2

)]
,

(2.87)

for the total momentum Shannon entropy of the ground state.

2.2.3 The Fisher information

Let us now analytically determine the Fisher information for the d-dimensional hydro-

genic systems in both position and momentum spaces.

Position space

Contrary to the spreading measures of the position probability density ρ(~r) discussed

previously, the Fisher information I [ρ] given by Eq. (2.2) is a functional of the gradient

of ρ(~r). This quantity can be also expressed as

I [ρ] = 4

∫

ℜd

∣∣∣~∇dΨn,l,{µ}(r, θ1, θ2, ..., θd−2, 0)
∣∣∣
2
d~r. (2.88)

From Eqs. (2.2) and (1.27), one has [151] that

I [ρ] = I [Rn,l] +
〈
r−2
〉
I
[
Yl,{µ}

]
, (2.89)
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where the radial part is given by

I [Rn,l] = 4

∫ ∞

0

[
d

dr
Rnl(r)

]2

rd−1dr

=
4Z2

η3

{
η − 2

2L+ 1

[
L(L+ 1) − 1

4
(d− 1)(d − 3)

]}
. (2.90)

Here we have used Eq. (2.6) for the second equality. The angular part is

I
[
Yl,{µ}

]
= 4

d−2∑

i=1

∫

Ωd−1

[
1

∏i−1
k=1 sin θk

∂

∂θi
Yl,{µ}(θ1, ..., θd−2, 0)

]2

dΩd−1

= 4L(L+ 1) − (d− 1)(d − 3) − 2 |m| (2L+ 1). (2.91)

Then, according to Eqs. (2.89)-(2.91) and taking into account that

〈
r−2
〉

=
2Z2

η3

1

2L+ 1
, (2.92)

one has the following expression for the position Fisher information of the d-dimensional

hydrogenlike system [151]:

I [ρ] =
4Z2

η3
[η − |m|] , d ≥ 2. (2.93)

Let us point out, for completeness, that this expression can be alternatively obtained

by means of the expression for the position Fisher information of a particle moving in a

general central potential [152]

I [ρ] = 4
〈
p2
〉
− 2 |m| (2l + d− 2)

〈
r−2
〉
, (2.94)

together with the Coulomb values of
〈
p2
〉

and
〈
r−2
〉

given by Eqs. (2.35) and (2.92),

respectively.

Moreover, from Eq. (2.93) we have the values

I [ρ] (ns) =

(
2Z

η

)2

, I [ρ] (g.s.) =

(
4Z

d− 1

)2

, (2.95)

for the position Fisher information of the ns and ground states, respectively.
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Momentum space

Operating similarly as before, one finds that the Fisher information of the momentum

probability density γ(~p) can be expressed as

I [γ] = I [Mn,l] +
〈
p−2
〉
I
[
Yl,{µ}

]
, (2.96)

where the radial part is given [151] by

I [Mn,l] = 4

∫ ∞

0

[
d

dp
Mnl(p)

]2

pd−1dp

=
η2

Z2

{
2(5η2 − 3L(L+ 1) + 1) +

1

2L+ 1
(2L− d+ 3)(2L+ d− 1)(6L− 8η + 3)

}
,

(2.97)

and the angular part I
[
Yl,{µ}

]
has been already expressed by Eq. (2.91). Then taking

into account Eqs. (2.37), (2.91), (2.96) and (2.97) one has the following value for the

momentum Fisher information:

I [γ] = 2
η2

Z2

[
5η2 − 3L(L+ 1) − |m| (8η − 6L− 3) + 1

]
; d ≥ 2. (2.98)

Here again this value can be alternatively obtained by the conjugate relation of Eq.

(2.94), namely

I [γ] = 4
〈
r2
〉
− 2 |m| (2l + d− 2)

〈
p−2
〉
, (2.99)

together with the expressions (2.30) and (2.37), respectively.

For completeness, let us write down that, according to Eq. (2.98), we have the values

I [γ] (ns) =
η2

Z2

[
10η2 − 3

2
(d− 3)(d − 1) + 2

]
, (2.100)

and

I [γ] (g.s.) =
d(d+ 1)(d − 1)2

4Z2
, (2.101)

for the position Fisher information of ns and ground states, respectively.

Cramér-Rao products

The combination of the expectation values
〈
r2
〉

and
〈
p2
〉
, given by Eqs. (2.30) and

(2.35), with the Fisher informations I [ρ] and I [γ] given by Eqs. (2.93) and (2.98),

respectively, has allowed us to find the Cramér-Rao products

〈
r2
〉
I [ρ] =

2

η

[
5η2 − 3L(L+ 1) + 1

]
[η − |m|] (2.102)
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and 〈
p2
〉
I [γ] = 2

[
5η2 − 3L(L+ 1) − |m| (8η − 6L− 3) + 1

]
(2.103)

in position and momentum spaces respectively. We notice that (i) neither Cramér-

Rao produtcs depend on the nuclear charge Z, and (ii) these two products satisfy the

following Cramér-Rao inequalities for single-particle systems moving in a d-dimensional

central potential:
〈
r2
〉
I [ρ] > 4

(
1 − 2 |m|

2L+ 1

)(
L+

3

2

)2

(2.104)

〈
p2
〉
I [γ] > 4

(
1 − 2 |m|

2L+ 1

)(
L+

3

2

)2

(2.105)

recently found [125].

2.3 Uncertainty relationships

In this section we discuss the uncertainty relations associated to the spreading mea-

sures of the d-dimensional hydrogenic systems obtained in the previous section. We

begin with the determination of the Heisenberg-like relation and later we calculate the

three uncertainty relations (the logarithmic, the Shannon entropy-based and the Fisher-

information-based relations), which are more adequate and precise mathematical expres-

sions of the uncertainty principle. The corresponding expressions are given, emphasizing

their explicit values for ns-states. Let us advance saying that they do not depend on

the nuclear charge Z, what is in accordance with the general result of Sen and Katriel

for homogeneus potential

2.3.1 Heisenberg-like uncertainty products

From the explicit expressions of the radial expectation values
〈
r2
〉

and
〈
p2
〉

given by

Eqs. (2.30) and (2.35), respectively, one has the Heisenberg-like uncertainty product

〈
r2
〉 〈
p2
〉

=
1

2

[
5η2 − 3L(L+ 1) + 1

]

=
d2

4

{
1 +

1

d
(10n − 6l − 9) +

1

d2
[10n(n− 3) − 6l(l − 2) + 20]

}
, (2.106)

valid for any hydrogenic atom in d dimensions.

It is interesting to remark here that this expression fulfils not only the Heisenberg-like

uncertainty inequality
〈
r2
〉 〈
p2
〉
≥ d2

4
, (2.107)
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valid for any d-dimensional quantum system, but also the recently obtained Heisenberg-

like :uncertainty relation for central potentials [164] given by

〈
r2
〉 〈
p2
〉

>

(
L+

3

2

)2

. (2.108)

Moreover, the product (2.106) reduces as

〈
r2
〉 〈
p2
〉
(ns) =

1

4

[
10n2 + (d− 3)(10n + d− 6) + 2

]
, (2.109)

for the ns states, and
〈
r2
〉 〈
p2
〉
(g.s.) =

1

4
(d2 + d), (2.110)

for the ground state.

To find the Heisenberg uncertainty relation in the appropriate canonically conjugate

radial coordinates, we have to consider not the momentum operator ~p but the radial

momentum operator [165]

pr = −i~ 1

r
d−1
2

∂

∂r
r

d−1
2 = −i~

(
∂

∂r
+
d− 1

2r

)
, (2.111)

which is manifestly Hermitian. Then, it happens that

p2
r = ~p2 − L(L+ 1)

r2
. (2.112)

So, one has the expectation values 〈pr〉 = 0, and

〈
p2
r

〉
=
〈
~p 2
〉
− L(L+ 1)

〈
r−2
〉

=
Z2

η2

[
1 − 2

η

L(L+ 1)

2L+ 1

]
. (2.113)

Then, the radial momentum standard deviation △pr becomes

△pr =

√
〈p2
r〉 − 〈pr〉2 =

Z

η

[
1 − 2

η

L(L+ 1)

2L+ 1

]1/2

, (2.114)

which, together with the radial position standard deviation (see Eq. (2.31)) provides

△r =

√
〈r2〉 − 〈r〉2 =

√
V [ρ] =

1

2Z

[
η2(η2 + 2) − L2(L+ 1)2

]1/2
, (2.115)

which allows us to obtain the Heisenberg uncertainty product

△r△pr =
1

2η

{[
η2(η2 + 2) − L2(L+ 1)2

]
[η(2L+ 1) − 2L(L+ 1)]

η(2L+ 1)

}1/2

. (2.116)
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It is worth noticing that for d = 3 this uncertainty product simplifies as

(△r△pr) (d = 3) =
1

2n

{[
n2(n2 + 2) − l2(l + 1)2

]
[n(2l + 1) − 2l(l + 1)]

n(2l + 1)

}1/2

,

(2.117)

which has been previously found by Hey [157].

2.3.2 Logarithmic uncertainty relation

The logarithmic expectation values for a general hydrogenic state (n, l, {µ}) in d-dimensional

position and momentum spaces are given by Eqs. (2.48) and (2.49), respectively. So

that the logarithmic sum becomes

〈ln r〉 + 〈ln p〉 =
2η − 2L− 1

2η
+

2η(2L + 1)

4η2 − 1
− ln 2 − 1 + ψ(η + L+ 1)

=
2n − 2l − 1

2n+ d− 3
+

(2n + d− 3)(2l + d− 2)

(2n + d− 3)2 − 1
− ln 2 − 1 + ψ(n + l + d− 2),

(2.118)

where we can observe that the sum of logarithmic expectation values does not depend

on the nuclear charge Z of the hydrogenic system.

It is worth noticing that for the ns-states this expression reduces to

(〈ln r〉 + 〈ln p〉) (ns) =
2n − 1

(2n+ d− 3)
+

(2n + d− 3)(d − 2)

(2n+ d− 3)2 − 1
− ln 2 − 1 + ψ(n + d− 2),

(2.119)

and for the ground state one has that

(〈ln r〉 + 〈ln p〉) (g.s.) = −1

d
− ln 2 + ψ(d). (2.120)

It is straightforward to check that the last three expressions fulfils the Beckner logarith-

mic uncertainty relation

〈ln r〉 + 〈ln p〉 ≥ ψ

(
d

4

)
+ ln 2, (2.121)

valid for any d-dimensional single-particle system moving in an arbitrary central poten-

tial [117].

2.3.3 Shannon-entropy-based (or entropic) uncertainty relation

To obtain the entropic uncertainty sum for a hydrogenic system in d dimensions, let

us combine the position and momentum Shannon entropies given by Eqs. (2.74) and
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(2.83), respectively, so that

S [ρ] + S [γ] = A1(n, l, d) + F1(n, l, d) +
1

2η
E1

(
L̃2L+1
η−L−1

)
+ E

(
C̃L+1
η−L−1

)
+ 2S

[
Yl,{µ}

]
.

(2.122)

Or, alternatively, Eqs. (2.75) and (2.84), where the angular entropy is partially develo-

ped (see Eq. (2.66)), allow us to obtain

S [ρ] + S [γ] = A1(n, l, d) + F1(n, l, d) + 2B1(l, {µ} , d)

+
1

2η
E1

(
L̃2L+1
η−L−1

)
+ E

(
C̃L+1
η−L−1

)
+ 2

d−2∑

j=1

E
(
C̃
αj+µj+1

µj−µj+1

)
, (2.123)

where the terms A1, B1 and F1 are explicitly given by Eqs. (2.60), (2.68) and (2.82),

respectively. The entropic integrals E1

(
L̃αm
)

and E
(
C̃αm

)
for orthonormal Laguerre

and Gegenbauer polynomials have been defined in Eqs. (2.61) and (2.69), respectively.

In going beyond for the analytical study, we need the exact expressions for the entropic

integrals, what constitutes a very difficult task which has nor yet been done except in a

few particular cases, such as e.g. the linear (µi = 0, ∀i = 1, . . . , d − 1), nearly circular

(µi = n− 1, ∀i = 1, . . . , d− 1) and Rydberg (large n) states. Finally, let us also mention

that the entropic sum (2.123) for the ground state drastically reduces to

(S [ρ] +S [γ])(g.s.) = ln

(
4d+1πd

d

)
+

2

d− 1
+
d2 − 1

d
− (d− 1)

[
ψ(d− 1) − ψ

(
d− 1

2

)]
,

which certainly fulfils the entropic uncertainty relation found by Bialynicki-Birula and

Mycielski [44]

(S [ρ] + S [γ]) ≥ d (1 + lnπ) , (2.124)

valid for general quantum systems.

2.3.4 Fisher-information-based uncertainty relation

Since the explicit expressions for the position and momentum Fisher information of a

hydrogenic state (n, l, {µ}) are given by Eqs. (2.93) and (2.98), respectively, we can

determined the value of the Fisher uncertainty product as

I [ρ] × I [γ] =
8

η
(η − |m|)

[
5η2 − 3L(L+ 1) − |m| (8η − 6L− 3) + 1

]
, (2.125)
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valid for d ≥ 2. It is observed that for the states (n, 0, 0, . . . , 0) or ns-states, the Fisher

product becomes

I [ρ] × I [γ] (ns) = 8

[
5η2 − 3

4
(d− 1)(d − 3) + 1

]

= 2
[
5(2n + d− 3)2 − 3(d − 1)(d− 3) + 4

]
, (2.126)

so that for the ground state (n = 1) its value is

(I [ρ] × I [γ])g.s. = 4d(d + 1), (2.127)

which fulfils the corresponding uncertainty relation for d-dimensional single-particle sys-

tems with central potentials

I [ρ] × I [γ] ≥ 16

(
1 − 2 |m|

2L+ 1

)2(
L+

3

2

)2

, (2.128)

recently found [125, 152, 164].

2.4 Circular states in d-dimensional hydrogenic systems

A circular state is a single-electron state of highest hyperangular momenta allowed within

a given electronic manifold; i.e. a state with hyperangular momentum quantum numbers

µ1 = µ2 = · · · = µd−1 = n − 1 The electronic probability density, ρcirc(~r), of such d-

dimensional states is, according to Eqs. (2.5) and (2.14),

ρcirc(~r) =
2d+2−2nZd

π
d−1
2 (2n + d− 3)dΓ(n)Γ

(
n+ d−1

2

) × e−
r
λ

( r
λ

)2n−2
d−2∏

j=1

(sin θj)
2n−2 , (2.129)

in position space and, according to Eqs. (2.18)-(2.20),

γcirc(~p) =
22n−2(2n+ d− 3)dΓ

(
n+ d−1

2

)

Zdπ
d+1
2 Γ(n)

(ηp/Z)2n−2

(1 + η2p2

Z2 )2n+d−1

d−2∏

j=1

(sin θj)
2n−2 , (2.130)

in momentum space. The purpose of this section is to give the explicit expressions

for the main spreading measures of the position and momentum electronic probability

clouds of these states, as well as their associated uncertainty relations, directly in terms

of the principal quantum number n, the space dimensionality and the strength Z of the

Coulombian force.

Let us begin with the power moments. According to Eqs. (2.26) or (2.27) we have the

values

〈rα〉 =

(
2n+ d− 3

4Z

)α Γ(2n + d− 2 + α)

Γ(2n + d− 2)
; α > −2n− d+ 2, (2.131)
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for the position power moments; and, according to Eq. (2.34), the values

〈pα〉 =

(
2Z

2n+ d− 3

)α Γ
(
n+ d+α−2

2

)
Γ
(
n+ d−α

2

)
(
n+ d−2

2

)
Γ2
(
n+ d−2

2

) , (2.132)

for the momentum power moments taking into account the constraint −2n − d + 2 <

α < 2n+ d. So that the generalized Heisenberg-like product becomes

〈rα〉 〈pα〉 =
Γ(2n+ d− 2 + α)Γ

(
n+ d−2+α

2

)
Γ
(
n+ d−α

2

)

2α
(
n+ d−2

2

)
Γ2
(
n+ d−2

2

)
Γ(2n+ d− 2)

, (2.133)

for −2n− d+ 2 < α < 2n + d; then, for α = 2 we have the Heisenberg-like uncertainty

product
〈
r2
〉 〈
p2
〉

=
1

4
(2n+ d− 1)(2n + d− 2) (2.134)

and the radial Heisenberg uncertainty product

△ r△ pr =
1

2

√
2n + d− 2

2n + d− 4
, (2.135)

where the expression (2.116) has been taken into account.

On the other hand, from Eqs. (2.48) and (2.49), we find the values

〈ln r〉 = ln(2n+ d− 3) + ψ(2n + d− 3) +
1

2n+ d− 3
− 2 ln 2 − lnZ, (2.136)

and

〈ln p〉 = − ln(2n+ d− 3) − 1

2n + d− 2
+ ln 2 + lnZ, (2.137)

for the logarithmic expectation values in position and momentum spaces, respectively.

Then, the logarithmic uncertainty sum is equal to

〈ln r〉 + 〈ln p〉 = ψ(2n + d− 3) +
1

(2n+ d− 2)(2n + d− 3)
− ln 2, (2.138)

and, as for an arbitray (n, l,m) state, it does not depend on the nuclear charge Z.

To find the Shannon entropies of d-dimensional circular states we start from Eqs. (2.75)

and (2.84) for their corresponding expressions in position and momentum spaces, respec-

tively. Since η−L−1 = 0 and µj−µj+1 = 0, ∀j = 1, . . . , d−1, the involved Laguerre and

Gegenbauer polynomials are of degree zero, so that the corresponding entropic integrals

vanish; and one has

S [ρ] = A0(n, n− 1, d) +B0(n− 1, {n− 1} , d) − d lnZ, (2.139)

and

S [γ] = F0(n, n− 1, d) +B0(n− 1, {n− 1} , d) + d lnZ, (2.140)
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Now, taking into account the expressions (2.59), (2.67) and (2.81) for the terms A0, B0

and F0, respectively, we finally obtain the values

S [ρ] = 2n + d− 2 − (n− 1)

[
ψ(n) + ψ

(
n+

d− 1

2

)]
− d ln 2

+ ln

[
(2n + d− 3)dπ

d−1
2 Γ(n)Γ

(
n+

d− 1

2

)]
− d lnZ, (2.141)

for the position Shannon entropy, and

S [γ] = −1 + ln

[
2d+1π

d+1
2 Γ(n)

(2n + d− 3)dΓ
(
n+ d−1

2

)
]
− (n− 1)ψ(n)

− d+ 1

2
ψ

(
n+

d

2

)
+ (2n + d− 1)ψ

(
n+

d+ 1

2

)
+ d lnZ, (2.142)

for the momentum Shannon entropy. Then, the Shannon uncertainty sum is equal to

S [ρ] + S [γ] = 2n+ d− 2 + ln
(
2πdΓ2(n)

)
− 2(n − 1)ψ(n)

+
d+ 1

2

[
ψ

(
n+

d− 1

2

)
− ψ

(
n+

d

2

)]
. (2.143)

Let us now consider the hydrogenic circular states of Rydberg type (i.e., with large n

and l). In this case the previous expressions allow us to find the values

SRydberg [ρ] =
3d+ 1

2
lnn+

d− 1

2
+ ln

(
2π

d+1
2

)
+

9d2 − 24d − 5

12n
− d lnZ +O

(
1

n2

)
,

(2.144)

for the position entropy,

SRydberg [γ] = −(3d− 1) ln n+
d− 1

2
+ ln

(
2π

d+1
2

)
− 3d2 − 7d+ 2

4n
+ d lnZ +O

(
1

n2

)
,

(2.145)

for the momentum entropy, and

(SRydberg [ρ] + SRydberg [γ]) = − lnn+ (d− 1) − 3d+ 4

12n
+ ln

(
4πd+1

)
+O

(
1

n2

)
,

(2.146)

for the net Shannon entropy.

Finally, let us calculate the position and momentum Fisher information of the circular

states. From Eqs. (2.93) and (2.98), one has the values

I [ρ] =
2(d− 1)Z2

η3
=

16(d− 1)Z2

(2n+ d− 3)3
, (2.147)
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for the position Fisher information, and

I [γ] =
(2n + d− 3)2

4Z2
[(2n+ d)(d − 1) + 2] , (2.148)

for the momentum one. So that we obtain the expressions

I [ρ] × I [γ] =
4(d − 1)

2n+ d− 3
[(2n + d)(d− 1) + 2] , (2.149)

for the Fisher-information-based uncertainty product, and

〈
r2
〉
I [ρ] =

(d− 1)(2n + d− 1)(2n + d− 2)

(2n+ d− 3)
, (2.150)

〈
p2
〉
I [γ] = (2n+ d)(d − 1) + 2, (2.151)

for the Cramér-Rao products in position and momentum spaces, respectively.

2.5 Spreading measures of d-dimensional Rydberg states

In this section we investigate the spatial extension or multidimensional spreading of

Rydberg hydrogenic states (i.e. states where the electron has a large principal quan-

tum number n, so being highly excited), in both position and momentum spaces with

standard and non-standard dimensionalities, by means of the following measures: power

moments, variances, logarithmic expectation values, Shannon entropy and Fisher infor-

mation. We show that all these measures can be expressed in closed form in terms of

the principal quantum number η (and the grand angular momentum quantum number

L in those cases where L is also large) and the space dimensionality d. This requires the

knowledge of the asymptotics of orthogonal polynomials involved in the general expres-

sions for the spreading measures of the d-dimensional hydrogenic systems shown in the

Section 2.2.

Let us begin with the position power moments given by Eqs. (2.24)-(2.30) for any d-

dimensional hydrogenic system. The use of Eq. (2.24) and the Laguerre asymptotics of

Szegö [166] given by

[
L(α)
m (x)

]2
ωα(x) =

1

π

1√
x
mα− 1

2 cos2
(
2
√
mx− απ

2
− π

4
,
)

+ o(mα−1), (2.152)

allows one to obtain [167] that the position power moments of Rydberg systems are

(
Z

η2

)α
〈rα〉 =

2α+1

√
π

Γ
(
α+ 3

2

)

Γ(α+ 2)
+ o(1); α > −3

2
, (2.153)

for large n and (l, d) fixed. Recently, Aptekarev et al [159] have done a detailed study

of these expectation values for arbitrary α except for α =
3

2
.
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On the other hand, and in order to find the momentum power moments of Rydberg

systems we start from the expression (2.33) for a general hydrogenic system. Since the

Gegenbauer weight ω∗
ν(t) = (1−t2)ν− 1

2 belongs to the Szegö class, i.e. ω∗
ν ∈ L2 ([−1,+1]),

and ∫ +1

−1
h0 lnω∗

ν(t) > −∞, with h0 =
1

π

1√
1 − t2

, (2.154)

we have (Ref. [166], Th. 12.1.4) that

C̃νk (t) =
√

2

[
h0(t)

ω∗
ν(t)

]
cos [nθ + δ(θ)] + o(1), (2.155)

uniformly on [−1,+1] with θ ∈ [0, π] and t = cos θ. Then, Eq. (2.33) transforms into

( η
Z

)β 〈
pβ
〉

=
2

π

∫ +1

−1
(1 − t)

β−1
2 (1 + t)

1−β
2 cos2 [nθ + δ(θ)] dt+ o(1). (2.156)

Now, taking into account the Lemma 2.1 of Aptekarev et al in Ref. [168] one has that

( η
Z

)β 〈
pβ
〉

=
2

π2

∫ π

0
cos2 θdθ

∫ +1

−1
(1 − t)

β−1
2 (1 + t)

1−β
2 dt+ o(1)

=
2

π
B

(
3 − β

2
,
1 + β

2

)
+ o(1); −1 < β < 3, (2.157)

for large n and fixed (l, d). Here the symbol B(a, b) = Γ(a)Γ(b)/Γ(a + b) denotes the

beta function. Recently, this result has been obtained [159] by means of the powerful

methods of the modern approximation theory relative to the asymptotics of the varying

orthogonal Laguerre and Gegenbauer polynomials.

The multiplication of expressions (2.153) and (2.157) gives rise to the generalized Heisenberg-

like uncertainty product

〈rα〉
〈
pβ
〉

=
2α+2

π
√
π

Γ
(
α+ 3

2

)
Γ
(

3−β
2

)
Γ
(

1+β
2

)

Γ(α+ 2)

η2α−β

Zα−β
+ o

(
η2α−β

)
, (2.158)

for large η values and α > −3
2 , −1 < β < 3. It is worth noticing that this expres-

sion fulfils the general uncertainty relation 〈rα〉
〈
pβ
〉

> f(α, β, d) found by Angulo [12].

Moreover, for α = β one has the uncertainty product

〈rα〉 〈pα〉 =
2α+2

π
√
π

Γ
(
α+ 3

2

)
Γ
(

3−α
2

)
Γ
(

1+α
2

)

Γ(α+ 2)
ηα + o (ηα) , (2.159)

valid for −1 < α < 3. Notice that (i) this product includes and generalizes the Heisen-

berg uncertainty product given by Eq. (2.106) for the particular case α = 2, and (ii) this

result can be extended to other values of α by using the rigorous results of Aptekarev

et al [159].
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Let us now find the logarithmic expectation values of the Rydberg d-dimensional hydro-

genic states. Taking into account that ψ(x) ∼ lnx+ 1
2x for large x, from Eq. (2.48) one

has that

〈ln r〉 = 2 ln η + 1 − ln 2 − lnZ +O(η−2) (2.160)

for the position logarithmic expectation value, and from Eq. (2.49) we obtain that

〈ln p〉 = − ln η − 1 +
L+ 1

2

η
+ lnZ +O(η−2), (2.161)

for the momentum logarithmic expectation value, provided of course that l and d are

finite and n large. Then, the uncertainty logarithmic sum for the Rydberg states behaves

as

〈ln r〉 + 〈ln p〉 = ln η − ln 2 +
L+ 1

2

η
+O(η−2) (2.162)

which corresponds to the large-n limit of Eq. (2.118)

To obtain the values of the position Shannon entropy of a d-dimensional Rydberg state

we need, according to Eq. (2.74), to know the asymptotic behavior of the entropic

integral for the orthonormal Laguerre polynomials E1

(
L̃2L+1
η−L−1

)
for large n and fixed

(l, d); this implies large η and fixed L. For this purpose we use the following formula

[169]:

E1(L̃αm) ≡ −
∫ ∞

0
xωα(x)

[
L̃αm(x)

]2
ln
[
L̃αm(x)

]2
dx

= −6m2 + (2α + 1)m lnm+ ln(2π) − 2α− 4 + o(m), (2.163)

for the orthonormal Laguerre polynomials L̃αm(x) for fixed real α > −1 and m → ∞.

Then, from Eqs. (2.74) and (2.163), we get the value

S [ρ] = 2d ln n+ (2 − d) ln 2 + lnπ + d− 3 − d lnZ + S
(
Yl,{µ}

)
+ o(1) (2.164)

for the position Shannon entropy of the Rydberg d-dimensional hydrogenic state cha-

racterized by the large principal quantum number n and the hyperquantum numbers

(l, {µ}).

In a similar way we have calculated the momentum Shannon entropy of a d-dimensional

hydrogenic state by means of Eq. (2.83) provided that one is able to determine the

asymptotics of the entropy of the involved Gegenbauer polynomials, E
(
C̃L+1
η−L−1

)
, for

large n and fixed (l, d); this implies large η and fixed L. This is a non-trivial task

in the field of orthogonal polynomials, which can be solved by means of the following
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asymptotic formula [168, 170, 171]:

E(C̃αm) ≡ −
∫ +1

−1
ω∗
α(x)

[
C̃αm(x)

]2
ln
[
C̃αm(x)

]2
dx

= lnπ + (1 − 2α) ln 2 − 1 + o(1), (2.165)

for the Gegenbauer polynomials C̃L+1
η−L−1(x) which are orthonormal with respect to the

weight ω∗
α(x) = (1 − x2)α−

1
2 for fixed α and large m. Then, according to Eqs. (2.83)

and (2.165) one has the expression

S [γ] = −d lnn+ (d+ 2) ln 2 + lnπ − d− 2 + d lnZ + S
(
Yl,{µ}

)
+ o(1) (2.166)

for the momentum Shannon entropy of the Rydberg d-dimensional hydrogenic state

characterized by the large principal quantum number n and the hyperquantum numbers

{l ≡ µ1, µ2, . . . , µd−1}.

The combination of Eqs. (2.164) and (2.166) allows one to compute the entropic sum

S [ρ] + S [γ] = d ln n+ 4 ln 2 + 2 ln π − 5 + 2S
(
Yl,{µ}

)
+ o(1), (2.167)

for Rydberg states (large n, and fixed l, {µ}). Let us remind that the angular entropy

S
[
Yl,{µ}

]
, which appears in the basic expressions (2.164), (2.166) and (2.167), can be

numerically evaluated by the highly efficient algorithm of Buyarov et al [163] and ana-

lytically calculated in some specific cases. In particular, for (ns)-Rydberg states one has

that

S [ρ] (ns) = 2d ln n+ (2 − d) ln 2 + 2 lnπ + d− 3 + o(1), (2.168)

and

S [γ] (ns) = −d lnn+ (d+ 3) ln 2 + 2 lnπ − d− 2 + o(1), (2.169)

so that the entropic sum becomes

(S [ρ] + S [γ]) (ns) = d ln n+ 6 ln 2 + 4 ln π − 5 + o(1), (2.170)

which certainly fulfils the general Shannon-entropy-based (or entropic) uncertainty re-

lation [44] given by Eq. (2.124).

Here let us determine the explicit expressions for the position and momentum Fisher

information of a Rydberg d-dimensional hydrogenic state with large n and fixed angular

hyperquantum numbers (l, {µ}). They can be obtained from Eqs. (2.93) and (2.98),

respectively, by making η large and taking into account that L and µd−1 are fixed. We

find that

I [ρ] =

(
2Z

η

)2

+O

(
1

η3

)
, (2.171)
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and

I [γ] =
2

Z2
η3(5η − 8µd−1) =

10

Z2
η4 +O

(
η3
)
, (2.172)

for such position and momentum quantities, respectively. So that the Fisher-information-

based uncertainty product becomes

I [ρ] × I [γ] = 40η2 +O(η) = 10(2n + d− 3)2 +O(n), (2.173)

which is in accordance with the expression (2.125) for large n values.

2.6 Conclusions

In this chapter, the spatial extension of the d-dimensional hydrogenic states has been

quantitatively estimated by means of various spreading quantities of global (variance,

power moments, logarithmic expectation values, Shannon entropy) and local (Fisher

information) character.

We have investigated the spreading properties of the d-dimensional hydrogenic systems

in both position and momentum spaces far beyond the statistical variance and power mo-

ments, by means of the logarithmic expectation values and some information-theoretic

measures (Shannon entropy, Fisher information) of the corresponding quantum proba-

bility densities for both ground and excited states.

We have begun gathering the fundamental algebraic properties of the d-dimensional

hydrogenic wavefunctions, their radial expectation values in the direct and reciprocal

spaces, and the present knowledge of their information-theoretic measures, which are

widely scattered and incompletely solved in the literature. Then we critically discuss and

apply them to various physical situations; particularly to circular and Rydberg states,

whose selective creation by means of tunable dye lasers is providing an experimental

basis for fascinating investigations of fundamental Quantum Mechanics which are being

performed in various laboratories.
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Fisher information of some

elementary chemical reactions

Theoretical studies of potential-energy surfaces, a subject of increasing interest, have

been performed at various levels of sophistication in an attempt to understand the

stereochemical course of chemical reactions [172]. Particular interest has been focussed

on extracting information about the stationary points of the energy surface. In the

Born-Oppenheimer framework, (i) minima on the d-dimensional potential energy surface

for the nuclei can be identified with the classical picture of equilibrium structures of

molecules, and (ii) saddle points can be related to transition states (TSs) and reaction

rates. Since the formulation of TS theory [173, 174] a great effort has been devoted to

develop models in order to characterize the TSs. This theory is assumed to govern the

height of a chemical reaction barrier, so that any insight into the nature of the TS is likely

to provide deeper understanding of the chemical reactivity. Computational quantum

chemistry has sidestepped the inherent problems by managing rigorous mathematical

definitions of critical points on a potential-energy hypersurface, and hence assigning

them to equilibrium complexes or TSs. Within this approach, minima and saddle points

have been fully characterized through the first and second derivatives of the energy

(gradient and Hessian) over the nuclei positions [175–185]

Despite the fact that minima, maxima and saddle points are useful mathematical features

of the energy surface to reaction-path following [175], it has been difficult to attribute too

much chemical or physical meaning to these critical points [186]. Whereas the reaction

rate and the reaction barrier are chemical concepts which have been rigorously defined

and experimentally studied since the early days of the transition state theory [173, 174],

the structure of the TS remains as a quest of physical organic chemistry. Understanding

the TS is a fundamental goal of chemical reactivity theories which implies the knowledge

of the chemical events that take place in order to better understand the kinetics and the

65
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dynamics of a reaction. On the other hand, a variety of density descriptors have been

employed to study chemical reactions [173, 187, 188].

In connection with the above, there are a number of studies in the literature which have

employed density descriptors to study either the TS structure or to follow the course of

the chemical reaction path. For instance, Shi and Boyd performed a systematic analy-

sis of model SN2 reactions in order to study the TS charge distribution in connection

with the Hammond-Leffler postulate [189]. Bader et al developed a theory of reactivity

based solely on the properties of the charge density by employing the properties of the

Laplacian of the density, so as to align the local charge concentrations with regions of

charge depletion of the reactants by mixing in the lowest-energy excited state of the

combined system to produce a relaxed charge distribution corresponding to the transi-

tion density [190]. By studying the time evolution of a bimolecular exchange reaction

Balakrishnan et al showed that information-theoretic entropies in dual or phase space

rised to a maximum in a dynamical study [191]. Following the course of two elemen-

tary SN2 reactions, Ho et al showed that information-theoretic measures were able to

reveal geometrical changes of the density which were not diplayed by the energy profile

although the transition state was not apparent from the study [192]. In an attempt to

build a density-based theory of chemical reactivity, Knoerr et al [193] reported correla-

tions between features of the quantum-mechanically determined charge density and the

energy-based measures of Shaik and collaborators to describe the charge transfer, sta-

bility, and charge localization accompanying a SN2 reaction [194]. Moreover, Tachibana

[195] was able to visualize the formation of a chemical bond in selected model reactions

by using the kinetic energy density nT (~r) to identify the intrinsic shape of the reactants,

the TS and the reaction products along the course of the intrinsic reaction coordinate

(IRC). The reaction force of a system’s potential energy along the reaction coordinate

has been employed to characterize changes in the structural and/or electronic properties

in chemical reactions [196–199]. However, to the best of our knowledge, none of them

have been able to conceptually describe the reaction mechanism of elementary reactions

in a simple and direct fashion.

In recent years, there has been an increasing interest in applying information-theory

(IT) measures to the electronic structure of atoms and molecules [51, 93, 95, 200–210];

however, it has not been clearly assessed whether information-theoretic measures are

good descriptors for characterizing chemical reactions parameters, that is, the station-

ary points of the IRC path (the TS and the equilibrium geometries of the complexes

species) and the bond breaking/forming regions. Recently, significant advances have

been achieved with information-theoretic analyses which allow a phenomenological de-

scription of the course of two elementary chemical reactions by revealing important che-

mical regions that are not present in the energy profile, such as the ones in which bond

forming and bond breaking occur [211]. Furthermore, the synchronous reaction mecha-

nism of a SN2 type chemical reaction and the nonsynchronous mechanistic behaviour of
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the simplest abstraction reaction were predicted by use of the Shannon entropy [212].

In this Chapter, we contribute to this field, using information measures in order to

describe the course of two elementary chemical reactions by detecting the transition

state and the stationary points unfolding the bond-forming and bond-breaking regions

which are not revealed in the energy profile. We have centered our attention in the

abstraction reaction and nucleophilic substitution reaction.

The central quantity under study is the Fisher information

I =

∫
∣∣∣~∇ρ(~r)

∣∣∣
2

ρ(~r)
d~r. (3.1)

We have analyzed both position (Ir) and momentum (Ip) spaces chatacterized by ρ(~r)

and γ(~p), the normalized-to-unity electron densities in the position and momentum

spaces, respectively. The total electron density of a molecule, in the independent particle

approximation, consists of a sum of contributions from electrons in occupied orbitals.

Thus, in momentum space, the contribution from an electron in a molecular orbital

ϕi(~p) to the total electron density is given by |ϕi(~p)|2. The orbitals ϕi(~p) are related

by Fourier transforms to the corresponding orbitals in position space φi(~r). Standard

procedures for the Fourier transformation of position space orbitals generated by ab-

initio methods have been described [213]. The orbitals employed in ab-initio methods are

linear combinations of atomic basis functions and since analytic expressions are known

for the Fourier transforms of such basis fuctions [214], the transformations of the total

molecular electronic wavefunction from position to momentum space is computationally

straightforward [215].

In recent studies, the utility of employing other chemical descriptors in order to interpret

information-theoretic measures has been assessed . In this study, we find interesting to

use the molecular electrostatic potential (MEP), the hardness, geometrical parameters,

dipole moment and vibrational frequencies.

The MEP represents the molecular potential energy of a proton at a particular location

near a molecule [216] say at nucleus A. Then the electrostatic potential, VA, is given by

VA =

(
∂Emolecule

∂ZA

)

N,ZB 6=A

=
∑

B 6=A

ZB
|RB −RA|

−
∫

ρ(~r)d~r

|~r −RA|
′ , (3.2)

where ρ(~r) is the molecular electron density and ZA is the charge on nucleus A, located

at RA. Generally speaking, negative electrostatic potential corresponds to an attraction

of the proton by the concentrated electron density in the molecules from lone pairs,

pi-bonds, etc. (colored in shades of red in contour diagrams). Positive electrostatic

potential corresponds to a repulsion of the proton by the atomic nuclei in regions with
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a low electron density and the nuclear charge being incompletely shielded (colored in

shades of blue in contour diagrams).

We have also evaluated some reactivity parameters that may be useful to analyze the

chemical reactivity of the processes. Parr and Pearson proposed a quantitative definition

of hardness (η) within conceptual DFT [101, 217]:

η =
1

2S
=

1

2

(
∂µ

∂N

)

v(~r)

, where µ =

(
∂E

∂N

)

v(~r)

, (3.3)

is the electronic chemical potential of an N electron system in the presence of an external

potential v(~r), E is the total energy and ”S” is called the softness. Using finite difference

approximation, Eq. (3.3) becomes

η =
1

2S
= (EN+1 − 2EN + EN−1) /2 = (I −A) /2, (3.4)

where EN , EN−1 and EN+1 are the energies of the neutral, cationic and anionic systems;

and I and A, are the ionization potential (IP) and electron affinity (EA), respectively.

Applying Koopmans’ theorem [218, 219], Eq. (3.3) can be written as

η =
1

2S
≡ ǫLUMO − ǫHOMO

2
, (3.5)

where ǫ denotes the frontier molecular orbital energies. In general terms, hardness and

softness are good descriptors of chemical reactivity; the former measures the global

stability of the molecule (larger values of η means less reactive molecules), whereas the

S index quantifies the polarizability of the molecule [220–223]. Thus soft molecules

are more polarizable and possess predisposition to acquire additional electronic charge

[224]. The chemical hardness η is a central quantity for use in the study of reactivity and

stability, through the hard and soft acids and bases principle [225–227]. A comprehensive

review on hardness has been recently published by Ayers [228].

The electronic structure calculations in this study were carried out with the Gaussian

03 suite of programs [229]. Reported TS geometrical parameters for the abstraction and

the SN2 exchange reaction were employed. Calculations for the IRC were performed

at the MP2 (UMP2 for the abstraction reaction) level of theory with at least 35 points

for each one of the directions (forward/reverse) of the IRC. Next, a high level of theory

and a well-balanced basis set (diffuse and polarized orbitals) were chosen for determinig

all of the porperties for the chemical structures corresponding to the IRC. Thus, the

QCSID(T) method was employed in addition to the 6-311++G** basis set, unless oth-

erwise stated. The hardness and softness chemical parameters were calculated by use

of Eqs. (3.4) and (3.5) and the standard hybrid B3LYP (UB3LYP for the abstraction

reaction) functional [229]. Molecular frequencies corresponding to the normal modes of

vibration depend on the roots of the eigenvalues of the Hessian (its matrix elements are

associated with force constants) at the nuclei positions of the stationary points. We have
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found illustrative to calculate these values for the normal mode associated with the TS

(possessing one imaginary frequency or negative force constant) which were determined

analytically for all points of the IRC path at the MP2 (UMP2 for the abstraction re-

action) level of theory. The molecular Fisher informations in position and momentum

spaces for the IRC were obtained in this study by employing the necessary software

along with 3D numerical integration routines [230, 231] and the DGRID suite of pro-

grams [215]. The bond breaking/forming regions along with electrophilic/nucleophilic

atomic regions were calculated through the MEP by use of MOLDEN [232]. Atomic

units are employed throughout the study except for the dipole moment (Debye), vibra-

tion frequencies (cm−1) and geometrical parameters (Angstroms).

3.1 Abstraction reaction

The reaction H +H2 → H2 +H is the simplest radical abstraction reaction involving a

free radical (atomic hydrogen) as a reactive intermediate. This kind of reaction involves

at least two steps (SN1 reaction type): in the first step a new radical (atomic hydrogen in

this case) is created by homolysis and in the second one the new radical recombines with

another radical species. Such homolytic bond cleavage occurs when the bond involved

is not polar and there is no electrophile or nucleophile at hand to promote heterolytic

patterns. When the bond is made, the product has a lower energy than the reactants

and consequently it follows that breaking the bond requires energy.

For this reaction, the IRC was obtained at the UMP2/6-311G level of theory, and 72

points evenly distributed between the forward and reverse directions of the IRC were

obtained. A relative tolerance of 1.0 × 10−5 was set for the numerical integrations

[230, 231].
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In Figure 3.1 the Fisher information in both position and momentum spaces are de-

picted. At a first glance, we observe that both quantities behave in a similar way toward

the reactive complexes (H•
a . . . H −H and H −H . . .H•

b ) and tend to decrease toward

the TS region, but with a very important difference that we analyze below. It is worth

mentioning that according to a previous study [211], we have insight into the structural

features of the distributions in both spaces, i.e., concernig the spreading (localization/de-

localization) of the densities. However, the behavior of the densities about their local

changes (uniformity/irregularity) can only be provided by a local measure such as the

Fisher information.

Both position and momentum Fisher information measures possess more structure at

the vicinity of the TS as it may be observed from Figure 3.1. It is worthy to remark

that this phenomenon is not present in the energy profile. By closer inspection, we

note that the Fisher information Ir possesses a global minima at the TS, whereas the

momentum one, Ip, possesses a local maxima and two local minimum at the vicinity

of the TS (approximately RX ≃ 0.9). This is interesting on chemical grounds since

the structure observed for the Fisher information in momentum space at the vicinity of

the TS can be associated with a process of bond breaking/forming (depending on the

reaction direction) followed by stabilization of the structure at the TS [211].

The chemical picture proceeds in this way: as the intermediate radical (H•
a) approaches

the molecule at the TS region, the molecular density exerts important changes so as to

undergo the homolysis. This represents a physical situation where the density in position

space gets localized in preparation for the bond rupture, which in turn results in a local

increase of the kinetic energy. This provides explanation for the well-known fact that

bond breaking requires energy. Next, the bond is formed and as a consequence, the

TS structure shows lower kinetic energy than the reactant/product complex (Ha or Hb).

Interestingly, from an information-theoretic point of view all of the above happens: both

Ir and Ip decrease as the radical intermediate approaches the molecule at the TS region,

which means that the gradient of the density distributions (in both spaces) becomes

smaller, i.e., these densities are less irregular and more uniform. For the position space

the Fisher information reaches a minimum at the TS, i.e., at this point the position space

density is the most uniform and delocalized (structurally less distorted) among all other

structures at the vicinity of the TS. In momentum space, the Fisher information shows

minima at the vicinity of the TS (RX ≃ |0.9|) corresponding to a delocalized and uniform

momentum density. It is worth noting that it is at these minima where the processes of

bond breaking/forming occur [211]. At the TS, the Fisher information, Ip, is maximum

corresponding with the least uniform and the highest localized momentum density with

respect to the structures in its neighborhood. It is interesting to mention that minima

of the Fisher information in momentum space coincide with the BCER (Bond Cleavage

Energy Reservoir) defined in Ref. [211] and hence they might be characterized by the

Fisher measure in momentum space.



Fisher information of some elementary chemical reactions 71

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

-4 -3 -2 -1  0  1  2  3  4
 0.5

 1

 1.5

 2

 2.5

 3

Ir

B
on

d 
D

is
ta

nc
es

RX

Ir Rb Ra

Figure 3.2: Fisher information in momentum space (red line) and the bond distances
Ra ≡ R(Ha −H) (blue line for the entering hydrogen) and Rb ≡ R(H−Hb) (green line

for the leaving hydrogen) for the IRC of H•

a +H2 → H2 +H•

b .

To better understand the shape of the Fisher information, in Figure 3.2, the bond

distances between the entering/leaving hydrogen radicals and the central hydrogen atom

are plotted. This clearly shows that at the vicinity of the TS a bond breaking/forming

chemical situation is occurring since the Rb ≡ R(H − Hb) is elongating at the right

side of the TS and the Ra ≡ R(Ha − H) is stretching at the left side of the TS. It is

worth noting that the chemical process does not happen in a synchronous manner, i.e.,

the homolytic bond breaking occurs first and then the molecule stabilizes by forming

the TS structure which is clearly observed in the Figure 3.2,. As the incoming radical

approaches the molecule, the bond breaks. Since the Fisher information represents the

gradient of a probability distribution, it is natural to associate this to the change in the

corresponding density. Therefore, from Figure 3.2, one can see that as the incoming

hydrogen approaches, the bond enlarges in the region where the Fisher information in

momentum space increases more rapidly. In contrast, the Fisher information in position

space is not describing the bond breakink/forming process.

Next, we would like to test the non-polar bond pattern characteristic of homolytic bond-

breaking reactions which should be reflected through the dipole moment of the molecules

at the IRC. This is indeed observed in Figure 3.3, where these values along with the ones

of the momentum Fisher information are depicted for comparison purposes. At the TS

the dipole moment is zero, and the same behavior is observed as the process tends to the

reactants/products in the IRC, reflecting the non-polar behavior of the molecule in these

regions. However, it is also interesting to observe, from this property, how the molecular

densities get distorted, reaching maximal values at the vicinity of the TS. In contrast,

the behavior of the momentum Fisher information is totally opposite: this quantity

decreases (increases) when the dipole moment increases (decreases), being minimum

(maximum) approximately at the same points where the dipole moment reaches its
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a +H2 → H2 +H•
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maximum (minimum) value. It means that in the regions where the molecule has a

non-polar behavior, the momentum electronic density has a higher gradient content

corresponding to a high irregular and localized density.

In Figure 3.4 the eigenvalues of the Hessian for the normal mode associated with the TS

along the IRC of the reaction are depicted along with the momentum Fisher information

values. The Hessian values represent the transition vector “frequencies” which show

maxima at the vicinity of the TS and a minimal value at the TS. Several features are

worthy mentioning the TS corresponds indeed to a saddle point, maxima at the Hessian

correspond to high kinetic energy values (largest “frequencies” for the energy cleavage

reservoirs correspond to the BCER [211]). In contrast, at the TS, the Hessian reaches

a minimum value; this means that in this point the kinetic energy is the lowest one

(minimal molecular frequency) [211] and, as we can see, it corresponds to a maximal

Fisher information in momentum space. So it seems viable that Ip resembles the behavior

of the TS vector. In connection with the Fisher information also depicted in Figure 3.4,

it is interesting to note that in the transition state region (where the frequencies become

imaginary [196–199, 211]) the Fisher information exerts its largest change as a gradient

of the distribution in momentum space.

There are several density descriptors used in chemistry to determine the reactivity be-

havior such as the hardness and softness (see the previous Section). In Figure 3.5 we

have plotted the values for the hardness along with the Fisher information in momentum

space for comparison purposes. From a DFT conceptual point of view we may inter-

pret Figure 3.5 as that chemical structures at the maximal hardness (minimal softness)

values possess low polarizability and hence are less prone to acquire additional charge

(less reactive). These regions correspond with minimal Fisher information regions in

momentum space associated to a highly uniform momentum density. According to con-

siderations discussed above, these structures are found at the defined (in a previous work
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Figure 3.4: Fisher information in momentum space (red line) and the eigenvalues of
the Hessian (green line) for the IRC of H•

a +H2 → H2 +H•

b . It should be noted that
negative values actually correspond with imaginary numbers (roots of negative force

constants) so that the negative sign only represents a flag.

[211]) BCER regions, i.e., they are maximally distorted, with highly delocalized momen-

tum densities (maximal dipole moment values, see Figure 3.3). In contrast, hardness

values are minimal at the reactant complexes regions which correspond with localized

momentum densities [211] with null dipole moments hence they are more prone to react

(more reactive). At the TS, a local minimum for the hardness may be observed, then it

is locally more reactive and leaning to acquire charge because its dipole moment is null.
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Figure 3.5: Fisher information in momentum space (red line) and the hardness values
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From the point of view of Fisher information the TS represents a more irregular distri-

bution. It is interesting to note that the Ir in Figure 3.1 can only be associated with

the hardness at the TS (Figure 3.5), in that more reactive structures correspond to the

most uniform density in position space.
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3.2 Nucleophilic substitution reaction

In this Section, we analyze a typical nucleophilic substitution (SN2) reaction whose

chemical process involves only one step in contrast with the abstraction reaction studied

before which involves two steps. In the anionic form, the SN2 mechanism can be depicted

as

Y − +RX → RY +X− (3.6)

which is characterized by being kinetically of second order (first order in each of the

reactants: the nucleophile Y − and the substrate RX , where X− is the nucleofuge or

leaving atom). For identity SN2 reactions X = Y . It was postulated that the observed

second order kinetics is the result of passage through the well-known Walden inversion

transition state where the nucleophile displaces the nucleofuge (leaving group) from the

backside in a single concerted reaction step.

TheH−
a +CH4 → CH4+H

−
b represents the typical identity SN2 reaction and we proceed

with the calculations as follows: since diffuse functions are important to adequately

represent anionic species [189], we have performed calculations for the IRC at the MP2/6-

311++G** level of theory, generating 93 points evenly distributed between the forward

and reverse directions of the IRC. A relative tolerance of 1.0 × 10−5 was set for the

numerical integrations unless otherwise be stated [230, 231].
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b .

Displaying both Fisher informations, Ir and Ip in the same picture, Figure 3.6, we can

observe that they show a similar structure, both possessing a maximum at the TS and

minimal values at its vicinity. This behavior is significantly different than the abstraction

reaction analyzed before in which the position Fisher information shows the opposite

behavior as compared with the momentum Fisher information at the TS region.
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From a previous study [211] with Shannon entropies, a delocalized position density and

a localized momentum density in the TS region were found, i.e., corresponding with a

chemically relaxed structure (structurally less distorted with low kinetic energy and null

dipole moment, see below). In contrast, the reactive complexes toward reactants/prod-

ucts show more localized densities with less delocalized momentum densities, i.e., the

chemical structures at these regions are structurally distorted and posses more kinetic

energy as compared to the TS. In the vicinity of the TS, at around RX ≃ |1.7|, crit-

ical points for these measures are observed; they correspond to ionic complexes that

characterize position densities which are highly localized and with highly delocalized

momentum densities and high kinetic energies. At a first glance, it seems likely these

regions correspond with BCER where bond breaking may start occurring.

One of the main differences of the SN2 reaction with respect to the abstraction one

is that for the former the course of the reaction occurs by an heterolytic rupture with

an exchange of charge, whereas for the latter the mechanism is homolytic, i.e., a spin

coupling process occurs. In this reaction, as the incoming hydrogen approaches the

molecule it transfers charge, through the carbon bonding, to the leaving hydrogen so

as to reach an equally charged distribution among the incoming/leaving hydrogens. As

this process evolves, the gradient of the distribution involved in the position Fisher

information Ir increases so as to reach a maximum at the TS.

To further support the charge transfer process mentioned above we can witness the

heterolytic bond/breaking process through the contour values of the MEP at several

stages of the SN2 reaction in the plane of the [Ha · · ·C · · ·Hb]
− atoms. We may observe

from Figure 3.7(a) the initial step of the bond breaking process for the leaving hydrogen

(nucleofuge) at RX = −1.5 (forward direction), by noting that this particular atom is

losing bonding charge as it leaves (in the region where the potential is positive). This

is in contrast with the entering hydrogen which possesses the nucleophilic power of an

hydride ion (in the region where the potential is negative).

It is also interesting to note that the remaining attached hydrogen atoms possess the

expected electrophilic nature of the molecular bonding environment although its ”philic”

nature barely changes. In Figure 3.7(b) at RX = −0.9 in the forward direction of the

reaction, the C−Hb bond cleavage is about to complete as the Hb atom has lost bonding

charge (maximum electrophilic power) and the nucleophilic hydrogen is about to form

a new bond by losing charge (nucleophilic power). In Figure 3.7(c) we have depicted

the MEP at the TS where we can observe the point where the gradient of the position

density reaches its maximum because the charge becames equalized according to Figure

3.6.

In order to analyze in more detail this reaction, we find instructive to plot the dis-

tances between the nucleophilic hydrogen (Ha) and the leaving hydrogen (Hb) in Fig-

ure 3.8. Distances show the stretching/elongating features associated with the bond
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(a) At RX = −1.5

 

(b) At RX = −0.9

(c) At the transition state

Figure 3.7: The MEP contour lines in the plane of [Ha · · ·C · · ·Hb]
−

(Ha stands
for the nucleophilic atom and Hb is the nucleofuge, on bottom and top, respectively)
showing nucleophilic regions (blue contour lines) and electrophilic regions (red contour
lines) at several reaction coordinates for the SN2 reaction at (a) RX ≡ −1.5, (b)

RX ≡ −0.9 and (c) at the TS.

forming/breaking situation that we have anticipated before. In contrast with the pre-

viously analyzed abstraction reaction, the SN2 reaction occurs in a concerted and syn-

chronous manner, i.e., the bond breaking/forming occurs at unison. An interesting

feature which might be observed from Figure 3.8 is that whereas the elongation of the

carbon-nucleofuge bond (Rb) changes its curvature significantly at RX ≃ −1.7 (forward

direction of the reaction) the stretching of the nucleophile-carbon bond does it in a

smooth way, due to the repulsive forces that the ionic molecule exerts as the nucleophile

approaches, which provokes the breaking of the carbon-nucleofuge to happen as the

molecule starts liberating its kinetic energy. In this sense is that the reaction occurs in a

concerted manner, i.e., the bond-breaking/dissipating-energy processes occurring simul-

taneously. It is interesting to note that minima for the momentum Fisher information

coincide with the bond breaking/forming regions and that the change in the curvature

of the bond distances marks the region where the gradient of the density in momentum

space starts increasing.
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In Figure 3.9 we have plotted the internal angle between H−
a · · ·C −H along with the

Fisher information in momentum space for comparison purposes. Thus, the internal

angle shows clearly that the molecule starts exerting the so called ”inversion of config-

uration” at around RX ≃ −1.7, where the nucleophile starts displacing the nucleofuge

from the backside of the molecule in a single concerted reaction step. This starts occu-

rring at the BCER regions [211]. We may observe from the figure that Ip possesses two

minimum values that coincides with the inflexion points of the angle so marking the

regions where the inversion of configuration occurs, i.e., the region where the gradient

increases and the momentum density distribution becomes less irregular.
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The SN2 reaction is a good probe to test the polar bond pattern characteristic of het-

erolytic bond-breaking (with residual ionic attraction because of the ionic nature of the

products) which should be reflected through the dipole moment of the molecules at the

IRC. This is indeed observed in Figure 3.10, where these values along with those of the

Fisher momentum information are depicted for comparison purposes.
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Figure 3.10: Dipole moment for the IRC of H−

a + CH4 → CH4 +H−

b .

At the TS the dipole moment is zero, showing the non polar character of the TS structure

with both nucleophile/nucleofuge atoms repelling each other evenly through its carbon

bonding. As the ionic complexes approach the reactants/products regions the dipole

moment increases monotonically, reflecting the polar bonding character of these ionic

molecules with a significant change of curvature at the TS vicinity at around RX ≃ |1.0|
(a change of curvature was already noted for Fisher information in momentum space at

the same region). In going from reactants to products it is evident that the inversion of

the dipole moment values reflects clearly the inversion of configuration of the molecule

(this reaction starts and ends with a tetrahedral sp3 carbon in the methyl molecule

passing through a trigonal bipyramid at the TS), which is an inherent feature of SN2

reactions. At these regions the gradient increases up to a maximum at the TS.

We found illustrative to include the hardness values of the IRC in the analysis, which is

depicted in Figure 3.11. We can observe that the hardness shows largest values towards

the reactant/product regions and minima at the TS, where the Fisher information in

momentum space gets a maximum value. The TS corresponds with a metastable struc-

ture with a lowest hardness (largest softness), i.e., it is the most polarizable structure

as compared to the rest at the IRC and hence it is the most reactive one. Also, it may

be observed that the reactive complexes toward the reactant/product regions possess

the largest hardness (lowest softness), corresponding to highly stable molecules which

are less prone to acquire additional charge. In the vicinity of the TS we find ”hardness

bassins” at the BCER that we interpret as to chemically metastable and energetically
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Figure 3.11: Fisher information in momentum space (red line) and the hardness
values (green line) for the IRC of H−

a + CH4 → CH4 +H−
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reactive regions. We note from Figure 3.11 that the momentum Fisher information

reflects the behavior above described as an increment of the gradient.
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Figure 3.12: Fisher entropy in momentum space (red line) and the Hessian eigenvalues
(green line) for the IRC of H−

a +CH4 → CH4 +H−

b . It should be noted that negative
values actually correspond with imaginary numbers (roots of negative force constants)

so that the negative sign only represents a flag.

The eigenvalues of the Hessian for the normal mode associated with the TS along the

IRC of the reaction are depicted in Figure 3.12 along with the Fisher information val-

ues in momentum space. As it may be observed from this figure, the Hessian values

show maxima at the BCER and reach their minimal values at the TS. The former are

associated with high kinetic energy values (high vibrational frequencies) which seem

to coincide with the minimal values in the momentum Fisher information profile. The

TS at the saddle point is associated with a low kinetic energy structure at the mini-

mal molecular frequency value of the Hessian profile and with a maximum value of the
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Fisher information in momentum space which corresponds to a density with the highest

gradient content (very localized density). It is important to mention that the region

where the frequencies become imaginary a transient of continuum has been established

by Zewail and Polanyi [233] for the transition region and this is clearly reflected by the

zone where the gradient increases in momentum space and, consequently, the associated

Fisher information increases too.

3.3 Conclusions

In this Chapter we have shown the usefulness of the information-theoretic measures of

the Fisher type to characterize elementary chemical reactions. In a previous work [211],

the Shannon entropy of elementary chemical reactions was studied as a global measure

that quantifies the localization/delocalization of the density; however, the behavior of the

densities regarding their local changes (uniformity/irregularity) can only be provided by

a local measure such as the Fisher information. We have verified that the local character

of Fisher information indeed provokes an enhanced sensitivity to changes on the position

and momentum densities along the chemical reaction paths. One of the manifestations

of the local changes exerted by the densities is due to the charge transfer process which

is directly reflected in the heterolitic behaviour of the SN2 reaction, in contrast with the

abstraction reaction whose mechanim is homolitic, i.e., the Fisher information is capable

of differentiating between both types of mechanims because of its local character.

The TS structure, at least for the reactions studied in this work, was clearly predicted

by Fisher information in both spaces whereas the stationary points that delimit the

TS region are predicted by the momentum Fisher information solely. Besides, through

the chemical probes we were capable to observe the basic chemical phenomena of bond

breaking/forming showing that the Fisher information measures are highly sensitive in

detecting these chemical events, mainly in momentum space.

According to Fisher information in position space, it is possible to detect differences in

the mechanism for both reactions in that for the SN2 the measure is able to witness the

charge exchange process where the Fisher information is maximum at the TS.

It remains to be studied whether the overall behavior of the abstraction reaction as

compared with the exchange SN2 reactions represents a manner of studying reaction

mechanisms by means of the Fisher information measures. We are aware of the fact

that more chemical probes are necessary in order to pose more general statements.
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Entropic extremization problems:

Applications to atomic systems

The extremization methods of entropic information measures provide us with powerful

tools to estimate the probability distributions of random variables from the knowledge

of partial information on these variables. They supply very useful constructive meth-

ods which objectively estimate the unknown distribution when only incomplete data is

available. The least biased or minimally prejudiced estimate of the distribution consis-

tent with the available data is that which extremizes the information-theoretic measure

characteristic of each method.

The maximum entropy technique (maxEnt) [4, 5, 35, 56] associated to the Shannon

entropy

S [ρ] = −
∫
ρ(~r) ln ρ(~r)d~r. (4.1)

which is the basis of the conventional or extensive statistical mechanics [57], is the

most popular one; however, it does not always lead to an appropiate solution of the

extremization problem.

At present, the extremum Fisher information (exfinf) method, based on such a quantity,

namely

I [ρ] =

∫
∣∣∣~∇dρ(~r)

∣∣∣
2

ρ(~r)
d~r, (4.2)

for a d-dimensional distribution, was considered [37] in order to provide the fundamental

wave equations and/or the conservation laws of numerous natural systems at small and

large scales.

The maximization of the Tsallis entropy (maxTent) [34, 234, 235]

T (q) [ρ] =
1

q − 1

(
1 −

∫
ρ(~r)qd~r

)
. (4.3)
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has been recently encountered to be the basis of the modern non-extensive statistical

mechanics [236]. The use of these information measures and their extremization is

a subject of much current interest in density functional methods of multi-electronic

systems [52, 95, 237].

Then, the knowledge of the existence conditions for these extremization problems and the

spreading properties of the associated extremum information measures is a two-folded

problem of scientific relevance in physical science. Although the analytical expression of

the extremum information distributions subject to some moment equality or inequality

constraints is, at times, known (mostly for the maxEnt case), there are still numerous

open questions about their existence conditions in spite of the efforts of many authors

[51, 57, 238–249]. On the other hand, there has not been a systematical investigation

into the spreading properties of these distributions. This situation is a serious lack

not only from a conceptual standpoint but also because of its effects for a great deal

of problems and phenomena in science, finances or engineering [244, 250, 251]. For a

recent exhaustive review of the maxEnt problem until 2004 see Ref. [241].

Here we consider d-dimensional probability distributions, mainly because of two reasons:

(i) numerous phenomena of physical systems in our three-dimensional world can be

better explained via quantum-mechanical probability distributions with non-standard

dimensionalities (e.g., quantum dots, quantum wells, quantum wires, ...) [126, 127], and

(ii) it is commonly believed at present that the best way to explain the unification of all

forces of physics is via the idea of higher dimensionalities [252].

The extremum information method associated to a generic information-theoretic mea-

sure

Q ≡
∫
ρ(~r)F [ρ(~r)]d~r, (4.4)

consists of the extremization of Q subject to the constraints of normalization to unity,

i.e. ∫
ρ(~r)d~r = 1 (4.5)

as well as ∫
ρ(~r)fi(~r)d~r = ai; i = 1, 2, ..., n, (4.6)

where each fi(~r) is a given function of ~r with f0(~r) ≡ 1. Using the method of Lagrange

multipliers, one considers the functional

Q∗ = Q+
n∑

i=0

λi

[∫
fi(~r)ρ(~r)d~r − ai

]
, (4.7)

where λi are the n+ 1 Lagrange multipliers, and sets its variation to zero so that

δQ∗ =

∫ {
δF [ρ(~r)]

δρ(~r
+

n∑

i=0

λifi(~r)

}
δρ(~r)d~r = 0, (4.8)
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This equation yields the density ρ(~r) in terms of the multipliers λi determined from the

n+ 1 equations given by Eqs. (4.5) and (4.6), giving rise to the extremum information

probability density.

The maxEnt problem has a unique solution [239] which maximizes the Shannon entropy,

whenever it exists, for the given set of expectation values {ai} = {a0 = 1, a1, ..., an}. In

contrast with this situation, the exfinf problems can have multiple solutions. Then, the

question is which solution should be chosen. It has been argued that the solution with no

nodes (the ground-state solution) leading to the lowest Fisher information is the equilib-

rium one, so laying the foundations of the conventional or equilibrium thermodynamics

based on the concept of Fisher information. The choice of linear superpositions of this

ground state with excited state solutions leads us to non-equilibrium thermodynamics

[253].

The maxEnt problem under different moment constraints (i.e., those where all fi(~r) are

integer power of r = |~r|) has been discussed in numerous places for several scientific sit-

uations; see, e.g., Refs. [244, 246, 247, 249, 254–256]. For the analysis of the exfinf and

maxTent problems we refer to Refs. [37, 52, 242] and [234, 235, 245], respectively. See

also Ref. [241] for more detailed information. There are two kinds of exfinf problems in

current use: minimum Fisher information (minInf) [37, 242, 257–259] and extreme phys-

ical information (EPI) [37, 260]. Nevertheless we do not distinguish between these two

treatments for our present purposes. Let us only point out that the probability distri-

bution which minimizes the Fisher information will be “as non-informative as possible”

while still satisfying the constraints [260].

These four information-theoretic problems, although similar at a first sight, are markedly

different in their world views and applicability in Physics [261, 262]. Contrary to the EPI

method, which does not depend upon arbitrary subjective choices, the maxEnt, minInf

and maxTent problems require the choice of arbitrary or subjectively defined inputs.

This chapter has three parts which correspond to the d-dimensional maxEnt (Section

4.1), minInf (Section 4.2) and maxTent (Section 4.2), problems. Each part begins

with the determination of the distribution which extremizes the associated information-

theoretic measure (namely, Shannon, Fisher or Tsallis, respectively) under some given

constraints, and then the spread of the resulting extremum density is investigated by

means of its information-theoretic measures given by Eqs. (4.1)-(4.3) other than that

extremized, and, additionally, its variance

V =
〈
r2
〉
− 〈r〉2 (4.9)

with 〈rm〉 =
∫
rmρ(~r)d~r.

For the maxEnt problem, the condition for the existence of the probability distribution

which maximizes the Shannon entropy is given for the d-dimensional case in subsection
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4.1.1. Then, in Section 4.4, we center our attention on the many-electron systems,

studying the spreading measures obtained in the previous sections when the constraints

of these extremization problems are atomic radial expectation values (in both position

and momentum spaces), as well as analyzing the relationship between their values and

relevant physical properties of those systems. Finally, in Section 4.5 some conclusions

are given.

4.1 The maxEnt problem

Following the method described before, the d-dimensional density ρS(~r) which maximizes

the Shannon entropy (4.1) with the known constraints ai = 〈fi(~r)〉 (i = 0, 1, · · · ,m) is

ρS(~r) = exp

{
−λ0 −

m∑

i=1

λifi(~r)

}
. (4.10)

For this general problem, the existence conditions for ρS(~r) are still unknown. Then we

shall restrict ourselves to some specific cases where such conditions are known; namely,

when the constraints are just one or two radial expectation values 〈rα〉 in addition to

the normalization to unity constraint.

A.- d-dimensional case with a given expectation value 〈rα〉

In this case the density which maximizes the Shannon entropy S [ρ] is given by

ρS(~r) = exp {−λ0 − λ1r
α} , (4.11)

where the Lagrange multipliers have, according to Eqs. (4.5)-(4.6), the values

λ0 = ln

[
2π

d
2 Γ
(
d
α

)

α Γ
(
d
2

)
]

+
d

α
ln
[α
d
〈rα〉

]
, (4.12)

λ1 =
d

α 〈rα〉 , (4.13)

for any α > 0 as impossed by the finiteness of the norm.

Moreover, from Eqs. (4.1) and (4.11), the corresponding value for the maximum

entropy is

Smax [ρS ] = A0(α, d) +
d

α
ln 〈rα〉 , (4.14)

with

A0(α, d) =
d

α
+ ln

[
2π

d
2

α

(α
d

) d
α Γ

(
d
α

)

Γ
(
d
2

)
]
. (4.15)
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And, according to Eqs. (4.2), (4.3) and (4.9), we have determined the values

V [ρS ] = A1(α, d) 〈rα〉
2
α , (4.16)

for the variance,

I [ρS ] = A2(α, d) 〈rα〉−
2
α , (4.17)

for the Fisher information, and

T (q) [ρS ] =
1

q − 1

{
1 − q−

D
α [A3(α, d)]

q−1 〈rα〉
d
α

(1−q)
}

(4.18)

for the Tsallis entropy of the maximizer entropy ρS(~r), respectively. The coeffi-

cients Ai (i = 1, 2, 3) are functions of the parameters α and d as follows:

A1(α, d) =

(
d

α

)− 2
α





Γ
(
d+2
α

)

Γ
(
d
α

) −
(

Γ
(
d+1
α

)

Γ
(
d
α

)
)2


 , (4.19)

A2(α, d) = α2

(
d

α

) 2
α Γ

(
d−2
α + 2

)

Γ
(
d
α

) , (4.20)

A3(α, d) =
α

2

(
d

α

) d
α Γ

(
d
2

)

π
d
2 Γ
(
d
α

) , (4.21)

which drastically simplify for specific values of α and/or d.

In Figures 4.1 and 4.2 we have plotted the four spreading measures (Shannon,

variance, Fisher and Tsallis T (q), with q = 0.9 for illustration) calculated according

to Eqs. (4.14)-(4.21) in order to analyze the dependence on the expectation order α

and the dimensionality d of the masure under consideration, respectively. In doing

so, the position density of the d-dimensional Hydrogen atom in its ground state has

been considered. From Figure 4.1 we observe that, for the three dimensional case,

(i) the three global measures (Shannon, variance and Tsallis) have an increasing

behaviour with α, contrary to the decreasing monotonic behaviour of the local

Fisher measure, (ii) the Tsallis entropy T (0.9) increases faster than the Shannon

entropy, and both of them are systematically bigger than the Fisher information

as α is increasing; the latter behaviour is not fulfilled by the variance, and (iii)

for a given order α, T (0.9) > Smax > I always, I > V for α < 24 and I < V for

α > 24.

From Figure 4.2 we realize that for fixed α = 2, (i) the three global spreading

measures increase, displaying a convex parabolic form in term of the dimensionality

d, (ii) the local Fisher measure has a decreasing convex form, and (iii) for a given

dimensionality, it occurs that T (0.9) > Smax > V .

On the other hand, the algebraic manipulation of Eqs. (4.14)-(4.21) leads to the

following mutual relations among the spreading measures under consideration. We
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Figure 4.1: Variance, Fisher information and Shannon and Tsallis (with q = 0.9) en-
tropies for the maxEnt problem with the constraint 〈rα〉 as functions of the expectation

order α in the three-dimensional case. Atomic units are used.
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Figure 4.2: Variance, Fisher information and Shannon and Tsallis (with q = 0.9)
entropies for the maxEnt problem as functions of the dimension d constrained by the

radial expectation value 〈r2〉. Atomic units are used.

find that

I [ρS ] =
A1(α, d)A2(α, d)

V [ρS ]
, (4.22)

Smax [ρS ] = F1(α, d) +
d

2
lnV [ρS ] = F2(α, d) −

d

2
ln I [ρS ] , (4.23)

and

Smax [ρS ] = F3(α, q, d) +
1

1 − q
ln
[
1 + (1 − q)T (q) [ρS]

]
, (4.24)
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where Fi (i = 1, 2, 3) are simple relations of the coefficients Ai given by the expres-

sions (4.19)-(4.21). The mutual relationships (4.22)-(4.24) among the four sprea-

ding measures drastically simplify when the dimensionality d and/or the other two

involved parameters α and q are appropriately chosen.

B.- One-dimensional case with given 〈x〉 and
〈
x2
〉

Let us now consider the maxEnt problem with constraints
{〈
x0
〉

= 1, 〈x〉 ,
〈
x2
〉}

for one-dimensional distribution (d = 1).

In this case the maximizer density becomes

ρS(x) = exp
{
−λ0 − λ1x− λ2x

2
}
. (4.25)

Here the existence conditions are known to be given by the inequalities (4.35)

and (4.37), as we discusse in the next subsection. Moreover, operating similarly

as previously we obtain that the maximum value of the Shannon entropy is a

logarithmic function of the variance,

Smax [ρS ] = ln
√

2πe+ ln
(〈
x2
〉
− 〈x〉2

)
= ln

√
2πe+ lnV [ρS ] (4.26)

and the Fisher information I is exactly equal to the reciprocal of variance, so that

Smax [ρS ] = ln
√

2πe− ln I [ρS] . (4.27)

Moreover, the Tsallis entropy of the maximizer density can be also explicitly ex-

pressed as

T (q) [ρS ] =
(2π)

1−q
2

(1 − q)
√
q

(〈
x2
〉
− 〈x〉2

) 1−q
2
, (4.28)

so that the following relation with the maximum Shannon entropy is fulfilled:

Smax [ρS ] =
1

2
(1 − ln 2π) +

1

1 − q
ln q +

2

1 − q
ln
[
1 + (1 − q)T (q) [ρS ]

]
. (4.29)

4.1.1 Existence conditions for the maxEnt problem

In this subsection we consider the reduced d-dimensional maxEnt problem, where one

tries to approximate an absolutely continuous distribution ρ(~r) in ℜd from a finite num-

ber of radial expectation values

〈rm〉 =

∫
rmρ(~r)d~r; m = 0, 1, 2, ..., n, (4.30)

where ~r = (r, θ1, θ2, ..., θd−1) describes the d-dimensional vector ~r in hyperspherical coor-

dinates so that the hyperradius varies as 0 ≤ r < ∞, and the angles, 0 ≤ θj < π for
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1 ≤ j < d− 2 and 0 ≤ θd−1 < 2π. The volume element d~r is

d~r = rd−1drdΩd; dΩd =



d−2∏

j=1

(sin θj)
2αjdθj


 dθd−1, (4.31)

with αj = d−j−1
2 . For the special case d = 1, remark that r = x ∈ [0,∞).

The application of the general considerations explained before to the Shannon entropy

provides that the maxEnt problem has a maximum entropy distribution whose density

function is given by

ρS(r) = exp

(
−

n∑

i=0

λir
i

)
, (4.32)

where the Lagrange multipliers λi, i = 0, 1, ..., n, are chosen to fulfil the conditions

∫ ∞

0
rmexp

(
−

n∑

i=0

λir
i

)
rD−1dr = 〈rm〉 ; m = 0, 1, ..., n (4.33)

where Ωd is the generalized solid angle

Ωd ≡
∫
dΩd =

2πd/2

Γ
(
d
2

) , (4.34)

so that Ω1 = 2, Ω2 = 2π and Ω3 = 4π. For the case n = 2 (i.e. for given 〈r〉 and
〈
r2
〉
)

the determination of the associated Stieltjes problem [263] and the solvability of the

integral relations (4.33) of the corresponding maxEnt problem [239, 240, 264] require

the involved radial expectation values to satisfy the inequalities

< r >2 ≤ < r2 > ≤ d+ 1

d
< r >2 (4.35)

The lower bound to < r2 > is a straightforward consequence of the non-negativity of

the Hankel determinant
< r0 > < r >

< r > < r2 >
≥ 0

corresponding to the involved Stieltjes moment problem. Alternatively, the same result

can be found by use of the Hölder inequality. The upper bound to < r2 > is obtained

by means of the existence condition of the aforementioned maxEnt problem which,

according to Einbu’s theorem [239, 241] or the Junk-Tagliani results [240, 264], is given

by

µd+1 ≤ d+ 1

d
Ωdµ

2
d, (4.36)

where the moments µd+α−1 are

µd+α−1 =
1

Ωd
< rα >; α > −d (4.37)
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In the application of the same procedure to the radial expectation values

{
< r0 >= 1, < rα >, < rβ >

}
,

i.e. to the moments {µd−1, µd+α−1, µd+β−1}, we have found the following inequalities:

< rα >
β
α ≤ < rβ > ≤ f(d, α, β) < rα >

β
α , (4.38)

with arbitrary β > α > 1 − d (if α < 0, then β
α must be integer), and the constant

f(d, α, β) ≡
(α
d

) β
α

Γ
(
β+d
α

)

Γ
(
d
α

) (4.39)

It is worth noticing out that Eqs. (4.38)-(4.39) boil down to Eq. (4.35), and moreover

when d = 1 the last expression contains the Dowson-Wragg condition [43] for the max-

Ent problem associated to the univariate probability distributions when the first two

moments are given.

The following desirable step forward is to find the existence conditions for the d-dimensional

maxEnt distributions subject to the radial expectation values{
< r0 >= 1, < rα >, < rβ >, < rγ >; γ > β > α

}

or equivalently the moments {µd−1, µd+α−1, µd+β−1, µd+γ−1; γ > β > α > 0}. This

would extend the celebrated Kociszewski [238] criteria for the existence of maximum en-

tropy Stieltjes univariate (d = 1) distributions having prescribed the first three moments

besides the normalization; that is, for given {µ0, µ1, µ2, µ3}. For completeness let us

mention here that methodologies to obtain the desired existence inequalities for the four

d-dimensional radial expectation values could be possible d-dimensional extensions of the

Einbu theorems [239] or the Milano-Trento-Caracas maxEnt approach [243, 265, 266]

for the fractional lacunary Stieltjes moment problem.

4.2 The minInf problem

As compared to the previous variational problem, the minimization of Fisher information

under some given constraints presents different characteristics from the conceptual and

mathematical points of view. As its own name indicates, now the aim is to find a

minimizer information distribution instead of a maximizer one. The reason is the kind

of functional to extremize, namely the Fisher information which, contrary to the convex

functionals S [ρ] and T (q) [ρ] (Shannon and Tsallis entropies, the last one will be analyzed

below), is a concave one.

Also the local character of I [ρ], opposite to the global one of S and T (q), justifies the

replacement of a maximization by a minimization problem. The fact that the gradient of
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the distribution appears in the definition of I [ρ] makes its minimum values to be reached

for highly spread distributions, according to the concept of least-biased functions.

In this case, the general method described before shows that the d-dimensional density

ρI(~r) which minimizes the Fisher information, Eq. (4.2) with the known constraints

ai = 〈fi(~r)〉 fulfils the differential equation

[
~∇dρI(~r)

ρI(~r)

]2

+ 2~∇d

[
~∇DρI(~r)

ρI(~r)

]
+ λ0 +

m∑

k=1

λkfk(~r) = 0, (4.40)

where ~∇d denotes the d-dimensional gradient operator. The case d = 3 has already been

treated in detail (see Ref. [52]). For the sake of simplicity and transparency purposes

we have restricted ourselves to a concrete and fundamental three-dimensional case: the

unique constraint a1 =
〈
r−1
〉
, besides the normalization to unity. Then, the density

ρI(~r) is given by [52]

ρI(~r) = π−1
〈
r−1
〉3

exp
(
−2
〈
r−1
〉
r
)
, (4.41)

which corresponds to the minimal Fisher information

Imin [ρI ] = 4
〈
r−1
〉2

(4.42)

Moreover, this minimizer density ρI(~r) has the following values of other information

measures:

V [ρI ] =
3

4 〈r−1〉2
, (4.43)

and

S [ρI ] = 3 + lnπ − 3 ln
〈
r−1
〉
, (4.44)

for the variance and the Shannon entropy, and

T (q) [ρI ] =
1

q − 1

[
1 − π1−q

q3
〈
r−1
〉3(q−1)

]
; q > 0, q 6= 1 (4.45)

for the Tsallis entropy. So that, they are mutually related by

Imin [ρI ] =
3

V [ρI ]
= 4π

2
3 e2 exp

(
−2

3
S [ρI ]

)
, (4.46)

and

Imin [ρI ] = 4π
2
3 q

2
q−1

[
1 + (1 − q)T (q) [ρI ]

] 2
3(q−1)

, q > 0, q 6= 1 (4.47)

so that for q = 2 one has that T (2) [ρI ] = 1 − Imin [ρI ]

64π
.

Similar analyses can be done for other concrete cases, such as (a0, a1) = (1,
〈
r2
〉
) and

(a0, a1, a2) = (1,
〈
r−1
〉
,
〈
r2
〉
), (1,

〈
r−2
〉
,
〈
r2
〉
), where the minimizer densities are known
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to exist [52]. We should point out, however, that for the general case above mentioned

neither the solution of Eq. (4.40) nor its existence conditions are known except for some

specific constraints. Unfortunately, this is even true for the particular cases where the

constraints are one or various radial expectation values of generic order. The search of

existence conditions for the minInf problem just mentioned is an important yet open

task, which lies beyond the scope of this work since it involves high-brow questions of

partial differential equations as in Eq. (4.40). On the other hand it is worthy to mention

here the Frieden’s [37, 258, 259] Lagrangian formalism for the minInf problem and the

Luo’s application of the maxEnt and minInf problems [262].

4.3 The maxTent problem

The maximizer density ρT (~r) of the three-dimensional maxTent problem given by Eqs.(4.3)-

(4.8) with constraints (a0, a1) = (1, 〈rα〉) depends on the value of q (the order of the

Tsallis entropy) and α. There are three different cases:

• If q > 1 and α > 0, the maximum entropy density has a finite support r ∈ [0, a],

vanishing out from the sphere of radius a centered at the origin.

• If 0 < q < 1 and α > 3(1−q)
q , the maximum entropy density has as domain the

whole three-dimensional space.

• If q > 1 and −3(q−1)
q < α < 0, the maximum entropy density does not vanish only

within the unbounded interval r ∈ [a,∞).

For the first case, the extreme probability density is

ρT (r) = C

(
1

q
(aα − rα)

) 1
q−1

, (4.48)

for r ≤ a and zero in other case, according to the general extremization method shown in

the iintroduction of this chapter. The constants C and a are functions of the Lagrange

multipliers; they have the following expressions:

a =

(
3(q − 1) + qα

3(q − 1)
〈rα〉

) 1
α

, (4.49)

C =
q

1
q−1α

4πB
(

3
α ,

q
q−1

)
(

3(q − 1) + qα

3(q − 1)
〈rα〉

)− 3
α
− 1

q−1

, (4.50)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function.
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This density has information measures with the following values:

T (q)
max [ρT ] =

1

q − 1

[
1 − C0(α, q)〈rα〉−

3(q−1)
α

]
, (4.51)

for the maximal Tsallis entropy,

S [ρT ] = C1(α, q) +
3

α
ln〈rα〉, (4.52)

V [ρT ] = C2(α, q)〈rα〉
2
α , (4.53)

for the Shannnon entropy and the variance, and

I [ρT ] = C3(α, q)〈rα〉−
2
α ; 1 < q < 2, (4.54)

for the Fisher information. The coefficients Ci(α, q), i = 0, 1, 2 and 3, have the following

expressions:

C0(α, q) =
qqα2q−1[3(q − 1)]

3(q−1)
α

[
4πB

(
3
α ,

2q−1
q−1

)]q−1 (3(q − 1) + qα)−
3(q−1)+qα

α , (4.55)
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, (4.56)
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 , (4.57)

C3(α, q) =
α2

(q − 1)2

(
3(q − 1) + qα

3(q − 1)

)− 2
α B

(
1
α + 2, 1

q−1 − 1
)

B
(

3
α ,

q
q−1

) , (4.58)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function.

Contrary to the previous entropy extremization problems where the extremizer density

has an exponential form, now we have found the power law given by Eq. (4.48) as already

pointed out by different authors [234–236, 248]. To gain insight into this powerlike

maximizer density of the Tsallis entropy we have plotted in Figures 4.3 and 4.4 the

curves of the four spreading measures mentioned above against the expectation order
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α and the non-extensivity parameter q, respectively. From Figure 4.3 we notice that

I > T
(q)
max (with q = 1.7) for any expectation value, having the maximum Tsallis entropy

a widely extended convex shape. From Figure 4.4, corresponding to α = 3, we find that

the Fisher information (i) monotonically increases as q increases and (ii) S > T
(q)
max > V

for all values of the non-extensivity parameter. Besides, Fisher information crosses both

Tsallis and Shannon measures at a critical q around 1.15 and 1.45 respectively.
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Figure 4.3: Variance, Fisher information and Shannon and Tsallis (with order q = 1.7)
entropies in the three-dimensional maxTent problem with constraint 〈rα〉, as functions
of the expectation order α in the three-dimensional case (d = 3). Atomic units are

used.
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entropies in the three-dimensional maxTent problem as functions of the non-extensivity
parameter q constrained by the radial expectation value 〈r3〉. Atomic units are used.
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Similar analyses can be done for the two remainig cases. Finally, for completeness, let

us also mention the recent work of Brody, Buckley and Constantinou [251, 267, 268]

where they maximize the monodimensional Rényi entropy

R(q) [ρ] :=
1

q − 1
ln

∫ ∞

0
[ρ(x)]q dx, (4.59)

under the constraints (a0, a1) = (1, 〈xα〉), α > 0. They show that the solution of this

one-dimensional problem has also the powerlike form of the type (4.48), what should

not be surprising since the Rényi and Tsallis entropies are mutually related by

R(q)(ρ) =
1

q − 1
ln
[
1 − (1 − q)T (q) [ρ]

]
, (4.60)

so that maximizing R(q) [ρ] is tantamount to maximizing T (q) [ρ].

4.4 Application to atomic systems

The measures described in previous sections are defined in the present one (whenever be-

ing possible) for normalized-to-one distributions ρ(~r) defined over the three-dimensional

space ℜ3. Consequently, the vector ~r consists of 3 components, which can be expresses

equivalently in cartesian of spherical coordinates, namely ~r = (x, y, z) = (r, θ, φ), where

r = |~r|.

In principle, it is not guaranteed that those information measures be well-defined for

any arbitrary distribution, because their definition requieres the involved integral to

be convergent and, for the Fisher information, the distribution to be differentiable. For

illustration, the definition of the variance V [ρ], Eq. (4.9), requires appropriate short- and

long-range behaviors of the distribution for the involved first- and second-order radial

expectation values to be finite, namely r4ρ(r) → 0 as r → 0 and r5ρ(r) → 0 as r → ∞.

Similar requirements need also to be verified in the Tsallis entropy case (determined by

the considered value of the T (q) [ρ] parameter), Eq. (4.3), as well as the aforementioned

differentiability over the whole domain when considering Fisher information I [ρ], Eq.

(4.2). Nevertheless, all these convergence and differentiability conditions are verified by

the atomic distributions analyzed in the present work.

One of the basic ingredients in the study of many-fermion systems (e.g. atoms, molecules)

is the one-particle density ρ(~r) on the three-dimensional space, as revealed by the well-

known Density Functional Theory (DFT). Such a density describes the distribution of

the electron cloud around each position ~r in ℜ3, and it plays the main role within the

DFT for describing many different properties of the system, such as kinetic, exchange

and correlation energies, among others [101].
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Altough the position distribution ρ(~r) is the basic element of the DFT, it is very usual to

deal additionally with the corresponding distribution in the so-called conjugated space.

This is the case in which the ~r-space distribution of a N -particle system is defined

from an initial wavefunction Ψ(~r,~r2, . . . , ~rN ) by integrating |Ψ|2 on all variables ex-

cept ~r, so giving rise to ρ(~r). If one considers the 3N -dimensional Fourier transform

Ψ̃(~p, ~p2, ..., ~pN ) to build up the associated distribution in momentum space γ(~p) (pre-

serving normalization), many properties and characteristics of both densities ρ(~r) and

γ(~p) are well-known to be strongly related. As mentioned above, this is the case, for

instance, of the one-particle densities for many-particle systems (e.g. atoms, molecules).

Similarly as ρ(~r) (position space density, in what follows) provides the electronic charge

density around each location ~r, the momentum space density γ(~p) quantifies the linear

momentum distribution around the momentum vector ~p.

It is worthy to point out that, for atomic systems at their ground state in the ab-

sence of external fields, it is sufficient to deal with the spherically averaged densities

ρ(r) =
1

4π

∫
ρ(~r)dΩ and γ(r) =

1

4π

∫
γ(~p)dΩ for a complete description, the indepen-

dent variable (r or p) ranging over the non-negative real line [0,∞) (we use them

troughtout this Thesis unless stated otherwise).

Some radial expectation values (in both spaces) are specially relevant for atomic systems

from a physical point of view. It is well known, for instance, that 〈r−1〉 is essentially the

electron-nucleus attraction energy, 〈r2〉 is related to the diamagnetic susceptibility, 〈p−1〉
is twice the height of the peak of the Compton profile, and 〈p2〉 is twice the kinetic energy

and 〈p4〉 its relativistic correction. So, those physically relevant and/or experimentally

accessible quantities provide also information on the spreading measures of the system.

The main aim in the present section is the study, for ground-state neutral atoms through-

out the Periodic Table with nuclear charge Z = 1 − 103, of the information-theoretic

measures S, T (q), I and V for the extremizer distributions (i.e. the solutions of the

maxEnt, maxTent and minInf problems), constrained by normalization and an α-order

expectation value, in both position and momentum spaces. For carrying out the nume-

rical calculations, the accurate Near-Hartree-Fock wavefunctions of Koga et al [269] will

be employed. Such a study will be done by analyzing the dependence of the measures

on both the nuclear charge Z and the constraint order α for each conjugated space. The

associated radial expectation values are defined for α > −3 in position space and within

the range −3 < α < 5 in the momentum one, due to the rigorously known short- and

long-range behaviors of the densities. Concerning the information measures, all of them

are finite-valued for these systems (taking into account the differentiability of the densi-

ties at any point as well as the aforementioned behaviors at zero and infinity), with the

only constraint q > 3/8 in momentum space as a consequence (in order to the integral

appearing in the definition of T (q) to be convergent) of the long-range behavior of the

one-particle density γ(p) as p−8 [270].
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For completeness, the existence conditions for the two-moment (α, β)-maxEnt problem

obtained in subsection 4.1.1 will be also checked for these systems by means of their radial

expectation values obtained within the aforementioned Near-Hartree-Fock framework.

The maxTent atomic problem

Although the Tsallis entropy constitutes an extension or generalization of the Shannon

entropy in the sense that T (1)[ρ] = S[ρ], the maximizer distribution of both entropies

(Eqs. (4.11) and (4.48) for S and T (q) respectively) are significantly different.

This is the reason for being so interesting to carry out, for the spreading measures

associated with both the maxTent and the maxEnt problems, a similar study concerning

the dependence on the nuclear charge Z and the constraint order α of the corresponding

information measures, in both conjugated spaces. For illustration, the q = 1.7 value

of Tsallis parameter will be considered in order to perform the numerical calculations,

but similar conclusions are derived from the results obtained considering other values.

Additionally, when dealing with a fixed constraint order α, most comments are also valid

independently of its value.

In Figure 4.5, variance, Fisher information and Shannon and Tsallis entropies of the

maxTent distributions are displayed (employing some scaling factors in order to better

compare among themselves) for the ground-state neutral atoms with nuclear charge

Z = 1−103 in position (Fig. 4.5(a)) and momentum (Fig. 4.5(b)) spaces, with constraint

order α = 1. Some comments are in order:

1. A first comparison between Figs. 4.5(a) and 4.5(b) reveals the very apparent struc-

tural differences according to the space we deal with. There appears a very rich

piecewise structure on curves corresponding to information measures in position

space (Figure 4.5(a)), while much softer shapes are displayed in momentum space

(Figure 4.5(b)). Focussing our attention upon position space, the spatial relation-

ship among the atoms is checked for the location of extrema and for the process of

atomic shell-filling. In this sense, different periods throughout the Periodic Table

are represented by apparent pieces of the curves. Within each period, all global

measures decrease (in overall) when adding an electron while, on the other hand,

the local Fisher information increases.

Moreover, other structural properties, such as the anomalous shell-filling, are also

revealed by the additional peaks associated with the corresponding elements. This

is the case, for instance of systems with Z = 24, 29 (3d valence subshell), Z =

41 − 42, 44 − 47 (4d valence subshell) and Z = 78, 79 (5d valence subshell).

2. As mentioned before, the Fisher functional is a local measure of information, con-

trary to the variance and Shannon and Tsallis entropies, which are quantities of
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Figure 4.5: Variance, Fisher information and Shannon and Tsallis entropies of the
maxTent (maximum Tsallis entropy) solution for q = 1.7 with radial constraint order

α = 1 in (a) position (3×V [ρT ], I [ρT ] /26, S [ρT ] /3 and T
(1.7)
max [ρT ]), and (b) momentum

(V [γT ] /3, I [γT ], S [γT ] /2 and T
(1.7)
max [γT ]) spaces, for all ground-state neutral atoms

with nuclear charge Z = 1 − 103. Atomic units are used.

global character. This fact is clearly appreciated in Figure 4.5(a), where local

maxima of the global measures appear at the same position as local minima of the

local measure, and conversely (e.g. maxima of global measures occur, with very

few exceptions, for noble gases, namely closed-shell systems). Such a behavior

indicates that a higher spreading of the distribution raises the global measures but

decreases the local one, as should be expected according to the meaning and the

definitions of the different information quantities.

3. A similar comment can also be done by analyzing Figure 4.5(b) (momentum space),
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now in terms of monotonicity properties instead of location of extrema. In this

sense, it is worthy to remark that curves corresponding to global measures are

monotonically increasing as well as concave in what concerns the dependence on

the nuclear charge Z, while the behavior in the Fisher case is just the opposite

one, namely it decreases with Z displaying a convex shape.

It is also interesting to consider the dependence of the information measures on the

order α of the chosen constraint, as illustrated in Figure 4.6 for the Shannon entropy

S [ρT ] of the Tsallis extremized distribution in position space with q = 1.7, again for

Z = 1 − 103. As clearly observed, the quantity S [ρT ] provided by the particular values

α = 1, 2, 3, 4 behaves in a similar fashion independently of the constraint order, differing

among themselves only (roughly) by a scaling factor. According to the global character

of Shannon entropy and its relation with the Tsallis one, most comments concerning

location of extrema and its interpretation in terms of periodicity and shell structure,

as well as the relevant structural differences between the position and the momentum

space studies, are quite similar to those provided when discussing the Figure 4.5, being

also valid for any α.
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Figure 4.6: Shannon entropy (S [ρT ]) of the maxTent solutions with q = 1 in position
space with radial constraint orders α = 1, 2, 3, 4, for all ground-state neutral atoms with

nuclear charge Z = 1 − 103. Atomic units are used.

The maxEnt atomic problem

After the similar interpretation of the Z dependence for both the maxTent and the

maxEnt problems, let us now analyze in more detail the dependence of the measures

associated with the maxEnt distribution on the constraint order α in both conjugated

spaces by considering, for illustration, the maximal Shannon entropy in position space
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(Smax [ρS ]) and Fisher information in momentum space (I [γS ]), that is, a global and

a local measure. Nevertheless, additional comments will be also done concerning other

quantities in both spaces, apart from those displayed in the figure. Specially interesting

is the different behavior displayed by these quantities (the other global measures behaves

in a similar way as the Shannon entropy) attending to the space we are dealing with,

not only in what concerns the level of structure but also in the way the global measures

appear ordered.
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Figure 4.7: (a) Shannon entropy in position space (Smax [ρS ]), and (b) Fisher in-
formation in momentum space (I [γS ]), of the maxEnt solution with the radial con-
straint 〈rα〉 as a funtion of α, for ground-state neutral atoms with nuclear charge

Z = 10, 19, 25, 33, 38, 48, 70, 83. Atomic units are used.

For illustration, a comparison of these quantities as functions of α is carried out for

different ground-state atomic systems (Z = 10, 19, 25, 33, 38, 48, 70, 83) in Figure 4.7.
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The selection of those systems is not arbitrary, but instead made in order to include a

variety of valence subshells and occupation numbers. It is worthy to remark that (i) the

position space Shannon entropy Smax [ρS ] monotonically increases while the momentum

space Fisher information I [γS ] monotonically decreases for all systems considered (the

same applies for any other Z values), and (ii) both quantities also differ on higher or-

der monotonicity properties, namely the position space Shannon entropy Smax [ρS ] is a

concave function of α, the Fisher information I [γS ] (momentum space) being convex.

Concerning other information measures in the two conjugated spaces, let us also point

out that, except for very small values of α, (i) the three global measures here considered

(variance and Shannon and Tsallis entropies) monotonically increase in the two conju-

gated spaces, the local one (Fisher information) being monotonically decreasing in both

them, and (ii) the four measures in momentum space, as well as the variance and the

Fisher information in position space, display convex shapes, while Shannon and Tsallis

entropies in position space are (in overall) concave functions of the constraint order α.

Another relevant difference between Figures 4.7(a) and 4.7(b) concerns ordering of curves

(from above to below) attending to the space considered. While in momentum space

they are ordered according to the nuclear charge Z, ordering in position space is governed

by the electronic configuration of the valence subshell. The same comment is also valid

for all other information measures considered in this section.

Finally, and for completeness, let us mention that we have checked the existence con-

ditions of maxEnt solutions (provided in subsection 4.1.1) when adding a second radial

constraint (i.e. with M = 2 in Eq. (4.11)). In doing so, we have considered radial expec-

tation values of integer-order α within the range -2 to 4. The analysis carried out reveals

that they are not verified by any system neither in position nor in momentum space,

independently of the pair of constraints considered. Consequently, there does not exist

maxEnt solution under those conditions for atomic charge and momentum densities, at

least for the atomic systems here considered.

The minInf atomic problem

As disscused in Section 4.2, the only case for which an analytical solution of minInf

problem has been obtained is that corresponding to a unique constraint (apart from

normalization) of order α = −1. Nevertheless, for our present purposes (namely the

application of the minInf information measures to the study of atomic systems), such an

order is specially relevant and meaningful from a physical point of view in both position

and momentum spaces, because the associated constraints in conjugated spaces, namely

〈r−1〉 and 〈p−1〉 are proportional to the electron-nucleus attraction energy and to the

height of the peak of the Compton profile, respectively.
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The analysis of the information measures associated with the minimizer distributions

is carried out below according to their dependence on the nuclear charge Z for both

position and momentum spaces, as displayed in Figure 4.8 (employing some scaling

factors in Figure 4.8(a) for a better comparison of the position spaces quantities). For

illustration, the value q = 0.9 has been chosen for the characteristic parameter of the

Tsallis entropy T (q).
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Figure 4.8: Variance, Fisher information and Shannon and Tsallis entropies of the
minInf (minimum Fisher information) solution with radial constraint order α = −1
in (a) position (10 × V [ρI ], Imin [ρI ] /50, S [ρI ] and T (0.9) [ρI ]), and (b) momentum
(V [γI ], Imin [γI ], S [γI ] and T (0.9) [γI ]) spaces, for all ground-state neutral atoms with

nuclear charge Z = 1 − 103. Atomic units are used.

As in the preceding maximization problems, the different structures displayed in a given

space by all the information measures of the minimized Fisher information distribution

are clearly revealed. However, the most remarkable point is that momentum space is
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now the one where the curves display a higher level of structure, again with a high

number of local extrema whose location is determined by the shell-filling process and

displaying periodicity patterns.

The shell-structure properties of atomic systems are mainly characterized by the valence

orbital, usually the outermost subshell. The aforementioned results on all extremization

problems allow one to conclude that the information-theoretic apport of the valence

orbital to the global measures is much more significant in position space, while Fisher

information appears to be more sensitive to valence contribution in momentum space.

Summarizing, it has been clearly revealed the complementary usefulness of global and

local information measures, as well as their values in both conjugated spaces (position

and momentum), in order to get a complete description of the information content of

the atomic systems, as well as its interpretation in terms of relevant physical properties

and their main structural characteristics.

4.5 Conclusions

A problem of extremum information asserts that one should choose as the least bi-

ased (minimally prejudiced or maximally unpresumptive) probability distribution that

which extremizes the involved information-theoretic measure subject to some known

constraints on the system. We have outlined the procedures for maximizing the Sha-

nnon (Section 4.1) and Tsallis (Section 4.3) entropies and a method for minimizing the

Fisher information (Section 4.2) in scenarios with standard and non-standard dimen-

sionalities under various constraints of moment or radial expectation type. These three

information-theoretic measures are logarithmic (Shannon), powerlike (Tsallis) and gra-

dient (Fisher) functionals of the probability density; so, whilst the former two have a

global character as also the variance has, the latter has a property of locality. It is worth

noticing that the resulting Shannon maximizer and Fisher minimizer densities have an

exponential form, in contrast with the Tsallis maximizer density which follows a power

law.

We have investigated the spreading properties of the extremizer density associated to the

three extremum information problems mentioned above (i.e., maxEnt, minInf and max-

Tent). The mutual functional relations and the explicit expressions of the variance, the

extremized entropy and the other two information-theoretic measures of the extremizer

density have been obtained in terms of the moment constraints and the dimensionality

of the system under consideration. Moreover, the d-dimensional maxEnt and maxTent

problems with the constraints (a0, a1) = (1, 〈rα〉) have been numerically examined. It is

found, in particular, that for the maximum entropy density the gobal measures increase

with the expectation order α, while the Fisher information decreases. All the measures

considered have a convex parabolic dependence on the dimensionality.
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The existence condition for the d-dimensional maxEnt problem with the constraints

(a0, a1, a2) = (1, 〈rα〉 ,
〈
rβ
〉
) for 1 − d < α < β and β > 0, is also obtained in subsection

4.1.1, extending to d dimensions and to arbitrary radial expectation values with non-

necessarily consecutive orders the one-dimensional results of Dowson-Wragg for the two-

lower-order moment constraints [43].

Then, in Section 4.4, we have analyzed the mutual dependence among the one-constraint

solutions of the extremization problems and the values of their information-theoretic

measures for three-dimensional physical systems, namely neutral atoms throughtout

the whole Periodic Table. The behavior in terms of the nuclear charge Z and the

constraint order α has been studied in both conjugated spaces, displaying in some cases

the shell-structure patterns (including anomalous shell-filling) according to the global or

local character of the involved spreading measure. The characteristic atomic periodicity

appears strongly related to the location of maxima and minima in the information

curves. In this sense, it is worthy to remark that, while the information measures of

the minInf solution are much more sensitive to valence orbital occupation number for

the momentum space density γ(~p), the same is true for the maxEnt and maxTent ones

but in the conjugate space, i.e. for the charge density ρ(~r). Other properties, such

as ordering among the measures, monotonicity (strict or piecewise) and convexity on

the Z and α variables have been considered. Additionally, for the maxEnt case it has

been checked that, in the present Hartree-Fock framework, the existence conditions for

the two-constraint problem, which has been determined analytically in Section 4.1.1, do

not hold for any neutral atom neither in position nor in momentum space, at least for

integer-order constraints.
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Introduction

In the Webster dictionary [271], the word “complexity” has the following definition:

the quality or state of being complex, where something “complex” is a whole made up

of involved or interrelated parts. Reading this definition, it might be confuse what

complexity does really mean and how can be quantitatively determined. Our intuition

tells us that a completely ordered system (e.g. a perfect cristal), which possesses a very

high internal structure, as well as a totally disordered one (e.g. an isolated ideal gas),

are not complex systems. Between these two extreme cases, we find many others in

which order and disorder are involved simultaneously.

Classical science, as exemplified by Newtonian mechanics, is essentially reductionist: it

reduces all complex phenomena to their simplest components, and tries to describe these

components in a complete, objective and deterministic manner [272]. The philosophy

of complexity asserts that, in general, this method is impossible to realize: complex

systems, such as organisms or societies, have properties that cannot be reduced to the

mere properties of their parts. At the best, we can find certain statistical regularities in

their quantitative features, or understand their qualitative behavior through models.

In the ninetine sixties, the Kolmogorov complexity concept was introduced (also called

descriptive complexity, algorithmic complexity or algorithmic entropy) [60]. This quan-

tity measures, for a finite binary string of characters, the length of the shortest computer

program that can generate such a string. Despite its usefulness, the Kolmogorov com-

plexity does not capture the intuitive notion of complexity appropriately because, for

a random string, this quantity reaches a very large value (infinite in the limiting case).

This is the reason for considering Kolmogorov complexity as a measure of randomness

instead of as a measure of the internal structure.

There exist numerous definitions for the complexity concept other than Kolmogorov’s

one, depending on the field we are dealing with. Indeed, we can find in the literature,

several works where different definitions and classifications of complexity have been pro-

posed [273–278]. In particular, Rescher (see Ref. [277], p. 10) classified the complexity

in different categories depending on the way that we want to quantify the complexity of

a given system:
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• Formulaic complexity: Descriptive (length of account that must be given to provide

an adequate description of the system), algorithmic (the length of the system

instructions) [60] and computational (the time required to solve a problem) [279]

complexities.

• Compositional complexity: Constitutional (number of parts or components) and

taxonomical (numbers of different kinds of components in the physical configura-

tions of the system) [280] complexities.

• Structural complexity: Organizational (number of different ways of arranging com-

ponents in different modes of interrelationship) and hierarchical (organizational

disaggregation into subsystems) complexities.

• Functional complexity: Operational (variety of modes of operation) and nomic

(degree of elaboration of the laws which govern a phenomena) complexities.

All of these categories of complexity have been employed in recent decades in the physical

[91, 281], chemical [282, 283] and biological [284, 285] sciences as well as in engineering

[279], mathematics [286], economics [287] and sociology [288], among other areas.

Thus, the term “complexity” possesses many different meanings and adjectives (algo-

rithmic, geometrical, computational, stochastic, effective, statistical or structural) and

it has been used in numerous fields: dynamical systems, disordered systems, spatial

patterns, languages, multielectronic systems, cellular automata, neural networks, self-

organization, DNA analysis or social sciences, among others [208, 283, 289, 290]. So,

qualitatively speaking, the notion of complexity is nowadays frequently used, but yet

poorly defined. It tries to encompass a great variety of scientific and technological meth-

ods of natural and artificial systems. Gell-Mann [291] has coined the name plectics to

refer to the science of complexity, keeping in mind that the word complexity is made

from the Latin roots: com (meaning together) and plectere (meaning to plait). An im-

portant feature of complexity has to do with the fact that both very ordered and very

disordered systems are, in the sense of plectics, considered to be simple, not complex,

as we have mentioned before.

Attending to its so many and different applications, we note that the concept of com-

plexity is closely related to that of “understanding”, in the sense that the latter is based

upon the accuracy of model descriptions of the system obtained by using a condensed

information about it. Hence, the complexity measures how easily modelling a system

may be. In this sense, fundamental concepts such as uncertainty or randomness are fre-

quently employed in the definitions of complexity although some other concepts such as

clustering, order, localization or organization might be also important for characterizing

the complexity of systems and processes.

Let us stress this idea by considering two exponential functions f(x) = ae−ax and g(x) = be−bx.

Then, we wonder what function is more complex than the other?. Well, both of them
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are exponential functions which only depends on one paremeter and hence, they have

the same complexity. Nevertheless, if we consider the function f(x) + g(x), or any other

linear combination of f(x) and g(x), which depends on two parameters, it must be more

complex than the two single functions because it is more difficult to be modeled due to

its dependence on two parameters.

In this part of the Thesis we provide more intuitive notions of complexity and prove

their utility in order to analyze physical and chemical quantum systems described by

continuous probability distributions. Firstly, in Chapter 5 we introduce the notion of

complexity and some of its possible definitions based on different aspects of Information

Theory, focussing our attention in the so-called “product complexities”. Then, in Chap-

ter 6, we obtain some analytical properties and uncertainty relationships of these the

complexity measures. In Chapter 7, the hydrogenic d-dimensional systems have been

analyzed in terms of complexity. Finally, in Chapter 8, we study some selected molecular

systems in order to find the relation between complexity and other chemical properties

such as hardness, softness, ionization potential, reactivity of molecules, etc.





Chapter 5

The concept of complexity

The problem of understanding and characterizing complexity in a quantitative way is

a vast and rapidly developing subject. Although various interpretations of the term

have arised in different disciplines, no comprehensive discussion has yet been attempted.

Usually, complexity is understood as a general indicator of pattern, structure and cor-

relation in systems or processes, but its quantitative characterization is a very impor-

tant subject of research and it has received considerable attention over the past years

[292, 293].

The characterization of complexity, attending to the aforementioned general descriptors,

cannot be unique and must be adequate for the type of structure or process we deal with,

the nature and the goal of the description we are looking for, as well as for the level or

scale of the observation that we use.

Based on the ideas described in the Introduction, the notion of complexity in Physics

arises [294, 295] by considering the perfect crystal (completely ordered with centered

probability distribution around a prevailing state of perfect symmetry) and the isolated

ideal gas (completely disordered, because the system can be found in any of its accessible

states with the same probability), as examples of simple models and therefore as systems

with zero complexity [91]. Any other system would be in between these two extreme

cases.

The mathematical formulation of complexity has to be designed in such a way that it

fulfils, at least, the two following properties:

• to reach the minimum value for the two extreme probability distributions (the least

complex ones), corresponding to perfect order (mathematically represented by a

Dirac-delta for a continuous variable) and maximum disorder (associated with a

highly flat distribution),

• to be invariant under replication, translation and scaling transformations.
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Recently a class of complexity measures has been propossed as a product of two fac-

tors measuring, respectively, order and disorder on the given systems or, equivalently,

localization and delocalization [91, 296]. Concepts such as entropy or information are

frequently present in the proposals for characterizing complexity, but it is known that

other ingredients capturing qualities beyond randomness are also necessary. In fact, as

previously mentioned, one would wish to detect also clustering or pattern.

Due to its significant role in the information theory, probably the most popular candidate

for being one of the coupled factors which give rise to complexity is the Shannon entropy

S, but there exist other useful spreading and information-theoretic measures such as,

for instance, the disequilibrium D, the Fisher information I and the variance, V . All of

them have been used in the first part of this Thesis, where its utility to describe physical

and chemical properties of the systems has been discussed in detail.

5.1 Measures of complexity

The way to define complexity is not unique, and consequently there exits various can-

didates that can be used as complexity measures. In this Thesis we focus our attention

in those defined in terms of two complementary factors in order to quantify simulta-

neously the order/disorder, localization/delocalization and randomness or uncertainty

of the system under study; namely, the LMC shape, Fisher-Shannon, Cramér-Rao and

generalized Rényi complexities.

LMC shape complexity

The LMC shape complexity, C(LMC), was introduced in 1995 by López-Ruiz, Mancini

and Calbet [91] although, later on, it has been criticized [297], modified [298, 299] and

generalized [300] leading to a useful estimator which reaches minimal values for both

extremely ordered and disordered limits (i.e., for the Dirac-delta distribution and for

the highly flat ones, respectively) satisfying also the desirable properties of invariance

under scaling transformation, translation and replication [301, 302]. The utility of this

improved complexity has been clearly shown in many different fields [208, 283, 290] allow-

ing reliable detection of periodic, quasiperiodic, linear stochastic and chaotic dynamics

[91, 301, 302].

The LMC measure is built up as the product of two important information-theoretic

quantities, namely the so-called disequilibrium D (also known as self-similarity [303] or

information energy [304]), which quantifies the departure of the probability density from

uniformity [91], and the Shannon entropy S, which is a general measure of randomness

or uncertainty of the probability density [16, 32]. Both global quantities are closely
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related to the measure of spread of a probability distribution:

C(LMC) ≡ D × eS , (5.1)

where, for a given distribution ρ(~r) the disequilibrium is

D [ρ] ≡ 〈ρ〉 =

∫
ρ2(~r)d~r, (5.2)

and the Shannon entropy is given by

S [ρ] = −
∫
ρ(~r) ln ρ(~r)d~r. (5.3)

Then, this composite information-theoretic quantity measures the complexity of the

system by means of a combined balance of the average height of the probability density

ρ(~r) (as given by D [ρ]) and its total bulk extent (as given by S [ρ]). It is worthy to point

out that both quantities D and S employed to define the C(LMC) complexity posses a

global character.

Fisher-Shannon complexity

The Fisher-Shannon complexity, C(FS), involves a global information measures and

a local one, the Fisher information [3, 37]. The properties of the Fisher information

make this measure to be an appropriate candidate with the aim of defining a complexity

measure in terms of complementary global and local factors.

Although the Fisher-Shannon product has been employed as a measure of atomic corre-

lation [203], its definition as a statistical complexity measure is quite recent [305, 306].

This quantity combines the global character (by considering the distribution as a whole)

and the local one (in terms of the gradient of the distribution), respectively, preserving

also the aforementioned desirable properties associated to the complexity concept. It is

defined as

C(FS) ≡ I × J, (5.4)

where I is the Fisher information given by

I[ρ] =

∫
ρ(~r)

∣∣∣~∇ ln ρ(~r)
∣∣∣
2
d~r, (5.5)

and J is the so-called power Shannon entropy

J [ρ] =
1

2πe
e

2
d
S[ρ], (5.6)

where d is the dimension of the system. The definition of J has been chosen in order

to preserve the general properties of complexity, in particular the scaling invariance,
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including a constant factor in order to simplify the expression of its universal lower

bound, as described below.

Comparing the FS and the LMC complexities, we can observe that the Fisher infor-

mation now replaces the disequilibrium in order to quantify the level of organization of

the system. The FS complexity expression arises from the isoperimetric d-dimensional

inequality I × J ≥ d [64, 307] providing a universal lower bound to the FS comple-

xity. This measure has been used in several applications, in particular let us mention

those concerning atomic distributions in position and momentum spaces, where the FS

complexity is shown to provide relevant information on atomic shell structure and ion-

ization processes; as well, it is also strongly related to different structural properties of

many-fermion systems [281, 305, 306, 308].

Cramér-Rao complexity

The well known Cramér-Rao bound I × V ≥ d2 (where d is the dimension of the space)

[64, 307], leads us to consider a new complexity measure, given by the Cramér-Rao

product as:

C(CR) ≡ I × V, (5.7)

where the strong connection between both the local and global level of uncertainty is

manifested again. As in the Fisher-Shannon case, the local character is provided by

using the Fisher information while the Shannon entropy is replaced by the variance,

which is also a global measure. This product has been considered in different contexts

[281, 308, 309].

Generalized Rényi-like complexities

Now, the previously introduced product-like complexities are generalized by replacing

the Shannon entropy functional by a more general and powerful magnitude as the Rényi

entropy. Therefore we deal with a one-parameter (to be denoted by α) generalized com-

plexity which weights different regions of the distributions according to the value of α.

The LMC and FS complexities are particular cases of these so-called Rényi complexities.

Specifically the so-called Shape-Rényi complexity (SR), characterized as a difference be-

tween the α-order Rényi entropy and the second order one (expressed in terms of the

Disequilibrium, D), has been extended to continuous systems [310], theoretically studied,

and tested for the binary symmetric channel (BSC) and the logistic map [301]. A more

extended family of generalized complexity measures has been proposed, and rigorous

bounds, geometrical properties and several applications have been also studied [311]. It

is defined by

SR(α) ≡ D × eR
(α)
, (5.8)
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where D is the disequilibrium (see, Eq. (5.2)) and R(α) is the Rényi entropy.

The Rényi entropy is a global measure and plays a similar role to those of other density

functionals as descriptors of the uncertainty on a distribution. It is defined by

R(α) [ρ] =
1

1 − α
lnω(α) [ρ] (5.9)

where the quantity ωα is the so-called “α-order entropic moment” of a given density

ρ(~r):

ω(α) [ρ] =

∫
ρα(~r)d~r, (5.10)

which have been also employed in diverse fields, specially remarkable being their meaning

for some specific α values in the development of the Density Functional Theory [101]

(e.g. Thomas-Fermi kinetic and exchange energies) as well as the own disequilibrium

[83, 91]. The normalization to unity of the distribution can be expressed as ω(1) = 1,

and the disequilibrium defined by Eq. (5.2) can be expressed as D = ω(2).

The allowed range of values for the characteristic parameter α of the Rényi entropy is

determined by the convergence conditions on the integral in Eq. (5.10), arising from

the short- and long-range behaviours of the distribution ρ(~r). Apart from the necessary

(but not sufficient) condition α > 0 for the finiteness of R(α), the particular value α = 1

appears as a limiting case, because both the numerator and the denominator in Eq.

(5.9) vanish, the limit giving rise to

R(1) [ρ] = S [ρ] = −
∫
ρ(~r) ln ρ(~r)d~r, (5.11)

that is, the Rényi entropy of order 1 is the Shannon entropy S or, in other words, the

Rényi entropy R(α) represents an extension or generalization of the Shannon entropy.

The power α of the distribution in Eq. (5.10), where ω(α) is defined, allows us to

enhance or diminish, by increasing or decreasing its value, the relative contribution

of the integrand over different regions to the whole integral and, consequently, to the

entropic moments and the Rényi entropy R(α). Higher values of α make the function

ρα(~r) to concentrate around the local maxima of the distribution, while the lower values

have the effect of smoothing that function over its whole domain. It is in that sense

that the parameter α provides us with a powerful tool in order to get information on

the structure of the distribution by means of the Rényi entropy.

The Fisher-Shannon complexity defined before can be also generalized in terms of the

Rényi entropy. The Fisher-Rényi complexity (FR) is defined by simply replacing the

Shannon entropy, i.e., the global factor in the expression of the Fisher-Shannon com-

plexity, by the Rényi entropy. Some rigorous properties for this entropic product, also

called Fisher-Rényi product, have been recently obtained [312]. The FR complexity is
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defined as

FR(α) ≡ IJ (α), (5.12)

where

J (α) [ρ] =
1

2πe
exp

{
2

3
R(α) [ρ]

}
, (5.13)

is the ’α-order power entropy’ for the three-dimensional case.

Some comments are in order: (i) the particular cases SR(1) and FR(1) corresponding

to α = 1 provide, respectively, the expressions of the LMC and FS complexities, (ii) all

relevant invariance properties of LMC and FS also remain for arbitrary α > 0, (iii) the

weighting effect of the parameter α over specific regions, as previously mentioned for

the Rényi entropy, now translates into the associated complexities, and (iv) attending

to its definition, the composing factors of the second order Shape-Rényi complexity are

one the inverse of each other, and consequently SR(2) = 1.

Other Rényi products have been also considered in the literature, for which different

properties are known for very specific α ranges [312] (α < 1) such as, e.g. bounds and

uncertainty-like relationships. The analysis of those properties is not within the aims of

the present study, in which a much wider interval for the α parameter is considered.

5.2 Comparison between complexities

As mentioned before, there is no agreement about the definition of complexity, its cha-

racterization can not be univocal and must be adequate for the problem we are dealing

with. In this Chapter we have considered some measures, i.e., the LMC, FS and CR

complexities, which will be used in the following chapters to analyze atomic and mole-

cular systems.

In order to clarify the differences between these complexity measures, two example are

depicted in Figures 5.1 and 5.2 and the values of their corresponding complexities are

given in Tables 5.1 and 5.2, respectively.

In Figure 5.1 two exponential-like functions are shown, one of them, g(x), modified by

a sinusoidal perturbation. As we discussed in Chapter 1, in this figure we can clearly

distinguish through the differences between the complexity based on global information

measures, i.e., the LMC complexity, and the other ones which have a local component,

the Fisher information, i.e., the Fisher-Shannon and the Cramer-Rao complexities. Their

corresponding values have been obtained in Table 5.1

We can observe that if we use the LMC complexity to determine which function is more

complex, we do not get so much information, what is due to the fact that this quantity

is defined in terms of a global measure, i.e., the Shannon entropy and the disequilibrium,
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Figure 5.1: Representation of f(x) ∼ e−ax and g(x) ∼ e−ax + ǫ sin2nx.

Function C(LMC) C(FS) C(CR)

f(x) 1.0362 528.079 292.564
g(x) 1.0371 0.13384 0.07407

Table 5.1: Complexity measures of f(x) ∼ e−ax and g(x) ∼ e−ax + ǫsin2nx

and, as we discussed in Section 1.3, these functions have a similar global behaviour. On

the other hand, when we use a complexity measure composed by a very strong local

information measure such as Fisher information, the results are very different. In this

case, we can conclude that g(x) is much more complex than f(x) in a “local sense”.
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Figure 5.2: Representation of f(x) =
2

π
cos2(x) and g(x) =

2

π
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(
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π
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)
.

In Figure 5.2 two cosine functions are depicted. As we discussed in Chapter 1, these

functions have the same Shannon entropy but their variances are different because their
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centroids are located at different points. As a consequence, their Cramér-Rao comple-

xities are different, as illustrated by the values contained in Table 5.2

Function C(LMC) C(FS) C(CR)

f(x) 3.4672 1.2513 1.2899
g(x) 3.4672 1.2513 4.2899

Table 5.2: Complexity measures of f(x) =
2

π
cos2(x) and g(x) =

2

π
cos2

(
x+

π

4

)



Chapter 6

Analytical properties and

generalization of complexity

measures. Applications to neutral

atoms.

Numerous studies on complexity have been carried out in order to better understand the

structural characteristics of the analyzed distributions. Most of such studies have been

done attending to the numerical values displayed by the complexity measures for specific

distributions, each complexity having its own characteristics. However, it would be also

very useful to have at our disposal rigorous properties on the complexity measuresof

general validity for arbitrary density functions. Due to this aim, the first part of this

Chapter, Section 6.1, is devoted to the obtention of new properties and statistical inter-

pretations of the different studied complexities, and to the derivation of uncertainty-like

products which related the complexities in both conjugated spaces.

For illustration, an analysis of different relationships among information-theoretic quan-

tities will be carried out for a large set of atomic systems in both position (~r) and

momentum (~p) spaces. Consequently, we will deal with densities whose domain are the

three-dimensional (d = 3) space. Studies on complexity has been also done in previous

works, mainly by computing their numerical values [208], but very scarcely as in the

present Section, in which rigorous relationships among different complexities and/or

other information magnitudes are obtained, being valid for arbitrary systems and di-

mensionalities.

It is also worthy to mention that (i) the product or phase space distribution f(~r, ~p) ≡
ρ(~r)γ(~p) will be also considered in order to have a more complete informational descrip-

tion of the system, and (ii) for its analysis in atomic systems, it will be sufficient to
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deal with the spherically averaged densities ρ(r) and γ(p), for which the independent

variable range is the non-negative real line [0,∞).

In the second part of this Chapter, Section 6.2, we will analyze the advantages of using

the generalized complexity measures SR(α) and FR(α) (see Eqs (5.8) and (5.12)), instead

of the LMC and Fisher-Shannon complexities. In doing so, an analysis throughout the

whole Periodic Table of elements is carried out. To the best of our knowledge, in fact,

this is the first time in which the SR complexity is considered and analyzed for atoms.

The same also occurs with the FR complexity, apart from recently derived results [312],

mainly concerning uncertainty-like relationships but not the atomic structure and the

shell-filling process.

6.1 Properties and uncertainty-like inequalities on com-

plexity measures

In this Section, several properties on complexity measures are obtained by using ex-

clusively their mathematical definitions, and being consequently of universal validity.

Among those properties, we should remark the lower bounds in terms of one or two

expectation values, uncertainty relations, etc.

6.1.1 Rigorous properties

Contrary to the case of the isolated factors which define complexity measures, namely,

Shannon entropy, disequilibrium, Fisher information and variance, not many rigorous

properties and /or relationships on complexity are known. Concerning the aforemen-

tioned functionals, it is worthy to mention, among others, the variational upper and/or

lower bounds on each factor in terms of radial expectation values of the density [51, 313],

as well as different uncertainty-like relationships.

In this subsection, different rigorous properties on the LMC, Fisher-Shannon and Cramér-

Rao complexities will be obtained, being valid for arbitrary d-dimensional distributions.

In some cases (as it is well known for the Fisher-Shannon and Cramér-Rao complexities),

there exist lower bounds given as universal constant values (not necessarily dependent

on the dimensionality). However, such a value in the case of LMC complexity has been

only shown to exist for the one-dimensional case [298] (i.e. for densities having as do-

main the real line), what is generalized for arbitrary dimensionality in the present work.

Other results are here expressed as bounds in terms of expectation values and/or den-

sity functionals. A numerical analysis of the accuracy displayed by the aforementioned

bounds will be also carried out for the one-particle position and momentum densities of

atomic systems within a Hartree-Fock framework.
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Starting with the LMC complexity C(LMC) = D × eS , let us firstly observe that it

can be also expressed in terms of entropic moments ω(q). In doing so, it is convenient to

define the function

f(q) ≡ lnω(q), (6.1)

which, due to the normalization constraint ω(1) = 1, takes the particular value f(1) = 0.

Additionally, let us write the LMC complexity as C(LMC) = exp{lnD + S}.

Attending to the definition of S and D, it is easy to check that S = −f ′(1), i.e. minus

the slope of the function f(q) at q = 1, and

lnD = lnω(2) = f(2) =
f(2) − f(1)

2 − 1
, (6.2)

where the normalization constraint has been taken into account. Last equality is written

in order to point out that lnD represents the slope of the straight line connecting the

(two) points of the curve f(q) at q = 1 and q = 2. Finally, and having in mind the

convexity of f(q) (or equivalently, the log-convexity of entropic moments ω(q) as can be

easily shown by using Hölder’s inequality), it is concluded that the single exponent on

C(LMC) written as above is non-negative and, consequently, that C(LMC) ≥ 1.

Up to now, this bound for the LMC complexity was only demostrated for the one

dimensional case [298]. This is the first time, to the best of our knowledge, that a

universal (i.e. valid for any d-dimensional distribution) constant lower bound on LMC

complexity is obtained.

Moreover, from this proof it is immediately concluded that the equality C(LMC) = 1

is only reached for uniform distributions with a finite volume support. In doing so,

it is enough to observe that equality is only possible for a linear f(q) over the range

1 ≤ q ≤ 2. Such a linearity translates on entropic moments as ω(q) = Dq−1 (where the

values ω(1) = 1 and ω(2) = D have been considered). This means that

∫ (
ρ(~r)

D

)q
d~r =

1

D
. (6.3)

The non-dependence on ’q’ of the right-hand-side requires the fraction on the integral

to take only the values 0 or 1. Then, the density has the constant value ρ(~r) = D on its

whole support Λ apart from, at most, a zero-measure set of points, being the volume of

the support 1/D in order to fulfil the normalization condition.

It is remarkable that lowest LMC complexity corresponds to step-like distributions over

a finite volume set Λ, which are precisely the maximum-entropy ones among those with

domain Λ. Then, necessarily they also minimize the disequilibrium, as it is also well-

known when dealing with finite-size domains.
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In summary, uniform distributions simultaneously minimize the disequilibrium D (i.e.

localization) and maximize the Shannon entropy, and consequently the exponential en-

tropy eS (i.e. delocalization). But the joint effect of the two opposite ones on each factor

of the C(LMC) complexity is dominated by the minimizer one (i.e. the disequilibrium),

giving rise to the minimum LMC complexity for uniform densities.

So, it should be expected that the higher C(LMC) values are, the more far from uni-

formity the density is. To have an idea on the validity of this remark as well as on the

comparison of complexity to the unity lower bound, we show in Figure 6.1 the values of

LMC complexity for the position and momentum densities, ρ(~r) and γ(~p) respectively,

for neutral atoms with nuclear charge from Z = 1 to Z = 103. The discontinuities in the

curves correspond to their decomposition according to the different periods conforming

the whole Periodic Table, as will be also done for drawing the rest of figures in this

Section.
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Figure 6.1: LMC complexities C(LMC) in position and momentum spaces for neu-
tral atoms with nuclear charge from Z = 1 to Z = 103. Atomic units are used.

It is clearly observed that, apart from being all values in both spaces above unity, there

appear different pieces in each curve corresponding to electronic filling of specific sub-

shells, displaying monotonic behaviors within each subshell which are opposite (increa-

sing or decreasing) when comparing both conjugated spaces. This can be interpreted in

terms of the uncertainty principle (which will be also analyzed in next subsections), in

such a way that a higher delocalization in one space is associated to a higher localization

in the conjugated one.

Additionally, higher values of complexity for heavy atoms are due to the lost of unifor-

mity because of the increase in the level of shell structure, image with exactly corresponds

to the intuitive notion of complexity of a system.
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Let us now center our attention on the Fisher-Shannon complexity C(FS) = I × J .

The inequality I × J ≥ d [59], which provides a lower bound on the product of both

quantities, is consequently written in terms of the Fisher-Shannon complexity, as

Cr(FS) ≥ d, Cp(FS) ≥ d, Crp(FS) ≥ 2πed2, (6.4)

where d is the dimension of the space, and last inequality contains an additional factor

apart from the product of complexities in conjugated spaces because of the definition of

the power entropy Jrp in the product space. It is worthy to mention that the above ine-

qualities are valid for arbitrary distributions on d-dimensional spaces, in the same line as

the lower bound C(LMC) ≥ 1 previously obtained for LMC complexities independently

of the space we are dealing with.

The numerical analysis of Figure 6.2 for C(FS) is now carried out similarly as done

in Figure 6.1 for C(LMC), by considering exactly the same systems and spaces. Now,

the lower bound is stablished by the three-dimensional (d = 3) space as domain of the

distributions. Similar comments to those of the previous figure, concerning the behavior

in terms of the nuclear charge Z, can be also done.
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Figure 6.2: Fisher-Shannon complexities C(FS) in position and momentum spaces
for neutral atoms with nuclear charge from Z = 1 to Z = 103. Atomic units are used.

In spite of the different characteristics of the two components of the Fisher-Shannon

complexity C(FS) = I × J , it is known a result which provides a connection between

both information measures I(ρ) and J(ρ) which, as we are going to show, can be also

expressed and interpreted in terms of complexities. The above mentioned connection

arises from the so-called effect of gaussian perturbation, and it provides information

on the variation suffered by the information content of a distribution ρ when adding

a small-amplitude gaussian one. Concerning the Fisher and Shannon measures, it is

known that
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d

dǫ
S
[
ρ+

√
ǫρG
]∣∣∣∣
ǫ=0

=
1

2
I [ρ] , (6.5)

as shown by de Bruijn [64], where ρG denotes the standard gaussian distribution with

mean 0 and variance 1. In this sense, the Fisher information could be interpreted as

a measure of the variation of Shannon entropy of the initial density under a gaussian

perturbation.

Keeping in mind this result, let us consider the power entropy of the perturbed distri-

bution ρǫ ≡ ρ+
√
ǫρG, namely

J [ρǫ] =
1

2πe
e

2
d
S[ρǫ]. (6.6)

Carrying out the same derivation and limiting operations as in Eq. (6.5), but on the

power entropy J(ρǫ) instead of the Shannon entropy S(ρǫ), it is immediate to check that

C(FS) = d ·
[
d

dǫ
J(ρ+

√
ǫρG)

∣∣∣∣
ǫ=0

]
, (6.7)

what gives rise to an additional interpretation on the Fisher-Shannon complexity: it

represents the variation of the power entropy J of a given density ρ when perturbed

by a gaussian distribution ρG. So, the interpretation of the Fisher information (a sin-

gle measure of information) according to the process of gaussian perturbation is now

extended to the interpretation, for the same process, in terms of FS complexity.

Concerning the Cramér-Rao complexity C(CR), we next show that it can be also

bounded from below in terms of radial expectation values of the density. This kind

of upper and/or lower bounds are extensively found in the literature for different single-

density functionals, such as the Shannon entropy [51] or entropic moments [313], but

such is not the case for complexities, mainly because of being constructed as a product

of two different factors, what extremely involves the bounding procedure as compared

to its application for single density functionals.

Here we are going to take advantage of the non-negativity of the so-called “relative Fisher

information” between two functions. In what follows, and for the sake of simplicity, we

will restrict ourselves to spherically symmetric densities, as is the case of the present

study in atomic systems.

In doing so, let us consider the non-negative integral

∫
ρ(~r)

(
d

dr
ln
ρ(r)

f(r)

)2

d~r ≥ 0, (6.8)

where f(r) is a (not necessarily normalized to unity) function, on which some conditions

will be impossed below. By only carrying out the processes of derivation and squaring,



Analytical properties and generalization of complexity measures 125

and defining

F (r) ≡ f ′(r)
f(r)

, (6.9)

it is not difficult to find the relationship

Īr ≥ −
〈
F 2(r)

〉
− 2

〈
F ′(r)

〉
− 2(d− 1)

〈
F (r)

r

〉
, (6.10)

where Īr refers to the Fisher information of the spherically averaged density ρ(r), and

the function F (r) has to fulfil the condition rd−1ρ(r)F (r)
∣∣∣
∞

0
= 0 for the finiteness of the

expectation values.

For an appropriate choice of F (r) the above expression provides a lower bound on the

Fisher information in terms of radial expectation values
〈
rk
〉

of the density ρ(~r). Let us

consider a choice of F (r) for which the right-hand-side of Eq. (6.10) consists of a rational

function in which the denominator is the variance Vr = 〈r2〉 − 〈r〉2 and, consequently,

the inequality transforms into a lower bound of the Cramér-Rao complexity Cr(CR).

Such a F (r) is given by

F (r) = −αβrα−1 − νγrγ−1, (6.11)

where {α, β, γ, ν} are parameters to be determined below.

First, we optimize the resulting bound on the parameters (β, ν) and then we consider

the particular case (α = 2, γ = 1), giving rise to

Cr(CR) ≥ d2 + (d− 1)〈r−1〉
[
(d− 1)〈r2〉〈r−1〉 − 2d〈r〉

]
, (6.12)

which provides the desired lower bound to the position space CR complexity.

Some comments are in order: (i) a similar bound for the corresponding quantity in

the conjugated space is obtained by considering the momentum density, and (ii) some

radial expectation values (in both spaces) are specially relevant from a physical point of

view. It is well known [314], for instance that, for atomic systems, 〈r−1〉 is essentially

the electron-nucleus attraction energy, 〈r2〉 is related to the diamagnetic susceptibility

[314], 〈p−1〉 is twice the height of the peak of the Comptom profile [315], and 〈p2〉 is

twice the kinetic energy [315]. So, such a different quantities, physically relevant and/or

experimentally accessible, provide also information on the Cramér-Rao complexity of

atomic systems.

In Figure 6.3, a numerical computation of Cp(CR) (momentum space) and the above

mentioned particular bound (with d = 3 and momentum expectation values) are dis-

played for neutral atoms throughout the Periodic Table, with nuclear charges from Z = 1

to Z = 103. It is clearly observed the similar trends followed by the exact complexity

and its lower bound. Both curves display a structure strongly related to the shell-filling

process as revealed by analyzing the location of extrema. A similar figure is obtained for
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the corresponding quantities in position space, being consequently also valid the same

comments as given above.
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Figure 6.3: Cramér-Rao complexity Cp(CR) in momentum space, and lower bound
in terms of radial expectation values, for neutral atoms with nuclear charge from Z = 1

to Z = 103. Atomic units are used.

It is also worthy to mention that, contrary to the analyzed multielectronic systems,

none of the three complexities depends on the nuclear charge Z for one-electron systems

(hydrogenic atoms), although the individual factors do (e.g. Dr is proportional to Z3

and Ir to Z2, and inversely in the conjugated space). In this sense, it is interesting to

comment that such complexities can be analytically determined, their values being

Cr(LMC) =
e3

8
= 2.5107, Cp(LMC) =

66

e10/3
= 2.3545, (6.13)

Cr(FS) =
2e

π1/3
= 3.712, Cp(FS) =

48(2π)1/3

e29/9
= 3.5311, (6.14)

Cr(CR) = 3, Cp(CR) = 12

(
1 − 64

9π2

)
= 3.354. (6.15)

As observed before, the multielectronic character of the systems makes their complexities

to increase considerably as compared to those of the corresponding one-electron ions.

6.1.2 Uncertainty-like inequalities

It is natural to look for the existence of uncertainty-like relationships on the complexities

considered in the present work attending to those known for some density functionals

and expectation values. It appears very interesting to find rigorous and universal rela-

tionships among conjugated complexities. So, in spite of existing well known uncertainty
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inequalities on most of the individual factors composing complexities, such is not the case

of the complexities themselves. The main reason is that, usually, the two inequalities

associated with each factor work in opposite directions, making consequently impossible

to combine both together in order to obtain a coherent bound on the whole complexity.

In this subsection, different uncertainty-like complexity inequalities are obtained, all

them of universal validity, i.e., the hold for any pair of functions related via Fourier

tansform in the same way as the one-particle densities in the conjugated spaces do.

Let us also remark that, for the particular case of analyzing products of complexities

Cr × Cp, such a study is equivalent to consider the product or phase space complexity

Crp. However, the simple product operation of complexities is not at all the only way of

getting uncertainty-like relationships, appearing also interesting to deal with quotients

of complexities or of some of their powers, among others.

In this sense, it is worthy to mention that the ratio between the Fisher-Shannon and

Cramér-Rao complexities on a given space can be bounded in terms of the so-called “ra-

dial uncertainty products”, expressed in terms, as mentioned above, of radial expectation

values in both conjugated spaces. In doing so, let us consider the ratio C(FS)/C(CR)

(in any space) which, attending to the definition of both complexities, turns out to be

J/V in the considered space. For simplicity, let us consider the position space ratio

Jr/Vr, keeping in mind that all results obtained below will be also valid for the conju-

gated space quantities. The BBM inequality Eq. (1.34) between Shannon entropies can

be written in terms of the power entropies as Jr × Jp ≥ (πe)d−1/2, giving rise to a lower

bound on the numerator Jr in terms of the power entropy Jp. On the other hand, upper

bounds on the power entropy Jp in terms of any non-negative order radial expectation

value 〈pα〉 are also well known [51]. Both inequalities together provide a lower bound

on Jr in terms of any 〈pα〉 with α > 0.

Concerning the denominator Vr on the studied ratio, it is immediate from its definition

that 1/Vr ≥ 1/〈r2〉. Finally, combining both lower bounds results in the relationship

Cr(FS) ≥ e1−
2
α

2

(
d

α

)2/α(αΓ(d/2)

2Γ(d/α)

)2/d 1

〈r2〉〈pα〉2/αCr(CR), (6.16)

for any α > 0 and similarly in the conjugated space by appropriately replacing the

involved densities and variables. A numerical analysis of the above inequality is carried

out (in position space) in Figure 6.4 throughout the Periodic Table, for the particular

case α = 1. As in previous figures, it is again observed the similar shape displayed by

both the exact Fisher-Shannon complexity and its lower bound in terms of Cramér-Rao

complexity and the chosen uncertainty product.

Let us finally remark an uncertainty-like inequality on the LMC complexity product

Cr(LMC) × Cp(LMC) = Crp(LMC) in terms of arbitrary order uncertainty products

of radial expectation values. In order to obtain it, let us remember that the factors
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Figure 6.4: Fisher-Shannon complexity Cr(FS) in momentum space and lower bound
in terms of Cramér-Rao complexity Cr(CR), for neutral atoms with nuclear charge from

Z = 1 to Z = 103. Atomic units are used.

appearing in the product space complexity consist of (i) the exponential entropy on rp-

space, bounded from below by means of the BBM inequality, and (ii) the disequilibrium

in both position and momentum spaces which are known to be bounded from below in

terms of two arbitrary radial expectation values of the associated density [313]. Choosing

in both spaces as one radial constraint the normalization, the resulting bound on the

uncertainty LMC complexity product results in

Cr(LMC) × Cp(LMC) ≥ edΓ2(d/2)(d + α)(d+ β)

(
d

d+ 2α

)1+ d
α

×
(

d

d+ 2β

)1+ d
β 1

〈rα〉d/α〈pβ〉d/β , (6.17)

for radial expectation values of orders α, β > −d/2 in d-dimensional conjugated spaces.

This result confirms the existence of a strong relationship between complexity uncer-

tainty and uncertainty products in terms of radial expectation values. So, the knowledge

of an uncertainty product imposses a constraint on the minimal value the LMC com-

plexity product can reach.

Complexities of information-extremizer distributions

For completeness, we obtain the values of complexities for extreme information distribu-

tions constrained by a given radial expectation value (apart from normalization) analized

in the Chapter 4. Let us denote the complexities of the extremizer distributions (whose
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expressions are identical independently of the space considered) by using the subscript

to specify the extremized functional (e.g. CS(LMC) refers to LMC complexity of the

distribution which maximizes S, and similarly for the other complexities and extremized

functionals). It is very remarkable that, although the individual factors of each comple-

xity depends on the value of the constraint 〈rα〉, the complexity itself does not in any

case. The obtained expressions are given below:

CS(LMC) = (e/2)d/α (6.18)

CS(FS) =
α2− 2

d Γ
(
d−2
α + 2

)
e

2
α
−1 [2Γ(d/α)]

2
d
−1

Γ2/d(d/2)
(6.19)

CS(CR) = α2 Γ
(
d−2
α + 2

)

Γ(d/α)


Γ
(
d+2
α

)

Γ(d/α)
−
(

Γ
(
d+1
α

)

Γ(d/α)

)2

 (6.20)

CI(LMC) = e3/8, CI(FS) =
2e

π1/3
, CI(CR) = 3 (6.21)

CT (LMC) =
B
(
d
α ,

q+1
q−1

)

B
(
d
α ,

q
q−1

) exp

{
1

q − 1

[
Ψ

(
q

q − 1
+
d

α

)
− Ψ

(
q

q − 1

)]}
(6.22)

CT (FS) =
α2− 2

d

(q − 1)2Γ2/d(d/2)

B
(
2 + d−2

α , 2−q
q−1

)

[
2B
(
d
α ,

q
q−1

)]1− 2
d

× exp

{
2

d(q − 1

[
Ψ

(
q

q − 1
+
d

α

)
− Ψ

(
q

q − 1

)]
− 1

}
(6.23)

CT (CR) =

(
α

q − 1

)2 Γ
(
d
α + q

q−1

)

Γ
(
d
α

)


 Γ

(
d+2
α

)

Γ
(
d+2
α + q

q−1

) −
Γ2
(
d+1
α

)
Γ
(
d
α + q

q−1

)

Γ2
(
d+1
α + q

q−1

)
Γ
(
d
α

)


 (6.24)

where B(x, y) denotes the beta function and Ψ(x) =
Γ′(x)
Γ(x)

the digamma function; last

two equations are valid only for the range of the Tsallis entropy order 1 < q < 2, because

those two complexities contain the Fisher information I of the maximum Tsallis entropy

distribution, which integral only converges within such a range. Let us remark that the

maximization of the Tsallis entropy T (q=2) is equivalent to the minimization of the dis-

equilibrium D. So, the corresponding LMC complexity of the minimum disequilibrium

distribution is

CD(LMC) =
2α

2α+ d
exp

{
Ψ

(
2 +

d

α

)
− Ψ(2)

}
(6.25)

which corresponds to the particular value q = 2 in Eq. (6.22).
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Some comments are in order: (i) as previously mentioned, it is observed that the final

expressions for these analytical complexities do not depend on the constraint value 〈rα〉,
but only on its order; (ii) it still remains the problem of finding the maximum/minimum

complexity distribution under such constraints; that is, it is not guaranteed that the

distribution that maximizes (minimizes) one factor of complexity be the same that also

extremizes the whole complexity; and (iii) it would be also possible to consider a higher

number of constraints, but in such a case the extremizer distribution (i.e. the solution

of the associated variational problem) would not be analytically obtained and, conse-

quently, the same would happen with complexity, for which the Lagrange multipliers,

characteristics of the variational method, must be numerically determined.

6.2 Fisher-Rényi and Shape-Rényi complexities

The next purpose is to analyze numerically the Shape-Rényi and Fisher-Rényi comple-

xities, defined in the Chapter 5, of the one-particle densities in position and momentum

spaces, ρ(~r) and γ(~p) respectively, for neutral atoms throughout the Periodic Table,

their nuclear charge ranging from Z = 1 to Z = 103.

The Shape-Rényi complexity in position and momentum spaces, to be denoted by SR
(α)
r

and SR
(α)
p respectively, are shown for these atomic systems in Figures 6.5(a) (posi-

tion) and 6.5(b) (momentum), for diverse values of the parameter α within the range

0.4 ≤ α ≤ 3.6. It is worthy to point out that for atomic systems the exponential long-

range behavior of the position space density [316] allows any non-negative value α > 0,

while the momentum space one as p−8 [270] imposses the constraint α > 3/8 = 0.375.

A first look at Figure 6.5 allows us to observe relevant differences between the structural

characteristics of the Shape-Rényi complexity SR(α) after comparing the curves corres-

ponding to both conjugated spaces. The position space measure SR
(α)
r (Figure 6.5(a))

displays a much richer structure when dealing with very low values of α, reaching a

higher smoothness and monotonicity as α increases. In those cases where the presence

of local extrema is more apparent, a detailed analysis of their location reveals that they

correspond either to closed shell systems or to atoms suffering the so-called anomalous

shell-filling. These two characteristics depend on the occupation number of the outer-

most or valence atomic subshell, where the aforementioned exponential behavior of ρ(r)

makes the density values to be much smaller as compared to those of the core region.

Consequently, powering the density to a small α value enhances the relative contribution

of the valence region, revealing the properties associated to the shell-filling process. Spe-

cially relevant is the strength of peaks for systems with ’s’ valence subshell as compared

to other values of the angular momentum quantum number. It is additionally observed

that changes of SR(α) in both spaces as increasing the nuclear charge (i.e. between
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Figure 6.5: Shape-Rényi complexity SR(α) for α = 0.4, 0.8, 1.0, 1.6, 2.0, 2.4, 3.6 in (a)
position space and (b) momentum space. Atomic units are used.

consecutive systems) become smaller as far as considering heavier atoms, being much

more apparent for light ones.

The same study in momentum space (Figure 6.5(b)) provides similar conclusions in what

concerns the location of extrema and its interpretation in terms of the shell structure.

The main difference when comparing it to the position space curves is that such a struc-

ture is displayed independently of the α value considered, being much more apparent

again for lower α’s. Nevertheless, even for high α values such a structure can be also

observed under a much smaller scale. Again the reason for finding this behavior can be

understood having in mind that the valence region is populated by low speed electrons,

represented in terms of the momentum density γ(p) by its value around the origin (i.e.

close to p = 0). The momentum density in that region reaches high enough values in
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order to provide information on the valence electrons even without carrying out the

enhancement operation by lowering the α parameter.
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(a) position space
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Figure 6.6: Fisher-Rényi complexity FR(α) for α = 0.4, 0.8, 1.0, 1.6, 2.0, 2.4, 3.6 in (a)
position space and (b) momentum space. Atomic units are used.

Similar comments to those arising from the analysis of the figure corresponding to

the Shape-Rényi complexity SR(α) in both conjugated spaces remain also valid for the

Fisher-Rényi complexity FR(α) as observed in the Figure 6.6, at least in what concerns

location of extrema and level of structure in each space. The Figure 6.6 is composed

similarly as the Figure 6.5, i.e. position (Figure 6.6(a)) and momentum (Figure 6.6(b))

spaces. At this point it is worthy to remember the very different character of the factors

involved as measures of order for each complexity, namely the disequilibrium and the

Fisher information respectively. In spite of such a difference, the complexities them-

selves display a very similar structure for all the α values here considered. Nevertheless,
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a detailed analysis reveals the aforementioned ’local sensitivity’ of the Fisher-Rényi com-

plexity FR(α) as compared to the Shape-Rényi one SR(α) in the magnitude of their vari-

ations for closed shells and anomalous shell-filling systems, especially in the momentum

space, not so apparent in the position one.

It should be pointed out the role played by the Rényi complexities SR and FR as

compared to the individual factors composing them. It is well known the monotonic

and structureless behavior of e.g. the disequilibrium Dr or the Fisher entropy Ir in

position space [305], as also recently observed for the Rényi entropy R
(α)
p with α > 1

[73].

The study of the Figure 6.5 and 6.6 reveals not only the interest of considering different

values of the Rényi parameter α in order to obtain a more complete information on the

structure of the density in different atomic regions from the Rényi-like complexities, but

also the usefulness of dealing simultaneously with both conjuated spaces.

6.2.1 Rényi information planes

Far beyond the Shape-Rényi and Fisher-Rényi atomic complexities as descriptors of the

shell-filling pattern and information content, it appears also relevant the study of the

contribution to the whole complexity of each of its composing factors, in order to analyse

the location of all atomic systems here considered in the corresponding order-disorder

plane substented by the individual factors. In this way, systems belonging to similar

complexity values can be also classified attending to their disequilibrium/order on one

hand, and to their uncertainty/disorder on the other.

For illustration, the corresponding I − J (α) and D − L(α) planes are shown in Figures

6.7 and 6.8, respectively, in the position space for the first case (i.e. Ir − J (α)
r in Figure

6.7) and in the momentum one for the other (i.e. Dp − L(α)
p in Figure 6.8). Similar

conclusions are obtained for the other planes: for a given space, both planes look si-

milar, the differences being mainly associated to the global and local character of the

involved factors, as will be explained when discussing the Figures 6.7 and 6.8 in detail.

Nevertheless, it should be remarked that momentum space planes appear more involved

than the position ones. As mentioned in the previous Section, the information content

of the atomic systems is mainly governed by the nuclear region in position space and

by the valence subshells in the momentum one. Adding electrons to the atomic systems

constitutes a process which follows rules (shell-filling pattern) not as simple as merely

increasing the nuclear charge. Such a difference is also displayed in the corresponding

information planes.

Figure 6.7 displays the Fisher-Rényi plane in position space, for different values of the

parameter α. The main two comments arising from the analysis of this figure are: (i) as

observed for the position space complexities, the atomic shell structure is displayed, also
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Figure 6.7: Fisher-Rényi plane I − J (α) in position space, for α = 0.4, 1.0, 2.0, 3.6.
Atomic units are used.

in the information planes, for low α values, the curves being very smooth and almost

monotonic for higher ones; the location of peaks corresponding to local extrema are

associated to the characteristics of the atomic shell-filling, and (ii) all curves display a

similar trend of large Fisher information and low power entropy for heavy atoms, which

can be interpreted as a relevant increase of gradient at the origin as the electron cloud

concentrates around the nuclear region when the nuclear charge increases, while in other

regions the electron density spreads almost uniformly, increasing consequently the power

entropy.
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Figure 6.8: Shape-Rényi plane D − L(α) in momentum space for α =
0.4, 0.8, 1.0, 1.6, 2.0, 2.4, 3.6. Atomic units are used.
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The aforementioned involvement in momentum space as a consequence of the shell-filling

process is clearly observed in Figure 6.8, where the location of the different atomic

systems in the momentum D − L(α) plane for a given value of the parameter α are

displayed as a ’cloud’, instead of a curve as in previous figures (apart from the trivial

case α = 2 with a constant SR(α) product). Nevertheless, it is observed a general trend

for each α value, in the sense that heavy systems concentrate around the upper-left

region, corresponding to low disequilibrium and high exponential entropy (i.e. low order

and high uncertainty). Additionally, the distance between consecutive systems becomes

shorter as increasing their nuclear charge. In what concerns the dependence on α, it is

observed that the clouds are ordered from above to below as increasing α, belonging to

different bands, parallel to the unity product line.

A comparison between Figures 6.7 and 6.8 perfectly shows the complementary character

of the two conjugated spaces as well as that of the contributing individual factors to the

whole complexity in both information planes. In this sense, it is worthy to remark that

heavy systems are located, in the position space I − J plane, in the lower right corner,

corresponding to a high localization and a low entropy. Opposite trends, however, are

observed in momentum space D − L plane.

As in the complexity figures, it is also possible to distinguish the shell-filling patterns for

low α in momentum space, more clearly for inner subshells (i.e. 1s, 2s, 2p). Nevertheless,

the same can be also observed for additional subshells by employing an appropriate scale

in the figure.

6.3 Conclusions

In this Chapter we have obtained a set of rigorous properties and uncertainty-like ine-

qualities on complexity measures, which have been also analyzed numerically for neutral

atomic systems. We can conclude that the complexity measures are useful quantities

in order to interpret different structural properties of atomic systems. Attending to

the main complexity definitions in terms of the Shannon entropy, the Fisher informa-

tion and the variance, several rigorous properties have been obtained. Such properties

include universal bounds, limiting expressions, relationships among themselves and/or

radial expectation values and uncertainty products, as well as the exact values for spe-

cific functions (e.g. hydrogenic densities and information-extremizer distributions). All

results here obtained are valid for arbitrary systems, being numerically tested in atomic

systems for the sake of completeness.

On the other hand, in Section 6.2, the Shape-Rényi and Fisher-Rényi complexities gener-

alize the well-known ones LMC and FS respectively, previously employed for analyzing

atomic densities, including them as particular cases. The characteristic parameter of

the Rényi complexities allows us to modify the relative weight of the distribution within
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specific regions of physical interest. The numerical study carried out in the present work

provides relevant information on the atomic shell structure as well as the uncertainty

and disequilibrium patterns in both conjugated spaces for neutral atoms throughout

the whole Periodic Table. The complementary role played by the involved information

measures, of very different character, appears highly relevant especially when dealing

simultaneously with the position and momentum distributions. Each one behaves in a

characteristic fashion according to the nuclear charge of the involved systems, as well as

to their shell-structure and the groups they belong to.
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Complexity analysis of

d-dimensional hydrogenic systems

A basic problem in information theory of natural systems is the identification of the

proper quantifier(s) of their complexity and internal disorder at their physical states.

Presently this aim remains open not only for a complicated system, such as e.g. a nucleic

acid (either DNA or its single-strand lackey, RNA) in its natural state, but also for the

simplest quantum-mechanical realistic systems, including the hydrogenic atom.

The internal disorder of a system, which is manifest in the non-uniformity of the

quantum-mechanical density and in the so distinctive hierarchy of its physical states,

is being increasingly investigated beyond the root-mean-square or standard deviation

(also called Heisenberg measure) by means of various information-theoretic quantities;

firstly, by means of the Shannon entropy [53, 161, 169], and later on, by other infor-

mation and/or spreading measures such as the Fisher information and the power and

logarithmic moments [146], as described in Chapter 2 (see also Ref. [317]) where the

information theory of d-dimensional hydrogenic systems is reviewed in detail.

Just recently, further complementary insights have been shown to be obtained in the

three-dimensional Hydrogen atom at arbitrary states by means of composite information-

theoretic measures, such as the Fisher-Shannon and the LMC complexities. In partic-

ular, Sañudo and López-Ruiz [318] have found some numerical evidence that, contrary

to the energy, both the Fisher-Shannon measure and the LMC complexity in position

space do not present any accidental degeneracy (i.e. they do depend on the orbital

quantum number l); moreover, they reach their minimal values at the circular states

(i.e., those with the highest l). In fact, the position Shannon entropy by itself possesses

also these two characteristics as it has been numerically observed long ago [53], where

the dependence on the magnetic quantum number m is additionally studied for various

physical states.
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In this Chapter we provide (Section 7.1) the analytical methodology required to calculate

the LMC or shape complexity of the stationary states for the d-dimensional hydrogenic

system in the two conjugated position and momentum spaces, and then we apply it to

a special class of physical states which includes the ground state and the circular states

(i.e. states with the highest hyperangular momenta allowed within a given electronic

manifold). After describing the known expressions of the quantum-mechanical density

of the system in both spaces, we show that the computation of their LMC complexities

for arbitrary d-dimensional hydrogenic stationary states boils down to the evaluation of

some entropic functionals of Laguerre and Gegenbauer polynomials.

In order to get the final expressions of these complexity measures in terms of the dimen-

sionality d and the quantum numbers characterizing the physical state under consider-

ation, we need to compute the values of these polynomial entropic functionals what is,

in general, a formidable open task. However, in subsection 7.1.1, we succeed to do it

for the important cases of ground and circular states. It seems that for the latter ones

the shape complexity reaches its minimal value, at least in the three-dimensional case as

indicated above. It is also shown that the results obtained always fulfil the uncertainty

relation satisfied by the position and momentum shape complexities obtained in Chapter

6. In subsection 7.1.2 we numericaly analyze the results obtained before in terms of the

dimensionality of the systems. After the study for arbitrary dimensions, we focus our

interest in the obtention of the complexity measures of the three-dimensional Hydrogen

atoms. In Section 7.2 we compare the LMC and the Fisher-Shannon complexities in

order to check which quantity better describes the internal disorder of these systems.

Some upper bounds to the Fisher-Shannon complexity will be given. The last appli-

cation within this Chapter is the study of the complexity measures in a Klein-Gordon

single-particle system, Section 7.3, carried out in order to analyze the relativistic effects

in the degree of complexity for hydrogenic systems. Finally, some conclusions are given

in Section 7.4.

7.1 Multidimensional hydrogenic systems

The hydrogenic orbitals (i.e., the solutions of the non-relativistic, time-independent

Schrödinger equation describing the quantum mechanics for the motion of an electron

in the Coulomb field of a nucleus with charge +Z) corresponding to stationary states of

the hydrogenic system in the configuration space are characterized within the infinite-

nuclear-mass approximation by the energetic eigenvalues

E = − Z2

2η2
, (7.1)
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and the eigenfunctions Ψn,l,{µ} (~r), which provides us with the quantum-mechanical pro-

bability density of this system in position space:

ρn,l,{µ}(~r) =
∣∣Ψn,l,{µ} (~r)

∣∣2 = R2
n,l(r)

∣∣Yl,{µ} (Ωd)
∣∣2 , (7.2)

where n is the principal quantum number and (l, {µ}) ≡ (l = µ1, µ2, ..., µd−1) denote the

hyperquantum numbers associated to the angular variables Ωd−1 ≡ (θ1, θ2, ..., θd−1 ≡ ϕ),

which may have all values consistent with the inequalities l ≡ µ1 ≥ µ2 ≥ ... ≥ |µd−1| ≡
|m| ≥ 0.

The radial function is given by

Rn,l(r) =

(
λ−d

2η

)1/2 [
ω2L+1(r̂)

r̂d−2

]1/2

L̃2L+1
η−L−1(r̂), (7.3)

where L̃αk (x) denotes the Laguerre polynomial of degree k and parameter α, orthonormal

with respect to the weight function ωα(x) = xαe−x, the adimensional parameter r̂ =
r

λ
with λ =

η

2Z
, the grand principal quantum number η and the grand orbital angular

momentum hyperquantum number L are

η = n+
d− 3

2
; n = 1, 2, 3, ..., and L = l +

d− 3

2
, l = 0, 1, 2, ... (7.4)

verifying η − L− 1 = n− l − 1.

The angular part Yl,{µ}(Ωd) is given by the hyperspherical harmonics [153, 319]

Yl,{µ}(Ωd) =
1√
2π
eimϕ

d−2∏

j=1

C̃
αj+µj+1

µj−µj+1
(cos θj) (sin θj)

µj+1 , (7.5)

with αj = 1
2(d− j − 1) and C̃λk (x) denotes the orthonormal Gegenbauer polynomials of

degree k and parameter λ.

In momentum space the eigenfunction of the system is the d-dimensional Fourier trans-

forms of the wavefunction in position space [134, 151, 153, 317], which square provides

the probability density in momentum space:

γ(~p) =
∣∣∣Ψ̃n,l,{µ} (~p)

∣∣∣
2

= M2
n,l(p)

[
Yl{µ}(Ωd)

]2
, (7.6)

where the radial part is

Mn.l(p) = 2L+2
( η
Z

)d/2 (ηp̃)l

(1 + η2p̃2)L+2
C̃L+1
η−L−1

(
1 − η2p̃2

1 + η2p̃2

)
(7.7)

=
( η
Z

)d/2
(1 + y)3/2

(
1 + y

1 − y

) d−2
4

ω∗1/2
L+1(y)C̃

L+1
η−L−1(y),
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with y =
1 − η2p̃2

1 + η2p̃2
and p̃ =

p

Z
. The symbol C̃αm(x) denotes the Gegenbauer polyno-

mial of order k and parameter α orthonormal with respect to the weight function

ω∗
α = (1 − x2)α−

1
2 on the interval [−1,+1]. The angular part is again an hyperspherical

harmonic as in the position case, given by Eq. (7.5), but with the angular variables of

the vector ~p.

Let us remember the expression of the LMC complexity in position space:

Cr(LMC) = D [ρ] × eS[ρ] (7.8)

where D [ρ] is the disequilibrium and S [ρ] is the Shannon entropy. The expression for

the momentum complexity Cp(LMC) is analogous considering γ(~p). So, the calculation

of the LMC or shape complexity of the position and momentum hydrogenic densi-

ties ultimately reduces to the evaluation of some entropic functionals of Laguerre and

Gegenbauer polynomials.

Position space

Let us first calculate the disequilibrium D [ρ]. From Eq. (7.2) one obtains that

D [ρ] =

∫
ρ(~r)2d~r =

2d−2

ηd+2
ZdK1 (d, η, L)K2 (l, {µ}) , (7.9)

where

K1 (d, η, L) =

∫ ∞

0
x−d−5

{
ω2L+1(x)

[
L̃2L+1
η−L−1(x)

]2}2

dx (7.10)

and

K2 (l, {µ}) =

∫

Ω

∣∣Yl{µ} (Ωd−1)
∣∣4 dΩd−1 (7.11)

The Shannon entropy of ρ (~r) has been shown to have the following expression:

S [ρ] = S [Rnl] + S
[
Yl{µ}

]
, (7.12)

with the radial part

S [Rn,l] = −
∫ ∞

0
rd−1R2

n,l(r) logR2
n,ldr

= A(n, l, d) +
1

2η
E1

[
L̃2L+1
η−L−1

]
− d lnZ, (7.13)
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and the angular part

S
[
Yl,{µ}

]
= −

∫

Sd−1

∣∣Yl,{µ} (Ωd)
∣∣2 ln

∣∣Yl,{µ} (Ωd)
∣∣2 dΩd

= B(l, {µ} , d) +

d−2∑

j=1

E2

[
C̃
αj+µj+1

µj−µj+1

]
, (7.14)

where A(n, l, d) and B(l, {µ} , d) have the values

A(n, l, d) = −2l

[
2η − 2L− 1

2η
+ ψ(η + L+ 1)

]
+

3η2 − L(L+ 1)

η
+− ln

[
2d−1

ηd+1

]
, (7.15)

and

B(l, {µ} , d) = ln 2π − 2
d−2∑

j=1

µj+1

×
[
ψ(2αj + µj + µj+1) − ψ(αj + µj) − ln 2 − 1

2(αj + µj)

]
, (7.16)

with ψ(x) =
Γ

′
(x)

Γ(x)
the digamma function. The entropic functionals Ei [ỹn], i = 1 and

2, of the polynomials {ỹn}, orthonormal with respect to the weight function ω(x), are

defined [169, 170] by

E1 [ỹn] = −
∫ ∞

0
xω(x)ỹ2

n(x) ln ỹ2
n(x)dx, (7.17)

and

E2 [ỹn] = −
∫ +1

−1
ω(x)ỹ2

n(x) ln ỹ2
n(x)dx, (7.18)

respectively.

Finally, from Eqs. (7.8), (7.9) and (7.12)-(7.14), we obtain the following value for the

position LMC complexity of our system:

Cr(LMC) =
2d−2

ηd+2
K1 (d, η, L)K2 (L, {µ}) (7.19)

× exp

[
A(n, l, d) +

1

2η
E1

[
L̃2L+1
η−L−1

]
+ S

[
Yl,{µ}

]]
,

where the entropy of the hyperspherical harmonics S
[
Yl,{µ}

]
, given by Eq. (7.14), is

controlled by the entropy of Gegenbauer polynomials E2

[
C̃αk

]
defined by Eq. (7.18). It

is worthy to remark that the position complexity C [ρ] in a hydrogenic system does not

depend on the strength of the Coulomb potential, that is, on the nuclear charge Z (as

discussed in the previous Chapter, Section 6.1).
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Momentum space

The LMC complexity of the momentum probability density γ (~p) is given by Cp(LMC) =

D [γ]× eS[γ], where the momentum averaging density or disequilibrium D [γ] can be ob-

tained from Eq. (7.6) as follows:

D [γ] =

∫
γ2 (~p) d~p =

24L+8ηd

Zd
K3 (d, η, L)K2 (l, {µ}) , (7.20)

with K2 being given by Eq. (7.11), and K3 can be expressed as

K3 (d, η, L) =

∫ ∞

0

y4l+d−1

(1 + y2)4L+8

[
C̃L+1
η−L−1

(
1 − y2

1 + y2

)]4

dy. (7.21)

On the other hand, the momentum Shannon entropy S [γ] can be calculated in a similar

way as in the position case. We obtain

S [γ] = −
∫
γ (~p) ln γ (~p) d~p = S [Mnl] + S

[
Yl,{µ}

]

= F (n, l, d) + E2

[
C̃L+1
η−L−1

]
+ d lnZ + S

[
Yl,{µ}

]
, (7.22)

where F (n, l, d) is given by the expression

F (n, l, d) = − ln
ηd

22L+4
− (2L+ 4) [ψ(η + L+ 1) − ψ(η)]

+
L+ 2

η
− (d+ 1)

[
1 − 2η(2L + 1)

4η2 − 1

]
. (7.23)

Then, from Eqs. (7.20) and (7.22) we finally have the value for the momentum LMC

complexity

Cp(LMC) = 24L+8ηdK3 (d, η, L)K2 (L, {µ}) (7.24)

× exp
{
F (n, l, d) + E2

[
C̃L+1
η−L−1

]
+ S

[
Yl,{µ}

]}
.

Notice that, here again, this momentum quantity does not not depend on the nuclear

charge Z. Moreover the momentum complexity Cp(LMC) is essentially controlled by

the entropy of the Gegenbauer polynomials E2

[
C̃αk

]
, since the entropy of hyperspherical

harmonics S
[
Yl,{µ}

]
reduces to that of these polynomials according to Eq. (7.14).

7.1.1 LMC complexity of ground and circular states

Here we apply the general expressions (7.19) and (7.24) previously found for the position

and momentum shape complexities of an arbitrary physical state of the d-dimensional
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hydrogenic system, for the cases of the ground state (n = 1, µi = 0,∀i = 1, · · · , d− 1)

and the circular states. A circular state is a single-electron state with the highest

hyperangular momenta allowed within a given electronic manifold, i.e. a state with

hyperangular momentum quantum numbers µi = n− 1 for all i = 1, ..., d − 1.

Ground state

In this case η − L− 1 = 0, so that the Laguerre polynomial involved in the radial wave-

function is a constant. Then, the probability density of the ground state in position

space given by Eqs. (7.2), (7.3) and (7.5), reduces as follows:

ρg.s.(~r) =

(
2Z

d− 1

)d 1

π
d−1
2 Γ

(
d+1
2

)e−
4Z

d−1
r, (7.25)

which has been also found by other authors (see e.g. Ref. [126]).

The expressions (7.9)-(7.11), which provide the averaging density of an arbitrary quantum-

mechanical state, reduce to the value

D [ρg.s.] =
Zd

(d− 1)d
1

π
d−1
2 Γ

(
d+1
2

) , (7.26)

for the ground-state averaging density. Moreover, the angular part of the entropy is

S
[
Y0,{0}

]
= ln

2πd/2

Γ
(
d
2

) , (7.27)

so that it has the value ln 2π and ln 4π for d = 2 and 3, respectively. Then, the formulas

(7.12)-(7.18) of the Shannon entropy for arbitrary physical state of our system simplify

the total Shannon entropy as

S [ρg.s.] = ln

[
(d− 1)d

2d
π

d−1
2 Γ

(
d+ 1

2

)]
+ d− d lnZ, (7.28)

for the ground-state. Finally, from Eq. (7.19) or from its own definition together with

Eqs. (7.26)-(7.28) we obtain the position LMC complexity of the d-dimensional hydro-

genic ground state, having the value

Cr(LMC)(g.s.) =
(e

2

)d
(7.29)
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In momentum space we can operate in a similar way. First we have determined the

ground-state probability density

γg.s.(~p) =
(d− 1)dΓ

(
d+1
2

)

Zdπ
d+1
2

1
(
1 + (d−1)2

4 p̃2
)d+1

, (7.30)

which has been also given by Aquilanti et al [134], among others. Then, we have obtained

the values

D [γg.s.] =

(
2d− 2

Z

)d 1

π
d+2
2

Γ2
(
d+1
2

)
Γ
(
2 + 3d

2

)

Γ (2d+ 2)
, (7.31)

for the momentum averaging density directly from Eqs. (7.20)-(7.21), and

S [γg.s.] = ln
π

d+1
2

(d− 1)dΓ
(
d+1
2

) + (d+ 1)

[
ψ(d+ 1) − ψ

(
d

2
+ 1

)]
+ d lnZ, (7.32)

for the momentum Shannon entropy, from Eqs. (7.22)-(7.23). Finally. from Eq. (7.24)

or by means of Eqs. (7.31)-(7.32) we have the expression

Cp(LMC)(g.s.) =
2dΓ

(
d+1
2

)
Γ
(
2 + 3d

2

)

π1/2Γ (2d+ 2)

× exp

{
(d+ 1)

[
ψ (d+ 1) − ψ

(
d+ 2

2

)]}
, (7.33)

for the ground-state d-dimensional hydrogenic LMC complexity in momentum space.

In particular, this quantity has the values

Cp(LMC)(g.s.; d = 2) =
2e3/2

5
= 1.7926, (7.34)

Cp(LMC)(g.s.; d = 3) =
66

e10/3
= 2.3545, (7.35)

Cp(LMC)(g.s.; d = 4) =
e35/12

6
= 3.0799, (7.36)

for the ground-state hydrogenic system with dimensionalities d = 2, 3 and 4, respectively.

Let us here mention that the three-dimensional value agrees with that calculated in Ref.

[298].

Circular states

Following a parallel process with circular states, we have obtained

ρc.s.(~r) =
2d+2−2nZd

π
d−1
2 (2n+ d− 3)dΓ(n)Γ

(
n+ d−1

2

)e−
r
λ

( r
λ

)2n−2
d−2∏

j=1

(sin θj)
2n−2 , (7.37)
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for the position probability density, and

γc.s.(~p) =
22n−2(2n+ d− 3)dΓ

(
n+ d−1

2

)

Zdπ
d+1
2 Γ(n)

(ηp/Z)2n−2

(1 + η2p2

Z2 )2n+d−1

d−2∏

j=1

(sin θj)
2n−2 , (7.38)

for the momentum probability density of a d-dimensional hydrogenic circular state with

principal quantum number n. Moreover, we have found the values

D [ρc.s.] =
ZdΓ

(
n− 1

2

)
Γ
(
2n+ d−3

2

)

22n−2π
d
2 (2n + d− 3)dΓ (n) Γ2

(
n+ d−1

2

) , (7.39)

and

D [γc.s.] =
24n+d−4(2n+ d− 3)dΓ2

(
n+ d−1

2

)
Γ (2n− 1) Γ

(
2n+ 3d

2

)

Zdπ
d+2
2 Γ2 (n) Γ (4n+ 2d− 2)

, (7.40)

for the position and momentum averaging densities of circular states. On the other

hand, we have also been able to express the position and momentum entropies as

S [ρc.s.] = 2n+ d− 2 − (n− 1)

[
ψ(n) + ψ

(
n+

d− 1

2

)]
− d ln 2

+ ln

[
(2n+ d− 3)dπ

d−1
2 Γ(n)Γ

(
n+

d− 1

2

)]
− d lnZ, (7.41)

and

S [γc.s.] = A(n, d) + ln

[
2d+1Zdπ

d+1
2 Γ(n)

(2n + d− 3)dΓ
(
n+ d−1

2

)
]
, (7.42)

where the constant A(n, d) is given by

A(n, d) =
2n+ d− 1

2n+ d− 3
− d+ 1

2n+ d− 2
− (n− 1)ψ(n)

−
(
d+ 1

2

)
ψ

(
n+

d− 2

2

)
+

(
n+

d− 1

2

)
ψ

(
n+

d− 3

2

)
. (7.43)

Finally, from Eqs. (7.39)-(7.42) or equivalently from Eqs. (7.19) and (7.24) we get the

values

Cr(LMC)(c.s.) =
Γ
(
n− 1

2

)
Γ
(
2n+ d−3

2

)

22n+d−2π1/2Γ
(
n+ d−1

2

)

× exp

{
2n + d− 2 − (n − 1)

[
ψ(n) + ψ

(
n+

d− 1

2

)]}
, (7.44)

and

Cp(LMC)(c.s.) =
24n+2d−3Γ

(
n+ d−1

2

)
Γ(2n − 1)Γ

(
2n+ 3d

2

)

π1/2Γ(n)Γ(4n + 2d− 2)
exp [A(n, d)] , (7.45)
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for the position and momentum LMC complexity of a d-dimensional hydrogenic system

in an arbitrary circular state. It is worthwhile remarking, for checking purposes, that

Eqs. (7.44) and (7.45) reduce to Eqs. (7.29) and (7.33), respectively, in case that n = 1,

as expected; in this sense we have to use the duplication and recurrence properties of

the digamma function, namely: ψ (2z) = 1
2

[
ψ (z) + ψ

(
z + 1

2

)]
+ ln 2 and ψ (z + 1) =

ψ (z) + 1
z .

7.1.2 Numerical study and dependene on the dimensionality

Here we discuss the general complexity expressions previously obtained, in terms of (i)

the dimensionality for a given circular state (i.e., for fixed n), and (ii) the principal

quantum number n for a given dimensionality d.

Let us begin with the dimensional analysis of the position and momentum complexities

for circular states given by Eqs. (7.44) and (7.45), respectively. The position complexity

considered as a function of the dimensionality is plotted in Figure (7.1) for the ground

state (n=1) and the circular states with n = 2 and 3. It displays a parabolic growth for

all states as d increases.

 0
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Figure 7.1: Dependence of the LMC complexity in position space on the dimension
d for three circular states. Atomic units are used.

The LMC complexity of the momentum density appears to have a strong ressemblance

with the position one, mainly because the two basic ingredients of each complexity have

opposite behaviours as d varies. This is clearly shown in Figure (7.2), where the Shannon

entropies S [ρ] and S [γ] as well as the logarithm of the position and momentum values of

the disequilibrium are plotted for the ground state against d. Let us keep in mind that

Cr(LMC) = exp (S [ρ] + lnD [ρ]) in position space and similarly in momentum space.

We observe that the Shannon entropies and the disequilibrium logarithmic measures

have opposite behaviours in the two reciprocal spaces, so that the combined exponential

effect which gives rise to the corresponding complexities is very similar qualitatively and

at least quantitatively. Moreover it happens that, for a given dimensionality, the relative
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contribution of the disequilibrium (entropic power) is smaller than that of the entropic

power (disequilibrium) in position (momentum) space. This indicates that the relative

contribution of the bulk extent of the position (momentum) probability density is more

powerful (less) than its average height.
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S[ρ]

ln D[γ]

S[γ]

ln D[ρ]

Figure 7.2: Ground state Shannon entropy (S [ρ], S [γ]) and disequilibrium (D [ρ],
D [γ]) in position and momentum spaces as a function of the dimension d. Atomic

units are used.

In addition, from Figure (7.1), we observe that the inequalities

Cd [ρc.s.;n = 3] < Cd [ρc.s.;n = 2] < Cd [ρg.s.]

are fulfiled in position space, and similarly in the momentum one, i.e. for a given

dimension of the hydrogenic systems, the highest value of the LMC complexity is reached

for the ground state.
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Figure 7.3: (Left) Dependence of the position LMC complexity of circular states on
the principal quantum number n for various dimensionalities. (Right) Radial probabi-

lity density in position space for various two-dimensional circular states.
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This decreasing phenomenon of the complexity for the circular states when the quantum

number n increases, can be more clearly observed in the left graph of Figure (7.3)

where the values of the position complexity for the states with n = 1-15 are given

at the dimensionalities d = 2, 5 and 15. Therein we remark that when the quantum

number n increases, the radial density behaves so that its maximum height decreases

and its spreading increases at different rates in such a way that, in overall, occurs the

phenomenon pointed out by this chain of inequalities; namely, the larger n is, the smaller

is the LMC complexity of the corresponding circular state.

These dimensional and energetic (quantum number n) behaviours of the position com-

plexity turn out to be a delicate overall balance of the average height and the bulk

spreading of the system given by its two information-theoretic ingredients: the disequi-

librium D [ρ] and the Shannon entropic power, respectively.

Now we look for the dimensional (i.e., with d → ∞) limit, and the high energy or

Rydberg (n → ∞) limit of the position and momentum complexities of the system.

The former one plays a relevant role in the dimensional scaling methods in atomic and

molecular physics [126], and the latter one for the Rydberg states which lie down at

the region where the transition classical-quantum takes place. The large d limit is close

to (but not the same) the conventional classical limit obtained as ~ → 0 for a fixed

dimension [126].

For the ground state, whose energy is Eg.s. = −2

(
Z

d− 1

)2

, the position complexity is,

according to Eq. (7.29), Cr(LMC)(g.s.) =
(e

2

)d
. So that at the pseudoclassical limit,

in which the electron is located at a fixed radial distance, the energy vanishes while the

position complexity diverges. In momentum space, the LMC complexity given by Eq.

(7.33) has the asymtotic behaviour

Cp(LMC)(g.s.) ∼ 3
3
2
(d−1)

22d− 3
2
√
e
, d→ ∞ (7.46)

for the pseudoclassical limit.

A similar asymptotic analysis of Eq. (7.44) has allowed us to find the following limiting

values for the position LMC complexity of a general circular state (characterized by the

quantum number n):

Cr(LMC)(c.s.) ∼
(e

2

)d+2n−2
e(1−n)ψ(n) Γ

(
n− 1

2

)
√
π

, d→ ∞ (7.47)

at the dimensional limit, and the value

Cr(LMC)(c.s.) ∼
(e

2

) d−1
2
, n≫ 1 (7.48)
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for the circular Rydberg states of a d-dimensional hydrogenic system.

Operating with Eq. (7.45) in a parallel way, we have obtained the expressions

Cp(LMC)(c.s.) ∼
(

33/2

4

)d
32n− 1

2 Γ(2n − 1)

24n− 5
2 Γ(n)

e(1−n)ψ(n)− 1
2 , d→ ∞ (7.49)

for the momentum LMC complexity of a circular state with quantum number n at the

pseudoclassical limit, and

Cp(LMC)(c.s.) ∼
(e

2

) d−1
2
, n≫ 1 (7.50)

for the momentum LMC complexity of a circular Rydberg state.

Let us also make some comments about the uncertainty products of the position and

momentum LMC complexities C [ρ] × C [γ] for the ground and circular states. The

general expressions are readily obtained from Eqs. (7.29) and (7.44) in position space,

and from Eqs. (7.33) and (7.45) in momentum space. Consequently, this uncertainty

product behaves as

Cr(LMC)(c.s.) × Cp(LMC)(c.s.) ∼
(e

2

)d−1
, n≫ 1 (7.51)

at the Rydberg limit, and as

Cr(LMC)(c.s.)×Cp(LMC)(c.s.) ∼
(

33/2e

23

)d
32n− 1

2

24n− 5
2

Γ2
(
n− 1

2

)

π
e2n−

5
2
−2(n−1)ψ(n), d→ ∞

(7.52)

at the high dimensional limit for circular states, where Eqs. (7.47)-(7.50) have been

taken into account. The last expression yields

Cr(LMC)(g.s.) ×Cp(LMC)(g.s.) ∼
(

33/2e

23

)d(
3

2e1/3

) 3
2

, d→ ∞ (7.53)

for the ground state uncertainty product. Finally, for completeness, let us remark that

the complexity uncertainty product is always not below e
2 = 1.359.

7.2 Three-dimensional hydrogenic systems

There does not stil exist any quantity to properly measure the rich variety of three-

dimensional geometries of the hydrogenic orbitals, which are characterized by means of

three integer numbers: the principal, orbital and magnetic/azimuthal quantum numbers,

usually denoted by n, l and m, respectively. This is a particular case of the systems

studied in the previous Section 7.1 taking d = 3.
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We use the LMC, Fisher-Shannon and Cramér-Rao complexities to quantify the struc-

ture and the internal disorder of these systems in position space. These measures quan-

tify different facets of the internal structure of the system which are manifest in the

diverse three-dimensional geometries of its orbitals. The Fisher-Shannon measure grasps

the oscillatory nature of the electronic cloud together with its total extent in the config-

uration space. The Cramér-Rao quantity takes also into account the gradient content

but toghether with the electronic spreading around the centroid. The LMC comple-

xity quantifies the combined effects of the average height and the total spreading of the

probability density, so being insensitive to the electronic oscillations.

Let us briefly advance that here we find that the Fisher-Shannon measure turns out to be

the most appropriate one to describe the (intuitive) complexity of the three dimensional

geometry of hydrogenic orbitals.

For the three-dimensional case, i.e., taking d = 3 in Eqs. (7.2)-(7.5), one has that the

probability density in position space is given by

ρ(~r) = |Ψn,l,m(~r)|2 = R2
n,l(r) |Yl,m(Ω)|2 (7.54)

where n = 1, 2, ... is the principal quantum number, l = 0, 1, ..., n − 1 is the angular

quantum number and m = −l,−l + 1, ..., l − 1, l, the magnetic quantum number, and

r = |~r| with the solid angle Ω defined by the angular coordinates (θ, ϕ). The radial

component, duly normalized to unity, is given by

Rn,l(r) =
2Z3/2

n2

[
ω2l+1(r̃)

r̃

]1/2

L̃2l+1
n−l−1(r̃), (7.55)

with r̃ =
2Zr

n
, and L̃αk (x) denote the Laguerre polynomials orthonormal with respect

to the weight function ωα(x) = xαe−x on the interval [0,∞); that is, they satisfy the

orthogonality relation ∫ ∞

0
ωα(x)L̃αn(x)L̃αm(x)dx = δnm (7.56)

The angular factor Yl,m(θ, ϕ) is the renowned spherical harmonic which describes the

bulky shape of the system, which is given by

Yl,m(θ, ϕ) =
1√
2π
eimϕC̃m+1/2

l−m (cos θ) (sin θ)m , (7.57)

where {C̃λk (x)} denotes the Gegenbauer or ultraspherical polynomials, which are or-

thonormal with respect to the weight function (1 − x2)λ−1/2 on the interval [−1,+1].

Then, the probability of finding the electron within the volume element d~r centered in

~r can be expresed as

ρ(~r)d~r = Dn,l(r)dr × Θl,m(θ)dθdϕ, (7.58)
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where

Dn,l = R2
n,l(r)r

2, and Θl,m(θ) = |Yl,n(θ, ϕ)|2 sin θ (7.59)

are the known radial and angular probability densities, respectively.

7.2.1 Complexity measures of hydrogenic orbitals in position space

Let us here discuss, both analytically and numerically, the three complexity measures

analized in this Part II (i.e. CR, FS and LMC) for a general hydrogenic orbital with

quantum numbers (n, l,m). Next, (a) the Cramér-Rao measure is given explicitly, (b)

the Fisher-Shannon measure is shown to quadratically depend on the principal quantum

number n, and (c) the LMC complexity is carefully analyzed in terms of the quantum

numbers. In this way we considerably extend the recent finding of Sañudo and López-

Rúız [318] relative to the fact that the Fisher-Shannon and LMC complexities have

their minimum values for the orbitals with the highest orbital momentum.

The Cramér-Rao complexity has the value

Cr(CR) = I [ρ] × V [ρ] =
n− |m|
n3

[
n2(n2 + 2) − l2(l + 1)2

]
, (7.60)

where we have taken into account that, for the three-dimensional hydrogenic systems,

we have

V [ρ] =
n2(n2 + 2) − l2(l + 1)2

4Z2
, (7.61)

for the variance, and

I [ρ] =
4Z2

n3
(n− |m|) , (7.62)

for the Fisher information.

To obtain the Fisher-Shannon measure, it is necessary to calculate the Shannon entropy

given by Eqs. (7.12)-(7.16) with d = 3,

S [ρ] = Ã(n, l,m) +
1

2n
E1

(
L̃2l+1
n−l−1

)
+ E2

(
C̃

|m|+1/2
l−|m|

)
, (7.63)

where

Ã(n, l,m) = ln
(
22|m|−1πn4

)
+

3n2 − l(l + 1)

n
− 2l

[
2n− 2l − 1

2n
+ ψ(n+ l + 1)

]

− 2 |m|
[
ψ(l +m+ 1) − ψ(l + 1/2) − 1

2l + 1

]
, (7.64)

and the integrals E1 and E2 are given by Eqs. (7.17) and (7.18) respectively.

So, the Fisher-Shannon complexity has the value

Cr(FS) = I [ρ] × 1

2πe
e

2
3
S[ρ] =

4 (n− |m|)
n3

1

2πe
e

2
3
B(n,l,m), (7.65)
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where

B(n, l,m) = A(n, l,m) +
1

2n
E1

(
L̃2l+1
n−l−1

)
+ E2

(
C̃|m|+1/2
l−|m|

)
. (7.66)

For the LMC complexity, it is necessary to derive the disequilibrium from Eqs. (7.9)-

(7.11) with d = 3:

D [ρ] =

∫
ρ(~r)2d~r =

∫ ∞

0
r2 |Rn,l(r)|4 ×

∫

Ω
|Yl,m(Ω)|4 dΩ

= D [Rn,l] ×D [Yl,m] = Z3D(n, l,m), (7.67)

where

D(n, l,m) =
(2l + 1)2

24nπn5

nr∑

k=0

(
2nr − 2k
nr − k

)2
(k + 1)k

k!

Γ (4l + 2k + 3)

Γ2 (2l + k + 2)

×
2l∑

l′=0

(2l′ + 1)

(
l l l′

0 0 0

)2(
l l l′

m m −2m

)2

, (7.68)

with nr ≡ n− l − 1, and the 3j-symbols [320] have been used.

The radial part, D [Rn,l], of the disequilibrium is given by Eq. (7.10) for d = 3:

D [Rn,l] =
Z322−4n

n5

nr∑

k=0

(
2nr − 2k

nr − k

)2
(k + 1)k

k!

Γ (4l + 2k + 3)

Γ2 (2l + k + 2)
, (7.69)

and Eq. (7.11) provides the angular part, D [Yl,m],

D [Yl,m] =

∫ 2π

0
dφ

∫ π

0
sin θdθ |Ylm (θ, φ)|4

=
2l∑

l′=0

(
l̂2 l̂′√
4π

)2(
l l l′

0 0 0

)2(
l l l′

m m −2m

)2

, (7.70)

where the linearization formulas

[
L2l+1
nr

(x)
]2

=
Γ(2l + nr + 2)

22nrnr!

nr∑

k=0

(
2nr − 2k
nr − k

)
(2k)!

k!

1

Γ(2l + 2 + k)
L4l+2

2k (2x), (7.71)

and

|Ylm (Ω)|2 =

2l∑

l′=0

l̂2l̂′√
4π

(
l l l′

0 0 0

)(
l l l′

m m −2m

)
Y ∗
l′,2m (Ω) , (7.72)

with â =
√

2a+ 1 have been considered. Taking into account the integral

∫

Ω
Yl1,m1 (Ω)Yl2,m2 (Ω)Y ∗

l3,m3
(Ω) dΩ =

l̂1l̂2 l̂3√
4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
, (7.73)
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and the orthogonality relation for the Laguerre polynomials, one straightforwardly ob-

tains the results provided by Eqs. (7.69) and (7.70)

Then, taking into account Eqs. (7.63), (7.66) and (7.67) one has the value

Cr(LMC) = D [ρ] eS[ρ] = D(n, l,m)eB(n,l,m). (7.74)

In particular, for the ground state (n = 1, l = m = 0) we have the values

Cr(CR)(g.s) = 3, Cr(FS)(g.s.) =
2e

π1/3
, Cr(LMC)(g.s.) =

e3

8
, (7.75)

for the three composite information-theoretic measures mentioned above. Let us high-

light that neither of the three complexities depend on the nuclear charge. Moreover, it is

known that C(FS) ≥ 3 for all three-dimensional densities [59, 64] but also C(CR) ≥ 9

for any hydrogenic orbital as one can easily prove from Eq. (7.60).

Let us now discuss the numerical results for the Fisher-Shannon, Cramér-Rao and LMC

complexity measures of hydrogenic atoms for various specific orbitals in terms of their co-

rresponding quantum numbers (n, l,m). To make possible the mutual comparison among

these measures, and in order to avoid difficulties regarding physical dimensions, we

study the dependence of the ratio between the measures Cr(LMC)(n, l,m) ≡ C(n, l,m)

of the orbital we are interested in and the corresponding measure Cr(LMC)(1, 0, 0) ≡
C(1, 0, 0) ≡ Cr(LMC)(g.s.) of the ground state, that is:

ζ(n, l,m) ≡ C(n, l,m)

C(1, 0, 0)
, (7.76)

on the three quantum numbers. The results are shown in Figures 7.4, 7.7 and 7.8, where

the relative values of the three composite information-theoretic measures are plotted in

terms of n, m and l, respectively.

More specifically, in Figure 7.4, we have plotted the three measures for various ns-states

(i.e., with l = m = 0). Therein, we observe that (a) the Fisher-Shannon and Cramér-

Rao measures have an increasing parabolic behaviour as n is increases while the LMC

complexity is roughly constant, and (b) the inequalities

ζFS(n, 0, 0) > ζCR(n, 0, 0) > ζLMC(n, 0, 0), (7.77)

are fulfilled for any fixed n. Similar features are displayed by states (n, l,m) other than

(n, 0, 0). In order to both understand this behaviour and gain a deeper insight into the

internal complexity of the hydrogenic atom, which is manifest in the three-dimensional

geometry of its configuration orbitals (and so, in the spatial charge distribution den-

sity of the atom at different energies), we have drawn the radial Dn,l = R2
n,l(r)r

2 and
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Figure 7.4: Relative Fisher-Shannon ζFS(n, 0, 0), Cramér-Rao ζCR(n, 0, 0) and LMC
complexity ζLMC(n, 0, 0) ratios of the ten lowest hydrogenic states s as a function of n.

See text.

angular Θl,m (θ) = |Yl,m (θ, ϕ)|2 sin θ densities (see Eq. (7.59)) in Figures 7.5 and 7.6,

respectively, for the three lowest energetic levels of hydrogen.

From Figure 7.5 we realize that as n increases while keeping fixed l, both the oscilla-

tory character (so, the gradient content and its associated Fisher information) and the

spreading (so, the Shannon entropic power) of the radial density certainly grow while

its variance hardly does so and the average height (which controls D [ρ]) clearly de-

creases. Taking into account these radial observations and the graph of Θ0,0(θ) at the

top line of Figure 7.6, we can understand the parabolic growth of the Fisher-Shannon

and Cramér-Rao measures as well as the lower value and relative constancy of the LMC

complexity for ns states shown in Figure 7.4 when n is increasing. In fact, the gradi-

ent content (mainly because of its radial contribution) and the spreading of the radial

density of these states contribute constructively to the Fisher-Shannon measure of Hy-

drogen, while the spreading and the average height almost cancel out one each other,

making the LMC complexity to have a very small and almost constant value; we should

say, for completeness, that ζLMC(n, 0, 0) increases from 1 to 1.04 when n varies from 1

to 10. In the Cramér-Rao case, the parabolic growth is almost due to the increasing

behaviour of the gradient content, and consequently of its Fisher information ingredient.

Let us now explain and understand the linear decreasing behaviour of the Fisher-

Shannon and Cramér-Rao measures as well as the practical constancy of the LMC

complexity for the hydrogen orbital (n = 20, l = 17, m) when |m| increases, as shown

in Figure 7.7. These phenomena purely depend on the angular contribution due to the

analytical form of the angular density Θ17,m(θ) since the radial contribution (i.e. that

due to the radial density Rn,l(r)) remains constant when m varies. A straightforward
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Figure 7.5: Radial distribution Dn,l = R2
n,l(r)r

2 of all the electronic orbitals co-
rresponding to the three lowest energy levels of Hydrogen. Atomic units have been

used.

extrapolation of the graphs corresponding to the angular densities Θl,m(θ) contained in

Figure 7.6, shows that when l is fixed and |m| increases, both the gradient content and

spreading of this density decrease while the average height and the probability concen-

tration around its centroid are roughly constant. Therefore, the Fisher-Shannon and

Cramér-Rao ratios have a similar decreasing behaviour as shown in Figure 7.7 although

with a stronger rate in the former case, because its two ingredients (Fisher information

and Shannon entropic power) contribute constructively while in the Cramér-Rao case,

one of the components (namely, the variance) does not contribute at all. Keep in mind,

by the way, that the relations (7.61) and (7.62) show that the total variance does not

depend on m and the Fisher information linearly decreases as |m| increases, respectively.

On the other hand, Figure 7.6 shows that the angular average height increases while the

spreading decreases so that the overall combined contribution of these two ingredients

to the LMC complexity remains roughly constant and very small when |m| varies; in

fact, ζLMC(20, 17,m) parabolically decreases from 1 to 0.6 when |m| varies from 0 to 17.

In Figure 7.8 it is shown that the Fisher-Shannon and Cramér-Rao measures have a con-

cave decreasing shape and the LMC complexity turns out to be comparatively constant

for the orbital (n = 20, l,m = 1) with arbitrary orbital quantum number l. We can
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Figure 7.6: Angular distribution Θl,m (θ) = |Yl,m (θ, ϕ)|2 sin θ of all electronic orbitals
corresponding to the four lowest lying energy levels of Hydrogen. Atomic units are used.

understand these phenomena by taking into account the graphs, duly extrapolated, of

the rows of Figure 7.5 and the columns of Figure 7.6 where the radial density for fixed n

and the angular density for fixed m are shown. Herein we realize that when l increases,

(a) the radial gradient content decreases while the corresponding angular quantity in-

creases, so that the gradient content of the total density ρ (~r) does not depend on l in

accordance to its Fisher information as given by Eq. (7.62); (b) the radial and angular

spreadings have decreasing and constant behaviours, respectively, so that the overall

effect is that the Shannon entropic power of the total density ρ (~r) increases, (c) both

the radial and the angular average height increase, so that the total averaging density

ρ (~r) increases, and a similar phenomenon occurs with the concentration of the radial

and angular probability clouds around their respective mean value, so that the total

variance V [ρ] decreases very quickly (as Eq. (7.61) analytically shows). Taking into

account these observations into the relations (7.60), (7.65) and (7.74) which define the

three composite information-theoretic measures under consideration, we can immediatly

explain the decreasing dependence of the Fisher-Shannon and Cramér-Rao measures on

the orbital quantum number as well as the approximate constancy of the LMC com-

plexity, as illustrated in Figure 7.8; in fact, ζLMC(20, l, 1) also decreases but within the
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Figure 7.7: Relative Fisher-Shannon ζFS(20, 17,m), Cramér-Rao ζCR(20, 17,m) and
LMC ζLMC(20, 17,m) ratios of the manifold of hydrogenic levels with n = 20 and

l = 17 as a function of the magnetic quantum number m. See text.

narrow interval (1, 0.76) when l goes from 0 to 19.
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Figure 7.8: Relative Fisher-Shannon ζFS(20, l, 1), Cramér-Rao ζCR(20, l, 1) and LMC
ζLMC(20, l, 1) ratios of the hydrogenic states with n = 20 and m = 1 as a function of

the orbital quantum number l. See text.

For completeness, we have numerically studied the dependence of the Fisher-Shannon

measure on the principal quantum number n. We have found the accurate fit

Cr(FS) (n, l,m) = almn
2 + blmn+ clm

where the parameters a,b,c are given in Table 7.1 for two particular states with the

corresponding correlation coefficient R of each fit. It would be extremely interesting to
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a b c R

Cr(FS) (n, 0, 0) 0.565 1.202 -1.270 0.999996
Cr(FS) (n, 3, 1) 0.451 0.459 -4.672 0.999998

Table 7.1: Fit of the Fisher-Shannon measure for the hydrogenic orbitals (n, l,m) =
(n, 0, 0) and (n, 3, 1)

show this result from Eqs. (7.65)-(7.66) in a rigorous physico-mathematical way, what

remains as an open problem which will we afforded elsewhere.

7.2.2 Upper bounds to the Fisher-Shannon and LMC complexities

We have seen previously that, contrary to the Cramér-Rao measure which expression can

be calculated explicitly in terms of the quantum numbers (n, l,m), the Fisher-Shannon

and the LMCcomplexities, Eqs. (7.65) and (7.74) respectively, have not yet been explic-

itly found. This is mainly because one of their two factors (namely, the Shannon entropic

power) has not yet been determined analytically in terms of the quantum numbers.

Here we will obtain rigorous upper bounds to these two composite information-theoretic

measures in terms of the three quantum numbers of a generic hydrogenic orbital. Nev-

ertheless, variational bounds to this information-theoretic quantity have been found

[44, 49, 51] by means of one and two radial expectation values. In particular the upper

bound

S [ρ] 6 ln

[
8π

(
e 〈r〉

3

)3
]
, (7.78)

in terms of 〈r〉 is known, as a particular case of that 〈rα〉 with for arbitrary α > 0

Then, taking into account that the expectation value 〈r〉 of the hydrogenic orbital

(n, l,m) is given [156, 317] by

〈r〉 =
1

2Z

[
3n2 − l(l + 1)

]
, (7.79)

the bound on S [ρ] reads as

S [ρ] 6 ln

{
πe3

27Z3

[
3n2 − l(l + 1)

]3
}
. (7.80)

Now, from Eqs. (7.65), (7.74) and (7.80), we finally obtain the upper bounds

Cr(FS) 6 BFS ≡ 2e

9π1/3

n− |m|
n3

[
3n2 − l(l + 1)

]2
, (7.81)

to the Fisher-Shannon measure, and

Cr(LMC) 6 BLMC =
πe3

27

[
3n2 − l(l + 1)

]3 ×D(n, l,m), (7.82)
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to the LMCcomplexity. It is worth noting that these two inequalities saturate at the

ground state, having the values
2e

π1/3
and

e3

8
for the Fisher-Shannon and LMCcomplexity

cases, respectively, when n = 1, l = 0, and m = 0.
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Figure 7.9: Dependence of the Fisher-Shannon ratio, ξFS(n, l, 0), on the quantum
numbers n and l.

In order to analyze the accuracy of the previous bounds on complexities, we plot in

Figure 7.9 and Figure 7.10 the ratios

ξFS(n, l,m) =
BFS − CFS [ρ]

CFS [ρ]
, (7.83)

and

ξLMC(n, l,m) =
BLMC −CLMC [ρ]

CLMC [ρ]
, (7.84)

for the Fisher-Shannon and the LMC complexity measures, respectively, in the case

(n, l,m) for n = 1, 2, 3, 4, 5 and 6, and all allowed values of l. Various observations

are apparent. First, the two ratios vanish when n = 1 indicating the saturation of the

inequalities (7.81) and (7.82) just mentioned. Second, for a manifold with fixed n the

greatest accuracy occurs for the s states. Moreover, the accuracy of the bounds decreases

when l increases up to the centroid of the manifold and then it decreases. Finally, the

Fisher-Shannon bound is always more accurate than the LMC one for any hydrogenic

orbital.
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Figure 7.10: Dependence of the LMC complexity ratio, ξLMC(n, l, 0), on the quantum
numbers n and l.

7.3 Relativistic Klein-Gordon single-particle systems

Recently, the use of information-theoretical methods have been extended to take into

account the relativistic effects in atomic physics. Relativistic quantum mechanics [321]

tells us that special relativity provokes spatial modifications (severe at times) of the

electron density of many-electron systems [283, 322–325], what produces fundamental

and measurable changes in their physical properties. The qualitative and quantitative

evaluation of the relativistic modification of the spatial redistribution of the electron

density of ground and excited states in atomic and molecular systems by information-

theoretic means is a widely open field. In the recent years the relativistic effects of various

single and composite information-theoretic quantities of the ground state of hydrogenic

[325] and neutral atoms [283, 324] have been investigated in different relativistic settings.

First Borgoo et al [283] (see also Ref. [322]) found that, in a Dirac-Fock setting, the

LMC or shape complexity of the ground-state atoms (i) has an increasing dependence

on the nuclear charge (also observed by Katriel and Sen [325] in Dirac ground-state

hydrogenic systems), (ii) manifests shell and relativistic effects, the latter being specially

relevant in the disequilibrium component (which indicates that they are dominated by

the innermost orbital). Also, Sañudo and López-Ruiz [324] (see also Ref. [323]) show a

similar trend for both LMCand Fisher-Shannon complexities in a different setting which

uses the fractional occupation probabilities of electrons in atomic orbitals instead of the

continuous electronic wavefunctions; so, they use discrete forms for the information-

theoretic ingredients of the complexities. Moreover, their results allow to identify the

shell structure of noble gases and the anomalous shell filling of some specific elements;
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this phenomenon is specially striking in the Fisher-Shannon case as the authors explicitly

point out.

This Section contributes to this recent field with the quantification, by means of the

Fisher-Shannon complexity, of the relativistic compression of both ground and excited

states of the Klein-Gordon single-particle wavefunctions in a Coulombian well. This

magnitude is used to quantify the relativistic charge spreading of Klein-Gordon parti-

cles moving in a Coulomb potential V (~r) = −Ze
2

r
. We study the dependence of these

quantities on the potential strength Z and on the quantum numbers (n, l,m) which char-

acterize the stationary states of a spinless relativistic particle with a negative electric

charge.

The Klein-Gordon wave equation was introduced in 1926 and constituted the first theo-

retical description of particle dynamics in a relativistic quantum setting [326–329]. Since

then, the study of its properties for different potentials of various dimensionalities has

been a subject of increasing interest [129, 330, 331]. Many efforts were addressed to

obtain the spectrum of energy levels and the ordinary moments or expectation values〈
rk
〉

of the charge distribution of numerous single-particle systems (such as e.g. muonic

and pionic atoms [332]). Only recently, Chen and Dong [330] have been able to obtain

explicit expressions for these moments and some off-diagonal matrix elements of rk for a

Klein-Gordon single-particle of mass m0 in the Coulomb potential V (~r) = −Ze
2

r
. These

authors, however, do not use the Lorentz-Invariant (LI) Klein-Gordon charge density

ρLI(~r) =
e

m0c2
[ǫ− V (r)] |Ψnlm(~r)|2 , (7.85)

but instead the Non-Lorentz-Invariant (NLI) expression ρNLI(~r) = |Ψnlm(~r)|2 as in the

non-relativistic case, where ǫ and Ψ(~r) denote the physical solutions of the Klein-Gordon

equation [129, 330]

[ǫ− V (r)]ψ(~r) = (−~
2c2∇2 +m2

0c
4)ψ(~r), (7.86)

which characterizes the wavefunctions Ψnlm(~r, t) = ψnlm(~r)exp

(
− i

~
ǫt

)
of the station-

ary states of our system. In spherical coordinates ~r = (r, θ, φ), the eigenfunction is given

by ψ(r, θ, ψ) = r−1u(r)Ylm(θ, φ), where the Y -symbol denotes the spherical harmonics

of order (l,m). Performing the change r → s, with s = βr in Eq. (7.86), and using the

notations

β ≡ 2

~c

√
m2

0c
4 − ǫ2; λ ≡ 2ǫZe2

~2c2β
, (7.87)

one has the radial Klein-Gordon equation

d2u(s)

ds2
−
[
l′(l′ + 1)

s2
− λ

s
+

1

4

]
u(s) = 0, (7.88)
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where the following additional notations

l′ =

√(
l +

1

2

)2

− γ2 − 1

2
, with γ ≡ Zα, (7.89)

have also been used, being the fine structure constant α ≡ e2

~c
. It is known [129] that

the bound states have the energy eigenvalues

ǫ =
m0c

2

√
1 +

(
γ

n−l+l′
)2
, (7.90)

and the eigenfunctions

unl(s) = N s(l
′+1)e−

s
2 L̃2l′+1

n−l−1(s). (7.91)

To preserve Lorentz invariance, according to the relativistic quantum mechanics [321], we

calculate the constant N by taking into account the charge conservation

∫

R3

ρ(~r)d2r = e,

which yields the value [333]

N
2 =

m0c
2γ

~c

1

(n+ l′ − l)2 + γ2
. (7.92)
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Figure 7.11: Normalization of the charge density for the Lorentz invariant (LI) and
the non-Lorentz invariant (NLI) charge densities

Let us emphasize that the resulting Lorentz-invariant charge density ρLI(~r) given by Eqs.

(7.85)-(7.92) is always (i.e., for any observer’s velocity v) appropriately normalized, while

the non-Lorentz-invariant density ρNLI(~r) used by Cheng and Dong [330] is not. This

is numerically illustrated in Figure 7.11 for a pionic atom with nuclear charge Z = 68

in the infinite nuclear mass approximation (π− -meson mass=273.132054 a.u.).
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Figure 7.12: Fisher-Shannon complexity for the ground state Klein-Gordon (KG)
and Schrödinger (SCH) pionic atom in terms of the nuclear charge Z (atomic units are

used).

Let us now numerically discuss the relativistic effects in the Fisher-Shannon complexity

for a pionic system. First, we center our attention in the dependence on the nuclear

charge of the system. As we can observe in Figure 7.12, the Fisher-Shannon complexity of

the Klein-Gordon case depends on the nuclear charge Z, contrary to the non-relativistic

description. The Schrödinger or non-relativistic value of the Fisher-Shannon complexity

has been recently shown to be independent of the nuclear charge Z for any hydrogenic

system, (see Eqs. (6.13)-(6.15) of Chapter 6). It is apparent that this quantity is a

very appropriate indicator of the relativistic effects as has been recently pointed out by

Sañudo and López-Ruiz [323, 324] in other relativistic settings. These effects becomes

bigger when the nuclear charge increases, so the relativistic Fisher-Shannon complexity

enhances. This behaviour is easy to understand because, when we take into account

the relativistic effects, the charge probability density is more compressed towards the

nucleus than in the non-relativistic case [321, 333].
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To measure the relativistic effects we define the relative quantity ζFS = 1 − CSCH(FS)

CKG(FS)
.

This quantity varies from 0 to 1, so that ζFS ∼ 0 when the relativistic effects are negligible

and ζFS ∼ 1 in the ultrarelativistic limit. In Figure 7.13 we can see the effects of the

relativistic model for different values of the nuclear charge Z and various ns-states

(n, 0, 0).

First, we observe that the relativistic effects grow when the nuclear charge increases,

not only for the ground state (as already pointed out) but also for all the excited states.

Second, the relativistic effects decrease when the principal quantum number increases.

Third, this decreasing behaviour with n has a strong dependence on Z, the decrease

becoming slower as bigger is the nuclear charge.
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Figure 7.14: Relative Fisher-Shannon complexity for various states (n, l, 0) of the
Klein-Gordon and Schrödinger pionic atoms with Z = 68 (left) and Z = 30 (right).

In Figure 7.14 we can observe that the relativistic effects are practically negligible (points

at the bottom) when the angular quantum number is different from zero even for large

nuclear charge. This dependence on l is quantitatively more important than the depen-

dence on the principal quantum number n.

Finally in Figure 7.15 we show the relative behaviour of the LMC complexity in the non-

relativistic and relativistic Klein-Gordon cases in terms of the orbital quantum number

l for various states (n, l, 0) with fixed n. This behaviour is similar to that of the Fisher-

Shannon case shown in Figure 7.14. Again, we observe that the relativistic effects are

negligible for l other than 0, even for atoms with a large nuclear charge.

For completeness, let us point out that the relativistic effects are practically independent

of the magnetic quantum number m for (Z, n, l) fixed.



Complexity analysis of d-dimensional hydrogenic systems 165

0

0.2

0.4

0.6

0.8

1
ζLMC(n,l,0)

n=
1

0

0.2

0.4

0.6

0.8

1
ζLMC(n,l,0)

n=
1

n=
2

n=
2

n=
3

n=
3

n=
4

n=
4

n=
5

n=
5

n=
6

0

0.2

0.4

0.6

0.8

1
ζLMC(n,l,0)

n=
1

0

0.2

0.4

0.6

0.8

1
ζLMC(n,l,0)

n=
1

n=
2

n=
2

n=
3

n=
3

n=
4

n=
4

n=
5

n=
5

n=
6

Figure 7.15: LMC complexity for various states (n, l, 0) of the Klein-Gordon and
Schrödinger pionic atoms with Z = 68 (left) and Z = 30 (right).

7.4 Conclusions

Firstly, in Section 7.1 the LMC shape complexity of the hydrogenic system in d-

dimensional position and momentum spaces has been investigated. We have seen that

the determination of the analytical expression of this complexity is a formidable open

task, mainly because the analytical evaluation of the entropic functionals of the Laguerre

and Gegenbauer polynomials, E1

[
L̃αk

]
and E2

[
C̃αk

]
, involved in the calculation of the

Shannon entropy, has not yet been accomplished. The general methodology presented

here is used to find explicit expressions for the position and momentum complexities of

the ground and circular states in terms of the dimensionality and the principal quan-

tum number. Then, these information-theoretic quantities are numerically discussed for

various states and dimensionalities as well as for the dimensional and high-lying energy

(Rydberg) limits. Briefly, we find that both position and momentum complexities in-

crease (decrease) when the dimensionality (the quantum number of the state) increases.

This phenomenon is the result of a delicate balance of the average height and the bulk

spreading of the system given by their two information-theoretic ingredients, the dise-

quilibrium and the entropic power, respectively. Finally, the uncertainty product of the

position and momentum LMC shape complexities is examined.

In Section 7.2, we particularized the d-dimensional problem to d = 3 studing the comple-

xity measures for the hydrogenic atoms in three dimensions. We have investigated both

analytically and numerically the complexity of hydrogenic atoms which gives rise to the

great diversity of three-dimensional geometries for its configuration orbitals (n, l,m).

This is done by means of the Fisher-Shannon, the Cramér-Rao and the LMC comple-

xities. After analyzing the dependence of these three composite quantities in terms of

the quantum numbers n, l and m, it is found that: (i) when (l,m) are fixed, all com-

plexities have an increasing behaviour as a function of the principal quantum number

n, with a rate of growth which is higher in the Cramér-Rao and (even more relevant)
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Fisher-Shannon cases; this is mainly because of the increasingly strong radial oscillating

nature (when n gets bigger), what is appropriately grasped by the Fisher ingredient of

these two composite quantities; (ii) the three complexities decrease when the magnetic

quantum number |m| increases, and the decreasing rate is much faster in the Cramér-

Rao case and more emphatically in the Fisher-Shannon case; this is basically due to

the increasingly weak angular oscillating nature when |m| decreases, what provokes the

lowering of the Fisher ingredient of these two quantities; and (ii) all of them decrease

when the orbital quantum number l is increasing, and again , the decreasing rate is

much faster in the Cramér-Rao and Fisher-Shannon cases; here, however, the physical

interpretation is much more involved as it is duly explained in subsection 7.2.1. Finally,

in subsection 7.2.2, we have used some variational bounds to the Shannon entropy to

find sharp, saturating upper bounds to the Fisher-Shannon measure and to the LMC

complexity.

In Section 7.3, we have explored relativistic effects on the behaviour of the Fisher-

Shannon complexity of pionic systems with nuclear charge Z in the Klein-Gordon frame-

work. We have done it for both ground and excited states. First we found that the rela-

tivistic Fisher-Shannon complexity grows when the nuclear charge increases in contrast

with its constancy in the non-relativistic case for both ground and excited states. A

similar behaviour has been recently observed in the case of the ground state of systems

governed by the Dirac equation [283, 322–324]. We found that this trend remains for

excited states in a damped way, so that the relativistic effects enhance with Z for a given

(n, l,m) state and, for a given Z, decrease when the principal and/or orbital quantum

numbers are increasing. Let us also highlight that the non-relativistic limits at large

principal quantum number n for a given Z (see Figs. 7.15) and at small values of Z

(see Fig. 7.12) are reached. On the other hand it is pertinent to underline that the

finite nuclear volume effects are very tiny for any information-theoretic and complexity

measure because of their macroscopic character.

Let us remind finally that we have also investigated the relativistic Klein-Gordon effects

in pionic atoms by means of the LMC shape complexity [91] C(LMC) = D [ρ]×expS [ρ].

We found that the relativistic effects are also identified by this quantity but more slightly

as compared to the Fisher-Shannon complexity C(FS). Apparently this is because of the

property of locality of C(FS) coming through its gradient-dependent Fisher ingredient,

which graphs much better the (strong) oscillatory condition of the pionic densities.
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Molecular complexity

The goal of this Chapter is to perform an information-theoretical analysis by use of

complexity measures in order to analyze and quantify the information content of a set of

ninety two molecular systems of different chemical type. Focus will be set on the recog-

nition of patterns of uncertainty, order, and organization by employing several molecular

properties such as energy, ionization potential, hardness and electrophilicity. Different

complexity measures and informational planes of those molecules will be analyzed in

terms of their chemical properties, number of electrons or geometrical features.

The organization of these Chapter is as follows: in Section 8.1 we defined the complexity

measures along with their information-theoretic components and the chemical properties

considered throughout the study. In Section 8.2 we compute information measures as

well as the Fisher-Shannon and the LMC complexities. These information quantities

are computed in position and momentum spaces, as well as in the joint product space

that contains more complete information about the system. Additionally, the Fisher-

Shannon (I − J) and the disequilibrium-Shannon (D − L) planes are studied to identify

pattern and organization.

8.1 Information-theoretic measures, complexities and che-

mical properties

In the independent-particle approximation the total density distribution in a molecule is

a sum of contributions from electrons in each of the occupied orbitals. This is the case

in both r− and p−space, position and momentum spaces respectively. In momentum

space, the total electron density, γ(~p), is obtained through the molecular momentals

(momentum-space orbitals) ϕi(~p), and similarly for the position-space density, ρ(~r),

through the molecular position-space orbitals φi(~r). The momentals can be obtained by

167
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three-dimensional Fourier transforma of the corresponding orbitals, and conversely:

ϕi(~p) = (2π)−3/2
∫
d~r exp (−i~p · ~r)φi(~r) (8.1)

Standard procedures for performing the Fourier transform of position space orbitals

generated by ab-initio methods have been described [213]. The orbitals employed in

ab-initio methods are linear combinations of atomic basis functions and since analytic

expressions are known for the Fourier transforms of such basis functions [214], the trans-

formations of the total molecular electronic wavefunction from position to momentum

space is computationally straightforward [215].

As we defined in Chapter 5, the LMC complexity is given by:

Cr(LMC) = Dr × eSr = Dr × Lr, (8.2)

in position space, where Dr is the disequilibrium, and also the exponential entropy

Lr = eSr is defined. Similar expressions for the LMC complexity measure in the conju-

gated momentum space might be defined for a distribution γ(~p):

Cp(LMC) = Dp × eSp = Dp × Lp. (8.3)

The FS complexity in position space, Cr(FS), is defined as

Cr(FS) = Ir × Jr, (8.4)

and similarly

Cp(FS) = Ip × Jp, (8.5)

in momentum space.

Aside of the analysis of the position and momentum information measures, we have

considered useful to study these magnitudes in the product, rp-space, characterized by

the probability density f(~r, ~p) = ρ(~r)γ(~p), where the complexity measures verify

Crp(LMC) = Drp × Lrp = Cr(LMC) × Cp(LMC), (8.6)

and

Crp(FS) = Irp × Jrp = Cr(FS) × Cp(FS). (8.7)

Last equality in both Eqs. (8.6) and (8.7) arise straightforwardly from the complexity

definitions in the individual spaces.

From the above two equations, it is clear that the features and patterns of both LMC

and FS complexity measures in the product space will be determined by those of each
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conjugated space. However, the numerical analyses carried out in the next Section,

reveal that the momentum space contribution plays a more relevant role as compared

to the position one for the study of the molecular systems here considered.

With the purpose of organizing and characterizing the complexity features of the mole-

cular systems under study, we have computed several reactivity properties such as the

ionization potential (IP), the total dipole moment, the hardness (η) and the electrophilic-

ity index (ω). These properties were obtained at the density functional theory (DFT)

level, by use of the Janak’s theorem [219], analogous to the Koopmans’ theorem [218],

for relating the first vertical ionization energy and the electron affinity to the HOMO

and LUMO energies, which are necessary to calculate the conceptual DFT properties.

The hardness (η) was obtained within this framework [101] through

η =
1

S
∼ ǫLUMO − ǫHOMO

2
(8.8)

where ǫ denotes the frontier molecular orbital energies and S the softness of the system.

It is worth mentioning that the factor 1/2 in Eq. (8.8) was included originally to make

symmetrical the hardness definition with the chemical potential [101, 334]

µ =

(
∂E

∂N

)

v(~r)

=
ǫLUMO + ǫHOMO

2
, (8.9)

although it has been recently disowned it [335, 336]. In general terms, the chemical

hardness and softness are good descriptor of chemical reactivity, i.e., whereas the former

has been employed [217, 335, 336] as a measure of the reactivity of a molecule in the

sense of the resistance to changes in its electron distribution, hence molecules with larger

values of η are interpreted as less reactive molecules, the S index quantifies the polariz-

ability of the molecule [220–223]; thus soft molecules are more polarizable and possess

predisposition to acquire additional electronic charge [224]. The chemical hardness η is

a central quantity for the study of reactivity through the hard and soft acids and bases

principle [225–227].

The electrophilicity index [337], ω, allows a quantitative classification of the global

electrophilic nature of a molecule within a relative scale. The electrophilicity index

of a system in terms of its chemical potential and hardness is given by the expression

ω =
µ2

2η
(8.10)

The electrophilicity is also a useful descriptor of chemical reactivity, which quantifies the

global electrophilic power of the molecules [224] (predisposition to acquire an additional

electronic charge).
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8.2 Complexity measures and information planes of mole-

cular systems

The set of molecules chosen for the study includes different types of chemical organic

and inorganic systems (aliphatic compounds, hydrocarbons, aromatic, alcohols, ethers,

ketones). The set includes a variety of closed shell systems, radicals, isomers as well

as molecules with heavy atoms such as sulphur, chlorine, magnesium and phosphorous.

The geometries needed for the single point energy calculations above referred were ob-

tained through experimental data from standard databases [338]. The molecular set

might be organized by isoelectronic groups as follows (N is the number of electrons):

N-10: NH3 (ammonia)

N-12: LiOH (lithium hydroxide)

N-14: HBO (boron hydride oxide), Li2O (dilithium oxide)

N-15: HCO (formyl radical), NO (nitric oxide)

N-16: H2CO (formaldehyde), NHO (nitrosyl hydride), O2 (oxygen)

N-17: CH3O (methoxy radical)

N-18: CH3NH2 (methyl amine), CH3OH (methyl alcohol), H2O2 (hydrogen peroxide),

NH2OH (hydroxylamine)

N-20: NaOH (sodium hydroxide)

N-21: BO2 (boron dioxide), C3H3 (radical propargyl), MgOH (magnesium hydroxide),

HCCO (ketenyl radical)

N-22: C3H4 (cyclopropene), CH2CCH2 (allene), CH3CCH (propyne), CH2NN (di-

azomethane), CH2CO (ketene), CH3CN (acetonitrile), CH3NC (methyl isocyanide),

CO2 (carbon dioxide), FCN (cyanogen fluoride),HBS (hydrogen boron sulfide),HCCOH

(ethynol), HCNO (fulminic acid), HN3 (hydrogen azide), HNCO (isocyanic acid),

HOCN (cyanic acid), N2O (nitrous oxide), NH2CN (cyanamide)

N-23: NO2 (nitrogen dioxide), NS (mononitrogen monosulfide), PO (phosphorus monox-

ide), C3H5 (allyl radical), CH3CO (acetyl radical)

N-24: C2H4O (ethylene oxide), C3H6 (cyclopropane), CF2 (difluoromethyleeletrone),

CH2O2 (dioxirane), C2H5N (aziridine), CH3CHO (acetaldehyde), CHONH2 (for-

mamide), FNO (nitrosyl fluoride), H2CS (thioformaldehyde), HCOOH (formic acid),

HNO2 (nitrous acid)NHCHNH2 (aminomethanimine), O3 (ozone), SO (sulfur monox-

ide)

N-25: CH2CH2CH3 (npropyl radical), CH3CHCH3 (isopropyl radical), CH3OO (methylper-

oxy radical), FO2 (dioxygen monofluoride), NF2 (difluoroamino radical), CH3CHOH

(ethoxy radical), CH3S (thiomethoxy)

N-26: C3H8 (propane), CH3CH2NH2 (ethylamine), CH3CH2OH (ethanol), CH3NHCH3

(dimethylamine), CH3OCH3 (dimethyl ether), CH3OOH (methyl peroxide), F2O (di-

fluorine monoxide)

N-30: ClCN (chlorocyanogen), OCS (carbonyl sulfide), SiO2 (silicon dioxide)

N-31: PO2 (phosphorus dioxide), PS (phosphorus sulfide)



Molecular complexity 171

N-32: ClNO (nitrosyl chloride), S2 (sulfur diatomic), SO2 (sulfur dioxide)

N-33: ClO2 (chlorine dioxide), OClO (chlorine dioxide)

N-34: CH3CH2SH (ethanethiol), CH3SCH3 (dimethyl sulfide), H2S2 (hydrogen sul-

fide), SF2 (sulfur difluoride)

N-38: CS2 (carbon disulfide)

N-40: CCl2 (dichloromethylene), S2O (sulfur monoxide)

N-46: MgCl2 (magnesium dichloride)

N-48: S3 (sulfur trimer), SiCl2 (dichlorosilylene)

N-49: ClS2 (sulfur chloride)

The electronic structure calculations performed in the present study for the whole set of

molecules were carried out with the Gaussian 03 suite of programs [229] at the CISD/6-

311++G(3df,2p) level of theory. For this ser of molecules we have calculated all in-

formation and complexity measures in both position and momentum spaces as well as

in the product space by employing the necessary software along with 3D numerical

integration routines [230, 231] and the DGRID suite of programs [215]. As mentioned

above, the values of the conceptual DFT properties have been obtained at the B3LYP/6-

311++G(3df,2p) level of theory. All calculated quantities in this study are given in

atomic units, their values might be consulted in the supplementary material: Table B.1

(molecular properties), Table B.2 (complexity measures) and Table B.3 (information

plane measures) in the Appendix B.

8.2.1 Complexity measures

In contrast with the atomic case, where the complexities possess a high level of natural

organization provided by periodical properties [305, 306], the molecular case requires

some sort of organization which could be affected by many factors (structural, ener-

getic, entropic, etc). So that we have analyzed the molecular complexities C(LMC) and

C(FS) as functions of the main chemical properties of interest, i.e., the total energy, the

dipole moment, the ionization potential, the hardness and the electrophilicity, establish-

ing a link between the different complexity measures and the chemical properties so as

to provide an insight into their organization, order and uncertainty features.

In Figure 8.1, we have plotted the C(FS) and C(LMC) as a function of the total

energy of the molecules in the product space (rp). Firstly, it may be observed from this

Figure that both complexity measures in this space possess a similar behavior. Secondly,

a general trend is observed in that molecules with higher energy correspond to higher

complexity values, for both C(LMC) and C(FS), as compared to the ones which possess

lower energies. Note that, regarding the set of molecules studied in this work, they are

grouped together according to four energy intervals: E > −400, E ∈ [−700,−400],

E ∈ [−1000,−700), and E < −1000. In this Figure we have labeled the molecules

which correspond to the maximum and minimum values of Crp(FS) within each group,
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noting that they coincide with the corresponding extremal Crp(LMC) values. It is worth

noting that the maximum values correspond with molecules that contain one heavy atom

at least, and that the minimum complexities correspond with molecules having similar

chemical geometry.
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Figure 8.1: C(LMC) (red circles) and C(FS) (blue triangles) complexities as a
function of the total energy for the set of ninety two molecules in the product space

(rp). Atomic units are used.

In view of the results shown in this Figure it seems that the molecular complexity is also

affected by several other chemical factors, such as the molecular structure (e.g. lower

complexity values in each group, energy-wise, corresponds with molecules of similar

geometry), composition (e.g. higher complexity corresponds with molecules containing

heavy atoms), chemical functionality, reactivity, etc. Note that each complexity consists

of two factors, one of them always defined in terns of the Shannon entropy S, whereas the

other characterizes more specifically the corresponding complexity measure in terms of

a global quantity (disequilibrium D) for Crp(LMC) and a local one (Fisher information

I) for Crp(FS). Nevertheless, there are no relevant structural differences between both

complexities, based either on D or I.

In Figure 8.2 we have plotted the complexity values for the Crp(LMC) and Crp(FS)

measures as a function of the number of electrons in the product space (note that

both complexities measures are in a double-X axes). We may observe from Figure 8.2

that both complexity measures behave in a similar fashion, i.e., molecules with lower

number of electrons (N < 26) possess low complexities whereas molecules with larger

number of electrons (N > 26) possess larger complexity values. A few exceptions may

be noticed from Figure 8.2, i.e., molecules with low number of electrons and higher

complexities correspond to those containing heavier atoms: CH3S, MgOH, NS and

HBS for Crp(LMC), and, MgOH and CH3S for Crp(FS), as also observed before
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when discussing the analysis based on the total energy. It is worth mentioning, similarly

to the case of the results in Figure 8.1, that several other factors may affect the molecular

complexities as it was discussed above.
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Figure 8.2: C(LMC) (red circles) and C(FS) (blue triangles) complexity as a function
of the number of electrons (N) for the set of ninety two molecules in the product space

(rp). Atomic units are used.

In order to analyze the influence of the chemical reactivity on the complexities for the

set of studied molecules, we have plotted in Figure 8.3 the hardness values versus the

LMC and FS complexities in the product space (rp) for those molecules. The general

observations are that the LMC and FS complexities behave in the same way, both

indicating a clear relationship with the hardness and hence with the chemical reactivity

of the molecules. Besides, it might be observed that as the hardness increases, the

complexity values decrease. This fact illustrates that molecules which are chemically

more stable (resistant to changes in the electron distribution) possess low complexity

values; thus the chemical reactivity seems to be directly related to the complexity in that

higher values of C(LMC) and C(FS) correspond with more reactive systems, with very

few exceptions which again correspond to molecules with heavier atoms as we mentioned

before (CH3S, PS, MgOH for C(LMC) and ClS2, MgOH, S3 for C(FS)). It is worth

mentioning that a similar analysis for the dipole moment (in Table B.1 Appendix B)

might be performed and so we note that molecules with higher complexity possess lower

the dipole moment, hence corresponding to those that are more polarizable, and so the

most reactive ones (which in this case correspond to those containing heavier atoms).
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Figure 8.3: C(LMC) (red circles) and C(FS) (blue triangles) complexity as a function
of the hardness for the set of ninety two molecules in the product space (rp). Atomic

units are used.

The ionization potential (IP) is now employed as an indicator of the chemical stability

of the molecules, analyzing the relation among their IP and the complexities. In Figure

8.4 it may be observed that molecules with higher IP values (more stable ones) are

located at the right-hand-side of the Figure, indicating that stability is related to the

molecular complexities in that higher LMC and FS complexities correspond to more

reactive molecules (which are less stable).
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The electrophilicity index is an useful indicator of chemical reactivity, quantifying the

global electrophilic power of the molecules, as mentioned above. Thus, we have found

interesting to study the complexities, C(LMC) and C(FS), as a function of the elec-

trophilicity in the product space (see Table B.1 in Appendix B). In contrast with

the other analyzed properties, the electrophilicity (affected by both the hardness and

the chemical potential, see Eq. (8.10)), displays a more complicated behaviour in that

molecules with lower values of complexity are associated with molecules possessing lower

electrophilicity, except for the NaOH molecule which is highly electropilic.

It is worthy to remark that all conclusions obtained from the analysis performed in

the product space ’rp’ remain valid also when considering the momentum space ’p’

alone, while in position space the above discussed behaviours are not so relevant as

compared to the momentum ones. Nevertheless, most of the structural features observed

in the Figures are better displayed in the product than in the momentum space, as a

consequence of the joint effect arising when dealing simultaneously with the position

variable essentially by shifting away both complexities.

8.2.2 Information planes

In the search of pattern and organization we have analyzed the set of studied molecules,

through features such as their energy and the number of electrons by plotting the con-

tribution of each one of the information measures D (order) and L (uncertainty) to the

total LMC complexity, and I (organization) and J (uncertainty) to the FS complexity.

Thus, in Figures 8.5 and 8.6 we analyze the behavior of the energy in the Dp − Lp and

Ip − Jp planes, while in Figures 8.7 and 8.8 the effect of the number of electrons in the

Dr − Lr and Ip − Jp planes is displayed. For the energetic analysis of the information

planes, we have found more useful to depict the corresponding ones to the momentum

space, since the momentum density is directly related to the energy.

In Figure 8.5, we have plotted (in a double-logarithmic scale) theDp−Lp plane for the set

of molecules which are grouped together and labeled according to the energy intervals

they belong to, as observed in Figure 8.1, i.e., E400 for molecules with E > −400

a.u., E700 for E ∈ [−700,−400] a.u., E1000 for E ∈ [−1000,−700] a.u., and E1400 for

molecules with E < −1000 a.u.. From Figure 8.5 it is observed that the D − L plane

is clearly divided into two regions according to the D × L ≥ 1 inequality [103] (valid for

position, momentum as well as product spaces), and the region below the line (equality)

corresponds to the forbidden region.. Parallel lines to this bound represent isocomplexity

lines, where an increase (decrease) in uncertainty, Lp, along them is compensated by a

proportional decrease (increase) of order (disequilibrium Dp), and higher deviations

from this frontier are associated to higher LMC complexities. The general observation

from this set of molecules is that groups with different energies are somewhat separated

into different regions. So, molecules with higher energies possess the highest values of
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Figure 8.5: Disequilibrium-Shannon plane (Dp − Lp) in momentum space for ener-
getically different groups: E400 for molecules with E ≥ −400 (red circles), E700 for
E ∈ [−700,−400] (blue triangles),E1000 for E ∈ [−1000,−700] (green stars) and E1400

for molecules with E ≤ −1000 (magenta box). Double-logarithmic scale. Lower bound
(Dp × Lp = 1) is depicted by the black line. Atomic units are used.

Lp (more uncertainty), whereas the disequilibrium values are distributed over a wider

range of values for all the groups energy-wise. So it seems that the energy is related

to the uncertainty of the systems either for Lp in Figure 8.5 as for Jp in Figure 8.6

(discussed below). An interesting feature that is worthy to comment from this Figure

is that low energy molecules behave more linearly and they appear located closer to the

bound than higher energy molecules, i.e., more energetic molecules seem to deviate from

the isocomplexity lines. This observation deserves a deeper study with a larger number

of molecules and a wider range of energy.

In Figure 8.6 we have plotted (in a double-logarithmic scale) the Ip − Jp plane for the

same set of groups energy-wires. At this point it is worth mentioning that there is a rigo-

rous lower bound to the associated FS complexity, namely C(FS) = I × J ≥ constant

(the constant being 3 for the individual spaces and 18πe for the product space). Figure

8.6 indicates a division of the Ip − Jp plane into two regions where the straight line

I × J = constant (drawn in the plane) divides it into an “allowed” (upper) and a “for-

bidden” (lower) regions. Similar observations as those discusssed in Figure 8.5 apply

also in this case, i.e. those groups with larger energy values possess larger uncertainty

as measured by the Jp values, whereas for organization, as measured through Ip, a wide

spread is observed over the studied range of values. A similar conjecture as the one

discussed above for the Dp − Lp plane might apply in this case in that lower energy

molecules seems to obey a linear behavior (isocomplexity lines).
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Figure 8.6: Fisher-Shannon plane (Ip − Jp) in momentum space for energetically diffe-
rent groups: E400 for molecules with E ≥ −400 (red circles), E700 for E ∈ [−700,−400]
(blue triangles),E1000 for E ∈ [−1000,−700] (green stars) and E1400 for molecules with
E ≤ −1000 (magenta box). Double-logarithmic scale. Lower bound (Ip × Jp = 3) is

depicted by the black line. Atomic units are used.

Our analysis continues with the study of the information planes for the isoelectronic

series. In Figure 8.7 the components of the LMC complexity in position space are

depicted (in a double-logarithmic scale), for the series with N=22, 24, 25 and 26 electrons

denoted by N22, N24, N25 and N26 in the Figure, respectively, in the Dr − Lr plane.

In this case each isoelectronic series follows a trajectory which shows a linear behaviour

(similar trends are observed in momentum space Dp − Lp) with correlation coefficients

closed to one: N22 (0.989), N24 (0.991), N25 (0.989), N26 (0.981). Systems that are not

in the isocomplexity lines belong to molecules with higher complexity values (in Table

B.2 of Appendix B), which possess heavier atoms. This behavior means that in position

space, higher complexity is due to higher disequilibrium values (higher order) and lower

uncertainty Lr. It is interesting to mention that the opposite behavior is observed

in momentum space (not depicted), i.e, higher complexity values correspond with lower

disequilibrium and higher uncertainty. This opposite trends observed in both conjugated

spaces can be explain as follows: A lower Shannon entropy in posicion space corresponds

to a more concentrated charge density in some regions, which translates into a higher

spreading of electron momentum density, giving rise to a higher Shannon entropy in such

space. The same comment applies for the trends of the disequilibrium. It is also worthy

to note that all isocomplexity lines, representing the isoelectronic molecular series with

N= 22, 24, 25 and 26 electrons, show large deviations (higher LMC complexities) from

the rigorous lower bound as it may be observed from Figure 8.7 in position space.

Proceeding with the analysis of the pattern and organization for the isoelectronic series,

we have analyzed the contribution of each one of the information measures I and J
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Figure 8.7: Disequilibrium-Shannon plane (Dr − Lr) in position space of the isoelec-
tronic series of 22 (red circles), 24 (blue triangles), 25 (green stars) and 26 (magenta
box) electrons. Double-logarithmic scale. Lower bound (Dr × Lr = 1) is depicted by
the black line. Molecules with large energy values are shown at the upper left corner

of the Figure. Atomic units are used.

to the total FS complexity. This is done in Figure 8.8 for some of the isoelectronic

molecular series with N= 22, 24, 25 and 26 electrons in the momentum space through

the information plane Ip − Jp. Parallel lines to the constant I × J = 3 represent iso-

complexity lines, and higher deviations from this frontier are associated with higher FS

complexities. Along these lines, an increase (decrease) in uncertainty (J) gets balanced

by a proportional decrease (increase) of accuracy (I). Such a parallel shape is displayed

by all isoelectronic series in momentum space, as shown in Figure 8.8, and we have ver-

ified their linear behaviour by a linear regression analysis with correlations coefficients:

N22 (0.989), N24 (0.994), N25 (0.993), N26 (0.998). Notice that systems that are not

in the isocomplexity lines belong to higher complexity molecules as we have previously

discussed. They include heavier atoms, as observed from Figure 8.7, possessing higher

values of Jp (more uncertainty) which provokes their higher complexity. It is also worth

noting that all isocomplexity lines representing the isoelectronic molecular series show

large deviations (higher FS complexities) from the rigorous lower bound (I × J = 3)

as it may be observed from the Figure. On the other hand, in the conjugated position

space Ir − Jr (not depicted), we may observe a similar trend, i.e., each isoelectronic

series possess a linear behaviour except for the molecules with highest complexity values

which are not in this isocomplexity lines, having lower values of Jr and higher values of

Ir in contrast with Figure 8.8.

Notwithstanding that not all information products are good candidates to form com-

plexity measures, i.e., preserving the desirable properties of invariance under scaling

transformation, translation and replication, we have found interesting to study the plane
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Figure 8.8: Fisher-Shannon plane (Ip − Jp) in momentum space of the isoelectronic
series of 22 (red circles), 24 (blue triangles), 25 (green stars) and 26 (magenta box)
electrons. Double-logarithmic scale. Lower bound (Ip × Jp = 3) is depicted by the
black line. Molecules with large energy values are shown at the upper left corner of the

Figure. Atomic units are used.

I−D, with the purpose of analyzing patterns of order-organization. Note that this pro-

duct fails to be invariant under scaling transformations [302]. Thus, in Figures 8.9 and

8.10 we have plotted the I −D planes in momentum and position spaces, respectively,

for the set of groups, energy-wires, studied above, and for some of the isoelectronic series

with N= 22, 24, 25 and 26 electrons, respectively.

It can be observed from Figure 8.9 that there exists a relationship between order (dis-

equilibrium) and organization (Fisher information) for the set of studied molecules in

momentum space, within the Ip −Dp plane, i.e., molecules with higher values of Dp pos-

sess higher Ip values. It is apparent from the Figure that a linear relationship between I

and D is obeyed at least for these groups of energetically similar molecules. This linear

behavior is observed for all molecules of the lowest energetic group except for MgOH

which is within the most complex ones as quantified in terms of C(LMC) and C(FS).

To the best of our knowledge, this is the first time that such an apparent linear behavior

between D and I has been studied.

A similar linear behavior might be observed from Figure 8.10 in the corresponding

Ir −Dr plane, showing a positive slope for all isoelectronic molecular series which

means that, as the molecular order increases (higher D), their organization also increases

(higher I). Interestingly, Figure 8.10 shows that I −D plane is useful to detect molecu-

lar patterns of order-organization except for molecules of higher complexity (SO, HBS,

H2CS, CH3S) which do not fit with the simple linear description of order-organization.
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(a) Chemical properties

Molecule Energy Ionization Potential Hardness Electrophilicity

HCNO -168.134 0.403 0.294 0.02 0
HNCO -168.261 0.447 0.308 0.031
HOCN -168.223 0.453 0.305 0.036

(b) Complexity measures

Molecule Crp(LMC) Crp(FS)

HCNO 76.453 229.303
HNCO 74.159 223.889
HOCN 75.922 225.656

Table 8.1: (a) Chemical properties and (b) complexity measures for the isomers
HCNO, HNCO and HOCN in atomic units (a.u.)

Finally, we have found useful to analyze the particular case of three isoelectronic isomers:

HCNO (fulminic acid), HNCO (isocyanic acid) and HOCN (cyanic acid) in order to

analyze their chemical properties with respect to their complexity values. From an

experimental side it is known that cyanic and isocyanic acids are isomers of fulminic

acid (H − C = N − O) which is an unstable compound [339]. From Table 8.1 we may

corroborate that this is indeed the case in that fulminic acid possess the lowest ionization

potential (less stability) but larger values for the complexity measures. According to

our discussion above for the chemical properties this is indeed a more reactive molecule

(lowest hardness value).
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box) electrons. Double-logarithmic scale. Atomic units are used.

8.3 Conclusions

In this Chapter we have investigated the internal disorder of 92 molecules by means of five

composite information-theoretic tools: the Fisher-Shannon and LMC shape complexities

as well as three information planes. It is required the study of these measures in both

position and momentum spaces in order to obtain a more complete description of the

information-theoretic interpretation of the molecular systems.

Our results show that, although molecular complexities display general trends, these

meaures are affected by several chemical factors, such as the molecular structure (e.g.,

lower complexity values corresponds with molecules of similar geometry), composition

(e.g., higher complexity correspond with molecules with heavy atoms), chemical func-

tionality, reactivity, etc. On the other hand, the information planes exhibit chemically

significant patterns of structure and organization. We can conclude that the energy of

the systems is related to its uncertainty throughtout Lp in the DL information plane

and Jp in the IJ one.

Nevertheless, it is necessary to study a larger set of molecules with a wider range of

energies in order to corroborate our conclusions.
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Introduction

Throughout Parts I and II of this Thesis, we have tried to quantify information features

of a given distribution, associated to a physical or chemical system, in terms of different

information and complexity measures. It is also interesting to have at our disposal

other density functionals which enable us to measure the “distance” and/or similarity

among them. In probability, statistics and information theory different approaches have

dealt with the aim of establishing quantitative measures among two or more distribution

functions in order to quantify how different these distribution are, giving rise to a variety

of measures of divergence, a concept which will be described later. Each one has its own

properties and characteristics, which make them more or less useful attending to the

kind of problem, system or process as well as the interpretation we are dealing with

[64, 340–347]. In particular, the usefulness of some of them has been widely proved in

the study, for instance, of different physical and chemical systems and processes in terms

of meaningful and relevant distributions in their description.

Exploring quantitatively the level of similarity/dissimilarity between two different sys-

tems in terms of meaningful distributions appears actually as a very interesting field.

There exists an extensive literature on measures of similarity and dissimilarity between

probability densities [347, 348], which have been used in a wide variety of scientific fields

including, for instance, sequence analysis [349], pattern recognition [350], diversity [351],

classification [352], homology [353], neural networks [354], computational linguistics [355]

or quantum theory [356].

The recent explosion in the knowledge based on chemical research has given rise to

a surge of interest in chemical similarity. Molecular modelling, quantitative structure

activity relationship (QSAR) and quantum information are relevant examples of such an

interest [357, 358]. Chemical similarity is oftenly described as an inverse of a measure of

distance in the appropriate space. In particular, the Quantum Similarity Theory (QST)

[359] was originally developed in order to establish quantitative comparisons between

molecular systems by means of their fundamental structural magnitudes, i.e. electron

density functions. The obvious motivation arised upon the guess that studying the

differences between the electronic charge densities of these species could be related to

differences between their respective physical and chemical properties, according to the

Density Functional Theory and the Hohenberg-Kohn theorem [101].
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The main aim of this Part is to analyze the ability of the most important divergence

measures, defined in the next chapter (Chapter 9), such as the Jensen-like and the

Fisher divergences, in the study of dissimilarity between atomic systems, as compared

to other well-known comparative measures, such as the Quadratic Distance (QD) and

the Quantum Similarity Index (QSI). The universality of the methods here employed

allows their application not only to atomic systems, but also to many others such as,

for instance, molecules and clusters, as well as to the analysis of physical and chemical

processes such as ionization and reactions.

The structure of this Part is the following: firstly, in Chapter 9, different divergence

measures will be defined giving not only their mathematical formulation in terms of

information measures such as Shannon entropy or Fisher information, but also discussing

their meanings. In Chapters 10 and 11, the dissimilarity or divergence between neutral

atoms throughout the Periodic Table in terms of their one-particle densities will be

studied, as well as the dissimilarity between neutral species and their corresponding

ions in both conjugated position and momentum spaces. This study is carried out in

terms of the Jensen-like (i.e., Jensen-Shannon, Jensen-Rényi and Jensen-Tsallis) and

Fisher divergences, as well as the quadratic distance and the quantum similarity index.

Finally, in Chapter 12, other applications of these divergence measures will be shown in

order to prove their utility in numerous physical problems of different nature.
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The concept of divergence

In this part of the Thesis we use the concept of divergence in order to quantify the

dissimilarities among two or more distributions. In doing so, some requirements on the

mathematical formulation of any divergence measure must be fulfilled, namely (i) the

divergence between two distributions ρ1 and ρ2 has to be non-negative, (ii) this quantity

vanishes only when ρ1 = ρ2, and (iii) it has to be symmetric, i.e., the divergence between

ρ1 and ρ2 is equal to the divergence between ρ2 and ρ1

These properties allow us to employ the divergence as a measure of the “distance”

between distributions, although we are aware that they do not necessarily verify the

triangular inequality, according to the mathematical properties required for any distance.

In such a case, these kind of functionals is known as semi-metric [360] instead of metrics

as in the case of the usual distance.

Let us now define the different measures which will be used in the following chapters as

divergence and dissimilarity measures.

9.1 Quadratic distance

The concept of distance between distributions finds its roots in the same concept asso-

ciated to a coupled of elements in a vectorial space, constituting in fact an extension

of it. Supplying an appropriate norm on the space in such a way of giving rise to a

metric or distance leads us to the best known and deeply studied L2 space, in which the

distance between two vectors is given by the square root of the scalar product of the

difference vector with itself. Considering the space of finite norm distributions defined

over the whole three-dimensional space (and consequently with d = 3 in what followss),

and normalizing each one to unity, the simplest and most intuitive dissimilarity measure

is the Quadratic Distance (QD), given by the norm (defined by the Lebesgue integral
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on the domain ∆ common to both distributions) of their difference:

QD(ρ1, ρ2) ≡
(∫

∆
[ρ1(~r) − ρ2(~r)]

2d~r

)1/2

, (9.1)

with the normalization
∫
∆ ρ1(~r)d~r =

∫
∆ ρ2(~r)d~r = 1.

Among all the well-known properties that any distance verifies, let us remark that (i) it

is non-negative for any pair of distributions, and (ii) the minimal value zero is reached

if and only if both functions are identical. Having these properties in mind, it is clear

that the QD values provide us with an indicator of similarity between densities.

Different applications of this quantity have been carried out in several fields such as

atomic [361] and molecular [303] chemistry and physics, among others.

9.2 Quantum similarity index

The Quantum Similarity Technique is based on overlap integrals and the use of the

Quantum Similarity Index (QSI) to measure the closeness of two distributions ρ1(~r)

and ρ2(~r). The QSI is defined as

QSI(ρ1, ρ2) ≡
∫
∆ ρ1(~r)ρ2(~r)d~r√∫

∆ ρ
2
1(~r)d~r

∫
∆ ρ

2
2(~r)d~r

, (9.2)

where the numerator is refereed as the ’Quantum Similarity Measure’ (QSM) of ρ1 and

ρ2, while the denominator normalizes the QSM in terms of the corresponding disequilib-

riums defined and used in previous chapters (see Eq.(1.21)). The main properties of this

measure, apart from symmetry under exchange of distributions, are: (i) it ranges over

the bounded interval (0, 1] and (ii) the maximum value 1 is only reached for identical

distributions.

Its definition arises from the molecular research field [359], but later on the QSI has

been widely applied in many different problems and subjects in order to establish a

comparative measure as indicator of similarity between both distributions over the basis

of the aforementioned main properties [361–364].

Let us remark here the different character of both measures QD and QSI, in spite of

being defined in terms of exactly the same integrals, attending to the boundness of the

QSI contrary to the unbounded character of QD. This comment can be also expressed

in terms of the saturation values (those corresponding to identical distributions), being

0 (minimum) for QD and 1 (maximum) for QSI.
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9.3 Kullback-Leibler distance

Apart from the above discussed dissimilarity measures defined in terms of overlap inte-

grals, there exist additional comparative measures, some of them arising at a first step

from fundamental information-theoretic functionals of distribution, such as the Shannon,

Rényi and Tsallis entropies and Fisher information, as well as their later extensions for

establishing information-theoretic-based comparisons among distributions, as is the case

of the Kullback-Leibler relative or cross entropy [341] and the relative Fisher information

[365].

Probably the pioneering and most relevant divergence measure introduced within the

information theory is the so-called Kullback-Leibler divergence (KL) or relative entropy

[341]. It is defined as

KL(ρ1, ρ2) ≡
∫

∆
ρ1(~r) ln

ρ1(~r)

ρ2(~r)
d~r, (9.3)

having its roots in the Shannon entropy [16],

S(ρ) ≡ −
∫

∆
ρ(~r) ln ρ(~r)d~r, (9.4)

The main properties of this quantity are: (i) the KL is always non-negative if the

normalization of both distributions are identical, i.e.

∫

∆
ρ1(~r)d~r =

∫

∆
ρ2(~r)d~r, (ii) the

minimum value KL(ρ1, ρ2) = 0 is reached only for ρ1(~r) = ρ2(~r), (ii) the Shannon

entropy, S(ρ), can be obtained by taking ρ2 = 1 in the KL expression, so, we can give

a new interpretation for the Shannon entopy, as the relative entropy of ρ1 with respect

to the uniform distribution.

The non-negativity of KL relative entropy together with the minimal zero value for

identical distributions enable us to think on this measure in terms of similarity or dis-

tance between two probability measures. In other words, this quantity can be considered

as a measure of how different the two distributions are attending to their global sprea-

ding. However, the absence of symmetry of the KL divergence induces its symmetrized

version KLS(ρ1, ρ2) ≡ KL(ρ1, ρ2)+KL(ρ2, ρ1), in order to get an appropriate interpre-

tation of this quantity as an information distance. Both divergences KL and KLS have

been widely studied, finding applications in a great variety of fields such as, for instance,

minimum cross entropy estimation techniques [366] or indexing and image retrieval [367].

This divergence measure (KL), also called “information gain”, is related to other im-

portant quantities studied in Information Theory, and it has been extensively used in

Bayesian updating through the minimum-cross-entropy principle [4], where is usually

employed by choosing an ’a priori’ or reference density ρ2 in order to quantify the extent

to which ρ1 differs from the reference ρ2. Another recent and important application

belongs to the field of Quantum Information Theory, where the relative entropy can be
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used as a measure of distinguishability between quantum systems and therefore as a

quantum entanglement measure [368].

9.4 Jensen-like divergences

In this section, divergences based on global information measures (e.g. Shannon, Rényi

and Tsallis entropies) will be defined. As will be discussed later the global character of

the basic entropic measures translates also into the arising divergence.

Jensen-Shannon divergence

An information-based measure of divergence, strongly related to both the Shannon and

the relative entropies (defined in the previous section), is the so-called Jensen-Shannon

divergence (JSD). It is characterized for quantifying the Shannon “entropy excess” of

a couple of distributions with respect to the mixture of their respective entropies. More

specifically, it is given by [369, 370]

JSD(ρ1, ρ2) ≡ S

(
ρ1 + ρ2

2

)
− 1

2
[S(ρ1) + S(ρ2)] (9.5)

=
1

2

[
KL

(
ρ1,

ρ1 + ρ2

2

)
+KL

(
ρ2,

ρ1 + ρ2

2

)]
, (9.6)

the mathematical definition clarifying the above interpretation as entropy excess of the

mean density with respect to the mean entropy of the involved distributions. Last

equality arises straightforwardly from the definition of KL, providing an additional

interpretation of JSD as the mean “distance” (understood in terms of KL) of each

density to the mean one.

Apart from preserving the global character of the Shannon entropy, the JSD possesses

the main properties required for a measure to be interpreted as an informational dis-

tance, namely non-negativity (as a consequence of the convexity of the S (ρ) functional),

symmetry and the minimum value zero being reached only when ρ1 = ρ2.

It quantifies, in fact, the statistical dependence among an arbitrary number of pro-

bability distributions (as will be shown below) and there are some important reasons

because of many researchers choose JSD as a measure of divergence. Among them: (i)

it is a smoothed version of the Kullback-Leibler divergence and hence it shares its ma-

thematical properties as well as its intuitive interpretability [64], (ii) it provides direct

interpretations in the framework of statistical physics, information theory or mathema-

tical statistics [371], (iii) the JSD is related to other information-theoretical functionals

(special case of the Jensen difference [360] and the Csiszár divergence [344]) and it is

the square of a metric [372], (iv) the JSD can be generalized to measure the distance
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among more than two distributions, and (v) it is possible to assign different weights to

the distributions, which allows us to take into account different sizes, masses, charges,...

of the objects we are comparing (e.g. different lengths of the subsequences in DNA

analyses or different subshells or parts in atomic or molecular similarity analyses [371]).

However its use in the framework of quantum information theory [356, 358] or in the

study of multielectronic systems [373, 374] is very recent.

The interpretation of JSD remains also valid if one considers an arbitrary number M of

distributions {ρ1, . . . , ρM} as well as density and entropy means calculated by considering

non-uniform weights, defining their Jensen-Shannon Divergence JSD as follows:

JSD
(
{ωj, ρj}Mj=1

)
≡ S (ρ̄) −

M∑

j=1

ωjS(ρj) (9.7)

where

ρ̄ =

M∑

j=1

ωjρj , (9.8)

is the mean density and the weights ωj (j = 1, . . . ,M) verify

M∑

j=1

ωj = 1. It is immediate

to observe that the present definition reduces to the initial one (Eqs. (9.5)) by only

considering the particular case M = 2 and ω1 = ω2 = 1/2.

Some comments are in order: (i) the aforementioned properties for the M = 2 uniformly

weighted JSD divergence also remain for the above generalization, and (ii) the same is

also true for the expression of JSD as the mean of the associated KL relative entropies:

JSD({ωj , ρj}Mj=1) =
M∑

j=1

ωj ·KL (ρj, ρ̄) . (9.9)

This generalization also provides a measure of global distance among the elements of a

given set of distributions or, equivalently, of the mean distance from each element to the

mean distribution.

During past years researchers have been interested towards rigorous properties and para-

metric generalizations of this divergence information measure. In particular, and only

for discrete probability distributions, Lin and Wong derived some basic properties for

JSD [345, 375] and later on they also provided some identities and inequalities [376].

Taneja introduced [347, 348] two scalar parametric generalizations of JSD . More re-

cently, Lamberti and Majtey have investigated and generalized the properties of JDS in

the framework of non-extensive Tsallis statistics [34, 372, 377].
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Jensen-Rényi divergence

As pointed out in Chapter 1, the Shannon entropy S constitutes a particular case of the

so-called Rényi entropy of order q [33]

R(q) [ρ] =
1

1 − q
lnω(q) [ρ] , (9.10)

with ω(q) [ρ] ≡
∫
ρq(~r)d~r being the entropic moment of order q of the distribution ρ(~r).

Replacing the Shannon entropy by the Rényi one in the JSD definition (9.5) gives rise

to a new double-density functional, the Jensen-Rényi divergence [360] given by

JRD(q) (ρ1, ρ2) ≡ R(q)

(
ρ1 + ρ2

2

)
− 1

2

[
R(q) (ρ1) +R(q) (ρ2)

]
, (9.11)

in such a way that JRD(1) = JSD, the new divergence generalizing the previously

introduced JSD one. Scarce applications of the JRD measure have been carried out,

only in fields (to the best of our knowledge) such as image registration [378, 379] or

document categorization [380].

The non-negativity of JRD(q) is guaranteed only for 0 < q < 1, constraint which arises

from the convex/concave character of the frequency moments ω(q) according to the

value of q. This parameter acts by smoothing the integrands for lower q values and then

enhancing the relative contribution of the outermost region for the particular case of

atomic system.

So, the JRD(q) allows us to establish a comparisong among densities according to their

similarity within specific regions of their common domain.

In a similar way that in the case of JSD as given by Eq. (9.7), we can extend the JRD

definition by considering an arbitrary number of M distributions and by weighting each

density according to the desired criteria. This generalization gives rise to

JRD(q)
(
{ωi, ρi}Mi=1

)
≡ R(q) (ρ̄) −

M∑

i=1

ωiR
(q) (ρi) , (9.12)

with ρ̄ =
M∑

i=1

ωiρi and
M∑

i=1

ωi = 1. The same properties previously mentioned regarding

the definition (9.11) remain.



The concept of divergence 193

Jensen-Tsallis divergence

Other generalization of the Shannon entropy (see Section 1.1) is given by the so-called

Tsallis entropy of order q [34],

T (q)(ρ) ≡ 1 − ω(q)(ρ)

q − 1
, (9.13)

also based, as in the case of the Rényi entropy, on the entropic moment of order q of the

distribution ρ(~r).

Replacing the Shannon entropy by the Tsallis one in the JSD definition gives rise to a

new double-density functional, the Jensen-Tsallis divergence of order q [381, 382]

JTD(q) (ρ1, ρ2) = T (q)

(
ρ1 + ρ2

2

)
− 1

2

[
T (q) (ρ1) + T (q) (ρ2)

]
, (9.14)

in such a way that JTD(1) = JSD. The non-extensive character of the Tsallis entropy

(i.e. for a system composed by two or more parts, the total Tsallis entropy of a system

is not the sum of the Tsallis entropies of its parts) remains to the JTD. Non-extensive

divergences closely related to the JTD divergence above defined have been applied in the

fields of symbolic sequence segmentation [377], geological or medical image registration

[381] and machine learning techniques [382].

Contrary to the case of JRD, which non-negativity is only guaranteed for 0 < q < 1,

such a property is veryfied for JTD for arbitrary q, where the only constraints on the

value of q arise from the convergence of the involved frequency moments according to

the long- and short-range behaviors of the distributions, as also happens with the Rényi

relative entropy even for order q below 1. This parameter acts in JTD exactly in the

same way as for JRD. That is, the main feature of the Jensen-Tsallis divergence JTD(q)

as compared to other ones and, particularly, to the Jensen-Shannon divergence JSD,

is its capability of enhancing/diminishing the relative contribution of different regions

within the domain of the distributions under comparison.

As in the case of previous Jensen-like divergences, the JTD can be extended by consi-

dering M different distributions:

JTD(q)
(
{ωi, ρi}Mi=1

)
≡ T (q) (ρ̄) −

M∑

i=1

ωiT
(q) (ρi) , (9.15)

with ρ̄ =

M∑

i=1

ωiρi and

M∑

i=1

ωi = 1. The same properties previously mentioned, arising

from the definition (9.14), still remain.
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9.5 Fisher divergence

It is worthy to point out that the global character of the Shannon entropy translates

also into the divergences KLS, JSD and its generalizations JRD and JTD, as also

occurs with QD and QSI due to the involved integrals in their definition (for further

details, see Chapter 1 where all information measures had been defined and analyzed).

However, it would be also of great interest to dispose of divergence measures displaying

a deeper local character, namely their values being more sensitive to the aforementioned

strong local changes. As we have studied in previous chapters, the main quantity having

such a characteristic (in what concerns measures on a single distribution) is the Fisher

information I [3, 37], defined as

I(ρ) =

∫

∆
ρ(~r)|~∇ ln ρ(~r)|2d~r, (9.16)

Attending to the characteristics of Shannon and Fisher functionals, and having in mind

the definition given by Eq. (9.3) of the Shannon-based global comparison KL between

two distributions, a measure of local character based on the Fisher information concept

can be also built up in a similar way, namely

FD(ρ1, ρ2) ≡
∫

∆
ρ1(~r)

∣∣∣∣~∇ ln
ρ1(~r)

ρ2(~r)

∣∣∣∣
2

d~r +

∫
ρ2(~r)

∣∣∣∣~∇ ln
ρ2(~r)

ρ1(~r)

∣∣∣∣
2

d~r, (9.17)

which will be referred as Fisher Divergence (FD) in what follows, according to the

concept of divergence among distributions, previously introduced by other authors in

the information-theoretical context [346, 347]. From the FD definition, it is immediately

observed that it preserves the aforementioned properties desirable for establishing the

quantitative comparison, namely symmetry, non-negativity and saturation for identical

distributions.

It is worthy to point out that each individual term of the FD definition is known as

relative Fisher information, which scarce applications have been carried out with similar

aims to those of the Kullback-Leibler relative entropy, that is, to perform a comparison

of a distribution with respect to an a priori one [365, 383].

9.6 Comparison between Jensen-Shannon and Fisher di-

vergences

In the previous sections we have defined different divergence measures, in particular the

Jensen-Shannon, JSD, and Fisher, FD divergences, defined in terms of the Shannon

entropy and Fisher information, respectively. Both of them give us a glance about how
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different two distributions are, but in different ways. In order to get a better understan-

ding on those differences, suppose we want to compare two different persons “according

to” some specific characteristic, i.e. height, weight, hair’s colour, eye’s colour... A similar

situation arises when dealing with quantum systems and the probability distributions,

being the main reason because it is useful to have at our disposal a variety of divergence

measures according to the characteristics upon which base the comparison.

The Jensen-Shannon divergence is defined in terms of the Shannon entropy, which is a

global measure (we discussed the meaning of global and local character of the informa-

tion measures in Chapter 1), so this divergence gives us an idea about how similar or

different two distribution are over their whole domain. On the other hand, the Fisher

divergence is based on a local information measure, the Fisher information, so, in this

case the divergence quantifies the differences between two distributions in more detail

at a smaller-scale. Additionally, the generalizations, JRD and JTD allows to enhance

specific regions in order to quantify the strength of the divergence.

 0
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JSD(f,g)=0.00023
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Figure 9.1: JSD and FD for f(x) ∼ e−ax and g(x) ∼ e−ax + ǫsin2nx.

As an example, two elementary functions are depicted in Figure 9.1. We can observe

that both distributions have the same global behaviour and consequently their JSD has

a small value. However, if we observe the figure in more detail, we can distinguish that

g(x) has an oscillatory behaviour due to its sine-type perturbation that f(x) does not

have. Hence, the FD is very high because this divergence accurately detects the local

changes in the probability distributions.
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Fisher and Jensen-Shannon

divergences of neutral atoms and

ionization processes

Finding appropriate ways of comparing two or more systems among themselves in terms

of representative distribution functions appears very interesting, especially in order to

describe the similarity among relevant physical and chemical properties of the systems

in terms of their corresponding distributions. Such is for instance the case of atomic

systems, where the aim is to analyze the correlation among their similarity in terms of

one-particle densities and meaningful properties such as shell structure, the total number

of electrons or the atomic ionization potential (AIP).

The aim of this Chapter is to study, by using the previously introduced relative measures

(see Chapter 9), the dissimilarities between electronic densities corresponding to neutral

atoms and/or ions in both conjugated spaces. This chapter is structured as follows:

Section 10.1 is devoted to the numerical analysis of Fisher (subsection 10.1.1) and Jensen-

Shannon (subsection 10.1.2) divergences among one-particle densities, in position and

momentum spaces for neutral atoms throughout the Periodic Table, including a study

of the results as compared to those provided by other information measures, such as

the quadratic distance QD or the relative entropy KLS, providing the appropriate

interpretation from a physical point of view. In Section 10.2, we carry out a dissimilarity

analysis for simple, but strongly organized N -electron systems (N ≤ 54) such as neutral

atoms and their singly charged ions, exploring their outer electronic layer and studying

the features inherent to the process of gain or loss of one electron for an atom keeping its

nuclear charge Z. The relationship between the atomic ionization potential (AIP) and

the dissimilarity measures among neutral systems and charged species is also studied.

In Section 10.3 we explore the core region of atoms by computing the isoelectronic

variation of these information divergences of over a fairly extended range of nuclear

197
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charge Z values. The results obtained by means of these divergence measures (FD and

JSD) are also compared to those obtained with quantum similarity techniques (QST)

based on overlap measures. Finally, the conclusions and main results are collected in

the last section, Section 10.4

10.1 Divergence measures of neutral atoms

In this section we study the similarities among atomic one-particle densities by means

of two different measures, namely JSD and FD divergences which posses a global and

a local character, respectively. The results provided by both measures are interpreted

in terms of relevant physical characteristics of the systems under study.

10.1.1 Fisher divergence

The main aim in this subsection is the numerical study of the Fisher divergence (FD)

FD(ρ1, ρ2) ≡
∫
ρ1(~r)

∣∣∣∣~∇ ln
ρ1(~r)

ρ2(~r)

∣∣∣∣
2

d~r +

∫
ρ2(~r)

∣∣∣∣~∇ ln
ρ2(~r)

ρ1(~r)

∣∣∣∣
2

d~r, (10.1)

between pairs of atomic electron densities, either in position or momentum spaces, ρ(~r)

and γ(~p) respectively, as well as to provide an appropriate physical interpretation of the

FD values. First of all, let us remember that the one-particle densities ρ(~r) and γ(~p) are

obtained from the total wavefunction Ψ(~r,~r2, . . . , ~rN ) of the N -electron atom, and its

Fourier transform Ψ̃(~p, ~p2, . . . , ~pN ), by integrating |Ψ|2 and |Ψ̃|2 on all variables except

the first one. Additionally, the spherical averages ρ(r) and γ(p) of the aforementioned

one-particle densities are quite enough for the density-based study of isolated atomic

systems.

In order to clarify the notation, all quantities considered in what follows will be denoted

by adding a subscript to determine the space they belong to (except for results or

expressions of general validity in both conjugated spaces), while systems will be referred

by means of their nuclear charge Z. For illustration, FDr(3, 5) will denote the Fisher

divergence in position or r-space between the neutral atoms with nuclear charges Z = 3

and Z = 5.

The numerical analysis has been carried out by using Near-Hartree-Fock wavefunctions

[269] for neutral atoms with nuclear charge Z = 1 − 103. First, let us show the Fisher

divergence in position space FDr(Z,Z
′) between each atom Z ′ belonging to a given

group as compared to each one within the whole Periodic Table Z = 1 − 103. For

illustration, the associated curves (as functions of Z) are displayed in Figure 10.1(a) for

noble gases (i.e. Z ′ = 2, 10, 18, 36, 54, 86) in position space. It is observed that all curves

(corresponding to the systems of the chosen group) behave in a similar fashion, firstly
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Figure 10.1: Fisher divergence FD(Z,Z ′) of noble gases (Z ′ = 2, 10, 18, 36, 54, 86)
for Z = 1 − 103 in (a) position and (b) momentum spaces. Atomic units are used.

decreasing monotonically until reaching the minimal zero value for Z = Z ′, and then

monotonically increasing as Z increases. Such a behavior is displayed not only for all

systems of the present group, but also for all other groups of the Periodic Table. This

fact can be interpreted, attending to the meaning of divergence associated to the FD

definition, in the sense that FDr(Z,Z
′) mostly depends on how different the atomic

nuclear charges Z and Z ′ are. However, no information on other physically relevant

characteristics (e.g. shell-filling, periodicity,...) is obtained by means of FDr(Z,Z
′).

The previous unimodal shapes in Figure 10.1(a) strongly differ from those displayed

when performing a similar comparison in terms of the Fisher divergence FDp(Z,Z
′) in

momentum space as given in Figure 10.1(b) for the previously chosen group, namely

noble gases; next comments corresponding to this group remain also valid for all groups
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of the Periodic Table. Now, a significant number of local extrema (maxima and minima)

appear in all curves, which behavior is consequently far from the previously mentioned

systematically unimodal one in position space.

Focussing our attention on minima (intuitively associated to the concept of close or

similar densities) it is observed, at a first glance, the existence of a small number of

clearly distinguishable minima located at (roughly) the same positions for all curves, as

well as a higher number of not so deep/enhanced peaks along them. Concerning the

most relevant minima, they are located at the values of the nuclear charges Z of the

systems conforming the group under study. This situation is much more in accordance

with the aforementioned interpretation of a divergence between atomic distributions as

a measure of their distance or dissimilarity interpreted in terms of their main physical

characteristics, because the FDp(Z,Z
′) values are highly conditioned by the valence

orbital quantum number l and its occupancy or, equivalently, by the groups the atoms

under consideration belong to. So, and contrary to the position space divergence FDr,

the momentum space one FDp is shown to be able of providing information on physical

properties of neutral atoms beyond the mere difference between their nuclear charges.

Apart from the deeper peaks associated to comparisons between members belonging

to the same group of the Periodic Table, there also appear a set of much smaller lo-

cal extrema for specific values of the nuclear charge Z, a common feature of all curves

characterized by a Z ′. Most of those peaks occur when one of the systems under con-

sideration is an atom suffering of the so-called anomalous shell-filling. The appearance

of those peaks for these ’anomalous cases’ is systematic, in the sense of being displaying

independently of the other system which is being compared to.

The similar behavior of all elements belonging to the same group is a common feature of

all groups within the Periodic Table. For all of them, moreover, increasing the nuclear

charge of contiguous atoms makes their difference in momentum space (attending to

the divergence values) to decrease, that is, similar trends are displayed by contiguous

systems belonging to different groups. In particular, filling a ’p’ subshell and even more

for the ’d’ and ’f’ ones provides lower values of the divergence among themselves. For

instance, transition metals as well as lantanides and actinides display very similar trends

within their periods.

The differences between the FD behaviors in position and momentum spaces arise from

the asymptotic behaviors of the involved densities. In position space, the atomic density

ρ(r) has an exponentially decreasing behavior, so that the values of the involved inte-

grals are mainly determined by the regions surrounding the nuclei, where the density

behavior is governed by the nuclear charge Z. However, the low-speed regions for small

linear momentum p, where it roughly reaches the highest values, are associated to the

outermost subshells (valence ones), being consequently those mainly determining the

FD values, according to the main contribution of the momentum density.
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Figure 10.2: Fisher divergence FD(Z,Z ′) of Ar (Z ′ = 18) and Ca (Z ′ = 20) for
Z = 1 − 103 in (a) position and (b) momentum spaces. Atomic units are used.

Some conclusions of the previous comments are emphasized by analysing the structural

behaviors of curves corresponding to Fisher divergences of elements belonging to different

groups. In doing so, let us choose a couple of them as done in Figures 10.2(a) and 10.2(b),

corresponding to their divergences with respect to other systems, in both conjugated

position and momentum spaces, respectively. Let us consider two systems similar in

what concerns the values of their nuclear charges but significantly different according

to their valence orbitals, such as for instance Argon and Calcium (Z ′ = 18 and Z ′ =

20,respectively) as done in those figures. Concerning their position space divergences

FDr(Z,Z
′) as functions within the range Z = 1 − 103 for each Z ′, it is observed in

Figure 10.2(a) how both curves display almost identical shapes, differing roughly by a

small shift according to the closeness of their nuclear charges 18 and 20, which is also the

distance between the locations of their absolute minima being 20 − 18 = 2. This figure
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corroborates the above comment concerning position space FDr divergences, in the sense

that they are mainly determined by the nuclear charges of the involved systems, much

more than on their physical or chemical properties. However, a similar analysis based

on Figure 10.2(b) where the momentum space divergences are displayed for the same

systems shows a strongly different behavior of the FDp(Z,Z
′) function even for systems

with very close values of their nuclear charges. In the present example the chosen systems

belong to different groups, being the outermost subshell 3p6 for Z ′ = 18 (noble gas) and

4s2 for Z ′ = 20 (alkaline earth). That difference between their valence subshells strongly

determine the associated FDp values according to the shell structure of the atom they

are compared to. In a similar way as explained in comments of Figure 10.1(b) for the

role of the momentum space divergence FDp, it can now be also concluded that main

minima correspond (with very few exceptions) to systems belonging to the same group,

while other extrema are mostly associated to the anomalous shell-filling process.

A brief global conclusion obtained from the analysis of all figures discussed up to now

in the present subsection is that the Fisher divergence in momentum space FDp(Z,Z
′)

for neutral atoms displays a structural richness which is clearly related to the shell

filling process and structure, while the same measure in position space loses such an

information content as shown by its unimodal behavior for all atomic systems.

Concerning the last conclusion, it is natural to wonder on the quality of the just analyzed

Fisher divergence as compared to the quadratic distance QD given by

QD(ρ1, ρ2) ≡
(∫

[ρ1(~r) − ρ2(~r)]
2 d~r

)1/2

. (10.2)

Among this kind of studies, it is worthy to remark those only carried out in position

space [362, 384] as well as other more complete ones just recently published involving

additionally the momentum and the phase spaces [361, 364]. In the present work, we

have carried out for the QD distance a similar analysis as that performed with the

FD divergence. Again, the previously mentioned unimodal shape for the QDr(Z,Z
′)

curves is displayed in position space, a richer structure being obtained in the momentum

one. So, and for comparison purposes, we will restrict ourselves to the FDp and QDp

quantities, in order to analysis the characteristic structural patterns of both them.

From a systematic comparison of the curves FDp(Z,Z
′) and QDp(Z,Z

′) as functions

of Z for a fixed Z ′, it is concluded that their resemblances and differences are strongly

determined by the specific Z ′ atomic value chosen for comparing them, as well as by the

range which the Z values belong to. This can be clearly observed in Figures 10.3(a) and

10.3(b), correponding to Z ′ = 9 and Z ′ = 5 respectively. The main structure of both

curves in Figure 10.3(a) for Z ′ = 9 (properly scaled in order to carried out an useful

comparison) is very similar over almost the whole Periodic Table. All peaks appear to

be of the same kind (maximum or minimum), whether for cases corresponding to atoms



Fisher and Jensen-Shannon divergences of neutral atoms and ionization processes 203

of the same group as Z ′ = 9 whether for those associated to the anomalous shell filling.

However, a strongly different behavior is observed in Figure 10.3(b) for the Z ′ = 5

atom. It is clearly observed how the Fisher divergence FDp(Z, 5) displays an enhanced

sensitivity associated to the shell structure as compared to that shown by the quadratic

distance QDp(Z, 5).
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Figure 10.3: Fisher divergence FDp(Z,Z
′) and quadratic distance QDp(Z,Z

′) in
momentum space for Z = 1 − 103 of (a) F (Z ′ = 9) and (b) B (Z ′ = 5). Atomic units

are used.
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10.1.2 Jensen-Shannon divergence

As mentioned in the previous chapter, two of the most popular ways (apart from the

quadratic distance) of defining global quantitative measures of dissimilarity among dis-

tribution functions are the Jensen-Shannon divergence (JSD)

JSD(ρ1, ρ2) = S

(
ρ1 + ρ2

2

)
− 1

2
[S(ρ1) + S(ρ2)] , (10.3)

and the symmetrized Kullback-Leibler entropy (KLS).

KLS(ρ1, ρ2) =

∫
ρ1(~r) ln

ρ1(~r)

ρ2(~r)
d~r +

∫
ρ2(~r) ln

ρ2(~r)

ρ1~r)
d~r. (10.4)

Attending to the aim of the present work, namely the analysis of different measures in

order to compare atomic electron densities in both position and momentum spaces as

well as the interpretation of the corresponding results from a physical point of view, it

appears natural to carry out a similar study to that developed in the previous subsection

for the Fisher divergence (FD), now in terms of the above mentioned quantities of global

character, opposite to the local one of FD.

In doing so, let us first analyze the JSD(Z,Z ′) curves (as functions of Z) for each

value Z ′ corresponding again, for illustration, to noble gases in position (Figure 10.4(a))

and momentum (Figure 10.4(b)) spaces, in a similar fashion as done for FD. Now

it is worthy to remark the roughly similar structure of the JSD measure for any Z ′

through the whole Periodic Table independently of the space considered. This similarity

strongly differs from the corresponding behavior of the FD divergence as remarked in the

previous section. An important conclusion on this result is that the position space JSDr

divergence provides much more information on the atomic structural properties than the

quadratic distance or the FD divergence, being far from their position space unimodality.

Location of main extrema of JSD(Z,Z ′) still remains determined by the shell-filling

process following similar patterns to those of the FDp divergence in momentum space,

but also appearing now in position one for the JSDr divergence, in spite of not being

so ordered, narrow and deep as in the FDp case.

Restricting ourselves to the momentum space, it is clearly revealed the higher content

of information of the Fisher divergence FD on the atomic shell-filling process than

that provided by the Jensen-Shannon divergence JSD, being again better displayed

in momentum space the structural richness of atomic systems by means of the local

divergence FD as compared to the global one JSD.

Similar comments are also valid for all other groups in the Periodic Table, as well as

for the symmetrized Kullback-Leibler entropy KLS(Z,Z ′) in both spaces. In order to

have an idea of the behavior of the KLS relative measure, the corresponding values are
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Figure 10.4: Jensen-Shannon divergence JSD(Z,Z ′) of noble gases (Z ′ =
2, 10, 18, 36, 54, 86) for Z = 1 − 103 in (a) position and (b) momentum spaces. Atomic

units are used.

displayed in Figures 10.5(a) and 10.5(b) in position and momentum spaces, respectively.

Similarly as ocurred with the JSD divergence, the shell-filling pattern is clearly displayed

in both spaces, even more clearly in position space when dealing with heavy systems.

In any case, location of extrema in both cases appears again determined by the shell

structure of the involved atoms. The present analysis widely generalizes and improves

the only previous one, to the best of our knowledge, carried out in order to compare

atomic distributions [385], where the KL relative entropy, as well as the quadratic and

L1 distances, were employed to the study of consecutive atoms.

The reason of JSD and KLS displaying relevant structure in both conjugated spaces, as

opposite to the FD case where only in momentum space was observed, arises from their
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Figure 10.5: Symmetrized Kullback-Leibler entropy KLS(Z,Z ′) of noble gases (Z ′ =
2, 10, 18, 36, 54, 86) for Z = 1 − 103 in (a) position and (b) momentum spaces. Atomic

units are used.

definition in terms of a logarithmic functional, being consequently determined by the

behavior of the compared densities over the whole domain with a balanced quantification

on short- and long-range regions.

So, it can be concluded that the measures of global character JSDr andKLSr in position

space provides more information than the local character measure FDr, while the level

of structure of the same quantities in momentum space appears appreciably higher for

the Fisher divergence FDp than for the global Jensen-Shannon and Kullback-Leibler

ones.

10.2 Divergence analysis of monoionization processes

In this section we focus in the outer electronic layer of the atom in order to study the

dissimilarities between the neutral systems and the singly charged ones, with identical
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nuclear charge, by means of their corresponding electronic densities. In doing so we

calculate the Jensen-Shannon and Fisher divergences, given by Eqs. (10.3) and (10.1)

respectively, associated to the corresponding densities involved in the monoionization

processes, to analyse a set of 150 atomic systems including anions, neutral species and

cations, with a number of electrons up to N = 54.

We also compute, for the sake of completeness, the Quadratic distance (Eq. (10.2)) and

the Quantum similarity index (QSI):

QSI(ρ1, ρ2) ≡
∫
ρ1(~r)ρ2(~r)d~r√∫
ρ2
1(~r)d~r

∫
ρ2
2(~r)d~r

, (10.5)

in order to better interpret and compare the aforementioned systems and processes. Let

us start with these two quantities. We have computed, in r and p spaces, QD and QSI

between neutral species (N = 1 − 54) and their singly charged cations (NC pairs) or

anions (AN pairs) as well as between anions and cations (AC). The results confirm and

expand some basic and preliminary results obtained for these charged systems [364].

Concerning position space, all computed values of QDr, for the aforementioned pairs

of atomic systems, as shown in Figure 10.6(a), provide very smooth curves versus Z,

whatever the type of ionization process suffered by the atom might be. The monotonic

decreasing behaviour of the curves shows how QDr between atoms and ions are simply

smaller as the nuclear charge Z grows. Therefore QD in position space masks any

information concerning periodicity properties, groups of the Periodic Table which the

systems belong to and the characteristics of the outermost subshell involved in the

ionization.

However, results are completely different in momentum space where the shell structure

of the Periodic Table is clearly displayed in Figure 10.6(b). The ranges of values for QDp

are strongly dependent on the orbital angular momentum ’l’ of the subshells affected by

the change on the number of electrons, and the great structure of the curves in this space

contrasts deeply with the monotonous behaviour displayed in position space. These very

different trends in the conjugated spaces are shown in Figure 10.6 for the three studied

processes: A → N , N → C and A → C by removing one or two electrons. It is worthy

to note also that (i) the three curves in momentum space (Figure 10.6(b)) are completely

fitted, in spite of their picked structure, (ii) distances between these three couples are

ordered, for fixed Z, in the sense that QD(AN) < QD(NC) < QD(AC) in both spaces,

and (iii) an average decreasing trend, with the size of the atom, modulates this rich

structure, i.e. changes in the ionization processes of heavy atoms are, overall, smaller

than those suffered by light atoms.
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Figure 10.6: Quadratic distance QD among neutral atoms (N) and singly charged
anions (A) and cations (C) with nuclear charge Z in (a) position and (b) momentum

spaces. Atomic units are used.

Analogous results are found for the corresponding quantum similarity index (QSI), where

all computed values, in position space, almost reach the maximum value 1, whereas a

much richer structure is displayed in p space, as shown in Figure 10.7, for illustration,

in the NC process. As expected, minimum values of QSIp correspond, overall, with

maximum ones of QDp. Besides, the atomic ionization potential (AIP), which is the

basic experimental magnitude to be considered according to the physical process we are

studying, is also displayed in the figure. It is worthy to mention here the coincidence of

minima for QSIp with relevant ones for AIP (corresponding to ionization related to ’s’

valence subshells), and also the apparent constant (almost equal to 1) values of QSIp

for atoms suffering ionizations in ’p’ subshells.
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Figure 10.7: Quantum similarity index QSIp(NC) between neutral atoms (N) and
singly charged cations (C), and atomic ionization potential AIP of neutral atoms with

nuclear charge Z. Atomic units are used.

The strong differences found concerning the level of structure for both the QD and QSI

measures in the two conjugated spaces are understood by analyzing their definitons as

well as the short- and long-range behaviors of the one-particle densities. The exponential

decrease of the position space density ρ(r) makes the values of the three overlap integrals

to be mainly quantified by the region around the nucleus, where the nuclear charge Z

determines the value of the density. Consequently, both QDr and QSIr are strongly

dependent on the nuclear charge of the compared systems, much more than on the

outermost regions where the valence subshell determine the most relevant physical and

chemical properties. On the other hand, such a valence region corresponds to the low-

speed electrons, i.e. those associated with the momentum density around the origin

and, consequently, to the main contributions on evaluating the overlap integrals for the

corresponding QDp and QSIp measures.

Figures 10.8(a) and 10.8(b) show, in r and p spaces respectively, the results obtained by

comparing the informational divergences before defined, namely FD and JSD, when an

electron is removed from the neutral species (N → C), as well as the atomic ionization

potential AIP needed for performing such a process. We note first that both divergences

display in position space a notable structure in contrast to QD (Figure 10.6) and QSI

measures, and second that, in spite of being of very different character (local (FD) or

global (JSD) ones), both divergences not only follow similar general trends in the two

conjugated spaces, but each one also belong to a similar range of values independently

of the considered space. These are new and important facts that reveal the power of

these two divergences over those computed by QST.
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Figure 10.8: Fisher and Jensen-Shannon divergences, FD(NC) and JSD(NC), be-
tween neutral atoms (N) and singly charged cations (C) in (a) position and (b) momen-
tum spaces, and atomic ionization potential AIP of neutral atoms with nuclear charge

Z. Atomic units are used.

Carrying out the same analysis for other ionization processes, namely those in which

the compared systems are a singly charged anion and the resulting one after removing

one (A→ N) or two (A→ C) electrons (the neutral atom or the singly charged cation,

respectively), similar conclusions are obtained.

However it is important to note and to analyze the pointed and fluctuant structure of

these divergences within each period by comparing their extremal values to those of AIP.

In Table 10.1, values of the nuclear charge Z for which the divergences considered in

this work display local extrema are given. In addition, minimum values of the AIP are

associated to systems with a single electron in the valence subshell, making consequently

such a subshell to disappear after ionization, and the resulting system to strongly differ
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Measure N −→ C A −→ N A −→ C

AIP (s) 3,11,19,23,28,37,47,55
(p,d) 5,8,13,16,31,34,49

FDr (s) 3,11,19,23,28,37,42,45,47,55 3,11,19,24,37,41,45 3,11,19,24,29,37,42,47
(p,d) 5,8,13,16,31,34,39,49 6,14,32,50,53 8,16,34,52

JSDr (s) 3,11,19,23,27,37,41,45,47,55 3,11,19,24,29,37,42,44,46 3,11,19,23,27,37,41,44
(p,d) 31,49

FDp (s) 3,11,19,23,27,37,41,44,47,55 3,11,19,37,46 3,11,19,23,27,37,41,44
(p,d) 25,33,40,43,51 33,51

JSDp (s) 3,11,19,23,27,37,41,45,47,55 3,11,19,24,29,37,42,44,46 3,11,19,23,27,37,41,44
(p,d) 8,52 7,15,33,51

QDp (s) 3,11,19,23,25,27,37,40,43,47,55 3,11,19,24,29,37,41,44,46 3,11,19,23,27,37,41,44
(p,d)

QSIp (s) 3,11,19,23,27,37,41,45,47,55 3,11,19,24,29,37,42,44,46 3,11,19,24,29,37,42,47
(p,d) 16,34,52 7,15,33,51 8,15

Table 10.1: Nuclear charge Z of local extrema for the atomic ionization potential AIP
of neutral atoms and/or the Fisher and Jensen-Shannon divergences in position (FDr

and JSDr) and momentum (FDp and JSDp) spaces, and the quadratic distance QDp

and the quantum similarity index QSIp in momentum space, for ionization processes
among neutral atoms (N) and singly charged anions (A) and cations (C). Atomic units

are used.

from the initial one. This relevant difference is usually revealed in terms of a high

divergence and dissimilarity between the initial and the final system.

Attending to the above discussion, the Table 10.1 contains the values of Z for which

both the AIP and the QSIp display local minima, and also those corresponding to local

maxima of momentum space QDp as well the divergences FD and JSD in both position

and momentum spaces. Let us remember at this point the structureless of both QD and

QSI in position space, being consequently not included in the table. Additionally, two

cases have been distinguished according to the involvement of any ’s’ electron on the

ionization process or else only ’p’ and ’d’ ones. This is done because of the relevant role

played by the first ones in conditioning the associated divergence and similarity values.

However, there is only one exception for the rules previously given in order to choose

the kind of extrema (maxima or minima) to be considered: instead of maxima, the Z

values provided for the FDr(AN) divergence correspond to its minima. The fact that

this particular quantity displayed such a behavior can be explained attending to the

long-range behavior of the position space atomic densities. Denoting by ǫ the AIP of

a given system (for the sake of simplicity), it is well-known [316, 386] that the charge

density behaves as ρ(r) ∼ e−
√

8ǫr for large r. The FD definition given by Eq. (10.1)

allows to assert that FD(ρ1, ρ2) ∼ (ǫ1 − ǫ2)
2. For alkaline metals, the AN process

makes a completely filled ’s’ valence subshell to become half-filled, while the other two

processes (NC and AC) completely remove the initial non-empty ’s’ subshell, giving rise

to a final closed-shell system (namely the singly charged cation) with a much higher AIP

than the initial system (with s valence subshell) in the AN process. So, the difference

between their AIP, which determines the behavior of the FD divergence, is much higher
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when the final system is a cation than a neutral atom. In this analysis it has been

essential the presence of the logarithmic derivative in the FD definition, which provides

the aforementioned dependence on the ionization potential in position space. This is

not the case neither for the momentum space nor for other measures.

In all the aforementioned cases there exist a strong correlation also with the structure

displayed by the atomic ionization potential AIP in the NC ionization process in which

an ’s’ electron is removed, as shown in the corresponding column of the table, as well as

in Figures 10.8(a) and 10.8(b). However, the same is not true when the removed electron

is of ’p’ or ’d’ type, where such a connection with the AIP extrema only remains for the

position space Fisher divergence FDr. Concerning the QST and divergence measures,

these comments are also valid for the AN and AC ionization processes.

The above mentioned goodness of the Fisher divergence in position space FDr on dis-

playing such a richer structure as compared to the other measures as well as the diver-

gence in momentum space, can be better understood by turning up to the long-range

behavior of the charge density in terms of the atomic ionization potential, being the

connection between the extrema of FDr and AIP the closest one within the magnitudes

enclosed in the Table 10.1.

In order to better interpret the number and location of extrema of these quantities,

the corresponding ionization processes are detailed in the Table 10.2 for all systems

considered in the present section. It is observed the systematic presence of the alkaline

atoms (Z = 3, 11, 19, 37, 55) for which only ’s’ electrons are removed from the initial

system. Additionally, many of the other extrema shown in the Table 10.1 correspond

to systems involved in the so-called ’anomalous shell-filling’ as well as for ionizations

concerning non-valence subshells (see Table 10.2). Sometimes there appear extrema for

processes involving ’p’ subshells when they become half-filled or completely removed

after the ionization.

Let us remark here that some recent works have dealt previously with the correlation

between information measures and the atomic ionization potential, according to its role

in describing the single ionization processes [308, 364]. The net Fisher information

measure, defined as the product of both the position and momentum Fisher information,

is found to be correlated, at least qualitatively, with the inverse of the experimental

ionization potential [387], as similarly shown to occur with Onicescu information energy

[208]. However, those and other works only deal with pairs of neutral systems within

a given model, or a unique system described within different models [385], contrary to

the case considered in the present work, namely the dissimilarities between neutral and

charged species.
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Z A −→ N −→ C

3-4 2sj+1 −→ 2sj −→ 2sj−1

5-10 2pj+1 −→ 2pj −→ 2pj−1

11-12 3sj+1 −→ 3sj −→ 3sj−1

13-18 3pj+1 −→ 3pj −→ 3pj−1

19-20 4sj+1 −→ 4sj −→ 4sj−1

21-22,25-26,30 4s23dj+1 −→ 4s23dj −→ 4s13dj

23,27-28 4s23dj+1 −→ 4s23dj −→ 4s03dj+1

24,29 4s23dj −→ 4s13dj −→ 4s03dj

31-36 4pj+1 −→ 4pj −→ 4pj−1

37-38 5sj+1 −→ 5sj −→ 5sj−1

39 5s24d15p1 −→ 5s24d1 −→ 5s24d0

40,43,48 5s24dj+1 −→ 5s24dj −→ 5s14dj

41-42,44-45,47 5s24dj −→ 5s14dj −→ 5s04dj

46 5s24d9 −→ 5s04d10 −→ 5s04d9

49-54 5pj+1 −→ 5pj −→ 5pj−1

55 6s1 −→ 6s0

Table 10.2: Initial and final occupation numbers of outermost atomic subshells for
some ionization processes among neutral atoms (N) and singly charged anions (A) and

cations (C).

10.3 Divergence analysis of isoelectronic series

The isoelectronic series provide a well-known benchmark for the study of atoms and

molecules. In this section results concerning the application of the informational di-

vergences previously defined, are provided. We have analyzed nine atomic isoelectronic

series, each one composed of a neutral atom and some of its cations. Each series consists

of 21 systems, all of them with equal number of electrons N and their nuclear charge

running from Z = N to Z = N + 20. In this way we study how these divergence mea-

sures characterize, from the informational point of view, this set of 189 different systems,

corresponding to the series with N = 2 − 10. On one hand, the effect of increasing/de-

creasing the nuclear charge is studied and, on the other, the electronic organization of

each isoelectronic series is investigated. In doing so, the previously employed compara-

tive measures (QSI, QD, FD and JSD) between the neutral species (Z = N) and each

member of the isoelectronic series (Z = N + 1, . . . , N + 20) have been computed.

Double Figure 10.9 shows the global Jensen-Shannon divergence (JSD) in r and p spaces.

This global divergence works similarly in position and momentum space.

Some monotonic trends are also shown in these figures: (i) the divergence between the

neutral system and each member of the isoelectronic series increases with Z, as it should

be expected, showing that distances from neutrals increase when the nuclear charge

becomes larger, (ii) this increasing behaviour with the size of the nucleus is progressively

less notable, and (iii) the location of each isoelectronic curve is ordered according to N,
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Figure 10.9: Jensen-Shannon divergence JSD between N-electron neutral atoms and
cations for the isoelectronic series with N = 2 − 10 and nuclear charge Z within the
range N ≤ Z ≤ N + 20 for each series, in (a) position and (b) momentum spaces.

Atomic units are used.

so that divergences decrease with the number of electrons, N for fixed Z. In other

words the value of the divergence is smaller when the size of the electronic cloud for

both neutral and cation is bigger.

Double Figure 10.10 shows the Fisher divergence (FD) for the same isoelectronic series

studied above. In this case it is important to note a very different behaviour as compared

to that of JSD . First of all the trends of this local divergence, FD, in r and p spaces are

very different, as FDr displays a clearly increasing behaviour with Z, but FDp tends

towards a constant value when the size of the nucleus grows. Besides, FDr has the

following characteristics: (i) within each series, it increases with Z, as JSDr does, but

now this increase is progressively more notable according to the size of the nucleus and



Fisher and Jensen-Shannon divergences of neutral atoms and ionization processes 215

(ii) a monotonic decreasing ordering of the isoelectronic curves with N is once again

observed. On the other hand, the most important characteristics of FDp are: (i) it

increases at a lesser extent as the nucleus becomes larger, and at the end of the series it

is almost unsensitive to the size of the nucleus, and (ii) the monotonic behaviour of the

curves with N is broken by the N = 2 isoelectronic series.
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Figure 10.10: Fisher divergence FD between N-electron neutral atoms and cations
for the isoelectronic series with N = 2 − 10 and nuclear charge Z within the range
N ≤ Z ≤ N + 20 for each series, in (a) position and (b) momentum spaces. Atomic

units are used.

This much more sensitive trend of FD versus JSD can be understood if we look at

the local character of this divergence in comparison to the global one of JSD. In

this sense, FD is much more sensitive to the local characteristics (near the origin,

asymptotic behaviour, etc.) of the densities under comparison. In particular, it is

worthy to remember the hydrogen-like behavior of the position space density around
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the nucleus, which translates into the so-called ’cusp condition’ [388], valid for any

atomic system:

ρ′(0)
ρ(0)

= −2Z, (10.6)

which reveals a proportionality of the logarithmic derivative at the nucleus and the

nuclear charge. Taking into account that the main relative contribution to the integrals

defining FDr comes from the region surrounding the nucleus (due to the fast exponential

decay of the density), the aforementioned condition translates into a dependence of such

a divergence between these systems on their nuclear charges as

FD(ρ1, ρ2) ∼ (Z1 − Z2)
2 (10.7)

which makes, as expected, the Fisher divergence to considerably increase when compar-

ing the neutral system with a highly charged one. In fact, increasing the nuclear charge

makes absolute value of the slope for the logarithmic derivative of the density around the

nucleus to proportionaly increase and, consequently, also the Fisher information itself

due to the high ’content of gradient’ in that region. Additionally, it is worthy to point

out how both divergences FD and JSD behave in a strongly different or similar fashion

according to the space we are dealing with, namely position or momentum, respectively.

Similar comments on the QD and QSI measures can be done concerning monotonicity

and ordering of the curves. In fact, the shape of the quadratic distance QD is found to

be very similar to that of the Fisher divergence, sharing also the previously discussed op-

posite trends in both conjugated spaces. In what concerns the quantum similarity index

QSI, it displays a monotonically decreasing behavior as the nuclear charge increases.

This means that the similarity index along a given isoelectronic series mainly depends

on the difference between the nuclear charge of the systems under consideration.

10.4 Conclusions

In this Chapter we have considered diferent divergence and dissimilarity measures, i.e.

FD, JSD, KLS, QD and QSI, with the aim of analyzing the similarity and discrepancy

among neutral and/or ionized atoms throughout the Periodic Table. These systems

have been considered as an appropriate benchmark due to their strong hierarchical

organization. The studied divergences have been shown to provide relevant information

on the atomic shell structure and other physically relevant properties.

In particular, in Section 10.1 we have center our attention in the neutral systems, ob-

taining that the Fisher divergence, in spite of its local character, is almost unsensitive

(as also happens with the QD and the QSI measures) to the atomic shell structure
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when dealing with the corresponding position space distributions, constituting only in

fact a measure of how close the compared systems are located at the Periodic Table,

independently of the groups they belong to be different or the same. On the other hand,

the situation absolutely differs from that one when dealing with the momentum space,

where both the QD and the FD measures clearly show the complex organization and the

shell-filling patterns at the Periodic Table. Now a strong similarity among members of

the same atomic group is displayed, as well as relevant differences among systems owning

valence subshells with different occupation and/or quantum numbers. Higher resolution

is displayed by FD as compared to QD, especially for large Z systems. Concerning the

global divergences KLS and JSD, they are shown to be quantities displaying a non triv-

ial structure in position space, at a similar level to that provided in momentum space.

Nevertheless, such a structure is much softer as compared to that of the momentum

space Fisher divergence FD. Attending to the last comment, it appears much better

to consider the simultaneous analysis in both conjugated spaces of all divergences here

studied in order to exploit the information content and structural richness of the atomic

systems.

As an immediate consequence of the above discussed characteristics, it appears strongly

relevant to consider the complementary use of both spaces attending to the chosen diver-

gence or comparative measure between atomic densities, especially for interpreting the

results according to relevant physical and/or chemical properties such as those related

to their shell structure, among others.

In Section 10.2, a comparison of ionized and neutral atomic systems have been carried

out. We can conclude that the Quantum Similarity Techniques provides only relevant

information on periodicity properties and shell structure when dealing with one-particle

densities in momentum space. However, the corresponding values in position space

are only concerned by, at most, how large the nuclear charge is. On the contrary the

divergences measures defined and computed in this section, i.e. FD and JSD, explore

deeply, in both conjugated spaces, the changes suffered by the atoms on their shell

structure as a consequence of the ionization, by changing either the number of electrons

or the nuclear charge.

These dissimilarity measures clearly show the complex organization and the shell-filling

patterns at the Periodic Table. Specially remarkable is the correlation found between

extrema of the atomic ionization potential and those of the divergences. Besides a

thorough analysis of changes suffered on the subshells from which an electron is removed

is done and they are also related to the values of the divergence measures. Characteristic

features in the divergences accompanying the ionization process, by adding or removing

electrons, are identified, and the physical reasons for the observed patterns are described.

In particular, it has been shown the relevant role played, among other characteristics,

by the angular momentum quantum number of the removed electron in the ionization

process, the significance in many cases of the anomalous shell filling, as well as the
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value of the atomic ionization potential as related to the Fisher and Jensen-Shannon

divergences and the QST measures.

Concerning the similar study of the dependence on the nuclear charge Z when keeping

fixed the number of electrons N along different isoelectronic series (analyzed in Sec-

tion 10.3), the divergence among neutral atoms and cations increases as the difference

between the nuclear charges of both systems becomes larger. In this case, no shell fill-

ing properties are displayed since both atomic systems under comparison have identical

occupation numbers.
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Generalized Jensen divergences

and dissimilarity of atomic

electron densities

In this chapter we analyze the divergence of neutral atomic systems in terms of the

generalized Jensen divergences, i.e. those defined in terms of generalizations of the

Shannon entropy, such as the Rényi (Section 11.1) and Tsallis (Section 11.2) entropies.

The corresponding divergences are given by:

JRD(q) (ρ1, ρ2) ≡ R(q)

(
ρ1 + ρ2

2

)
− 1

2

[
R(q) (ρ1) +R(q) (ρ2)

]
, (11.1)

and

JTD(q) (ρ1, ρ2) = T (q)

(
ρ1 + ρ2

2

)
− 1

2

[
T (q) (ρ1) + T (q) (ρ2)

]
, (11.2)

respectively.

To the best of our knowledge, the only relative measure with a characteristic parameter

applied in the past for atomic systems is the relative Rényi entropy [312], by comparing

atomic densities to hydrogen-like ones.

11.1 Jensen-Rényi divergence

Let us consider, firstly, the Jensen-Rényi divergence, JRD, applied to the study of

neutral atoms throught the Periodic Table with nuclear charges Z = 1 − 103. The

computations of JRD(q) for the particular values q = 0.4, 0.8, as compared to the limiting

case q → 1 which corresponds to JSD, provides the results shown in Figure 11.1 for the

divergence between Krypton (nuclear charge Z = 36) and all neutral atoms throughout

219
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the Periodic Table. The chosen values of q comply with the constraint 0 < q < 1

which guarantees the non-negativity of JRD. Additionally, the constraint q > 3/8 in

momentum space arising from the corresponding density has been taken into account.
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(a) Position space
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(b) Momentum space

Figure 11.1: Jensen-Rényi divergence JRD(q) for q = 0.4, 0.8 and Jensen-Shannon
divergence JSD = JRD(1) between the one-particle densities of Krypton (nuclear
charge Z = 36) and those of neutral atoms with Z = 1 − 103, in (a) position and (b)

momentum spaces. Atomic units are used.

According to the definition of the JRD in terms of the Rényi entropy, Eq. (11.1), it is

clearly observed that lowering the value of the parameter q below 1 enhances different

contributions of the density domain according to the considered space (position or mo-

mentum) in an opposite way: enhancing the valence region in position space and the

nuclear region in the momentum one. This is a consequence of the structural properties

of both one-particle atomic densities, for which their maximum values are located at the

origin systematically in position space, and frequently very close to it in the momentum
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one. As explained before, the valence subshell is far from the nucleus as compared to

the other ones, and the exponential decrease of the density makes the contribution of

such a region to the JRD value to be very small, unless enhancing it by powering the

density with a small exponent q. The Figure 11.1(a) reveals that, in order to get shell-

filling patterns by means of JRD(q) in position space, low values of the parameter q are

required.

The opposite trend is observed in the Figure 11.1(b), similarly justified as previously.

The momentum density around the origin quantifies the relative number of electrons

with low linear momentum ’p’, which are just those located in the outermost region.

Consequently, the contribution of that region is now diminished when lowering ’p’.

Concerning the momentum space, the value q = 1 appears as ’almost critical’, in the

sense that going down only up to q = 0.8 makes the previous structure to disappear

almost completely.

So, the role played by the value of the parameter q allows one to obtain a higher level of

information on the shell-filling effects according to the space which the density considered

belongs to.

The discussion concerning the specific structure of the curves displayed in this figure can

be carried out in a similar fashion to that of Figures in the previous section. That is,

the location of the main minima corresponds to systems belonging to the same atomic

group of Krypton (i.e. noble gases), while other minor ones are mostly associated to

systems suffering the ’anomalous shell-filling’. This comment is valid for the JRD in

both conjugated spaces, for those q values for which such a structure is displayed.

11.2 Jensen-Tsallis divergence

Now, let us consider a given neutral system for computing its JTD(q) divergence with

respect to all neutral atoms throught the Periodic Table with nuclear charges Z = 1−103.

This will be done for several values of the parameter q as well as in both conjugated

spaces. For illustration, we choose as initial system the Mg atom (Z = 12) and the

values q = 0.6, 1.0, 1.4, 2.0, as well as q = 0.2 in position space. Let us remark that the

last value is not allowed in momentum space, where the convergence conditions for T (q)

require q > 3/8 = 0.375 due to the long-range behavior of the momentum density as

p−8 [270], while the exponential decrease for the position density [316] guarantees the

convergence for any q > 0.

The corresponding JTD curves are displayed in Figure 11.2, for position and momentum

spaces (Figures 11.2(a) and 11.2(b), respectively). Some comments are in order. In both

spaces, it is clearly observed that the structure of the curves strongly depends on the

value of q. In fact, if we consider the smoothest curve in a figure (understood according
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to the number and enhancement of local extrema), varying the q value in a monotone

way provokes the curves to increase their level of structure progressively, as measured

by the number of extrema and their enhancement. After crossing a critical value, the

succesive curves lose the rough unimodal shape, keeping always their minimal value zero

at Z = 12. In fact, the value q = 1 which provides the Jensen-Shannon divergence

through the equality JTD(1) = JSD appears very close to the critical one in both

spaces, in spite of the number of extrema displayed by the JSD at this level. However,

the aforementioned variation follows opposite trends in each space. While the highly

structured curves are displayed for low q values in position space, the situation for

momentum space is just the opposite, where higher values of q are required in order to

depart from unimodality.
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Figure 11.2: Jensen-Tsallis divergence JTD(q) between Mg (nuclear charge Z =
12) and all neutral atoms with the Z = 1 − 103, (a) in position space for q =
0.2, 0.6, 1.0, 1.4, 2.0, and (b) in momentum space for q = 0.6, 1.0, 1.4, 2.0. Atomic units

are used.
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A straighforward interpretation of the observed opposite behaviors noted above might be

obtained by considering the physical meaning of the position and momentum densities, as

well as their respective structural properties, previously described, especially concerning

the values of the densities around the origin.

The differences between the short- and large-range values are enhanced if the power

of the density within the integrand of ω(q)(ρ) increases, making the value of JTD to

be strongly determined by the region of the density around the origin. Conversely,

decreasing the value of the parameter q smoothes the integrand, raising up the relative

contribution of the outermost region.

Let us remember that the densities around the origin are associated to the surround

of the nucleus (position space) and the outermost region (momentum space). This

fact justifies the observed opposite trends in terms of q: as its value increases, the

enhancement in position space corresponds to the nuclear region, whereas in momentum

space corresponds to the valence one.

Taking into account that the shell-filling patterns are determined by the valence region,

they are clearly observed in momentum space for large q. Then, the JTD divergence

value is mainly based on the different characteristics of the systems under comparison

according to their dissimilarity in what concerns shell-filling, while the comparison in

position space is mainly determined by the values of their nuclear charges. Opposite

trends are observed when decreasing the value of the parameter q. The same reasoning

given above for explaining the JTD behavior as q increases also applies for the decreasing

case. So that, the role played by the value of the parameter q allows one to obtain a higher

level of information on the shell-filling effects, by enhancing the relative contribution of

different specific regions according to the space we are dealing with. A continuous

variation of q makes the contribution to the comparative measure of the outermost

spatial region or, equivalently, of the valence subshell containing the low speed electrons,

to vary also in a continuous way.

Concerning the structure of the curves displayed, their local extrema can be classified

according to two different characteristics: (i) the lower JTD divergence when comparing

an atomic system to another one belonging to the same group of the Periodic Table,

and (ii) JTD values when one of the atoms under comparison belongs to the so-called

anomalous shell-filling set of atomic systems. As will be shown below, this is a common

feature in the study of dissimilarity based on the JTD divergence. The main achievement

of the JTD in the present application is its ability to quantify the dissimilarity between

atomic systems according to one of the more physically relevant characteristics, namely

the shell-filling process, which determines most of the atomic chemical properties, being

strongly related also to some experimentally accessible quantities, such as e.g. the first

ionization potential [101].
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The present comparative performance is far from the concept of distance among atoms

according to the values of their nuclear charges, essentially interpreted as size or weight

for neutral atoms. This fact is clearly displayed in the Figure 11.3, where the JTD

of both Z = 36, 38 atoms along the Periodic Table is displayed. Those systems have

been chosen in order to consider a couple of atoms with very similar nuclear charges

but strongly different valence subshells as well as many other physical characterisitcs.

In doing so, the JTD are given for q = 0.5 (below 1), q = 1.5 (above 1) and the limiting

case q = 1 for which JTD turns out to be JSD. For the JSD divergence, there appear

slight differences between the curves for Z = 36 and Z = 38, independently of the space

considered. It is also worth noting that the range of values for JSD in both spaces is

roughly the same.
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Figure 11.3: JTD(q) divergences of systems with nuclear charge Z = 36 (solid) and
Z = 38 (dashed) with respect to all neutral atoms with Z = 1−103 for q = 0.5, 1.0, 1.5,

in (a) position and (b) momentum spaces. Atomic units are used.
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Dealing with position space in Figure 11.3(a), the JSD measure allows to observe a

slight structure in the curves, which dissapears completely for the higher order diver-

gence JTD (q = 1.5) but which extremely enhances for the low order q = 0.5, with both

curves displaying in fact absolutely different structures and extrema at similar positions

but with opposite maximum/minimum character. So it is concluded the convenience of

dealing with low-order JTD in order to get relevant information on the valence charac-

teristics. An opposite trend is displayed in Figure 11.3(b) for momentum space, where

higher order JTD are the useful ones when analysing the aforementioned properties.

In both spaces, the JTD curves progressively modify their shapes as the parameter q

varies in a continuous form, making the number of extrema and their enhancement also

to vary in a monotonic way.

In all cases, the appearance of local extrema in the curves is determined, as remarked

in the discussion of Figure 11.3, by the groups of the Periodic Table which the atoms

belong to. The divergence of a system with respect to an atom of the same group is

smaller than that of its neighbors, displayed in the figures as apparent minima. In the

present case, the valence orbital of Z = 36 is p6, while for Z = 38 it is s2. Those minima

correspond, respectively, to atoms with identical valence orbital. Additional extrema,

mainly minima, are associated with systems that suffer from the anomalous shell-filling

effects.

The Figure 11.4 provides a corroboration of the previous observations. The curves

correspond to the JTD values in position space of each atom belonging to the noble

gases group, as compared to all the atomic systems throughout the Periodic Table.

According to those comments, it should be expected a similar behavior for all the atoms

belonging to the same group. A comparison between the cases q = 1 and q = 0.2

(Figures 11.4(a) and 11.4(b) respectively) makes once again to notice that, in spite of

the similarity (at least roughly) among the shapes of the curves, they are almost identical

for the low q order JTD as compared to the JSD. Similar observations can be noted

from Figure 11.5 with regard to momentum space, where now the comparison between

the Figure 11.5(a), corresponding to JSD, and a higher q order in Figure 11.5(b) makes

the curves to get closer, with the only exception of the Z = 2 (Helium) one. The reason

which justifies this exception is the different structure of the Helium, with an ’s’ valence

subshell, as compared to the ’p’ one for the others in the same group.

The analysis of the JTD divergence between atomic systems carried out above, regarding

the relevancy of the considered divergence order q, the shell-structure of the systems

under comparison as well as the information provided by the position and momentum

densities allow us to consider this comparative measure as a powerful tool in order to

appropriately quantify the dissimilarity of atomic systems, according to specific regions,

on the basis of their respective one-particle densities.
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Figure 11.4: Jensen-Tsallis divergence in position space JTD
(q)
r for the noble gases

(Z = 2, 10, 18, 36, 54, 86) with respect to all neutral atoms with Z = 1 − 103, for (a)
q = 1.0 and (b) q = 0.2. Atomic units are used.

It is worthy to remark that, in spite of the availability of other comparative measures, the

JTD allows to perform a deeper and more detailed study as compared to other ones, such

as JSD or KLS considered in the previous chapter. Attending to that comparison, the

behavior of the JTD in the conjugated spaces deserves a relevant comment, concerning

its capability to provide relevant information in both spaces, contrary to the case of many

other measures, such as for instance the quadratic distance, the quantum similarity

index and the Fisher divergence, which are not able to provide the aforementioned

informational description when dealing with the position space, requiring to perform

this type of analysis by means of the momentum space density.
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Figure 11.5: Jensen-Tsallis divergence in momentum space JTD
(q)
p for the noble

gases (Z = 2, 10, 18, 36, 54, 86) with respect to all neutral atoms with Z = 1 − 103, for
(a) q = 1.0 and (b) q = 2.5. Atomic units are used.

11.3 Conclusions

In this Chapter we have proposed generalized divergence measures, based in concepts

taken from the Information Theory, to study the dissimilarity among multielectronic

distributions. It has been shown how the Jensen-Tsallis divergence JTD and Jensen-

Rényi divergence JRD allow a deep introspection within the structure of the atomic

one-particle densities.

In the first section of this chapter, Section 11.1 we have analyzed the information about

the dissimilarity between neutral atomic systems given by the JRD, the other general-

ization of the Jensen-Shannon divergence. The Jensen-Rényi divergence (JRD) appears
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capable of assigning different weights to specific regions of the electronic distribution do-

mains in order to control the most important contributions of the electronic cloud to the

atomic densities in position and momentum spaces. This generalized divergence provide

information on the atomic shell structure and shell-filling patterns in both conjugated

spaces as it occurs with the JTD.

From the Section 11.2, we can conclude that the JTD captures relevant differences in any

of the conjugated spaces. This is not the case of other measures of divergence employed

with multielectronic systems. The neutral atoms have constituted a benchmark for

the present analysis, displaying their complex and hierarchical organization along the

Periodic Table. The employment of the JTD (as we as the JRD) as a divergence

measure can be applied not only to compare a couple of probability distributions, but

also to an arbitrary number of them, even assigning different weights to each distribution

considered as a whole, apart from the weighting effect of the characteristic parameter of

JTD.

Further applications of this generalized divergence are actually being carried out for

atoms and molecules, such as the comparisons among (i) distributions computed within

different models for a given system, (ii) parts or components of the global system, (iii)

atomic species involved in ionization processes, and (iv) initial and final products in

chemical reactions. On the other hand, the generality of the techniques here employed

allows the extension of this study to many relevant physical and chemical systems and/or

processes. The results of those studies are being currently investigated in our laboratories

and will be provided elsewhere.

We can conclude that, although both measures, i.e., JTD and JRD, are useful in order to

determine the differences between neutral atoms in terms of their valence characteristics,

we have obtained numerically a better description of the shell-filling proccess by means

of JTD. On the other hand, the JRD has an advantage as compared to JTD, i.e., it

is an extensive measure, namely, JRD is an additivity measure (for further detail, see

Chapter 1, where the Rényi and Tsallis entropies were defined and discussed).
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Other applications of divergence

measures

In this chapter we explore other applications of the divergence measures presented in

the previous chapters, in particular for the Jensen-Shannon, Jensen-Rényi and Fisher

divergences.

Firstly, in Section 12.1 we analyze the effects of the intereletronic repulsion in atoms

by means of the divergence measures between the one-particle densities for a given

systems, computed within two different models: Hartree-Fock (HF) and Bare Coulomb

Field (BCF).

In Section 12.2 a study of the information content of atomic electron densities is carried

out, by finding the contribution for a given atom of its composing subshells to the total

atomic information and, similarly, the spread of information for selected sets of atoms,

such as periods and groups within the Periodic Table as well as isoelectronic series is

quantified.

12.1 Effect of the interelectronic repulsion on the informa-

tion content of atomic densities

The interelectronic repulsion within atomic systems forbides to consider the global atom

as a nucleus surrounded by a mere superposition of one-electron orbitals, each one

governed exclusively by the electron-nucleus attraction potential which depth is given

by the nuclear charge Z. Ignoring the repulsive forces is the basic feature of the so-called

’Bare Coulomb Field’ (BCF) model [389] among others, in which the electron densities

in both position and momentum spaces are determined by adding over all orbitals the

corresponding hydrogen-like densities.

229
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This section deals with the problem of quantifying the dissimilarity among atomic elec-

tron densities built up within different models, in order to establish a comparison to be

interpreted according to the main differences between both models. Especially interes-

ting appears the case in which the interelectronic repulsive force is taken into account in

one model but not in the other, with the aim of analysing the most relevant informational

characteristics, as will be described later, of the respective one-particle densities.

Different choices of models involving or not the electron-electron repulsion can be con-

sidered. Such is the case, for instance, of the BCF model in the non-repulsive case,

but not the only one. At this point it is worthy to remark the well-known Kohn-Sham

equations and the associated densities [101], where the Fermi statistics between the spin-

like electrons remains after performing the appropriate manipulations. This framework,

together with some additional models, will be also considered elsewhere with similar

and complementary aims. For the main purposes of the present section, the quantita-

tive comparisons between atomic densities are carried out by taking as reference non-

repulsive densities the BCF ones. Similar comments concerning atomic densities arising

from equations enclosing the repulsive terms can be also done, in the sense that different

frameworks are susceptible of being employed, such as e.g., the Near-Hartree-Fock with

or without relativistic corrections, configuration interaction, etc.

Some results have been rigorously proved concerning BCF densities. For instance, March

showed that the electron charge density is a monotonically decreasing function for an

arbitrary number of closed shells in the BCF case [389], and also the same property holds

in the momentum space [390]. Additional results for the kinetic and total energies have

been also obtained [391–393]. More recently computations for the atomic reciprocal form

factor have been carried out in a BCF framework showing that this relevant quantity

is spherically symmetric, positive and monotonically decreasing [394], and additional

rigorous results have been also provided [395].

Instead of considering the BCF problem and solutions, more sophisticated models, such

as e.g. the Hartree-Fock (HF) one [101], appear necessary in order to properly describe

the atomic system by also considering the repulsive forces among electrons. Thinking

on the N electron density in position space as a negatively charged cloud located around

the nucleus with positive charge Z, it is immediate to realize that the interelectronic

repulsion makes the cloud to increase its spread over the whole space and to decrease the

mean speed of its constituents. This effect has an influence on the atomic position and

momentum electron densities when taking into account the repulsive forces as compared

to those built up from the purely attractive electron-nucleus potential. In this sense, it

should be expected the repulsion to give rise, on one hand, to a more sparse position

density and, on the other hand, to a momentum density more concentrated around the

origin as center of the region of very low speeds.
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The aforementioned intuitive notions on the effects of the repulsive forces among elec-

trons on their representative one-particle densities in both position and momentum

spaces would be desirable to be described not only qualitatively, as just done above,

but also quantitatively by means of appropriate density functionals in order to quantify

the specific level of sparsing of both the BCF (non-repulsive) and the HF (including re-

pulsion) densities, and also by measuring in an appropriate way the ’distance’ between

both models in terms of the corresponding distributions.

The goal is to study the effect of the interelectronic repulsions on all neutral atoms

throughout the Periodic Table by means of their electron HF and BCF densities ρ(r)

and γ(p) in both conjugated spaces. The results will be analyze from a physical point

of view according to relevant structural characteristics of the atomic densities, such as

the shell-filling process. The BCF densities are easily built up in terms of hydrogen-

like wavefunctions, while the numerical study throughout this work in the HF case will

be carried out by using the accurate Near-Hartree-Fock wavefunctions of Koga et al

[269]. In order to perform the aforementioned study, we will compute the quadratic

distance (QD) and the quantum similarity index (QSI), as well as the Fisher (FD),

Jensen-Shannon (JSD) and Jensen-Rényi (JRD) divergences.

12.1.1 The quantum similarity index and the quadratic distance

Let us start with the numerical analysis of QD given by

QD(ρ1, ρ2) ≡
{∫

[ρ1(r) − ρ2(r)]
2dr

}1/2

(12.1)

and QSI defined as

QSI(ρ1, ρ2) ≡
∫
ρ1(r)ρ2(r)dr√∫
ρ2
1(r)dr

∫
ρ2
2(r)dr

, (12.2)

between the spherically averaged BCF and HF electron densities, in position and momen-

tum spaces, ρ(r) and γ(p) respectively. In Figure 12.1(a), QDr(HF,BCF ) is displayed

for all neutral atoms with nuclear charge Z = 1 − 103, and similarly in Figure 12.1(b)

for the momentum space (by only replacing the HF and BCF densities ρ by γ and, con-

sequently, the variable ’r’ by ’p’). First, we observe that the values in both figures have

been drawn as piecewise curves, each piece corresponding to the periods which consti-

tute the Periodic Table. This has been made in order to better interpret the results

according to the shell-filling process. As should be expected, increasing the number of

electrons makes the distance between both models also to increase, due to the higher

effect of the electronic repulsion, as clearly observed in Figure 12.1(a).

In spite of the piecewise drawing procedure, the curve corresponding to QDr(HF,BCF )

in Figure 12.1(a) appears almost continuous while QDp(HF,BCF ) in Figure 12.1(b)
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Figure 12.1: Quadratic distance QD(HF,BCF ) for neutral atoms with nuclear
charge Z = 1 − 103 in (a) position and (b) momentum spaces. Atomic units are

used.

clearly displays the aforementioned piecewise behaviour attending to the periods the

atoms belong to. Nevertheless, the periodicity pattern can be also observed in position

space, QDr(HF,BCF ), not in terms of apparent discontinuities in the curve as occurs

in momentum space, but as changes in its slope when moving from a period to the next

one. These results are interpreted as follows: the main characteristic which share both

models is the identical value of the nuclear charge Z, and also that the region around

the nucleus is mainly governed by the attractive electron-nucleus potential as compared

to the repulsive one. The last one is dominant over the first in the external region

(valence subshell) which characterizes the periodicity patterns of the atomic systems.

However, the fast decrease (exponential) of the charge densities makes the external sub-

shells contribution to the integrals to be almost negligible. The opposite can be argued
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in discussing Figure 12.1(b), where more slow electrons (close to p = 0) are just those

of valence subshells which, consequently, carry a relevant contribution on computing

the integrals. These comments can be better understood by observing Figures 12.2(a)

and 12.2(b), where the involved one dimensional integrands (the functions integrated

from 0 to ∞) are represented in order to appreciate their contribution to the global

integrals. As previously mentioned, it is clearly observed that the relevant values of the

three involved integral in position space, even for heavy atoms (Z = 88 as in Figure

12.2(a)) are strongly localized very close to the origin (i.e. the nucleus) displaying there

almost identical values, while the differences among them in momentum space for the

same atom (Figure 12.2(b)) are not only much stronger but also displayed over a much

wider region.
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Figure 12.2: (a) Functions 4πr2ρ2
HF (r) (label HFˆ2), 4πr2ρ2

BCF (r) (label BCFˆ2),
and 4πr2ρHF (r)ρBCF (r) (label HF*BCF), defining overlap integrals for computing the
QDr(HF,BCF ) and QSIr(HF,BCF ) for Z = 88 atom in position space, and (b)

similarly for the momentum densities γ(p). Atomic units are used.
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A similar analysis is also carried out in terms of similarities QSI between the BCF and

HF densities in both conjugated spaces. This is done attending to Figure 12.3, where

QSI(HF,BCF ) are displayed again for Z = 1− 103 in position and momentum spaces

(Figure 12.3(a)). It is clearly observed that values of similarity between both models

in position space are extremely close to the maximal value 1 and appear to be very

little sensitive to the specific valence subshell of the considered systems, contrary to

the momentum space case which have a decreasing trend and showing, additionally, the

shell-filling patterns including the anomalous cases.
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Figure 12.3: Quantum similarity index QSI(HF,BCF ) for neutral atoms with nu-
clear charge Z = 1 − 103 in (a) position and momentum spaces, and (b) close to 1 in

position space. Atomic units are used.

Justifying these results requires again the previous interpretation concerning the quadratic

distance QD attending to the behaviour of the involved integrals. In fact, the previous
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discussion of Figure 12.2 regarding QD also applies to justify the result on QSI. Nev-

ertheless, it is possible to observe the aforementioned structural characteristics also in

position space by restricting ourselves to a much narrower interval for QSIr(HF,BCF ),

as shown in Figure 12.3(b) for values all above 0.975. From the analysis of both figures,

it is worthy to point out that, in spite of QSI displaying periodicity patterns in both

conjugated spaces, the position one appears to possesses a much smaller sensitivity in

this sense than the momentum one.

It is worthy to point out that location of extrema in both QD and QSI in momentum

space mostly belongs to noble gases (Z = 10, 18, 36, 54, 86) or atoms suffering anomalous

shell-filling (e.g. Z = 24, 29, 46, 64, 79, 93), usually minima for QD being maxima for

QSI .

Summarizing the results of the present subsection, it has been clearly shown that dis-

tances based on overlap integrals as QD and QSI in order to quantify the effects of the

interelectronic repulsion in atomic systems are mainly determined by the nuclear charge

Z in position space, displaying much richer information on shell structure when dealing

with momentum space densities.

12.1.2 The Fisher, Jensen-Shannon and Jensen-Rényi Divergences

In this subsection, the Fisher divergence given by

FD(ρ1, ρ2) ≡
∫
ρ1(~r)

∣∣∣∣~∇ ln
ρ1(~r)

ρ2(~r)

∣∣∣∣
2

d~r +

∫
ρ2(~r)

∣∣∣∣~∇ ln
ρ2(~r)

ρ1(~r)

∣∣∣∣
2

d~r, (12.3)

and the Jensen-Shannon and Jensen-Rényi divergences defined as

JSD(ρ1, ρ2) = S

(
ρ1 + ρ2

2

)
− 1

2
[S(ρ1) + S(ρ2)] , (12.4)

and

JRD(q) (ρ1, ρ2) ≡ R(q)

(
ρ1 + ρ2

2

)
− 1

2

[
R(q) (ρ1) +R(q) (ρ2)

]
, (12.5)

respectively, will be employed to compare the BCF and HF atomic densities in position

and momentum spaces, in order to quantify the effect of the inter electronic repulsion

on the information content of the densities as well as on the periodicity patterns.

The Fisher divergence FD(HF,BCF ) is displayed in Figures 12.4(a) (position space)

and 12.4(b) (momentum space). Similarly to the previously studied quantities (subsec-

tion 12.1.1), monotonicity characters are opposite in both spaces, displaying an increa-

sing behaviour in position space and decreasing in the momentum one mostly within

each period. Again the overall behaviour in each space is the expected one in the sense

of a higher number of electrons making more relevant the repulsive effect and expanding

the charge cloud. Nevertheless, now shell-filling patterns can be clearly appreciated in
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both conjugated spaces, while QSI and QD values appeared to be related to such a

process only in momentum space. In what concerns location of extrema, most of them

correspond (as also occurred with momentum space QD and QSI ) to noble gases or

anomalous shell-filling cases, maxima in position space corresponding to minima in the

the momentum one and conversely.
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Figure 12.4: Fisher divergence FD(HF,BCF ) for neutral atoms with nuclear charge
Z = 1 − 103 in (a) position and (b) momentum spaces. Atomic units are used.

Concerning the Jensen-Shannon divergence JSD(HF,BCF ) displayed in Figure 12.5

for both conjugated spaces, some comments are in order. First, the shell-filling process

of the atomic systems is also revealed in both position and momentum spaces, the curves

displaying a very similar shape. In fact, they differ roughly by a scaling factor and/or a

small shift depending on the range of Z values considered (light, medium-size or heavy

atoms). Nevertheless, the difference between JSDr and JSDp for a given Z is much

smaller than those of all previously studied measures, some of them even belonging
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to different magnitude orders. Again location of extrema corresponds mostly to noble

gases and anomalous shell-filling systems, but now being of the same type (minimum or

maximum) in both conjugated spaces, contrary to the opposite character for the FDr

and FDp divergences.
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Figure 12.5: Jensen-Shannon divergence JSD(HF,BCF ) for neutral atoms with
nuclear charge Z = 1 − 103 in position and momentum spaces. Atomic units are used.

For completeness, let us analyze one of the generalization of the JSD in terms of the

Rényi entropy, the Jensen-Rényi divergence. In Figure 12.6, the JRD(q) for different

values of q and the JSD between Hartree-Fock and Bare Coulomb Field densities are

shown.

It is firstly observed, by comparing Figures 12.6(a) and 12.6(b), that the curves are

ordered following opposite trends in each space. Divergences become higher as decreas-

ing (increasing) q in position (momentum) space. The interelectronic repulsion mainly

affects, consequently, the outermost region as compared to the nuclear one, as can be

interpreted according to the results obtained in each space. This fact means that, as

far as the interelectronic repulsion increases, the electrons start to separate out among

themselves, but more easily in the outermost region due to their spreading there as

compared to the vicinity of the nucleus.

Concerning the structural characteristics of the curves, it is also observed that also the

extrema in each space follow different trends: local maxima appear in position space in

the q = 0.2 curve for systems where a new subshell has been added, more apparently

when such a subshell is of ’s’ type. This means that the single-electron valence orbitals

are more sensitive to the effect of the repulsive forces than those with a higher occupation

number. On the other hand, location of maxima in the momentum JSD curve are

associated to closed-shell systems. Other q values make the extrema to progressively

soften, even disappearing in some cases.
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Figure 12.6: Jensen-Rényi Divergence JRD(q) for q = 0.2, 0.4, 0.6, 0.8 and Jensen-
Shannon divergence JSD = JRD(1) between the one-particle densities computed
within Hartree-Fock (HF) and Bare Coulomb Field models (BCF), for neutral atoms
with nuclear charge Z = 1 − 103, in (a) position and (b) momentum spaces. Atomic

units are used.

The universality of the method here employed allows its application to the analysis of

the effects arising by considering numerical computations or models other than the HF

and BCF ones. This will be done elsewhere by considering correlated wavefunctions or

relativistic effects, among others.

12.2 Entropy excess of atomic systems and sets with re-

spect to their constituents

The main aim of this section is to employ generalized expressions of JSD starting from

the initial definition given by Eq. (12.4) in order to build up the JSD divergence of

an atomic one-particle density as the sum of those of each subshell, contributing to the
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global charge according to their occupation numbers. After that, the global distributions

for selected sets of atomic systems (e.g. groups, periods) are studied by means of the

associated JSD divergences

The generalization of JSD can be expressed as

JSD({ωj, ρj}Mj=1) ≡ S




M∑

j=1

ωjρj


−

M∑

j=1

ωjS(ρj) (12.6)

where the weights ωj (j = 1, . . . ,M) verify

M∑

j=1

ωj = 1. This extension is built up in two

complementary ways: (i) by increasing the number of distributions under comparison,

with JSD being interpreted as a ’mean spreading distance’ among the constituents of

a set with a number of functions higher than two, and (ii) by appropriately weighting

the distributions to be compared according to their specific characteristics or those of

the systems they represent, such as for instance their size or physical relevance. Let us

notice the trivial equality JSD = 0 for the particular cas M = 1.

12.2.1 Jensen-Shannon divergence and atomic shell-filling

The spinless wavefunction of aN -electron atom and its Fourier transform, Ψ(~r,~r2, . . . , ~rN )

and Ψ̃(~p, ~p2, . . . , ~pN ), respectively, allow to determine the one-particle densities in po-

sition and momentum spaces, ρ(~r) =
∫
|Ψ|2d~r2 . . . d~rN and γ(~p) =

∫
|Ψ̃|2d~p2 . . . d~pN

respectively, both being essential quantities in the description and quantification of the

main atomic properties. For most purposes it is sufficient to deal with their spherical

averages ρ(r) and γ(p). In what follows, all expressions and numerical analyses are

considered in both spaces.

The total density ρ(r) is a linear combination of the (n, l)-subshell densities ρnl(r).

Considering the total density as well as each subshell density normalized to unity, the

linear combination is

Nρ(r) =
∑

nl

Nnlρnl(r) (12.7)

for the N electron atom, with Nnl being the number of electrons belonging to the (n,l)

subshell, and Nnl ≤ 2(2l + 1) according to its occupation numbers. Consequently

N =
∑

nl

Nnl (12.8)

or equivalently ∑

nl

ωnl ≡
∑

nl

Nnl

N
= 1 (12.9)
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where ωnl ≡
Nnl

N
will be refereed as ’(n,l)-subshell relative weight’ and represents the

relative contribution of the subshell to the total charge.

According to the previous discussion, the density ρ(r) of the whole atomic system can

be considered as an appropriately weighted linear combination of its ’constituent pieces’,

i.e. the (n,l) subshell densities, the weights being determined by the subshell occupation

numbers Nnl and the total number of electrons N of the whole system.

As for any arbitrary distribution, the internal disorder of each subshell density as well

as that of the total density can be quantified by means of their corresponding Shannon

entropies S(ρnl) and S(ρ), respectively. An interesting question arising from the con-

nection between subshell and total densities is: to which extent the disorder of the global

system is conditioned by the disorder of its constituents? The solution to this problem

can be better understood by analyzing Eq. (12.6), corresponding to the weighted JSD

for a set of M distributions, with M being the number of occupied subshells..

The JSD definition should be considered as the difference between two quantities: the

Shannon entropy of the total density and the mean entropy of its subshells. Taking

into account the non-negativity of JSD, the aforementioned mean entropy constitutes a

lower bound to the total entropy of the composite system. Consequently, JSD should be

interpreted as the deviation (from above) of the total entropy from its allowed minimal

value or, in other words, the ’entropy excess’ of the whole system with respect to the

entropies of the subsystems.

Attending to the saturation property of JSD (i.e. it reaches the minimal value for

identical distributions), it is clear that lower JSD values will correspond to similar

subshell distributions and, consequently, to similar subshell entropies, independently of

their values being higher or lower. In order to make JSD reaching higher values it is

needed to deal with strongly different values of subshell disorders or entropies. So, the

JSD for the subshells of the considered atomic system provides additional information

on how similar or different the internal disorders of the subshells composing the system

are.

In Figure 12.7, the JSD divergences of the subshell densities for neutral atoms (i.e.,

Z = N) with nuclear charge Z = 1 − 103 in both position and momentum spaces are

shown, denoted respectively as JSDr(Z) and JSDp(Z) for the sake of simplicity. In

computing them, the accurate Near-Hartree-Fock wavefunctions of Koga et al [269, 396]

have been employed.

Some comments are in order. It is firstly observed that the JSD values in both con-

jugated spaces belongs to a similar magnitude order and, in fact, to a not very wide

interval excepting the trivial single-orbital cases, i.e. Z = 1, 2 for which M = 1. Fur-

thermore, the shapes of both curves are almost identical, differing only (roughly) by a



Other applications of divergence measures 241

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120Z

JSD(Z)

r
p

Figure 12.7: Jensen-Shannon divergence JSD(Z) for the subshells of neutral atoms
with nuclear charge Z = 1 − 103 in position (r) and momentum (p) spaces. Atomic

units are used.

scaling constant. Also a strong relationship between location of extrema and the shell-

filling process can be clearly appreciated. In fact, local extrema (maxima and minima)

appear in both curves exactly at the same Z values. Most of them are associated to the

so-called anomalous shell-filling, as opposite to the usual shell-filling pattern characteri-

zed by the successive addition of electrons to the outermost (valence) subshell, the inner

ones (core) remaining completely occupied. Location of extrema appear determined by

systems suffering the aforementioned anomalous process for which adding an electron

to the valence subshell additionally makes an inner one (at least) to lose one or more

electrons. Such is the case of the systems Z = 24, 42, 57, 64, 78, 90, 96. Nevertheless,

additional extrema correspond to some closed shells atoms (Z = 4, 10, 18, 20, 70, 102). It

is remarkable that, in both cases, the type of extrema (maximum or minimum) displayed

is determined by the value of the ’l’ quantum number of the ’anomalous’ or the valence

subshell, respectively. In the first case, maxima appear for systems having the outer-

most ’s’ subshell completely filled (Z = 57, 64, 90, 96) while minima occur for half-filled

ones (Z = 24, 42, 78). Concerning systems with closed shells, maxima are associated to

outermost ’s’ subshells (Z = 4, 20) and minima for ’p’ (Z = 10, 18) and ’f’ (Z = 70, 102)

ones. The only exception to these rules is the maximum at Z = 15, corresponding to

the half-filled ’3p’ subshell. No relevant structure is appreciated within the filling of ’d’

subshells. The intrinsic divergence of atomic systems in both conjugated spaces appears

to be strongly correlated with the shell filling patterns, providing information on relevant

characteristics of such a process.

It can be consequently concluded that the level of disorder of the total system having

as reference the internal disorders of the isolated subshells is strongly determined by

specific physical characteristics (i.e. value of the ’l’ quantum number) of the outermost

subshells.
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Figure 12.8: Jensen-Rényi Divergence JRD(q) for some values of q and Jensen-
Shannon divergence JSD = JRD(1) among the occupied subshells for all neutral atoms
with nuclear charge Z = 1 − 103, in (a) position and (b) momentum spaces. Atomic

units are used.

For completeness, let us consider one of the generalization of the JSD in terms of the

Rényi entropy, the Jensen-Rényi divergence. Due to the similar characteristics of the

Shannon and Rényi entropies, the JRD can be also extended for an arbitrary number

M of distributions as

JRD(q)
(
{ωi, ρi}Mi=1

)
≡ R(q)

(
M∑

i=1

ωiρi

)
−

M∑

i=1

ωiR
(q) (ρi) , (12.10)

in order to analyze the advantages of using a divergence measure which depends on a

parameter. The role played by such a parameter in the analysis of atomic densities has

been previously discussed.
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Now, the JRD divergences of the aforementioned collection of subshells have been com-

puted for all neutral atoms with nuclear charge Z = 1 − 103, and their values are

displayed in Figure 12.8.

Some comments are in order: (i) a general decreasing trend of the JRD divergence as q

increases is observed in both conjugated spaces, almost systematic in momentum space

with the corresponding curves ordered apart from few exceptions corresponding to light

atoms. So, the Rényi entropy of the global system decreases, as compared to its lower

bound given by the mean entropy of the subshells, when increasing q; (ii) according to

the interpretation of low and large q values, the divergence among subshells is higher

when enhancing the contribution of the densities around the origin, independently of the

space considered. This fact suggests that the relevant feature for quantifying the global

divergence is the region of higher density values instead of the shell-filling pattern; (iii)

location of extrema within each curve does not follow a so systematic pattern as in the

applications previously carried out. This is in accordance with the previous comment

on the reasons for finding a higher or lower divergence. Similar conclusions are obtained

from the analogous study in terms of JTD.

12.2.2 Jensen-Shannon divergence of atomic sets within the Periodic

Table

Now, let us consider a collection of M atomic systems and their corresponding densi-

ties (ρ1, . . . ρM ). Asking ourselves about their “closeness” in an information-theoretical

sense, invites us to consider the Jensen-like divergences as a tool for quantifyed the “mean

distance” among themselves. Considering equally weighted distributions will make their

JSD to provide information on the spreading of their entropy values according to their

shapes, instead to their size or normalization.

Different atomic sets are susceptible of being analyzed by means of JSD , attending to

the main properties we are interested in. We will consider three interesting kind of sets,

each possessing its own characteristics in order to provide information on their physical

properties including the shell-filling process as well as the entropy dependence on the

nuclear charge for fixed number of electrons.

Atomic groups of neutral systems

The Periodic Table of elements is divided into different groups, each one characterized

by the valence subshell of the atoms according to the Aufbau principle. The elements of

a given group are characterized by the angular quantum number ’l’ of the corresponding

valence subshell and its occupation number. Not all groups are composed by the same

number of elements, according to the shell-filling rules.
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For illustration, and in order to consider groups with a high enough number of elements,

let us carry out a JSD analysis for sets of atomic distributions, each one corresponding

to groups IA to VIIIA. They are characterized for having valence subshell of type ’s’

(IA and IIA) or ’p’ (IIIA to VIIIA). The number of elements of these groups ranges

between 5 and 7, and the principal quantum number within the interval n = 1 − 7. For

comparison purposes, we will deal with sets of identical number M of elements, being

M = 5 for all them corresponding to the values n = 2 − 6, which are the only ones

common to all those groups. The aim of this study on JSD for a given group is to

analyze to which extent the spreading of distributions for systems belonging to a given

group is more or less similar.

The five-elements JSD values in both spaces for these groups are shown in Table 12.1.

Some comments are in order. First, it is observed that all values of JSDp belong to

a very narrow interval, being wider for the position space ones. This means that the

shapes of the position space densities within a given group are more sensitive to the

valence subshell ’n’ principal quantum number than the momentum ones. Additionally,

there exist a general decreasing trend of JSD in both spaces as adding electrons to

the valence subshell (in fact, such a decrease is strict in momentum space). In other

words, the highly filled the valence subshells, more similar the densities are. Such an

effect is more apparent in position than in momentum space. At this point, it is worthy

to remark that filling up the valence subshell make the system to become progressively

closer to a closed-shell system.

Group JSDr JSDp

IA (Z=3,11,19,37,55) 0.08258 0.04019
IIA (Z=4,12,20,38,56) 0.07544 0.03872
IIIA (Z=5,13,31,49,81) 0.08347 0.03755
IVA (Z=6,14,32,50,82) 0.07409 0.03626
VA (Z=7,15,33,51,83)) 0.06635 0.03481
VIA (Z=8,16,34,52,84) 0.06047 0.03357
VIIA (Z=9,17,35,53,85) 0.05626 0.03259
VIIIA (Z=10,18,36,54,86) 0.05363 0.03202

Table 12.1: Jensen-Shannon divergence JSD for each of the groups IA-VIIIA of
neutral atoms within the Periodic Table, in position (JSDr) and momentum (JSDp)

spaces. Atomic units are used.

A physically relevant quantity, strongly associated to the shell-filling patterns, is the first

atomic ionization potential (AIP), clearly dependent on the characteristics of the atomic

valence subshell. We wonder about the relationship between such an experimentally

accessible quantity and the JSD along a group, considered as a function of the principal

quantum number n of the valence subshell (n, l) for fixed both l and occupation number.

In order to check such a relationship, two different analysis are carried out in the next

figures. In the Figure 12.9(a) the JSD in momentum space is depicted for groups IIIA

up to VIIIA of the Periodic Table (all of them with ’p’ as the outermost subshell). It
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is observed from the figure that, within a given atomic group, the distance obtained in

terms of JSD between the element with the smallest atomic number (n = 2) and the

rest of them (n = 3 to 6) shows an increasing behaviour as n grows. In order to analyze

the connection between the divergences in momentum space (12.9(a)) and the AIP, we

have depicted in Figure 12.9(b) the values of the ionization potential of the elements

belonging to a given group (IIIA to VIIIA) and we observe an opposite behaviour to

that of JSD displayed in Figure 12.9(a), i.e. the JSDp increases as the AIP decreases

within each group.
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Figure 12.9: (a) Jensen-Shannon divergence in momentum space JSDp(n = 2, n) for
groups IIIA to VIIIA of the Periodic Table, between the system with valence subshell
principal quantum number n = 2 and each one of those with n = 3− 6, and (b) atomic

ionization potential AIP for the latter ones. Atomic units are used.
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Atomic periods of neutral systems

After studying the dependence of JSD on the valence subshell principal quantum num-

ber ’n’ keeping fixed its occupation number, let us now analyze the JSD values associa-

ted to all systems with the same valence subshell. In this case, the number of systems

composing a given set depends on the value of the ’l’ quantum number of the valence

subshell, being 2, 6, 10 and 14 for types ’s’, ’p’, ’d’ and ’f’, respectively.

In Table 12.2, the JSD values in conjugated spaces are given for each period (i.e., systems

sharing the valence subshell) involved in the filling process for neutral atoms with nuclear

charge Z = 1 − 103. In this table it is especially remarkable the almost identical values

obtained independently of the space considered, with very few exceptions. The general

trend again is a decreasing behaviour for increasing n principal quantum number keeping

fixed the ’l’ angular one. It is concluded that shapes of the densities in conjugated spaces

for systems belonging to the same period become more similar for heavy than for light

atoms.

Valence subshell JSDr JSDp

1s 0.07574 0.06936
2s 0.04112 0.04033
3s 0.00896 0.00893
4s 0.00432 0.00431
5s 0.00178 0.00178
6s 0.00110 0.00110
7s 0.00064 0.00064

2p 0.06337 0.05808
3p 0.02887 0.02829
4p 0.00765 0.00761
5p 0.00401 0.00400
6p 0.00179 0.00179

3d 0.01488 0.01452
4d 0.00938 0.00931
5d 0.00289 0.00289

4f 0.00473 0.00468
5f 0.00323 0.00322

Table 12.2: Jensen-Shannon divergence JSD for the set of neutral atoms with the
same valence subshell within the Periodic Table, in position (JSDr) and momentum

(JSDp) spaces. Atomic units are used.

The process of successively adding electrons to a closed-shell system, which can be

interpreted as moving along a period, is also analyzed attending to the results displayed

in Figure 12.10. The position space JSDr between a noble gas and the following elements

along the whole period just below such a system in the Periodic Table is observed to

(roughly) display an unimodal shape. Starting to add electrons to the new subshell

of the reference system makes the JSD to progressively increase as a consequence of

a more noticeable dissimilarity, until reaching a maximum value (appreciably different
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for each period) where the JSD starts to decrease as far as adding electrons makes the

atom to get closer to another noble gas. Consequently, the divergence with respect to

the preceding closed-shell system does not only depend on the number of additional

electrons, but also on the distance to the next closed-shell atom. The very few and

slight exceptions on the aforementioned unimodality are mostly associated to systems

suffering the anomalous shell-filling, and the location of the ’maximal JSD system’ tends

to appear later as far as lower periods in the Periodic Table are considered.
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 0.1

 0  20  40  60  80  100  120Z

JSDr

He
Ne

Ar

Kr
Xe

Rn

Figure 12.10: Position space Jensen-Shannon divergence JSDr between a closed-shell
system (He, Ne, Ar, Kr, Xe and Rn) and an open-shell one within its next period, with

nuclear charge up to Z = 103. Atomic units are used.

Isoelectronic series

An isoelectronic series is a collection of atomic systems with identical number N of

electrons but different nuclear (Z) or total (Q ≡ Z − N) charges. Let us consider the

nine isoelectronic series with N = 2 − 10, each one composed by the corresponding

neutral atom and its first twenty cations, the total charges ranging consequently within

Q = 0−20. The Jensen-Shannon divergence JSD of a given series provides information

on the extent to which the densities change when modifying the nuclear charge Z while

keeping fixed the number of electrons. Previous studies on the physical characteristics of

atomic systems belonging to a given isoelectronic series have been previously carried out

[397], but usually by analyzing separately the isolated densities instead of by employing

multi-density functionals as in the present work.

The divergence values JSD(N) for N = 2 − 10 of all elements (twenty one) composing

an N -electron series are shown in Figure 12.11 for position (r) and momentum (p)

spaces. The main feature displayed in this figure is the decreasing trends of JSD in both

conjugated spaces (with only one exception in position space) as increasing the number

of electrons characterizing the series. This fact is in agreement with the discussion of
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results corresponding to the previously studied atomic sets, in the sense that differences

among the densities appear smaller for heavy atoms than for light ones. It should be

pointed out that increasing N makes all systems conforming the series to increase their

nuclear charge and, consequently, their masses. It is interesting to note that the range

of values for JSDr and JSDp are not only similar but also very small, and in fact for

the first two series are almost identical.
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Figure 12.11: Jensen-Shannon divergence JSD(N) for twenty-one elements isoelec-
tronic series with N = 2 − 10 electrons, in position (r) and momentum (p) spaces.

Atomic units are used.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30
Z

JSDp
N=1

N=2

N=3

N=4

N=10

Figure 12.12: Momentum space Jensen-Shannon divergence JSDp between a neutral
N -electron atom and each of its successive twenty cations with nuclear charge Z = N+1

to Z = N + 20, for the isoelectronic series N = 1 − 10. Atomic units are used.

Similarly as done in the two previous subsections (groups and periods), a JSD analysis

is carried out associated to the process of increasing the nuclear charge of an initial

system, the neutral atom in the present case. In doing so, the momentum space JSDp
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between the neutral system and the successive ones obtained by increasing the nuclear

charge is displayed in Figure 12.12. This is done for the isoelectronic series with a

number of electrons N = 1 − 10, each series consisting of twenty one elements. The

results are essentially the same in both spaces, and the most relevant conclusions are:

(i) the series appear perfectly ordered, the higher JSD values corresponding to series

with a lower number of electrons, (ii) increasing the nuclear charge quickly increases

JSD, with the trend of reaching a limiting value after reaching a highly enough nuclear

charge, and (iii) the N = 1, 2 series clearly distinguish from the others, as a consequence

of possessing as valence subshell 1s, the only one component of the systems in those

series and consequently corresponding also to their core.

12.3 Conclusions

In this Chapter two different applications of the divergence measures have been ana-

lyzed. In the first section, Section 12.1, we have observed that the study of different

distances or divergences allows us to gain a deeper physical insight on the relevance

of the interelectronic repulsion in atomic systems as compared to the corresponding

purely Coulomb ones. In order to obtain a complete informational description, it appe-

ars necessary to deal simultaneously with measures in position and momentum atomic

densities. Nevertheless, Fisher and Jensen-Shannon divergences as well as the genera-

lized Jensen-Rényi divergence provide relevant information in both conjugated spaces,

while distances based on overlap integrals, such as the quadratic distance or the quan-

tum similarity index, necessarily requires to employ momentum densities. Apart from

the repulsive effect, the shell-filling patterns in Hartree-Fock framework are also clearly

revealed in the just mentioned cases, not only attending to the specific valence subshell

but additionally to its occupation number, the information measures detecting also the

anomalous shell-filling.

From the second section, Sections 12.2, we can conclude that the generalized Jensen-

Shannon divergence for arbitrary number of distributions and appropriate weights pro-

vide a very useful tool for quantifying the information content of a composite system,

according to their decomposition in subshells, or of a set of whole systems, with re-

spect to the information of their intrinsic constituents. The application in the study

of many-electron systems within an information-theoretic framework reveals the strong

connection between the divergence values in both position and momentum spaces, and

relevant physical characteristics, such as (i) the atomic ionization potential, (ii) the shell-

filling process in neutral atoms and (iii) the entropy excess dependence on the nuclear

charge and the number of electrons.

It is also remarkable the very similar information (almost identical in some cases) pro-

vided by the JSD measure independently of the space we are dealing with, contrary
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to the case of most comparative measures employed in the study of neutral atoms and

ions, as also discussed in previous chapters..

The universality of the method here employed makes it susceptible to be used for the

informational analysis of other relevant density functions, such as those describing mole-

cular systems and or processes (e.g. reactions) also in the two conjugated spaces, as will

be done elsewhere. Such a work will be also accompanied by the use of the generalized

Jensen-Rényi and Jensen-Tsallis divergences, JRD and JTD, respectively.
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Appendix A

Information-theoretic measures of

hyperspherical harmonics

The hyperspherical harmonics Yl,{µ}(Ωd) were introduced and extensively studied by

G. Green [398] and M.J.M. Hill [399] long ago. Later on authors have deeply investi-

gated these objects as it is comprehensively discussed by J. Avery [153, 400]. They are

the solutions of a very broad class of equations of a form into which numerous equa-

tions of the d-dimensional physics [126, 401] can be transformed, such as for instance

Schrödinger equations for arbitrary D-dimensional central potentials and Bethe-Salpeter

equations for some quark systems. Moreover they have been used for the analysis and

interpretation of numerous atomic, molecular and nuclear phenomena which require

the solution of the Schrödinger equation of a single-particle moving in a many-center

quantum-mechanical potential or the Schrödinger equation of a finite many-particle sys-

tem [319, 402–404].

The hyperspherical harmonics are the eigenfunctions of the operator Λ2 which describes

the square of the d-dimensional angular momentum operator,

Λ2 = −
d−1∑

i=1

(sin θi)
i+1−d

(∏i−1
j=1(sin θj)

2
) ∂

∂θi

[
(sin θi)

d−i−1 ∂

∂θi

]
, (A.1)

where (θ1, θ2, ..., θd−1) ≡ Ωd represent the d−1 angular coordinates of the d-dimensional

hypersphere Sd−1 so that 0 ≤ θj ≤ π for j = 1, ..., d − 2, and 0 ≤ θd−1 ≤ 2π. The

eigensolutions of this operator are given by

Λ2Yl,{µ}(Ωd) = l(l + d− 2)Yl,{µ}(Ωd), (A.2)

where the Y-symbol denotes the hyperspherical harmonics described by the d−1 natural

numbers l ≡ µ1, {µ2, ..., µd−1 ≡ |m|} ≡ {µ} with values l = 0, 1, 2, ... and µ1 ≥ µ2 ≥

253
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... ≥ µd−1. The hyperspherical harmonics are known to have the form

Yl,{µ}(Ωd) =
1√
2π
eimθd−1

d−2∏

j=1

Ĉ
αj+µj+1

µj−µj+1
(cos θj) (sin θj)

µj+1 , (A.3)

with 2αj = d− j − 1, and Ĉλn(x), λ > −1
2 , denotes the Gegenbauer polynomial of degree

n and parameter λ which satisfies the orthonormalization condition

∫ 1

−1
Ĉλn(x)Ĉλm(x)ωλ(x)dx = δmn, (A.4)

where the weight function is given by

ωλ(x) =
(
1 − x2

)λ− 1
2 . (A.5)

These objects are known to have numerous interesting properties [126, 153, 400, 403,

405, 406]; in particular they satistfy the orthogonality relation

∫

Sd

Y∗
l,{µ}(Ωd)Yl,{µ}(Ωd)dΩd = δll′δ{µ}{µ′}, (A.6)

where dΩd is the generalized solid angle element

dΩd =



d−2∏

j=1

(sin θj)
2αjdθj


 dθd−1. (A.7)

The spreading properties of the hyperspherical harmonics are best quantifued by means

of the information-theoretic measures of the so-called Born-Rakhmanov probability den-

sity given by

ρl{µ} =
∣∣Yl,{µ}(Ωd)

∣∣2 (A.8)

In this appendix we have obtained the expressions of the information-theoretic measures

of the hyperspherical harmonics in terms of their labeling indices, getting the explicit

expressions for the Fisher information [3, 37]

Il,{µ}(d) =

∫

Sd

∣∣∣~∇Ωρl{µ} (Ωd)
∣∣∣
2

ρl{µ} (Ωd)
dΩd (A.9)

where ~∇Ω denotes the angular (d− 1)-dimensional gradient operator given by

~∇Ω =

d−1∑

i=0

(
i−1∏

k=1

sin θk

)−1
∂

∂θi
θ̂i, (A.10)
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and for the average density or inverse collision length [83, 313, 407]

Wl,{µ}(d) =

∫

Sd

|Yl,{µ}(Ωd)|4dΩd, (A.11)

in terms of the hyperquantum numbers which characterize the physical state under

consideration.

We also give a lower bound for the Shannon entropy [32]

Sl,{µ}(d) = −
∫

Sd

ρl{µ} (Ωd) ln ρl{µ} (Ωd) dΩd, (A.12)

in terms of the hyperquantum numbers l, {µ}.

A.1 Fisher information

This quantity, which is defined by Eqs. (A.9) and (A.10), can also be expressed as

Il,{µ}(d) := 4

∫

Sd

[
~∇Ω|Yl,{µ}(θ1, θ2, ..., θd−2, 0)|

]2
dΩd =

= 4

d−2∑

i=1

∫

Sd



(
i−1∏

k=1

sin θk

)−1
∂

∂θi
Yl,{µ}(θ1, θ2, ..., θd−2, 0)




2

dΩd =

= 4

d−2∑

i=1

(
i−1∏

k=0

∫ π

0

[
Ĉ
αk+µk+1
µk−µk+1

(cos θk)
]2

(sin θk)
2αk+2µk+1−1dθk

)

×
∫ π

0

[
∂

∂θi

(
Ĉ
αi+µi+1
µi−µi+1

(cos θi) · (sin θi)µi+1

)]2

(sin θi)
2αidθi, (A.13)

where we have taken into account the complex exponential dependence of the hyper-

spherical harmonics on the coordinate θd−1, as given by Eq. (A.3), for the first equality,

the expression (A.10) for the second equality and the Gegenbauer normalization condi-

tion (A.4) for the last equality.

Taking into account that the Gegenbauer functionGµj ,µj+1(θj) ≡ Ĉ
αj+µj+1

µj−µj+1
(cos θj)(sin θj)

µj+1

fulfils the differential equation [408]

∂

∂θj

[
(sin θj)

2αj
∂

∂θj
Gµj ,µj+1(θj)

]
(A.14)

= −(1 − x2
i )

2αj

[
µj(µj + 2αj) −

µj+1(µj+1 + 2αj+1)

sin2 θj

]
Gµj ,µj+1(θj), (A.15)
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and making use of various algebraic properties of the hyperspherical harmonics [153,

400, 402, 403], one has that

Il,{µ}(d) =
D−2∑

i=1

{
µi(µi + 2αi) − µi+1(µi+1 + 2αi+1)

∫ π

0

[
Gλi
ni

(θi)
]2

(sin θi)
2αi+2dθi

}
.

(A.16)

Then, the use of the close connection of the Gegenbauer polynomials and the associated

Legendre function Pmn (x) together with the expression

∫ 1

−1
(1 − x2)−1 [Pmn (x)]2 dx =

(n+m)!

m(n−m)!
, (A.17)

has allowed us to finally find the following value for the Fisher information of the hy-

perspherical harmonics Yl,{µ}(Ω):

Il,{µ}(d) = 4

d−2∑

i=1

[
µi(µi + d− i− 1) − µi+1(µi+1 + d− i− 2)

2µi + d− i− 1

2µi+1 + d− i− 2

]

× 2µ1 + d− 2

2µi + d− i− 1
(A.18)

= 4l(l + d− 2) − 2µd−1(2l + d− 2) (A.19)

= 4L(L+ 1) − 2µd−1(2L+ 1) − (d− 1)(d− 3), (A.20)

where we have used in the third inequality, for physical transparency purposes, the

so-called grand angular momentum quantum number L defined by

L = l +
d− 3

2
. (A.21)

It turns out that the Fisher information of the hyperspherical harmonics only depends

on the dimensionality of the hyperspace and the first and last labeling indices l and m.

In particular, for d = 3 one has

Il,m(3) = 4l(l + 1) − 2|m|(2l + 1), (A.22)

for the Fisher information of the familiar three-dimensional spherical harmonics, which

give the anisotropic character of the eigenfunctions of the central potentials. In this

sense, the Fisher information can be considered as a measure of the angular, spatial or

volume anisotropy of the stationary states of any spherically symmetric potential.
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A.2 Average density

The average density, according to Eqs. (A.8), has the form given by Eq. (A.11). The

use of Eq. (A.3) for the hyperspherical harmonics in terms of the Gegenbauer polyno-

mials, and Eq. (A.7) for the generalized solid angle element allow us to transform this

expression as follows:

Wl,{µ}(d) =
1

2π

d−2∏

j=1

∫ +1

−1
|Ĉαj+µj+1

µj−µj+1
(xj)|4ωαj+2µj+1(xj)dxj

=
1

2π

d−2∏

j=1

∫ +1

−1
|Ĉλn(xj)|4ωλ+µj+1

(xj)dxj , (A.23)

where we have performed the change of variable θj → xj = cos θj in the first equality,

and the notation λ = αj + µj+1 and n = µj − µj+1 in the second equality. To evaluate

the integral involved in Eq. (A.23) we shall use twice the transformation

|Ĉλn(xj)|2 −→ Ĉ
λ+µj+1

2k (xj), (A.24)

by means of the generalized Dougall linearization formula of the Gegenbauer polyno-

mials [409], and the orthogonalization relation (A.4) for the Gegenbauer polynomials

Ĉ
λ+µj+1
m (x) orthogonal with respect to the weigth function ωλ+µj+1

(x). The generalized

Dougall formula for the orthogonal Gegenbauer polynomials Cαn (x) is expressed as

[Cαn (x)]2 =

n∑

k=0

a(α, β, n; k)Cβ2k(x), (A.25)

where the linearization coefficients are given by

a(α, β, n; k) =
(2α)n
(n!)2

(
n
k

)
(2k)!(k + 2α)n(α)k(β + 1/2)k

(2β)2k(k + β)k(α+ 1/2)k

× 4F3

(
k − n, k + n+ 2α, k + α, k + β + 1

2

2k + β + 1, k + 2α, k + α+ 1
2

1

)
. (A.26)

Observe that this 4F3 function of unit argument is balanced, i.e. the sum of the upper

parameters equals the sum of the lower parameters minus one.

Taking into account Eqs. (A.25) and (A.26) and the relation

Ĉλn(x) =
1

dλn
Cλn(x); dλn =

[
π21−2λΓ(n+ 2λ)

n!(n+ λ)Γ2(λ)

]1/2

, (A.27)
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one has the following linearization formula for the orthonormal Gegenbauer polynomials:

[
Ĉαn (x)

]2
=

n∑

k=0

b(α, β, n; k)Ĉβ2k(x), (A.28)

with

b(α, β, n; k) =
dβ2k

[dαn]2
a(α, β, n; k). (A.29)

Then, with α = λ and β = λ+ µj+1 we obtain the desidered transformation (A.24),

namely
[
Ĉλn(x)

]2
=

n∑

k=0

b(λ, λ+ µj+1, n; k)Ĉ
λ+µj+1

2k (x), (A.30)

where

b(λ, λ+ µj+1, n; k) =
(n+ λ)Γ(k + 1/2)Γ(k + λ)Γ(k + n+ 2λ)

π1/2Γ(1 − k + n)Γ(k + λ+ 1/2)Γ(k + 2λ)Γ(2k + λ+ µj+1)

×
(

21−2λ−2µj+1Γ(2k + 2λ+ 2µj+1)

(2k + λ+ µj+1)Γ(2k + 1)

)1/2

× 4F3

(
k − n, k + n+ 2λ, k + λ, k + λ+ µj+1 + 1

2

2k + λ+ µj+1 + 1, k + 2λ, k + λ+ 1
2

1

)
.

(A.31)

The use of this expression twice in the integral Iλn(j) on the right hand side of Eq. (A.23)

gives

Iλn(j) ≡
∫ +1

−1
|Ĉλn(x)|4ωλ+µj+1

(x)dx =
n∑

k=0

n∑

k′=0

b(λ, λ+ µj+1, n; k)b(λ, λ + µj+1, n; k′)

×
∫ +1

−1
|Ĉλ+µj+1

2k (x)||Ĉλ+µj+1

2k′ (x)|ωλ+µj+1
(x)dx

=

n∑

k=0

b2(λ, λ+ µj+1, n; k). (A.32)

Then, according to Eqs. (A.23) and (A.32), one has finally the following expression for

the average density of hyperspherical harmonics:

Wl,{µ}(d) =
1

2π

d−2∏

j=1

n∑

k=0

b2(λ, λ+ µj+1, n; k)

=
1

2π

d−2∏

j=1

µj−µj+1∑

k=0

b2(αj + µj+1, αj + 2µj+1, µj − µj+1; k). (A.33)
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In particular, the two- and three-dimensional values are

Wl(2) =
1

2π
, (A.34)

and

Wl,m(3) =

l−|m|∑

k=0

Ck(l, |m|)

×
[

3F2

(
−l + |m| + k, |m| + k + 1/2, l + |m| + k + 1

|m| + k + 1, 2|m| + 2k + 3/2
1

)]2

, (A.35)

respectively, where the coeficients Ck(l, |m|) are given by

Ck(l, |m|) =
(4|m| + 4k + 1)(2l + 1)2Γ(k + 1/2)Γ(2|m| + k + 1/2)

16π2k!(2|m| + k)!

×
[

(l + |m| + k)!Γ(|m| + k + 1/2)

(|m| + k)!(l − |m| − k)!Γ(2|m| + 2k + 3/2)

]2

. (A.36)

Let us remark that these quantities depend only on the dimensionality d of the hyper-

space and the multiindex (l, {µ}) ≡ (µ1 ≡ l, µ2, ..., µd−1) which labels the hyperspherical

harmonics. Besides, the function 3F2 is terminating since −l + |m| + k ≤ 0; so, it has a

finite number of terms what reduces its computation to a mere sum.

For the sake of completeness let us also mention that the evaluation of the integral

of the product of four hyperspherical harmonics given by Eq. (A.11), and similarly

for integrals with a higher number of hyperspherical harmonics, which naturally ap-

pear in classical and non-relativistic [126, 153, 319, 400, 404] and relativistic [401, 410]

quantum-mechanical problems, can be done either by taking into account the theory of

the Gegenbauer polynomials (as it has been illustrated here) or, alternatively, by use of

the theory of the harmonic polynomials following the lines discussed by John Avery and

co-workers [406, 411].

A.3 The Shannon entropy: lower bounds

The Shannon entropy, according to Eqs. (A.8) and (A.12), is given by

Sl,{µ}(d) = −
∫

Sd

|Yl,{µ}(Ωd)|2 ln |Yl,{µ}(Ωd)|2dΩd. (A.37)
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Here we find a lower bound to this quantity by means of the algebraic properties of the

hyperspherical harmonics [153, 400, 402, 403] and the Jensen inequality [412]

ϕ

(∫
fdµ∫
dµ

)
≤
∫
ϕ (f)dµ∫
dµ

, (A.38)

where ϕ(x) is a convex function,
∫
f(x)dµ ≤ ∞ and dµ is a nonnegative measure.

The use of expression (A.3), normalized according to Eq. (A.6), leads to the expression

[162]

S
(
Yl,{µ}

)
= ln 2π −

d−2∑

j=1

∫ π

0

[
Ĉ
µj−µj+1

αj+µj+1
(cos θj)

]2
(sin θj)

2αj+2µj+1

× ln

[[
Ĉ
µj−µj+1

αj+µj+1
(cos θj)

]2
(sin θj)

2µj+1

]
dθj . (A.39)

Taking into account Eq. (A.38) with ϕ(x) = − lnx, f(θj) =
[
Ĉ
µj−µj+1

αj+µj+1
(cos θj)

]2
(sin θj)

2µj+1

and dµ =
[
Ĉ
µj−µj+1

αj+µj+1
(cos θj)

]2
(sin θj)

2αj+2µj+1dθj, we obtain the following expression:

S
(
Yl,{µ}

)
≥ B(d) ≡ ln 2π −

d−2∑

j=1

ln

(∫ π

0

[
Ĉ
µj−µj+1

αj+µj+1
(cos θj)

]4
(sin θj)

2αj+4µj+1

)

= − lnWl,{µ}(d), (A.40)

where Wl,{µ}(d) is the average density of hyperspherical harmonics that we have calcu-

lated in the previous section.

Let us point out that for d = 2 and 3 this expression gives the following lower bounds:

B(2) = ln 2π (A.41)

B(3) = − ln



l−|m|∑

k=0

Ck(l, |m|)
[

3F2

(
−l + |m| + k, |m| + k + 1/2, l + |m| + k + 1

|m| + k + 1, 2|m| + 2k + 3/2
1

)]2

 ,

where the coeficients Ck(l, |m|) are given by Eq. (A.36), with the values of the l and m

being l = 0, 1, ..., and −l ≤ m ≤ +l.

For the sake of completeness we plot in Figure A.1 the values of the numerically exact

Shannon entropy S(Yl,m; 3) and its lower bound B(3) for various (l,m) cases. We ob-

serve that both quantities have the same qualitative behavior when l and m vary: (i)

they globally decrease when l increases and m is fixed, and (ii) they have an inverted

semicircular shape when l is fixed and m increases. Moreover, in order to be more trans-

parent, we have shown in Figure A.2 the ratio B(3)/S(Yl,m; 3). Therein we notice that
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the quality of the bound globally decreases with l, and it increases with |m| for l fixed.
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Figure A.1: Shannon entropy S(Yl,m; 3) (squared dots) and bound B(3) (triangled
dots) for the three-dimensional case.
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Figure A.2: Ratio of the three-dimensional bound B(3) and the Shannon entropy
S(Yl,m; 3)
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Chemical properties of the molecules

Chemical Number of Energy Dipole Ionization Hardness Electrophilicy

formula Name electrons (a.u.) Moment Potential (a.u.) (a.u.)

(Debye) (a.u)

NH3 Ammonia 10 -56.420 1.7877 0.422 0.321 0.016

LiOH Lithium hydroxide 12 -83.165 4.576 0.364 0.190 0.080

Li2O Dilithium oxide 14 -90.026 0.000 0.267 0.150 0.046

HBO Boron hydride oxide 14 -100.468 2.840 0.510 0.339 0.043

HCO Formyl radical 15 -113.565 1.587 0.387 0.260 0.031

NO Nitric oxide 15 -129.534 2.003 0.421 0.259 0.050

H2CO Formaldehyde 16 -114.228 2.517 0.438 0.288 0.039

NHO Nitrosyl hydride 16 -130.178 1.786 0.425 0.259 0.053

O2 Oxygen diatomic 16 -149.948 0.000 0.552 0.491 0.004

CH3O Methoxy radical 17 -114.797 3.355 0.387 0.363 0.001

CH3NH2 Methyl amine 18 -95.589 1.4985 0.387 0.307 0.011

CH3OH Methyl alcohol 18 -115.435 1.945 0.444 0.334 0.018

NH2OH hydroxylamine 18 -131.410 0.901 0.424 0.326 0.015

H2O2 Hydrogen peroxide 18 -151.216 1.751 0.474 0.346 0.024

NaOH Sodium hydroxide 20 -237.541 6.888 0.477 0.159 0.319

HCCO Ketenyl radical 21 -113.859 1.762 0.411 0.312 0.016

C3H3 Radical propargyl 21 -115.643 0.181 0.351 0.282 0.009

BO2 Boron dioxide 21 -174.884 0.000 0.533 0.361 0.041

MgOH Magnesium hydroxide 21 -275.346 5.737 0.271 0.160 0.039

CH2CCH2 Allene 22 -116.289 0.000 0.371 0.275 0.017

CH3CCH Propyne 22 -116.292 0.733 0.346 0.300 0.004

C3H4 Cyclopropene 22 -116.292 0.733 0.346 0.264 0.013

CH3CN Acetonitrile 22 -132.221 4.629 0.457 0.331 0.024

CH3NC Methyl isocyanide 22 -132.340 3.808 0.464 0.334 0.025

CH2NN Diazomethane 22 -148.326 4.502 0.391 0.231 0.056

NH2CN Cyanamide 22 -148.388 4.502 0.391 0.305 0.012

HCCOH Ethynol 22 -152.141 1.747 0.371 0.282 0.014

CH2CO Ketene 22 -152.197 1.461 0.361 0.249 0.025

HN3 Hydrogen azide 22 -164.349 1.961 0.398 0.268 0.032

HCNO Fulminic acid 22 -168.134 3.248 0.403 0.294 0.020

HNCO Isocyanic acid 22 -168.261 2.238 0.447 0.308 0.031

N2O Nitrous oxide 22 -184.212 0.426 0.489 0.324 0.042

CO2 Carbon dioxide 22 -188.150 0.000 0.539 0.377 0.035

FCN Cyanogen fluoride 22 -192.205 2.147 0.498 0.360 0.026

HBS Hydrogen boron 22 -423.039 1.397 0.401 0.250 0.046

sulfide

C3H5 Allyl radical 23 -116.874 0.923 0.333 0.281 0.005

CH3CO Acetyl radical 23 -152.755 2.428 0.360 0.258 0.020

NO2 Nitrogen dioxide 23 -204.636 0.078 0.499 0.290 0.075

PO Phosphorus monoxide 23 -415.862 0.135 0.327 0.175 0.067
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NS Mononitrogen 23 -452.183 1.971 0.354 0.186 0.077

monosulfide

C3H6 Cyclopropane 24 -117.518 0.000 0.417 0.331 0.011

C2H5N Aziridine 24 -133.525 1.899 0.389 0.307 0.011

NHCHNH2 Aminomethanimine 24 -149.592 2.745 0.365 0.284 0.012

C2H4O Ethylene oxide 24 -153.372 2.200 0.446 0.347 0.014

CH3CHO Acetaldehyde 24 -153.416 2.628 0.422 0.289 0.031

CHONH2 Formamide 24 -169.461 3.761 0.415 0.308 0.018

CH2O2 Dioxirane 24 -189.156 2.866 0.482 0.341 0.030

HCOOH Formic acid 24 -189.304 1.299 0.468 0.324 0.032

HNO2 Nitrous acid 24 -205.223 2.084 0.471 0.287 0.060

O3 Ozone 24 -224.882 0.715 0.486 0.231 0.142

FNO Nitrosyl fluoride 24 -229.213 1.893 0.511 0.290 0.085

CF2 Difluoromethylene 24 -237.220 0.417 0.469 0.287 0.058

H2CS Thioformaldehyde 24 -436.815 1.678 0.349 0.202 0.054

SO Sulfur monoxide 24 -472.622 1.815 0.424 0.290 0.031

CH3CHCH3 Isopropyl radical 25 -118.042 1.378 0.328 0.287 0.003

CH2CH2CH3 n-Propyl radical 25 -118.050 4.976 0.349 0.272 0.011

CH3CHOH Ethoxy radical 25 -153.397 1.131 0.464 0.353 0.018

CH3OO Methylperoxy radical 25 -189.745 4.890 0.476 0.361 0.018

FO2 Dioxygen monofluoride 25 -249.576 1.555 0.552 0.370 0.045

NF2 Difluoroamino radical 25 -253.764 1.485 0.533 0.409 0.019

CH3S Thiomethoxy 25 -437.452 0.075 0.372 0.222 0.051

C3H8 Propane 26 -118.750 0.076 0.467 0.350 0.019

CH3NHCH3 Dimethylamine 26 -134.753 1.212 0.365 0.297 0.008

CH3CH2NH2 Ethylamine 26 -134.766 1.503 0.384 0.303 0.011

CH3OCH3 Dimethyl ether 26 -154.594 1.539 0.419 0.327 0.013

CH3CH2OH Ethanol 26 -154.612 1.886 0.436 0.330 0.017

CH3OOH Methyl peroxide 26 -190.380 1.521 0.444 0.333 0.018

F2O Difluorine monoxide 26 -274.101 0.405 0.569 0.363 0.059

SiO2 Silicon dioxide 30 -439.124 0.000 0.500 0.255 0.118

OCS Carbonyl sulfide 30 -510.726 0.774 0.418 0.270 0.041

ClCN Chlorocyanogen 30 -551.636 5.950 0.465 0.315 0.036

PO2 Phosphorus dioxide 31 -491.029 0.202 0.470 0.258 0.087

PS Phosphorus sulfide 31 -738.487 0.978 0.311 0.153 0.083

SO2 Sulfur dioxide 32 -547.716 2.114 0.489 0.253 0.111

ClNO Nitrosyl chloride 32 -589.211 2.082 0.434 0.239 0.080

S2 Sulfur diatomic 32 -795.264 0.000 0.384 0.257 0.032

OClO Chlorine dioxide 33 -609.561 2.783 0.474 0.267 0.081

ClO2 Chlorine dioxide 33 -609.586 1.016 0.474 0.267 0.081

CH3SCH3 Dimethyl sulfide 34 -477.214 1.635 0.334 0.265 0.009

CH3CH2SH Ethanethiol 34 -477.218 1.682 0.353 0.264 0.015

SF2 Sulfur difluoride 34 -596.892 1.658 0.396 0.247 0.045

H2S2 Hydrogen sufide 34 -796.507 1.410 0.387 0.243 0.043

CS2 Carbon disulfide 38 -833.302 0.000 0.372 0.214 0.059
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SSO Disulfur monoxide 40 -870.246 1.431 0.404 0.186 0.128

CCl2 Dichloromethylene 40 -957.158 1.186 0.401 0.219 0.075

MgCl2 Magnesium dichloride 46 -1119.088 0.000 0.450 0.235 0.098

S3 Sulfur trimer 48 -1192.913 0.871 0.361 0.146 0.158

SiCl2 Dichlorosilylene 48 -1208.352 1.294 0.380 0.192 0.093

ClS2 Sulfur chloride 49 -1254.976 0.960 0.343 0.175 0.080

Table B.1: Chemical properties of the molecules
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Complexiy values

Chemical formula Cr(LMC) Cp(LMC) Crp(LMC) Cr(FS) Cp(FS) Crp(FS)

NH3 18.329 4.890 89.633 22.098 6.275 138.665

LiOH 15.817 4.839 76.545 22.569 6.115 137.998

Li2O 14.707 4.843 71.226 24.406 6.323 154.319

HBO 15.921 5.710 90.901 26.266 6.750 177.287

HCO 20.482 7.614 155.955 32.700 8.300 271.396

NO 18.222 7.168 130.609 30.542 7.988 243.978

H2CO 16.159 5.408 87.391 28.659 6.678 191.377

NHO 15.386 5.329 81.996 28.056 6.753 189.456

O2 14.269 5.018 71.601 26.625 6.596 175.606

CH3O 21.197 6.553 138.900 35.209 7.551 265.849

CH3NH2 16.455 4.717 77.619 31.372 6.233 195.534

CH3OH 17.196 5.058 86.977 31.282 6.470 202.402

NH2OH 16.469 5.224 86.038 30.668 6.772 207.692

H2O2 15.692 5.298 83.140 29.600 6.966 206.195

NaOH 16.663 5.765 96.069 30.033 6.786 203.792

HCCO 18.736 5.848 109.576 32.104 7.482 240.193

C3H3 14.619 5.307 77.576 34.925 6.691 233.679

BO2 14.240 5.258 74.872 32.142 6.613 212.558

MgOH 28.094 21.582 606.322 42.104 24.193 1018.634

CH2CCH2 14.887 5.254 78.209 36.060 6.722 242.410

CH3CCH 14.859 5.204 77.322 36.012 6.642 239.193

C3H4 14.859 5.204 77.322 36.012 6.642 239.193

CH3CN 15.147 5.375 81.417 35.842 6.795 243.557

CH3NC 15.179 5.395 81.893 35.998 6.680 240.459

CH2NN 14.979 5.389 80.730 35.364 6.868 242.894

NH2CN 14.621 5.352 78.256 34.778 6.787 236.049

HCCOH 15.133 5.259 79.577 34.778 6.618 230.157

CH2CO 15.096 5.398 81.488 34.758 6.761 235.010

HN3 14.139 5.206 73.603 33.966 6.807 231.193

HCNO 14.556 5.252 76.453 33.987 6.747 229.303

HOCN 14.422 5.264 75.922 33.817 6.673 225.656

HNCO 14.111 5.255 74.159 33.281 6.727 223.888

N2O 13.642 4.935 67.319 32.764 6.542 214.329

CO2 13.458 4.967 66.854 31.982 6.470 206.926

FCN 14.216 5.152 73.238 32.573 6.474 210.885

HBS 39.219 12.909 506.268 45.008 13.545 609.627

C3H5 18.363 5.750 105.581 42.281 7.095 299.994

CH3CO 19.461 6.781 131.961 41.942 8.218 344.662

NO2 15.622 6.023 94.086 36.221 7.105 257.364

PO 32.401 14.006 453.829 44.319 14.029 621.770

NS 37.529 13.892 521.334 46.670 13.788 643.470

C3H6 14.573 4.700 68.496 36.814 6.216 228.832
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C2H5N 15.076 4.854 73.171 37.026 6.357 235.383

NHCHNH2 15.284 5.025 76.799 37.056 6.458 239.322

C2H4O 15.564 5.031 78.296 36.753 6.448 236.990

CH3CHO 15.986 5.219 83.430 37.453 6.557 245.587

CHONH2 15.099 5.118 77.269 36.021 6.476 233.265

CH2O2 15.099 5.282 79.758 35.870 6.790 243.544

HCOOH 14.796 5.204 77.001 35.225 6.528 229.965

HNO2 14.424 5.168 74.547 35.028 6.611 231.566

O3 14.057 5.075 71.342 34.472 6.660 229.580

FNO 14.001 5.170 72.385 33.829 6.606 223.461

CF2 14.085 5.253 73.983 33.166 6.476 214.793

H2CS 38.934 11.926 464.325 47.354 12.728 602.734

SO 28.632 9.671 276.908 40.560 10.750 436.024

CH3CHCH3 18.342 5.215 95.647 43.754 6.616 289.479

CH2CH2CH3 18.640 5.284 98.489 44.232 6.656 294.427

CH3CHOH 15.947 5.118 81.609 37.328 6.479 241.853

CH3OO 18.130 6.056 109.797 41.062 7.142 293.257

FO2 15.576 5.928 92.339 36.994 7.197 266.258

NF2 15.602 6.039 94.216 36.560 7.173 262.231

CH3S 48.622 14.312 695.908 55.725 13.947 777.211

C3H8 15.184 4.475 67.955 39.247 6.051 237.486

CH3NHCH3 15.823 4.645 73.503 39.583 6.168 244.134

CH3CH2NH2 15.794 4.632 73.166 39.522 6.169 243.825

CH3OCH3 16.602 4.888 81.144 39.681 6.289 249.561

CH3CH2OH 16.492 4.847 79.941 39.477 6.311 249.153

CH3OOH 16.305 5.139 83.786 38.912 6.599 256.795

F2O 13.780 5.021 69.189 34.504 6.686 230.701

SiO2 21.279 7.197 153.135 42.587 8.418 358.485

OCS 29.439 8.637 254.249 47.959 9.847 472.247

ClCN 34.096 9.156 312.185 50.455 10.743 542.020

PO2 26.608 9.562 254.412 48.502 10.036 486.758

PS 33.482 18.602 622.825 53.355 18.347 978.882

SO2 25.582 8.033 205.489 46.479 9.105 423.187

ClNO 31.033 9.169 284.526 50.569 10.255 518.602

S2 29.557 13.830 408.768 49.503 15.541 769.315

OClO 30.434 9.286 282.608 51.335 10.152 521.178

ClO2 31.652 9.814 310.638 52.740 10.507 554.167

CH3SCH3 43.179 8.841 381.755 62.193 10.184 633.383

CH3CH2SH 43.193 9.148 395.128 62.192 10.349 643.612

SF2 23.088 7.614 175.794 45.869 8.693 398.764

H2S2 33.365 14.977 499.718 54.844 15.983 876.593

CS2 31.540 11.615 366.320 57.500 13.232 760.837

SSO 28.568 11.232 320.885 56.396 12.275 692.232

CCl2 33.193 12.496 414.800 59.796 13.525 808.719

MgCl2 27.977 11.443 320.138 60.209 12.364 744.450
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S3 29.189 13.970 407.786 64.165 15.508 995.053

SiCl2 29.108 13.964 406.462 63.384 14.697 931.524

ClS2 31.640 15.477 489.713 68.048 15.910 1082.619

Table B.2: Complexiy values
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Information planes

Chemical formula Ir Ip Jr Jp Dr Dp Lr Lp

NH3 35.359 3.951 0.625 1.588 0.526 0.035 34.873 141.252

LiOH 42.817 2.871 0.527 2.130 0.586 0.022 27.011 219.366

Li2O 40.522 3.028 0.602 2.088 0.446 0.023 32.993 212.967

HBO 44.908 3.083 0.585 2.189 0.504 0.025 31.573 228.637

HCO 47.148 3.727 0.694 2.227 0.502 0.032 40.769 234.576

NO 53.282 3.066 0.573 2.605 0.595 0.024 30.633 296.801

H2CO 44.410 3.103 0.645 2.152 0.442 0.024 36.591 222.885

NHO 50.288 2.734 0.558 2.470 0.523 0.019 29.415 273.967

O2 57.172 2.309 0.466 2.856 0.636 0.015 22.433 340.759

CH3O 41.945 3.951 0.839 1.911 0.390 0.035 54.285 186.471

CH3NH2 33.729 4.042 0.930 1.542 0.260 0.035 63.319 135.176

CH3OH 39.736 3.451 0.787 1.875 0.349 0.028 49.302 181.200

NH2OH 44.865 3.073 0.684 2.204 0.413 0.023 39.892 230.958

H2O2 50.972 2.671 0.581 2.608 0.502 0.018 31.235 297.351

NaOH 67.031 1.867 0.448 3.635 0.787 0.012 21.169 489.255

HCCO 45.164 3.759 0.711 1.990 0.443 0.030 42.302 198.209

C3H3 35.850 3.973 0.974 1.684 0.215 0.034 67.870 154.263

BO2 51.429 2.501 0.625 2.644 0.408 0.017 34.874 303.534

MgOH 72.165 6.982 0.583 3.465 0.893 0.047 31.457 455.310

CH2CCH2 34.380 4.181 1.049 1.608 0.196 0.037 75.823 143.893

CH3CCH 34.372 4.154 1.048 1.599 0.196 0.036 75.698 142.733

C3H4 34.372 4.154 1.048 1.599 0.196 0.036 75.698 142.733

CH3CN 38.577 3.710 0.929 1.831 0.240 0.031 63.212 174.949

CH3NC 38.665 3.655 0.931 1.828 0.239 0.031 63.408 174.421

CH2NN 42.763 3.341 0.827 2.056 0.282 0.026 53.081 208.023

NH2CN 42.721 3.243 0.814 2.093 0.282 0.025 51.843 213.709

HCCOH 43.351 3.159 0.802 2.095 0.298 0.025 50.718 214.029

CH2CO 43.450 3.188 0.800 2.121 0.299 0.025 50.501 217.992

HN3 46.920 2.946 0.724 2.311 0.325 0.021 43.476 247.947

HCNO 47.560 2.860 0.715 2.359 0.341 0.021 42.641 255.808

HOCN 47.639 2.807 0.710 2.377 0.342 0.020 42.216 258.724

HNCO 47.582 2.792 0.699 2.409 0.342 0.020 41.290 263.993

N2O 51.862 2.551 0.632 2.565 0.385 0.017 35.444 289.908

CO2 52.542 2.408 0.609 2.687 0.401 0.016 33.521 310.842

FCN 53.291 2.381 0.611 2.719 0.421 0.016 33.730 316.488

HBS 95.653 3.402 0.471 3.982 1.721 0.023 22.782 560.801

C3H5 33.000 4.950 1.281 1.433 0.179 0.047 102.365 121.145

CH3CO 41.737 4.253 1.005 1.932 0.274 0.036 71.105 189.554

NO2 54.331 2.580 0.667 2.754 0.407 0.019 38.422 322.651

PO 93.118 3.147 0.476 4.458 1.398 0.021 23.176 664.281

NS 98.935 3.131 0.472 4.403 1.641 0.021 22.869 652.189

C3H6 31.688 4.197 1.162 1.481 0.165 0.037 88.384 127.209
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C2H5N 35.547 3.795 1.042 1.675 0.201 0.032 75.036 153.063

NHCHNH2 39.358 3.440 0.942 1.877 0.237 0.028 64.484 181.539

C2H4O 40.077 3.343 0.917 1.929 0.251 0.027 61.989 189.055

CH3CHO 40.139 3.418 0.933 1.919 0.251 0.028 63.621 187.575

CHONH2 43.829 2.985 0.822 2.169 0.287 0.023 52.590 225.540

CH2O2 48.619 2.763 0.738 2.457 0.338 0.019 44.730 271.863

HCOOH 48.366 2.641 0.728 2.472 0.337 0.019 43.871 274.330

HNO2 52.388 2.476 0.669 2.670 0.374 0.017 38.591 307.969

O3 57.042 2.273 0.604 2.930 0.424 0.014 33.161 354.055

FNO 57.622 2.179 0.587 3.032 0.441 0.014 31.752 372.608

CF2 58.849 2.027 0.564 3.196 0.472 0.013 29.864 403.204

H2CS 91.074 3.216 0.520 3.958 1.471 0.021 26.464 555.725

SO 99.453 2.257 0.408 4.762 1.557 0.013 18.384 733.511

CH3CHCH3 30.608 4.986 1.430 1.327 0.152 0.048 120.639 107.892

CH2CH2CH3 30.608 5.061 1.445 1.315 0.152 0.050 122.622 106.476

CH3CHOH 40.048 3.403 0.932 1.904 0.251 0.028 63.517 185.402

CH3OO 46.628 3.180 0.881 2.246 0.311 0.025 58.331 237.541

FO2 59.692 2.315 0.620 3.109 0.452 0.015 34.438 386.854

NF2 60.253 2.234 0.607 3.211 0.468 0.015 33.362 406.065

CH3S 87.510 3.862 0.637 3.612 1.356 0.030 35.868 484.462

C3H8 29.589 4.508 1.326 1.342 0.141 0.041 107.825 109.781

CH3NHCH3 33.093 4.072 1.196 1.515 0.171 0.035 92.334 131.596

CH3CH2NH2 33.089 4.080 1.194 1.512 0.171 0.035 92.142 131.252

CH3OCH3 37.259 3.626 1.065 1.734 0.214 0.030 77.576 161.232

CH3CH2OH 37.242 3.639 1.060 1.734 0.214 0.030 77.032 161.232

CH3OOH 45.030 3.016 0.864 2.188 0.288 0.022 56.702 228.464

F2O 62.458 1.983 0.552 3.372 0.475 0.011 28.982 437.147

SiO2 78.996 2.080 0.539 4.048 0.762 0.013 27.939 574.802

OCS 87.733 2.483 0.547 3.966 1.032 0.015 28.528 557.507

ClCN 92.739 2.670 0.544 4.024 1.204 0.016 28.325 569.800

PO2 83.663 2.406 0.580 4.172 0.854 0.016 31.157 601.416

PS 116.668 3.329 0.457 5.512 1.534 0.020 21.829 913.419

SO2 88.687 2.040 0.524 4.464 0.955 0.012 26.780 665.719

ClNO 93.484 2.329 0.541 4.403 1.105 0.014 28.082 652.087

S2 120.651 2.681 0.410 5.796 1.593 0.014 18.551 984.958

OClO 93.811 2.236 0.547 4.541 1.065 0.014 28.573 683.123

ClO2 93.908 2.337 0.562 4.497 1.065 0.015 29.708 673.077

CH3SCH3 71.901 3.629 0.865 2.806 0.760 0.027 56.783 331.815

CH3CH2SH 71.886 3.604 0.865 2.872 0.760 0.027 56.799 343.484

SF2 90.936 1.799 0.504 4.832 0.913 0.010 25.287 749.769

H2S2 113.715 2.896 0.482 5.519 1.411 0.016 23.642 915.087

CS2 108.093 2.762 0.532 4.790 1.152 0.016 27.385 740.069

SSO 107.860 2.281 0.523 5.382 1.071 0.013 26.687 881.223

CCl2 115.767 2.464 0.517 5.490 1.267 0.014 26.202 907.920

MgCl2 118.212 2.129 0.509 5.808 1.090 0.012 25.658 987.999
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Appendix B Chemical properties and information and complexity measures of selected

molecules

S3 120.348 2.613 0.533 5.935 1.062 0.014 27.479 1020.606

SiCl2 121.417 2.349 0.522 6.257 1.093 0.013 26.623 1104.761

ClS2 123.420 2.643 0.551 6.020 1.095 0.015 28.897 1042.597

Table B.3: Information planes
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[53] R. J. Yáñez, W. van Assche and J. S. Dehesa. Position and momentum information

entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A, 50

3065 (1994).

[54] M. Ho, R. P. Sagar, J. M. Pérez-Jordá, V. H. Smith Jr and R. O. Esquivel. A numerical

study of molecular information entropies. Chem. Phys. Lett., 219 15 (1994).

[55] R. O. Esquivel, A. L. Rodriguez, R. P. Sagar, M. Ho and V. H. S. Jr. Physical interpretation

of information entropy: Numerical evidence of the Collins conjecture. Phys. Rev. A, 54

259 (1996).



276 BIBLIOGRAPHY

[56] E. T. Jaynes. The Maximum Entropy Problem. MIT Press, Cambridge (1978).

[57] A. Katz. Principles of Statistical Mechanics. Freeman, San Francisco (1967).
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[96] R. González-Férez and J. S. Dehesa. Shannon entropy as an indicator of atomic avoided

crossings in strong parallel magnetic and electric fields. Phys. Rev. Lett., 91 113001 (2003).
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[125] J. S. Dehesa, R. González-Férez and P. Sánchez-Moreno. The Fisher-information-based un-

certainty relation, Cramér-Rao inequality and kinetic energy for the D-dimensional central

problem. J. Phys. A, 40 1845 (2007).

[126] D. R. Herschbach, J. Avery and O. Goscinski. Dimensional Scaling in Chemical Physics.

Kluwer, Dordrecht (1993).

[127] P. Harrison. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of

Semiconductor Nanoestructures. Wiley-Interscience, New York (2005).

[128] S. S. Li and J. B. Xia. Electronic states of a hydrogenic donor impurity in semiconductor

nanostructures. Phys. Lett. A, 366 120 (207).



280 BIBLIOGRAPHY

[129] M. M. Nieto. Hydrogen atom and relativistic pi-mesic atom in N-space dimensions. Amer.

J. Phys, 47 1067 (1979).

[130] M. I. Dykman, P. M. Platzman and P. Seddigard. Qubits with electrons on liquid helium.

Phys. Rev. B, 67 155402 (2003).

[131] G. Amelino-Camelia and J. Kowaslki-Glikman. Planck Scale Effects in Astrophysics and

Cosmology. Springer, Berlin (2005).

[132] M. M. Nieto. Electrons above a Helium surface and the one-dimensional Rydberg atom.

Phys. Rev. A, 61 034901 (2000).

[133] F. Burgbacher, C. Lämmerzahl and A. Macias. Is there a stable hydrogenic atom in higher

dimendions? J. Math. Phys., 40 625 (1999).

[134] V. Aquilanti, S. Cavalli and C. Coletti. The d-dimensional hydrogen atom: hyperspherical

harmonics as momentum space orbitals and alternative Sturmian basis sets. Chemical

Physics, 214 1 (1997).

[135] V. Aquilanti, S. Cavalli, C. Colleti, D. de Fazio and G. Grossi. New Methods in Quantum

Theory. Kluwer, Dordrecht (1996).

[136] K. Andrew and J. Supplee. Am. J. Phys., 58 1177 (1990).

[137] E. Witten. Quarks, atoms and the 1/N expansions. Phys. Today, 33 38 (1980).
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[298] R. G. Catalan, J. Garay and R. López-Ruiz. Features of the extension of a statistical

measure of complexity to continuous systems. Phys. Rev. E, 66 011102 (2002).

[299] M. T. Martin, A. Plastino and O. A. Rosso. Statistical complexity and disequilibrium.

Physics Letters A, 311(2-3) 126 (2003).
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