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Abstract

Background: The development of new ortholog detection algorithms and the improvement of existing ones are of
major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog
classification approach implemented in a big data platform that considered several pairwise protein features and the
low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International,
2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by
Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach;
they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test
set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models
implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes.

Results: The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built
with only alignment-based similarity measures or combined with several alignment-free pairwise protein features
showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such
supervised approaches outperformed traditional methods, there were no significant differences between the exclusive
use of alignment-based similarity measures and their combination with alignment-free features, even within the
twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in
Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be
achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed
that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free
features related to amino acid composition.

Conclusions: The incorporation of alignment-free features in supervised big data models did not significantly improve
ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based
similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection
methods encourages the evaluation of other alignment-free protein pair descriptors in future research.
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Background
Homology between DNA or protein sequences is defined
in terms of shared ancestry. Sequence regions that are
homologous in species groups are referred to as conserved.
Although useful as an aid in diagnosing homology, similar-
ity is ill-suited as a defining criterion [1]. High sequence
similarity might occur because of convergent evolution or
the mere matching chance of non-related short sequences.
Therefore such sequences are similar but not homologous
[2]. Though sequence alignment is known as being the
starting point in homology detection, this widely used
method may also fail when the query sequence does not
have significant similarities [3]. The mentioned pitfalls of
homology detection based on sequence similarity are the
grounds of the methods known as “alignment-free
methods” [4, 5].
In homology regions, two segments of DNA may share

ancestry because of either a speciation event (orthologs)
or a duplication event (paralogs) [6]. The distinction
between orthologs and paralogs is crucial since their
concepts have different and important evolutionary and
functional connotations. The combination of speciation
and duplication events, along with horizontal gene trans-
fers, gene losses, and genome rearrangements entangle
orthologs and paralogs into complex webs of relation-
ships. These semantics should be taken into account to
clarify the descriptions of genome evolution [7].
Many graph-oriented [8–12], tree-oriented [13, 14] and

hybrid-classified solutions [15–17] have arisen for ortho-
log detection. Graph-based algorithms are focused on
pairwise genome comparisons by using similarity searches
[18] to predict pairs or groups of ortholog genes
(orthogroups) while tree-based ones follow phylogenetic
criteria. In order to complement alignment-based se-
quence similarity, some approaches take into account con-
served neighbourhoods in closely related species (synteny)
, genome rearrangements, evolutionary distances, or pro-
tein interactions [11, 15–17, 19–23]. Nevertheless, the ef-
fectiveness of such algorithms is still a challenge
considering the complexity of gene relationships [24].
Some benchmark papers [25, 26] evaluate ortholog

classification from functional or phylogenetic perspec-
tives. However, ortholog genes are not always function-
ally similar [7] and single-gene phylogenies frequently
yield erroneous results [27]. Consequently, and also due
to the fact that contradictory results were found in a
range of previous evaluation approaches, Salichos and
Rokas proposed an evaluation scheme for ortholog
detection using a benchmark Saccharomycete yeast data-
set [27] built from Yeast Genome Order Browser
(YGOB) database (version 1, 2005) [28]. The YGOB
database includes yeast species that underwent a round
of whole genome duplications and subsequent differen-
tial loss of gene duplicates; originating distinct gene

retention patterns where in some cases the retained du-
plicates are paralogs. Such cases constitute “traps” for
ortholog prediction algorithms. In detail, the YGOB
database contains genomes of varying evolutionary dis-
tances, and the homology of several thousand of their
genes has been accurately annotated through sequence
similarity, phylogeny, and synteny conservation data.
Hence, the evaluation scheme proposed by Salichos and
Rokas implied the construction of a curated reference
orthogroup dataset (“gold-groups”) deprived of paralogs
to be compared with algorithm predictions on entire
yeast proteomes. Actually, when extended versions of
Reciprocal Best Hits (RBH) [29] and the Reciprocal
Smallest Distance (RSD) [11] as well as Multiparanoid
[30] and OrthoMCL [10] were evaluated using this
benchmark dataset containing “traps”, they included
paralogs in the orthogroups [27].
On the other hand, the massive growth of genomic

data has required big data frameworks for high-
performance processing of huge and varied data volumes
[31]. Consequently, ortholog detection is an open bio-
informatics field demanding either constant improve-
ments in existing methods or new effective scaling
algorithms to deal with big data. On the subject of big
data [32], different platforms have been developed, such
as Hadoop MapReduce [33], Apache Spark [34] and
Flink [35] to implement classifiers.
In 2015, our group proposed a novel pairwise ortholog

detection approach based on pairwise alignment-based
feature combinations in a big data supervised classification
scenario that manage the low ratio of ortholog pairs to
non-ortholog pairs (millions of instances) in two yeast
proteomes [36]. We built big data supervised models com-
bining alignment-based similarity measures from global
and local alignment scores, the length of sequences and
the physicochemical profiles of proteins. We also pro-
posed an evaluation scheme for supervised and unsuper-
vised algorithms considering data imbalance. Big data
supervised algorithms that manage data imbalance based
on Random Forest outperformed three of the traditional
unsupervised algorithms: Reciprocal Best Hits (RBH), Re-
ciprocal Smallest Distance (RSD) and the Orthologous
MAtrix (OMA). The latter was introduced quite recently
and consists in an automated method and database for
the inference of orthologs among entire genomes [12].
Despite the excellent results obtained with the supervised
approach, the models were evaluated in a single pair of
Saccharomycete yeast proteomes reported by Salichos et
al. (2011). In this paper, we intend to improve our previ-
ously reported big data supervised pairwise ortholog
detection approach [36] as follows:

1. Evaluating the influence of alignment-free pairwise
similarity measures on the classification performance
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of several supervised classifiers that consider data
imbalance under the Spark platform [37].

2. Extending the test set to other related
Saccharomycete yeast proteomes that constitute
benchmark datasets with “traps” for ortholog
detection algorithms.

Alignment-free similarity measures have shown several
advantages over the alignment-based ones: (i) not sensitive
to genome rearrangements, (ii) detection of functional sig-
nals at low sequence similarity and (iii) often less computa-
tionally complex and time consuming [4, 38]. In fact, they
have been recently combined with alignment-based mea-
sures to fill some gaps in DNA and protein characterization
left by these previous [39]. However, they have been poorly
explored in ortholog detection algorithms; just k-mers
counts were considered as a first step in the ortholog and
co-ortholog assignment pipeline proposed by [38]. In this
sense, several alignment-free protein features are used here
to introduce pairwise similarity measures for ortholog de-
tection across characterized yeast proteomes representing
benchmark datasets. These alignment-free protein features
are listed below, and most of them (5–10) are defined in
the PROFEAT-Protein Feature Server [40] while four-color
maps and Nandy’s descriptors (1–2) can be calculated by
using our alignment-free graphical-numerical-encoding
program [41] available at https://sourceforge.net/projects/
ti2biop/. Generally, these protein features have been used
to characterize functionally proteins at low sequence simi-
larity using machine learning algorithms [42, 43].

1. Four color map descriptors: topological descriptors
(spectral moments series) derived from protein
four-colour maps [44].

2. Nandy’s descriptors: topological descriptors
(spectral moments series) derived from Cartesian
protein maps (Nandy’s DNA representation
extended to proteins) [45].

3. k-mers or k-words: frequency of each subsequence
or word of a fixed length k in a set of
sequences [46].

4. Spaced k-mers or spaced words: contiguous k-mers
with “don’t care characters” at fixed or pre-defined
positions in a set of sequences [47].

5. Amino acid composition: the fraction of each
amino acid within a protein [48, 49].

6. Chou’s pseudo amino acid composition descriptor:
It is an improvement of the amino acid
composition descriptor by adding information
about the sequence order [50]. The sequence order
is reached by the correlation between the most
contiguous residues Ri, Rj placed at the topological
distance λ from each other within the protein
sequence. Further information can be found at

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/
type1.htm

7. Geary’s auto correlation: square autocorrelation of
amino acid properties along the sequence [51].

8. Moran’s auto correlation: autocorrelation of amino
acid properties along the sequence [52].

9. Total auto correlation: autocorrelation descriptors
(Geary’s, Moran’s and Moreau-Broto’s) based on
given amino acid properties are normalized all to-
gether [53].

10. Composition (C), Transition (T) and Distribution
(D) (CTD) descriptors: information from the
division of amino acid into three classes according
to the value of its attributes e.g. hydrophobicity,
normalized van der Waals volume, polarity, etc. So,
each amino acid is classified by each one of the
indices into class 1, 2 and 3. C descriptors: the
global percent for each encoded class (1, 2 and 3) in
the sequence, T descriptors: the percentage
frequency to which class 1 is followed by class 2 or
2 is followed by 1 in the encoded sequence. D
descriptors: the distribution of each attribute in the
encoded sequence [54, 55].

11. Quasi-Sequence-Order (QSO) descriptors:
combination of sequence composition and
correlation of amino acid properties defined by
Chou KC (2000) [56].

In order to evaluate the influence of the alignment-free
features on ortholog detection, we build three kinds of
supervised pairwise ortholog detection models (i) one
based on previously reported alignment-based pairwise
protein features (global and local alignment scores and
the physicochemical profiles) (ii) a new one incorporating
only the alignment-free features listed above and (iii) an-
other one resulting from the combination of alignment-
based and alignment-free protein features. For model
building we are using different machine learning algo-
rithms (Random Forest, Decision Trees, Support Vector
Machines, Logistic Regression and Naïve Bayes) imple-
mented in the Spark big data architecture as well the
gold-groups reported by Salichos and Rokas in 2011. Each
supervised approach was evaluated in several benchmark
yeast proteome pairs containing “traps” for ortholog de-
tection [27]. The evaluation scheme allows the perform-
ance comparison of the supervised pairwise ortholog
detection algorithms against RBH, RSD and OMA consid-
ering the imbalance between orthologs/non-orthologs in
yeast proteomes, as can be seen in our previous work [36].
Moreover, a feature selection study is carried out to evalu-
ate the importance of the new alignment-free similarity
measures and the previously reported alignment-based as
well as the alignment-based + alignment-free features
combination over the ortholog detection.
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Spark classifiers are introduced here since they man-
age complete datasets instead of the ensemble of classi-
fiers built with the corresponding data in partitions as in
Hadoop MapReduce implementations. The Spark ran-
dom oversampling may also speed up the pre-processing
while the resampling size parameter value over 100%
may improve the classification of the minority class in
extremely high imbalanced datasets [57] like pairwise
proteome comparison ones. All these improvements in
the algorithm architecture together with the inclusion of
alignment-free features may have a positive effect on the
classification quality and the speed of convergence.
As a result of the experiments in this study, the advan-

tages of the Spark big data architecture over MapReduce
implementations in terms of classification performance
and execution time for supervised pairwise ortholog de-
tection have been confirmed, conversely, the introduc-
tion of alignment-free features into several supervised
classifiers that use alignment-based similarity measures
did not significantly improve the pairwise ortholog de-
tection. In fact, the feature selection study showed that
alignment-based similarity measures are more relevant
for the supervised ortholog detection than alignment-
free features. However, many of the supervised big data
classifiers built with both alignment-based and
alignment-free features surpassed the traditional
methods like RBH, RSD and OMA in three pairs of yeast
proteomes. Precisely, some of these tree-based super-
vised classifiers could detect more ortholog pairs at the
twilight zone (< 30% of protein identity) in two whole-
duplicated genomes. These findings encourage us to
keep on working on improving our alignment-free pro-
tein features in order to fill the gap of the alignment al-
gorithms when genetic events blur the ortholog
detection.

Methods
Alignment-based similarity measures
We have previously defined the following alignment-based
similarity measures for protein pairs found in two yeast
proteomes P1 = {x1, x2,…, xn} and P2 = {y1, y2,…, ym} in [36]:

– S1: Similarity based on global alignment scores.
– S2: Similarity based on local alignment scores.
– S3: Similarity based on the physicochemical profile

from matching regions (with no gaps) of aligned
sequences at different window sizes (W = 3, 5
and 7).

and S4: Similarity based on the pairwise differences of
protein lengths. Despite S4 being included with the pre-
vious (S1…S3), it is not an alignment-dependent meas-
ure. All these similarity measures were normalized by
the maximum value.

Alignment-free similarity measures
Protein sequences from yeast proteomes are turned into
numerical vectors using the alignment-free methods
listed in the background section. The Pearson correl-
ation coefficient was selected as an alignment-free simi-
larity measure between two numerical vectors. The
selection is based on the valuable information obtained
with the significance value of the Pearson coefficient
[58]. Each alignment-free pairwise similarity is calculated
as follows:

Sk xi; y j
� �

¼ Corr AAX ;AAYð Þ ; sig≤0:05
0 ; sig > 0:05

�
; k

¼ 5::26

ð1Þ

where AAX and AAY represent the numerical vectors of
proteins xi and yj, respectively.
The alignment-free pairwise similarity measures evalu-

ated in this study (S5-S26) are listed below. Each pairwise
similarity measure is labelled by its corresponding
alignment-free method and the main parameters used.

– S5: Similarity based on amino acid composition.
– S6: Similarity based on pseudo-amino acid compos-

ition with λ = 4. The parameter λ is the topological
distance between two amino acids in the sequence
pseudo-amino acid composition concept where the
sequence order effect is integrated to the amino acid
composition, λ < protein length.

– S7: Similarity based on pseudo amino acid
composition with λ = 3.

– S8: Similarity based on pseudo amino acid
composition with λ = 10.

– S9: Similarity based on k-mers composition with
k = 3 where k represents the size of contiguous
words (matching positions).

– S10: Similarity based on k-mers composition with k
= 2.

– S11: Similarity based on Geary’s auto correlation.
– S12: Similarity based on Moran’s auto correlation.
– S13: Similarity based on Total auto correlation.
– S14: Similarity based on Composition, Distribution

and Transition (Composition).
– S15: Similarity based on Composition, Distribution

and Transition (Distributions).
– S16: Similarity based on Composition, Distribution

and Transition (Transition).
– S17: Similarity based on Composition, Distribution

and Transition (Total).
– S18: Similarity based on four-color maps.
– S19: Similarity based on spaced k-mers/spaced words

composition with k = 2 (matching positions (1)) and
one “don’t care positions” (0); patterns: “101”.

Galpert et al. BMC Bioinformatics  (2018) 19:166 Page 4 of 17



– S20: Similarity based on k-mers/spaced words
composition with k = 2 and two “don’t care
positions”; patterns: “1001”.

– S21: Similarity based on spaced k-mers/spaced words
composition with k = 2 and three “don’t care
positions”; patterns: “10,001”.

– S22: Similarity based on spaced k-mers/spaced words
composition with k = 3 and one “don’t care
positions”; patterns: “1101”, “1011”.

– S23: Similarity based on spaced k-mers/spaced words
composition with k = 3 and two “don’t care
positions”; patterns: patterns: “10,011”, “10,101”,
“11,001”.

– S24: Similarity based on spaced k-mers/spaced words
composition with k = 3 and three “don’t care
positions”; patterns: “100,011”, “110,001”, “101,001”,
“100,101”.

– S25: Similarity based on Nandy’s descriptor.
– S26: Similarity based on Quasi-Sequence-Order with

maxlag = 30.

As the same measure or function (Pearson correlation)
is used to quantify the previously-mentioned alignment-
free pairwise similarities; thus, we are definitely evaluat-
ing the corresponding alignment-free protein features
giving rise to them.

Pairwise ortholog detection based on big data supervised
models managing ortholog/non-ortholog imbalance
The general classification scheme for pairwise ortholog
detection using supervised big data algorithms managing
the ortholog/non-ortholog imbalance found in yeast
proteome pairs is represented in Fig. 1. First, pairwise
similarity (alignment-based and alignment-free) mea-
sures are calculated for all annotated proteome pairs.
Secondly, pairwise curated classifications (ortholog and
non-ortholog pairs) should be extracted from ortholog
curated datasets or gold-groups [27] with the aim of
training/building the prediction models. The new Spark
big data supervised models are based on Random Forest,
Decision Trees, Support Vector Machines, Logistic Re-
gression or Naive Bayes algorithms (Tables 1, 1–5). The
other model (6 in Table 1) represents the Random Forest
version implemented in Hadoop MapReduce. Thus, the
big data pairwise ortholog detection models are built
with curated classifications from any proteome pair of
the “gold-groups” and tested on entire proteome pairs
(not included in training) containing paralogs. In this
way, built models can be generalized to multiple gen-
ome/proteome pairs since the model building step can
be executed once.
The training step involves the ortholog/non-ortholog

imbalance management, and the testing step includes
the selection of the adequate quality measures for

imbalance datasets. The main pre-processing algorithms
proposed to cope with data imbalance are labelled as ROS
(Random Oversampling) and RUS (Random Undersam-
pling). The Spark implementation of these algorithms are
available at a spark-packages site https://spark-packages.
org/package/saradelrio/Imb-sampling-ROS_and_RUS
[59]. The new proposed Spark big data classifiers with
their parameter values (Table 1) are implemented in the
Spark MLlib Machine Learning library [60].
The performance of the big data supervised models

shown in Table 1 is compared with unsupervised refer-
ence algorithms like Reciprocal Best Hits (RBH), Recip-
rocal Smallest Distance (RSD) and Orthologous MAtrix
(OMA) following the evaluation scheme described
below. These unsupervised algorithms are specified in
Table 2 with their parameter values.

Evaluation scheme
In order to evaluate the performance of pairwise ortho-
log detection algorithms we use the gold-groups (de-
prived of paralogs) retrieved by Salichos and Rokas [27]
from the YGOB database (version 1, 2005) [28]. Such
gold-groups are split into two subgroups. The first one
contains all orthologs from species not subjected to a
whole genome duplication (pre-WGD) together with all
orthologs from species that underwent a whole genome
duplication (post-WGD) resulting in two chromosome
segments (track A and B) found on track A, whereas the
second subgroup contains the same orthologous genes
from pre-WGD species together with all orthologs from
post-WGD species found on track B.
The evaluation scheme includes the following steps:

1. Data splitting into two training and testing sets. The
training process is carried out by using curated
ortholog pairs (positive set) found either in pre-
WGD species or in track A/B of post-WGD species.
Similarly, a curated negative set is made up of all
possible non-ortholog pairs found between two
yeast proteomes deprived of paralogs (gold-groups).

2. The testing step is carried out on entire
proteome pairs excluding the pairs used in
learning steps. Test sets are made up of all
possible annotated protein pairs (orthologs, non-
orthologs and paralogs) found between pre-pre
WGD or pre-post WGD or post-post WGD yeast
species pairs. Three of the traditional unsuper-
vised algorithms (RBH, RSD and OMA) for pair-
wise ortholog detection were also comparatively
evaluated on the test sets.

3. The performance evaluation of both methods
(supervised vs. unsupervised ortholog detection) is
based on previously curated classifications; so,
curated orthologs and non-orthologs are considered
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as “true positives” (TP) and “true negatives” (TN),
respectively. Paralogs are considered as “traps” for
ortholog detection algorithms because they can
be easily misclassified as “orthologs”. The selected
evaluation metrics AUC, G-Mean, TPRate (TPR)
and TNRate (TNR) are suitable for imbalanced
datasets [36].

Datasets
Annotated proteome pairs from related yeast species of the
Saccharomycete yeast class (pre-WGD Kluyveromcyes lactis
and Kluyveromyces waltii and post-WGD Saccharomyces
cerevisiae and Candida glabrata) are selected in order to
analyze the quality of our approach. Table 3 shows the
details of the proteome pairs (S. cerevisiae - K. lactis, S.
cerevisiae - C. glabrata, C. glabrata - K. lactis, and K. lactis
- K. waltii). We include the total number of pairwise fea-
tures, the total of protein pairs per class and the imbalance
ratio (IR).
Protein sequences of the previously listed proteomes

can be found in Additional file 1.

Experiments
Three study cases were designed to inspect the influence
of the alignment-free features on the supervised classifi-
cation for ortholog detection. Thus, big data supervised
classifiers are compared considering three study cases:
alignment-based features, alignment-free features and
alignment-based + alignment-free features. Specifically,
in the alignment-based case we use similarity measures
S1..3 with S3 calculated by using windows sizes 3, 5 and
7. In the alignment-free case we use S4..27 and then, in
the alignment-based + alignment-free case we use all the
similarity measures. The different models to be com-
pared are built with ScerKlac and tested in ScerCgla,
CglaKlac and KlacKwal datasets. The algorithms in
Table 1 and Table 2 were executed in two experiments:
(i) Algorithm Performance Experiment and (ii) Feature
Importance Experiment. In the experiment (i), the classi-
fication performance of supervised algorithms in the
three study cases was contrasted with the one achieved
by the traditional ortholog detection methods: RBH,
RSD and OMA. Additionally, the identification of ortho-
logs at the twilight zone (remote orthologs) was also

Fig. 1 Flowchart of Spark imbalanced big data classification pairwise ortholog detection algorithms
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included in this experiment as well as the execution time
of the most Spark predictive algorithms was also
collected together with Hadoop MapReduce Mahout
implementations for comparative purposes. Then, in ex-
periment (ii), the importance of both alignment-based
and alignment-free features and their combinations was
also studied in ortholog classification. The MLlib version
used in experiment (i) is 1.6 while in experiment (ii) the

2.0 version allows the Random Forest model exploration
to determine the feature importance.

Results
Algorithm performance
The classification quality measures G-Mean and AUC for
Decision Trees, Random Forest, Logistic Regression, Naive
Bayes and Support Vector Machines for the study cases
with alignment-based, alignment-free and alignment-based
+ alignment-free features are shown in Table 4. The same
measures for RBH, RSD and OMA are also included in this
table. The underlined values highlight the most effective
methods in this experiment while the bold values identify
the best performing supervised and unsupervised algo-
rithms in each testing dataset. The best AUC and G-Mean
values (0.9977) correspond to the ROS (130% resampling)
and RUS pre-processed Spark Random Forests in the
ScerCgla and KlacKwal datasets with the alignment-based
features as well as to the ROS (100% resampling) Spark
Decision Trees in the ScerCgla dataset with the alignment-
based + alignment-free feature combinations. These G-Mean
results outperformed the best value of 0.9941 reported in
our previous paper [36] for ScerCgla with a version of

Table 1 Big data supervised algorithms, imbalance management pre-processing methods and parameter values considered in this
paper

N Algorithms Pre-
processing

Parameter values

1 Spark Random Foresta ROS/RUS NumTrees: 100
(by default)
MaxBins: 1000
(by default)
Impurity: gini/entropy

MaxDepth: 5 (by default)
Number of maps: 20
MinInstancesPerNode: 2
MinInfoGain: 0
FeatureSubsetStrategy: auto
Resampling size: 100%/130%

2 Spark Decision Treesb ROS/RUS MaxBins - > Number of bins used when discretizing continuous features: 100 (by default)
Impurity - > Impurity measure: gini (by default)
MaxDepth - > Maximum depth of each tree: 5 (by default)
MinInstancesPerNode: 2
MinInfoGain: 0
FeatureSubsetStrategy: auto
Resampling size: 100%/130%

3 Spark Support Vector
Machinesc

ROS Regulation parameter: 1.0/0.5/0.0
Number of iterations: 100 (by default)

StepSize: 1.0 (by default)
miniBatchFraction: 1.0
Resampling size: 100%/130%

4 Spark Logistic
Regressiond

ROS Number of iterations: 100 (by default)
StepSize - > Stochastic gradient descent
parameter:
1.0 (by default)

MiniBatchFraction - > Fraction of the dataset sampled and used
in each iteration: 1.0
(by default: 100%)
Resamplig size: 100%/130%

5 Spark Naive Bayese ROS Additive smoothing Lambda: 1.0 (by
default)

Resampling size: 100%/130%

6 MapReduce Random
Forestsf

ROS Number of trees: 100
Random selected attributes per node: 3

Number of maps: 20
Resampling size: 100%/130%

ROS: Random Oversampling, RUS: Random Undersampling
ahttps://spark.apache.org/docs/latest/mllib-ensembles.html
bhttps://spark.apache.org/docs/latest/mllib-decision-tree.html
chttps://spark.apache.org/docs/latest/mllib-linear-methods.html#linear-support-vector-machines-svms
dhttps://spark.apache.org/docs/latest/mllib-linear-methods.html#logistic-regression
Ehttps://spark.apache.org/docs/latest/mllib-naive-bayes.html
FRandom Forest implementation available in https://mahout.apache.org/

Table 2 Unsupervised reference algorithms and parameter
values proposed in [36]

Algorithms Parameter values

Reciprocal Best Hits (RBH)a Filter: soft
Alignment: Smith Waterman
E-value: 1e-06

Reciprocal Smallest Distance
(RSD)b

E-value thresholds: 1e-05, 1e-10 and 1e-20
Divergence thresholds α: 0.8, 0.5 and 0.2

Orthologous MAtrix (OMA)c Default parameter values
aMatlab script and BLAST program available
in http://www.ncbi.nlm.nih.gov/BLAST/
bPhyton script available
in https://pypi.python.org/pypi/reciprocal_smallest_distance/1.1.4/
cStand-alone version available
in http://omabrowser.org/standalone/OMA.0.99z.3.tgz
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Hadoop MapReduce Random Forest. The best values
(AUC = 0.9486) of the unsupervised classifiers correspond to
RSD 0.8 1e-05 (α = 0.8 and E-value = 1e-05 recommended
in [61]). This traditional ortholog detection method outper-
formed most of the supervised algorithms built with
alignment-free features except when ROS (100% resampling)
was applied to Spark Decision Trees in ScerCgla (AUC = 0.
9496).
Table 5 shows the percent of true positives obtained

by the outstanding supervised classifiers and the reference
methods in the identification of curated orthologs pairs
found at the twilight zone among the studied yeast prote-
ome pairs. The corresponding percent of true positives for
the study cases with alignment-based, alignment-free and
alignment-based + alignment-free features are also included
for the selected supervised classifiers. The underlined value
represents the most effective method while the bold values
identify the best performing algorithms in each testing
dataset.
The ortholog pairs placed in the twilight zone are: 311

out of 30,558,738 ScerCgla protein pairs, 294 out of
27,775,380 CglaKlac pairs and 356 out of 27,770,047
KlacKwal pairs. The highest true positive percentage (99.
16%) corresponded to the RUS pre-processed Spark
Decision Trees in the KlacKwal dataset with alignment-
based features. On the other datasets, the best true posi-
tive percentages were also obtained with the alignment-
based features; 99.04% and 96.94% that corresponded to
the RUS pre-processed Spark Random Forest in ScerCgla,
and to the ROS (130% resampling) Spark Random Forest
in CglaKlac, respectively. In total, alignment-based
features by themselves and alignment-based + alignment-
free feature combinations surpassed the alignment-free
and the classical unsupervised approaches. Generally, the
alignment-free feature-based classifiers with imbalance
management outperformed the unsupervised classifiers in
each dataset, with the exceptions of the best RSD classi-
fiers (RSD 0.8 1e-05) and (RSD 0.5 1e-10) in CglaKlac and
KlacKwal, and the RBH classifier in KlacKwal. The Spark
Decision Trees improved their performance with the com-
bination of alignment-based and alignment-free features
in ScerCgla, two yeast species that underwent a single
round of whole genome duplications with subsequent
gene losses. Specifically, the ROS (130% resampling)

Decision Trees equalled the second best result (98.71%) of
the ROS (130% resampling) Spark Random Forest in such
a complex dataset.
Run time is presented in Table 6 for Random Forest

Spark and Hadoop MapReduce variants as well as for
Spark Decision Trees. Some of the highlighted time
values of Spark Random Forest with RUS correspond to
its best quality performance values obtained with
alignment-based features. At the same time, some of the
quickest underlined ROS (100% resampling) time values
of Decision Trees coincide with the best quality results
in the highest dimension alignment-based + alignment-
free case. Differences in time between Spark and
Hadoop MapReduce Random Forest are noticeable while
classification quality values are improved for the evalu-
ated Spark version.

Feature importance
The feature importance study carried out in the
ScerCgla dataset is summarized in Table 7 for the
three feature cases (alignment-based, alignment-free
and alignment-based + alignment-free). The entropy
value of each feature in the Spark tree-based models
obtained after RUS pre-processing was calculated with
the Weka software [62] in addition to the average im-
purity decrease. The number of nodes that included
certain features in the Random Forest building with
RUS pre-processing was also estimated. The decrease
of the average impurity for the Random Forest with
ROS variants implemented in the MLlib 2.0 library
was incorporated in this table too. Bold values repre-
sent high-importance features while underlined values
emphasize the best values.
In the alignment-based case, the most important fea-

tures are those derived from local and global alignments
(sw and nw) besides the physicochemical profile with
window size 3 (profile3). On the other hand, among the
alignment-free features, the amino acid and pseudo
amino acid composition of λ = 3 and 4, the compos-
itional descriptor (CTD_C) along with the length of the
sequences turned out to be the most important. When
analyzing the alignment-based + alignment-free case, the
relevant features are sw, nw, profile3, profile5, profile7,
amino acid composition (acc) and CTD_C.

Table 3 Datasets used in the experiments

Dataset id Proteome pair Number of
protein
features

Protein pair per class
(non-orthologs;
orthologs)

Imbalance ratio (IR)

ScerKlac S. cerevisiae - K. lactis 29 (31,218,485; 3062) 10,195.456

ScerCgla S. cerevisiae - C. glabrata 29 (30,562,272; 2843) 10,750.008

CglaKlac C. glabrata - K. lactis 29 (27,778,732; 1573) 17,659.715

KlacKwal K. lactis - K. waltii 29 (27,772,372; 2606) 10,657.088

Galpert et al. BMC Bioinformatics  (2018) 19:166 Page 8 of 17
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Discussion
Comparison among supervised classifiers
In the Algorithm Performance experiment, the classifica-
tion results achieved by our supervised pairwise ortholog
detection approach changed slightly when using
alignment-based, alignment-free and alignment-based +
alignment-free feature combinations. The excellent per-
formance of the alignment-based combinations could be
caused by the appropriate selection of the substitution
matrixes and gap penalties in relation to the sequence
diversity of yeast proteomes [63]. In contrast, alignment-
free combinations showed decreasing quality values that
may be further improved with other alignment-free pair-
wise protein features or the inclusion of other similarity
measures. In general, the effectiveness of supervised
classifiers was not affected by the complexity of datasets
when both genomes underwent whole genome duplica-
tions (S. cerevisiae - C. glabrata), even in the twilight
zone. The alignment-based features and the alignment-
based + alignment-free combinations along with the
Spark imbalanced classification of Random Forest and
Decision Trees achieved better effectiveness, as well as
faster ortholog pair detection times even in such a com-
plex dataset. The inclusion of different pairwise similar-
ity measures in the decision system may prevent the

algorithm from missing gene/protein pair relationships
during the classification process.
This study corroborates the results of our previous

paper [36] in the sense that supervised classifiers
managing the extreme ortholog pair class imbalance out-
perform the original classifiers without class imbalance
management. In addition, the success of the RUS pre-
processing approach is accompanied by a considerable
reduction in execution time. Specifically, ROS and RUS
Random Forest and Decision Trees Spark algorithms
showed prominent quality values in ortholog classifica-
tion, likewise in the twilight zone. This simple decision
tree surpassed tree ensembles in Random Forest even
when alignment-free features had just been used, and its
performance was improved with the alignment-based +
alignment-free combination in the ScerCgla dataset;
which contains “traps” for ortholog prediction algo-
rithms. Such “traps” consist of the paralogs originated
from the whole genome duplication event that the ge-
nomes S. cerevisiae and C. glabrata underwent, subse-
quently the loss of many of these paralogs provides
confusion to the ortholog prediction algorithms [27].
When dealing with Spark Random Forest classifiers,

small differences were shown when applying different
Impurity metrics, namely entropy and Gini. Although

Table 5 Percentage of true positives (%TP) identified by both outstanding supervised and unsupervised classifiers when detecting
ortholog pairs in the twilight zone (< 30% of identity)

Algorithm/Dataset Alignment-based Features Alignment-free Features Alignment-based + Alignment-free Features

%TP %TP %TP

Supervised Algorithms Scer
Cgla

Cgla
Klac

Klac
Kwal

Scer
Cgla

Cgla
Klac

Klac
Kwal

Scer
Cgla

Cgla
Klac

Klac
Kwal

Spark Random Forest MLlib 1.6

Normal 0.00 0.00 0.00 0.00 0.00 0.00 3.54 0.00 2.25

ROS-100 97.43 96.26 98.03 71.06 64.29 57.87 96.14 91.84 93.54

ROS-130 98.71 96.94 98.31 76.21 64.97 65.45 95.18 93.88 93.54

RUS 99.04 96.26 98.60 74.60 64.29 61.24 96.78 93.88 95.51

Spark Decision Trees MLlib 1.6

Normal 0.32 0.68 0.28 0.00 0.00 0.56 12.54 7.82 9.55

ROS-100 95.18 94.56 97.19 72.67 62.93 55.62 97.75 84.69 96.07

ROS-130 95.82 91.50 97.47 79.74 61.56 63.48 98.71 87.41 96.35

RUS 98.07 95.24 99.16 76.53 67.01 65.45 98.07 90.82 97.47

Unsupervised Algorithms

RBH 57.56 58.84 73.31

RSD 0.2 1e-20 46.95 45.92 62.36

RSD 0.5 1e-10 61.41 61.90 80.34

RSD 0.8 1e-05 68.17 70.41 85.96

OMA 42.77 45.24 46.91

The best results in each dataset are in bold face and the general best results are underlined. Supervised algorithm performance is presented for the alignment-
based, alignment-free and alignment-based + alignment-free feature combinations
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entropy led to better results in the alignment-free and the
alignment-based + alignment-free cases, Gini could be pref-
erable as due to its efficiency, i.e. there is no need to compute
the logarithmic expression. In this sense, future studies
should be oriented towards the tuning of other parameters’
values, namely pre-processing policies, number of trees, or
maximum depth, as these may allow significant differences
to be obtained in terms of both efficiency and accuracy.
Regarding the comparison between Spark and Hadoop

Random Forest implementations, the former showed a sig-
nificant reduction in execution time while increasing the
quality of classification. Efficiency is due to the capabilities
of Spark when embedding data into memory to avoid disc
overhead, whereas classification performance is achieved by
a smart design of the learning procedure where the model
is built iteratively using all available data [64].

Comparison of feature combinations
From the feature importance evaluation in supervised
classifiers we can conclude that alignment-based features

should continue to be of much importance for ortholog
detection, mainly when the local alignment is combined
with the global alignment and the physicochemical
profile features are derived from matching regions of
pairwise aligned proteins. The exclusion of synteny
(membership of a protein pair to locally collinear blocks
(LCBs)) among the alignment-based similarity measures
did not affect the classification performance in relation
to our previous report [36]. However, when alignment-
based features were combined with alignment-free
features selected in the study the results slightly im-
proved in some datasets, similarly in the twilight zone.
This is a new motivation for further research aimed at
analysing the inclusion of new alignment-free features or
the tuning of parameter values.
The results obtained so far emphasize the import-

ance of the local sequence similarity to detect protein
functional similarity so that most of the classical
ortholog detection methods start with BLAST align-
ments intrinsically based on the identification of

Table 6 Run time values (hh:mm:ss) comprising learning and classifying steps obtained by the highest quality Spark supervised
algorithms (Decision Trees and Random Forest) together with the corresponding values of the Hadoop MapReduce Random Forest
implementation. Supervised algorithm run time values are presented for the alignment-based, alignment-free and alignment-based
+ alignment-free feature combinations. The Random Oversampling pre-processing (ROS) is accompanied by the corresponding
resampling size value

Algorithm/Dataset Alignment-based Features Alignment-free Features Alignment-based + Alignment-free Features

ScerCgla CglaKlac KlacKwal ScerCgla CglaKlac KlacKwal ScerCgla CglaKlac KlacKwal

Spark Random Forest MLlib 1.6

NORMAL Learn 00:00:49 00:00:57 00:00:57 00:01:03 00:01:05 00:01:07 00:00:57 00:00:57 00:01:00

NORMAL Classify 00:00:19 00:00:38 00:00:24 00:00:31 00:00:26 00:00:25 00:00:34 00:00:30 00:00:32

ROS-100 Learn 00:01:43 00:02:34 00:02:29 00:01:48 00:01:43 00:01:47 00:01:48 00:01:50 00:01:48

ROS-100 Classify 00:00:20 00:00:19 00:00:19 00:00:33 00:00:28 00:00:29 00:00:33 00:00:31 00:00:31

ROS-130 Learn 00:02:09 00:02:15 00:02:43 00:02:03 00:01:57 00:02:00 00:02:06 00:02:03 00:01:57

ROS-130 Classify 00:00:19 00:00:18 00:00:18 00:00:39 00:00:30 00:00:34 00:00:41 00:00:31 00:00:34

RUS Learn 00:00:09 00:00:09 00:00:09 00:00:11 00:00:11 00:00:11 00:00:10 00:00:10 00:00:10

RUS Classify 00:00:14 00:00:14 00:00:13 00:00:39 00:00:31 00:00:42 00:00:41 00:00:39 00:00:39

Spark Decision Trees MLlib 1.6

NORMAL Learn 00:00:31 00:00:31 00:00:35 00:00:35 00:00:33 00:00:35 00:00:49 00:00:38 00:00:40

NORMAL Classify 00:00:13 00:00:12 00:00:15 00:00:23 00:00:20 00:00:20 00:00:25 00:00:25 00:00:24

ROS-100 Learn 00:00:57 00:00:58 00:00:56 00:00:59 00:01:03 00:01:01 00:01:11 00:01:07 00:01:07

ROS-100 Classify 00:00:11 00:00:15 00:00:13 00:00:22 00:00:20 00:00:24 00:00:24 00:00:23 00:00:24

ROS-130 Learn 00:00:57 00:00:58 00:00:57 00:01:14 00:01:06 00:01:05 00:01:15 00:01:13 00:01:16

ROS-130 Classify 00:00:12 00:00:19 00:00:11 00:00:23 00:00:22 00:00:22 00:00:25 00:00:24 00:00:23

RUS Learn 00:00:08 00:00:08 00:00:08 00:00:09 00:00:09 00:00:09 00:00:09 00:00:09 00:00:09

RUS Classify 00:00:12 00:00:11 00:00:11 00:00:33 00:00:26 00:00:34 00:00:36 00:00:34 00:00:35

MapReduce Random Forest Mahout 0.9

NORMAL Learn 23:25:10 23:25:10 23:25:10

NORMAL Classify 00:14:25 00:13:07 00:13:04
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Table 7 Feature importance calculated for the highest quality Spark supervised algorithms (Decision Trees (DT) and Random Forest
(RF)). The entropy, the number of nodes that included certain features in the Random Forest building with RUS pre-processing and
the average impurity decrease of the MLlib 2.0 Random Forest with ROS variants are presented for the alignment-based, alignment-
free and alignment-based + alignment-free feature combinations The Random Oversampling pre-processing (ROS) is accompanied
by the corresponding resampling size value

RUS + DT-Spark Weka RUS + RF-Spark/Gini Weka RF MLlib 2.0-Spark/Gini (Avg. Impurity Decrease)

Entropy Avg. Impurity Decrease Number of Nodes Normal ROS-100 ROS-130 RUS

Alignment-based Features/Algorithm

nw 0.789 0.520 42 0.809 0.180 0.175 0.171

sw 0.982 0.360 802 0.035 0.642 0.647 0.647

profile3 0.783 0.360 417 0.043 0.167 0.167 0.167

profile5 0.732 0.290 235 0.033 0.004 0.001 0.007

profile7 0.712 0.240 330 0.080 0.008 0.010 0.008

Alignment-free Features

aac 0.624 0.400 1891 0.033 0.173 0.171 0.169

Auto_Geary 0.000 0.310 64 0.000 0.000 0.000 0.000

Auto_Moran 0.000 0.320 75 0.000 0.000 0.000 0.000

Auto_Total 0.000 0.370 1124 0.000 0.000 0.000 0.001

CTD 0.408 0.310 1012 0.070 0.134 0.133 0.137

CTD_C 0.566 0.300 1482 0.071 0.060 0.062 0.066

CTD_D 0.407 0.320 1239 0.074 0.030 0.029 0.033

CTD_T 0.529 0.290 1385 0.076 0.028 0.035 0.036

fcm 0.265 0.310 1010 0.012 0.004 0.021 0.021

2-mers 0.158 0.390 954 0.022 0.003 0.003 0.002

2-mers_don’t care ps-1 0.000 0.320 847 0.000 0.000 0.000 0.000

2-mers_ don’t care ps-2 0.000 0.310 768 0.001 0.000 0.000 0.000

2-mers_ don’t care ps-3 0.000 0.260 772 0.000 0.000 0.000 0.001

3-mers 0.078 0.370 1523 0.064 0.006 0.005 0.006

3-mers_ don’t care ps-1 0.000 0.290 600 0.001 0.000 0.000 0.001

3-mers_ don’t care ps-2 0.000 0.270 653 0.001 0.000 0.000 0.001

3-mers_ don’t care ps-3 0.000 0.270 602 0.002 0.000 0.000 0.001

length 0.507 0.400 2890 0.353 0.166 0.165 0.154

nandy 0.109 0.260 902 0.009 0.000 0.000 0.001

pseaa10 0.000 0.240 825 0.000 0.000 0.000 0.001

pseaa3 0.611 0.380 1397 0.022 0.205 0.202 0.166

pseaa4 0.609 0.380 1652 0.112 0.155 0.156 0.184

QSO_maxlag_30_weight_01 0.280 0.240 1054 0.075 0.035 0.018 0.020

QSOCN_maxlag_30 0 0.250 513 0.001 0.000 0.000 0.001

Alignment-based + Alignment-free Features/Algorithm

nw 0.789 0.280 131 0.786 0.382 0.373 0.374

sw 0.987 0.470 646 0.005 0.135 0.139 0.126

profile3 0.769 0.280 271 0.005 0.098 0.101 0.097

profile5 0.727 0.290 230 0.016 0.168 0.168 0.137

profile7 0.710 0.260 229 0.004 0.083 0.084 0.126

aac 0.623 0.190 230 0.015 0.073 0.071 0.072

Auto_Geary 0.000 0.300 11 0.000 0.000 0.000 0.000

Auto_Moran 0.000 0.270 11 0.000 0.000 0.000 0.000
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query substrings or k-letter words [2, 38, 65, 66]. On
the other hand, the alignment-free approach for ortholog
detection proposed by [38] works on the hypothesis that
the higher the number of common k-mers between two
sequences, the higher may be their functional similarity.
In a similar way, the compositional alignment-free fea-
tures such as amino acid composition, pseudo-amino acid
composition and composition, transition and distribution
also seem to be highly related with the ortholog concept
since they have been useful for functional similarity
detection.

Comparison of supervised versus unsupervised classifiers
The success of the supervised algorithms might have
been obtained from the combination of several
alignment-based pairwise features like global and local

alignment scores and the physicochemical profiles at
different window sizes, as well as from the recent
incorporation of alignment-free measures together
with the training from curated datasets. By combining
global and local alignment similarities, we have con-
sidered structural and functional protein similarities,
respectively. These protein features have been comple-
mented with physicochemical and alignment-free in-
formation in order to cope with homology detection
pitfalls caused by significant matches of short se-
quences, remote homology, convergent evolution and
other evolutionary and genetic events. Precisely, the
alignment-based + alignment-free feature combination
together with all the Spark and the pre-processing
benefits allowed Decision Trees to detect remote
orthologs at higher success rate in the complex

Table 7 Feature importance calculated for the highest quality Spark supervised algorithms (Decision Trees (DT) and Random Forest
(RF)). The entropy, the number of nodes that included certain features in the Random Forest building with RUS pre-processing and
the average impurity decrease of the MLlib 2.0 Random Forest with ROS variants are presented for the alignment-based, alignment-
free and alignment-based + alignment-free feature combinations The Random Oversampling pre-processing (ROS) is accompanied
by the corresponding resampling size value (Continued)

RUS + DT-Spark Weka RUS + RF-Spark/Gini Weka RF MLlib 2.0-Spark/Gini (Avg. Impurity Decrease)

Entropy Avg. Impurity Decrease Number of Nodes Normal ROS-100 ROS-130 RUS

Auto_Total 0.000 0.510 147 0.001 0.000 0.000 0.000

CTD 0.411 0.360 109 0.005 0.000 0.000 0.000

CTD_C 0.570 0.340 204 0.039 0.032 0.032 0.032

CTD_D 0.411 0.390 151 0.009 0.002 0.001 0.001

CTD_T 0.531 0.320 164 0.001 0.002 0.003 0.004

fcm 0.260 0.300 154 0.005 0.000 0.000 0.001

2-mers 0.155 0.200 81 0.003 0.000 0.000 0.000

2-mers_don’t care ps-1 0.000 0.410 104 0.000 0.000 0.000 0.000

2-mers_ don’t care ps-2 0.000 0.410 98 0.000 0.000 0.000 0.000

2-mers_ don’t care ps-3 0.000 0.400 82 0.001 0.000 0.000 0.000

3-mers 0.074 0.230 97 0.010 0.000 0.000 0.000

3-mers_ don’t care ps-1 0.000 0.390 69 0.000 0.000 0.000 0.000

3-mers_ don’t care ps-2 0.000 0.340 49 0.001 0.000 0.000 0.000

3-mers_ don’t care ps-3 0.000 0.390 59 0.001 0.000 0.000 0.000

length 0.504 0.230 231 0.059 0.012 0.014 0.014

nandy 0.113 0.320 101 0.001 0.000 0.000 0.001

pseaa10 0.000 0.310 97 0.001 0.000 0.000 0.000

pseaa3 0.613 0.190 142 0.009 0.006 0.007 0.004

pseaa4 0.610 0.210 147 0.001 0.005 0.005 0.009

QSO_maxlag_30_weight = 0.1 0.286 0.270 108 0.020 0.001 0.001 0.000

QSO_maxlag_30 0.000 0.340 47 0.000 0.000 0.000 0.000

nw: global alignment, sw: local alignment, profile: physicochemical profile from matching regions of aligned sequences at different window sizes (3, 5 and 7), aac:
amino acid composition, pseacc: pseudo-amino acid composition at λ = 3,4 and 10, Auto_Geary: Geary’s auto correlation, Auto_Moran: Moran’s auto correlation,
Auto_Total: Total auto correlation, fcm: four-color maps, nandy: Nandy’s descriptors, CTD: Composition, Distribution and Transition (Total), CTD_C: Composition,
Distribution and Transition (Composition), CTD_D: Composition, Distribution and Transition (Distributions), CTD_T: Composition, Distribution and Transition (Transition),
k-mers: 2-mers, 3-mers, spaced words: 2-mers with “don’t care positions” = 1, 2 and 3; 3-mer with “don’t care positions” = 1, 2, 3, QSO: Quasi-Sequence-Order, w = weight
factor and maximum lag = 30
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ScerCgla dataset, which contains “traps” for ortholog
detection. Conversely, the lesser classification quality
values of RBH, RSD and OMA, mostly of RBH, can be
explained by their only sequence similarity approach
[66], although BLAST parameter values have been
tuned following the recommendation in [65]. How-
ever, the remarkable stable performance of RSD (α =
0.8 and E-value = 1e-05) has been significant, even
within the twilight zone of two proteome pairs (CglaK-
lac and KlacKwal) where it could detect a higher
number of orthologs than our supervised proposals
with just alignment-free features. This achievement
might be the result of the RSD intrinsic combination
of similarity and evolution distance information [11].
It is worthy to mention that pure alignment-free su-

pervised classifiers showed similar performance than the
RSD algorithm for ortholog detection; and when
alignment-free features are incorporated into Spark
Decision Trees with imbalance management, a higher
success rate (98.71%) was achieved within the twilight
zone of the more complex yeast proteome pair
(ScerCgla) which underwent a whole genome duplica-
tion and subsequent differential losses of gene
duplicates.
The experiments carried out corroborate Kuzniar’s far-

sighted criteria that algorithms incorporating various
sources of knowledge should yield promising results in
ortholog detection [2]. However, he pointed out that a
scalable, fully automated procedure to infer orthologs
across genomes of all kingdoms of life remains an elusive
goal. For this reason, our proposals should be thoroughly
tested with other benchmark eukaryotic genomes/pro-
teomes in order to extend its usefulness.

Conclusions
The extension of previous experiments to different yeast
species from the Saccharomycete class corroborated the
validity of our big data supervised classification
approach that manages data imbalance for ortholog
detection. The top-ranked Spark algorithms (Random
Forest and Decision Trees) managing the imbalanced
rate between orthologs and non-orthologs have sur-
passed the Hadoop MapReduce Random Forest classi-
fiers with the best results in our previous work,
considering both the quality of classification and the execu-
tion time. Although the introduction of alignment-free pair-
wise features into tree-based supervised models did not
significantly improve the classification rates achieved with
several alignment-based similarity measures, it was shown
that some compositional alignment-free features might
have positively contributed to ortholog detection, especially
to identify orthologs at the twilight zone. The introduction
of the alignment-free features in ortholog detection is an
open field that we will keep exploring in future research.
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