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Abstract: In this work a combined, multifunctional platform, which was devised for the simultaneous
application of magnetic hyperthermia and the delivery of the antitumor drug gemcitabine, is
described and tested in vitro. The system consists of magnetite particles embedded in a polymer
envelope, designed to make them biocompatible, thanks to the presence of poly (ethylene glycol) in
the polymer shell. The commercial particles, after thorough cleaning, are provided with carboxyl
terminal groups, so that at physiological pH they present negative surface charge. This was proved by
electrophoresis, and makes it possible to electrostatically adsorb gemcitabine hydrochloride, which is
the active drug of the resulting nanostructure. Both electrophoresis and infrared spectroscopy are
used to confirm the adsorption of the drug. The gemcitabine-loaded particles are tested regarding
their ability to release it while heating the surroundings by magnetic hyperthermia, in principle
their chances as antitumor agents. The release, with first-order kinetics, is found to be faster when
carried out in a thermostated bath at 43 ◦C than at 37 ◦C, as expected. But, the main result of this
investigation is that while the particles retain their hyperthermia response, with reasonably high
heating power, they release the drug faster and with zeroth-order kinetics when they are maintained
at 43 ◦C under the action of the alternating magnetic field used for hyperthermia.

Keywords: biocompatible polymer; drug delivery; gemcitabine; magnetic hyperthermia;
magnetic nanoparticles

1. Introduction

The interest of nanoparticle (NP) science and technology spreads over a large number of fields,
biomedicine being one where applications are becoming closest to everyday life [1–6]. The wide range
of nanostructures built with that purpose, the practically unlimited functionalization routes, and, of
course, the correct size scale in comparison with cells and their membranes may partially account
for an explanation to these facts. Among the many nanoparticles designs, either organic, inorganic,
or mixed, those that are based on magnetic iron oxides (mostly magnetite and maghemite), hence
being called magnetic nanoparticles (MNPs), have seen their possibilities multiplied because of their
magnetic response. It is specifically desired to have a paramagnetic-like behavior, so that the particles
are only magnetized in the presence of the field, with no remanence or coercivity. They are then
denominated SPIONs (superparamagnetic iron oxide nanoparticles), and they have been proposed
to be part of disease diagnose and treatment (or theranostics), very particularly in the case of solid
tumors [7–17]. It is precisely their response to either dc or ac magnetic fields that determines the fields
of biomedical applications of MNPs. One of them is drug delivery: the particles would be part of
so-called magnetic vectors, which are loaded with a chemotherapeutic drug and functionalized in
such a way that they can mostly escape from the cells of the immune system, in addition to being able
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to specifically interact with the target tumor cells. A non-homogeneous, externally applied magnetic
field can be used to drive the particles to their site of action, or, at least, keep them there after being
transported by the blood stream [11,18–22]. Many in vitro and in vivo tests have demonstrated the
feasibility of this approach, but no formulation based on MNPs for drug delivery has been approved to
date. In contrast, Drug Agencies have approved formulations based on MNPs, to be used as contrast
agents in magnetic resonance imaging [23–26].

A very promising application field is that of magnetic hyperthermia. When a suspension of
magnetic particles is subjected to an alternating magnetic field of suitable frequency and strength, heat
is released which will warm up the suspension and its surroundings. If applied to particles that are
embedded in a tumor, and if the temperature is raised to 42–43 ◦C for at least half an hour, the heating
will produce the death of the tumor cells (healthy ones can withstand this temperature safely), and
eventually provoke the disappearance of the tumor or at least help other therapeutic approaches in
that task [27–37]. The mechanism by which the heating occurs depends on the particle size: in the case
of SPIONs, both eddy currents and hysteresis losses can be neglected, and only Néel and/or Brownian
(or viscous) relaxations are possible [28,36,38,39]: the former refer to the oscillations of the magnetic
moment of the NP back and forth between two easy directions of magnetization, in an otherwise
immobile particle. The second mechanism involves the rotational motion of the particle itself in the
suspending fluid. Both of the processes can be present at a time, depending on the frequency-size
combination [36,40], and in the two of them there is a lag between magnetization and field (that is, an
imaginary component of the susceptibility), ultimately being responsible for the heat loss.

There is indeed the possibility of designing MNPs aimed at being used in more than one of the
cited applications. For instance, contrast in MRI can help in locating the distribution of magnetic
particles while applying hyperthermia [41–44]. Closer to the objectives of the present work is the
use of the magnetic particles in nanostructures that are aimed at the simultaneous application
of hyperthermia and drug delivery in-situ, an application denominated thermotherapy by some
authors [45]. The idea is double: the vehicles can deliver the drug while producing magnetic
hyperthermia, and, furthermore, the latter can trigger or speed up the drug release. It has been shown
to work as expected in a number of combinations, for instance doxorubicin on different magnetic
substrates, including magnetite/thermoresponsive polymer [46–48], magnetite/phospholipid/poly
(etilenglicol) [49], or magnetite/poly(ethylene imine)/poly(styrene sulfonate)/PEG [50], to mention
a few.

In this paper, the commercial magnetic particles used consist of a magnetite core and a polymeric
envelope, a co-polymer of methyl methacrylate/ethylene glycol dimethacrylate/hydroxyl ethyl
methacrylate. We describe the procedure that is used for transforming them into suitable substrates
for the electrostatic adsorption of gemcitabine (GEM). This is an antitumor agent that is employed
extensively against several human cancers [51–56], including ovarian, lung, pancreatic, bladder,
urothelial, and breast cancer. Furthermore, this drug has been approved by FDA [57] and it is the most
prescribed anticancer drug worldwide, alone or in combination with other chemotherapeutic agents,
namely doxorubicin [58,59]. While the latter has been widely studied as a single antitumor agent, more
scarce investigations have been carried out with gemcitabine. For this reason, this work has focused
on this drug, in an attempt to broaden our understanding of the delivery mechanism of this drug. The
biocompatible polymer-coated MNPs were loaded with GEM and their release rate investigated in
three cases: suspensions kept in a thermostated bath at 37 ◦C or 43 ◦C, or were subjected to magnetic
hyperthermia at 43 ◦C for specified time intervals. It appears that the latter brings about a substantial
improvement in the drug release rate, and this constitutes a promising result regarding the design of
multi-functional platforms for cancer therapy.
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2. Materials and Methods

2.1. Materials

MagP®–OH particles were purchased from NanoMyP (Granada, Spain). According to the
manufacturer, these composite particles contain magnetite NPs that are coated with a polymer shell
(Scheme 1) composed of 54 wt % methyl methacrylate, 31 wt % ethylene glycol dimethacrylate, and
15 wt %, hydroxyl ethyl methacrylate, or poly(MMA-co-EGDMA-co-HEMA). The terminal monomers
are MMA (bound to the particles by emulsion polymerization), and HEMA (providing surface OH
groups to the composites). The EGDMA polymer acts as crosslinker and determines the thickness of
the layer and adds biocompatibility to the particles, as PEG is recognized as one of the best options for
avoiding opsonization and subsequent attack to the particles by the cells of the mononuclear phagocyte
system [49,60,61]. The original particles are coated with a surfactant (SDS) in order to facilitate their
stability. This layer was eliminated to the maximum possible extent by repeated centrifugation at
14,000× rpm and redispersion in water.

N-hydroxysuccinimide (NHS) (98%), 4-(dimethylamino) pyridine (DMAP) (99%),
dichloromethane anhydrous (DCM), and phosphate buffered saline (PBS) tablets were purchased from
Sigma-Aldrich (St. Lois, MO, USA). Gemcitabine hydrochloride was acquired from Adooq Bioscience
LLC (Irvine, CA, USA). Water that was used in the preparation of the solutions was deionized in a
Milli-Q Academic (Madrid, Spain) device, with conductivity of 0.054 µS/cm at 25 ◦C.
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Scheme 1. Chemical structure of the MagP® –OH magnetic nanoparticles. 
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Scheme 1. Chemical structure of the MagP®–OH magnetic nanoparticles.

2.2. Methods

2.2.1. Functionalization with –COOH Terminal Groups

In order to increase the surface charge of the MagP®–OH at physiological pH, thus being likely
improving the ionic attachment, 2 equivalents of NHS (5.3 mg), 1 equivalent of MagP®–OH (100 mg)
and 1 equivalent of DMAP (2.8 mg) were added to a flask that was previously purged with nitrogen.
Then, 20 mL of dry DCM was added under the nitrogen atmosphere, and the mixture was mechanically
stirred for 24 h at room temperature. Afterwards, the particles were magnetically decanted and
washed several times with a mixture of ethanol and distilled water (1:1), and finally dried at 60 ◦C in
an oven. The resulting particles will have terminal carboxylic groups (and hence will be denominated
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MagP–COOH hereafter) and hence higher charge surface than the particles with terminal hydroxyl
groups, allowing for higher ionic attachment efficiency with positive charged drugs.

2.2.2. Adsorption of Gemcitabine to MagP–COOH

GEM was incorporated to the MagP–COOH particles by dispersing them in an aqueous solution
of the drug. Concisely, different amounts of MagP–COOH were dispersed into 1 mL of an aqueous
1 mM GEM solution, under mechanical stirring at room temperature, for 18 h. Then, the particles with
the adsorbed GEM were centrifuged at 14,000× rpm for 30 min to remove the supernatant. The same
procedure was used for the repeated washing of the particles with Milli-Q water. The final step
consisted of freeze-drying the GEM-coated particles in order to obtain the loaded magnetic vectors.

2.2.3. Morphology and Size Distribution

The morphology of the nanoparticles was observed by transmission electron microscopy (TEM)
using a LIBRA 120 Plus Carl Zeiss microscope (Oberkochen, Germany). TEM images were analyzed
with J-Image software in order to calculate the particle size distribution of the dried NPs. These results
were compared with data obtained by DLS, using a Nano-ZS apparatus (Malvern Instruments,
Worcestershire, UK). All of the measurements were performed at 1 mg/L in Milli-Q water at 25 ◦C.

2.2.4. Electrophoretic Mobility and Zeta Potential

Electrophoretic mobility measurements were carried out in the Nano-ZS at 25 ◦C, in suspensions
with about 0.01% w/v solids concentration and a constant ionic strength of 5 mM KNO3. The pH value
of the suspensions was then adjusted by adding a suitable amount of KOH (0.01 or 0.1 M) or HNO3

(0.01 or 0.1 M). For each suspension, five measurement runs were taken, with 11 cycles in each run.
The zeta potential, ξ, was obtained from the O’Brien and White electrophoresis theory [60].

2.2.5. ATR-FTIR Characterization

FTIR spectra were obtained in the Attenuated Total Reflection mode (ATR-FTIR) in a JASCO 6200
FT-IR (Tokyo, Japan) spectrometer with SPECTRA MANAGER V2 software. Samples were analyzed
without further treatment at room temperature with 50 scans and a resolution of 4 cm−1.

2.2.6. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was performed on a TGA-50H SHIMADZU (Kyoto, Japan)
device with vertical oven and a maximum precision of 0.001 mg. Samples were analyzed under
50 mL/min nitrogen flow, and at a heating rate of 10 ◦C/min, from 30 to 900 ◦C.

2.2.7. Magnetic Properties

Magnetization cycles were obtained at room temperature in an MPMS-XL SQUID magnetometer
(Quantum Design, San Diego, CA, USA).

2.2.8. Magnetic Hyperthermia and Specific Absorption Rate Determination

Magnetic hyperthermia was implemented using an AC current generator built with a
Royer-type oscillator. An eight turn coil (20 mm in diameter and 45 mm in length) that was made of
6 mm water cooled copper tube was connected to the oscillator in parallel with different combinations
of capacitors, so that the field frequencies were changed, with fixed values of 185, 206, 236, and
285 kHz. The current through the coil (typically 7 A) was selected to reach a magnetic field amplitude
of 16.2 kA/m (20 mT magnetic induction in air), measured at the center of the coil with a NanoScience
Laboratories Ltd., Probe (Newcastle, UK), with 10 µT resolution.

The hyperthermia efficiency of the particles was quantified by measuring the rate of temperature
increase registered with an optical fiber thermometer (Optocon AG, Dresden, Germany). The fiber
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probe was placed into a 5 mL Eppendorf tube containing 0.5 mL of a 10 mg/mL suspension of the
magnetic nanoparticles, previously pre-thermostated at 37 ◦C; this was also the temperature that
was chosen for the water circulating inside the copper coil. The tube was in turn inserted in the coil,
and was thermally insulated from it by using a Styrofoam chamber. From the initial slope of the
temperature vs. time dependence (typically, the first 30 s after switching the field on), dT/dt, the
specific absorption rate, SAR, was obtained, as follows [28,62]:

SAR =
CVs

m
dT
dt

(1)

where C is the volume specific heat capacity of the sample (CH2O = 4185 J/LK), Vs is the sample volume
(0.5 mL in the reported experiments), and m is the mass of solids in the sample (5 mg). If a linear
relationship between the sample magnetization and the field is assumed (a reasonable hypothesis for
the small field amplitude used), the power density (per unit volume of particles) of heating can be
calculated as:

ρW = µ0π f χ′′H2
0 (2)

in terms of the imaginary component of the magnetic susceptibility, χ′′ , of the particles [27,28,36,63,64].
Hence, the SAR is found to depend on the square of the magnetic field and its frequency. For this
reason, some authors prefer to describe the phenomenon for a given sample in terms of the so-called
intrinsic loss power or ILP [29], given by:

ILP =
SAR
f H2

0
(3)

Typically, ILP is given in units of nHm2/kg (H0 in kA/m, f in kHz, and SAR in W/kg).

2.2.9. Drug Loading and Release

The drug adsorption on the particles was evaluated by means of optical absorbance determinations
at 268 nm wavelength in a 6705 UV/Vis JENWAY spectrophotometer (Staffordshire, UK). The amount
of non-adsorbed drug recovered in the external aqueous phase after centrifugation was quantified
using a calibration line that was obtained from absorbance measurements in solutions of different
concentrations of GEM in PBS. The drug release from loaded particles was also determined
spectrophotometrically, as follows: 20 mg of particles was dispersed in 5 mL of PBS (pH 7.4); at specified
time intervals, particles were magnetically decanted, then 0.5 mL of the supernatant was removed and
replaced by the same volume of pure PBS. The removed aliquot was then centrifuged at 14,000× rpm
for 30 min at room temperature, the absorbance of the supernatant was measured, and the amount of
GEM was calculated from the calibration line. This allowed for calculating the amount of GEM released.
Experiments were first run in the absence of any applied magnetic field, at two temperatures: 37 ◦C
(physiological) and 43 ◦C (end temperature set in the hyperthermia experiments). The release study
with the AC magnetic field applied was similarly carried out, but controlling the magnetic field
strength to ensure a constant temperature of 43.0 ± 0.5 ◦C.

3. Results and Discussion

3.1. Morphology and Particle Size Distribution

MagP®–OH particles were observed in the TEM after surfactant removal. As shown in Figure 1,
they can be described as a polymer envelope encapsulating the magnetite cores.

The histogram of the particle size distribution deduced from the TEM images (Figure 2a), reveals
a mean (±SD) particle diameter of 76± 13 nm. The hydrodynamic diameter Dh of these particles when
they were dispersed in water was measured by DLS and the resulting size distribution by number
is shown in Figure 2b; from this, the mean diameter results Dh = 86 ± 11 nm with a polydispersity
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index (PDI) of 0.26. As it happens usually, the hydrodynamic diameter is somewhat higher than that
obtained by TEM due to the hydration of the hydrophilic outmost polymer layer, and to the possibility
of some extent of particle aggregation in the aqueous medium.
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3.2. Zeta Potential

The commercial MagP®–OH NPs showed a negative zeta potential of −27.7 ± 0.5 mV, before
being washed to remove the SDS surfactant. After such removal, the zeta potential was measured at
different pHs to determine the surface charge of the particles without the surfactant influence. As it is
shown in Figure 3, the isoelectric point of MagP®–OH was obtained at pH 6.9. This characterization
allows us to select the optimal pH value to carry out the electrostatic attachment of the drug, since the
form used, GEM hydrochloride is positively charged and stable at any pH between that corresponding
to the pKa(= 3.6) of GEM, and pH 10, above which the drug undergoes degradation [65,66]. Therefore,
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further drug loading and release experiments were carried out at physiological pH, whereby magnetite
is negatively charged and the drug is positive and quite stable.Polymers 2018, 10, x FOR PEER REVIEW  7 of 15 
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Figure 4 shows the zeta potential distribution of the commercial NPs (MagP®–OH) before and
after the carboxylation of the particles (MagP®–COOH). It is observed that the zeta potential average at
physiological pH becomes more negative (from −7.6 ± 0.2 mV to −17.5 ± 0.3 mV) after carboxylation,
and this will promote a higher ionic attachment of the drug. This sort of loading is confirmed by the
zeta potential becoming less negative (−12.4 ± 0.3) mV after contact of the MagP®–COOH particles
(23 mg) with 1 mL of GEM 1 mM aqueous solution, under mechanical stirring for 18 h.
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3.3. Drug Loading

As mentioned, from the absorbance of the supernatants of the GEM solutions containing
suitable amounts of particles, the amount of drug loaded on the particles could be evaluated.
Different GEM/MNPs ratios were tested and the results in Table 1 show that the amount of adsorbed
GEM when the ratio is 33.3 mg/g was 13.9%, which means 14.3 µM drug/g MNPs. This loading
is similar or even higher than those that were reported in the literature regarding incorporation of
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this drug onto different polymeric NPs [67–69]. It is worth mentioning that increasing the initial
drug/MNPs ration does not improve the amount of GEM adsorbed (Table 1), which indicates that
some sort of electrostatic saturation binding was reached for the concentrations studied. Therefore, the
optimal ratio of 33.3 mg GEM/g MNPs was used for further characterization and release studies.

Table 1. GEM adsorbed on MagP–COOH NPs for different initial drug/MNPs ratios.

Initial Drug/MNPs Ratio
(mg/g)

Adsorbed GEM
(mg/g MNPs)

Fraction of Adsorbed Drug
(%)

33.3 4.3 13.9
66.7 4.0 6.0
100 3.0 3.0

3.4. ATR-FTIR Characterization

Figure 5 shows the infrared spectra of the three kinds of particles that are used in this work
(original MagP®–OH, GEM and drug-loaded MagP–COO–GEM). Note the presence in the first
ones of both magnetite (Fe3O4) and the methacrylate polymers (PMMA, PEGDMA, PHEMA).
The characteristic bands in the range 3200–3600 cm−1 are attributed to the stretching of the hydroxyl
(OH) groups of the PHEMA component. The bands at 2972 and 2927 cm−1 correspond to the C–H
stretching vibration belongs to the methyl and methylene groups of the polymers, the bands at 1729
and 1636 cm−1 are related to the stretch of the ester carboxyl groups (C=O) of the PMMA, PEGDMA,
and PHEMA respectively, the bands to 1452 and 1380 cm−1 are attributed to the bending of C–H, the
bands at 1264, 1157, and 1087 cm−1 belongs to the stretching vibration of the ether groups (C–O) of the
methacrylate polymers, band at 1048 cm−1 is attributed to the stretching vibration of ether bonds of
the polymeric chain belongs to PEGDMA, and the band at 880 cm−1 correspond to the single bond
deformation vibration of ether groups (C–O). The presence of magnetite is evident due to bands in
the range of 570–630 and at 460 cm−1, that are due to the stretching vibration bands associated to the
iron-oxygen bonds (Fe–O) in the octahedral and tetrahedral sites of the oxide structure.

Polymers 2018, 10, x FOR PEER REVIEW  8 of 15 

 

Table 1. GEM adsorbed on MagP–COOH NPs for different initial drug/MNPs ratios. 

Initial Drug/MNPs  

Ratio (mg/g) 

Adsorbed GEM  

(mg/g MNPs) 

Fraction of Adsorbed  

Drug (%) 

33.3 4.3 13.9 

66.7 4.0 6.0 

100 3.0 3.0 

3.4. ATR-FTIR Characterization 

Figure 5 shows the infrared spectra of the three kinds of particles that are used in this work 

(original MagP® –OH, GEM and drug-loaded MagP–COO–GEM). Note the presence in the first ones 

of both magnetite (Fe3O4) and the methacrylate polymers (PMMA, PEGDMA, PHEMA). The 

characteristic bands in the range 3200–3600 cm−1 are attributed to the stretching of the hydroxyl (OH) 

groups of the PHEMA component. The bands at 2972 and 2927 cm−1 correspond to the C–H 

stretching vibration belongs to the methyl and methylene groups of the polymers, the bands at 1729 

and 1636 cm−1 are related to the stretch of the ester carboxyl groups (C=O) of the PMMA, PEGDMA, 

and PHEMA respectively, the bands to 1452 and 1380 cm−1 are attributed to the bending of C–H, the 

bands at 1264, 1157, and 1087 cm−1 belongs to the stretching vibration of the ether groups (C–O) of 

the methacrylate polymers, band at 1048 cm−1 is attributed to the stretching vibration of ether bonds 

of the polymeric chain belongs to PEGDMA, and the band at 880 cm−1 correspond to the single bond 

deformation vibration of ether groups (C–O). The presence of magnetite is evident due to bands in 

the range of 570–630 and at 460 cm−1, that are due to the stretching vibration bands associated to the 

iron-oxygen bonds (Fe–O) in the octahedral and tetrahedral sites of the oxide structure. 

25

50

75

100

25

50

75

100

4000 3500 3000 2500 2000 1500 1000 500

25

50

75

100

125

633 cm
-1

633 cm
-1

1065 cm
-1

1128 cm
-1

3010 cm
-1

3410 cm
-1

1728 cm
-1

1729 cm
-1

2930 cm
-1

3408 cm
-1

1380 cm
-1

880 cm
-1

1157 cm
-1

1087 cm
-1

1636 cm
-1

574 cm
-1

601 cm
-1

633 cm
-1

1048 cm
-1

1729 cm
-12927 cm

-1

2972 cm
-1

 
 

 

 MagP-OH

3408 cm
-1

 

 

 MagP-COO-Gemcitabine

%
 T

ra
n
s
m

it
a
n
c
e

%
 T

ra
n
s
m

it
a
n
c
e

%
 T

ra
n
s
m

it
a
n
c
e

 

Wavenumber (cm
-1
)

 Gemcitabine

 

Figure 5. ATR-FTIR spectra of MagP–OH nanoparticles, MagP–COO–GEM nanoparticles, and GEM 

drug. 

  

Figure 5. ATR-FTIR spectra of MagP–OH nanoparticles, MagP–COO–GEM nanoparticles, and
GEM drug.



Polymers 2018, 10, 269 9 of 15

The ATR-FTIR spectrum of the MagP–COO–GEM shows a noticeable decrease in the –OH
band that is situated at 3200–3600 cm−1, demonstrating the efficacy of the previous carboxylation of
these groups. Besides, the ionic reaction between MagP–COO− and GEM was verified by the increase
in the C=O band at 1729 cm−1 and the bands modification in the range 500–1500 cm−1, where pure
GEM shows its characteristic bands.

3.5. Thermogravimetric Analysis

A thermogravimetric analysis was used to evaluate the thermal stability of the magnetic particles,
as well as to check the polymer/magnetite weight ratio and the polymer components. The thermogram
of the carboxylated nanoparticles (MagP–COOH) is shown in Figure 6. The weight loss curve shows
a total degradation of 41.6 wt % up to 600 ◦C, which corresponds to the polymeric component of
the nanoparticles. The inorganic residue of 58.4% left, according to the TGA analysis corresponds to
the magnetite component. Between 600 and 800 ◦C, the observed weight loss has been associated to
magnetite reduction to α-Fe and FeO [70]. The dotted curve shows the weight percentage loss rate
versus temperature (first derivative of the weight loss curve), showing three maximum degradation
temperatures for the polymeric coating at 265 ◦C, 329 ◦C and 387 ◦C, which correspond to PHEMA,
PEGMA, and PMMA respectively [71–73]. These degradation steps allow for the quantification of the
weight percentage of each polymer in the nanoparticle system, being 11 wt % of PHEMA, 30 wt % of
PEGMA, and 59 wt % of PMMA.
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3.6. Magnetization and Hyperthermia

The magnetization of MagP®–OH NPs as a function of the magnetic field is represented in Figure 7.
The superparamagnetic behavior of the core magnetite NPs manifests in the composite nanostructures,
although the presence of the non-magnetic polymeric envelope reduces the saturation magnetization
from that of bulk magnetite (90 emu/g) to a value close to 35 emu/g. Such kind of a reduction has
been previously reported in literature [74,75] and justified by the contribution of the polymer layers
and the limited magnetic order at the magnetic NP/polymer interfaces, very abundant in our particles
(Figure 1).

Figure 8a shows the time evolution of the temperature of a suspension of MNPs before loading the
drug, for different frequencies of the field (285, 236, 206, and 185 kHz). It is possible to observe that the
time needed for reaching 41 ◦C decreases with frequency. Thus, for the highest frequency, it is found a
rapid increase of temperature from 37 to 41 ◦C in less than a minute, which is ideally desired for cancer
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treatment application. Pure water baseline is added as reference, showing the negligible effect of Joule
heating of the copper coil in the data. The SAR and ILP values are represented in Figure 8b. Note that
the former reaches values that are in the high range of those reported in the literature, and that they
increase with the field frequency, as mentioned. On the contrary, the intrinsic loss power is frequency
independent, in agreement with the predictions of Equation (3). The analysis of these results suggests
that the particles will be a useful tool to produce local heating and generate enough heat as to locally
rise the temperature of the tumor tissue for the effective hyperthermia treatment.
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Figure 8. (a) Time evolution of the temperature for different frequencies in hyperthermia experiments
performed with suspensions containing 10 mg/mL of MagP®–OH. (b) SAR and ILP evaluation.
The field amplitude was H0 = 16.2 kA/m in all the cases.

3.7. Drug Release

GEM release studies were performed in PBS buffer at pH 7.4, which mimics the
physiological conditions. Drug release was tested at controlled temperatures of 37± 1 ◦C and 43± 1 ◦C.
A third release test was carried out using the AC magnetic field that is applied in hyperthermia, so
as to evaluate the potential triggering effect of the field on the release profile of the drug. A typical
hyperthermia and drug release experiment is shown in Figure 9. The nanoparticles that are loaded with
the drug were exposed to the magnetic field for 30 min [76,77]. After a rapid increase in temperature,
the system was stabilized between 43 ◦C and 44 ◦C by manually controlling the magnetic field strength.
Drug release results are plotted in Figure 9b. As observed, the fastest release profile of GEM was
obtained when the magnetic field was applied, allowing for the complete release of the drug in less
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than 4 h. The kinetic release in this case follows a quasi-zeroth order profile [78], with an initial delay
in the drug release, probably due to the time needed to reach the optimal triggering temperature.
The released amount R(t) can be fitted to the Equation (4):

R(t) = R(0) + k0t (4)

where R(0) is the initial amount of drug in the solution and k0 is the zeroth-order release constant
expressed in units of concentration/time, which was found to be 27 µg/mL·h. This kinetic constant is
much higher than values that are reported in literature for GEM thermal release [79], demonstrating
the improvement of the GEM release with the application of the AC field.

In fact, the release of GEM at 43 ◦C (temperature controlled without field applied) showed a faster
release profile than at 37 ◦C, reaching a plateau of 90% of the drug after 48 h, when compared to the
35% released at 37 ◦C after the same time. Only 40% of the total drug was released at 37 ◦C after six
days. Longer time is needed to release the complete amount of drug at physiological temperature,
resulting in a negligible release rate. The release dependences found at both 37 ◦C and 43 ◦C are well
described by first order kinetics, according to Equation (5):

R(0)− R(t) = R(0)(1− e−k1t) (5)

where k1 is the first order rate constant. Its best fit values are 0.092 h−1 and 0.056 h−1 for 37 and 43 ◦C,
respectively. Note that in a first order release profile the process is directly proportional to the drug
concentration that is involved in the process, whereas in a zeroth-order release the drug is released at
a constant rate, leading to the best control of plasma concentration and offering several advantages,
including improved patient compliance and reduction in the frequency of drug administration [80,81].
This feature is also a positive result of using hyperthermia in combination with drug release.
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4. Conclusions

The combination of drug release and magnetic hyperthermia using magnetic nanoparticles
consisting of a magnetite core and a polymer envelope is investigated for modified commercial particles
in which the –OH terminated co-polymer is modified to make it –COOH terminated. The particles
are found to be quite monodisperse in size and spherical in shape, with negative zeta potential in
physiological pH conditions. They showed a very significant hyperthermia response, with SAR values
of up to 45 W/g. Gemcitabine hydrochloride was absorbed by contact in solution between the particles
and the drug. The loading was optimal at a rate of 33.3 mg GEM/g MNPs, and is demonstrated by
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IR spectrometry and electrophoresis. The drug release in PBS at pH 7.4 was investigated in three
experimental conditions: temperature that was maintained at 37 ◦C or 43 ◦C in a temperature controlled
bath, and hyperthermia-triggered release at 43 ◦C. It is demonstrated that drug delivery in the latter
case proceeds at zeroth order kinetics and the magnetic field exposure triggers and improves the
release significantly, reaching 100% delivery in less than 4 h.
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