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Abstract
Introduction Modern omics experiments pertain not only to the measurement of many variables but also follow complex 
experimental designs where many factors are manipulated at the same time. This data can be conveniently analyzed using 
multivariate tools like ANOVA-simultaneous component analysis (ASCA) which allows interpretation of the variation 
induced by the different factors in a principal component analysis fashion. However, while in general only a subset of the 
measured variables may be related to the problem studied, all variables contribute to the final model and this may hamper 
interpretation.
Objectives We introduce here a sparse implementation of ASCA termed group-wise ANOVA-simultaneous component 
analysis (GASCA) with the aim of obtaining models that are easier to interpret.
Methods GASCA is based on the concept of group-wise sparsity introduced in group-wise principal components analysis 
where structure to impose sparsity is defined in terms of groups of correlated variables found in the correlation matrices 
calculated from the effect matrices.
Results The GASCA model, containing only selected subsets of the original variables, is easier to interpret and describes 
relevant biological processes.
Conclusions GASCA is applicable to any kind of omics data obtained through designed experiments such as, but not limited 
to, metabolomic, proteomic and gene expression data.

Keywords Analysis of variance · Designed experiments · Principal component analysis · Sparsity

1 Introduction

In systems biology and functional genomics designed exper-
iments are nowadays very common: this refers to research 
situations in which a dependent variable x, measured on a 
(biological) system, constitutes the response to I independ-
ent variables, called factors (or treatments), whose levels 

are controlled by the experimenter. The variety of designed 
experiments ranges from simple case–control settings to 
complex scenarios where many factors are manipulated 
simultaneously.

When a measured variable is a function of (several) 
factors, analysis of variance (ANOVA) is a well establish 
technique to analyze the data (Searle and Gruber 2016). 
However, in functional genomics and systems biology many 
variables ( x1, x2,… , xJ ) are usually measured on a system, 
like in metabolomics, proteomics and transcriptomics 
experiments where hundreds to thousands of variables are 
acquired. In these cases a single ANOVA model can be fitted 
separately on each variable. Although effective (this is what 
is usually done in the case of gene expression data), this 
approach does not take into account the relationships exist-
ing among the variables, i.e. the multivariate nature of the 
problem is discarded (Saccenti et al. 2014). Because biologi-
cal variables, such as metabolites or genes, are often inter-
related, it is desirable, in many occasions, to analyze all the J 
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variables simultaneously (Saccenti et al. 2014). ANOVA can 
be generalized to the multivariate case through multivariate-
ANOVA (MANOVA, see Eq. 1) (Bibby et al. 1979). In con-
trast with running several separated ANOVAs, MANOVA 
takes into account the correlation among the x1, x2,… , xJ 
dependent variables when testing for the significance of the 
factor effects; moreover, since all variables are used simul-
taneously it also reduces the risk of Type I error (O’Brien 
and Kaiser 1985).

Unfortunately, in the case of high dimensional omics data 
the MANOVA model often breaks down because the number 
of variables J is larger than the number of observations N, 
and this results in the covariance matrices involved in the 
calculations for significance testing and data visualization 
to be singular, which makes the MANOVA solution non 
achievable. A classical remedy to this problem is regulariza-
tion which involves numerical manipulation of the covari-
ances matrices to remove singularity: this is the so-called 
regularized-MANOVA for which several solutions have been 
proposed (Engel et al. 2015; Ullah and Jones 2015). Other 
solutions regard non-parametric reformulations of the prob-
lem (Legendre and Anderson 1999; Anderson 2001).

A different approach is to combine ANOVA with princi-
pal component analysis (PCA) to reduce the dimensionality 
of the data to be analyzed. Earlier applications involved 
performing MANOVA on a reduced data set consisting of 
the low dimensional scores of a PCA model fitted to the 
data (Bratchell 1989). However this approach suffers from 
the limitation that PCA is not able to resolve the different 
type of variation induced by the different factors which 
may be confounded by the initial PCA model. These limi-
tations can be overcome by using ANOVA-simultaneous 
component analysis (ASCA) (Smilde et al. 2005; Jansen 
et al. 2005).

ASCA uses an ANOVA model to first decompose the data 
matrix into factor effect (and interaction) matrices contain-
ing the average values for each factor level (and interaction 
thereof); then a PCA model is fitted separately on each effect 
matrix to extract and assess the contribution of each vari-
able to the systematic variability induced by each experi-
mental factor. Hence, an ASCA model can be explored and 
interpreted like a standard PCA model. A similar but less 
powerful approach is ANOVA-PCA (Harrington et al. 2005; 
Zwanenburg et al. 2011).

While ASCA retains both the flexibility of the ANOVA 
framework to account for (possibly) very complicated exper-
imental designs and the versatility of PCA as a data dimen-
sionality reduction method, it also inherits the limitations of 
the classical principal component analysis.

PCA is a valuable tool for data reduction and exploration: 
however since it is essentially a data factorization based on 
variance maximization, it presents two main shortcomings 
when data understanding and interpretation are the goal of 

the analysis. First, it cannot distinguish between variance 
which is unique for a single variable and variance which is 
shared among several variables and this can seriously ham-
per the unveiling of (possibly) hidden relationships existing 
among variables (Jolliffe 2002). Second, the principal com-
ponents are linear combinations of all the variables simul-
taneously and this greatly complicates data interpretation 
since all variables contribute to the PCA model (Jolliffe et al. 
2003).

While the first limitation can be addressed by using meth-
ods that focus on shared variance, like Factor analysis (Fab-
rigar et al. 1999), better interpretability of the PCA solution 
can be obtained by imposing a simple structure on the com-
ponents, in such a way that the components are combina-
tions of a smaller number of original variables. This is the 
realm of sparse methods and many formulations have been 
proposed (see for instance sparse implementations using 
LASSO (Jolliffe et al. 2003; Zou et al. 2006), group LASSO 
(Jacob et al. 2009) or structure-based regularization criteria 
(Jenatton et al. 2009).)

We recently proposed a new sparse implementation of 
PCA where sparsity is defined in terms of groups of (cor-
related) variables identified from the data to be analyzed, 
called group-wise PCA (GPCA) (Camacho et al. 2017). 
The GPCA solution is such that every principal component 
contains loadings different from zero only for a group of 
variables. This grounds on the framework of simplivariate 
models (Hageman et al. 2008; Saccenti et al. 2011) which 
aim to retain both the comprehensiveness of a multivariate 
model and the simplicity of interpretation of a univariate 
one, under the assumption that a given (biological) phe-
nomenon may not be accounted by all measured variables 
but only by one, or more, subsets of variables. This kind 
of sparsity is natural in biological problems: examples are 
sets of metabolites participating in the same metabolic net-
work or co-expressed and co-regulated genes which are 
expected to exhibit a correlative behavior. Thus, the sparsity 
exploited in GPCA is different from the one used in sparse 
PCA implementations based on regularization: in the latter 
sparsity is obtained by forcing to zero the loadings cor-
responding to some variables by controlling one or more 
regularization parameters which must be algorithmically 
optimized. In GPCA the parameter controlling sparsity is 
immediately related to the strength of association among 
(groups of) variables as expressed, for instance, by their 
correlation. In addition the relationship between the thresh-
old on the correlation value and the level of sparsity, i.e. the 
size and the number of groups selected, can be graphically 
visualized and explored, consistently with a data explora-
tory philosophy.

In this paper we propose to replace the PCA step in 
ASCA with GPCA, arriving to a group-wise sparse ver-
sion of ASCA termed Group-wise ANOVA-simultaneous 
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component analysis (GASCA). The aim is to improve the 
interpretability of the ASCA solution when analyzing 
complex data sets. The characteristics of this approach 
are illustrated with simulations and by comparing the 
GASCA model with both PCA and the original ASCA 
and by the analysis of a designed plant and human 
metabolomics experiments. The paper is organized as 
follows: The Sect. 2 introduces the ANOVA–MANOVA 
framework and details the mathematics and the proper-
ties of the PCA, GPCA, ASCA and GASCA models. 
The Sect.  3 presents the data description and details 
on software used. Finally, Results and discussion of 
PCA, ASCA and GASCA modeling of simulated and 
experimental data are given: in particular, the fitting of 
the GASCA model is illustrated step by step using real 
experimental data. Some final considerations are offered 
in the Sect. 5.

2  Theory

2.1  (M)ANOVA model

We consider here a study design involving two factors � and 
� with A and B levels, respectively, where J variables are 
measured. For a balanced design, in which every measure-
ment is replicated R times for each combination of factor 
levels, there are in total N = ABR observations. The multi-
variate ANOVA model (MANOVA) is given by

where the first term ��T represents the overall mean for the 
data, � is a column vector of ones of length N and �T is a 
row vector of size J with the averages over the data for each 
variable. The effect matrices �� and �� contain the level 
averages for each factor and the �(��) describes the interac-
tion between the two factors. The variation that cannot be 
represented by the model is collected in the residual matrix 
� . Equation (1) is the starting point of both ASCA and the 
newly proposed GASCA.

2.2  The PCA model

Given a data matrix � of size N × J (observations × vari-
ables), the standard PCA model follows the expression:

where �H is the N × H score matrix containing the projec-
tion of the objects onto the H principal components sub-
space, �H is the J × H loading matrix containing the linear 
combination of the variables represented in each principal 

(1)� = ��T + �� + �� + �(��) + �

(2)� = �H�
T
H
+ �H ,

component, and �H is the N × J matrix of the residuals. Usu-
ally H is chosen to be much smaller than J.

2.3  The group‑wise PCA model

The Group-wise Principal component analysis (GPCA) 
(Camacho et al. 2017) is a sparse formulation of the PCA 
algorithm where sparsity is defined in terms of groups of 
correlated variables: every component contains non-zero 
loadings for a single group of correlated variables which 
simplifies the interpretation of the model. The GPCA 
approach consists of three steps:

1. Computation the association map � form the data
2. Identification of the groups of associated variables
3. Calibration and fitting of the GPCA model

The GPCA modeling starts with the definition of a J × J 
association map � computed from the data and describing 
the relationship among the variables. In the original formu-
lation of GPCA (Camacho et al. 2017) the MEDA approach 
(Missing-data for Exploratory Data analysis) (Camacho 
2011) was used to define � . Briefly, MEDA consists of 
a post-processing step after the PCA factorization to infer 
the relationships among variables using missing data 
imputation (Arteaga and Ferrer 2002; Arteaga and Fer-
rer 2005). The l, j-th element mlj (for variables l = 1,… , J 
and j = 1,… , J ) of the MEDA map � can be expressed as 
(Arteaga, 2011):

where �Q
l

 is the vector of residuals for the l-th variable in 
the PCA model with Q latent variables; data is assumed to 
be centered. Practically, this approach uses a missing data 
strategy to estimate the correlation between any two vari-
ables: this approach has been found to be effective in filter-
ing out noise when estimating correlations (Camacho 2010). 
Here we set Q using the ckf cross-validation algorithm (Sac-
centi and Camacho 2015b) as in the original GPCA for-
mulation (Camacho et al. 2017) but other approaches are 
possible (Saccenti and Camacho 2015a). Note that if we 
set Q = rank(X) the MEDA map from Eq. (3) reduces to a 
standard Pearson correlation map where the original magni-
tudes are replaced by their squared values while the sign is 
retained. In place of the MEDA map any square symmetric 
matrix describing mutual relationship among the variables 
can be used as an input for GPCA (like mutual information, 
as often done in the case of gene expression data): since 
metabolomic data is usually analyzed in term of correlations 
(Saccenti et al. 2014; Saccenti 2016) we will present also 
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a GASCA implementation based on correlations. Because 
relationships among metabolites cannot be assumed to be 
linear, we use here Spearman’s rank correlation, which equal 
to the Pearson’s correlation of the ranks of the variables. In 
addition, to reduce the risk of including chance associations 
we force to 0 correlations for which the associated P value 
is larger than 0.01. Summarizing the elements mlj of the 
association map � based on correlations are:

Once the association map � is defined, the K groups of cor-
related/associated variables are identified using the so called 
group identification algorithm (GIA). Briefly, the GIA works 
as follows: given mlj ∈ [−1, 1] the l, j-th element of � , and 
|𝛾| < 1 , the group Sk is built in such a way that |mlj| > 𝛾 for 
all l, j in Sk with maximum cardinality. The j-th variable is 
not in group Sk when |mlj| ≤ � with at least one variable l-th 
in Sk . The GIA algorithm is fully detailed in the Appendix 
of reference (Camacho et al. 2017). As in the case of the 
definition of the association map � , other strategies can be 
implemented to define the Sk groups, such as hierarchical 
clustering (Langfelder et al. 2007), which can be a conveni-
ent approach when dealing with high-dimensional genomic 
data. The smallest possible size for Sk is 1: however since 
the goal is to identify groups of correlated variables and not 
singletons or pairs, the minimal groups size can be user-
defined. Here we set this to be equal to 

√
J , where J is the 

total number of variables; this is a longstanding common 
choice in statistics and machine learning practice to select 
the minimum size of subset of variables (Summerfield and 
Lubin 1951; Guyon and Elisseeff 2003).

The GIA is an ordination algorithm and takes as input 
precomputed correlations, hence its performance is not 
affected by the noise in the data (only the estimation of 
correlation is) nor by the number of variables considered, 
although the computational cost increases with the num-
ber of variables. We remark that (group-wise) sparsity is 
a property of the data and not of the method used for the 
analysis of data. The GPCA approach has the advantage 
that situations where sparse modeling is not suitable can 
be easily detected through the correlation (association) 
map � : in absence of correlation structure or when the 
S groups contain mostly singletons or very few variables 
GPCA (and GASCA) are not recommended to analyze the 
data.

Once the Sk have been defined, the GPCA algorithm 
first computes K candidate loading vectors, where the k-
th loading vector has non zero elements associated to the 
variables in the k-th group Sk (the loadings for variables 
which are not in Sk are then set to zero.) From these, 
only the loading with the largest explained variance 

(4)mlj =

{
rlj if P-val ≤ 0.01

0 otherwise

is retained in the model and it is used to deflate data 
matrix � . The complete GPCA algorithm is outlined in 
the Appendix.

The parameter � is user defined and can be determined 
by visually inspecting the correlation or the MEDA map 
� (or any other association map) and the output of the 
GIA, since � simultaneously controls both the size and the 
number of groups of correlated variables. This approach 
is consistent with the exploratory data analysis philosophy 
under with the group-wise PCA was developed. Moreo-
ver, � has a direct interpretation as a threshold on the 
strength of the correlation, and it may be easier to tune 
than the regularization parameters that characterize other 
sparse implementations of PCA. In the Sect. 4 we guide 
the reader through the selection process of the � parameter 
during the analysis of simulated and experimental data.

2.4  The ANOVA simultaneous components model

ANOVA-simultaneous component analysis (ASCA) (Smilde 
et al. 2005) aims to overcome the limitations of MANOVA 
reducing the original number J of variables in the effect 
(interaction) matrices �i by replacing them with a lower 
number ( H << J ) of principal components. In this way it 
is possible to explore the relationship among variables and 
their contribution to variability observed in the data even in 
the case of singular data covariance matrices. This is accom-
plished by fitting a PCA model (see Eq. 2) to each of the 
effect (interaction) matrices �i in the model given by Eq. 
(1). The ASCA decomposition in principal components is 
given by

where �PCA
i

 and �PCA
i

 are the scores and loadings matrices 
of a PCA model fitted on the effect (interaction) matrix i.

Note that here we have dropped for convenience the sub-
script H referring to the dimensionality of the PCA model 
as given in Eq. (2). It is intended that H components are 
retained to fit the ASCA model and that the number of com-
ponents used can be different for different effect matrices 
(thus H = Hi).

Since the PCA models are fitted to the effect matrices 
which contain the averages of variables within the same fac-
tor levels, the variation between replicates in each level is 
lost. However this information can be retrieved by projecting 
the effect matrix ( �i ) plus the residual matrix ( � ) onto the 
space defined by the loading matrix �i for the PCA model 
for �i as first proposed by Zwanenburg at al.(Zwanenburg 
et al. 2011):

(5)�i = �PCA
i

(
�PCA
i

)T
i ∈ {�, �, ��}

(6)
�i = (�i + �)�PCA

i
= �PCA

i
+ ��PCA

i
i ∈ {�, �, ��}.
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The projection �i represents the variability of the replicates 
in terms of the loadings �i of the PCA model for �i.

Important note: for simplicity of illustration we show 
here a 2-way ASCA model but ASCA can be applied to 
designed experiments with an arbitrary number of factors 
and levels.

2.5  The group‑wise ANOVA simultaneous 
component analysis

While ASCA is well suited for analyzing designed experi-
ments, the ASCA model may be complicated to interpret 
since the principal components are linear combinations 
of all the variables: to overcome this limitation we pro-
pose here to replace the PCA step in ASCA with GPCA 
to arrive at an ASCA solution which is sparse in a group-
wise sense.

With respect to the 2-way model considered in Eq. (1) the 
GASCA model assumes the form

where �GPCA
i

 and �GPCA
i

 are the scores and loadings matri-
ces for the i-th factor effect (or factor interaction matrix) 
obtained using GPCA (see Eqs. (12) and (11) in the Appen-
dix). Operatively, a group-wise ASCA consists of three 
steps:

1. Definition of the correlation/association maps (matrices) 
�i , one for each effect and interaction matrices

2. Setting the convenient � parameter to define the number 
and the size of the S1, S2,… , Sk groups of correlated 
variable for each maps

3. Fitting of the GASCA model to obtain one set of load-
ings for each effect and interaction matrices.

We consider here two approaches to define the association 
maps �i . The first is to derive �i starting from correla-
tion (or any other association measure) calculated from the 
effect matrices �i which are intrinsically low noise: this is 
fully consistent with the ASCA framework. An alternative 
approach is to obtain �i from the sum of the factor (and 
interaction) matrices and residual matrix. As an example, 
for factor � in the two-way MANOVA design from Eq. (1), 
�� can be obtained from

Note that this is the same matrix used to calculate the scores. 
When this method is used, the MEDA approach is better 
suited to define association among variables than standard 
correlations. This approach should be used in the case of a 
design with factors with two levels. This is because with two 
levels, the correlation cannot be computed from the effect 

(7)�i = �GPCA
i

(
�GPCA
i

)T
i ∈ {�, �, ��}

(8)�� = � − ��T − �� − �(��)

matrix �i , since this will always result in a matrix containing 
only − 1 and 1 values arising from the design and not from 
the biology of the data. In the Sect. 4 simulated and real data 
are analyzed using both approaches and which method to use 
depends on the nature of the data.

Finally, these three steps should be preceded by a statis-
tical validation of the multivariate effect: this is illustrated 
in the next section. It should be noted that when the design 
is not balanced (i.e. when there is not the same number of 
observations for each factor level) the effects estimates are 
not orthogonal and fitting the model becomes cumbersome 
and requires ad-hoc approaches (Rawlings et al. 2001). The 
ASCA framework has been extended to work with unbal-
anced design (Thiel et al. 2017); an equivalent approach can 
be used for GASCA. For the sake of simplicity GASCA 
has been illustrated with a 2-way ANOVA design, but it is 
generalizable to any number of factors and levels and the 
software code provided (see Sect. 3.3) will work with a gen-
eral N-way design.

2.6  Validation of multivariate effects

Since GASCA is designed to obtain sparse models of the 
effect matrices obtained from designed omics experiments, 
it is necessary, before fitting a GASCA (or an ASCA) model, 
to validate whether the levels observed in the sample reflect 
effects specific in the population or originate by sampling 
fluctuations. This problem has been addressed in the ASCA 
context (Vis et al. 2007) and the solution proposed transfers 
directly to the GASCA case. Following (Vis et al. 2007) 
we employ a permutation approach to assess the statisti-
cal significance of the high-dimensional effects observed 
in GASCA since the standard MANOVA approach based 
on the multivariate extension F-test can not be applied in 
this framework because the number of variables is larger 
than the number of samples. The permutation approach has 
several advantages: it is optimal for small data sets, is free 
of distributional assumptions, and gives exact probability 
values (Berry et al. 2016).

The procedure validates the ANOVA partitioning of the 
data and should be performed before fitting the GASCA 
model to the data since it makes no sense to fit a model to 
effect (interaction) matrices which do not contain signifi-
cant factor effects but are likely to contain sampling and/or 
measurement noise.
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3  Material and methods

3.1  Experimental plant data

3.1.1  Experimental design

This data set contains the time-resolved metabolomic 
response of Arabidopsis thaliana towards changing light 
and/or temperature (Caldana et al. 2011). The original data 
comprises both metabolomic and transcriptomic data meas-
ured under four different light conditions (D: dark, LL: low 
light, L: light, and HL: high light) at three different tempera-
tures ( 4◦ C, 21◦ C, 32◦ C) with different growth time from 0 
to 360 min for a total of 19 time points. We consider here 
only data acquired at 21◦ and at time points (t = 0, 5, 10, 20, 
40, 80, 160 min) under the four light conditions. The data 
here analyzed has a design with two factors (light condition 
and time) with 7 and 4 levels, respectively. The complete 
data is available through the original publication (Caldana 
et al. 2011).

3.1.2  Missing data imputation

There were 147 missing values in the data set: since remov-
ing observations with a missing value would drastically 
reduce the number of observations, we imputed the missing 
values replacing them with the average value of the cell and 
adding a random number drawn from a normal distribution 
with 0 mean and variance equal to the data cell variance.

3.1.3  Data cleaning

There are six biological replicates for each factor level, 
except for the LL level which has only 5. Since a balanced 
design is need for both ASCA and GASCA, we randomly 
removed 1 observation from the factors with 6 replicates. 
Data for starting condition ( t = 0 min) was given once only 
for level L of the light condition factor and was replicated 
for all the remaining level (hence, the data for first time 
point is identical for all light conditions) to remove imbal-
ance. Two variables (raffinose and glycine) were removed 
from the data set because we suspected that something 
went wrong with the measurement and/or the quantifica-
tion (data analyzed using PCA): several observations where 
characterized by disproportionately high values (up to 2 
order of magnitudes) for these metabolites which were dis-
carded. A problem with the measurement of glycerol for 
light condition L and t = 10 min was also detected. The 
value was replaced with the cell average. After this correc-
tion no more outliers were evident. The final data matrix 
has dimensions 140(= 4 × 7 × 5) × 67.

3.1.4  Data pre‑processing

Metabolite abundances were normalized by dividing each 
raw value by the median of all measurements of the experi-
ment for one metabolite.

3.1.5  Experimental details

For convenience of the reader we give a short summary of 
the experimental setup. We refer to the original publication 
(Caldana et al. 2011) for more details. Plants grown at 21 °C 
with a light intensity of 150 µE × m−2 × s−1 were either 
kept at this condition or transferred into seven different envi-
ronments (4 °C, darkness; 21◦ , darkness;  32 °C, darkness; 
4 °C, 85 µE × m−2 × s−1; 21 °C, 75 µE × m−2 × s−1; 21 °C, 
300 µE × m−2 × s−1; 32 °C, 150 µE × m−2 × s−1.

Metabolites were extracted from single rosettes in a 
total of six replicates. Extraction and derivatization of 
metabolites from leaves using GC–MS were performed 
as previously reported (Lisec et al. 2006). GC–MS data 
were acquired on a Agilent 7683 series autosampler cou-
pled to an Agilent 6890 gas chromatograph Leco Pegasus 
two time-of-flight mass spectrometer; acquisition param-
eters were as reported in (Weckwerth et al. 2004). Peak 
detection, retention time alignment and library matching 
were obtained using the TargetSearch package (Cuadros-
Inostroza et al. 2009).

3.2  Experimental human data

3.2.1  Experimental design

We randomly selected two subjects from the METREF study 
(Assfalg et al. 2008) where 22 healthy subjects were sam-
pled for their urinary profile on  40 consecutive days. The 
data has a 1-way ANOVA design with two level (Subject 1 
and Subject 2). The data is available through the KODAMA 
R package (Cacciatore et al. 2017).

3.2.2  Data pre‑processing

Bucketing was applied to the NMR spectra after the removal 
of region with 𝛿 > 9.5 ppm, 4.5 < 𝛿 < 6.0ppm, and 𝛿 < 0.5 
ppm, containing water and urea signals. each spectrum was 
divided into sequential bins of 0.02 ppm width, which were 
integrated using AMIX software (Bruker BioSpin). Finally, 
total area normalization was carried out on all the spectra. 
Further, bins corresponding to noise and empty spectral 
areas were removed to reduce dimensionality. To make the 
design balanced, 37 spectra for each subject were consid-
ered: the final dataset has size 74 × 206.
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3.2.3  Experimental details

1 H NMR spectra were acquired using a Bruker 600 MHz 
metabolic profiler (Bruker BioSpin) operating at 600.13 
MHz proton Larmor frequency and equipped with a 5 
mm CPTCI cryoprobe. Each urine sample was acquired 
with a NOESY-presaturation pulse sequence. Details on 
sample preparation and further information on the NMR 
experimental setup can be found in the original publica-
tion (Assfalg et al. 2008) and in other publications where 
the data has been analyzed (Bernini et al. 2009; Ghini 
et al. 2015).

3.3  Software

The GPCA, ASCA and GASCA and GIA algorithms are 
freely available in the Matlab MEDA toolbox (Camacho 
et  al. 2015) at the address: github.com/josecamachop/
MEDA-Toolbox. The GASCA code is based on the original 
Matlab code for ASCA by G. Zwanenbourg (Zwanenburg 
et al. 2011). The function to call is gasca: typing help 
gasca in the Matlab command windows will prompt 
instructions and a worked out example to perform GASCA.

4  Results and discussion

4.1  Simulations

We begin presenting the GASCA of a simple simulated 
data set to show how GASCA models data which is sparse 
in a group-wise fashion: the data follows a two factor 
design ( � and � ), with four and three levels, respectively, 
and no interaction, with one group of correlated variables 
contributing only to the first factor, and another group 
of variables contributing only to the second factor; both 
groups consists of five variables. There are 100 observa-
tions and 50 variables; the two factors are both significant 
at the 0.01 level.

The analysis starts with the construction of the associa-
tion matrices �� and �� for the effect matrices �� and 
�� . As discussed in the Sect. 2.3, there are several strate-
gies to construct such matrices: for this example we build 
MEDA maps (see Eq. 3) starting from the matrices �� and 
�� defined in Eq. (8). Another approach, based on correla-
tions, will be shown in the analysis of the plant metabo-
lomics data (see Sect. 4.4). The MEDA maps for the two 
factor are shown in Fig. 1 panels a and d, respectively. 
The two groups of associated variables are evident: the 
threshold � controlling the sparsity of the solution can be 
chosen by inspecting the MEDA maps and we set � = 0.8 
for both factors. This is a rather straightforward situation; 
association maps for real data, especially for metabolomics 

data, are usually more complicate: a guided procedure to 
select � will be shown in Sect. 4.4. The score plots resulting 
GASCA models for the two factors are shown in Fig. 1 in 
panel b and e, while the loadings are given in panels c and 
f. The GASCA solution is sparse in a group-wise fashion, 
with just one group of variables contributing to each factor, 
which greatly facilitate interpretation, correctly retrieved 
by the model.

4.2  PCA modeling of the plant data

In the following we present a comparison of PCA, ASCA 
and GASCA models obtained on a designed plant metab-
olomic experiment. We begin by fitting a standard PCA 
model (see Eq. 2) to the data. The scatter plot of the first 
two principal components and the corresponding loading 
vectors are given in Fig. 2. It appears that a simple PCA 
is not well suited for analyzing this data since it does not 
distinguish between the groups in the data: factors and lev-
els are mixed up in the score plot. Moreover, loadings are 
complicate to interpret since all variables contribute to the 
final model.

4.3  ASCA modeling of the plant data

Before applying ASCA (and, of course, GASCA) we test 
the significance of effects for the two factors of the experi-
mental design (light conditions and time) and their inter-
action. Applying a permutation test with nperm = 104 to 
test the significance of the factors the calculated P values 
are 0.0001, 0.0001 and 0.0278 for light condition, Time 
and their interaction, respectively. Since all factors and 
interactions are significant we will fit the ASCA (and later 
GASCA) model on all effect and interaction matrices, i.e 
�� , �� and ���.

The Arabidopsis data follows a two factors design 
(time and light condition) with 4 and 7 levels respec-
tively, thus there are two matrices for the effects ( �� and 
�� and one matrix for the interaction ��� .) The overall 
mean explains the 86.7% of the total sum of squares, the 
two factors 0.86% and 1.3% , the interaction 2.1% and the 
residuals 9.1%.

A scatter plot of the first two ASCA components and the 
corresponding loading vectors are given in Fig. 3 for the fac-
tor 1 (light conditions); ASCA is able to resolve the different 
levels of the treatment. but the interpretation is not straight-
forward. As almost all metabolites contribute to the model 
(i.e. have non zero loadings), this makes hard to identify 
which metabolites are important to explain the systematic 
variation induced on the system by manipulating the light 
condition. In the next section we show how GASCA can 
simplify data understanding and interpretation.
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Fig. 1  GASCA modeling for the first factor of the simulated examples: a MEDA map built from the residuals; b score plot c loadings. GASCA 
modeling for the second factor of the simulated examples: d MEDA map built from the residuals; e score plot and f loadings



Group-wise ANOVA simultaneous component analysis for designed omics experiments  

1 3

Page 9 of 18  73 

4.4  Group‑wise ASCA modeling of the plant data 
set

Once the significance of the effects is assessed (this has 
been already done in the ASCA modeling showed in the 
previous section), the group-wise ASCA modeling starts 
from the construction of the variable association map � 
from the original data. Since there is one GASCA model 

for each effect matrix and for each interaction (see model 
in Eq. 1) there are three maps ( �i with i ∈ {�, �, ��} ) to be 
built. As detailed in the Sect. 2 we use Spearman correla-
tion to quantify the relationships among the metabolites, 
retaining only those which are statistically significant (see 
Eq. 4)

The Spearman correlation maps �i are shown in Fig. 4. 
Several groups of (highly) correlated variables are evident 

Fig. 2  PCA model for the Arabidopsis data: a scores and b loadings. 
Only factor 1 (light condition) is color coded. The levels for factor 1 
are: dark (D), light (L), low light (LL) and high light (HL)

Fig. 3  ASCA model for the Arabidopsis data: a scores and b load-
ings. Only factor 1 (light condition) is color coded. The levels for fac-
tor 1 are: dark (D), light (L), low light (LL) and high light (HL)
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Fig. 4  MEDA maps for a factor 
1, light condition; b factor 2, 
iime; c interaction light×Time



Group-wise ANOVA simultaneous component analysis for designed omics experiments  

1 3

Page 11 of 18  73 

in all three cases; however there are many variables not 
contributing to the correlation structure of the data. This 
is a situation in which a GPCA implementation in ASCA 
is adequate because data is sparse in a group-wise fashion

The second step in GASCA is the selection of appropri-
ate � values to control the sparsity of the solution. Since 
there are three maps, three values need to be chosen. Val-
ues can be selected by visually inspecting the map or by 
exploring the number of groups and their size as a function 
of � : this is shown in Fig. 5. For the correlation map for 
factor 1 (light condition, panel a in Fig. 5) the median size 
of the Sk groups is roughly constant for 𝛾 > 0.4 ; however 
the number of variables in the groups decreases sharply 
when increasing � , as expected. We choose �� = 0.85 which 
gives a good compromise between the number of groups 
and their size, with not too many groups of moderate size. 
We use the subscript � to emphasize that this value of � is 
specific for the first factor, indicated with � in the models 
given by Eq. (7)

For factor 2 (Time, panel b in Fig. 5) the number of 
groups sharply decreases with � ( which indicates lower 
correlation among the variables) while the median, maxi-
mum and minim size remains approximately constant. We 
set �� = 0.7 not to have too many groups. Both �� and �� 
values are also in line with what can be inferred by visu-
ally inspecting the correlation plots from Fig. 4, like first 
suggested in the original publication of GPCA (Camacho 
et al. 2017)

For the interaction (light condition × Time, panel c 
in Fig. 5) the total number of groups decrease with � 
while the median, maximum and minimum size remains 
approximately constant. From the visual inspection of 
the correlation map in Fig. 4 panel c, it can be seen that 
there are very few groups of correlated variables, so we 
set ��� = 0.45.

In general � should be set in such a way not to have too 
many groups containing only one or two variables. Because 
sparsity is an inherent property of the data also � is data 
specific and there is not a general rule to define the appro-
priate values which need to be specified with respect with 
the data at hand. However, since � is a threshold on the 
correlation magnitude, its value can be seen in context with 
what observed in metabolomics studies: Camacho (Cama-
cho et al. 2005) suggested to divide correlations values 
into three levels: low ( |�| ≤ 0.6) , medium (0.6 < |𝜌| < 0.8) , 
and high (|| ≥ 0.8) based on metabolic modeling considera-
tions. In general, metabolomics data are abundant in low 

Fig. 5  Number of groups S
k
 and median number of variables per 

group as a function of � for the correlation maps (see Eq.  4 and 
accompanying text for more details) of: a factor 1, light condition; b 
factor 2, iime; c factor interaction (light condition × time)

▸
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Table 1  Loadings for the two 
first components of GASCA 
model for the light condition 
and time effect matrices and 
their interaction

# Metabolites Factors and interactions

Light Time Light × Time

PC1 PC2 PC1 PC2 PC1 PC2

1 4-Hydroxy-benzoic acid 0.360
2 4-Hydroxycinnamic acid 0.365
3 Alanine 0.648
4 Arabinose
5 Arabitol 0.186
6 Ascorbic acid − 0.061
7 Asparagine 0.128 − 0.156
8 Aspartate − 0.549 − 0.195
9 Benzoic acid − 0.155 0.117
10 Beta-alanine − 0.491 − 0.268 − 0.071
11 Citramalate − 0.256
12 Citric acid
13 Citrulline/arginine − 0.084
14 Dehydroascorbic acid 0.293
15 Dehydroascorbic acid dimer
16 Docosanoic acid 0.258
17 Erythritol 0.114
18 Ethanolamine 0.184 − 0.188
19 Fructose 0.262 0.445
20 Fucose − 0.124
21 Fumaric acid 0.084
22 Gaba 0.162 − 0.320 − 0.074
23 Galactinol − 0.109
24 Galactose
25 Gluconic acid − 0.228
26 Glucose 0.315 0.580
27 Glutamate − 0.164
28 Glutamine 0.445
29 Glycerol 0.202
30 Glycolic acid − 0.475
31 Hexacosanoic acid 0.051
32 Hydroxyproline
33 Indole-3-acetonitrile
34 Isoleucine − 0.344 − 0.334
35 Itaconic acid 0.336
36 Lactic acid
37 Leucine − 0.371 − 0.369
38 Lysine 0.214 − 0.352 − 0.449 − 0.005
39 Maleic acid
40 Malic acid
41 Maltose 0.061 − 0.355
42 Mannitol
43 Methionine − 0.340 0.308 0.092
44 Myo-inositol
45 Nicotinic acid
46 O-acetyl-serine 0.254
47 Octacosanoic acid
48 Octadecanoic acid
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correlations as a result of the systemic nature of metabolic 
control (Camacho et al. 2005) and thus the low values 
observed for correlation map of the interaction terms are 
not unexpected.

Once the � values have been specified the GASCA model 
can be finally obtained: the loadings of the model (see Eqs. 7 
and 11) are given in Table 1. Comparing the loadings of 
ASCA (Fig. 3) and GASCA models it is evident the gain in 
simplicity and interpretability of the solutions.

The panel of measured metabolites analyzed here cov-
ers only a tiny fraction of the thousands of low molecular 
weight compounds produced by plants. However, several 
interesting observations can be made by analyzing the 
loadings (see Table 1), which describe the relative contri-
bution of each variable to explain the variation observed 
in the data, associated to the different metabolites in the 
GASCA model. The score plot for the light condition factor 
is given in Fig. 6. The plot is slightly dissimilar from the 
one obtained for the standard ASCA model (see Fig. 3): 
however, separation among the different factor levels is evi-
dent, it should be remember that only subsets of variables 
are used in GASCA, hence differences will be observed 
among ASCA and GASCA score plots while interpretabil-
ity is increased.

The loadings of the first component for the GASCA 
model for the light condition factor indicate substantial 
contribution of phenylalanine and shikimate whose path-
ways are indeed strongly interlinked (Tohge et al. 2013) and 
found to be affected by light (Caldana et al. 2011). Glycolic 
acid, a product of photosynthesis (Jensen and Bassham 
1966), has also a high loading and can be an indicator of 

Table 1  (continued) # Metabolites Factors and interactions

Light Time Light × Time

PC1 PC2 PC1 PC2 PC1 PC2

49 Ornithine
50 Palmitic acid
51 Phenylalanine − 0.505 − 0.178
52 Proline
53 Putrescine − 0.284
54 Pyruvic acid
55 Serine
56 Shikimate − 0.236 0.335 0.163
57 Similar to adenine
58 Sinapic acid
59 Succinic acid − 0.251
60 Sucrose − 0.328 0.167
61 Tetracosanoic acid 0.320
62 Threonic acid − 0.149
63 Threonine
64 Trehalose
65 Tyrosine − 0.405 − 0.325
66 Uracil 0.244
67 Valine 0.185 − 0.318

Null loadings are omitted

Fig. 6  Score plot for the GASCA model for the first factor (light con-
dition) of the plant data
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varying photosynthetic activity depending on the light 
levels.

The second components contains contributions from 
sugars (glucose, fructose, fucose), which is not surprising 
since plants transform carbon dioxide into sugars which 
are then used as energy source. Notably glutamine has 
here the larger loading, and this may indicate reduced 
glutamine synthetase activity, which plays a role in the 
control of photosynthetic responses to high light (Brestic 
et al. 2014).

Arginine is metabolically connected to glutamate: glu-
tamate is used to synthesize ornithine from which arginine 
synthesis follows with citrulline as intermediate (Winter 
et al. 2015). Interestingly, ornithine does not contribute to 
the model indicating that likely the variance in the enzymes 
that control the reaction affects both metabolites in equal 
amounts and different directions resulting in very low cor-
relation among these metabolites. Overall, the arginine bio-
synthesis in plant is poorly understood (Winter et al. 2015) 
and light modulating effects have been suggested (Frémont 
et al. 2013).

Fig. 7  a Correlation matrix obtained from the effect matrix for the human data. b Cross-validation plot for the residual matrix (see Eq. in the 
main text.) c MEDA map fitted with 20 components. d Number of groups S

k
 and median number of variables per group as a function of �
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Concerning the factor Time (minutes of growth under a 
given light condition), the first component is dominated by 
benzoic acid whose synthesis pathway in plants has yet to 
be fully characterized (Moerkercke et al. 2009). This com-
ponent contains also the branched amino acid leucine, iso-
leucine and valine whose biosynthesis in plants follows the 
reaction pathways established in microorganisms (Binder 
2010) and play a pivotal role in plant development (Singh 
1998)

Analysis of the loadings for the first two components 
for the interaction effect light condition × Time shows that 
succinate and leucine, isoleucine and methionine have 
high loading contribution and this indicates a link between 
amino acids and the tricarboxylic acid (TCA) cycle via 
succinate which is both light and time dependent. This 
suggests that amino acids produced by an increased pro-
tein biosynthesis may be used to fuel central metabolism 
(Caldana et al. 2011). Interestingly, also the 4-aminobu-
tyric acid (GABA) has also high loading which suggests a 
possible role of this compound in fueling the TCA cycle. 
Using a differential network approach, Caldana and cow-
orkers also highlighted GABA and suggested, building on 
a previous study (Taylor et al. 2004), that branched amino 
acids may promote their own degradation to acetyl-CoA, 
propionyl-CoA and acetoacetate that can subsequently 
enter the TCA cycle.

It is interesting to note that lysine is the only metabolite 
that appears in the models for all three effect matrices, thus 
providing a link between the plant response to light condi-
tion, plant development and their interaction. Indeed, it has 
been shown that lysine metabolism is strongly associated 
with the functioning of the tricarboxylic acid cycle while 
being largely disconnected from other metabolic networks 
(Angelovici et al. 2009): lysine catabolism into the TCA 
cycle seems to be fundamental for seed and plant develop-
ment (Galili et al. 2014).

4.5  GASCA analysis of the human data set

We present here the analysis of the second experimental data 
set using GASCA. The experimental design follow a 1-factor 
ANOVA model with just two levels (subject 1 and 2). In this 
case is not possible to define a meaningful correlation matrix 
starting from the effect matrix as noted in the Sect. 2, which 
is shown in Fig. 7 panel a. For this reason we built the vari-
able association map � starting from the matrix

which the analogue for one-way design of Eq. (8), using 
the MEDA approach. To determine the optimal number of 
components to fit the MEDA map we use cross-validation, 
but other approaches are possible. Figure 7 panel b shows 
the cross-validation plot, from which we infer 20 to be the 
optimal dimensionality. This is used to obtain the MEDA 
map (see Eq. 3) shown in Fig. 7 panel c. As typical for NMR 
data sets, there is a high degree of correlations: the number 
of groups sharply decreases with the threshold � and we opt 
here for a rather sparse model by selecting � = 0.6 , as shown 
in Fig. 7 panel d.

Since the design has only two levels, there is only 
one component in the GASCA model for this data. The 

(9)�� = � − ��T,
Fig. 8  a Scores for the GASCA model for the human data. b Average 
NMR spectrum: the bins/ppm corresponding to the non-zero loadings 
for the GASCA component are highlighted in red
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monodimensional scores are shown in Fig. 8 panel a where 
it is evident the separation among the scores correspond-
ing to the NMR spectra belonging to the Subject 1 and 2. 
The loadings for this component are shown in Fig. 8 panel 
b: a few ppm are selected (3.69, 3.71, 3.83, 3.87, and 3.89) 
which correspond to signal from dimethylglycine, citrate, 
trimethylamine and �-ketoglutarate. Citrate and �-ketoglu-
tarate are intermediate of the TCA cycle. Dimethylglycine 
and trimethylamine are two metabolites associated, among 
others, with the activity of gut microflora, confirming the 
role of gut microflora activity to the shaping of the indi-
vidual urinary metabolic phenotype (Bernini et al. 2009; 
Saccenti et al. 2016).

5  Conclusions

Designed omics experiments are becoming increasingly 
complex with many factors considered simultaneously and 
having high dimensional multivariate responses. We have 
proposed here Group-wise ANOVA simultaneous compo-
nent analysis (GASCA), an extension of the well established 
ANOVA-simultaneous component analysis (ASCA), which 
implements the idea of group-wise sparsity to arrive to solu-
tions which are easier to interpret. The use of GASCA is 
advisable when data is sparse in a group-wise fashion, that 
is when there are groups of correlated/associated variables: 
this can be easily checked by visually inspecting the associ-
ation maps built from the data. In this case GASCA models 
are easier to interpret than the ASCA counterpart.

The characteristics of the method are shown through the 
analysis of a real-life metabolomics experiments concern-
ing the growth of Arabidopsis thaliana under different light 
conditions and phenotyping of healthy subjects. Results 
are compared with those of classical PCA and ASCA. It is 
shown that the GASCA models, containing only selected 
subsets of the original variables, are easier to interpret and 
describes relevant biological processes. We showed how the 
selection of closely related variable points to biologically 
relevant effects that are otherwise lost when all variables 
are considered. Finally, GASCA is applicable to any kind 
of omics data obtained through designed experiments such 
as, (but not limited to) gene expression and proteomic data.
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Appendix

Once the set of groups of variables S1, S2,… Sk,… SK have 
been identified, for instance with MEDA and GIA, the algo-
rithmic procedure to obtain a GPCA model from the data 
matrix � is as follows:

Step 1 Initialize

where � has dimension J × J and I is a J × J identity 
matrix.

Step 2 For the a-th component with a = 1, 2,… ,A

Step 2.1 For the k-th group Sk of correlated vari-
ables Sk , with k = 1, 2,… ,K

Step 2.1.1 Build the matrix �k from � by setting to 
zero the variables not belonging to Sk group.

where ck
lm

 is the l-th, m-th element of �k

Step 2.1.2 Perform eigendecomposition of �k and 
select the first eigenvector.

Step 2.2: Choose the loadings and scores of compo-
nent a from the group capturing the most variance.

� =�T�

� =�

(10)ck
lm

= 0, ∀l ∉ Sk or ∀m ∉ Sk

�k = �k(�k)2(�k)T + �k

(11)�a =argmin��‖�k‖F

(12)�a =��a

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Step 2.3: Perform the deflation according to 
(Mackey, 2008).

Per each component, the GPCA algorithm computes 
K potential loading vectors, each of them with non-
zero elements only for the set of variables corre-
sponding to group Sk . To do that, it discards all the 
elements of the covariance matrix that do not corre-
spond to variables in Sk and performs a rank-1 eigen-
decomposition on the resulting covariance. Compar-
ing the resulting K eigenvectors, it selects the one 
with the highest variance, discarding the rest. Using 
this loading vector, the complete matrix C and the 
data matrix is deflated following (Mackey, 2008) to 
continue with successive components.
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