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Abstract 
Despite citation counts from Google Scholar (GS), Web of Science (WoS), and Scopus being 
widely consulted by researchers and sometimes used in research evaluations, there is no recent 
or systematic evidence about the differences between them. In response, this paper investigates 
2,448,055 citations to 2,299 English-language highly-cited documents from 252 GS subject 
categories published in 2006, comparing GS, the WoS Core Collection, and Scopus. GS 
consistently found the largest percentage of citations across all areas (93%-96%), far ahead of 
Scopus (35%-77%) and WoS (27%-73%). GS found nearly all the WoS (95%) and Scopus (92%) 
citations. Most citations found only by GS were from non-journal sources (48%-65%), including 
theses, books, conference papers, and unpublished materials. Many were non-English (19%-
38%), and they tended to be much less cited than citing sources that were also in Scopus or WoS. 
Despite the many unique GS citing sources, Spearman correlations between citation counts in 
GS and WoS or Scopus are high (0.78-0.99). They are lower in the Humanities, and lower 
between GS and WoS than between GS and Scopus. The results suggest that in all areas GS 
citation data is essentially a superset of WoS and Scopus, with substantial extra coverage. 
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1. Introduction 
The launch of Google Scholar (GS) in November of 2004 brought the simplicity of Google 
searches to the academic environment, and revolutionized the way researchers and the public 
searched, found, and accessed academic information. Until that point, the coverage of academic 
databases depended on lists of selected sources (usually scientific journals). In contrast, and 
using automated methods, Google Scholar crawled the web and indexed any document with a 
seemingly academic structure. This inclusive approach gave GS potentially more comprehensive 
coverage of the scientific and scholarly literature compared to the two major existing 
multidisciplinary databases with selective journal-based inclusion policies, the Web of Science 
(WoS) and Scopus (Orduna-Malea, Ayllón, Martín-Martín, & Delgado López-Cózar, 2015). 

Although citation data in Google Scholar was originally intended to be a means of identifying the 
most relevant documents for a given query, it could also be used for formal or informal research 
evaluations. The availability of free citation data in Google Scholar, together with the free software 
Publish or Perish (Harzing, 2007) to gather it made citation analysis possible without a citation 
database subscription (Harzing & van der Wal, 2008). Nevertheless, GS has not enabled bulk 
access to its data, reportedly because their agreements with publishers preclude it (Van Noorden, 
2014). Thus, third-party web-scraping software is currently the only practical way to extract more 
data from GS than permitted by Publish or Perish. 

Despite its known errors and limitations, which are consequence of its automated approach to 
document indexing (Delgado López-Cózar, Robinson-García, & Torres-Salinas, 2014; Jacsó, 
2010), GS has been shown to be reliable and to have good coverage of disciplines and 
languages, especially in the Humanities and Social Sciences, where WoS and Scopus are known 
to be weak (Chavarro, Ràfols, & Tang, 2018; Mongeon & Paul-Hus, 2016; van Leeuwen, Moed, 
Tijssen, Visser, & Van Raan, 2001). Analyses of the coverage of GS, WoS, and Scopus across 
disciplines have compared the numbers of publications indexed or their average citation counts 
for samples of documents, authors, or journals, finding that GS consistently returned higher 
numbers of publications and citations (Harzing, 2013; Harzing & Alakangas, 2016; Mingers & 
Lipitakis, 2010; Prins, Costas, van Leeuwen, & Wouters, 2016). Citation counts from a range of 
different sources have been shown to correlate positively with GS citation counts at various levels 
of aggregation (Amara & Landry, 2012; De Groote & Raszewski, 2012; Delgado López-Cózar, 
Orduna-Malea, & Martín-Martín, 2018; Kousha & Thelwall, 2007; Martín-Martín, Orduna-Malea, 
& Delgado López-Cózar, 2018; Meho & Yang, 2007; Minasny, Hartemink, McBratney, & Jang, 
2013; Moed, Bar-Ilan, & Halevi, 2016; Pauly & Stergiou, 2005; Rahimi & Chandrakumar, 2014; 
Wildgaard, 2015). See the supplementary materials 4 , Delgado López-Cózar et al. (2018), 
Orduña-Malea, Martín-Martín, Ayllón, & Delgado López-Cózar (2016), and Halevi, Moed, & Bar-
Ilan (2017) for discussions of the wider strengths and weaknesses of GS. 

A key issue is the ability of GS, WoS, and Scopus to find citations to documents, and the extent 
to which they index citations that the others cannot find. The results of prior studies are confusing, 
however, because they have examined different small (with one exception) sets of articles. A 
summary of the results found in these previous studies is presented in Table 1. For example, the 
number of citations that are unique to GS varies between 13% and 67%, with the differences 
probably being due to the study year or the document types or disciplines covered. The only 
multidisciplinary study (Moed et al., 2016) checked articles in 12 journals from 6 subject areas, 
which is still a limited set. 

                                                      
4 Supplementary materials available from https://dx.doi.org/10.31235/osf.io/pqr53 
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Table 1. Results of studies that analysed unique and overlapping citations in GS, WoS, and Scopus 

NA = not analysed in the study 
Cells with more intense background color represent higher percentages of citations within the same sample of documents.

Study Sample N 
citations 

% 
only 
GS 

% only 
WoS 

% only 
Scopus 

% only 
GS & 
WoS 

% only 
GS & 

Scopus 

% only 
WoS & 
Scopus 

% GS & 
WoS & 
Scopus 

 % GS (all 
cit.) 

% WoS 
(all cit.) 

% 
Scopus 
(all cit.) 

 % WoS cit. in 
GS 

% Scopus 
cit. in GS 

Bakkalbasi, 
Bauer, Glover, 
& Wang (2006) 

50 journal articles covered 
in JCR Oncology 614 13 7 12 4 5 28 31  53 70 76  215/431 = 

50% 
220/469 = 

47% 
50 journal articles covered 
in JCR Physics, Cond. 
Matter 

296 17 20 8 9 3 22 21 
 

50 72 54 
 

84/212 = 40% 72/162 = 
44% 

Yang & Meho 
(2007) 

Scientific production of two 
Library & Information 
Science (LIST) 
researchers 

385 10 23 6 10 7 18 25 

 

52 77 57 

 
137/295 = 

46% 
124/218 = 

57% 

Meho & Yang 
(2007) 

1,457 articles published by 
25 LIS researchers 5,285 48 Only (WoS or 

Scopus): 21 
GS-(WoS or 
Scopus): 31 NA NA  79 38 44  % (WoS or Scopus) cit. in GS 

1,629/2,733 = 60% 

Kousha & 
Thelwall (2008) 

262 WoS-covered Biology 
journal articles 1,554 17 28 

NA 

55 

NA 

 72 83 

NA 

 847/1288 = 
66% 

NA 

276 WoS-covered 
Chemistry journal articles 729 8 62 30  38 92  218/668 = 

33% 
262 WoS-covered Physics 
journal articles 1,734 36 24 40  76 64  690/1111 = 

62% 
82 WoS-covered 
Computing journal articles 3,369 67 14 19  86 33  632/1117 = 

57% 
Total WoS-covered journal 
articles (882) 7,386 43 24 32  76 57  2387/4184 = 

57% 
Jacimovic, 
Petrovic, & 
Zivkovic (2010) 

158 articles published in 
Serbian Dental Journal 249 58 4 6 1 2 15 15 

 
76 34 39 

 39/85 = 
46% 

43/94 =  
46% 

Bar-Ilan (2010) 
Book “Introduction to 
Informetrics” by L. Egghe 
and R. Rousseau 

397 27 12 2 6 5 9 39 
 

77 66 55 
 177/259 = 

68% 
174/218 = 

80% 

Lasda Bergman 
(2012) 

5 top journals in the field 
of Social Work 4,308 44 5 8 2 8 12 22  76 41 50  1042/1741 = 

60% 
1285/2126 = 

60% 

de Winter, 
Zadpoor, & 
Dodou (2014) 

Garfield, E. (1955). 
Citation indexes for 
science. Science, 
122(3159), 108-111. 

1,309 33 41 NA 35 NA 

 

68 76 NA 

 
453/606 = 

75% NA 

Rahimi & 
Chandrakumar 
(2014) 

2,082 WoS-covered 
articles in General and 
Internal Medicine 

62,900 29 10 11 2 9 8 31 
 

71 51 59 
 20532/31778 

= 65% 
25180/37272 

= 68% 

Moed, Bar-Ilan, 
& Halevi (2016) 

Articles published in 12 
journals from 6 subject 
areas 

6,941 47 NA 6 NA 47 NA NA 
 

94 NA 53 
 

NA 3246/3651 = 
89% 
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The fields previously compared for citation sources (Table 1) are Library and Information Science 
(5 out of 10 articles analyse case studies about LIS documents/journals/researchers), Medicine 
(3 papers, analysing oncology, general medicine, and dentistry), Physics (2 articles: general and 
condensed matter), Chemistry (2 articles: general and inorganic), Computer Science (2 articles: 
general, and computational linguistics), Biology (2 articles: general, and virology), Social Work, 
Political Science, and Chinese Studies (1 article each). From this list it is clear that most academic 
fields have not been analysed for Google Scholar coverage. The studies used small samples of 
documents and citations (9 out of 10 papers analysed less than 10,000 citations), probably 
because of the difficulty of extracting data from GS, caused by the lack of a public API (Else, 
2018; Van Noorden, 2014). Moreover, the most recent data in these studies was collected in 2015 
(three years before the current study), and the oldest data is from 2005 (13 years ago).  

Given the limited nature of all prior studies of citing sources for GS and the need to update all 
previous research, a comprehensive analysis of citation sources in GS, WoS, and Scopus across 
all subject areas is needed. This information is important for those deciding whether to use GS 
citation counts for informal or formal research evaluations. The following research questions drive 
this investigation. 

RQ1. How much overlap is there between GS, WoS, and Scopus in the citations that they 
find to academic documents and does this vary by subject? 

RQ2. Do the citing documents that are only found by GS have a different type to non-unique 
GS citations, and does this vary by subject?  

RQ3. How similar are citation counts in GS to those found in WoS and Scopus, at the level 
of subjects? 

2. Methods 

The sample used for this study is taken from GS’s Classic Papers product (GSCP)5. The 2017 
edition of GSCP lists 2,515 highly-cited documents written in English and published in 20066. 
These documents were classified by GS into 252 subject categories within 8 broad subject areas. 
Background about GSCP can be found in Orduna-Malea, Martín-Martín, & Delgado López-Cózar 
(2018) and Martín-Martín, Orduna-Malea, & Delgado López-Cózar (2018). This gives a large 
sample of highly cited documents classified by subject. This is not a random sample of academic 
publications because there is no complete list of these. There is also not a complete list of 
documents in GS. 

The GSCP sample is suitable because it covers all subject areas and, because the articles are 
classified, allows analyses by subject categories. GSCP and Google Scholar Metrics7 (GSM) are 
the only products where GS provides a subject categorization. Taking a sample from one of the 
three sources to be compared (GS, Scopus, WoS) is not ideal because it is likely to bias the 
results in favour of GS. Nevertheless, the inclusion of 252 categories minimizes the chance of 
bias due to a subject area that is not well covered by GS. GS is also a better source than WoS or 
Scopus because of its more comprehensive coverage, as found by most prior studies. 

 

2.1. Extraction of data from Google Scholar 

The citations to each of the 2,515 GSCP documents were extracted from GS, WoS, and Scopus 
between April 22nd and May 6th, 2018. A custom script scraped all the relevant information from 
GS SERPs (Search Engine Results Pages) (Figure 1). Searches were submitted from 
                                                      
5 https://scholar.google.com/citations?view_op=list_classic_articles&hl=en&by=2006 
6 https://osf.io/5zmk7/ 
7 https://scholar.google.com/citations?view_op=top_venues&hl=en 
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Universidad de Granada IP addresses to access the additional information displayed in GS for 
WoS subscribers (Clarivate Analytics, 2015). CAPTCHAs were solved manually when GS 
requested them. This process found 2,415,072 citations in Google Scholar8 to the 2,515 highly-
cited documents. The number of citations is reduced to 2,301,997 for the 2,299 highly-cited 
documents also covered by WoS and Scopus. 

 
1. Title of the document. 
2. URL embedded in title of the document. The DOI of the document is sometimes 

embedded in this URL (depending on the host) 
3. Authors, publication venue, publication year, and publisher or web domain that hosts the 

document. 
4. URL to the freely accessible full text of the document, when available. 
5. Times cited according to GS. 
6. URL pointing to list of citing documents according to GS. GS’s internal ID for the 

document is embedded in this URL. 
7. Number of versions of the document found by GS. 
8. Times Cited according to WoS (when the document is also covered by WoS). 
9. URL pointing to list of citing documents in WoS. WoS’s internal ID (UT) for the document 

is embedded in this URL. 

 The data was processed to clean and enrich the limited metadata available in GS, as follows.  

• DOI were detected for as many citing documents as possible. The following techniques 
were used, retrieving 1,501,178 DOIs (62%). 

o Extracted from URLs for publishers like Wiley, Springer, and SAGE which embed 
the DOI in the article’s landing page URL (Figure 1, #2). 

o Looked up with public APIs offered by the publishers (Elsevier, IEEE) or 
CrossRef9 (using the alternative-id filter option), when the publisher landing page 
contained publisher document ID. 

o Extracted from a HTML Meta tag in the webpage from which Google Scholar 
extracted the document’s metadata. 

• Metadata was obtained from CrossRef and DataCite APIs when a DOI was available or 
otherwise from HTML Meta tags present in the website hosting the citation, when 
possible.  

2.2. Extraction of data from Web of Science and Scopus 

Each of the 2,515 highly-cited documents in GSCP was searched for in the WoS (Core Collection) 
web interface. The list of citations to each document was extracted (in batches of up to 500 
                                                      
8 https://osf.io/qg8kb/ 
9 https://www.crossref.org/services/metadata-delivery/rest-api/ 

Figure 1. Metadata extracted from Google Scholar 
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records per download). The exported files were consolidated into a single table using a set of R 
functions developed for this purpose (Martín-Martín & Delgado López-Cózar, 2016). Although R 
has built-in functions and additional libraries to read tabulated data, none of them seemed to work 
with data exported from WoS. A total of 1,270,225 WoS records were collected10. At the time of 
data collection  FECYT11, the Spanish organization that manages the national subscription to 
Clarivate Analytics’ services, had not subscribed to the Emerging Sources Citation Index (ESCI) 
Backfile for documents published between 2005 and 2014 (Clarivate Analytics, 2017), and so the 
results exclude this source.  

Each of the 2,515 highly-cited documents in GSCP were also searched for in the Scopus web 
interface. This has a limit of 2,000 records when exporting citations. When a highly-cited 
document had more than 2,000 citations, these could still be extracted using the alternative email 
service, which allows the extraction of up to 20,000 citation records in one go. A total 1,515,436 
Scopus records were collected12. 

Most of the highly-cited documents (2,299 out of 2,515) were covered by all three databases, and 
the citations to these 2,299 documents are analysed here. 

2.3. Identification of document types and languages of citing 
documents 

Unlike WoS and Scopus, GS does not provide metadata on the document type and the language 
of the documents that it covers. The metadata extracted from CrossRef’s API and HTML Meta 
tags of the hosting website gave this information for 83% of the citing documents. Adding 
metadata from WoS and Scopus increased this percentage to 85%. The following categories were 
used. 

• Journal publication: article, review, letter, editorial… 
• Conference paper: paper presented at conference, symposium, workshop, society 

meeting… 
• Book or book chapter: scientific/scholarly monograph 
• Thesis or dissertation: document presented by student to fulfill the requirements of a 

doctoral, masters’, or bachelor’s degree 
• Other not-formally-published scientific/scholarly paper: working paper, discussion paper, 

other paper for which no formal publication venue could be found. 
• Other: report, patent, presentation slides, syllabus, educational materials, errata… 
• Unknown: document for which no document type could be identified 

To identify the distribution of document types in the 15% for which metadata was not available, 
eight random samples of 500 citing documents with an unknown document type were selected, 
one for each of the broad subject categories in which GSCP are classified. The document types 
of these 4,000 citing documents were manually identified by accessing and perusing the full text 
of the documents (when possible) or the available metadata. The proportion of document types 
found in these random samples were applied as a correction factor to the percentage of citations 
with an unknown document type in each broad subject area. For example, in the Social Sciences, 
33.5% of the citing documents were classified as journal articles using the available metadata, 
but 20% of all citing documents could not be classified with the available metadata. A random 
sample of documents from that unknown 20% were selected and analyzed manually, finding that 
27.6% of the items in the random sample were journal articles. Therefore, the total percentage of 
journal articles in Social Sciences was 33.5% + (27.6% of 20% = 5.5%) = 39%. 

The language of 98% of the citing documents was identified by combining data from three sources 
(in the order of preference shown below). 

                                                      
10 https://osf.io/6c7ta/ 
11 https://www.fecyt.es/ 
12 https://osf.io/n6k9w/ 
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1. Metadata in CrossRef and HTML Meta tags. 
2. Metadata in WoS (Scopus did not provide document language information).  
3. Google’s Compact Language Detector 213 applied to the document title. 

For RQ1, the citations extracted from GS, WoS and Scopus were matched as follows. Three 
pairwise matching processes were carried out: GS–Scopus; GS–WoS; and Scopus–WoS. 

1. For each pair of databases A and B, and a highly-cited document from GSCP X, all 
citing documents with a DOI that cite X according to A where matched to all citing 
documents with a DOI that cite X according to B.  

2. For each of the unmatched documents citing X in A and B, a further comparison was 
carried out. The title of each unmatched document citing X in A was compared to the 
titles of all the unmatched document citing  X in B, using the restricted Damerau-
Levenshtein distance (optimal string alignment) (Damerau, 1964; Levenshtein, 1966). 
The pair of citing documents which returned the highest title similarity (1 is perfect 
similarity) was selected as potential matches. This match was considered successful if 
either of the following conservative heuristics was met. 

o The title similarity was at least 0.8, and the citing document title was at least 30 
characters long (to avoid matches between titles like “Introduction”). 

o The title similarity was at least 0.7, and the first author of the citing document 
was the same in A and B. 

For RQ2, the document types, languages, and citation counts of the citing documents in our 
sample (see Figure 2) were aggregated or averaged by GSCP broad subject areas, differentiating 
between unique GS citations and overlapping citations. 

For RQ3, Spearman correlation coefficients were calculated for the citation counts of the citing 
documents in our sample (GS-WoS, and GS-Scopus), by subject category. Correlation 
coefficients are considered useful in high-level exploratory analyses to check whether different 
indicators reflect the same underlying causes (Sud & Thelwall, 2014). In this case, however, the 
goal is to find out whether the same indicator, based on different data sources, provides similar 
relative values. Spearman correlations were used because it is well-known that the distributions 
of citation counts and other impact-related metrics are highly skewed (De Solla Price, 1976). For 
the GS-WoS comparison, WoS subject categories and (for an additional check) the NOWT 
classification (Tijssen et al., 2010) were used. For the GS-Scopus comparison, the ASJC (All 
Science Journal Classification) available in the Scopus source list (Elsevier, 2018) was used. 

To carry out all these processes, the R programming language (R Core Team, 2014), and several 
R packages and custom functions were used (Dowle et al., 2018; Larsson et al., 2018; Martín-
Martín & Delgado López-Cózar, 2016; Ooms & Sites, 2018; van der Loo, van der Laan, R Core 
Team, Logan, & Muir, 2018; Walker & Braglia, 2018; Wickham, 2016). The resulting data files are 
openly available14. 

                                                      
13 https://github.com/CLD2Owners/cld2 
14 https://osf.io/gnb72/ 
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Figure 2. Visual representation of the documents and citation counts analysed in this 
study 

3. Results 
3.1. RQ1: Citing source overlap 

Overall, 46.9% of all citations were found by the three databases (Figure 3). GS found the most 
citations, including most of the citations found by WoS and Scopus. In contrast, only 6% of all 
citations were found by WoS and/or Scopus, and not by GS.  An additional 10.2% of all citations 
were found by both GS and Scopus (7.7%), or GS and WoS (2.5%). Over a third (36.9%) of all 
citations were only found by GS. 

 

Figure 3. Percentage of unique and overlapping citations in google scholar, Scopus, 
and Web of Science. n = 2,448,055 citations from all subject areas 
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When citations are disaggregated by the broad subject area in which the cited document was 
classified according to GSCP, important differences emerge (Figure 4). In Humanities, Literature 
& Arts, Social Sciences, and Business, Economics & Management the proportion of unique GS 
citations is well over 50% of all citations, surpassing 60% in the case of Business, Economics & 
Management. In these categories the proportion of citations found by all three databases ranges 
from 21.4% (Humanities, Literature & Arts) to 29.8% (Social Sciences). On the other hand, in 
Engineering & Computer Science, Physics & Mathematics, Health & Medical Sciences, Life 
Sciences & Earth Sciences, and Chemical & Material Sciences, the proportion of unique GS 
citations is much lower (20.3% - 34.3%), and the overlap is higher: percentages of citations found 
by all three databases range from 46.8% (Engineering & Computer Science) to 67.7% (Chemical 
& Material Sciences). 

For the 252 specific subject categories (data and figures for each category are available in the 
supplementary materials 15 ), there are more extreme differences (Figure 5). The highest 
percentages of unique citations in GS (over 70% of all citations) are found in Educational 
Administration16, Foreign Language Learning17, Chinese Studies & History18, and Finance19. On 
the other hand, the highest percentages of overlap in the three databases (over 70% of all 
citations) are found in Crystallography & Structural Chemistry20, Molecular Modeling21, Polymers 
& Plastics22, and Chemical Kinetics & Catalysis23. 

                                                      
15 https://osf.io/t3sxh/ 
16 https://osf.io/xfepy/ 
17 https://osf.io/wk6se/ 
18 https://osf.io/q8k3u/ 
19 https://osf.io/56azc/ 
20 https://osf.io/ysg2j/ 
21 https://osf.io/cq8j6/ 
22 https://osf.io/4jwta/ 
23 https://osf.io/9hmf3/ 
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Figure 4. Percentage of unique and overlapping citations in Google Scholar, 
Scopus, and Web of Science, by broad subject area of cited documents 
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Figure 5. Categories with many unique citations or many overlapping citations 



12 
 

Overall, GS found 94% of all citations (93%-96% depending on the area), while WoS found 52% 
(ranging from 27% in Humanities, Literature & Arts, to 73% in Chemical & Material Sciences), and 
Scopus 60% (from 35% in Business, Economics & Management, to 77% in Chemical & Material 
Sciences). Additionally, GS found 95% of the citations that WoS found (88%-97% depending on 
the area), and 92% of the citations that Scopus found (84-94%) (Table 2). The data also shows 
that Scopus found 93% of the citations that Web of Science found (83-96% depending on the 
area). 

Table 2. Percentage of citations in Google Scholar, Web of Science, and Scopus, 
relative to all citations, and relative to citations found by other databases 

 % GS  
(all cit.) 

% WoS 
 (all cit.) 

% 
Scopus 
(all cit.) 

% WoS 
cit. in GS 

% 
Scopus 

cit. in GS 

% WoS 
cit. in 

Scopus 
Overall 94 52 60 95 92 93 

Humanities, Literature & Arts 93 27 36 88 84 83 
Social Sciences 94 35 43 93 89 89 

Business, Economics & 
Management 96 28 35 93 92 89 

Engineering & Computer 
Science 93 52 63 94 90 94 

Physics & Mathematics 96 59 64 97 94 94 
Health & Medial Sciences 94 54 62 95 91 93 

Life Sciences & Earth Sciences 95 62 67 96 93 95 

Chemical & Material Sciences 94 73 77 95 94 96 

The results for the 252 specific subject categories (available in the supplementary materials24) 
show that GS covers at least 90% of all citations in 233 out of 252 categories, the lowest value 
being 77% in Visual Arts25, and the highest values around 98% in Crystallography & Structural 
Chemistry26, Evolutionary Biology27, Quantum Mechanics28, and Astronomy & Astrophysics29. 
Relative to the coverage of WoS and Scopus, GS finds at least 90% of the citations that WoS and 
Scopus find in 221 and 164 categories, respectively, the lowest values belonging to the 
Humanities, such as Film30, Visual Arts31, and History32 (56%-68%). 

3.2. RQ2. Unique and non-unique citations 
3.2.1. Document types 

The distribution of document types of unique GS citations greatly differs from that of citations that 
were also found by WoS and/or Scopus. This is true across all eight broad subject categories 
(Figure 6). Among non-unique citations, the most common document type by far is the journal 
publication (from 71% in Engineering & Computer Science, to 94% in Chemical & Material 
Sciences). The other document types present among non-unique citations are books / book 
chapters and conference papers, with levels varying by subject area. Among unique GS citations, 
however, there is more document type diversity (including many never indexed by WoS or 
Scopus). Although journal publications are still the single most frequent document type, other 
document types comprise over 50% in all subject areas except Health & Medical Sciences (48%). 
The most frequent non-journal document type is the thesis or dissertation (22% in Business, 

                                                      
24 https://osf.io/t3sxh/ 
25 https://osf.io/7ea63/ 
26 https://osf.io/ysg2j/ 
27 https://osf.io/javkb/ 
28 https://osf.io/cr3k2/ 
29 https://osf.io/wmn8c/ 
30 https://osf.io/7dkm3/ 
31 https://osf.io/7ea63/ 
32 https://osf.io/fgrp4/ 
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Economics & Management – 37% in Chemical & Material Sciences), followed by books and book 
chapters (especially in Humanities, Literature & Arts and Social Sciences). This trend is different 
in Engineering & Computer Science, where conference papers are more common than books, 
and in Business, Economics & Management and Physics & Mathematics, where unpublished 
scholarly papers (such as working papers and preprints) are also more frequently used than 
books for scientific communication.  

Considering the 252 specific subject categories33, the percentage of known document types other 
than journal articles in the unique GS citations ranges from approx. 10% in Nonlinear Science, 
Heart & Thoracic Surgery, Natural Medicines & Medicinal Plants, and Oral & Maxillofacial 
Surgery, to over 55% in Special Education, and Computer Hardware & Design. However, unlike 
in the analysis by broad subject categories, a correction factor has not been applied (because no 
random samples were selected and analysed at this level), and therefore the document types of 
a large percentage of the citations are unknown (from approx. 20% in Special Education, and 
Ethnic & Cultural Studies, to over 50% in Quantum Mechanics, Geometry, and Algebra). 

 

Figure 6. Distribution of document types among unique and overlapping citations in 
Google Scholar, by broad subject area of cited documents 

Considering the citations found by WoS and/or Scopus which GS did not find (the citing document 
might be covered by GS without it making the connection between citing and cited document), 
most are from journals (Figure 7). Out of the 63,393 citations found by WoS and not by GS (5% 
of all citations), 41,052 (64% of the WoS citations that GS misses, or 3.2% of all citations analysed 
in this study) are from journals. Among citations from journal publications, there are more that 
were published in journals ranked in Q1 and Q4 of their respective JCR categories (0.9% and 1% 
of all citations), than in Q2 and Q3 (0.6% and 0.5%, respectively). The remaining missing citations 
come from books or book chapters (19% of WoS citations missing from GS, and 1% of all 
citations), and conference papers (15% of WoS citations missing from GS, and 0.8% of all 
citations). The proportions of Scopus citations missing from GS relative to the number of missing 
citations in GS (136,608) are very similar to those in WoS: 68% of journal publications, 19% books 
or book chapters, and 13% of conference papers. In this case, the proportion of Scopus citations 
missing from GS is 9%. 

                                                      
33 https://osf.io/s5ndm/ 
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Figure 7. Proportion of document types among citations found by WoS and Scopus, 
and not by GS 

3.2.2. Languages 

The distribution of languages among the unique GS citations is very different from that of non-
unique citations (Figure 8). Whilst for non-unique citations nearly all documents (97%-100%) were 
published in English, for unique GS citations the percentage ranges from 62% (Health & Medical 
Sciences) to 80% (Humanities, Literature & Arts). This is even though all documents in GSCP 
were published in English. The second most frequent language of unique GS citations was 
Chinese (4%-12%), and all other languages have a share of 4% or lower across all subject areas. 
A few (5%-10%) unique GS citations were published in languages outside the top 11 most 
frequently used languages overall (for all citations in our sample). 

At the level of the 252 specific subject categories34, the categories with a large proportion of non-
English unique GS citations are Geochemistry & Mineralogy (59%), Surgery (56%), Radar, 
Positioning & Navigation (55%), and Cardiology (53%), whereas the categories with the lowest 
                                                      
34 https://osf.io/xuz6w/ 
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share of non-English citations are Astronomy & Astrophysics (10%), High Energy & Nuclear 
Physics (11%), Quantum Mechanics (11%), and Computer Hardware Design (11%). 

 

Figure 8. Distribution of languages among unique and overlapping citations in 
Google Scholar, by broad subject area of cited documents 

3.2.3. Citation counts 

This section analyses the Google Scholar citation counts of the 2,301,997 citing documents 
extracted from Google Scholar. The distributions of log-transformed (ln(1+x) to reduce skewing) 
citation counts among unique GS citations, and overlapping citations (those also found by WoS 
and/or Scopus) are different (Figure 9). Across all subject areas, the median log-transformed 
citation count is always zero and lower than the median of log-transformed citation counts of non-
unique citations. The 95% confidence interval for the mean (represented as a red box in Figure 
9) is also significantly lower for unique GS citations than for non-unique citations. Both unique 
and non-unique citations include many outliers (blue dots in Figure 9). The same pattern occurs 
across the 252 specific subject categories35, although there are 29 categories in which the median 
of the citation counts for the unique GS citations is higher than zero (but still lower than the median 
for overlapping citations). 

                                                      
35 https://osf.io/pm3xh/ 
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Figure 9. Distribution of citation counts among unique and overlapping citations in 
google scholar, by broad subject area of cited document 

3.3. RQ3. Citation count comparisons 

Spearman correlations between citation counts (GS-WoS, GS-Scopus) are close to 1.0 in most 
subject categories (Table 3 and Table 4). Correlations between GS and WoS range from .78 in 
Literature, to .98 in Basic Life Sciences, Biomedical Sciences, Chemistry and Chemical 
Engineering, and Multidisciplinary journals. In 30 out of the 35 areas of research in the NOWT 
classification (Tijssen et al., 2010), the Spearman correlation coefficient is over .90. Correlations 
between Google Scholar and Scopus are even stronger. The weakest correlation is .92 in 
Economics, Econometrics, and Finance, and the strongest is .99 in Chemical Engineering, 
Immunology and Microbiology, and Multidisciplinary. In 20 out of 27 categories in the ASJC 
scheme, correlation coefficients are above .95. The supplementary materials contain tables of 
citation count correlations computed at the level of the 252 WoS subject categories36, and the 
330 ASJC low-level categories37, which give broadly comparable results. The weakest statistically 
significant correlation between GS and WoS at this level38 is in Medieval & Renaissance Studies 
(.69), while the weakest correlation between GS and Scopus39 is .74 in Classics. 

On average, GS finds more citations than WoS and Scopus across all categories (see mean 
citation ratios in Table 3 and Table 4). This effect holds even when citation counts are log-
transformed (1+ln(citations)) to reduce skewness. An inverse relationship between strength of 
correlation coefficients and mean citation ratios of GS over WoS/Scopus is observed. Strong 
correlation coefficients are associated with lower mean ratios, and vice versa. 

 

                                                      
36 https://osf.io/x6mw7/ 
37 https://osf.io/4pf9z/ 
38 https://osf.io/x6mw7/ 
39 https://osf.io/4pf9z/ 
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Table 3. Spearman correlation coefficients, mean ratio, and mean log-transformed 
citation counts of citing documents between GS and WoS, by subject category 

 

Confidence level of Spearman correlations: 99%; p-values < 0.01 

Highest and lowest values of Spearman correlations and mean citation ratios are highlighted in 
bold 

Category (NOWT) N r
Mean ratio of 

citation counts 
GS/WoS

Mean ln(1+citations)    
GS        WoS

3.16

3.37

4.02

2.83

2.65

2.24

1.63

2.92

3.18

1.86

1.86

1.52

3.22

2.50

2.77

2.82

1.72

1.30

1.87

1.82

3.21

2.80

.90

.95

.93

.92

.98

.95

.97

.86

.84

.95

2.37

2.11

3.15

2.87

1.74

3.12

1.99

3.30

.93

.92

1.74

1.60

1.58

1.76

1.90

.78

.94

.91

.91

.98

.97

.95

.90

.94

.95

.90

.90

.93

.92

.83

.95

.97

.97

.96

.98

.96

.97

.98

144,010

8,118

32,875

10,757

28,371

5,062

6,214

6,167

3,149

46,536

28,550

13,227

68,462

19,242

64,791

118,817

129,481

5,145

7,001

11,504

12,955

4,348

368

18,477

17,187

17,006

44,299

223,309

61,199

1,145

Political Science and Public Administration

Psychology

Social and Behavioral Sciences, Interdisciplinary

Sociology and Anthropology

Statistical Sciences

24,176

16,090

134,045

23,183

62,094

Literature

Management and Planning

Mathematics

Mechanical Engineering and Aerospace

Multidisciplinary Journals

Physics and Materials Science

Health Sciences

History, Philosophy and Religion

Information and Communication Sciences

Instruments and Instrumentation

Language and Linguistics

Agriculture and Food Science

Astronomy and Astrophysics

Basic Life Sciences

Basic Medical Sciences

Biological Sciences

Biomedical Sciences

Law and Criminology

Economics and Business

Educational Sciences

Electrical Engineering and Telecommunication

Energy Science and Technology

Environmental Sciences and Technology

General and Industrial Engineering

Chemistry and Chemical Engineering

Civil Engineering and Construction

Clinical Medicine

Computer Sciences

Creative Arts, Culture and Music

Earth Sciences and Technology

0 1.50.75 2.25 3
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Table 4. Spearman correlation coefficients, mean ratio, and mean log-transformed 
citation counts of citing documents between GS and Scopus, by subject category 

 

Confidence level of Spearman correlations: 99%; p-values < 0.01 

Highest and lowest values of Spearman correlations and mean citation ratios are highlighted in 
bold 

  

Category (ASJC) N r
Mean ratio of 

citation counts 
GS/Scopus

Mean ln(1+citations)   
GS        Scopus             

Veterinary 4,550 .98 1.47

Psychology 42,037 .96 2.09

Social Sciences 81,542 .94 2.22

Pharmacology, Toxicology and Pharmaceutics 38,377 .98 1.42

Physics and Astronomy 126,820 .97 1.42

Neuroscience 46,462 .98 1.55

Nursing 19,431 .96 1.80

Medicine 361,217 .97 1.56

Multidisciplinary 18,851 .99 1.43

Materials Science 108,794 .98 1.27

Mathematics 66,239 .94 1.78

Health Professions 12,309 .96 1.79

Immunology and Microbiology 50,615 .99 1.44

Engineering 146,545 .96 1.49

Environmental Science 66,212 .98 1.50

Economics, Econometrics and Finance 22,273 .93 2.83

Energy 31,166 .98 1.35

Dentistry 3,933 .97 1.78

Earth and Planetary Sciences 52,356 .97 1.49

Computer Science 135,932 .94 1.72

Decision Sciences 13,557 .94 2.04

Chemical Engineering 56,569 .99 1.27

Chemistry 118,885 .99 1.23

Biochemistry, Genetics and Molecular Biology 216,180 .99 1.43

Business, Management and Accounting 40,539 .94 2.43

Agricultural and Biological Sciences 109,423 .98 1.45

Arts and Humanities 21,698 .95 2.19

0 1.50.75 2.25 3
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4. Discussion 
4.1. Limitations 

This study analyses a large sample of citations to highly-cited documents from all subject areas 
published in English. In order to generalize the results to all articles, it must be assumed that the 
population of documents that cite highly cited articles is not significantly different from the general 
population of documents that cite articles. This may not be fully true since, for example, highly 
cited articles are presumably more likely to be in emerging research areas and larger specialisms. 
Furthermore, the results may not reflect the citation coverage (in GS, WoS, and Scopus) of 
documents that do not usually cite scientific literature written in English, such as documents that 
address locally or regionally relevant topics written in vernacular languages.  

Because the highly-cited documents from which our sample of citations came were all initially 
selected from Google Scholar, this might have provided an advantage to GS in the comparisons: 
GS might be better suited than WoS or Scopus to find citations for these specific documents, for 
unknown reasons. Nevertheless, the high citation count correlations found in section 3.3 suggest 
that this advantage is not substantial, as the three databases provide essentially the same citation 
rankings at the document level in most subject categories. 

Without access to Clarivate Analytics’ recently created ESCI Backfile for documents published 
between 2005 and 2014, an unknown number of citations in this study are listed as found only by 
GS and/or Scopus, when they are also captured by ESCI. Thus, the results should not be 
interpreted as applying to all possible WoS data. 

Additionally, this article describes a methodology to match citations in GS, WoS, and Scopus at 
the level of cited articles. The rules chosen to classify a potential match as successful were 
intentionally conservative to minimize false positives (citations that are matched by the algorithm, 
despite being different). The matching algorithm probably created some false negatives (citations 
not matched by the algorithm, despite being the same), especially in categories where DOIs are 
less widely used and the matching had to rely more frequently on strict title similarity rules. Thus, 
in some cases the percentages of unique citations might be lower, and percentages of overlaps 
higher, than reported here. 

4.2. Comparison with previous studies 

The data from previous studies (Table 1) reveal a growth over time in the coverage of citations in 
GS. While these studies reported that GS could find 38%-94% of all citations found by any source, 
depending on the discipline(s) of study and the sample analysed, the current study finds values 
that are higher and more consistent across subject areas. The results here are more similar to 
those of the most recent study (Moed et al., 2016) and least similar to the earliest studies 
(Bakkalbasi et al., 2006; Kousha & Thelwall, 2008; Meho & Yang, 2007; Yang & Meho, 2007). 
For example, GS found 94.3% of all citations to GSCP in Chemical & Material Sciences. Although 
not fully comparable, this figure greatly differs from the 38% of all Chemistry citations found by 
GS that Kousha & Thelwall (2008) reported. This is evidence that the citation coverage of GS has 
become much more comprehensive over time. On the other hand, the more recent study by Moed 
et al., (2016) found that GS contained 94% of all citations in their sample, which is the same as 
the current study. 

The percentages of WoS and Scopus citations that GS could find are generally higher in the 
current study than previously reported. While prior studies varied greatly depending on the sample 
(33%-75% of WoS citations, and 44%-89% of Scopus citations), in the current paper GS found 
88%-97% of WoS citations, and 84%-94% of Scopus citations (depending on the area). This high 
relative overlap is a partial cause of the high correlations for citation counts between GS and 
WoS, and GS and Scopus, found  by Martín-Martín et al. (2018). Lastly, this study reports lower 
percentages of unique citations in WoS (up to 1.9% of all citations) and Scopus (up to 4.3%) than 
reported in previous studies (up to 23%40 in WoS, and 12% in Scopus). 

                                                      
40 Considering studies that analysed the three databases (GS, WoS, and Scopus) 
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Regarding the distribution of document types and languages of GS unique citations, there were 
substantial percentages of theses and dissertations (from 22% in Business, Economics & 
Management, to 37% in Chemical & Material Sciences). These are larger than those found by 
Kousha & Thelwall (2008), Bar-Ilan (2010), and Lasda Bergman (2012), which found that up to 
14% of GS unique citations belonged to this category. In the case of books and book chapters 
(from 7% in Chemical & Material Sciences to 19% in Humanities, Literature & Arts), conference 
proceedings (especially in Engineering & Computer Science: 12%), and unpublished materials 
such as preprints (11% in Business, Economics & Management, and 12% in Physics and 
Mathematics), the results are closer to those found by previous studies. The results also show a 
predominance of English for the citing sources, followed by Chinese (4%-12% depending on the 
source). These are similar to the results in Kousha & Thelwall (2008) in that Chinese is the second 
most used language in the sample of citations, although their study found very different 
percentages (approx. 35% in Biology, 25% in Chemistry, and less than 5% in Physics and 
Computing). 

Lastly, the citation correlations between GS and WoS range from .78 in Literature, to .98 in Basic 
Life Sciences, Biomedical Sciences, Chemistry and Chemical Engineering, and Multidisciplinary 
journals, and the correlations between GS and Scopus range from .92 to .99. These correlations 
are similar to some in previous studies (Amara & Landry, 2012; Delgado López-Cózar et al., 2018; 
Martín-Martín et al., 2018; Minasny et al., 2013) but somewhat stronger than the ones found by 
others (De Groote & Raszewski, 2012; Kousha & Thelwall, 2007; Meho & Yang, 2007; Moed et 
al., 2016; Pauly & Stergiou, 2005; Rahimi & Chandrakumar, 2014; Wildgaard, 2015). This may 
be due to the disciplines of previous studies or the use of more recent data in the current paper. 

5. Conclusions 
This study provides evidence that GS finds significantly more citations than the WoS Core 
Collection and Scopus across all subject areas. Nearly all citations found by WoS (95%) and 
Scopus (92%) were also found by GS, which found a substantial amount of unique citations that 
were not found by the other databases. In the Humanities, Literature & Arts, Social Sciences, and 
Business, Economics & Management, unique GS citations surpass 50% of all citations in the 
area. 

About half (48%-65%, depending on the area) of GS unique citations are not from journals but 
are theses/dissertations, books or book chapters, conference proceedings, unpublished materials 
(such as preprints), and other document types. These unique citations are primarily written in 
English, although a significant minority (19%-38% depending on the area) are in other languages. 
The scientific impact of these unique citations themselves is, on average, much lower than that 
of citations also found by WoS or Scopus, suggesting that the GS coverage advantage is mostly 
for low impact documents. Taken together, these results suggest caution if using GS instead of 
WoS or Scopus for citation evaluations. Without evidence, it cannot be assumed that the higher 
citation counts of GS are always superior to those of WoS and Scopus, since it is possible that 
the inclusion of lower quality citing documents reduces the extent to which citation counts reflect 
scholarly impact. For example, some of the citations from Master’s theses may reflect educational 
impact. Therefore, depending on the type of evaluation that needs to be carried out, it might be 
necessary to remove certain types of citing documents from the citation counts, as suggested by 
Prins et al. (2016). 

Spearman correlations between GS and WoS, and GS and Scopus citation counts are very strong 
across all subject categories but weaker in the Humanities (GS-WoS, Literature: .78) and 
Engineering (GS-WoS, Electrical Engineering and Telecommunication: .83). Also, correlations 
between GS and WoS (.78 to .98) are weaker than between GS and Scopus (.92 to .99). The 
weakest correlations are in the categories where there is a greater difference between the citation 
counts provided by GS, and the citation counts provided by WoS/Scopus. Thus, if GS is used for 
research evaluations then its data would be unlikely to produce large changes in the results, 
despite the additional citations found. It would be particularly useful when there is reason to 
believe that documents not covered by WoS or Scopus are important for an evaluation. 
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In conclusion, this study gives the first systematic evidence to confirm prior speculation (Harzing, 
2013; Martín-Martín et al., 2018; Mingers & Lipitakis, 2010; Prins et al., 2016) that citation data in 
GS has reached a high level of comprehensiveness, because the gaps of coverage in GS found 
by the earliest studies that analysed GS data have now been filled. It surpasses WoS and Scopus 
numerically in all areas of research, and is greatly superior in the areas where WoS and Scopus 
have a poor coverage, including the Social Sciences and Humanities. However, at this point there 
is no reliable and scalable method to extract data from GS, and the metadata offered by the 
platform is still very limited, reducing the practical suitability of this source for large-scale citation 
analyses, although manual data collection is possible for small scale uses. Nevertheless, 
providing that a reliable method to extract citation data can be found, the lack of metadata could 
be solved by combining GS citation data with rich openly accessible data, such as that provided 
by CrossRef. 
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