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Summary

Modeling the fatigue behavior of fiber-reinforced polymer composites is a challenging prob-

lem with important implications for safety and cost in a wide range of engineering applica-

tions. The fatigue phenomena in composites is governed by a partially-understood damage

process driven by several multi-scale fracture mechanisms that lead to the progressive al-

teration of mechanical properties such as strength and stiffness, and ultimately to the final

failure of the material. The inherent complexity of this process implies uncertainty in model-

ing, that not only includes the uncertainty as a consequence of uncertain inputs and model

parameters (loading and environmental conditions, mechanical parameters, fitting ”con-

stants”, etc.), but also the uncertainty arising from the idealization of the damage process

by means of a hypothesized model for damage behavior. As a result, not a single model but

numerous model classes can be formulated to represent the actual damage process based on

different assumptions and hypothesis about it.

Over the last few decades, numerous fatigue modeling approaches have been proposed

in the literature as a consequence of the aforementioned lack of knowledge about the ac-

tual damage mechanisms that govern the fatigue behavior in composites. At the same time,

structural health monitoring (SHM) technology has experienced a considerable develop-

ment and a large variety of experimental data can be readily acquired and processed to as-

sess the various health-related properties of composite materials. However, comparatively

less effort has gone into integrating both sources of information, namely, damage models

and SHM data, to quantify the modeling uncertainty under real testing conditions and, as a

by-product, to select and rank the most plausible models among candidates.

In this thesis, several model classes are proposed to simulate the observed fatigue be-

havior in composite materials given by SHM data. These model classes belong to physi-

cally different families of models representing different hypothesis about damage progres-

sion. First, a set of Markov chain model classes for damage evolution is proposed under the

hypothesis that fatigue damage follows an irreversible memoryless stochastic process. It is

accomplished through a novel model parameterization for the Markov chains that efficiently

accounts for the non-stationarity of the damage process. Alternatively, a set of physics-based

model classes is proposed based on several damage-mechanics models that address the re-

lationship between the internal damage mechanisms and their macro-scale manifestation

based on physics-based first principles. These damage-mechanics models are previously
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parameterized through a sensitivity analysis and further embedded stochastically to allow

for uncertainty quantification.

The performance of these families of model classes is investigated using a rigorous

Bayesian inverse problem approach that allows to simultaneously estimate the posterior prob-
ability of a particular model class within a set of candidates for representing the observed

damage response, along with the uncertainty of the underlying model parameters of the

model class. This is accomplished by Bayes’ Theorem, that aims at updating the prior proba-
bility of both, model parameters and model classes, to obtain the aforementioned posterior

(updated) probability given the data.

In this framework, probability is interpreted as a multi-valued (not Boolean) logic that

expresses the relative degree of plausibility of each model class within a set of candidates for

representing the system based on incomplete information from the system response. Model

class assessment is thus considered as an inference about plausible model classes given the

data and not as a quest for the ”true model”. Based on the entire posterior probability of

the model class, robust predictive analyses of damage evolution are obtained. Additional

robustness is achieved by combining the robust predictions of the overall model classes

within the set of candidates, where the contribution of each model class is weighed by its

posterior probability given by Bayes’ Theorem.

The proposed Bayesian framework implies various computational issues and mathe-

matical complexities that have lead to dedicated computational and algorithmic solutions,

which are also contributions of this thesis. In particular one of them, the ABC-SubSim al-

gorithm, has raised to an original contribution in the specialized literature for Approximate

Bayesian Computation, since it has demonstrated higher computational efficiency as com-

pared to the other recent ABC algorithms.

Several case studies are presented to investigate the performance of the proposed model

classes using SHM data from CFRP and GFRP laminates subjected to tension-tension fatigue

loads. In this thesis, a reinterpretation of the Popperian paradigm for the inverse problem

is adopted [Karl R. Popper, The logic of scientific discovery, Basic Books (1959)], by which ex-

perimental data is not intended to be used to validate or falsify a hypothesis/model for the

system, but, instead, to estimate the degree of belief of such hypothesis/model for represent-

ing the observed system response by the data. A key finding from the case studies is that

the simpler model classes turn out to be the best (most plausible) candidates when selected

by striking a balance between average goodness of fit and model complexity, related with

the amount of information extracted from data. Therefore, the principle of Ockham’s razor

seems to hold true for the fatigue modeling framework investigated here, that in this context

can be stated as simpler models that are consistent with data are to be preferred over unnecessarily
complicated ones. This statement is not an imposed condition but a natural outcome when

dealing with models informed by the data in a Bayesian approach, since the application of

Bayes’ Theorem is shown to automatically enforce a quantitative Ockham’s razor.



Resumen

La modelización del comportamiento a fatiga de los materiales compuestos poliméricos re-

forzados con fibras es un problema complejo con importantes implicaciones en seguridad

y coste en un amplio rango de aplicaciones de ingenierı́a. El fenómeno de la fatiga en ma-

teriales compuestos está gobernado por un proceso interno de daño parcialmente conocido

que es dirigido por varios mecanismos de fractura a diferentes escalas, dando lugar a la al-

teración progresiva de propiedades mecánicas como la resistencia y la rigidez, y finalmente

al fallo último del material. La complejidad inherente de este proceso de daño implica in-

certidumbre en la modelización, que no solo incluye la incertidumbre como consecuencia

de inputs y parámetros inciertos, sino también la incertidumbre derivada de la idealización

del proceso de daño mediante un modelo hipotético de comportamiento a fatiga. Como re-

sultado, no solo un único modelo sino numerosas clases de modelos pueden ser formuladas

para idealizar el proceso de daño a partir de diferentes supuestos e hipótesis sobre el mismo.

En las últimas décadas se han propuesto diferentes aproximaciones al problema de mod-

elización como consecuencia de la mencionada falta de conocimiento sobre los mecanis-

mos reales de daño que gobiernan el comportamiento a fatiga en materiales compuestos. Al

mismo tiempo, la tecnologı́a de monitorización de salud estructural ha experimentado un

grado de desarrollo considerable y, en consecuencia, una gran variedad de datos experi-

mentales pueden ser fácilmente adquiridos y procesados para conocer el estado de salud

estructural de los materiales compuestos. Sin embargo, comparativamente menos esfuerzo

de investigación se ha puesto en la integración de ambas fuentes de información, es decir,

modelos de daño y datos de monitorización de salud estructural, para cuantificar la incer-

tidumbre de la modelización en condiciones reales de ensayo y, como subproducto, selec-

cionar y clasificar los modelos más plausibles de entre un conjunto de modelos candidatos.

En esta tesis se proponen varias clases de modelos de evolución de daño para simular

el comportamiento a fatiga en materiales compuestos usando datos de monitorización. Es-

tas clases pertenecen a familias de modelos fı́sicamente diferentes que representan a su vez

hipótesis diferentes acerca de la progresión del daño. En primer lugar se propone un con-

junto de modelos de daño basados en la teorı́a de cadenas de Markov bajo la hipótesis de que

el daño por fatiga sigue un proceso estocástico, irreversible y sin memoria. Esto es llevado a

cabo mediante una novedosa parametrización de las cadenas de Markov que tiene en cuenta

de forma eficiente la no estacionariedad del proceso de acumulación de daño. Alternativa-

mente, se propone un conjunto de modelos basados en mecánica del daño que dan cuenta
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de la relación entre los mecanismos de daño interno y su manifestación a macro-escala me-

diante principios fı́sicos. Estos modelos de mecánica del daño son previamente parametriza-

dos mediante un análisis de sensibilidad y posteriormente embebidos estocásticamente para

permitir la cuantificación de incertidumbre de los mismos.

El comportamiento de estas familias de modelos es investigado mediante un enfoque

basado en el problema inverso Bayesiano, que permite estimar simultáneamente la probabilidad
a posteriori de un modelo dentro de un conjunto de clases de modelos candidatos, junto con

la incertidumbre de los parámetros del modelo. Esto se lleva a cabo mediante el Teorema de

Bayes, que tiene por objeto actualizar la probabilidad a priori de los parámetros del modelo, ası́

como estimar la probabilidad de las clases de modelos candidatos. En este marco Bayesiano,

la probabilidad es interpretada como una sentencia lógica de varios valores (no Booleana)

que expresa el grado de plausibilidad de cada clase de modelos dentro de un conjunto de

clases para representar la respuesta del sistema basada en información incompleta de la

misma. Por tanto, la evaluación del comportamiento de cada clase se considera como una

inferencia sobre el conjunto de clases de modelos plausibles dados los datos y no como una

búsqueda del ”modelo verdadero”. Basado en la probabilidad total a posteriori de la clase

de modelos, puede obtenerse mediante simulación la predicción robusta de la evolución del

daño. Una robustez adicional en la predicción se consigue combinando las predicciones ro-

bustas de las distintas clases dentro del conjunto de clases candidatas, donde la contribución

de cada clase es multiplicada por su probabilidad a posteriori dada por el Teorema de Bayes.

El marco Bayesiano propuesto implica una serie de complejidades computacionales

y matemáticas que han dado lugar a soluciones computacionales y algoritmos es-

pecı́ficamente diseñados, que son también contribuciones de esta tesis doctoral. En partic-

ular uno de ellos, el algoritmo ABC-SubSim, ha emergido como contribución original en la

literatura especializada de Cálculo Bayesiano Aproximado (ABC, por sus siglas en inglés),

ya que ha demostrado mayor eficiencia computacional en comparación con otros algoritmos

recientes de ABC.

Las clases de modelos investigados en esta tesis han sido evaluadas mediante varios

casos de estudio utilizando datos de monitorización de daño en laminados de fibra de car-

bono y fibra de vidrio sometidos a cargas de fatiga tipo tensión-tensión. En esta tesis se ha

adoptado una reinterpretación del paradigma Popperiano para el problema inverso [Karl

R. Popper, The logic of scientific discovery, Basic Books (1959)], por el cual los datos experi-

mentales no son entendidos para ser usados para validar o falsar una hipótesis/modelo del

sistema, sino en cambio, para estimar el grado de plausibilidad de dicha hipótesis/modelo

para representar la respuesta del sistema dada por los datos. Un resultado clave de los casos

de estudio investigados es que los modelos más simples resultan ser los mejores candidatos

(más plausibles) cuando son seleccionados mediante un equilibrio entre la bondad de ajuste

y la complejidad del modelo, relacionada con la cantidad de información que el modelo ex-

trae de los datos. Por tanto, el principio conocido como ”cuchillo de Ockham” parece ser

cierto para el marco de modelización a fatiga investigado en esta tesis, que en este contexto



puede enunciarse como los modelos más simples que sean consistentes con los datos son preferibles
a los innecesariamente complicados. Esta sentencia no es una condición impuesta, sino un re-

sultado natural cuando se trata de modelos informados por datos de monitorización en un

marco Bayesiano, ya que se demuestra que la aplicación del Teorema de Bayes implica una

expresión cuantitativa del principio del cuchillo de Ockham.





Acknowledgments

I would like to thank the responsible of the direction of my research, Dr. Guillermo Rus

Carlborg from the Department of Structural Mechanics and Hydraulic Engineering of the

University of Granada. He supported me to bring me back to the University to work in the

exciting area of the inverse problem in composites materials. His research vision has had

a big impact on my work throughout these years. I would also like to thank my colleges

from the Non Destructive Evaluation lab and from the Department of Structural Mechanics

for their friendly help and support. I couldn’t forget to my advisors during my research

stays abroad: Prof. James L. Beck from Caltech (USA), Prof. Karl Schulte from Technical

University of Hamburg (Germany), and Dr. Abhinav Saxena and Dr. Kai Goebel from

NASA Ames Research Center (USA). The collaboration with all of them and their teams

has been really fruitful and beneficial for my PhD research. A special mention goes to Prof.

James L. Beck, my mentor, for his valuable guidance through the Bayesian methodology

along these years. He has had a great influence not only on my research work but also in my

scientific education.

This doctoral thesis has led me to long periods working and studying very hard, not

only at home but also abroad. So I need to express my sincere gratitude to my family and

friends for the comprehension and help I have received during these years. I am definitively

in debt with them.

Finally, I would like to thank the Ministry of Education of Spain for the FPU grant no.

P2009-4641, the NASA ARMD/AvSafe project SSAT, the Structures and Composites lab at

Stanford University for experimental data, the Spanish Ministerio de Economı́a y Competi-

tividad for project DPI2010-17065, and the regional Junta de Andalucı́a for projects P11CTS-

8089 and GGI3000IDIB.

vii





Abbreviations

ABC Approximate Bayesian Computation

AGF Average goodness of fit

BK Bogdanoff and Kozin model

CDF Cumulative distribution function

CFRP Carbon fiber reinforced polymer

COD Crack opening displacement

DC Duty cycle

EIG Expected information gained

FRP Fiber reinforced polymer

GA Genetic Algorithms

GFRP Glass fiber reinforced polymer

GPU Graphics processing unit

GSA Global sensitivity analysis

M-H Metropolis-Hasting algorithm

MA Moving average

MC Monte Carlo method

MCMC Markov chain Monte Carlo

MMA Modified Metropolis algorithm

PCoE Prognostics Center of Excellence

PDF Probability density function

PMC Population Monte Carlo

PMIE Principle of Maximum Information Entropy

PRC Partial Rejection Control

PT Parallel Tempering

PZT Piezoelectric sensor

RIG Relative information gain

SDOF Single degree of freedom

SHM Structural health monitoring

SMC Sequential Monte Carlo

TTMC Time transformation-condensation method

ix



ix



List of Symbols

Symbol Description

θ Model parameter vector
Θ Set of possible values of model parameters
M j Parameterized model class
M Set of model classes
M Superset of model sets
D Experimental dataset
D Region of possible outcomes of the system
x Simulated outcome vector from stochastic model
x̄i

n i-th latent damage state at cycle n
y Experimental measurements vector
yn Damage measurement at cycle n
XnN Sequence of nN simulated outcomes
YnN Sequence of nN experimental outcomes
X Subregion of x-outcomes
T Set of consecutive fatigue cycles
TD Set of opportunistically staggered fatigue cycles
I Set of latent damage states
pi

n Probability of x̄i
n

pi, j
n Conditional probability of transition: pi, j

n = p(x̄ j
n+1|x̄i

n)
pn Probability mass function of damage at cycle n
Pn Probability transition matrix at cycle n
g(θ) Unit time transformation function
P(·) Probability
p(·) Probability density function
fn Transition count matrix at cycle n
f i, j
n (i, j)-th element of transition count matrix at cycle n
I Indicator function
u Model input vector
g Model output vector
e Error term
v Vector of error parameters
µe Bias between model output and observations
Σe Covariance matrix of error term
Ni Dimension of model input vector
No Dimension of model output vector
Ne Dimension of error vector
d Dimension of parameter vector



Symbol Description

ψi i-th candidate parameter for GSA
ψ∼i Candidate parameters other than ψi
ST

i Total effects index of i-th candidate parameter ψi
z Joint state-parameter vector: z = (x,θ)
Z z-space
P0 Conditional probability for SubSet simulation
m Maximum number of simulation levels
ρxy Chosen metric for ABC
η(·) Summary statistics
Bε(D) Metric ball of radius ε centered at D
ε j Tolerance (metric distance) for j-th simulation level
R(τ) Autocovariance of h(z)at lag τ
R(τ)

j Autocov. of h(z j) at lag τ for jth Subset simulation level
q(·|·) Proposal PDF
σq Standard deviation for the proposal PDF
σ
( j)
q Proposal st. dev. at the j-th simulation level

Σq Covariance matrix for the proposal PDF level
r Acceptance probability
r̄ Acceptance ratio
γ Autocorrelation factor
γ j Autocorrelation factor for j-th Subset simulation level
R(l̄) Average stress perturbation function
S0 Compliance matrix of intact laminate
Qi, j (i, j)-th element of ply stiffness matrix
A∗ Laminate stiffness matrix
Ak Stiffness matrix of k-th cracked ply (COD method)
βik k-th ply matrix of crack openings (COD method)
g1 Micro-cracks density evolution model
g2 Normalized longitudinal Young’s modulus model

Symbol SI Description

Ex,0 [Pa] Intact longitudinal Young’s modulus
E(φ)

x [Pa] Sub-laminate longitudinal Young’s modulus
E∗x [Pa] Laminate effective Young’s modulus
np [-] Number of plies in the laminate
νk [-] Poisson ratio of the k-th ply
tk [m] Thickness of the k-th ply
ρk # cracks

m matrix-cracks density of the k-th ply
E(φ)

x [Pa] Sublaminate longitudinal Young’s modulus
E(φ)

y [Pa] Sublaminate tranvserse Young’s modulus
ν
(φ)
xy [-] Sublaminate in-plane Poisson ratio

G(φ)
xy [Pa] Sublaminate in-plane shear modulus

G(φ)
yz [Pa] Sublaminate out-of-plane shear modulus



Symbol SI Description

h [m] Laminate half-thickness
B [m] Laminate half-width
t [m] Ply thickness
t90 [m] [90◦]-sublaminate half-thickness
t0 [m] [0◦]-sublaminate thickness
tφ [m] [φ nφ

2
]-sublaminate thickness

d0 [m] Interlaminar layer thickness
Gm [m] Interlaminar layer shear modulus
E1 [Pa] Ply longitudinal Young’s modulus
E2 [Pa] Plytranvserse Young’s modulus
ν12 [-] Ply in-plane Poisson ratio
ν23 [-] Ply out-of-plane Poisson ratio
G12 [Pa] Ply in-plane shear modulus
G23 [Pa] Ply out-of-plane shear modulus
R [Pa] Stress ratio
f [Hz] Frequency
σx [Pa] Applied axial tension
l̄ [-] Normalized half crack-spacing
φ [rad] Fibers direction
G [J/m2] Energy release rate
∆G [J/m2] Increment in energy release rate
α [-] Paris’ Law fitting parameter
A [-] Paris’ Law fitting parameter
ξ [-] Shear lag parameter
ρn

# cracks
m Normalized matrix-cracks density

Dn [-] Normalized effective Young’s modulus
Γ

nl
nk [-] Damage sequence between cycles nk and nl
Γ̃

nl
nk [-] Simulated damage sequence between cycles nk and nl





Mathematics, rightly viewed, possesses not only truth, but
supreme beauty - a beauty cold and austere, like that of sculp-
ture, without appeal to any part of our weaker nature, without
the gorgeous trappings of painting or music, yet sublimely pure,
and capable of a stern perfection such as only the greatest art can
show. The true spirit of delight, the exaltation, the sense of being
more than Man, which is the touchstone of the highest excellence,
is to be found in mathematics as surely as poetry

Mysticism and Logic and Other Essays
Bertrand Russell, 1919





Contents

Summary i

Resumen iii

Acknowledgments vii

Abbreviations ix

List of Symbols x

I INTRODUCTION 5

Chapter 1 Context and motivation 7

Chapter 2 Research objectives 11

Chapter 3 Outline of contributions 15

Chapter 4 Theoretical fundamentals 19

4.1 Bayesian inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Model-class definition by stochastic embedding . . . . . . . . . . . . . 21

4.1.2 Markov Chain Monte Carlo simulation for Bayesian updating . . . . . 22

4.2 Bayesian model-class assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Information-theory approach to model-class selection . . . . . . . . . . 26

4.2.2 Computation of the evidence of a model class . . . . . . . . . . . . . . 27

4.2.3 Robust prediction and model class averaging . . . . . . . . . . . . . . . 29

II THEORETICAL CONTRIBUTIONS 31

Chapter 5 Markov chain damage model 33

5.1 Introduction and state-of-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Modeling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xv



5.2.2 Parameterization for non-stationarity . . . . . . . . . . . . . . . . . . . 37

5.2.3 Model class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Formulation of likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 6 Physics-based modeling framework 45

6.1 Introduction and state of art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Candidate damage mechanics models . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Shear-lag and variational models . . . . . . . . . . . . . . . . . . . . . . 48

6.2.2 Crack opening displacement model . . . . . . . . . . . . . . . . . . . . 49

6.2.3 Micro-cracks density evolution model . . . . . . . . . . . . . . . . . . . 49

6.3 Stochastic embedding for deterministic damage models . . . . . . . . . . . . . 50

6.4 Formulation of the likelihood function . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 Computation of likelihood function using a GPU . . . . . . . . . . . . 53

6.5 Model parameterization through Global Sensitivity Analysis . . . . . . . . . . 54

Chapter 7 Approximate Bayesian Computation by SubSet Simulation 57

7.1 Introduction and state of art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Subset Simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 The ABC-SubSim algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3.1 Choice of intermediate tolerance levels . . . . . . . . . . . . . . . . . . 64

7.3.2 Choosing ABC-SubSim control parameters . . . . . . . . . . . . . . . . 65

7.4 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4.1 Example 1: Moving Average (MA) model . . . . . . . . . . . . . . . . . 67

7.4.2 Example 2: Linear oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 Comparison with recent ABC algorithms . . . . . . . . . . . . . . . . . . . . . 70

III CASE STUDIES 77

Chapter 8 Damage data used for validation 79

8.1 Dataset 1: GFRP laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Dataset 2: CFRP laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 9 Model class assessment for Markov chain model 85

9.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 Assessment for GFRP fatigue damage data . . . . . . . . . . . . . . . . . . . . 87

9.2.1 Hyper-robust predictive model . . . . . . . . . . . . . . . . . . . . . . . 88

9.2.2 Minimum required set of data . . . . . . . . . . . . . . . . . . . . . . . 89

9.3 Assessment for CFRP fatigue damage data . . . . . . . . . . . . . . . . . . . . 91

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Chapter 10 Model class assessment for physics-based models 97

10.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.1.1 Model parameterization by GSA . . . . . . . . . . . . . . . . . . . . . . 98

10.1.2 Prior information of model parameters . . . . . . . . . . . . . . . . . . 99

10.2 Model class assessment for CFRP fatigue damage data . . . . . . . . . . . . . 101

10.3 Assessment using ABC-SubSim algorithm . . . . . . . . . . . . . . . . . . . . . 104

10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 11 Bayesian model set assessment for damage models 111

11.1 Methodology for Bayesian model set assessment . . . . . . . . . . . . . . . . . 111

11.2 Results for Bayesian model set assessment . . . . . . . . . . . . . . . . . . . . . 112

11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

IV CONCLUSIONS AND FUTURE WORKS 115

Chapter 12 Conclusions and future works 117

Chapter 13 Conclusiones y trabajos futuros 121

Appendix A Basics relations 125

Appendix B Related publications 129

B.1 Journal articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.2 Book chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.3 Conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.4 International conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.5 Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

References 133





List of Figures

4.1 Scheme for Bayesian model-class definition . . . . . . . . . . . . . . . . . . . . 21

5.1 Graphical example of spline transformation of unitary time scale . . . . . . . 38

5.2 Toy example for obtaining the transition count matrix . . . . . . . . . . . . . . 41

5.3 CDFs of damage obtained by the the Markov chain model . . . . . . . . . . . 43

5.4 Simulation of the Markov chain damage model by conditional sampling . . . 43

6.1 Illustration for internal damage in cross-ply laminates . . . . . . . . . . . . . . 47

6.2 Scheme of stochastic embedding for deterministic damage models . . . . . . 52

6.3 Implementation scheme of M-H algorithm using the GPU to accelerate the

likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1 Illustration of Subset Simulation method using a toy example . . . . . . . . . 72

7.2 ABC-SubSim output for MA(2) model . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 Sensitivity study of the acceptance rate r̄ j and autocorrelation factor γ j for

ABC-SubSim algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Results of the inference for the oscillator model using ABC-SubSim . . . . . . 75

7.5 Performance of ABC-SubSim algorithm as compared to the rest of ABC algo-

rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.1 Experimental sequences of damage for quasi-isotropic S2-Glass/E733FR lam-

inates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Experimental setup for fatigue experiment over a cross-ply CFRP laminate . . 83

8.3 Experimental sequence of damage for cross-ply CFRP laminate . . . . . . . . 83

9.1 Plots of posterior samples in the θ space when updating model class M1

using Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2 Plots of posterior samples in the θ space when updating model class M2

using Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.3 Plots of posterior samples in the θ space when updating model class M3

using Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.4 Plots of interpolation curves of unit time transformation . . . . . . . . . . . . 91

9.5 CDF of the posterior hyper-robust predictive damage model for Markov

chain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.6 Cumulative sum of RIG between consecutive posteriors p(θ|Dk,M j) . . . . . 93

9.7 Scheme for idealization of system response for Dataset 2 using Markov chains 93

xix



9.8 Posterior samples in the θ space when updating model class M1 using

Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.9 Hyper-robust damage response using the posterior information of models

M1 toM4 for Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.1 Total effects index ST
i of parameters for model classesM1 toM3 . . . . . . . 100

10.2 Total effects index ST
i of parameters for model classesM4 andM5 . . . . . . 101

10.3 Normalized histograms for the marginalized posterior PDFs p(θi|D,M1) . . 104

10.4 Simulated damage response using model classM1 (classical shear-lag) . . . . 105

10.5 Posterior samples from the marginalized posterior PDFs of parameters using

ABC-SubSim for model classM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.6 Simulated damage response using ABC-SubSim for model classM1 (classical

shear-lag). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.7 Performance metrics for ABC-SubSim algorithm using Dataset 2 forM1 . . . 107



List of Tables

5.1 Parameterization scheme for the set of Nm Markov chain model classes . . . . 39

7.1 Bibliography synoptic table about ABC with sequential algorithms . . . . . . 61

7.2 Parameter configuration of ABC-SubSim algorithm for the MA(2) and SDOF

linear oscillator examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Set of tolerance values used for comparing the sequential ABC algorithms

established using ABC-SubSim with P0 = 0.5 . . . . . . . . . . . . . . . . . . . 71

8.1 Dataset for S2-Glass/E733FR quasi-isotropic laminates . . . . . . . . . . . . . 81

8.2 Ply properties for CFRP laminates used in the calculations . . . . . . . . . . . 82

8.3 Experimental sequence of damage for cross-ply CFRP laminate taken from

the Composite dataset, NASA Ames Prognostics Data Repository [1] . . . . . 84

9.1 Metropolis Hastings algorithm configuration for Bayesian model updating

using Dataset 1 (left) and Dataset 2 (right) . . . . . . . . . . . . . . . . . . . . . 86

9.2 Posterior results for model parameters using Dataset 1 . . . . . . . . . . . . . 87

9.3 Results of model class assessment for Markov chain models using Dataset 1 . 87

9.4 Posterior results for model parameters using Dataset 2 . . . . . . . . . . . . . 94

9.5 Results of model class assessment for Markov chain models using Dataset 2 . 95

10.1 Summary of damage data for Dataset 2 . . . . . . . . . . . . . . . . . . . . . . 98

10.2 Prior information of parameters used in calculations . . . . . . . . . . . . . . . 102

10.3 M-H algorithm configuration for models classesM1 toM5 . . . . . . . . . . 102

10.4 Mean and standard deviation of the updated model parameters for models

classesM1 toM5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.5 Result of assessment for damage mechanics model classes . . . . . . . . . . . 103

10.6 Parameter configuration of ABC-SubSim algorithm forM1 . . . . . . . . . . . 105

11.1 Summary of damage data for Dataset 2 . . . . . . . . . . . . . . . . . . . . . . 112

11.2 Results of Bayesian model set assessment . . . . . . . . . . . . . . . . . . . . . 113

A.1 Nomenclature table for mechanical and geometrical parameters . . . . . . . . 126

1





List of Algorithms

1 M-H algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 MMA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Evidence computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Standard ABC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 ABC-MCMC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 ABC-SubSim algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3





Part I

INTRODUCTION

5





Uncertainty is not an accident

of the scientific method, but its

substance.

P. Høeg (1995)

1
Context and motivation

Fiber-reinforced polymer (FRP) composites are high performance materials used exten-

sively in the construction of weight-critical engineering applications such as aeronautical

or aerospace structures, which often require high reliability standards. These materials are

well-known for their high strength-to-weight ratios, but also for being susceptible to fatigue

degradation from the beginning of lifespan [2, 3]. Due to the direct impact on safety and

cost, the fatigue behavior of composite materials has drawn close attention from industry

and academia for decades, and still today, it is a partially understood problem and an active

area of research.

The perception of the phenomenon of fatigue in composites has been typically associated

with the behavior of isotropic, homogeneous, metallic materials and hence, there has been a

strong tendency to study the fatigue behavior in composites as though they were metals [4–

6]. As a consequence, a significant part of the composites fatigue literature deals with life-
time models inspired by the well-known S-N curves (S: strength, N: lifespan) [5, 6]. These

models, which are almost-entirely based on experimental fitting, do not take into account the

actual damage mechanisms that govern the fatigue degradation in composites but predict

the time at which fatigue failure occurs under specific testing conditions. This approach has

typically led to oversized designs (after expensive experimental programs) and occasionally,

to catastrophic failures [4].

Unlike metals, composites are inhomogeneous and anisotropic materials. They accu-

mulate damage in several zones rather than a localized area, and failure does not gen-

erally occur by the propagation of a single macroscopic crack but for the degradation of

macro-scale mechanical properties, such as strength or stiffness, as a consequence of the
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densification and interaction of several fracture mechanisms at the micro-scale and meso-

scale [3, 7]. These damage mechanisms, that include matrix micro-cracking, delamination,

fibre breakage, etc., are noticeable from early stages of the lifecycle after only a few or a

few hundred loading cycles, and their evolution and prevalences are highly influenced by

material and testing conditions [2, 3, 8, 9]. Thus, modeling the progression of such inter-

nal damage mechanisms constitutes a more suitable approach for the study of the fatigue

behavior and the lifecycle of the composite materials [5, 6].

But even under nominally identical testing and material conditions, the evolution of

damage in composites can follow very different paths [3, 10, 11]. The onset and posterior

growth of micro-scale fractures (e.g., micro-cracks and local delaminations) is a partially-

understood process highly influenced by the random presence of manufacturing defects,

such as voids, fiber waviness, etc. [12–15]. The inherent complexity of this process implies

uncertainty in modeling, that comes not only from the random distribution of such defects

and imperfections but also from the lack of knowledge about the physics of the damage

process [16, 17]. It follows that if a deterministic model was chosen to make predictions

about damage growth (even when using sophisticated approaches based on first physical

principles), a limited fit to reality would be obtained due to the inherent uncertainty of the

fatigue damage process. Notwithstanding, the vast majority of fatigue models in the com-

posites literature are deterministic formulations valid for some specific testing and material

conditions [5].

An alternative approach for this problem, that is adopted in this thesis, is to use data

from the recorded fatigue response of the structure to update a given damage model so as to

make more accurate predictions after assimilating the data, while accounting for the under-

lying modeling uncertainty. It is important to remark here that, in this thesis, a Cox-Jaynes

[18, 19] reinterpretation of the Popperian paradigm [20, 21] is adopted, by which the ex-

perimental data is not intended to be used to validate or falsify a hypothesis/model for

system response, but, instead, to estimate the degree of belief of such hypothesis/model for

representing the observed system response given by the data.

In addition to the complexity of the problem due to the aforementioned uncertainty as

a consequence of the variability in the damage response, there is another important source

of uncertainty that should not be neglected when dealing with the prediction of the fatigue

damage behavior in composite materials. It is the uncertainty coming from the selection of

a particular model class [22] (e.g., the parameterized mathematical structure of the model for

damage behavior) when several candidates model classes are available based on different

hypothesis about the system. This modeling uncertainty is motivated by the fact that the

model itself may not necessarily reproduce the real fatigue behavior of the structure, as a

consequence of the aforementioned lack of knowledge about such fatigue behavior, but it is

just an approximation [19, 23]. Several studies have attempted to deal with the uncertainty

of fatigue behavior in composites focusing on the variability or scattering in the observed

damage response, for example [10, 11, 24–26] to cite but a few; however most if not all of
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these models neglect the modeling uncertainty coming from the adoption of a particular

model class for fatigue behavior.

While the topic of modeling uncertainty has not been addressed in the composites fa-

tigue literature (except for the author’s publications derived from this thesis [16, 27]), meth-

ods for model class assessment have been developed and applied to a variety of engineering

applications. For example, several methods based on classical statistics [28] and Bayesian

statistics [22, 29] have been proposed, which address model uncertainty either by quan-

tifying model error through a discrepancy function (for example, the Kennedy O’ Hagan

framework [30]) or by considering multiple competing models and quantifying the extent

of support available for each of these models [22, 28, 29]. The latter approach, which is an ex-

tension of the so-called Bayesian inverse problem [19, 22, 31], is adopted in this thesis because

multiple competing models are available for fatigue behavior in composite materials and

Bayesian model assessment methods facilitates model ranking while simultaneously quan-

tifying the uncertainty in these models. In addition, the Bayesian approach is best suited

even in the presence of limited data, which is generally the case while studying the progres-

sion of fatigue damage in composites.

In particular, Bayesian methods have been previously applied for uncertainty quantifi-

cation in fatigue modeling, albeit in the context of metals [17, 32–38]. For example, Cross et
al. [33] and Sankararaman et al. [34] used Bayesian inference to estimate parameters un-

derlying crack growth behavior. Sankararaman et al. [36] used dynamic Bayesian networks

for model parameter estimation and calculated Bayes factors as a means to quantify model

uncertainty. Therefore it seems reasonable to explore the applicability of these methods to

the problem of fatigue damage modeling in composites materials, where the benefits of the

Bayesian approach can be fully exploited due to the inherent complexity and the existence

of multiple competing models.

In summary, the topic of uncertainty quantification in composites is slowly gaining in-

terest and there is an evident need for the development of a rigorous treatment of the uncer-

tainty as a consequence of the lack of knowledge about the physics of the fatigue damage

process. The efficient and reliable use of composite materials in any application will re-

quire an adequate treatment of this modeling uncertainty. Instead of the commonly used

deterministic approaches inherited from the metal fatigue experience, and, in addition to

continue understanding the first physical principles that govern the fatigue damage evolu-

tion in composites, new probabilistic procedures are needed to accurately predict the fatigue

behavior of the composite structures taking into account the uncertainty of the underlying

damage process. In this context, the Bayesian inverse problem approach proposed in this

thesis emerges as a powerful tool providing its ability and rigor for uncertainty manage-

ment when dealing with several model clases and real data from the system response. This

procedure has not been reported before, hence, it is the main contribution of this doctoral

thesis.
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It is unanimously agreed that

statistics depends somehow on

probability [...]. However there

is a fundamental difference be-

tween frequentist and Bayesian

interpretations that cannot be

bridged.

Leonard J. Savage (1972)

2
Research objectives

Modeling the fatigue behavior of composite materials is a challenging problem due to

the lack of knowledge about the multi-scale physics of the underlying damage process. As

a result, several models have been proposed in the literature based on different assump-

tions about such damage process [5, 7]. The majority of these models are deterministic semi-

empirical formulations calibrated for a particular material configuration under some specific

testing conditions. Therefore, they not only neglect the modeling uncertainty coming from

the adoption of single values for model parameters, but also from the selection of a particu-

lar model class (e.g., the parameterized mathematical structure of the model for the damage

behavior) based on specified hypothesis about damage evolution. The use of Bayesian meth-

ods for model class assessment emerges as a rational way to select the model class or set of

model classes that better predict the fatigue behavior of composite materials, while consid-

ering the underlying uncertainties. This is the central objective of the research presented in

this thesis. To approach this objective, several concrete objectives are formulated on the basis

of some research hypothesis which are listed and commented below.

1. Fatigue damage in composite materials is well-known as an irreversible memoryless

process that can follow very different paths even under identical testing conditions

[3, 10, 11, 39, 40]. Numerous fatigue models have been proposed [5, 41–43] and a

large amount of data has been derived from expensive experimental programs. The

vast majority of these models are deterministic approaches that do not account for the

modeling uncertainty and the variability that is observed in the the fatigue damage

process.
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Recently, probabilistic damage models are emerging as a more suitable approach for

fatigue in composite materials, but the extension of such methods is not as mature as

the deterministic approach [5, 10, 11, 44].

Hypothesis 1: Damage progression in composites can be idealized as a Markovian-

type stochastic process.

* Research objective 1: Propose a modeling approach based on Markov chains to idealize the
progression of fatigue damage along with a suitable parameterization strategy for the Markov
chains to efficiently account for the non-stationarity of the damage process.

2. Given that pure stochastic models need data to infer the values of the model param-

eters, they may capture excessive details from the data except when robust model

parameterizations are employed [16, 22]. In contrast, physics-based models for dam-

age evolution may be expected to accurately represent the fatigue damage process

with much less training from the data. Several families of damage-mechanics models

have been proposed in the composites fatigue literature [7]. These models deal with

sophisticated formulations that address the connection between the internal damage

mechanisms and their macro-scale manifestation based on physics-based first princi-

ples. Therefore, they can efficiently adapt to different systems (materials, testing con-

ditions, etc.) although it may be at the expense of higher computational demand when

these models are repeatedly evaluated in a stochastic simulation framework.

Hypothesis 2: Physics-based models are expected to better represent the fatigue be-

havior of composites as compared to data-driven approaches.

* Research objective 2: Propose a stochastic modeling approach based on physics-based
damage models along with computational strategies to confer efficiency in their implementa-
tion, and compare them with the set of Markov chain damage models.

3. After decades of research, a large variety of fatigue damage models has been proposed

and hypothesized to simulate and predict the fatigue damage progression in compos-

ite materials [3, 5, 7]. Several model parameterizations and even physically different

”families” of models may be formulated to represent an observed degradation pro-

cess. From the perspective of forward modeling problems, more complex models are

expected to better represent the complexity of the damage process. For inverse prob-

lems, i.e., when dealing with models informed by data, it may be at the cost of an ex-

cessive dependence on the data and input information that may lead to over-fitting of

the data; therefore the model does not generalize well when making predictions. The

information-theoretic interpretation of the Bayesian model selection problem [19, 22]

shows that the posterior probability of each model class automatically enforces a quan-

titative expression of the Principle of Model Parsimony or Ockham’s razor [19, 45], by

which simpler models that are reasonably consistent with the data are to be preferred

over more complex models that lead to slightly better agreement with the data.
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Hypothesis 3: Simpler models for fatigue damage evolution in composites that

agree reasonably well with the data are expected to overperform more sophisticated

competing candidates.

* Research objective 3: Provide discussion about the plausibility of candidate model classes
using an information-theoretic approach for model class assessment.

In the next section, the contributions of this thesis are outlined in the context of the

research objectives described here.

13





Entities are not to be multiplied

without necessity.

William of Ockham (1330)

3
Outline of contributions

This thesis intends to investigate the hypothesis and research objectives outlined in Chap-

ter 2. The methods and experiments originally designed to this end are presented in this

chapter along with an indication of where they appear in the text. Most of them have been

already published in several journal articles, book chapters or conference proceedings as

separated pieces of work. A list of related publications can be found in Appendix B.

Research objective 1:

Propose a modeling approach based on Markov chains to idealize the progression of fatigue
damage along with a suitable parameterization strategy for the Markov chains to efficiently
account for the non-stationarity of the damage process.
To deal with this objective, a new stochastic damage model is proposed based on the

theory of Markov chains [46]. To efficiently account for the non-stationarity of the pro-

cess, a new model parameterization is proposed for the Markov chain model based on

a modification of the time transformation-condensation method first developed by Bog-

danoff and Kozin [47]. Several model classes are further defined as a generalization

of the proposed model parameterization strategy. The mathematical description of the

proposed Markov chain model along with the set of modeling assumptions that are

adopted are presented in Chapter 5. An illustrative example is also provided in Chap-

ter 5, where the Markov chain model is used to simulate a set of highly-scattered fa-

tigue damage sequences for quasi-isotropic GFRP laminates. This dataset, which is

referred to as the Dataset 1, is summarized in Chapter 8, Section 8.1.
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Research objective 2:

Propose a stochastic modeling approach based on physics-based damage models along with com-
putational strategies to confer efficiency in their implementation, and compare them with the
set of Markov chain damage models.
To investigate this twofold objective, a set of physics-based stochastic models is pre-

viously proposed based on several families of damage mechanics models (shear-

lag, variational and crack opening displacement models [7]) that represent the rela-

tion between the macro-scale stiffness reduction and the micro-scale damage due to

matrix-cracks. Each candidate model is subsequently embedded into the modified Paris’
law [48], that is used in this research to model the propagation forward in time of the

matrix-cracks density. The resulting models are previously parameterized by means of

a Global Sensitivity Analysis (GSA) [49] and further embedded stochastically to define

a set of (Bayesian) candidate model classes. The proposed modeling framework is pre-

sented in Chapter 6 along with the methodology for model class definition based on

stochastic embedding. This approach results in formulations which require the evalu-

ation of multidimensional integrals parameterized by uncertain model parameters,

thus leading to computationally-intensive problems when these models are evalu-

ated repeatedly, as typically arises for inference purposes. To tackle this drawback,

two computational strategies are proposed. First, the implementation of the stochastic

damage models on the Graphics Processing Unit (GPU), utilizing the Compute Uni-

fied Device Architecture (CUDA) code from NVIDIA using Matlab®. The implemen-

tation scheme is presented in Chapter 6. On the other hand, the use of an Approxi-

mate Bayesian Computation (ABC) method to circumvent the evaluation of the likeli-

hood function, since it conveys the heaviest part of the computational burden. A novel

ABC algorithm based on Subset simulation [50] is proposed, which has demonstrated

higher computational efficiency as compared to the most recent ABC algorithms in the

literature. This algorithm, that was initially proposed as a side objective, has raised to

one of the most significant contributions of this thesis. It is presented in Chapter 7.

Finally, the performance of the proposed physics-based model classes is compared

with the performance of the (data-driven) Markov chain model classes defined in

Chapter 5. The comparison is accomplished through probabilities that measure the

extent of agreement of their overall predictions with the data using an extension of the

methodology for Bayesian model class selection presented in Chapter 4. To perform

the comparison, SHM data for micro-cracks density and stiffness loss is used from a

CFRP cross-ply laminate, which is summarized in Chapter 8, Section 8.2. The results

of the model set assessment together with the methodology proposed for the comparison

are presented in Chapter 11.

Research objective 3:

Provide discussion about the plausibility of candidate model classes using an information-
theoretic approach for model class assessment.

16



To explore this research objective, the model classes defined in Chapters 5 (for Markov

chain models) and 6 (for damage-mechanics models) and compared and ranked be-

tween them based on the methodology for Bayesian model class assessment presented

in Chapter 4. To this end, Bayes’ Theorem [22, 31] is applied at two levels: first, to deal

with the posterior information about the model parameters of a specific model class

within a set of candidate model classes, and second, to assess the degree of plausibility

of each model class within the set of candidates. This application of Bayes’ Theorem

automatically enforces a quantitative expression of the Ockham’s razor that allows us

to know an information-theoretic balance between the average goodness of fit and the

model complexity of each model class.

The results for model class assessment are presented in Chapter 9 for the set of Markov

chain models using two nominally different sets of data: Dataset 1 for glass-epoxy

quasi-isotropic laminates (Section 8.1), and Dataset 2 for carbon-epoxy cross-ply lami-

nates (Section 8.2). For the set of damage mechanics models, the results for model class

assessment are provided in Chapter 10 in application to Dataset 2. The Metropolis-

Hasting (M-H) algorithm presented in Chapter 4 (Section 4.1.2) is used for both case

studies to numerically solve the inverse problem. For the case study using physics-

based model classes, the assessment is exemplified using the ABC-SubSim algorithm

and results are compared with those using M-H algorithm.
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The essence of the present the-

ory is that no probability, direct,

prior, or posterior, is simply a

frequency.

H. Jeffreys (1939)

4
Theoretical fundamentals

This chapter aims at supplying the theoretical basis about the Bayesian inverse problem,

which will be extensively used over the course of this thesis. Section 4.1 exposes the funda-

mentals about Bayesian model parameter updating. In Section 4.2, the problem of Bayesian

model class selection is presented as an extension of the Bayesian model parameter updating

problem. Algorithms for both, Bayesian model updating and Bayesian model class selection

are provided.

4.1 Bayesian inverse problem

Using a physical theory or model to predict the response of a system corresponds to solving

a forward modeling problem. The reciprocal situation, i.e., using information from the system

output (e.g. measurements) to find the model or set of models that are more consistent with

the observations of the system corresponds to the inverse modeling problem or system identifi-
cation problem.

Whereas the forward problem has commonly a unique solution, the inverse problem

may have many solutions [31], i.e., there may be several models that are consistent with the

same set of observations. It follows that estimating a deterministic single value for the model

parameters of a particular model class (e.g. the parameterized mathematical structure of the

model for system behavior) when reconstructing the system response has a limited mean-

ing if one considers that the model class is just an idealization of reality and so, that several

model classes can be hypothesized and formulated based on different modeling assumptions

about the system [22]. To provide a suitable answer, probabilistic instead of deterministic
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values for both model parameters and model classes should be provided, which carry infor-

mation about the degree of plausibility of those model parameters and classes providing the

observations of the system.

To deal with these issues, a rigorous probabilistic approach for inverse problems is avail-

able based on Bayesian inference [22, 31]. The goal of Bayesian inversion [19, 22] is to use

Bayes’ Theorem to investigate the plausibility of a given model parameterized byθ belong-

ing to a candidate model classM j, for representing the system based on (incomplete) infor-

mation D ∈ D from the system output, where D ⊂ R` is the region of all possible outcomes

of the system. The focus is twofold, (1) to investigate the plausibility of model parametersθ

over the set Θ ⊂ Rd of possible values in the model classM j given the information from the

system responseD, namely, p(θ|D,M j); and (2), to investigate the plausibility of the overall

model classM j within the set M = {M1, . . . ,M j, . . . ,MNM} of candidate model classes for

representing the system, based on data D from the system response, i.e., p(M j|D, M). Con-

sequently, the Bayesian approach to the inverse problem has the advantage of being able

to quantify the uncertainties associated with (1) model parameters and (2) model choice for

the system behavior, and therefore, to further make predictions about the system output that

rigorously incorporate different types of modeling uncertainty in a quantitative manner.

A rigorous foundation for such approach, which is adopted in this thesis, is given by the

Cox-Jaynes theory of probability as a multi-valued logic for plausible inference [51, 52]. Ac-

cording to such approach, commonly known as Probability Logic [19, 22], probability is in-

terpreted as a multi-valued propositional logic that expresses the degree of belief of a propo-

sition conditioned on given information [19, 22]. For example, in Probability Logic P [A|B]
is interpreted as the degree of plausibility of proposition A based on the information in

proposition B. Therefore, in contrast to the typical subjective interpretation of probability

in Bayesian inference, logical probabilities are objective (logical) relations between propo-

sitions or states of information; i.e., if B holds, then A holds with probability P [A|B]. In the

extreme situation, i.e. if B implies A, then proposition B gives complete information about

A, and thus P [A|B] = 1; otherwise, when B implies not A, then P [A|B] = 0.

Using this interpretation of probability, the PDF of model parameters p(θ|D,M j) is read

as: If model classM j is adopted and information D from system response is available (conditional

proposition B), then the model specified byθ represents the system (proposition A) with probability
p(θ|D,M j). Bayes’ Theorem gives the aforementioned PDF of model parameters as follows:

p(θ|D,M j) = c−1 p(D|θ,M j)p(θ|M j) (4.1)

where c is a normalizing constant so that p(θ|D,M j) is a valid probability density func-

tion. That is: ∫

Θ
p(θ|D,M j)dθ = c−1

∫

Θ
p(D|θ,M j)p(θ|M j)dθ = 1 (4.2)

Notice that Bayes’ Theorem takes the initial quantification of the plausibility of each

model specified by θ inM j, which is expressed by the prior PDF p(θ|M j), and updates this
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Model parameters
θ = {θ1, θ2, . . . , θd}

Forward model
(u,θ) → g(u,θ)

Prior PDF of parameters
p(θ|Mj)

Stochastic forward model
p(x|u,θ,Mj)

Candidate (Bayesian)
model class

Mj

(Prior information)

(Stochastic embedding)

Figure 4.1: Scheme for Bayesian model-class definition

plausibility to obtain the posterior PDF p(θ|D,M j) by using information from the system

output expressed through the PDF p(D|θ,M j), commonly known as the likelihood func-
tion. The likelihood function provides a measure about how likely the observed data D are

reproduced if the model specified by θ within model class M j is adopted. It is obtained

by evaluating the data D as the outcome of the stochastic forward model for the system

behavior, expressed as p(x|θ,M j), where x ∈ D is the system output simulated by the

model. The definition and further computation of the likelihood function constitutes one

the major issues for the Bayesian model updating scheme presented here since it requires a

large number of repetitive evaluations of the stochastic forward model; thus, specific details

about likelihood computation are provided in the succeeding chapters in the context of the

fatigue damage models discussed in this thesis.

From the above introduction, the following three important pieces of information can be

highlighted for the proposed Bayesian approach for fatigue modeling:

D : data set containing measurements of the system output.

M j : j-th Bayesian model class or candidate among alternative model classes hypothesized

to idealize the system. This Bayesian model class is defined by two fundamental prob-

ability models [22]: the stochastic forward model p(x|θ,M j) and the prior probability

distribution p(θ|M j), that gives the initial relative plausibility of model parameters

defining the stochastic forward model in the classM j (see Figure 4.1).

θ : set of uncertain model parameters within model class M j to be updated using Bayes’

Theorem.

All the defined variables (output data D, model parameters θ or model classes M j) are

defined to lie in manifolds D, M and Θ, respectively.

4.1.1 Model-class definition by stochastic embedding

As explained before, a stochastic forward model is required for the purpose of system iden-

tification. Most of the times, a forward model for system behavior is available in the form

of a deterministic input-output relationship that does not allows for uncertainty manage-

ment; notwithstanding, a stochastic forward model can be derived from a given determin-

istic forward model by means of stochastic embedding [22]. To this end, let us consider a can-

didate damage model defined by a deterministic relationship g = g(u, m) : RNi ×RNm →
RNo between the model input u ∈ RNi and the model output g ∈ RNo , given a set of Nm un-

certain parameters m ∈ RNm . This damage model can be “embedded” stochastically by
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adding an error term e = e(v) : RNe → RNo parameterized by v ∈ RNe , that represents the

difference between the actual system output x ∈ RNo and the model output g, as follows:

x︸︷︷︸
system output

= g(u, m)︸ ︷︷ ︸
model output

+ e(v)︸︷︷︸
error

(4.3)

In the last equation, it is implicitly assumed that both measurement and model errors are

subsumed into the error term e(v). Such assumption can be adopted when the measurement

error is negligible as compared to the model error, or when an independent study about the

measurement error is not available. In addition, the set m of parameters is augmented with

the set v of error parameters, resulting in a set of model parameters defined asθ = {m, v} ∈
Θ ⊂ Rd=Nm+Ne . This set of parameters is further updated through Bayes’ Theorem using

Equation 4.1.

It should be noted here that the probability model chosen for the error term e in Equa-

tion 4.3 determines the probability model for the system output x. For example, if the error

term is assumed to be modeled as a Gaussian distribution, i.e. e ∼ N (µe, Σe), then the

system output x will be also distributed as a Gaussian, as follows:

e = x− g(u,θ) ∼ N (µe, Σe) =⇒ x ∼ N (g(u,θ) +µe, Σe) (4.4)

where µe ∈ RNo is a systematic bias between model output and the observed system output,

and Σe ∈ RNo×No is the covariance matrix of the error term. This assumption is supported by

the Principle of Maximum Information Entropy (PMIE) [19], which enables a rational way to

establish a probability model for the error term such that it produces the largest uncertainty

(largest Shannon entropy). Thus, by adopting this assumption, a stochastic forward model

for system behavior can be defined from any deterministic model as

p(x|u,θ,M j) =
(
(2π)No |Σe|

)− 1
2

exp
(
−1

2
(x− x̄)T

Σ−1
e (x− x̄)

)
(4.5)

where x̄ = g(u,θ) +µe denotes the mean output of the stochastic forward model, andM j

represents the candidate Bayesian model class defined by the stochastic forward model and

the prior PDF of model parameters, p(θ|M j), as shown in Figure 4.1.

4.1.2 Markov Chain Monte Carlo simulation for Bayesian updating

While the power of the Bayesian inverse problem for model updating is well recognized,

there are several computational issues during its implementation that need dedicated so-

lutions. Specifically, the main difficulty when applying Bayes’ Theorem is that normalizing

constant c in Equation 4.1 cannot be evaluated analytically nor it is readily calculated by

numerical integration methods, if the dimension d is not small [53]. To tackle this problem,

Markov Chain Monte Carlo (MCMC) methods [54, 55] have been widely used for its ability

to estimate the posterior PDF while avoiding the evaluation of constant c. In general, the
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goal of these stochastic simulation methods is to generate samples that are distributed ac-

cording to an arbitrary probability distribution, commonly known as the target PDF, which

is known up to a scaling constant [56–59]. In the context of the Bayesian inverse problem

proposed here, such target PDF corresponds to the posterior probability density function in

Equation 4.1.

There are two required properties for the MCMC algorithms to obtain correct statistical

estimations about the target: (1) ergodicity, which is concerned with whether the generated

samples can populate the regions of significant probability of the target PDF; and (2) station-
arity, which ensures that the forward samples of the Markov chain are equally distributed

than the previous samples, provided that the later are distributed as the target PDF. Under

the assumption of ergodicity, the samples generated from MCMC will converge to the tar-

get distribution (provided that a large amount of samples are used) even if the initial set of

samples are simulated from a PDF different from the target. The theoretical demonstration

of ergodicity and stationarity for MCMC is out of the scope of this work, but the interested

reader is referred to [46] for a comprehensive theoretical treatment of Markov chains.

In the literature, several MCMC algorithms have been proposed after the celebrated pa-

per by Metropolis et al. [60], such as the Metropolis-Hastings, Gibbs Sampler and Hybrid

Monte Carlo algorithms, among others [57, 59]. In this thesis, the Metropolis-Hastings (M-

H) algorithm is adopted for its versatility and implementation simplicity [60, 61]. This al-

gorithm generates samples from a specially constructed Markov chain whose stationary

distribution is the posterior PDF. In M-H, a candidate model parameterθ′ is sampled from a

proposal distribution q(θ′|θ(k−1)), given the state of the Markov chain at step k− 1. At the next

state of the chain k, the candidate parameter θ′ is accepted (i.e. θ(k) = θ′) with probability

min{1, r}, and rejected (θ(k) = θ(k−1)) with probability 1−min{1, r}, where r is calculated

as:

r =
p(D|θ′,M)p(θ′|M)q(θ(k−1)|θ′)

p(D|θ(k−1),M)p(θ(k−1)|M)q(θ′|θ(k−1))
(4.6)

The process is repeated until Ns samples have been generated. An algorithmic description

of this method is provided in Algorithm 1 below.

Algorithm 1 M-H algorithm

1. Initializeθ(0) by sampling from the prior: θ(0) ∼ p(θ|M)

for k = 1 to Ns do
2. Sample from the proposal: θ′ ∼ q(θ′|θ(k−1))

3. Compute r from Eq. 4.6
4. Generate a uniform random number: α ∼ U [0, 1]
if r > α then

5. Setθ(k) = θ′

else
6. Setθ(k) = θ(k−1)

end if
end for
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An important consideration is the specification of the variance σ2
q for the proposal dis-

tribution q(θ′|θ(k−1)), which has a significant impact on the speed of convergence of the

algorithm [61]. Small values tend to produce candidate samples that are accepted with high

probability, but may result in highly dependent chains that explore the state space very

slowly. In contrast, large values of the variance tend to produce large steps in the state space,

but result in small acceptance rates. Thus, it is often worthwhile to select appropriate pro-

posal variances by controlling the acceptance rate r̄ (e.g., number of accepted samples over

total amount of samples) in a certain range, depending on the dimension d of the proposal

PDF, via some pilot runs [62, 63]. The interval [20%− 40%] is suggested for the acceptance

rate in low dimensional spaces, say d 6 10 [63].

Modified Metropolis algorithm

The Modified Metropolis algorithm (MMA) [50] is a variant of the original Metropolis al-

gorithm that differs from it in the way the candidate θ′ is generated in Step 2. A univariate

proposal PDF is chosen for each component of the parameter vector such that the i-th com-

ponent of the candidate vector θ′ is accepted or rejected separately, instead of drawing a

full variable vector from a multi-dimensional PDF as in Algorithm 1. In this thesis, MMA is

used in the context of SubSet simulation (introduced in Chapter 7), therefore the focus is to

obtain samples from a conditional target PDF p(θ|F ), where F is a subset of the parameter

space, i.e., F ⊂ Θ. By means of Bayes’ Theorem:

p(θ|F ) = IF (θ)p(θ|M)

P(F ) (4.7)

where IF (θ) is an indicator function for F so that IF (θ) = 1 ifθ ∈ F , and 0 otherwise.

The univariate proposal PDF is denoted as qi(θi|θ′i), i = 1, . . . , d so that it has the symme-

try property, i.e., qi(θi|θ′i) = qi(θ
′
i |θi). In MMA, it is assumed (with no loss of generality) that

the prior information of the i-th component of model parameters (denoted here as pi(θi|M))

is independent from the rest, therefore p(θ|M) = ∏
d
i=1 pi(θi|M).

To illustrate the MMA algorithm, let considerθ(k−1) =
[
θ
(k−1)
1 , . . . ,θ(k−1)

d

]
∼ p(θ|F ). By

sampling from the i-th univariate proposal PDF qi(θ
′
i |θ

(k−1)
i ), i = 1, . . . , d, a candidate sam-

ple θ′ = [θ′1,θ′2, . . . ,θ′d] is generated based on the previous sample θ(k−1). Then a check is

made whether θ′ belongs to F in which case it is accepted as the next state (θ(k) = θ′); oth-

erwise it is rejected, thus (θ(k) = θ(k−1)). A pseudocode implementation is provided below

as Algorithm 2.

Au and Beck [50] demonstrated that MMA works well even in very high dimensions

(e.g. d = 103-104), because the original M-H algorithm fails in this case (essentially all can-

didate samples from the proposal PDF are rejected). Later in [64], grouping of the vari-

ables was considered when constructing the proposal PDF to allow for the case where small

groups of components in the variable vector are highly correlated when conditioned on F .
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Algorithm 2 MMA algorithm

1. Initializeθ(0) by sampling from the prior: θ(0) ∼ p(θ|M)

for k = 1 to Ns do
for i = 1 to d do

2. Generate θ′i ∼ qi(θ
′
i |θ

(k−1)
i )

3. Compute the ratio r = pi(θ
′
i |M)

pi(θ
(k−1)
i |M)

4. Accept θ′i by setting:

θ′i =




θ′i with probability min{1, r}
θ
(k−1)
i with probability 1−min{1, r}

end for
5. Setθ(k) as follows:

θ(k) =




θ′ ifθ′ ∈ F
θ(k−1) ifθ′ /∈ F

end for

4.2 Bayesian model-class assessment

As stated before, the probabilistic approach for model class selection is motivated by the fact

that the model itself may not necessarily reproduce the observed system, but it is just an ap-

proximation [19, 23]. Therefore, there may exist not only different values for model parame-

ters but physically different models classes that may be consistent with the observations of

such system. The goal is then to use the available information from the system responseD to

asses the relative plausibility of the j-th candidate model classM j for representing the sys-

tem within a set of model classes M = {M1, . . . ,M j, . . . ,MNM}; namely, p(M j|D, M). As

stated before with the posterior PDF of model parameters, Probability Logic enables us a

rational interpretation of the posterior probability of a model class: given M, a set of candi-

date model classes, and D, data from the system response, then model classM j represents

the system with (posterior) probability p(M j|D, M).

The posterior probabilities can be obtained using Bayes’ Theorem at the model class

level [22], as:

p(M j|D, M) =
p(D|M j)p(M j|M)

∑
NM

i=1 p(D|Mi)p(Mi|M)
(4.8)

where p(M j|M) is the prior probability of the j-th model class in the set M, satisfy-

ing ∑
NM
j=1 p(M j|M) = 1. This prior probability expresses the initial modeler’s judgement

on the relative degree of belief on M j within the set M. The factor p(D|M j) is the evi-
dence (also called marginal likelihood) for the model class M j, and expresses how likely the

observed system response is reproduced if model classM j is adopted. The evidence is given

by Total Probability Theorem as:

p(D|M j) =
∫

Θ
p(D|θ,M j)p(θ|M j)dθ (4.9)
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where p(D|θ,M j) is the likelihood function and p(θ|M j) is the prior PDF of model pa-

rameters, both of them introduced in Section 4.1. It is noted that the evidence is equal to the

normalizing constant in establishing the posterior PDF in Equation 4.1.

Once the evidence for each model class is computed, their values allow us to rank the

model classes according to the posterior probabilities given in Equation 4.8. However, the

evaluation of the multi-dimensional integral in Equation 4.9 is nontrivial except for some

cases where the Laplace’s method of asymptotic approximation can be used [65]. In this

thesis, a recent technique based on samples from the posterior is adopted to numerically

solve this integral [66]. The details along with an algorithmic description of this method are

provided below in Section 4.2.2.

4.2.1 Information-theory approach to model-class selection

From the perspective of forward modeling problems, more complex models may be pre-

ferred over simpler models because they are considered more realistic. For inverse prob-

lems, however, this may lead to over-fitting of the data where the model is unnecessarily

adjusted to fit the given set of data. Then the model does not generalize well when mak-

ing predictions since it depends too much on the details of data. The Bayesian approach to

model class assessment shows that the evidence of each model class automatically enforces

a quantitative expression of a Principle of Model Parsimony or Ockham’s razor [19, 45], by

which simpler models that are reasonably consistent with data should be preferred over

more complex models that lead to only slightly better agreement with the data. In this con-

text, Muto and Beck [58] proposed an information-theoretic interpretation of the evidence

for a model class that is adopted in this thesis, as follows:

log p(D|M j) =
∫

Θ

[
log p(D|θ,M j)

]
p(θ|D,M j)dθ−

∫

Θ

[
log

p(θ|D,M j)

p(θ|M j)

]
p(θ|D,M j)dθ

(4.10)

= E[log p(D|θ,M j)]−E
[

log
p(θ|D,M j)

p(θ|M j)

]

where E is the expectation respect to the posterior p(θ|D,M j). This expression is obtained

by strategically multiplying the logarithm of the evidence by a factor of one:

log p(D|M j) =
(

log p(D|M j)
) ∫

Θ
p(θ|D,M j)dθ

︸ ︷︷ ︸
= 1

(4.11)

and then making substitutions according to Bayes’ Theorem (Equation 4.1) to expand the

evidence.

The first term of the right side of Equation 4.10 is the posterior mean of the log-likelihood

function, which is a measure of the average goodness of fit (AGF) of the model classM j to

the dataD. This term accounts for the goodness of fit for different combinations of the model

parameters, weighted by their posterior probabilities [22, 58]. The second term is the relative
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entropy between the posterior and the prior PDFs, which measures the ”difference” between

those PDFs [67]. This term determines the expected information gained (EIG) about the

model classM j from the data and it is, by definition, always non-negative. It will usually be

larger for more complex models with more parameters, therefore, the resulting log-evidence

of a model class is comprised of a data-fit term and a term that provides a penalty against

more complex model classes, that are those that extract more information from the data to

update their prior information. This interpretation of the evidence allows us to find a correct

trade-off between fitting accuracy and model complexity for a particular model class, and

gives an intuitive understanding of why the computation of evidence automatically enforces

a quantitative expression of the Principle of Model Parsimony or Ockham’s razor [19].

4.2.2 Computation of the evidence of a model class

The calculation of the evidence given in Equation 4.9 is not a trivial task. In the case of glob-

ally identifiable model classes based on the data [68, 69], the posterior PDF in Equation 4.1

may be accurately approximated by a Gaussian distribution, and the evidence term can be

obtained by Laplace’s approximation [65, 68, 70]. In the more general case, where the pos-

terior PDF may not be approximated by a Gaussian distribution, or if the amount of data

is small [65] (as normally arises when dealing with fatigue damage modeling), stochastic

simulation methods are required.

One straight-forward way to approximate the evidence is by considering the probability

integral in Equation 4.9 as a mathematical expectation of the likelihood p(D|θ,M j) with

respect to the prior p(θ|M j). This approach leads to the direct Monte Carlo method as

follows,

p(D|M j) ≈
1

N1

N1

∑
k=1

p(D|θ(k),M j) (4.12)

where the θ(k) are N1 samples drawn from the prior PDF. Although this calculation can be

easily implemented, it results in a computationally inefficient method (large-variance es-

timator), since the region of high probability content of p(θ|M j) is usually very different

from the region where the likelihood p(D|θ,M j) has its largest values. To overcome this

problem, some techniques for calculating the evidence based on samples from the posterior

p(θ|D,M j) have received attention [71–76], although with known drawbacks of instabil-

ity [73]. In this thesis, a recent stable technique based on an analytical approximation of the

posterior is adopted [66]. The relevant details from [66] are presented here with special focus

on the Metropolis-Hastings algorithm, which is the algorithm used in this thesis to generate

samples from the posterior.

Let K(θ|θ∗) be the transition PDF of any MCMC algorithm with stationary PDF π(θ) =

p(θ|D,M j). The stationarity condition for the MCMC algorithm satisfies the following re-

lation:

π(θ) =
∫

K(θ|θ∗)π(θ∗)dθ∗ (4.13)
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A general choice of K(θ|θ∗) that applies to many MCMC algorithms, can be defined as:

K(θ|θ∗) = T(θ|θ∗) + (1− a(θ∗))δ(θ−θ∗) (4.14)

where T(θ|θ∗) is a smooth function that does not contain delta functions and a(θ∗) is the ac-

ceptance probability which must satisfy a(θ∗) =
∫

T(θ|θ∗)dθ 6 1. By substituting Equation

4.14 into 4.13, an analytical approximation of the posterior results as follows:

π(θ) = p(θ|D,M j) =

∫
T(θ|θ∗)π(θ∗)dθ∗

a(θ)
≈ 1

a(θ)N1

N1

∑
k=1

T(θ|θ(k)) (4.15)

where the θ(k) are N1 samples distributed according to the posterior. For the special case

of the Metropolis-Hastings algorithm, T(θ|θ∗) = r(θ|θ∗)q(θ|θ∗), where q(θ|θ∗) is the pro-

posal PDF, and r(θ|θ∗) is given by:

r(θ|θ∗) = min

{
1,

p(D|θ,M j)p(θ|M j)q(θ∗|θ)
p(D|θ∗,M j)p(θ∗|M j)q(θ|θ∗)

}
(4.16)

Additionally, for this algorithm, the denominator in Equation 4.15 can be approximated by

an estimator that uses samples from the proposal distribution as follows:

a(θ) =
∫

r(θ̃|θ)q(θ̃|θ)dθ̃ ≈ 1
N2

N2

∑
k=1

r(θ̃(k)|θ) (4.17)

where the θ̃(k) are N2 samples from q(θ̃|θ), whenθ is fixed. Once the analytical approxima-

tion to the posterior in Equation 4.15 is set, then Equation 4.1 can be used to evaluate the

evidence, as follows:

log p(D|M j) ≈ log p(D|θ,M j) + log p(θ|M j)− log p(θ|D,M j)︸ ︷︷ ︸
Analytical approx.

(4.18)

The last expression is obtained by taking logarithms of Bayes’ Theorem, explained earlier

in Equation 4.1. Observe that, except for the posterior PDF p(θ|D,M j), whose information

is based on samples, the rest of terms can be evaluated analytically for any θ ∈ Θ. Bayes’

Theorem ensures that the last equation is valid for all θ ∈ Θ, so it is possible to use only

one value for this parameter. However a more accurate estimate for the log-evidence can

be obtained by averaging the results from Equation 4.18 using different values for θ [16,

66]. The method is briefly summarized by the pseudocode given in Algorithm 3, which

specifically focuses on the proposed implementation for the inverse problem based on the

M-H algorithm.

Once the evidence is obtained, the data-fit term (AGF) in Equation 4.10 can also be esti-

mated based on the N1 samples from the posterior, and then the EIG term in this equation
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Algorithm 3 Evidence computation by [66]

1.- Take
{
θ(k)}N1

k=1 samples from p(θ|D,M j)

2.- Choose a model parameter vectorθ ∈ Θ

for k = 1 to N1 do
3.- Evaluate q(θ|θ(k))

4.- Evaluate r(θ|θ(k)) (Eq. 4.6)
end for
5.- Take

{
θ(`)

}N2
`=1 samples from q(·|θ)

for ` = 1 to N2 do
6.-Evaluate r(θ(`)|θ) (Eq. 4.6)

end for

7.- Obtain p(θ|D,M j) ≈
1

N1
∑

N1
k=1 q(θ|θ(k))r(θ|θ(k))

1
N2

∑
N2
`=1 r(θ(`)|θ)

8.- Evaluate log p(D|M j) (Eq. 4.18)

can be approximated by:

E
[

log
p(θ|D,M j)

p(θ|M j)

]
≈ 1

N1

N1

∑
k=1

log p(D|θ(k),M j)− log p(D|M j) (4.19)

4.2.3 Robust prediction and model class averaging

In addition to select the best ranked model class among candidates using Equation 4.8, a

robust [22] stochastic forward model can be obtained as a outcome of the proposed Bayesian

framework, by using the information encapsulated in the posterior PDF of model param-

eters for the chosen model class M j. It is accomplished by Total Probability Theorem, as:

p(x|D,M j) =
∫

Θ
p(x|θ,M j)p(θ|D,M j)dθ (4.20)

The last multidimensional integral can be readily estimated as a mathematical expectation of

the stochastic forward model p(x|θ,M j) with respect to the posterior p(θ|D,M j), leading

to the standard MC method:

p(x|D,M j) =
1

Ns

Ns

∑
k=1

p(x|θ(k),M j) (4.21)

where θ(k) are samples from the posterior PDF p(θ|D,M j). In certain cases, more than one

model class may have significant posterior probability in comparison with the rest of model

classes in the set M. Then, an hyper-robust [22, 77] stochastic forward model can be obtained

by using the posterior information from the complete set of models classes in M. To this end,

Total Probability Theorem is applied at the model class level, as follows

p(x|D, M) =
Nm

∑
j=1

p(x|D,M j)p(M j|D, M) (4.22)
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with p(x|D,M j) the robust stochastic forward model presented before (Equation 9.4). Note

that the last equation constitutes in fact a weighted model averaging formula [22, 77], where

the ”weights” are the posterior probabilities p(M j|D, M) of the candidate model classes in

the set M. Therefore, this formula provides a rational way to account for the overall poste-

rior uncertainty related to both, model parameters and model choice, when predicting the

system response.
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Part II

THEORETICAL CONTRIBUTIONS
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Probability theory is nothing

but common sense reduced to

calculation.

Laplace (1819)

5
Markov chain damage model

In this chapter, a new stochastic model for damage accumulation is proposed based on the

theory of Markov chains. A novel parameterization is proposed to efficiently account for the

non-stationarity of the damage process with a reduced set of model parameters. The model

is based on solid statistical grounds and can be applied to a wide range of problems re-

lated with cumulative damage degradation. In Section 5.2, the mathematical definition and

the modeling assumptions of the Markov chain model are presented. Section 5.3 provides

the bases for the formulation of the likelihood function using the proposed Markov chain

model. To demonstrate the suitability of the proposed approach, an illustrative example is

provided in Section 5.4 in application to fatigue damage data for quasi-isotropic glass-fiber

laminates.

5.1 Introduction and state-of-art

Throughout decades of investigation, numerous fatigue models have been proposed for

composite materials and a large amount of data has been derived from experimental pro-

grams. Earlier reviews about fatigue modeling can be found in [5, 41, 43, 78, 79], while a

more recent review for spectrum loadings is presented in Post et al. [80]. The majority of

these models are deterministic approaches and hardly ever account for the large variability

observed in data. Several studies have reported and quantified the uncertainty in fatigue

damage modeling in composites, some of the most relevant can be found in [10, 11, 24–

26, 39, 40, 81, 82]. Among them, cumulative damage models based on the theory of Markov

chains [83] are found of major interest due to their versatility and efficiency to deal with

complex cumulative damage processes.
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A stochastic damage model based on Markov chains was first applied to fatigue mod-

eling in composites by Rowatt and Spanos [10], as an extension of the pioneering work of

Bogdanoff and Kozin [47]. By embedding this model within laminate plate theory, the evolu-

tionary probability of failure was derived based on the critical element approach [84]. Gane-

san [24] discussed the limitations of the Weibull model in favor of Markov chain models

to describe the damage accumulation in composites, and provided an analytical expression

for the evolutionary PDF of damage based on the Principle of Maximum Information En-

tropy [23, 85]. In Pappas et al. [86], the results of several fatigue tests for both organic and

ceramic matrix composite materials were presented and an algorithmic description for the

Markov chain calibration was provided. More recently, Wei et al. [11] propose a Markov

chain model to describe the progression of fatigue damage from infrared thermography

measurements. In that work, a novel procedure to generate stochastic S-N curves using pre-

viously calibrated Markov chain models is also provided. Later, Johnson et al. [87] extend

the aforementioned work of Wei et al. to describe the accumulation of damage in single-lap

shear joints for composites laminates. More applications of Markov chain damage models

are found in [88–100], most of them for metals, and theoretical insight about them is found

in [101, 102]. As a general comment, most of the proposed models are based on lifetime data

instead of non-destructive damage data along the lifespan, which provides better informa-

tion of the process being modeled.

In this chapter, a new Markov chain model is proposed to idealize the evolution of dam-

age in composite materials. The key contribution is a new model parameterization for the

Markov chains to efficiently account for the nonstationarity of the damage process with

a reduced set of model parameters. This is achieved by introducing a spline transforma-

tion over an unit time scale as a generalization of the time transformation-condensation method
first developed by Bogdanoff and Kozin [47]. However, the proposed modeling approach

is subjected to modeling uncertainty that comes from the adoption of a particular model

parameterization. This uncertainty may be explicitly accounted for using the Bayesian ap-

proach presented in Chapter 4. In this chapter, a methodology is provided to define several

(Bayesian) model classes for the proposed Markov chain damage model, with special fo-

cus on the computation of the likelihood function for the subsequent Bayesian model class

selection.

The proposed approach confers an efficient way to make inference for damage evolution

using an optimum set of model parameters and, in general, to treat cumulative damage

processes in composites in a robust sense.

5.2 Modeling approach

Fatigue damage in composites is revealed as a progressive or sudden degradation of the

macro-scale mechanical properties from the virgin or no damage state up to the final failure

of the material, as a consequence of growing fracture modes at the micro and meso-scale

[2, 3]. For the proposed modeling approach, damage is defined as a scalar variable, xi j(n) ∈
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[0, 1] acting at a certain fatigue cycle n as a macro-scale relative stiffness reduction at one

specific point, section or element:

xi j(n) =
A∗i j(0)− A∗i j(n)

A∗i j(0)
; n ∈ N (5.1)

where A∗i j(n) is the (i, j) component of the effective stiffness matrix A∗ at the fatigue cycle

n. This definition of damage has been adopted by several authors in the literature [103–107]

and may be motivated from the linear elasticity theory coupled with the concept of effective
stress from Continuum Damage Mechanics, under the hypothesis of strain equivalence [108,

109]. However, the methodology proposed in this chapter is general enough to be applied

to other suitable definitions of damage [110, 111].

As stated by Equation 5.1, a complete characterization of damage accumulation would

require the evaluation of xi j for all independent components of the stiffness matrix. For

simplicity but no loss of generality, the proposed modeling approach is presented here for a

particular component selection (i, j), so the notation xn is adopted instead of xi j(n). For this

component, we define X = [0, 1] ⊂ R as the set of possible values of damage xn so for each

n, xn ∈ X . The uncertainty in the fatigue damage process is modeled as a stochastic process

{xn, n ∈ N} taking values in X , with the adoption of the following description items:

1. The damage space X is partitioned into a discrete set of events or damage states Xi,

where i ∈ I = {0, . . . , s} ⊂ N such that X = ∪s
i=0Xi. Each damage state Xi ⊂ X is a

subinterval represented by its center x̄i
n = 2i+1

2s+2 such that pi
n , p(x̄i

n) , P [xn ∈ Xi] >

0. The no-damage state corresponds to i = 0.

2. The evolution of fatigue damage is modeled by a Markov chain, so the Markov prop-
erty [83] holds, which states that the future of the process is conditionally indepen-

dent of the past states, given the present. In mathematical terms: p(x̄k
n+1|x̄i

0, . . . , x̄ j
n) =

p(x̄k
n+1|x̄

j
n) , p j,k

n ; i, j, k ∈ I.

3. We can define a duty cycle (DC) as an appropriate fixed amount of fatigue cycles in

which damage is accumulated. By means of this, the fatigue cycles can be divided into

a discrete set of regularly scheduled duty cycles: T = {1, . . . , n, . . . , N} ⊂ N.

4. During duty cycle n, damage may go from a certain damage state x̄i
n to the

next x̄i+1
n+1 with probability p(x̄i+1

n+1|x̄i
n) = pi,i+1

n , and remain in the same state with a

probability p(x̄i
n+1|x̄i

n) = pi,i
n = 1− pi,i+1

n . Then damage is described by a cumulative
stochastic process.

5. There exists an absorbing state Xs defined such that p(x̄s
n+1|x̄s

n) = ps,s
n = 1. In other

words, once the damage process has reached this state it is impossible to leave it. Con-

sequently, the absorbing state corresponds to the final state of the process.

6. A set of K experimental sequences of fatigue damage from K nominally-identical spec-

imens,D = {Y(1)
nN , . . . , Y( j)

nN , . . . , Y(K)
nN }where Y( j)

nN = {y( j)
n1 , . . . , y( j)

nk , . . . , y( j)
nN}, is assumed

to be available at a discrete set of regularly scheduled or even opportunistically stag-

gered duty cycles TD = {n1, . . . , nk, . . . , nN}, such that TD ⊆ T .
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5.2.1 Model formulation

The probability of damage to follow a certain sequence of states i, j, . . . , k, l ∈ I from an

arbitrary duty cycle n to m > n is, under the Markov hypothesis, given by:

p(x̄i
n, x̄ j

n+1, . . . , x̄k
m−1, x̄l

m) = p(x̄i
n)p(x̄ j

n+1|x̄i
n) · · · p(x̄l

m|x̄k
m−1)

= pi
n pi, j

n · · · pk,l
m−1

(5.2)

By Total Probability Theorem, the probability of damage to be in a certain state l at DC m
given it was in damage state i at DC n, can be obtained by summing over all possible damage

paths from n to m as,

pl
m =

s

∑
i=0

s

∑
j=0
· · ·

s

∑
k=0

pi
n pi, j

n · · · pk,l
m−1 (5.3)

From the last equation, the probability density function of damage discretized by the set

of states {x̄0
m, x̄1

m . . . , x̄s
m}with corresponding probabilities {p0

m, p1
m . . . , ps

m} can be written in

a formal mathematical fashion using the Dirac delta function as:

p(xm) =
s

∑
i=0

pi
m · δ(xm − x̄i

m); i ∈ I (5.4)

The PDF p(xm) in the last equation denotes in practice a discrete probability mass func-

tion (PMF) of damage at DC m, that can be easily expressed by the row vector pm =(
p0

m, p1
m, . . . , ps

m
)
. Here, we use bold pm for vectors to distinguish from the PDF p(xm). By

recognizing that Equation 5.3 can be obtained as a matrix multiplication, the PMF of damage

at DC m = n + 1 can be written as:

pn+1 = pn · Pn (5.5)

with Pn the “one-step” probability transition matrix for duty cycle n. For general m, the prob-

ability mass function of damage at DC m > n corresponding to Equation 5.3 can be written

as:

pm = pn ·
m−1

∏
j=n

P j; j ∈ N (5.6)

where {P j}m−1
j=n is the set of all probability transition matrices from duty cycle n to m− 1.

For a certain DC n, the matrix Pn stores in its (i + 1, j+ 1) element the conditional proba-

bility of transition p(x̄ j
n+1|x̄i

n) = pi, j
n from state x̄i

n to x̄ j
n+1 in one DC. Modeling assumptions

(4) and (5) restrict the structure of Pn to a bi-diagonal (s + 1)× (s + 1) matrix with ps,s
n = 1,

then:

Pn =




p0,0
n p0,1

n

p1,1
n p1,2

n

. . . . . .
ps−1,s−1

n ps−1,s
n

1




(5.7)
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where

pi,i
n + pi,i+1

n = 1; i ∈ {0, . . . , s− 1} (5.8)

If the transition probabilities pi, j
n do not depend on the duty cycle of transition n, then

Pn = P ∀n ∈ N and the process is termed as conditionally stationary or simply station-
ary. Otherwise, in the more general case (assumed here) where the transition probabilities

may change with time, the process is named conditionally non-stationary or non-stationary.

As stated by Equation 5.6, the cumulative damage process described by a Markov chain

model can be characterized by the family of transition matrices {P j}m−1
j=n and the starting

probability distribution of damage pn. When the fatigue process starts from the no-damage

state then p0
n = 1, and the probability distribution of the starting damage is known, i.e. pn =

[1, 0, . . . , 0]. In this case, the set of matrices {P j}m−1
j=n is sufficient to completely characterize

the process from DC n to m requiring s · (m− n) parameters to be determined. More details

about Markov chain models of cumulative damage are found in [47].

5.2.2 Parameterization for non-stationarity

For the purpose of model inference from data, a parameterization strategy is proposed here

to avoid a high dimensional problem for characterizing the non-stationary Markov chain

model described above. The strategy consists of adopting the same value for the one-step

probability of transition for every duty cycle n and for every state i ∈ {0, . . . , s− 1}, except

for the absorbing state in which ps,s
n = 1. This allows us to have a single probability transition

matrix, now called Q, that remains invariant during the process, defined as:

Q =




1−p p

1−p p

. . . . . .
1−p p

1




(5.9)

To account for the non-stationarity, an ad-hoc modification of the “natural” time scale n
into a transformed time scale n′ = g′(n) is introduced such that any probability transition

matrix from step n to step m can be calculated as Qg′(m)−g′(n), satisfying:

m−1

∏
j=n

P j = Qg′(m)−g′(n); m, n ∈ N (5.10)

where g′(n) is a nonlinear function of n, that is given below. This procedure is based on the

time transformation-condensation method (TTCM) first proposed by Bogdanoff and Kozin [47]

by using undefined polynomials. Instead, we express g′(n) in terms of a continuous mono-

tonic function g(θ) : [0, 1]→ [0, 1] as follows:

g′(n) = N ·
(

g(n/N)
)

(5.11)
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where function g is suitably defined as an interpolating monotonic cubic spline [112] for

a given set of j ∈ N interpolation points {θ1,θ
′
1, . . . ,θ j,θ

′
j}, and N is a sufficiently large

amount of duty cycles along which damage is completely developed. See Figure 5.1 for il-

lustration. Here, N is chosen as the maximum duty cycle of the observed sequences of dam-

age. Notice that to maintain the matrix structure of the model, the exponent g′(m)− g′(n)
in Equation 5.10 must be an integer after the transformation, to which an approximation to

the nearest integer is applied; otherwise a condensation technique as proposed in [47] must

be considered.

The transformation in Equation 5.11 distorts the natural time scale by using a nonlinear

mapping over the unit interval, which has the double benefit over the TTCM of (1) having a

bounded and defined searching space, and (2) keeping a fixed number of parameters. Each

interpolation point is defined by its cartesian coordinates (θ j,θ
′
j) in the unit time scale. Fig-

ure 5.1 illustrates this concept.

The coordinates of the overall interpolation points together with the probability of tran-

sition p, define the set of parameters θ = {θ1,θ
′
1, . . . ,θ j,θ

′
j, p} that allows for a complete

description of the proposed Markov chain damage model. Thus, this model can be reformu-

lated by replacing Equation 5.6 with:

pm = pn ·Qg′(m)−g′(n) (5.12)
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∆ θ = m − n
N

∆ θ ′ = g ( m
N
) − g ( n

N
)

θ ′ = g ( θ )

Figure 5.1: Spline transformation θ′ = g(θ) of the unit time scale θ controlled by the set of interpolation points
{(0, 0), (θ1 ,θ′1), . . . (θ j ,θ′j), (1, 1)}; θ j > θ j−1 and θ′j > θ′j−1 ; j > 1. The grey line would correspond to a sta-
tionary process in which the time transformation does not take place, so θ′ = θ; instead the darker curve corresponds
to a non-stationary damage process.
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5.2.3 Model class definition

According to the Markov chain parameterization detailed in Section 5.2.2, the model

proposed is prescribed by the definition of the set of model parameters θ =

{θ1,θ
′
1, . . . ,θ j,θ

′
j, p}. Then, we can denote byM j the j-th Bayesian model class [22] that in-

corporates the Markov chain forward model with θj = {θ1,θ
′
1, . . . ,θ j,θ

′
j, p} ∈ Θj as model

parameters along with the prior PDF p(θj|M j), that gives the initial relative plausibility of

each value of θj before the information from measurements is incorporated. Observe that

the parameter vectorθ depends on the model classM j even thought it is not reflected with

the subscript j, since the conditioning onM j is sufficient to indicate which parameter vector

is being considered.

Based on this definition, a discrete set of possible candidate model classes M = {M j, j :

1, 2, . . . , NM} , NM ∈ N, can be obtained by adding the coordinates of j interpolation points

for the definition of model classM j. See Table 5.1 for a clarification of the parameterization

of the set of model classes M.

Model Class Parameters

M1 θ1 θ
′
1 - - - - - p

M2 θ1 θ
′
1 θ2 θ

′
2 - - - p

...
. . .

MNM θ1 θ
′
1 θ2 θ

′
2 . . . θNM θ

′
NM

p
Table 5.1: Parameterization scheme for the set of Nm Markov chain model classes

5.3 Formulation of likelihood function

The Bayesian approach for inverse problem presented in Section 4.1 allows to adequately

treat uncertainties for both, model parameters and model classes, based on the Cox-Jaynes

[19, 51, 52] interpretation of probability that is adopted in this thesis. In this approach, the

likelihood function p(D|θ,M j) is a fundamental probability model for both problems, model

parameter estimation and model class selection, which express the information of idealized

relationship between data D and model parameters θ in a model classM j. In other words,

it provides a meassure of how good the model is in explaining the data.

In general, data D may consist of a set of K experimental sequences of fatigue-based

damage from K nominally-identical specimens, as defined in Section 5.2, item 6. A corre-

spondence between an observed damage sequence Y(k)
nN = {y(k)n1 , y(k)n2 , . . . , y(k)nN} and the la-

tent sequence of damage states {x̄i,(k)
n1 , x̄ j,(k)

n2 , . . . , x̄l,(k)
nN }, with i, j . . . , l ∈ I, can be established

based on the defined set {x̄0
n, x̄1

n, . . . , x̄s
n} in Section 5.2.1, by taking x̄i,(k)

n when y(k)n ∈ Xi. See

Figure 5.2 for further details. Then, the likelihood function can be formulated as follows:

First, the probability to observe a sequence of damage states {x̄i,(k)
n1 , x̄ j,(k)

n2 , . . . , x̄l,(k)
nN } in the

k-th specimen at the given set of duty cycles TD = {n1, n2, . . . , nN}, TD ⊆ T , is modeled as a
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Markov chain parameterized byθ in the model classM j. By means of the Markov property,

this probability can be obtained as

p(x̄i
n1

, x̄ j
n2 , . . . , x̄l

nN
|θ) = p(x̄i

n1
|θ)p(x̄ j

n2 |x̄i
n1

,θ) · · · p(x̄l
nN
|x̄k

nN−1
,θ) (5.13)

where the superscript (k) denoting the k-th specimen is not used in the last equation, and

furthermore, the conditioning on the model class M j is omitted for simper notation. The

likelihood function is then the product of probabilities as in Equation 5.13 over all K speci-

men test sequences.

The structure of this likelihood function can be clarified by introducing the matrix fnh ,

called the transition count matrix, that accounts for the number of observed transitions x̄i
nh
→

x̄ j
nh+1 , i.e., the number of times for which the damage reaches the state j at DC nh+1, given

that it previously was in state i at DC nh [113, 114]. In mathematical terms, the (i, j) element

of this matrix can be expressed as:

f i, j
nh =

K

∑
k=1

s

∑
i∗ , j∗=0

I
(

x̄i∗=i,(k)
nh , x̄ j∗= j,(k)

nh+1

)
(5.14)

with x̄i(k)
nh the damage state i at duty cycle nh, for the k-th specimen. In the last expression,

I
(

x̄i∗=i,(k)
nh , x̄ j∗= j,(k)

nh+1

)
is an indicator function which assigns the value of 1 when the transition

x̄i
nh
→ x̄ j

nh+1 holds, and 0 otherwise. In Figure 5.2, a detailed example about the construction

of fnh is provided considering two hypothetical curves of stiffness reduction. In this figure,

damage states are represented on the vertical axis while the set of DC are represented on the

horizontal axis. Observe that a transition between states 1 (for n = n3) and 3 (for n = n4)

occurs in specimen 1, so f 1,3
n=n4 = 1. Notice that in specimen 2, damage remains in the same

state for n = n3 and n = n4, so f 1,1
n=n4 = 1. See the example transition count matrix fn=n4 in

the upper-left side of this figure.

The likelihood function can then be formulated as:

p(D|θ,M j) = p(x̄i
n1
|θ)

nN−1

∏
nh=n1

s

∏
i, j=0

(
p(x̄ j

nh+1 |x̄i
nh

,θ)
) f i, j

nh (5.15)

where p(x̄ j
nh+1 |x̄i

nh
,θ) is the probability transition between damage states i and j at DC nh and

nh+1 respectively, corresponding to the (i + 1, j + 1) element of the matrix Qg′(nh+1)−g′(nh),

which is obtained by the model parameterizationθ ∈ M j.

Finally, it is remarked that in constructing the likelihood function in Equation 5.15, any

measurement error when assigning the i-th damage state based on the observed value yn ∈
Xi at duty cycle n is subsumed by the uncertainty in the damage states described by the

Markov chain model, and so it is not explicitly modeled.
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Figure 5.2: Toy example for obtaining the transition count matrix when a Markov chain with 6-states is adopted with
data from two specimens.

5.4 Illustrative example

To demonstrate the suitability of the stochastic model proposed in this chapter, an illustra-

tive example is provided in this section using experimental damage data for GFRP quasi-

isotropic laminates, which corresponds to Dataset 1 in Chapter 8 (Section 8.1). For this exam-

ple, a set of five parametersθ = {θ1,θ′1,θ2,θ′2, p} is used for the Markov chain parameteriza-

tion, which involves two anchor points to define the spline function that distorts the natural

time scale (see Figure 5.1), as explained in Section 5.2.2. Some pilot tests revealed that the

most suitable value for duty cycle DC for this dataset is 500 load cycles with a Markov chain

assembly of s = 30 states. Hence, the total number of duty cycles is N = 213900/500 = 428. To

estimate an optimal value for model parameters, a simple approach of matching the model-

based cumulative distribution functions (CDFs) and empirical CDFs is proposed, that is

sufficient to demonstrate the suitability of the fatigue model proposed. It is summarized

below.

Let F(ynh) be the empirical CDF of damage at a certain duty cycle nh ∈ TD, defined as

F(ynh) =
1
K

K

∑
j=1

I[0,ynh ]
(y( j)

nh ), y( j)
nh ∈ D (5.16)

where K is the number of experimental damage sequences in D, and I[0,ynh ]
(y) is the indi-

cator function for the interval [0, ynh ]. Let F(xnh |θ) be the CDF of damage at the same duty

cycle nh, obtained by the Markov chain model parameterized byθ:

F(xnh |θ) =
s

∑
i=0

i

∑
j=0

p j
nh · δ(xnh − x̄i

nh
), xnh ∈ X , i, j ∈ I (5.17)

Then a reasonable estimator of θ is a value θ∗ ∈ Θ ⊆ Rd that minimizes any function C of

the distance between (5.16) and (5.17) for every duty cycle at which damage measurements
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are available. Mathematically:

θ∗ = arg min
θ∈Θ
C
(

d
(

F(ynh), F(xnh |θ)
))

; ∀nh ∈ TD (5.18)

A distance between F(ynh) and F(xnh |θ) for a particular DC nh ∈ TD, can be defined as [115,

116]:

d
(

F(ynh), F(xnh |θ)
)
=
∫

X

(
F(ynh)− F(xnh |θ)

)2
dxnh (5.19)

For each nh, the distance defined in Equation 5.19 can be stored within a residual vector r:

r(θ) =
[
d
(

F(ynh), F(xnh |θ)
)]N

h=1
(5.20)

Finally the function C : RN → R, named the cost functional, can be defined as the `2 norm of

the residual vector r:

C(θ) = ‖r(θ)‖2 (5.21)

The inference problem is then defined as the problem of findingθ∗ ∈ Θ that satisfies:

θ∗ = arg min
θ∈Θ
C(θ) (5.22)

The minimization problem defined in Equation 5.22 can be numerically solved using

genetic algorithms (GA) [117, 118]. The optimal model parameters found by GA for the

experimental dataset used in this example areθ∗ = {0.104, 0.082, 0.226, 0.298, 0.884}. From

these parameters, CDFs of damage are obtained at the set TD of monitored duty cycles and

compared with the corresponding experimental CDFs in Figure 5.3.

In addition, a set of T = 1000 simulated Markov chains of dam-

age {X(1)
nN , . . . , X(t)

nN , . . . , X(T)
nN } has been drawn using the Markov chain model specified

by the set of parameters θ∗. To this end, the standard procedure of conditional sam-

pling [119] is adopted: first sample using the initial state probability distribution, then

successively sample states from the transition probability distributions (conditional

on the previous state sample). Mathematically, each simulated sequence is defined as

X(t)
nN = {x̄i

0, x̄ j
1|x̄i

0, · · · , x̄l
n|x̄k

n−1, · · · , x̄s
nN
|x̄r

nN−1
}, where the conditional sample x̄l

n|x̄k
n−1 is

obtained by sampling from the k-th row of the probability transition matrix Pn−1, so:

x̄l
n|x̄k

n−1 ∼ Pn−1(k, :) (5.23)

Finally, the simulation of the calibrated Markov chain model is represented in Figure 5.4

where it is compared with the experimental damage realizations from the dataset D.

The performance of the model classes presented in this chapter is investigated in Chap-

ter 9 using damage data for both, CFRP and GFRP laminates.
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Figure 5.3: CDFs of damage obtained by the the Markov chain model for θ∗ at a increasing series of duty cycles in
comparison with the corresponding experimental CDFs obtained from Dataset 1. Dotted black line: Modeled CDFs of
damage. Solid grey line: experimental CDFs of damage.
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Figure 5.4: Simulation of the Markov chain damage model by conditional sampling. Left side, the 5% and
95% bounds together with the experimental sequences. Right part, the mean of the simulated damage se-
quences {X(1)

nN , X(2)
nN , . . . , X(1000)

nN } in comparison with the mean of experimental sequences. The mean of simulations
is in good agreement with data mean. Also the 0.05/0.95 simulated bounds cover well the experimental realizations,
except some outliers.
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All truths are easy to under-

stand once they are discovered;

the point is to discover them.

Galileo Galilei (1564–1642)

6
Physics-based modeling framework

This chapter aims at providing the mathematical basis to quantify the modeling uncer-

tainty of a set of damage-mechanics models through a full Bayesian approach that simulta-

neously estimates the plausibility of each individual model class along with the uncertainty

of the underlying model parameters. In Section 6.2, the proposed physics-based modeling

approach is presented. The methodology for the definition of the candidate model classes

is provided in Section 4.1.1. In Section 6.4, the formulation of the likelihood function is pre-

sented for the proposed damage mechanics models. An scheme of implementation using a

Graphics Processing Unit is also provided. Finally, in Section 6.5, a methodology for model

parameterization using Global Sensitivity Analysis is presented.

6.1 Introduction and state of art

Fatigue in composites is governed by a complex multi-scale damage process driven by sev-

eral internal fracture events that leads to the alteration of the macro-scale mechanical proper-

ties of the material. The inherent complexity of this process implies uncertainty in modeling,

that not only includes the uncertainty in model parameters but also the uncertainty arising

from the choice of a particular model class (e.g., the parameterized mathematical structure of

the model for predicting damage behavior).

In the literature, there is an increasing number of researchers that have started investigat-

ing the role of uncertainties in modeling the behavior of composites materials. For example,

Sriramula and Chryssanthopoulos [120] reviewed and discussed different stochastic mod-

eling approaches for analyzing uncertainties at the ply-level, coupon-level and component-

level. Uncertainty quantification methods have also been used to assess the uncertainty in
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the material properties [121, 122] and extended to study a variety of phenomena such as

elastic response [123, 124], aeroelastic behavior [125, 126], and failure [127, 128], among oth-

ers. In particular, the Bayesian approach has been successfully applied for uncertainty quan-

tification in fatigue, albeit in the context of metals [17, 32–38]. For example, Cross et al. [33]

and Sankararaman et al. [34] used Bayesian inference to estimate parameters underlying

crack growth behavior. Sankararaman et al. [36] used dynamic Bayesian networks for model

parameter estimation and calculated Bayes factors to quantify model uncertainty. However,

the application of Bayesian methods remains very limited in the composites fatigue litera-

ture, precisely where the benefits of the Bayesian approach can be fully exploited due to the

inherent complexity of the fatigue process and the existence of multiple competing models.

In this chapter, a set of five model classes pertaining to three families of damage mechan-

ics models [7] (i.e., shear-lag, variational and crack opening displacement (COD)) is pro-

posed to represent the relation between the macro-scale stiffness reduction and the micro-

scale damage, due to matrix-cracks. Damage mechanics models are preferred over other an-

alytical approaches (e.g. continuum damage mechanics models or synergistic damage me-

chanics models [7]) due to their efficiency in relation to the assumptions adopted, and for

being well connected with the physics of the underlying damage process. Moreover, these

models have the ability to adapt to different systems (specimen, materials, loading condi-

tions, etc.) without much training and furthermore, they can incorporate structural health

monitoring data.

Each candidate damage mechanics model is subsequently embedded into the modified
Paris’ law [48], that is used here to represent the propagation forward in time of the matrix-

cracks density. This two-level modeling approach results in a large number of uncertain

parameters, leading to a computationally-intensive inference problem. To reduce the di-

mensionality of the problem without significantly altering the underlying uncertainty in the

model output, a model input tuning is carried out by means of a Global Sensitivity Analysis

(GSA) [49]. This allows to determine in advance the subset of inputs that are most ”sensi-

tive” to the model output uncertainty, which are further used as model parameters.

The results of the assessment are provided in Chapter 10 in application to data for micro-

cracks density and stiffness loss for carbon-epoxy cross-ply laminates (Dataset 8.2, Sec-

tion 8.2).

6.2 Candidate damage mechanics models

Typically, fatigue damage is perceived as a progressive or sudden change of the macro-scale

mechanical properties, such as stiffness or strength, as a consequence of several fracture

modes (matrix cracking, delamination, etc.) that evolve at the micro-scale along the lifes-

pan of the structure [3]. For the modeling approach proposed in this chapter, longitudinal

stiffness loss is chosen as the macro-scale damage variable. In contrast to the strength, the

stiffness loss can be measured through non-destructive methods during operation, which

is of key importance for the model-updating approach proposed. At the micro-scale level,
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Figure 6.1: Illustration for internal damage in
[
φ nφ

2
/90n90/φ nφ

2

]
laminate along with basic geometrical parameters.

matrix cracking [129] is hypothesized as the dominant damage mode for the early stage of

the fatigue process. Matrix cracks usually initiate from internal defects in 90◦ plies (trans-

verse to the loading direction) during first loading cycles, and grow rapidly along fibers

direction spanning the entire width of the specimen [129]. Continued loading leads to for-

mation of new cracks between the already formed cracks thereby progressively increasing

the matrix-cracks density of the ply until saturation. This saturated state, usually termed

as characteristic damage state [2], is long recognized as a precursor of more severe fracture

modes in adjacent plies, such as delamination and fiber breakage [130, 131], which may sub-

sequently lead to the final failure of the laminate. In addition, matrix micro-cracking may

itself constitute failure of the design when micro-cracks induced degradation in properties

exceeds the predefined threshold.

To accurately represent the relation between this micro-scale damage mode and its

macro-scale manifestation, several families of micro-damage mechanics models have been pro-

posed in the literature [7]. These models, that are grounded on first principles of admissible

ply stress fields in presence of damage, can be roughly classified into 1) computational meth-

ods, 2) semi-analytical methods and 3) analytical methods. Among them, computational and

semi-analytical methods have been shown to be promising approaches, however they are

computationally intensive; hence a large number of repeated evaluations in a simulation-

based inference procedure is computationally prohibitive. Therefore, the set of analytical

models is chosen here to address the relationship between stiffness loss and micro-crack

density. Three types of analytical models are considered: shear-lag models [9, 132], variational
models [133], and crack opening displacement based models [134, 135].

Shear-lag models use one-dimensional approximations of the stress field to derive ex-

pressions for stiffness properties of the cracked laminate. They assume basically that, in

the position of matrix cracks, axial load is transferred to uncracked plies by the axial shear

stresses. These models have received the most attention in the literature and thus, a vast

number of modifications and extensions of that analysis can be found. However, as stated
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by Talreja and Singh [7], all the one-dimensional shear-lag models are virtually identical,

except for the choice of the shear-lag parameter, as explained later in this section.

Variational models are based on a two-dimensional approximation of the equilibrium

stress field, that in contrast to shear-lag analysis, is obtained from the Principle of Minimum

Complementary Energy [136, 137].

Finally, COD-based models use a 3-D homogenization procedure derived from the

study of the average crack-face opening displacement of a single matrix crack as a

function of the applied load, that can be calculated either analytically [134] or numeri-

cally [135, 138, 139]. While shear-lag and variational models are applicable mostly to cross-

ply laminates (i.e. those with stacking sequence
[
0 n0

2
/90n90/0 n0

2

]
, where n0,90 = total number

of plies at 0◦ and 90◦, respectively), COD-based models are applicable to general laminates

with an arbitrary distribution of matrix cracks. The reader is referred to the recent work

of Talreja and Singh [7] for a detailed overview of these models, but for the sake of clarity,

the key formulation is appropriately reproduced here with a uniform notation.

6.2.1 Shear-lag and variational models

Following the unifying formulation by Joffe and Varna [140], the effective longitudi-

nal Young’s modulus E∗x can be calculated in
[
φ nφ

2
/90n90/φ nφ

2

]
laminates (where φ ∈

[−90◦, 90◦]) as a function of the crack-spacing in 90◦ layers for both shear-lag and varia-

tional models as follows:

E∗x =
Ex,0

1 + a 1
2l̄ R(l̄)

(6.1)

In the last equation, Ex,0 is the longitudinal Young’s modulus, l̄ = l
t90

is the half crack-

spacing normalized with the 90◦ sub-laminate thickness, R(l̄) is the average stress perturba-

tion function, and a is a known function of laminate properties (defined in Appendix A). It

should be noted that matrix-cracks density is usually defined as ρ = 1
2l , so that the nor-

malized half crack-spacing l̄ can be expressed as a function of ρ as l̄ = 1
2ρt90

. The func-

tion R(l̄) takes different expressions depending on the approach considered:

R(l̄) =
2
ξ

tanh(ξ l̄) (Shear-Lag) (6.2a)

R(l̄) =
4α1α2

α2
1 +α

2
2

cosh(2α1 l̄)− cos(2α2 l̄)
α2 sinh(2α1 l̄) +α1 sin(2α2 l̄)

(Variational) (6.2b)

where ξ is the shear-lag parameter, and α1, α2 are known functions dependent on ply

and laminate properties, as described in Appendix A. Depending on the choice of param-

eter ξ , different shear-lag models, that have been proposed in the literature, can be ob-

tained [7].

In this thesis three candidate shear-lag models are selected, namely, the ”classical” shear-

lag model [132, 141] and two of its modifications: interlaminar shear-lag model [9], and bi-

dimensional shear-lag model [142, 143]. The main difference between the classical approach

and the interlaminar approach is that the later assumes that shear stresses develop within
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a resin rich region near the interfaces between adjacent plies, whose thickness d0 and shear

modulus Gm are uncertain. The bi-dimensional shear-lag approach is essentially equivalent

to the classical approach except for that it introduces a minor correction to account for the

Poisson’s effect [7, 144]. See [7] for further discussion about shear-lag analysis.

The shear-lag parameter of each candidate model can be obtained as a function of the

ply and laminate properties (see Appendix A for nomenclature description), as follows:

ξ2 = G23

(
1

E2
+

1

λE(φ)
x

)
(classical) (6.3a)

ξ2 =
Gm

d0
t90

(
1

E2
+

1

λE(φ)
x

)
(interlaminar) (6.3b)

ξ2 =

1
Q22

+ 1
λQ(φ)

xx
1

3G23
+ λ

3G(φ)
xz

(bi-dimensional) (6.3c)

where Q22 in Equation 6.3c is the (2, 2)-th element of the on-axis (local coordinates) ply stiff-

ness matrix, defined as Q22 = E2
1−ν2

12
E2/E1

, and Q(φ)
xx is the (1, 1)-th element of the stiffness

matrix of the
[
φ nφ

2

]
sub-laminate. Given the ply stiffness matrix, which can be straightfor-

wardly obtained from basic ply properties, the stiffness matrix of the total laminate or any

sub-laminate can be obtained using the classical laminates theory [145].

6.2.2 Crack opening displacement model

For the COD-based model, the formulation of Gudmundson and Weilin [134] is adopted,

which uses a closed-form expression for the average COD to derive expressions for the ef-

fective longitudinal Young’s modulus in laminates with general layup, as:

E∗x =
1

(
(S0)−1 − ∑

np
k=1 ν

ktkρk(Ak)T ∑
np
i=1 β

ikAi
)−1

(1,1)

(6.4)

In the last equation, S0 is the in-plane compliance matrix of the intact laminate, np is the

number of plies and, νk, tk and ρk stand for the volume fraction, the thickness and the

matrix-cracks density of the k-th ply, respectively. Ak is a matrix defined by the compliance

matrix and the unit normal vector on the crack surfaces of the k-th ply, and βik is a ma-

trix associated with the average crack opening displacements and tractions of the surface of

transverse cracks. Both are detailed in Appendix A. The subscript (1, 1) at the denominator

of Equation 6.4 denotes the first component of the resulting matrix.

6.2.3 Micro-cracks density evolution model

Having identified the candidate models to express the relationship between effective stiff-

ness and micro-cracks density, the next step is to address the time evolution of the micro-

cracks density. To this end, the previously explained micro-damage mechanics models are

used to obtain the energy released per unit crack area due to the formation of a new crack
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between two existing cracks, denoted here as G. This energy, known as energy release

rate (ERR), can be calculated as [146, 147]:

G =
σ2

x h
2ρt90

(
1

E∗x(2ρ)
− 1

E∗x(ρ)

)
(6.5)

where σx is the applied axial tension, and h and t90 are the laminate and 90◦-sublaminate

half-thickness, respectively. The result of the energy calculation is further introduced into

the modified Paris’ law [48], that gives the evolution of matrix-cracks density as a function

of fatigue cycle n, as shown below:

dρ
dn

= A(∆G)α (6.6)

where A and α are fitting parameters, and ∆G is the increment in ERR for a specific stress

amplitude: ∆G = G(σx,max)−G(σx,min). Note that a closed-form solution for Equation 6.6 is

difficult to obtain due to the complexity of the expression for ∆G, which involves the un-

derlying micro-damage mechanics models for the computation of E∗x(ρ). To overcome this

drawback, the resulting differential equation can be solved by approximating the derivative

using ”unit-time” finite differences, as follows:

ρn = ρn−1 + A (∆G(ρn−1))
α (6.7)

To summarize, five micro-damage mechanics models, namely shear-lag (×3), variational

and COD models, are selected to compute E∗x(ρ), i.e. the relationship between the effective

stiffness (macro-scale) and the matrix-cracks density (micro-scale). The evolution of matrix-

cracks density is modeled by the modified Paris’ law in Equation 6.7, that uses one of the

candidate damage mechanics models to evaluate the increment in ERR. Therefore, for this

study, five candidate models are considered to investigate the overall damage progression

at both micro-scale and macro-scale.

6.3 Stochastic embedding for deterministic damage models

For the purpose of Bayesian model selection and parameter estimation, a probability-based

description of the deterministic damage models described in Section 6.2 is required. To this

end, the stochastic embedding methodology explained in Section 4.1.1 is applied here. Given

a deterministic damage model defined by the relationship g = g(u, m) : RNi × RNm →
RNo between the model input u ∈ RNi and the model output g ∈ RNo , provided a set of

Nm model parameters m ∈ RNm , a stochastic damage model can be obtained by adding an

error term e = e(v) : RNe → RNo parameterized by v ∈ RNe , that represents the difference

between the measured output x ∈ RNo and the model output g, as follows:

x︸︷︷︸
system output

= g(u, m)︸ ︷︷ ︸
model output

+ e(v)︸︷︷︸
error

(6.8)
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As discussed in Section 6.2, the progression of fatigue damage in composites is studied at

every fatigue cycle n by focusing on two of its output manifestations: the matrix-cracks

density, ρn, and the normalized effective stiffness, defined as Dn = E∗x
Ex,0

. Then, according to

Equation 6.8, the overall system response can be represented by:

x1,n = ρn = g1(ρn−1, u,θ)︸ ︷︷ ︸
Eq. 6.7

+e1 (6.9a)

x2,n = Dn = g2(ρn, u,θ)︸ ︷︷ ︸
Eq. 6.1 & 6.4

+e2 (6.9b)

where subscripts 1 and 2 denote the corresponding damage subsystems: matrix-crack den-

sity and normalized effective stiffness, respectively.

From Equations 6.9a and 6.9b, the three main elements defining the stochastic forward

model for system behavior (recall Equation 4.5) can be identified: (1) the system output

xn = (ρn, Dn) ∈ R2, (2) the model output g = (g1, g2) ∈ R2, and (3) the corresponding error

term e = (e1, e2) ∈ R2. A key concept here is the consideration of errors e1 and e2 as stochas-

tically independent (i.e., not correlated) a priori, even though models g1 and g2 are math-

ematically related, as shown in Section 6.2. This means that the covariance operator Σe is

a diagonal matrix, i.e. Σe = diag(σ2
e1

,σ2
e2
) and therefore, the stochastic forward model of

damage can be readily expressed as a product of univariate Gaussians, as follows:

p(xn|u,θ,M) = p(ρn|ρn−1, u,θ,M)p(Dn|ρn, u,θ,M) (6.10)

where

p(ρn|ρn−1, u,θ,M) = N
(

g1(ρn−1, u,θ) +µe1 ,σ2
e1

)
(6.11a)

p(Dn|ρn, u,θ,M) = N
(

g2(ρn, u,θ) +µe2 ,σ2
e2

)
(6.11b)

and where (µe1 ,σe1) and (µe2 ,σe2) are the parameters (mean, standard deviation) of the error

terms e1 and e2, respectively; i.e., v = {µe1 ,σe1 ,µe2 ,σe2}. See Figure 6.2 for illustration.

The same assumption of stochastic independency made for error parameters v can

also be adopted for the rest of model parameters in θ. Under this assumption, the prior

PDF of model parameters is defined as the unconditional product of the individual priors

p(θi|M), i = 1, . . . , d; i.e., p(θ|M) = ∏
d
i=1 p(θi|M). Note that this assumption is not an

assertion that no correlations actually exist in model parameters, but is only a description of

the available prior information about such correlations. If they existed, they would become

apparent after Bayesian updating and therefore, they would be considered in subsequent

forward model simulations.
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Matrix-crack evolution model
x1,n = g1(ρn−1; u,m)

Stiffness reduction model
x2,n = g2(ρn; u,m)

ρn = g1(ρn−1;u,θ) + e1

e1 ∼ N (µe1 , σe1)

Dn = g2(ρn;u,θ) + e2

e2 ∼ N (µe2 , σe2)

p(ρn|ρn−1;u,θ,M)
(Eq. 6.11a)

p(Dn|ρn;u,θ,M)
(Eq. 6.11b)

Estimation parameters
θ = {θ1, θ2, . . . , θd}

Stochastic forward model
p(xn|u,θ,M)
(Eq. 6.10)

Inputs

Prior PDF
p(θ|M)

Damage models Stochastic embedding Probabilistic damage models Bayesian model class

GSA (§6.5)
Prior information

(PMIE-modeler’s judgement)

Figure 6.2: Scheme of stochastic embedding for deterministic damage models

6.4 Formulation of the likelihood function

In this study, data D consists of an experimental sequence of N fatigue damage measure-

mentsD = {y1, . . . , yn, . . . , yN} defined over a set of fatigue cycles T = {1, . . . , n, . . . , N} ⊂
N, where yn = (ρn, Dn). The likelihood function is then computed as the probability of pre-

dicting the experimental sequenceD by the stochastic model defined in Equation 6.10 under

the parameterization specified byθ within the model classM, as follows:

p(D|θ,M) =
N

∏
n=1

p(yn|u,θ,M) (6.12)

By substituting Equation 6.10 into Equation 6.12, the likelihood function can be finally ex-

pressed as:

p(D|θ,M) =
N

∏
n=1

p(Dn|ρn, u,θ,M)p(ρn|ρn−1, u,θ,M) (6.13)

Note that when data are given over a set of non-regularly scheduled cycles TD =

{nk, nl , . . . , nN}, TD ⊂ T , the likelihood function defined in Equation 6.13 cannot be evalu-

ated due to the ”one-step” description of the matrix-cracks evolution model, as is defined in

Equation 6.9a. A proposed solution is to use Total Probability Theorem to bridge the missing

damage path between two non-subsequent measurements of matrix-cracks density. For ex-

ample, for general cycles nk and nl , such that nl = nk +∆n with ∆n ∈ N > 1, the probability

p(ρnl |ρnk , u,θ,M) in Equation 6.13 can be calculated as:

p (ρnl |ρnk ,θ) =
∫

p
(
ρnl |Γ nl

nk ,ρnk ,θ
)

p
(
Γ

nl
nk |ρnk ,θ

)
dΓ nl

nk (6.14)

where Γ
nl
nk represents the missing damage sequence between the observed data ρnk and ρnl ,

i.e., Γ nl
nk = {ρnk+1,ρnk+2, . . . ,ρnl−1}. Note that, for the sake of clarity, the conditioning on

model classM and model inputs u is dropped. The high dimensional probability integral

in Equation 6.14 can be readily estimated as a mathematical expectation using the direct
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Monte Carlo method, as:

p (ρnl |ρnk ,θ) ≈ 1
T

T

∑
i=1

p
(
ρnl |Γ̃

nl ,(i)
nk ,ρnk ,θ

)
(6.15)

where Γ̃
nl ,(i)
nk = {ρ̃(i)nk+1, ρ̃(i)nk+2, . . . , ρ̃(i)nl−1} is the i-th simulated sequence of damage growth

between cycles nk and nl , i = 1, . . . , T. It can be obtained by conditional sampling from

the stochastic matrix-cracks evolution model given in Equation 6.11a as follows: first sam-

ple ρ̃(i)nk+1 using the aforementioned evolution model conditional on the initial observed

state ρnk , i.e. ρ̃(i)nk+1 ∼ p(·|ρnk ,θ); then sample the next state conditional on the previous

sample, i.e. ρ̃(i)nk+2 ∼ p(·|ρ̃(i)nk+1,θ); finally, repeat the same process until the final damage

state in Γ̃
nl ,(i)
nk is reached.

By the Markovian type of evolution of the matrix-cracks density, inherited from the def-

inition of the crack evolution model in Equation 6.9a, the probability of any future damage

state is conditionally independent of the past history given the immediately previous state,

thus p(ρnl |Γ nl
nk ,θ) = p(ρnl |ρnl−1,θ). Then Equation 6.15 can be rewritten as:

p(ρnl |ρnk ,θ) ≈ 1
T

T

∑
i=1

p(ρnl |ρ̃
(i)
nl−1,θ) (6.16)

where ρ̃(i)nl−1 is the last damage state in the simulated sequence Γ̃
nl ,(i)
nk . The probability esti-

mate obtained from Equation 6.16 is further inserted in Equation 6.13 to calculate the overall

likelihood of the damage model specified byθ in model classM. Figure 6.3 provides further

clarification about the calculation of the likelihood along with details for its computational

implementation, as will be shown further below.

6.4.1 Computation of likelihood function using a GPU

As explained in Section 4.1.2, the computation of each MCMC step requires the evalua-

tion of the overall likelihood function p(D|θ,M), which (recall Equation 6.13) involves

the evaluation of multi-dimensional integrals such as those defined by Equation 6.14. The

Monte Carlo method can be applied to numerically solve these integrals, as shown in Equa-

tion 6.15, however it requires the simulation of T (large enough) damage growth sequences{
Γ̃

nl ,(i)
nk

}T
i=1, which increases the computational complexity dramatically.

To speed up these computations, the evaluation of the heaviest part of the likelihood

is carried out in parallel on the Graphics Processing Unit (GPU), utilizing the Compute

Unified Device Architecture (CUDA) code from NVIDIA using Matlab®. Figure 6.3 provides

a scheme of the MH algorithm implementation using the GPU. Observe that the simulation

of the T damage growth sequences,
{
Γ̃

nl ,(i)
nk

}T
i=1, together with the evaluation of the PDFs

{p(ρnl |ρ̃
(i)
nl−1,θ)}T

i=1 (recall Equation 6.16), are performed using the GPU. The summation

of the individual probability density values of Equation 6.16 together with the remaining

part of the likelihood function are handled by the CPU. The CPU also takes charge of the
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Proposal
θ′ ∼ q(·|θ(ζ))

Prior PDF
p(θ′|M)

Likelihood function∏N
k=1 p(ρnk+1

|ρnk
,θ′)︸ ︷︷ ︸ p(Dnk+1

|ρnk+1
,θ′)

Accept θ′ with
probability min{1, r}

(Eq. 4.6)

1
T

∑T
i=1 p(ρnl

|ρ̃(i)nl−1,θ
′)

(Eq. 6.16)

(Eq. 6.11a)
p(ρnl

| ρ̃(i)nl−1︸ ︷︷ ︸
,θ′)

p(ρnl
| ρ̃(T )
nl−1︸ ︷︷ ︸

,θ′)p(ρnl
| ρ̃(1)nl−1︸ ︷︷ ︸

,θ′) · · · · · ·

· · · · · ·{ρ̃(i)nk+1, ρ̃
(i)
nk+2, . . . ,

︷ ︸︸ ︷
ρ̃
(i)
nl−1}

(i-th simulated sequence)
{ρ̃(T )
nk+1, ρ̃

(T )
nk+2, . . . ,

︷ ︸︸ ︷
ρ̃
(T )
nl−1}{ρ̃(1)nk+1, ρ̃

(1)
nk+2, . . . ,

︷ ︸︸ ︷
ρ̃
(1)
nl−1}

(set nl = nk+1)

ζ = ζ + 1

CPU side

GPU side

Figure 6.3: Implementation scheme of M-H algorithm using the GPU to accelerate the computation of likelihood
function. Note that M-H runs serially on the CPU, while the GPU executes part of the likelihood in parallel.

rest of the MH steps. An averaged speed-up factor of up to 900, compared to an equivalent

serial computation on the CPU, is observed while updating each model class using a GPU

NVIDIA GeForce GTX 680 (1536 CUDA cores) and a 3.2 GHz CPU system.

6.5 Model parameterization through Global Sensitivity Analysis

The Bayesian approach to model parameter estimation and model class selection involves an

inference problem defined over a multi-dimensional parameter space Θ ⊂ Rd. It is clear that

the higher d, the higher the complexity and computational cost of the updating process. At

the same time, adopting a predetermined set of model parameters may lead to an unjustified

uncertainty reduction [148]. Sankararaman et al. [36] addressed this issue for fatigue crack

growth prediction in metals, where GSA was used to select the model parameters that were

further updated using Bayes’ Theorem. A similar approach has recently been adopted by

Gobbato et al. [38] for fatigue crack growth prediction in metals by using partial-derivatives

for sensitivity analysis. In this section, a variance-based approach for GSA is adopted follow-

ing the approach by [36], i.e. simplify the model parameterization by identifying the subset

of parameters that can be fixed at any given value (e.g., the mean or nominal value) of their

range of variation without affecting the uncertainty of the model output.

For the sake of illustration, let us consider the model g : g(π) defined in Section 4.1.1 as

a function of the set of parameters π = {u, m} = {ψ1, . . . ,ψi, . . . ,ψNp} ⊂ RNp=Ni+Nm . Each

component ψi is defined over a nonnull range of variation or uncertainty determined by

the prior PDF. The goal is to identify u ⊂ π , as the subset of noninfluential parameters. As

stated by Saltelli et al. [49, 148], the necessary and sufficient condition for parameterψi to be
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noninfluential is that ST
i = 0, where ST

i is the total effects index of parameterψi, which can be

computed as [49]:

ST
i =

Eψ∼i(Vψi(g|ψ∼i))

V(g)
(6.17)

with ST
i ∈ [0, 1] and ∑

Np
i=1 ST

i > 1. The numerator of the right hand side of Equation 6.17

can be evaluated using double-loop MC sampling, although single-loop MC sampling ap-

proaches have also been discussed in the literature [49]. In the inner loop, the conditional

variance Vψi(g|ψ∼i) is calculated by evaluating the model considering random variations in

ψi, when the parameters other than ψi (denoted by ψ∼i) are fixed at a random value sam-

pled from the associated prior PDFs. The outer loop considers random variations in ψ∼i

and computes the expectation of the aforementioned variance. Finally, the result is divided

by V(g), the unconditional variance of the model response, which can be readily obtained

by evaluating the model using samples from the joint prior PDF of the complete set param-

eters π . As stated before, the lower the total effects index of a particular parameter ψi, the

smaller its influence for Bayesian updating. Therefore, parameters with low sensitivity are

left out of the updating procedure, thereby reducing the dimensionality of the problem.

This procedure is applied for each candidate damage model and, as a result, a subset

m ⊆ π of model parameters arises for each model class. The rest of non-influential param-

eters are then used as deterministic input parameters u, hence they can be fixed anywhere

within their range of variation. As stated in Section 4.1.1, the vector m of model parameters

is augmented with the set of error parameters v, resulting in a set of model parameters for

Bayesian updating defined byθ = {m, v} ∈ Θ ⊂ Rd=Nm+Ne .

More insight and numerical results for GSA are found in Chapter 10, where the perfor-

mance of the model classes presented in this chapter is investigated using damage data for

CFRP laminates.
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[...] I believe it to be most im-

portant to open people’s eyes to

the number of superfluous hy-

potheses they are making, and

would rather exaggerate the op-

posite view, if need be, than

proceed along these false lines.

H. von Helmholtz (1868)

7
Approximate Bayesian Computation by SubSet

Simulation

In this chapter, a new Approximate Bayesian Computation (ABC) algorithm for Bayesian

updating is proposed by combining the ABC principles with the technique of Subset Simu-
lation for efficient rare-event simulation, first developed in S.K. Au and J.L. Beck [50]. It has

been named ABC-SubSim. The methodology for ABC is introduced and reviewed in Sec-

tion 7.1. In Section 7.2, the Subset Simulation technique is summarized. The methodology

for ABC-SubSim algorithm is presented in Section 7.3. Finally, the efficiency of the algorithm

is demonstrated in Section 7.4 for two examples using synthetic data.

7.1 Introduction and state of art

As explained in Section 4.1, the main goal of Bayesian inverse problem is to update

the a priori information about the set of parameters θ ∈ Θ ⊂ Rd for a parameterized

model class M j, based on the information contained in a given set of data D ∈ D ⊂
R`. Then, Bayes’ Theorem yields the posterior PDF p(θ|D,M j) of the model specified by θ

in the model classM j, as

p(θ|D,M j) = c−1 p(D|θ,M j)p(θ|M j) (7.1)

where c is a normalizing constant such that

∫

Θ
p(θ|D,M j)dθ = c−1

∫

Θ
p(D|θ,M j)p(θ|M j)dθ = 1 (7.2)
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However, there are situations where Bayesian model updating is conducted with a like-

lihood function p(D|θ,M j) that is not completely known or it is difficult to compute, per-

haps because it requires the evaluation of an intractable multi-dimensional integral over a

latent vector, such as in hidden Markov models or dynamic state-space models, or because

the normalization in the likelihood over the output space D involves an intractable integral

parameterized byθ [149].

Approximate Bayesian Computation (ABC) was conceived with the aim of evaluating

the posterior PDF in those cases where the likelihood function is intractable or computa-

tional unaffordable [150, 151], although it also avoids the problem of the intractable integral

in Equation 7.2. In the Bayesian literature, such method is also found as likelihood-free compu-
tation algorithms, which refers to the main aim of circumventing the explicit evaluation of the

likelihood function by using a stochastic simulation approach. In this section, the method

ABC is briefly described and the body of ABC literature is summarized.

Let x ∈ D ⊂ R` denote a simulated outcome from p(x|θ,M), the stochastic for-

ward model for model class M parameterized by θ. ABC aims at evaluating the poste-

rior p(θ|D,M) ∝ p(D|θ,M)p(θ|M) by applying Bayes’ Theorem to the pair (θ, x) ∈
Θ×D ⊂ Rd+`:

p(θ, x|D) ∝ p(D|x,θ)p(x|θ)p(θ) (7.3)

In the last equation, the conditioning on model classM has been omitted for clarity, given

that the theory is valid for any specific model class. The basic form of the algorithm to

generate samples from the posterior in Equation 7.3, is a rejection algorithm that consists of

generating jointlyθ ∼ p(θ) and x ∼ p(x|θ), and accepting them conditional on fulfilling the

equality x = D. This is due to the fact that the function p(D|x,θ) in Equation 7.3 gives higher

densities for the posterior in those regions where x is close to D. Of course, obtaining the

sample x = D is unlikely in most applications, and it is only feasible if D consists of a finite

set of values rather than a continuous region in R`. Two main approximations have been

conceived in ABC theory to address the above difficulty [152]: a) replace the equality x = D
by the approximation x ≈ D and introduce a tolerance parameter ε that accounts for how

close they are through some type of metric ρxy; and b) introduce a low-dimensional vector

of summary statistics η(·) that permits a comparison of the closeness of x and D in a weak

manner. Through this approach, the posterior p(θ, x|D) in Equation 7.3 is approximated by

pε(θ, x|D), which assigns higher probability density to those values of (θ, x) ∈ Θ×D that

satisfy the condition ρxy
(
η(x), η(D)

)
6 ε.

The standard version of the ABC algorithm defines an approximate likelihood function

as1 Pε(D|θ, x) = P(x ∈ Bε(D)|θ, x), where Bε(D) is a region of D defined as:

Bε(D) =
{

x ∈ D : ρxy
(
η(x), η(D)

)
6 ε

}
(7.4)

1In what follows, P(·) is adopted to denote probability whereas p(·) denotes a PDF.
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Thus, from Bayes’ Theorem, the approximate posterior pε(θ, x|D) is given by:

pε(θ, x|D) ∝ P(x ∈ Bε(D)|x,θ)p(x|θ)p(θ) (7.5)

where P(x ∈ Bε(D)|x,θ) = IBε(D)(x), an indicator function for the set Bε(D) that assigns

the value 1 when ρxy
(
η(x), η(D)

)
6 ε, and 0 otherwise. It follows that the approximate

posterior pε(θ, x|D) can be readily calculated as:

pε(θ, x|D) ∝ p(x|θ)p(θ)IBε(D)(x) (7.6)

Since the ultimate interest of Bayesian inverse problem is typically the posterior of model

parameters pε(θ|D), it can be obtained by marginalizing the approximate posterior PDF in

Equation 7.6:

pε(θ|D) ∝ p(θ)
∫

D
p(x|θ)IBε(D)(x)dx = P(x ∈ Bε(D)|θ)p(θ) (7.7)

This integration need not be done explicitly since samples from this marginal PDF are ob-

tained by taking the θ-component of samples from the joint PDF in Equation 7.6 [153]. A

pseudocode to generate K samples by the standard version of ABC algorithm is given in

Algorithm 4.

Algorithm 4 Standard ABC algorithm
for k = 1 to K do

repeat
1.- Simulateθ′ from the prior p(θ|M)

2.- Generate x′ from the stochastic forward model p(x|θ′,M)

until ρxy
(
η(x′), η(D)

)
6 ε

Accept (θ′, x′) as (θ(k), x(k))
end for

Notice that the quality of the posterior approximation in Equations 7.6 and 7.7 depends on

a suitable selection of the metric ρxy, the tolerance parameter ε and, of special importance,

the summary statistic η(·) [154]. The choice of the tolerance parameterε is basically a matter

of the amount of computational effort that the modeler wishes to expend, but a possible

guiding principle is described later in Section 7.3. Forε sufficiently small η(x′)→ η(D), and

so all accepted samples corresponding to Equation 7.7 come from the closest approximation

to the required posterior density p(θ|D), where the exactness is achieved when η(·) is a

sufficient statistic. This desirable fact is at the expense of a high computational effort (usually

prohibitive) to get η(x′) = η(D) under the stochastic forward model p(x|θ,M). On the

contrary, as ε → ∞, all accepted simulations x(k) come from the prior. So, the choice of

tolerance parameter ε reflects a trade-off between computability and accuracy.

In the literature, several computational improvements have been proposed addressing

this trade-off. In those cases where the probability content of the posterior is concentrated
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over a small region in relation to a diffuse prior, the use of MCMC methods (introduced in

Section 4.1.2) has been demonstrated to be efficient [152]. In fact, the use of a proposal PDF

q(θ′|θ(k−1)) over the parameter space allows a new parameter θ′ to be proposed based on

a previous accepted one θ(k−1), targeting the stationary distribution pε(θ|D). The resulting

algorithm, commonly called ABC-MCMC, is similar to the standard one (Algorithm 4) with

the main exception being the acceptance probability, which in this case is influenced by the

MCMC acceptance probability. A pseudocode is provided in Algorithm 5.

Algorithm 5 ABC-MCMC algorithm

1.- Initialize (θ(0), x(0)) from pε(θ, x|D); e.g. use Algorithm 4.
for k = 1 to K do

2.- Generateθ′ ∼ q(θ|θ(k−1)) and x′ ∼ p(x|θ′)
3.- Accept (θ′, x′) as (θ(k), x(k)) with probability:

r = min
{

1, Pε(D|x′ ,θ′)p(θ′)q(θ(k−1)|θ′)
Pε(D|x(k−1) ,θ(k−1))p(θ(k−1))q(θ′|θ(k−1))

}

else set (θ(k), x(k)) = (θ(k−1), x(k−1))

end for

It should be noted that when the likelihood function is approximated as Pε(D|x,θ) =

IBε(D)(x) as in our case, the acceptance probability r (Step 3, Algorithm 5) is decomposed

into the product of the MCMC acceptance probability and the indicator function as follows:

r = min
{

1,
p(θ′)q(θ(k−1)|θ′)

p(θ(k−1))q(θ′|θ(k−1))

}
IBε(D)(x′) (7.8)

Equation 7.8 clearly shows that the dependence upon ε in the indicator function may lead

to an inefficient algorithm for a good approximation of the true posterior. In fact, given that

r can only be non-zero if IBε(D)(x′) = 1 (i.e., ρxy
(
η(x

′
), η(D)

)
6 ε), the Markov chain may

persist in distributional tails for long periods of time if ε is sufficiently small, due to the

acceptance probability being zero in Step 3 of Algorithm 5.

Some modifications to the ABC-MCMC scheme have been proposed [155] that pro-

vide a moderate improvement in the simulation efficiency. See [156] for a complete tuto-

rial about ABC-MCMC. More recently, a branch of computational techniques have emerged

in the context of ABC-MCMC to obtain high accuracy (ε → 0) with a feasible computa-

tional cost by combining sequential sampling algorithms [157] adapted for ABC. These tech-

niques share a common principle of achieving computational efficiency by learning about

intermediate target distributions determined by a decreasing sequence of tolerance levels

ε1 > ε2 > . . . > εm = ε, where the last is the desired toleranceε. Table 7.1 lists the main con-

tributions to the literature on this topic. In this chapter, a new algorithm is proposed in this

direction, which makes use of the technique of Subset Simulation [50, 64, 158] to achieve

computational efficiency in a sequential way. This algorithm, that has been named ABC-

SubSim, is presented in Section 7.3. Before that, the methodology for Subset Simulation is

summarized in Section 7.2.
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Paper Algorithm Year Notes

S.A. Sisson et al. [159] ABC-PRC 2007
Requires forward and a backward kernels
to perturb the particles. Uses a SMC sam-
pler. Induces bias.

T. Toni et al. [160] ABC-SMC 2009
Does not require resampling steps in
[159]. Based on sequential importance sam-
pling. Induces bias.

S.A. Sisson et al. [161] ABC-PRC 2009
This version incorporates an improved
weight updating function. Outperforms
original in [159].

M.A. Beaumont et al. [162] ABC-PMC 2009 Does not require a backward kernel as in
the preceding works [159, 161].

M. Baragatti et al. [163] ABC-PT 2011
Based on MCMC with exchange moves be-
tween chains. Capacity to exit from distri-
bution tails.

C.C. Drovanti et al. [164] Adaptive
ABC-SMC 2011

Outperforms original in [160]. Automatic
determination of the tolerance sequence
ε j , j = {1, . . . , m} and the proposal distri-
bution of the MCMC kernel.

P. Del Moral et al. [165] Adaptive
ABC-SMC 2012

More efficient than ABC-SMC
[160, 164]. Automatic determination of
the tolerance sequence ε j , j = {1, . . . , m}.

PRC: Partial Rejection Control, SMC: Sequential Monte Carlo, PT: Parallel Tempering,

PMC: Population Monte Carlo.
Table 7.1: Bibliography synoptic table about ABC with sequential algorithms. Papers ordered by increasing date of
publication.

7.2 Subset Simulation method

Subset Simulation is a simulation approach originally proposed to compute small failure

probabilities in the context of reliability analysis (e.g. [50, 64, 166]). Strictly speaking, it is

a method for progressively generating conditional samples distributed over a nested se-

quence of subsets that correspond to specified levels of a performance function. This gen-

eral aspect makes Subset Simulation applicable to a broad range of areas of science where

the simulation/prediction of unprovable events is required. For illustration purposes, the

Subset Simulation method is presented in this section using its primary aim on small failure

probabilities estimation (later, it will be specialized for ABC).

Let F be the failure region in the z-space of states, z ∈ Z , corresponding to exceedance

of the performance function g above some specified threshold b:

F = {z ∈ Z : g(z) > b} (7.9)

For simpler notation, the identity P(F ) , P(z ∈ F ) is adopted. In addition, F is assumed

to be defined as the intersection of m regions F =
⋂m

j=1 F j, such that F1 ⊃ F2 . . . ⊃ Fm−1 ⊃
Fm = F , where F j = {z ∈ Z : g(z) > b j}, with b j+1 > b j. The PDF of z conditional to

the event F j can be expressed as p(z|F j), so that p(z|F j) ∝ p(z)IF j(z), j = 1, . . . , m. The

term p(z) denotes the stochastic forward model for z. Because of the way the subsets F j are
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arranged, it is clear that when the event F j holds, then the set of events {F j−1, . . . ,F1} also

hold, and hence P(F j|F j−1, . . . ,F1) = P(F j|F j−1), so it follows that:

P(F ) = P




m⋂

j=1

F j


 = P(F1)

m

∏
j=2

P(F j|F j−1) (7.10)

where P(F j|F j−1) , P(z ∈ F j|z ∈ F j−1), is the conditional failure probability at the ( j− 1)-

th conditional level. Notice that although the probability P(F ) can be relatively small, by

choosing the intermediate regions appropriately, the conditional probabilities involved in

Equation 7.10 can be made large, so that the simulation of low probability events is avoided.

In the last equation, the conditional probabilities cannot be efficiently estimated by the

standard Monte Carlo method (MC) because of the conditional sampling involved, espe-

cially at higher intermediate levels. Therefore, in Subset Simulation only the first probability

P(F1) is estimated by MC:

P(F1) ≈ P̄1 =
1
K

K

∑
k=1

IF1(z
(k)
0 ) , z(k)0

i.i.d.∼ p(z0) (7.11)

When j > 2, sampling from the PDF p(z j−1|F j−1) can be achieved by using MCMC at the

expense of generating K dependent samples, giving:

P(F j|F j−1) ≈ P̄j =
1
K

K

∑
n=1

IF j(z
(k)
j−1) , z(k)j−1 ∼ p(z j−1|F j−1) (7.12)

where IF j(z
(k)
j−1) is the indicator function for the region F j, j = 1, . . . , m, that assigns a value

of 1 when g(z(k)j−1) > b j, and 0 otherwise. Observe that the Markov chain samples that are

generated at the ( j− 1)-th level and that lie in F j, are distributed as p(z|F j). Thus, they act

as ”seeds” for the subsequent samples according to p(z|F j) by using MCMC sampling with

no burn-in required. As described further below, F j is defined in an automated manner

based on the samples {z(k)j−1, k = 1, . . . , K} from p(z|F j−1), in such a way that there are

exactly KP0 of these seed samples inF j
(
so P̄j = P0 in Equation 7.12

)
. Then a further amount

of (1/P0 − 1) samples are generated from p(z|F j) by MCMC starting at each seed, giving a

total of K samples in F j. Repeating this process, the conditional probabilities of the higher-

conditional levels can be computed until the final region Fm = F is reached.

To draw samples from the target PDF p(z|F j) using the Metropolis algorithm, a suitable

proposal PDF must be chosen. In the original version of Subset Simulation [50], a modified

Metropolis algorithm (MMA) was proposed that works well even in very high dimensions

(e.g. 103-104), because the original M-H algorithm fails in this case (essentially all candidate

samples from the proposal PDF are rejected. See the analysis in [50]). In MMA, a univariate

proposal PDF is chosen for each component of the parameter vector and each component
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candidate is accepted or rejected separately, instead of drawing a full parameter vector can-

didate from a multi-dimensional PDF, as in the original algorithm. Later in [64], grouping

of the parameters was considered when constructing a proposal PDF to allow for the case

where small groups of components in the parameter vector are highly correlated when con-

ditioned on any F j. An appropriate choice for the proposal PDF for ABC-SubSim is intro-

duced in the next section.

It is important to remark that in Subset Simulation, an inadequate choice of the b j-

sequence may lead to the conditional probability P(F j|F j−1) being very small (if the dif-

ference b j − b j−1 is too large), which will lead to a rare-event simulation problem. If, on the

contrary, the intermediate threshold values were chosen too close so that the conditional

failure probabilities were very high, the algorithm would take a large total number of sim-

ulation levels m (and hence large computational effort) to progress to the target region of

interest F . A rational choice that strikes a balance between these two extremes is to choose

the b j-sequence adaptively [50], so that the estimated conditional probabilities are equal to

a fixed value P0 (e.g. P0 = 0.2). For convenience, P0 is chosen so that KP0 and 1/P0 are

positive integers. For a specified value of P0, the intermediate threshold value b j defining

F j is obtained in an automated manner as the [(1− P0)K]-th largest value among the values

g(z(k)j−1), k = 1, . . . , K, so that the sample estimate of P(F j|F j−1) in Equation 7.12 is equal to

P0.

7.3 The ABC-SubSim algorithm

In this section, a new efficient sampler for the inference of rare events is proposed by just

specializing the Subset Simulation method described in Section 7.2 to ABC. To this end, let

us define the joint state-parameter vector z = (x,θ) ∈ Z ⊂ R`+d, where x are simulated

outcomes from the model class parameterized by θ, so that p(z) = p(x|θ)p(θ). Let also F j

in Section 7.2 be replaced by a nested sequence of regions Z j, j = 1 . . . , m, in Z defined by:

Z j =
{
(θ, x) : ρxy

(
η(x), η(D)

)
6 ε j

}
(7.13)

where Z1 . . . ⊃ Z j ⊃ Z j+1 . . . ⊃ Zm = Z, and ρxy a metric on the set
{
η(x), η(D)

}
. The

sequence of tolerances ε1, . . . ,ε j, . . . ,εm, with ε j+1 < ε j, will be chosen adaptively as de-

scribed in Section 7.2, where the number of levels m is chosen so that εm 6 ε, a specified

tolerance.

As stated by Equation 7.6, an ABC algorithm aims at evaluating the sequence of inter-

mediate posteriors p(θ, x|Z j), j = 1, . . . , m, where by Bayes’ Theorem:

p(θ, x|Z j) =
P(Z j|θ, x)p(x|θ)p(θ)

P(Z j)
∝ IZ j(θ, x)p(x|θ)p(θ) (7.14)

Here, IZ j(θ, x) is the indicator function for the set Z j. Notice that when ε → 0, Zm rep-

resents a small closed region in Z and hence P(Zm) will be very small under the model
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p(θ, x) = p(x|θ)p(θ). In this situation, using MCMC sampling directly is not efficient due

to difficulties in initializing the chain and in achieving convergence to the stationary distri-

bution. This is the point at which the efficiency of Subset Simulation is exploited for ABC,

given that such a small probability P(Zm) is converted into a sequence of larger conditional

probabilities, as stated in Equations 7.10, 7.11 and 7.12.

Algorithm 6 provides a pseudocode implementation of ABC-SubSim that is intended to

be sufficient for most situations. The algorithm is implemented such that a maximum allow-

able number of simulation levels (m) is considered in case the specified ε is too small. The

choice of ε is discussed in Section 7.3.2.

Algorithm 6 Pseudocode implementation for ABC-SubSim
Inputs:

P0 ∈ [0, 1] {gives percentile selection, chosen so that KP0, 1/P0 ∈ Z+; P0 = 0.2 is recommended}.
K, {number of samples per intermediate level}; m, {maximum number of simulation levels}
Algorithm:

Sample
[(
θ
(1)
0 , x(1)0

)
, . . . ,

(
θ
(k)
0 , x(k)0

)
, . . . ,

(
θ
(K)
0 , x(K)0

)]
, where (θ, x) ∼ p(θ)p(x|θ)

for j : 1, . . . , m do
for k : 1, . . . , K do

Evaluate ρ(k)xy, j = ρxy
(
η(x(k)j−1), η(D)

)

end for
Renumber

[(
θ
(k)
j−1, x(k)j−1

)
, k : 1, . . . , K

]
so that ρ(1)xy, j 6 ρ

(2)
xy, j 6 . . .ρ(K)xy, j

Fix ε j =
1
2

(
ρ
(KP0)
xy, j + ρ

(KP0+1)
xy, j

)

for k = 1, . . . , KP0 do
Select as a seed

(
θ
(k),1
j , x(k),1j

)
=
(
θ
(k)
j−1, x(k)j−1

)
∼ p

(
θ, x|(θ, x) ∈ Z j

)

Run Modified Metropolis Algorithm [50] to generate 1/P0 states of a Markov chain lying in
Z j (Eq. 7.13):

[(
θ
(k),1
j , x(k),1j

)
, . . . ,

(
θ
(k),1/P0
j , x(k),1/P0

j
)]

end for
Renumber

[
(θ

(k),i
j , x(k),ij ) : k = 1, . . . , KP0; i = 1, . . . , 1/P0

]
as

[
(θ

(1)
j , x(1)j ), . . . , (θ(K)

j , x(K)j )
]

if ε j 6 ε then
End algorithm

end if
end for

7.3.1 Choice of intermediate tolerance levels

In Algorithm 6, the ε j values are chosen adaptively as in Subset Simulation [50], so that

the sample estimate P̄j of P(Z j|Z j−1) satisfies P̄j = P0. By this way, the intermediate

tolerance value ε j can be simply obtained as the 100P0 percentile of the set of distances

ρxy
(
η(x(k)j−1), η(D)

)
, k = 1, . . . , K, arranged in increasing order. Additionally, for conve-

nience of implementation, P0 is chosen such that KP0 and 1/P0 are integers, and so the size

of the subset of samples generated in Z j−1 that lie in Z j is known in advance and equal to

KP0. These KP0 samples in Z j are used as seeds for KP0 Markov chains of length 1/P0, where
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the new (1/P0 − 1) samples in Z j in each chain are generated by MMA [50]. Hence the total

number of samples of (θ, x) lying inZ j is K, but KP0 of them were generated at the ( j− 1)-th

level. Because of the way the seeds are chosen, ABC-SubSim exhibits the benefits of perfect
sampling [153, 167], which is an important feature to avoid wasting samples during a burn-in

period, in contrast to ABC-MCMC.

7.3.2 Choosing ABC-SubSim control parameters

The important control parameters to be chosen in Algorithm 6 are P0 and σ ( j)
q , the standard

deviation in the Gaussian proposal PDF in MMA at the j-th level. In this section, recommen-

dations for the choice of these control parameters are provided.

In the literature, the optimal variance of a local proposal PDF for a MCMC sampler

has been studied due to its significant impact on the speed of convergence of the algo-

rithm [62, 63]. ABC-SubSim has the novelty of incorporating the Subset Simulation pro-

cedure in the ABC algorithm, so the same optimal adaptive scaling strategy is used as in

Subset Simulation. To avoid duplication of literature for this technique but conferring a suf-

ficient conceptual framework, the method for the optimal choice of the σ ( j)
q is presented

in a brief way. The reader is referred to the recent work of [167], where optimal scaling is

addressed for Subset Simulation and a brief historical overview is also given for the topic.

Suppose that the reason for wanting to generate posterior samples is that we wish to

calculate the posterior expectation of a quantity of interest which is a function h : θ ∈ Θ →
R. To evaluate the quality of h̄ as an estimator of h, the estimate of its expectation with

respect to the samples generated in each of the j-th levels, is considered:

h̄ j = Epε(θ|Z j) [h(θ)] ≈
1
K

K

∑
k=1

h(θ(k)
j ) (7.15)

where θ(k)
j , k = 1, . . . , K are dependent samples drawn from Kc Markov chains generated at

the j-th conditional level. An expression for the variance of the estimator can be written as

follows [50]:

Var(h̄ j) =
R(0)

j

K
(1 +γ j), (7.16)

with

γ j = 2
Ks−1

∑
τ=1

(
Ks − τ

Ks

) R(τ)
j

R(0)
j

(7.17)

In the last equation Ks = 1/P0 is the length of each of the Markov chains, which are considered

probabilistically equivalent [50]. The term R(τ)
j is the autocovariance of h(θ) at lag τ given by

R(τ)
j = E

[
h(θ(1)

j )h(θ(τ+1)
j )

]
− h̄2

j , which can be estimated using the Markov chain samples
{
θ
(l),i
j : l = 1, . . . , Kc; i = 1, . . . , Ks

}
as:

R(τ)
j ≈ R̃(τ)

j =

[
1

K− τKc

Kc

∑
l=1

Ks−τ
∑
i=1

h(θ(l),i
j )h(θ(l),τ+i

j )

]
− h̄2

j (7.18)
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where Kc = KP0, so that K = KcKs.

Given that the efficiency of the estimator h̄ j is reduced when γ j is high, the optimal

standard deviation for the proposal σ ( j)
q for simulation level j is chosen adaptively by min-

imizing γ j, which gives an acceptance rate r̄ for each simulation level in the range of 0.2-

0.4 [167]. This is supported by the numerical experiments performed with the examples in

the next section, which leads to the following recommendation for ABC-SubSim: Adaptively
choose the standard deviation σ ( j)

q of the j-th intermediate level so that the monitored acceptance
rate r̄ j ∈ [0.2, 0.4] based on an initial chain sample of small length (e.g. 10 states).

Note that the conditional probability P0 influences the number of simulation levels re-

quired by the algorithm. The higher P0 is, the higher the number of simulation levels em-

ployed by the algorithm to reach the specified tolerance ε, for a fixed number of model

evaluations (K) per simulation level. At the same time, the smaller P0 is, the lower the qual-

ity of the posterior approximation, that is, the larger the values of γ j in Equation 7.16. The

choice of P0 therefore requires a trade-off between computational efficiency and the quality

of the ABC posterior approximation.

To examine this fact, let us take a fixed total number of samples, i.e. KT = mK, where m
is the number of levels required to reach the target tolerance value ε, a tolerance for which

R(0)
m ≈ Var [h(θ)]. The value of m depends on the choice of P0, which can be optimally set

by minimizing the variance of the estimator h̄m for the last simulation level:

Var(h̄m) =
R(0)

m
KT/m

(1 +γm) ∝ m(1 +γm) (7.19)

Notice that γm also depends upon P0, although it is not explicitly denoted, as it is shown

later in Section 7.4 (Figure 7.3). In the original version of Subset Simulation by [50], P0 = 0.1

was recommended, and more recently in [167], the range 0.1 6 P0 6 0.3 was suggested after

a sensitivity study, although the optimality in [167] is related to the coefficient of variation of

the failure probability estimate. The value P0 = 0.2 for ABC-SubSim is also supported by the

numerical experiments performed with the examples in the next section, where the variance

in Equation 7.19 is minimized as a function of P0, which leads to the recommendation: For
ABC-SubSim, set the conditional probability P0 = 0.2.

Finally, it is important to remark that an appropriate final tolerance ε may be difficult

to specify a priori. For these cases, one recommendation is to select ε adaptively so that the

posterior samples give a stable estimate h̄m of Epε(θ|Zm) [h(θ)] (Equation 7.15), i.e. a further

reduction in ε does not change h̄m significantly.

The performance of ABC-SubSim algorithm dealing with a complex case study in the

context of the (fatigue damage) inverse modeling problem proposed in this thesis is investi-

gated in Chapter 10, Section 10.3.
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7.4 Illustrative examples

In this section the performance of ABC-SubSim algorithm is illustrated with two different

examples: 1) a moving average process of order d = 2, MA(2), previously considered in

[149]; 2) a single degree-of-freedom (SDOF) linear oscillator subject to white noise excita-

tion, which is an application to a state-space model. Both examples are input-output type

problems, in which the notation D = {y1, . . . , yl , . . . , y`} and x = {x1, . . . , xl , . . . , x`} is

adopted for the measured system output sequence and simulated system output respec-

tively, both with length `. The objective of these examples is to illustrate the ability of the

proposed algorithm to be able to sample from the ABC posterior for small values ofε. In the

MA(2) example, the quadratic distance between the two first autocovariances is taken for

the metric, as in [149]:

ρxy
(
η(x), η(y)

)
=

2

∑
q=1

(τD,q − τx,q)
2 (7.20)

In the last equation, the terms τD,q and τx,q are the autocovariances of D and x, respectively,

which are used as summary statistics. They are obtained as τD,q = ∑
`
k=q+1 yk yk−q and τx,q =

∑
`
k=q+1 xkxk−q, respectively. The Euclidean distance of x from D is considered as the metric

for the oscillator example:

ρxy =

[
`

∑
l=1

(yl − xl)
2

]1/2

(7.21)

To evaluate the quality of the posterior, we study the variance of the mean estimator of a

quantity of interest h : θ ∈ Θ→ R, defined as follows (see Section 7.3.2):

h(θ) =
d

∑
i=1

(
θi
)2

= ‖θ‖2
2, (7.22)

7.4.1 Example 1: Moving Average (MA) model

Consider a MA(2) stochastic process, with xl , l = 1, . . . , `, the state variable defined by:

xl = el +
d

∑
i=1
θiel−i (7.23)

with d = 2, ` = 100 or 1000. Here e is a sequence of i.i.d random variables distributed

as standard Gaussians N (0, 1): e = {e−d+1, . . . , e0, e1 . . . el , . . . , e`}. To avoid unnecessary

difficulties, a standard identifiability condition is imposed on this model [149], namely that

the roots of the polynomial f (λ) = 1− ∑
d
i=1θiλ

i are outside the unit circle in the complex

plane. In this example, d = 2, thus this condition is fulfilled when the region Θ is defined as

all θ = (θ1,θ2) that satisfy: −2 < θ1 < 2;θ1 +θ2 > −1;θ1 −θ2 < 1. The prior PDF is taken

as a uniform distribution over Θ.

Note that, in principle, this example does not need ABC methods given that the likeli-

hood is a multidimensional Gaussian with zero mean and a covariance matrix of order ` that

depends on (θ1,θ2), but its evaluation requires a considerable computational effort when `

67



is large [168]. This example was also used to illustrate the ABC method in [149] where it was

found that the performance is rather poor if the metric is the one in Equation 7.21 (which

uses the “raw” data), but ABC gave satisfactory performance when the metric in Equation

7.20 was used. For comparison with Figure 1 in [149], the latter is also chosen here.

For this illustrative example, synthetic data is used for D by generating it from Equation

7.23 considering θtrue = (0.6, 0.2). The chosen values of the control parameters for ABC-

SubSim are shown in Table 7.2. The ABC-SubSim results are presented in Figure 7.2, which

shows that the mean estimate of the “approximate” posterior samples at each level is close

toθtrue for both ` = 100 and ` = 1000 cases. Figure 7.2a shows the case ` = 100 which can be

compared with Figure 1 in [149]. In Figure 7.2a, a total of 3000 samples were used to generate

1000 samples to represent the posterior, whereas in [149], 1,000,000 samples were used to

generate 1000 approximate posterior samples using the standard ABC algorithm that was

called Algorithm 4 in Section 7.1. The ABC-SubSim posterior samples give a more compact

set that is better aligned with the exact posterior contours given in Figure 1 of [149]. Figure

7.2b shows that for the case ` = 1000, ABC-SubSim used 4000 samples to generate 1000

samples representing the much more compact posterior that corresponds to ten times more

data.

model sample size cond. prob. proposal std. dev. sim. levels

(K) (P0) (σ
(2)
q ) (σ

(2)
q ) (σ

(2)
q ) (σ

(2)
q ) (m)

MA(2) (` = 100) 1000(∗) 0.2 0.4 0.2 0.1 −− 3
MA(2) (` = 1000) 1000(∗) 0.2 0.4 0.2 0.1 0.04 4
Oscillator 2000(∗) 0.2 0.35 0.1 0.05 0.001 4
(*): per simulation level

Table 7.2: Parameter configuration of ABC-SubSim algorithm for the MA(2) and SDOF linear oscillator exam-
ples. The information shown in the first and second rows correspond to the MA(2) example with ` = 100 and
` = 1000, respectively. The values shown from 4-th to 7-th column correspond to the optimal values for the proposal
standard deviation per simulation level for both examples

A preliminarily sensitivity study was done to corroborate the choice of the algorithm

control parameters described in Section 7.3.2 and the results are shown in Figure 7.3. As

described in Section 7.3.2, the optimal value of P0 is the one that minimizes m(1 + γm) for

fixed toleranceε. As an exercise, a final toleranceε = 1.12 · 104 is considered.2 The results in

Figure 7.3 show that P0 = 0.2 is optimal since then m(1 +γm) = 3(1 + 2.8) = 11.4; whereas

for P0 = 0.5 and P0 = 0.1, it is 7(1 + 0.86) = 13.1 and 2(1 + 5.1) = 12.2, respectively. These

results are consistent with those for rare event simulation in [167]. Observe also that the

optimal standard deviation σ ( j)
q for the Gaussian proposal PDF at the j-th level that mini-

mizes γ j occurs when the acceptance rate r̄ j in MMA lies in the range 0.2-0.4, which is also

consistent with that found in [167] (except for the case of very low acceptance rate where

the process is mostly controlled by the noise).

2It is unlikely that one or more values from the ε-sequence obtained using different P0 values coincide ex-
actly. Hence, the nearest value to the final tolerance is consider for this exercise.
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7.4.2 Example 2: Linear oscillator

Consider the case of a SDOF oscillator subjected to white noise excitation as follows:

mζ̈ + cζ̇ + kζ = f (t) (7.24)

where ζ = ζ(t) ∈ R [m], m [Kg], k [N⁄m] and c [N s⁄m] are the displacement, mass, stiffness and

damping coefficient, respectively. To construct synthetic input, a discrete-time history of

input force f [N] modeled by Gaussian white noise with spectral intensity S f = 0.0048 [N2 ·
s], is used. The time step used to generate the input data is 0.01 [s], which gives an actual

value for the variance of the discrete input force σ2
f = 3 [N] [169, 170].

The probability model that gives the likelihood function of this example is Gaussian

and so, it can be written explicitly although its evaluation requires the computation of a

high dimensional matrix inverse [171]. Repeated evaluations of the likelihood function for

thousands of times in a simulation-based inference process is computationally prohibitive

for large-size datasets. However it is easy to simulate datasets from this model after some

trivial manipulations of Equation 7.24 [171]. Therefore, this example is particularly suited

for the use of ABC methods.

The mechanical system is assumed to have known mass m = 3 [Kg] and known input

force giving the excitation. For the state-space simulation, denote the state vector by s(t) =[
ζ(t), ζ̇(t)

]T. Equation 7.24 can be rewritten in state-space form as follows:

ṡ(t) = Acs(t) + Bc f (t) (7.25)

where Ac ∈ R2×2, Bc ∈ R2×1 are obtained as:

Ac =

(
0 1

−m−1k −m−1c

)
Bc =

(
0

m−1

)
(7.26)

By approximating the excitation as constant within any interval, i.e. f (l4t + τ) =

f (l4t), ∀τ ∈ [0,4t), Equation 7.25 can be discretized to a difference equation: ∀l > 1,

sl = Asl−1 + B fl−1 (7.27)

with sl ≡ s(l4t), fl ≡ f (l4t), l = 0, 1, 2, . . . , `, and A and B are matrices given by:

A = e(Ac4t)

B = A−1
c (A− I2)Bc (7.28)

where I2 is the identity matrix of order 2. The use of discrete-time input and output data

here is typical of the electronically-collected data available from modern instrumentation on

mechanical or structural systems.
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In this example, θ = (k, c) is adopted as the unknown model parameters while yl and

xl denote the actual and predicted response measurements at each 4t. Samples of xl for

a given input force time history { fl} and θ, can be readily generated by the underlying

state-space model:

sl = Asl−1 + B fl−1 + el (7.29a)

xl = sl + e′l (7.29b)

where el and e′l are error terms to account for model prediction error and measurement

noise, respectively. Since in reality these errors would be unknown, the Principle of Max-

imum Information Entropy [19, 22, 172] is adopted to choose el and e′l as i.i.d. Gaussian

variables, el ∼ N (0,σ2
e I2), e′l ∼ N (0,σ2

e′I2) and so they can be readily sampled. For sim-

plicity, the values σ2
e = 10−2 and σ2

e′ = 10−6 are adopted for this example, taking them

as known. The dataset is defined as D = {y1, . . . , yl , . . . , y`}, being collected during a to-

tal period of time t = `4t, starting from known initial conditions s0 = [0.01, 0.03]T (units

expressed in [m] and [m/s] respectively). In this example, the noisy measurements yl are

synthetically generated from Equation 7.29 for the given input force history and for model

parameters θtrue = (k = 4π , c = 0.4π). A sampling rate for the resulting output signal

of 100 [Hz] (4t = 0.01[s]) is also adopted during a sampling period of t = 3[s], hence

` = 300. In addition, a uniform prior is chosen over the parameter space Θ defined by the

region 0 < θi 6 3; i ∈ {1, 2}. Table 7.2 provides the information for the algorithm configu-

ration.

The results shown in Figure 7.4 are very satisfactory in the sense that ABC-SubSim can

reconstruct the true signal with high precision with only a moderate computational cost. The

posterior samples show that in Bayesian updating using noisy input-output data, the stiff-

ness parameter k = 4πθ1 is identified with much less uncertainty that the damping parame-

ter c = 0.4πθ2. The normalized mean value over the set of posterior samples corresponding

to the smallest value ofε is θ̄ = (1.00, 1.03), which is very close to the normalized true value

θtrue = (1.0, 1.0), (even if the exact likelihood was used, the equality θ̄ = θtrue would not be

expected because of the noise in the synthetic data D).

7.5 Comparison with recent ABC algorithms

In this section, ABC-SubSim is compared with a selection of recent versions of sequential

ABC algorithms: ABC-SMC [165], ABC-PMC [162] and ABC-PT [163], which are listed in

Table 7.1 (see Section 7.1). The same number of evaluations per simulation level are adopted

for all algorithms, corresponding to 1000 and 2000 for the MA(2) and SDOF model, respec-

tively. The sequence of tolerance levels obtained by ABC-SubSim is set using P0 = 0.5 for

the rest of the algorithms (see Table 7.3). This was done because the recommended near-

optimal value of P0 = 0.2 (see Section 7.3.2) for ABC-SubSim produced a sequence of ε

values that decreased too quickly for ABC-PMC and ABC-SMC to work properly. It should

be noted that this non-optimal choice of P0 for ABC-SubSim and the use of its ε-sequence
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provide considerable help for the competing algorithms. The proposal PDFs are assumed to

be Gaussian for all of the algorithms.

The results shown in Figure 7.5 are evaluated over the intermediate posterior samples

for each simulation level and were obtained considering the mean of 100 independent runs

of the algorithms, a large enough number of runs to ensure the convergence of the mean. In

this example, the focus is on the number of model evaluations together with the quality

of the posterior. The left side of Figure 7.5 shows the accumulated amount of model eval-

uations employed by each of the competing algorithms. Note that each algorithm requires

the evaluation of auxiliary calculations, like those for the evaluation of particle weights,

transition kernel steps, etc. However, this cost is negligible because the vast proportion of

computational time in ABC is spent on simulating the model repeatedly. The number of

model evaluations for ABC-PMC and ABC-PT is variable for each algorithm run, so in both

cases the mean (labelled dotted lines) and a 95% band (dashed lines) is presented. In con-

trast, ABC-SubSim and also ABC-SMC make a fixed number of model evaluations at each

simulation level. Observe that the computational saving is markedly high when comparing

with ABC-PMC.

Model ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10

MA(2) (×104) 122 50.2 21.7 9.61 4.57 2.29 1.12 0.56 0.28 0.14
Oscillator (×10−3) 11.7 9.9 8.2 5.4 4.0 3.0 2.4 2.0 1.8 1.6

Table 7.3: Set of tolerance values used for comparing the sequential ABC algorithms established using ABC-SubSim
with P0 = 0.5

Regarding the quality of the posterior, two metrics are considered: a) the sample mean

of the quadratic error between θ̄ and θtrue, i.e., ‖θ̄ j −θtrue‖2
2, as an accuracy measure; and

b) the differential entropy3 of the final posterior, by calculating 1/2 ln |(2πe)d det
[
cov(θ j)

]
|,

as a measure quantifying the posterior uncertainty of the model parameters. The results are

shown on the right side of Figure 7.5. Only the last 4 simulation levels are presented for

simplicity and clearness.

This comparison shows that ABC-SubSim gives the same, or better, quality than the rest

of the ABC algorithms to draw ABC posterior samples whenε is small enough, even though

it used a smaller number of model evaluations.

3This expression for the differential entropy is actually an upper-bound approximation to the actual differ-
ential entropy, where the exactness is achieved when the posterior PDF is Gaussian.
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Figure 7.1: Conceptual example of Subset Simulation. Panels (a)& (b) represent the initial set of samples of dimension
two simulated according to any specified model, and the selection of seeds whereby F1 is defined, respectively. In
(c), new samples simulated according to p(z|F1) are represented along with the seeds for defining the subsequent
intermediate failure region, which is represented using samples in panel (d). Panel (e) represents the final step where
the whole set of samples arranged through subsets is showed along with the sequence of intermediate threshold levels
until the final one (solid line) is reached.
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Figure 7.2: ABC-SubSim output for the MA(2) model with (a) ` = 100 and (b) ` = 1000. Each subplot presents
samples (circles) in the model parameter space Θ, where the latest final posterior samples are marked using darker
color. The coordinates of the mean estimate of the latest posterior are represented in dotted line. The triangles are
the coordinates of θtrue. To reveal the uncertainty reduction, the intermediate posterior samples are superimposed in
increasing gray tones. Gray rings correspond to prior samples.
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Figure 7.3: Sensitivity study of the acceptance rate r̄ j and autocorrelation factor γ j in relation to different val-
ues of the standard deviation σ j for the MA (2) model with ` = 1000 and for different values of P0 =
0.1(a), 0.2(b), and 0.5(c). K = 1000 samples are employed per simulation level. Darker curves correspond to higher
simulation levels. The tolerance values are indicated. The numerical values of each plot are obtained considering the
mean of 50 independent runs of the algorithm.
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Figure 7.4: Results of the inference for the oscillator model for a duration of t = 3 seconds. Left: scatter plot of
posterior samples of θ for intermediate levels and the final level (darker color). The horizontal and vertical scale are
normalized by a factor of 4π and 0.4π , respectively. Right: synthetic signal response of the oscillator, together with
the mean estimate of the ABC-SubSim approximation and two percentiles.
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Figure 7.5: Left: Accumulated model evaluations per simulation level for (a) MA(2), (b) Oscillator. Right: dif-
ferential entropy (right-side of the y-label) of the intermediate posterior samples and mean quadratic error between
θ̄ and θtrue (left-side of the y-label). Both measures are evaluated for the last four intermediate simulation levels:
ε j , j = 7, 8, 9, 10. To be equivalent to ABC-SubSim, we consider for the implementation of the ABC-SMC algorithm
a percentage of alive particles of 50% and only one algorithm repetition (see the implementation details in [165]).
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Part III

CASE STUDIES
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8
Damage data used for validation

In this part, the theoretical contributions and research objectives proposed in this thesis are

validated using two SHM datasets. This chapter summarized both datasets. The first set cor-

responds to several sequences of relative stiffness reduction data for GRPF laminates. This

dataset is taken from the work of Wei et al. [11]. To avoid literature repetition, the funda-

mental details about this test are presented in Section 8.1. The second dataset corresponds

to micro-cracks density and relative effective stiffness data. This set is taken from the NASA

Ames Prognostics Data Repository [1], distributed by the Prognostics Center of Excellence

(PCoE) of NASA Ames Research Center as an open-access dataset. The relevant details of

this dataset for this thesis are summarized in Section 8.2.

8.1 Dataset 1: GFRP laminates

This dataset corresponds to sixteen sequences of damage for quasi-isotropic glass fiber

notched laminates with lay-up [−45/0/45/90]S, subjected to identical and independent

fatigue tests. This set of damage data is taken from the aforementioned work of Wei et
al. [11] (see Table 3 in [11]). In their experiment, tension-tension fatigue tests were conducted

under a load-controlled loop of cyclical loadings with a frequency of f = 5 [Hz], a maximum

applied tension of 161 [MPa] (50% of their ultimate stress), and a stress ratio R = 0.1 (rela-

tion between the minimum and maximum stress for each cycle). More details regarding the

experimental set-up and measurement procedure are reported in [11]. For this dataset, the

observed damage state yn is computed as a relative reduction of the longitudinal Young’s
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modulus of the laminate, as follows:

yn =





Ex,0 − E∗x,n

0.4 Ex,0
if E∗x,n > 0.6 Ex,0

1 if E∗x,n < 0.6 Ex,0

(8.1)

where E∗x,n is the effective longitudinal (x-direction) Young’s modulus of the laminate at

fatigue cycle n, and Ex,0 is the initial (undamaged) longitudinal Young’s modulus of the

laminate. In view of Equation 8.1, the absorbing state is defined as the damage state for which

the longitudinal Young’s modulus is reduced to 60% of its initial value. For the sake of

clarity, the damage sequences for this dataset are provided in Table 8.1, and illustrated in

Figure 8.1.
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Figure 8.1: Experimental sequences of damage for quasi-isotropic S2-Glass/E733FR laminates taken from [11].

8.2 Dataset 2: CFRP laminates

The dataset presented in this section corresponds to run-to-failure tension-tension fatigue

experiments for CFRP laminates carried out by the Stanford Structures and Composites

Laboratory (SACL) and the Prognostic Center of Excellence (PCoE) of NASA Ames Research

Center [1]. Both, effective stiffness data and SHM measurements of internal damage, such as

micro-crack density and delamination area, were periodically measured during the fatigue
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test [173–175]. The tests were performed over several laminates for three different symmet-

ric layup configurations: Layup 1 ) [02/904]S, Layup 2 ) [0/902/45/− 45/90]S, and Layup 3 )

[902/45/− 45]S .

For all the configurations, Torayca T700G unidirectional prepreg material was used for

15.24 [cm] × 25.4 [cm] coupons with dogbone geometry and a lateral notch with dimen-

sions 5.08 [mm] × 19.3 [mm], thereby introducing additional sources of uncertainty and

then demonstrating the proposed framework under more realistic conditions. The ply prop-

erties of these laminates are provided in Table 8.2. Fatigue tests were conducted under load-

controlled tension-tension cyclic loading, with a maximum applied load of 31.13 [KN], a

frequency f = 5 [Hz], and a stress ratio R = 0.14. Damage data were collected from a

network of 12 piezoelectric (PZT) sensors using Lamb wave signals and three triaxial strain-

gages. The fatigue cycling tests were stopped at periodical cycles to collect the PZT sensor

data at different interrogation frequencies as well as strain-gauges data. Additionally, X-rays

images were taken to visualize and characterize subsurface damage features, in particular,

the micro-crack density.

The collected SHM information was then used to develop a method for on-line detect-

ing, sizing and quantifying damage features in composites [176]. These SHM methods were

mainly contributed by Larrosa [176], and Peng et al. [177]. In [176], a relation between PZT

raw signals and micro-cracks density was proposed. In addition, a novel method was in-

vestigated to obtain an approximation of the effective stiffness of the laminate due to the

micro-cracks density estimated by Lamb wave signals. In [177], a Bayesian method for lo-

cating and sizing delamination was proposed using Lamb waves.

In this thesis, the data from Layup 1 (laminate L1S19 in [1]) is taken to illustrate the pro-

posed methodology. A summary of such dataset is presented in Table 8.3 while a graph-

ical representation is provided in Figure 8.3. The experimental set-up is shown in Fig-

ure 8.2. More details about these tests are reported in [1, 178].

Young’s Modulus Young’s Modulus Poisson ratio Poisson ratio Shear modulus Shear modulus Thickness
(longitudinal) (transverse) (in plane) (out-of-plane) (out-of-plane)
E1 [GPa] E2 [GPa] ν12 ν23 G12 [GPa] G23 [GPa] t [mm]

127.55 8.41 0.309 0.49 6.2 2.82 0.152
Table 8.2: Ply properties for CFRP laminates used in the calculations
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Figure 8.2: Fatigue experiment for a T700G CFRP [02/904]s laminate. Shown in the left is the in situ set-up of the
specimen on the testing machine. Observe the SHM system based on PZT sensors (SMART Layer® from Acellent
Technologies Inc), which are placed on top and bottom of the specimen. The right panel shows a X-ray image of the
specimen after 100 fatigue cycles. The bright white areas denote delaminated interfaces whereas the horizontal white
lines are matrix cracks.
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Figure 8.3: Experimental sequence of damage for cross-ply CFRP laminate (L1S19 in [1])
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9
Model class assessment for Markov chain model

This chapter investigates the performance of the Markov chain damage model proposed

in Chapter 5 in application to the two nominally different sets of data presented in Chap-

ter 8. To this end, the Bayesian approach proposed in Chapter 4 is applied here to assess the

degree of plausibility of several candidate model classes based on Markov chains. The gen-

eral problem settings are provided in Section 9.1. Section 9.2 focuses on the assessment of

such models classes in application to damage data for GFRP quasi-isotropic laminates. As a

side objective, the minimum required set of data is investigated using a novel information-

theoretic approach. In Section 9.3, the assessment is specialized for damage data for micro-

cracks density and stiffness loss from a CFRP cross-ply laminate. The results of the assess-

ment are discussed in Section 9.4.

9.1 Methodology

To assess the performance of the Markov chain model proposed in Chapter 5, a set of four

model classes M = {M1, . . . ,M4} is defined based on the methodology presented in Sec-

tion 5.2.3; i.e., the j-th model class in the set M is represented by a Markov chain param-

eterized by θ = {θ1,θ
′
1, . . . ,θ j,θ

′
j, p}, along with the corresponding prior PDF of model

parameters p(θ|M j). This implies that a maximum of 9 parameters are employed for the

modeling: from 3 parameters for M1 to 9 for M4 (see Table 5.1). For each model class,

the prior PDF of model parameters is chosen as the product of independent uniform dis-

tributions1 for each model parameter, i.e., p(θ|M j) = ∏
d
i=1 p(θi|M j), where p(θi|M j) =

1A rational way to define a probability model for the prior PDF is to select it such that it produces the largest
uncertainty (largest Shannon entropy) [19, 52]. The maximum entropy PDF for a bounded variable is the uniform
distribution.
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U (0, 1), i = 1, . . . , d and θ ∈ Rd. Therefore the posterior PDF of model parameters is given

by Bayes’ Theorem as

p(θ|D,M j) = c−1 p(D|θ,M j) (9.1)

over the unit hypercube of dimension d, where the likelihood function p(D|θ,M j) is ob-

tained following the methodology proposed in Section 5.3 (recall Equation 5.15).

To numerically solve the Bayesian inference defined in Equation 9.1, the Metropolis-

Hasting algorithm explained in Section 4.1.2 is applied here using a multivariate Gaussian

proposal PDF with identical standard deviation in each dimension, which corresponds to

the Random Walk version of the algorithm [54]. The algorithm configuration is provided in

Table 9.1 for both case studies.

Dataset 1 Dataset 2

M1 M2 M3 M4 M1 M2 M3 M4

σq 0.007 0.005 0.005 0.0035 0.01 0.01 0.006 0.006
Ns 104 104 104 104 105 105 105 105

Burn-in 400 400 500 700 104 104 104 104

Acc-rate 23% 34% 37% 40% 28% 35% 31% 38%
Table 9.1: Metropolis Hastings algorithm configuration for Bayesian model updating using Dataset 1 (left) and
Dataset 2 (right)

Note from Table 9.1 that the more parameters that are included in the model class defi-

nition, the smaller the value of σq that is required to achieve an acceptance rate within the

recommended interval of [20% − 40%] for a given number of simulations, which agrees

with [62, 63].

As a general comment for algorithm configuration, it is noted that choosing the first

sample of the θi and θ
′
i parameters with values close to the diagonal in the unit time trans-

formation space (recall Figure 5.1), reduces significantly the burn-in period and so the time

to convergence. Mathematically: (θ1 ≈ θ′1) < (θ2 ≈ θ′2) . . . < (θNM ≈ θ
′
NM

).

Finally, to estimate the plausibility of each model class in the set M, the methodology for

model class assessment explained in Section 4.2 is used here. Bayes’ Theorem is applied at

the model class level to obtain the plausibility of the j-th model class as:

p(M j|D, M) =
p(D|M j)p(M j|M)

∑
NM

i=1 p(D|Mi)p(Mi|M)
(9.2)

where p(M j|M) is the prior plausibility of the model class M j in the set M, that in this

study is chosen asM j = 1/4 (i.e., all model classes in M are equally plausibly a priori); and

p(D|M j) is the evidence for model classM j (recall Equation 4.9), that expresses how likely

the observed damage response is reproduced if model class M j is adopted. The method

proposed by Cheung and Beck [66] (summarized in Algorithm 3) is adopted here to nu-

merically compute the evidence of each model class using posterior samples from the M-H

algorithm.
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9.2 Assessment for GFRP fatigue damage data

In this section, the assessment of the proposed Markov chain models is investigated in ap-

plication to the set of data for GFRP quasi-isotropic laminates (Dataset 1, Section 8.1). In

view of the data, some measurements were taken outside of the [0, 1] interval because of

experimental error in measuring stiffness. Hence, to ensure the existence of an absorbent

state for the Markov chain model, it is redefined as the state corresponding to the first mea-

surement that fulfills yn > 1. This definition only affects a small portion of measurements

near the absorbent state where transition probabilities are close to value of 1 and hence the

likelihood function p(D|θ,M) is barely affected.

As a first step, the posterior PDF of model parameters is computed for models M1 to

M4. The posterior results are summarized in Table 9.2.

θ1 θ
′
1 θ2 θ

′
2 θ3 θ

′
3 θ4 θ

′
4 p

M1 mean 0.1083 0.1080 – – – – – – 0.89
std 0.0514 0.0569 – – – – – – 0.0068

M2 mean 0.0593 0.0618 0.2042 0.4207 – – – – 0.8516
std 0.0167 0.0213 0.0194 0.0223 – – – – 0.0110

M3 mean 0.1573 0.1898 0.2051 0.3212 0.4587 0.5454 – – 0.89
std 0.0219 0.0264 0.0202 0.0161 0.0428 0.0174 – – 0.0087

M4 mean 0.1254 0.1719 0.1652 0.3715 0.4131 0.5941 0.7137 0.9353 0.8762
std 0.0312 0.0449 0.0188 0.0173 0.0308 0.0348 0.0721 0.0152 0.0180

Table 9.2: Posterior results for model parameters using Dataset 1

In addition, the two-dimensional projections of the posterior samples for model classes

M1 to M3 are plotted in Figures 9.1 to 9.3, respectively. The plot for model class M4 is

avoided because the required space for printing purposes is high.

In order to choose which model class or set of model classes are more plausible based on

Dataset 1, the posterior results of model parameters shown in Table 9.2 are not enough. In

accordance with the theory in Section 4.2, the best choice among candidates should be based

on posterior probabilities of the model classes. In Table 9.3, the results of the model class

assessment are presented forM j, j = 1, . . . , 4 using a uniform prior p(M j|M) = 1/4.

Class Log evidence AGF EIG Post. Probability

M1 -183.43 -180.31 3.11 3.5 · 10−18

M2 -166.13 -161.61 4.52 0.826
M3 -166.73 -157.05 9.68 0.174
M4 -170.73 -156.25 14.47 1.74 · 10−5

Table 9.3: Results of model class assessment for Dataset 1. The information-theoretic terms AGF and EIG are also
provided for each model class (recall Equation 4.10). The 2nd column is the difference of the next two columns. The
5-th column is the posterior probability of each model class within the set of candidates M.
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Figure 9.1: Plots of posterior samples in theθ space when updating model classM1 using Dataset 1. On the diagonal,
kernel density estimates are shown for the marginal posterior PDFs of the respective parameters.

9.2.1 Hyper-robust predictive model

As explained in Section 4.2.3, a hyper-robust predictive model can be obtained based on

the complete set of models M through the posterior information related to both, model

parameters and model classes, as follows:

p(xn|D, M) =
NM

∑
j=1

p(xn|D,M j)p(M j|D, M) (9.3)

where p(xn|D,M j) is the posterior robust prediction of damage including the parameter

uncertainty for model classM j. It is estimated by the Monte Carlo method as

p(xn|D,M j) =
1

Ns

Ns

∑
k=1

p(xn|θ(k),M j) (9.4)

whereθ(k) are samples from the posterior PDFs p(θ|D,M j).

If the posterior probabilities p(M j|D, M) given in Table 9.3 are substituted into Equation

9.3, it is clear that the contributions of modelsM1 andM4 to the hyper-robust predictive

model in Equation 9.3 are negligible, and so, it can be approximated by:

p(xn|D, M) ∼= 0.826p(xn|D,M2) + 0.174p(xn|D,M3) (9.5)

The cumulative distribution function (CDF) F(xn|D,M) based on Equation 9.5 is plotted in

Figure 9.5 where it is compared with the empirical CDF based on the Dataset 1, showing
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Figure 9.2: Plots of posterior samples in the θ space when updating model class M2 with fatigue data D. On the
diagonal, kernel density estimates are shown for the marginal posterior PDFs of the respective parameters.

good agreement between these data and the posterior predictions based on modelsM2 and

M3.

9.2.2 Minimum required set of data

One of the relevant issues when making inference with a dataset based on repeated testing

of specimens is to assess the minimum required amount of test specimens to update the

model classes and their predictions. From an information point of view, this is equivalent

to determining the size of the dataset by which the information gain from new test data

becomes relative small. This can be done by computing the relative entropy [67] between

the posterior from adding the k-th partition of the dataset and its prior, which corresponds

to the posterior based on the previous (k − 1) partitions. To this end, let us consider the

model classM j with model parameters θ, which are updated with data Dk consisting of k
experimental sequences of fatigue-damage:

{
Ŷ(1), . . . , Ŷ(k)}, k = 1, . . . , K, such that Dk−1 ⊂

Dk and DK ≡ D. The relative entropy (also called cross-entropy and Kullback-Liebler distance)
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Figure 9.3: Plots of posterior samples in the θ space when updating model class M3 with fatigue data D. On the
diagonal, kernel density estimates are shown for the marginal posterior PDFs of the respective parameters.

between the posterior PDFs p
(
θ|Dk,M j

)
and p

(
θ|Dk−1,M j

)
is defined as:

∫

Θ
p
(
θ|Dk,M j

)
log2

[
p
(
θ|Dk,M j

)

p
(
θ|Dk−1,M j

)
]

dθ (9.6)

Observe that the relative entropy is the expected information gain (in bits) about θ from Dk

relative toDk−1, so hereinafter we refer to it as the relative information gain (RIG). By the fact

that in our framework the posterior PDF p
(
θ|Dk,M j

)
is presented by the set of posterior
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Figure 9.4: Plots of interpolation curves of unit-time transformation for model classesM1 toM4 using Datasets 1
(left) and 2 (right). The interpolation points are the mean values of (θi ,θ′i).

samples
{
θ
(t)
k

}Ns

t=1, then the relative information gain of this set can be approximated by 2:

RIG ≈
Ns

∑
t=1

p
(
Dk|θ(t)k ,M j

)
p
(
θ
(t)
k |M j

)

p
(
Dk|M j

) log2

[
p
(
Dk|θ(t)k ,M j

)
p
(
θ
(t)
k |M j

)
p
(
Dk−1|M j

)

p
(
Dk−1|θ(t)k−1,M j

)
p
(
θ
(t)
k−1|M j

)
p
(
Dk|M j

)
]

(9.7)

Notice that in the last equation, the posterior PDFs p
(
θ|Dk,M j

)
and p

(
θ|Dk−1,M j

)
are

expanded by making substitutions according to Bayes’ Theorem.

Figure 9.6 shows the plots of the cumulative sum of values of RIG from the sequence of

specimen fatigue tests for model classesM1 toM4. The numbering of the specimen tests is

the actual order in which the experiments appear in Table 8.1. These plots clearly show that

there exist a specific size of the dataset, expressed as a number of test specimens, after which

the inference does not gain significant information. Based on these results, we may choose

the value of 11 as the minimum required number of test specimens for adequate inference in

our problem, although this value actually depends on each of model classes. In fact, observe

that the more complex the model is (in the sense of the more number of model parameters),

the bigger the size of the required dataset, resulting in an optimal number of specimens from

8 to 11 for model classesM1 toM4, respectively. Notice also that more complex models ac-

quire more information from each test. Both of these experimental observations make sense

with the results obtained for the complexity of model classes shown in Table 9.3.

9.3 Assessment for CFRP fatigue damage data

In this section, the dataset for cross-ply CFRP laminates (Dataset 2, Section 8.2) is used to

assess the performance of the proposed Markov chain models. Since the dataset is com-

pounded by two different-scale sequences of damage (micro-cracks density and stiffness

2The burn-in period must be discarded from the sample approximation of the posteriors.
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Figure 9.5: Plots of CDF of the posterior hyper-robust predictive damage model for 16 duty cycles covering the full
fatigue time (dark dotted curves). The empirical CDF of damage based on Dataset 1 are given as the grey solid curves.

loss), the overall system is idealized as a latent damage process modeled as a parameter-

ized Markov chain, for which the matrix micro-cracks and the stiffness reduction are exter-

nal manifestations. See Figure 9.7 for illustration. For this example, any measurement error

when assigning the i-th damage state based on the observed value yn = (ρn, Dn) ∈ Xi is

assumed to be subsumed by the uncertainty in the damage states described by the Markov

chain model, and so it is not explicitly modeled. In other words, the observation equation

for the Hidden Markov model described in Figure 9.7 is modeled as an identity function.

As a first step, the posterior PDF of model parameters is obtained for model classesM1

toM4 by means of Bayes’ Theorem using the M-H algorithm (see algorithm configuration in

Table 9.1). To this end, the likelihood function in Equation 5.13 is computed as the probability

to simultaneously observe both sequences of data, the micro-cracks density data and the

stiffness loss data. The posterior results for model parameter updating are summarized in
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Figure 9.6: Plots of the cumulative sum of RIG between consecutive posteriors p(θ|Dk ,M j), k = 1, . . . , K, for
models classesM1 toM4. When k = 1, the RIG aboutθ is computed from D1 relative to the prior PDF.
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x0 xn−1 xn xN

Dn−1 Dn DN

· · ·

Figure 9.7: Scheme for idealization of system response for Dataset 2 using Markov chains. The latent damage sequence
{x0 , . . . , xn−1 , xn , . . . , xN} is modeled as a Markov chain parameterized by θ in the model classM j

Table 9.4. In addition, a graphical representation of the two-dimensional projections of the

posterior samples is provided in Figure 9.8 for the most plausible model classM1, as shown

below.

Regarding the problem of model class assessment, the Bayesian approach proposed in

Section 4.2 is used here in application to Dataset 2 with a uniform prior p(M j|M) = 1/4 for

each model class. The results of the assessment are shown in Table 9.5.

As a final outcome, a hyper-robust model of damage is obtained using the posterior

information contained in the complete set of model classes, following the formulation pre-

viously explained in Section 9.2.1. The hyper-robust simulation is shown in Figure 9.9 in

comparison with the experimental data from Dataset 2.
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θ1 θ
′
1 θ2 θ

′
2 θ3 θ

′
3 θ4 θ

′
4 p

M1 mean 0.7422 0.4489 – – – – – – 0.9538
std 0.1319 0.1100 – – – – – – 0.0054

M2 mean 0.7058 0.4630 0.6173 0.7839 – – – – 0.9485
std 0.1125 0.0652 0.2747 0.1749 – – – – 0.0114

M3 mean 0.7349 0.4427 0.4626 0.3053 0.3892 0.5669 – – 0.9514
std 0.1146 0.0897 0.2240 0.1856 0.2156 0.2137 – – 0.0109

M4 mean 0.6877 0.4648 0.3854 0.4369 0.4617 0.6076 0.4655 0.4521 0.9472
std 0.1319 0.1032 0.1672 0.2486 0.2752 0.2361 0.2363 0.2347 0.0130

Table 9.4: Posterior results for model parameters using Dataset 2
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Figure 9.8: Posterior samples in theθ space when updating model classM1 using Dataset 2. On the diagonal, kernel
density estimates are shown for the marginal posterior PDFs of the respective parameters.

9.4 Discussion

The proposed model class selection framework was used to quantify the uncertainty and

also to select the optimum model parameterization for cumulative damage models based

on Markov chains. Several competing model classes based on Markov chains were defined

to represent the fatigue behavior for two nominally different sets of data. As apparent from

the results, the simpler model classes that accounts for the non-stationarity are the most

plausible in representing the observed damage response for both sets of data. These results

are consistent with Hypothesis 3 in Chapter 2, by which simpler models for fatigue damage
evolution in composites that agree reasonably well with the data are expected to overperform more
sophisticated competing candidates. It is an example of the Principle of Model Parsimony in

the context of fatigue damage modeling in composites, that comes into play through the

Bayesian approach adopted in thesis.
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Class Log evidence AGF EIG Post. Probability

M1 -21.58 -18.84 2.74 0.983
M2 -23.35 -17.41 5.94 0.016
M3 -26.11 -17.15 8.96 2.90 · 10−5

M4 -28.51 -17.05 11.46 1.15 · 10−7

Table 9.5: Results of model class assessment for Dataset 2. The information-theoretic terms AGF and EIG are also
provided for each model class (recall Equation 4.10). The 2nd column is the difference of the next two columns. The
5th column is the posterior probability of each model class within the set of candidates M.
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Figure 9.9: Hyper-robust damage response using the posterior information of modelsM1 toM4 for Dataset 2

In view of results from Table 9.3, the assessment for Dataset 1 shows that accounting

for the non-stationarity greatly increases the relative plausibility of the proposed stochastic

models, since the posterior results in Figure 9.1 show that model M1 is similar to a sta-

tionary model with only p as model parameter (observe from Figure 9.1 that the posterior

samples from θ1 and θ
′
1 are highly correlated along the straight line from (0, 0) to (1, 1),

but they are practically uncorrelated with p). In addition, the results in Table 9.3 show that

modelsM2 toM4 have increasingly higher values of the data fit (AGF) in comparison with

modelM1. A possible reason for this can be inferred by observing Figure 9.4a, in which the

interpolation curves of unit time transformation are displayed using the mean parameter

values for the interpolation points. For modelsM2 toM4, the first two interpolation points

are dedicated to capturing a significant source of non-stationarity observed in data within

the first stage of fatigue (refers to Figure 8.1), leading to a marked improvement in the data

fit compared with M1. Models M3 and M4 include additional interpolation points that

capture the transformation of unit time in the middle-end of the fatigue process, where the

modulus reduction data are appreciably dispersed, as shown in Figure 8.1. This markedly

improves the data fit of modelsM3 andM4. ModelM4, which has the most parameters, fits

the data the best but also implies less robustness, in the sense of a small variation of model

parameters may confer a significant change in the model prediction. This fact is reflected

in the increasing value of the EIG. Table 9.3 also shows that M1 and M4 have negligible

posterior probability with the other model classesM2 andM3, showing the best trade-off
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between the data and model complexity, leading to posterior probabilities of 0.83 and 0.17,

respectively.

Regarding the assessment using Dataset 2, Table 9.5 shows that the simplest model class

M1 is the most plausible in explaining the damage behavior observed in such dataset. It

is consistent with the above discussion for which simpler model classes that account for

the non-stationarity are the most plausible in explaining the observed damage response,

given that M1 for Dataset 2 results to be the simplest non-stationary model class in the

set. In fact, observe in Figure 9.8 that the posterior samples for θ1 and θ
′
1 are correlated

along the diagonal but without being excessively so, in comparison with that ofM1 using

Dataset 1 (Figure 9.1). It is also supported by Figure 9.4b, in which the interpolation curve

for unit time transformation using M1 clearly separates from the diagonal, what means

that for this dataset, model class M1 accounts for the non-stationarity turning out to be

the most plausible in the set M. In addition, it can be observed that models M2 to M4

have increasingly higher values of the data fit (AGF) in comparison with model M1, but

it is at the cost of an increasing amount of information gain from data, resulting in lower

evidences. This result is also in agreement with the interpolation curves for the unit time

transformation in Figure 9.4b. Models M2 to M4 include additional interpolation points

that capture the transformation of unit time near the end of the fatigue process, where the

Markov chain is reaching the absorbing state, what slightly improves the datafit of such

models. However it implies an unnecessary information gain from data and in consequence,

the evidences of such model classes are penalized.

In summary, the following conclusions are extracted from the case study presented in

this chapter: (a) Accounting for the non-stationarity of the fatigue-damage evolution sig-

nificantly improves the model datafit; (b) simpler models that are consistent with data are

more plausible than more complex competing candidates; (c) a measure of the information

gain from a specimen test can be used to select a minimum set of specimens for damage

characterization and prediction; (d) several damage phenomena like matrix-crack density,

stiffness loss, etc., that imply cumulative damage processes, can benefit by applying a simi-

lar Bayesian approach for Markov chain models.
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10
Model class assessment for physics-based

models

In this chapter, the Bayesian model class selection methodology presented in this thesis is

applied to investigate the performance of the damage mechanics model classes proposed in

Chapter 6. An overview of the methodology and the main problem settings are provided

in Section 10.1. In Section 10.2, the results of the assessment are presented in application

to damage data for micro-cracks density and stiffness loss, corresponding to Dataset 2 in

Section 8.2. In Section 10.3, the assessment is exemplified using the ABC-SubSim algorithm

proposed in Chapter 7. Finally, a thorough discussion of results is provided in Section 10.4.

10.1 Methodology

To assess the performance of the physics-based modeling approach proposed in Chapter 6, a

set of five model classes M = {M1,M2, . . . ,M5} are considered for the inference. Three of

them are based on the shearlag analysis (M1: classical [132, 141],M2: bi-dimensional [142,

143],M3: interlaminar [9]), and the rest are based on the variational [133] and COD [134] ap-

proaches, M4 and M5 respectively1. Details about model class definition using the afore-

mentioned damage mechanics approaches are provided in Section 6.3, so they are not re-

peated here.

Multi-scale damage data for cross-ply CFRP laminates are used to perform the model

class assessment, corresponding to Dataset 2 in Section 8.2; i.e., D = {yn1 , . . . , ynk , . . . , ynN},
1 Note that model classesM1 toM5 have an increasing level of analysis complexity: from the 1-dimensional

(1-D) analysis for shear-lag models and the 2-D analysis for variational models, up to the 3-D analysis for COD-
based models.
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where ynk = (ρnk , Dnk) , nk ∈ N. For the sake of clarity, a summary of Dataset 2 is provided

here in Table 10.1.

Fatigue cycles, nk 101 102 103 104 2·104 3·104 4·104 5·104 6·104 7·104 8·104 9·104 105

ρnk [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5
Dnk 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885 0.880

Table 10.1: Summary of damage data (micro-cracks density, ρnk , and normalized effective stiffness, Dnk ) for Dataset
2, corresponding to a cross-ply [02/904]s CFRP laminate.

As a first step, the posterior PDF of model parameters for the j-th model class is obtained

by means of the Bayes’ Theorem,

p(θ|D,M j) = c−1 p(D|θ,M j)p(θ|M j) (10.1)

where the likelihood function p(D|θ,M j) is computed as (recall Section 6.4) the probability

to simultaneously observe the sequences of damage data in Table 10.1, micro-cracks density

data and stiffness loss, by the stochastic forward model defined in Equation 6.10. To find

the optimal set of model parameters θ to be updated by Bayes’ Theorem, each model class

is previously parameterized by Global Sensitivity Analysis (GSA) following the methodol-

ogy presented in Section 6.5. Results and more insight about GSA parameterization in the

context of this case study are provided in Section 10.1.1. The definition of the prior PDF of

model parameters p(θ|M j) to be updated by Bayes’ Theorem (Equation 10.1) is specified in

detail in Section 10.1.2, further below.

Finally, to perform the model class assessment, the Bayesian approach presented in Sec-

tion 4.2 is applied here using a uniform prior p(M j|M) = 1/5 for each model class (i.e. all

model classes are considered equally plausible a priori). The choice for the most plausi-

ble model class among the set of candidates M is based on higher posterior probabilities

p(M j|D, M), given by Bayes’ Theorem as

p(M j|D, M) =
p(D|M j)p(M j|M)

∑
NM

i=1 p(D|Mi)p(Mi|M)
(10.2)

where p(D|M j) is the evidence for model class M j (recall Equation 4.9), that expresses

how likely the observed damage response is reproduced if model classM j is adopted. The

method by Cheung and Beck [66] (summarized in Algorithm 3) is adopted here to numeri-

cally solve the evidence of each model class using samples form the posterior PDF of model

parameters. Results for the overall assessment are provided in Section 10.2.

10.1.1 Model parameterization by GSA

As explained in Section 6.5, GSA aims at selecting the subset m of influential model pa-

rameters among the mechanical and fitting parameters listed in Table 10.2 below, which are

further updated using Bayes’ Theorem. To compute the total effect index ST
i of each candi-

date parameter (recall Equation 6.17), a double-loop Monte Carlo algorithm is implemented
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using 103 and 104 samples for the inner and outer loops, respectively. Results from GSA are

shown in Figure 10.1 for model classesM1 toM3, and in Figure 10.2 for model classesM4

andM5.

To obtain the set of parameters to be updated by Bayes’ Theorem, namely θ, the sub-

set of error parameters v = {µe1 ,σe1 ,µe2 ,σe2} is added to m, the subset of ”sensitive” pa-

rameters identified by GSA. To serve as an example, the model parameter vector for the

shear-lag model classM1 would be θ = {α, E1, E2, t,µe1 ,σe1 ,µe2 ,σe2}. The rest of parame-

ters would define the set of constant parameters u, i.e., u = {A, G12, G23,ν12}, which may

be represented by their nominal values (specified in Table 10.2) without any associated un-

certainty. The setθ of model parameters for each model class is found in Table 10.4.

It is important to remark here that, for all model classes, the influence of the modified

Paris’ law fitting parameter A is found to be insignificant as compared to the sensitivity of

most mechanical parameters (see Figures 10.1 and 10.2 ). This is especially convenient given

that mechanical parameters are usually benefited from less uncertain prior information. In

other words, mechanical parameters are likely to capture much less information from data

as compared to fitting parameters, which (recall Equation 4.10) leads to model parameter-

izations with lower associated EIG terms. As discussed further below, this results in more

robust model classes, i.e., with a lower dependence on the details of data.

Finally, in view of Figures 10.1 and Figures 10.2, a possible question that arises in regards

to GSA is that what would be the choice if any of the candidate parametersψi becomes influ-

ential but only for a certain stage of the process (e.g., the initial or the final stage). In this case,

the recommendation is to considerψi as influential for all the process since the unnecessary

increase of model output uncertainty incurred when considering ψi as influential (when it

is actually non-influential) is by definition null or at least negligible [49]. As stated before,

a non-influential parameter can be fixed anywhere in their range of variation without effect

in the model output uncertainty.

10.1.2 Prior information of model parameters

Table 10.2 lists the prior information (namely, the prior PDF) of candidate model parameters

for all model classes, including the fitting parameters in the modified Paris’ law and the er-

ror parameters. As explained before, the set of parameters that compound each model class

is determined using Global Sensitivity Analysis. Since mechanical and fitting parameters

are non-negative, their associated prior information can be modeled as a lognormal distri-

bution, i.e., p(θi|M) = LN (µθi ,σθi), i = 1, . . . , Nm, with µθi = ln θ̄i, being θ̄i the nominal

value of θi ∈ θ (e.g., the mean), and σθi the shape parameter of the lognormal distribu-

tion. Both, the nominal values and shape parameters are listed in Table 10.2. For the error

parameters v = {µe1 ,σe1 ,µe2 ,σe2} ⊂ θ, a uniform distribution defined over a sufficiently-

large predefined interval (conservatively chosen after some initial test runs) is selected as the

prior PDF. This choice is preferred instead of the common choice of using ”non-informative”

priors [19] (e.g., a uniform distribution over a very large interval), which would better rep-

resent our prior state of information about these parameters. While such a choice may not
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(a) Paris’ law (M1)
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(b) Stiffness model (M1)
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(c) Paris’ law (M2)
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(d) Stiffness model (M2)
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(e) Paris’ law (M3)
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(f) Stiffness model (M3)

Figure 10.1: Total effects index ST
i of candidate parameters for both, matrix-cracks evolution model (Paris’ law) and

effective stiffness model, using the approaches: (a) & (b) classical shearlag, (c) & (d) bi-dimensional shearlag, (e) & (f)
interlaminar shearlag. Observe that the ply properties E1, E2 and t are revealed as influential parameters in all model
classes.
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(a) Paris’ law (M4)
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(b) Stiffness model (M4)
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(c) Paris’ law (M5)

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

ρ

S
T i

 

 
E 1

E 2

t

G 1 2

G 2 3

ν1

(d) Stiffness model (M5)

Figure 10.2: Total effects index ST
i of candidate parameters for both, matrix-cracks evolution model (Paris’ law) and

effective stiffness model, using the approaches: (a) & (b) variational, (c) & (d) COD. Observe that the ply properties
E1, E2 and t are revealed as influential parameters in all model classes.

significantly influence the posterior PDF of parameters, the use of excessively diffuse pri-

ors may lead to a markedly high information gain from data, which would induce a bias

in the model-class selection problem [22]. Note also that our assumptions about the prior

PDFs given in Table 10.2 can be conveniently updated if more information is available, for

example from expert judgement.

10.2 Model class assessment for CFRP fatigue damage data

As stated before, multi-scale damage data for micro-cracks density and stiffness loss is used

to perform the model class assessment (see Table 10.1). To this end, the likelihood func-

tion in Equation 6.13 is computed as the probability to simultaneously observe both ex-

perimental sequences. For each model class, the posterior PDF of model parameters is ob-

tained from the prior PDF of parameters (specified in Section 10.1.2) using Bayes’ Theorem

given by Equation 10.1. The M-H algorithm is applied to numerically solve Equation 10.1

with a multivariate Gaussian for the proposal PDF, i.e. q(θ
′ |θ(ζ)) = N (θ(ζ), Σq), where
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Type Parameter Nominal value Units Prior PDF

Mechanical E1 127.55 · 109 Pa LN (ln(127.55 · 109), 0.1)
E2 8.41 · 109 Pa LN (ln(8.41 · 109), 0.1)
G12 6.20 · 109 Pa LN (ln(6.20 · 109), 0.1)
Gm
d0

1 · 1014 Pa/m LN (ln(1 · 1014), 0.5)
ν12 0.31 – LN (ln(0.31), 0.1)
G23 2.82 · 109 Pa LN (ln(2.82 · 109), 0.1)

t 1.5 · 10−4 m LN (ln(1.5 · 10−4), 0.1)

Fitting α 1.80 – LN (ln(1.80), 0.2)
A 1 · 10−4 – LN (ln(1 · 10−4), 0.2)

Errors µe1 Not applicable # cracks
m·cycle U (−2, 2)

σe1 Not applicable # cracks
m·cycle U (0.5, 8)

µe2 Not applicable – U (−0.08, 0)
σe2 Not applicable – U (0.001, 0.02)

Table 10.2: Prior information of parameters used in calculations. The rest of parameters in damage mechanics mod-
els (Eq. 6.1 to 6.4) are obtained using the classical laminate plate theory [145] and the relations given in Appendix A.
The nominal values for fitting parameters have been defined through initial fitting tests.

Σq ∈ Rd×d is the covariance matrix of the random walk. Given that model parameters are

assumed to be stochastically independent a priori (recall Section 6.3), Σq is a diagonal ma-

trix, i.e., Σq = diag(σ2
q,1, · · · ,σ2

q,d), and each individual parameter inθ performs an indepen-

dent random walk. The diagonal elements of Σq are appropriately selected through initial

test runs such that the monitored acceptance rate (ratio between accepted M-H samples

over total amount of samples) is within the suggested range r̄ ∈ [0.2, 0.4] for M-H algo-

rithm [63]. See algorithm configuration in Table 10.3.

M1 M2 M3 M4 M5

σq,i (Prop. std. dev.) 4% 4% 2% 3.5% 1.5%
Ns (M-H samples) 5 · 105 5 · 105 106 5 · 105 106

T (in Eq. 6.15) 104 104 104 104 104

Table 10.3: Metropolis Hastings algorithm configuration for models classesM1 toM5. The diagonal elements σq,i
of covariance matrix Σq are defined as the specified percent (1st row) of the 5-th-95-th inter-percentile range of the
prior PDFs for each of the i-th component of the parameter vector, i = 1, . . . , d

For illustration purposes, the prior and updated PDFs of model parameters are pre-

sented in Figure 10.3 for the most plausible model classM1, as shown further below. The

mean and standard deviation of the updated parameters for model classesM1 toM5 are

further summarized in Table 10.4. As a comment, observe in Table 10.4 that the estimated

posterior mean of the bias parameter for the effective stiffness model µe2 takes non-zero

values for all model classes. The corresponding posterior mean values for the bias param-

eter µe1 are also non-zero although they take relative lower values. It is interpreted as a

systematic discrepancy the between model output and the data, which may be attributed to

missing damage modes like delamination (see Figure 8.2), among other causes. Thus, if a
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delamination model would have been considered within the equation of system response,

it would probably have captured a part of such bias, leading to better inferences.

Fitting param. Mechanical parameters Error param.

α E1 E2 t Gm
d0

G23 µe1 σe1 µe2 σe2

(×109) (×109) (×10−4) (×1014) (×109) (×10−1) (×10−2) (×10−3)

M1 mean 1.86 123.16 8.72 1.52 – – 0.05 4.25 -2.92 8.1
std 0.13 10.3 0.73 0.14 – – 2.02 0.99 0.64 1.9

M2 mean 1.96 116.21 9.28 1.61 – – -2.35 4.27 -3.95 8.7
std 0.15 10.2 0.81 0.14 – – 3.22 1.00 0.64 2.2

M3 mean 2.03 134.43 9.98 1.59 0.25 – -6.37 4.41 -4.9 10.4
std 0.21 10.9 0.96 0.15 0.13 – 6.89 1.03 1.01 3.1

M4 mean 1.89 124.54 8.59 1.54 – – -1.52 3.95 -3.55 8.4
std 0.12 10.4 0.75 0.14 – – 2.86 0.68 0.58 2.1

M5 mean 1.99 133.21 7.60 1.46 – 2.99 -13.6 4.30 -3.08 8.3
std 0.15 12.3 0.52 0.14 – 0.28 7.93 0.98 0.62 1.9

Table 10.4: Mean and standard deviation of the updated model parameters for models classesM1 toM5, estimated
from samples of the marginal posterior PDFs. Units are specified in Table 10.2. In this table, the set of parameters that
compound each model class is also found, e.g., forM5,θ = {α, E1 , E2 , t, G23 ,µe1 ,σe1 ,µe2 ,σe2}

Results for model class assessment are shown in Table 10.5. Model class M1 (classical

shear-lag) is revealed as the most evident to explain the observed damage data, hence the

one that shows the best trade-off between datafit and model complexity, thus resulting in the

highest posterior probability. In contrast, models classes M3 (interlaminar shear-lag) and

M5 (COD), that involve more model parameters and more complex analysis, show negli-

gible posterior probabilities through relatively low evidence values. It can be observed that

M5 provides a negligible posterior probability even though it reaches the best average good-

ness of fit. In addition, it is noted that model classM4 provides a good average goodness of

fit (similar than that forM1), but it is penalized for a relatively high information gain. These

results are further discussed in Section 10.4.

As a final outcome, a forward model simulation using the most probable modelM1 is

shown in Figure 10.4 in comparison with the experimental damage data.

Model class Log evidence EIG AGF Post. Probability

M1 (classical SL) -9.99 3.73 -6.26 0.745
M2 (2D-SL) -10.80 4.22 -6.58 0.115
M3 (interlaminar SL) -16.62 8.88 -7.74 1.75·10−7

M4 (variational) -10.72 4.47 -6.25 0.139
M5 (COD) -14.16 7.95 -6.21 5.02·10−5

Table 10.5: Results of Bayesian model class assessment. The 2nd column (Log evidence) is the difference of the next
two columns (EIG= Expected Information Gain, AGF= Average Goodness of Fit). The 5th column is the estimated
posterior probability of each model class, i.e., p(M j|D, M), using a uniform prior p(M j|M) = 1/5.
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Figure 10.3: Normalized histograms for the marginalized posterior PDFs p(θi|D,M1), i = 1 . . . 8, after updating
model classM1 (classical shear-lag). The posterior mean estimate for each parameter is represented by the vertical-
dashed line. Note that the ”difference” between the prior and the posterior PDF is larger for fitting parameterα than
for mechanical parameters E1 , E2 , t.

10.3 Assessment using ABC-SubSim algorithm

As explained in Section 6.4.1, each MCMC step requires the evaluation of the overall like-

lihood function p(D|θ,M j), which involves the evaluation of multi-dimensional integrals

such as those defined in Equation 6.14. The Monte Carlo method can be applied to numer-

ically solve those integrals, as shown in Equation 6.15, however it requires the simulation

of T (large enough) damage growth sequences from the model, which implies T× N model

evaluations for each MCMC step. It leads to a total amount of Ns×T×N model evaluations,

where Ns is the length of the Markov chain and N the number of simulated fatigue cycles. To

serve as an example, a total amount of 5 · 105 × 104 × 105 = 5 · 1014 model evaluations were

required to obtain the posterior PDF of model parameters forM1 shown in Figure 10.3. It

motivates the use of a GPU to accelerate the Metropolis-Hasting algorithm. See Section 6.4.1

for details about M-H implementation using a GPU.

In this section, the ABC-SubSim algorithm proposed in Chapter 7 is used instead of the

M-H algorithm to efficiently obtain the posterior PDF of model parameters for model class

M1, which is enough to demonstrate the computational savings that can be achieved. The

algorithm is implemented following the pseudocode given in Section 7.3. The Euclidean
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Figure 10.4: Simulated damage response using the posterior PDF of parameters for model classM1 (classical shear-
lag). Observe that bounds cover well the experimental realizations.

distance between XN = {x1, . . . , xn, . . . , xN} and D = {y1, . . . , yn, . . . , yN} is adopted as

metric, as follows:

ρxy =

[
N

∑
n=1

(xn − yn)
2

]1/2

(10.3)

where XN is a sequence of damage of length N simulated from the stochastic forward model

defined in Equation 6.10. The scaling parameters for the ABC-SubSim algorithm used for

this example are given in Table 10.6.

sample size cond. probability proposal std. deviation sim. levels

(K) (P0) (σ
(1)
q,i ) (σ

(2)
q,i ) (σ

(3)
q,i ) (σ

(4)
q,i ) (σ

(5)
q,i ) (σ

(6)
q,i ) (m)

10, 000 0.2 10% 2% 1% 0.5% 0.1% 0.01% 6

Table 10.6: Parameter configuration of ABC-SubSim algorithm for M1. The values for σ ( j)
q,i are defined for the

j-th simulation level as the specified percent of the 5-th-95-th inter-percentile range of the prior PDFs for the i-th
component of the parameter vector, i = 1, . . . , d.

Figure 10.5 shows the posterior samples of model parameters calculated by ABC-SubSim

algorithm with m = 6 simulation levels and K = 104 samples per simulation level. It im-

plies that N × K× (1 + m(1− P0)) = 5.8 · 109 model evaluations are used, which implies a

significant computational saving when compared to the 5 · 1014 model evaluations required

by MCMC, as shown before.

The posterior information on model parameters obtained from ABC-SubSim algorithm

is further used to obtain simulated sequences of damage which are represented in Fig-

ure 10.6. Note that the results are satisfactory in the sense that, in average, ABC-SubSim

algorithm can reconstruct the observed damage response with precision with only a mod-

erate computational cost. Note also that, the distributional tails are not being well covered

using ABC-SubSim algorithm, as can be observed when Figure 10.6 is compared with the

results from MCMC method shown in Figure 10.4. The lack of correspondence is expected
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even if a larger amount of samples were used, since a non-null approximation error for the

inference is implicit to the use ABC methods due to the circumvention of the likelihood

function by means of simulations, as stated in Section 7.2.
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Figure 10.5: Posterior samples from the marginalized posterior PDFs p(θi|D,M1), i = 1 . . . 8, after updating model
classM1 (classical shear-lag) using ABC-SubSim algorithm. To reveal the uncertainty reduction, the intermediate
posterior samples are superimposed in increasing gray tones. Gray rings correspond to prior samples.

To provide further discussion about this matter, the quality of the inference using ABC-

SubSim algorithm is examined. Two metrics are considered: a) the sample mean of the

quadratic error between θ̄ and θ̄MCMC, i.e., ‖θ̄ − θ̄MCMC‖2
2, being θ̄MCMC the mean value

of posterior model parameters obtained with MCMC and θ̄ the mean of posterior model

parameters at the last simulation level of ABC-SubSim algorithm; and b) the differential

entropy of the final posterior by calculating 1/2 ln |(2πe)d det [cov(θ)] |, where d is the di-

mension of the parameter space. The results are shown in Figure 10.7. Notice from panel (a)
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Figure 10.6: Simulated damage response using posterior parameters estimated from ABC-SubSim for model class
M1 (classical shear-lag).

that only five simulation levels are required to achieve a measure of uncertainty in posterior

model parameters equal or similar than the uncertainty achieved when MCMC is used for

the inference. Note also that ‖θ̄− θ̄MCMC‖2
2 stabilizes for simulation level 5, which indicates

that m = 5 can be considered as the final simulation level for the inference. The adoption of

m = 6 as in Figure 10.5 is, thus, a safe choice.
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Figure 10.7: Differential entropy (left side) of the intermediate posterior samples using ABC-SubSim and mean
quadratic error (right side) between θ̄ and θ̄MCMC. Observe that ABC-SubSim algorithm gets posteriors with a
differential entropy close to that obtained using MCMC algorithm from the 5-th simulation level. In addition, the
accuracy of simulation gets an asymptotic behavior from the 5-th simulation level, so m = 6 is a safe choice.

10.4 Discussion

The proposed Bayesian approach for model class selection is exemplified using several com-

peting damage mechanics models, which represent physically different models with differ-

ent degrees of non-linearity and dimensionality. As apparent from the results, the model

classes that involve more complex analysis (i.e., variational and COD analysis, M4 and

M5 respectively) do not necessarily provide higher probabilities in explaining the observed
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damage response. This result contradicts the general conception that more complex analy-

sis may be necessary to capture the various fatigue damage mechanisms and thus, to ob-

tain better predictive performance. It is an example of the Principle of Model Parsimony in

the context of fatigue damage modeling in composites, that comes into play through the

information-theoretic interpretation of the evidence presented in Section 4.2.1. However,

these results are based on data for one particular laminate configuration, so further investi-

gations are needed to validate the results on other layups for a broader generalization.

More specifically, it can be observed in Table 10.5 that the evidence reaches the low-

est values for either models classes that involve more complex damage-mechanics analysis,

likeM5, or models classes that involve parameters which are difficult to establish priors for,

likeM3. These low values for the evidence can be explained based on the likelihood func-

tion, that is actually evaluated using prior samples from a region of the parameters space

far from the region of high likelihood (recall Equation 4.9). It is a consequence of (1) using

high-sensitivity parameters as model parameters within the model class, which favors a nar-

rower concentration of the high-likelihood region over the parameter space, and (2) having

diffuse prior information for some of those parameters (such as the normalized shear mod-

ulus G
d0

inM3). This, in turn, enforces a larger distance between the prior and the posterior

PDFs that leads to a larger EIG term, thereby penalizing the evidence by Equation 4.10.

Notwithstanding, it should be noted that the use of high-sensitivity parameters does

not automatically force the model class to extract more information from the data. It will

ultimately depend on the ”distance” between the likelihood function p(D|θ,M j) and the

prior information p(θ|M j) PDFs. In other words, the data make a difference only when they

tell us something about the model parameters that the prior information does not [19]. This

is typically the case for ”fitting” parameters, that tend to capture much more information

from the data than, for example, mechanical parameters, as shown in Figure 10.3. In this

sense, the choice of widely dispersed priors for high-sensitivity parameters, such as non-

informative priors, should be avoided since it leads to a huge information gain from the

data. Thus, the contribution of the data-fit term (AGF) to the overall evidence of the model

class may become negligible in relation to the high contribution of the EIG term, creating a

bias in the model-class assessment problem [22]. Therefore, if such model class is utilized for

future prediction, as arises in prognostics, the results are expected to significantly depend

on the details of the data.

As a drawback of the method, it is remarked the high computational cost of the Bayesian

inference problem, that would make difficult the extension to more sophisticated model

classes for damage growth (e.g., FEM models). The use of a GPU accelerated MCMC al-

gorithm is shown to drastically reduce the computational complexity of the problem, but

the implementation is not trivial. However, the use of likelihood-free methods such as the

one proposed in this thesis (ABC-SubSim algorithm) is shown to provide satisfactory results

with a moderate computational cost.
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In summary, the results have highlighted the relevance of the information-theoretic ap-

proach for model class assessment in the context of fatigue damage modeling in compos-

ites. The amount of information that the model class needs to extract from the data to up-

date its prior information emerges as a key variable for model class assessment, which is

in accordance with that obtained in Chapter 9 for Markov chain model classes. It actually

determines the ”information-theoretic complexity” of the model class, rather than the use of

a more complex damage-mechanics approach or a larger number of parameters. Then, the

evidence of the model class accounts for such information gain as a penalty term and im-

plicitly enforces a quantitative Ockham’s razor, such that simpler models that are consistent

with data are favored through a healthy balance between the information gained from data

and the average goodness of fit.
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11
Bayesian model set assessment for damage

models

This chapter aims at investigating the Hypothesis 2 of this thesis, by which physics-based
models are expected to better represent the fatigue behavior of composites as compared to data-driven
approaches. To this end, the performance of two different sets of models classes (e.g., Markov

chain models (data-driven) and damage mechanics models (physics-based)) is compared

and ranked based on probabilities that measure the relative plausibility/suitability of each

individual set of classes in representing the observed damage response. The assessment is

based on an extension of the Bayesian model class assessment methodology to the level

of the set of models classes. In Section 11.1, the new methodology for Bayesian model set

assessment is presented. The results of the assessment are presented in Section 11.2 and

discussed in Section 11.3.

11.1 Methodology for Bayesian model set assessment

The most commonly encountered problem in the Bayesian literature is the model updating

problem, i.e., find the set of most plausible/suitable values for model parameters in rep-

resenting the system behavior, given data from the system response. To this end, Bayes’

Theorem is applied to obtain the posterior PDF for the values of model parameters over

a predefined set of possible values, as explained in Section 4.1. An extension of such prob-

lem, that has not been so well explored in the literature, is to find the most plausible/suitable

model class representing an observed system output. This problem is referred to as Bayesian

model class assessment and has been extensively discussed along this thesis, so it is not

repeated here. The fundamentals about Bayesian model class assessment are provided in
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Section 4.2. Here, an extension of the Bayesian model class assessment problem is proposed,

i.e., find the most plausible/suitable set of classes that better represent an observed system

output among a superset of candidates.

Let us consider NS sets of models classes M1, M2 . . . , MNS defining a superset of (mutu-

ally exclusive) candidates M={M1, M2 . . . , MNS}, such that p(M) = ∑
NS
i=1 p(Mi) = 1. Each

set Mi ⊂M is compounded by N(i)
M model classes, i.e., Mi = {M(i)

1 ,M(i)
2 . . . ,M(i)

N(i)
M

}. Thus,

the goal is to use data D from the system response to assess the posterior probability of

a particular set Mi for representing the system. This is accomplished by applying Bayes’

Theorem at the level of the set of classes, as follows:

p(Mi|D,M) =
p(D|Mi,M)p(Mi|M)

∑
NS
j=1 p(D|M j,M)p(M j|M)

(11.1)

where p(Mi|M) is the prior plausibility of the set Mi ⊂M, and p(D|Mi,M) is the evidence

of Mi ⊂M for the data D, which expresses how likely the system response is reproduced if

the complete set of classes Mi is adopted.

The evidence of the set can be obtained as a generalization of the evidence of the model

class using Total Probability Theorem, as

p(D|Mi,M) =
N(i)

M

∑
j=1

p(D|M(i)
j Mi,M)p(M(i)

j |Mi,M) (11.2)

where p(D|M(i)
j Mi,M) is the ”regular” evidence of model class M(i)

j in the set Mi, (as

defined in Section 4.2), and p(M(i)
j |Mi,M) the ”regular” prior plausibility ofM(i)

j in Mi. In

the next section, the method presented here is applied for the two sets of damage models

proposed in this thesis.

11.2 Results for Bayesian model set assessment

In this section, the performance of both set of classes, Markov chain models and damage-

mechanics models, is compared based on posterior probabilities using the methodology

presented in Section 11.1. The data used for the assessment corresponds to Dataset 2 (pre-

sented in Section 8.2), given that the model class assessment of each individual model class

is available for both set of classes using this dataset (e.g., Markov chain models in Chap-

ter 9, and damage mechanics models in Chapter 10). For the sake of clarity, this dataset is

summarized in Table 11.1 below.

Fatigue cycles, nk 101 102 103 104 2·104 3·104 4·104 5·104 6·104 7·104 8·104 9·104 105

ρnk [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5
Dnk 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885 0.880

Table 11.1: Summary of damage data for Dataset 2, corresponding to a cross-ply [02/904]s CFRP laminate; i.e.,D =
{yn1 , . . . , ynk , . . . , ynN}, where ynk = (ρnk , Dnk ) , nk ∈ N.
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Let us consider M1 = {M(1)
1 ,M(1)

2 ,M(1)
3 ,M(1)

4 }, the set of Markov chain models classes

defined in Chapter 9, and M2 = {M(2)
1 ,M(2)

2 ,M(2)
3 ,M(2)

4 ,M(2)
5 } the set of damage me-

chanics models classes defined in Chapter 10. To differentiate both sets of model classes the

superscripts (1) and (2) are used for the set of Markov chain models and the set of damage

mechanics models, respectively. These sets of classes define the superset M = {M1, M2},
such that p(M1) + p(M2) = 1 and p(Mi|M) = 0.5, i = 1, 2, i.e., both sets are considered

equally plausible a priori. Therefore, the posterior probability of the set Mi ⊂ M, i = 1, 2,

can be readily obtained from Equation 11.1, as

p(Mi|D,M) =
p(D|Mi,M)

p(D|M1,M) + p(D|M2,M)
(11.3)

where p(D|Mi,M) is the evidence of the set Mi in the superset M of model classes. As

explained in Chapters 9 and 10, the prior probability of each model class was chosen as

p(M(i)
j |M) = 1/N(i)

M , being N(1)
M = 4 and N(2)

M = 5; therefore, from Equation 11.2, the evi-

dence of the set of model classes Mi can be calculated as the averaged mean of the evidences

of the individual model classes that compound the set, as follows:

p(D|Mi,M) =
1

N(i)
M

N(i)
M

∑
j=1

p(D|M(i)
j Mi,M) (11.4)

where p(D|M(i)
j Mi,M) is the evidence of model class M(i)

j in the set Mi. By substituting

the values for the evidences of each model class (provided in Tables 9.5 and 10.5, for Markov

chain models and damage mechanics models, respectively) into Equation 11.4, the evidence

of the overall set is obtained. Finally, the posterior probability of the set of classes is given by

Equation 11.3, using the values of the evidence for the set previously obtained. The results

are shown in Table 11.2.

model set M1 model set M2

M(1)
1 M(1)

2 M(1)
3 M(1)

4 M(2)
1 M(2)

2 M(2)
3 M(2)

4 M(2)
5

log p(D|M(i)
j Mi ,M) -21.58 -23.35 -26.11 -28.51 -9.99 -10.80 -16.62 -10.72 -14.16

p(M(i)
j |M) 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.2 0.2

p(D|Mi ,M) 6.65 · 10−23 2.75 · 10−11

p(Mi|M) 0.5 0.5
p(Mi|D,M) 2.42 · 10−12 ≈ 0 0.9999 ≈ 1
Table 11.2: Results of Bayesian model set assessment for two sets of model classes (M1: Markov chain mod-
els, M2: damage mechanics models) using data from Dataset 2. The values for the log-evidences of each model class
log p(D|M(i)

j Mi ,M) are taken from Tables 9.5 and 10.5 for M1 and M2 respectively.

11.3 Discussion

A novel procedure for Bayesian model set assessment is proposed in this chapter in re-

sponse to the Hypothesis 2 of this thesis (see Chapter 2). The Bayesian model set assessment
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approach is exemplified for two sets of model classes which represent physically different

models with different hypothesis about damage growth, using damage data from Dataset

2 (Section 8.2). As apparent from the results, the set of damage mechanics model classes M2

turns out to be the most plausible in explaining the system response conditional on the data,

as compared to the set of Markov chain model classes, M1, whose relative plausibility is al-

most zero. A first indication of such extreme result can be found in the evidence of the sets of

classes p(D|Mi,M), i = 1, 2, where in view of the results in Section 11.2, the evidence of the

set M2 is several orders of magnitude larger than that for M1. It means that models classes

in M2 concentrate much more prior probability density in the region of high-likelihood of

the parameter space than that of the set of Markov chain model classes. In other words,

model classes in M2 extracts, in average, less information from data to update their asso-

ciated prior information, which according to the information-theoretic interpretation of the

evidence (recall Section 4.2.1), leads to higher evidences. In contrast, Markov chain models

need the support from data to get the information about model parameters that the prior

PDF of parameters does not provide, thus penalizing drastically their evidences.

However, these results should not be taken as an authoritative assertion that Markov

chain models are not valid to predict damage growth. Or even more, that the hypothesis

made about damage accumulation for M1 are false while the hypothesis for M2 are true1. A

suitable judgment about these results is that the set of Markov chain model classes turns

out to be extremely improbable as compared to the set of damage mechanics model classes,

conditional on the data at hand (Dataset 2) and provided a specified prior information for

model parameters, model classes, and set of classes. If any of the given conditions change,

a different problem would be considered instead of the one just discussed, so a different

outcome would be expected. In such case, Bayes’ Theorem enables us to update the previous

state of knowledge about the system being assessed, leading to new posterior probabilities for

M1 and M2. Therefore, a broad generalization could lead to wrong conclusions about the

accuracy and range of validity of such results.

In summary, the results have highlighted the relevance of the Bayesian model set ap-

proach proposed in this chapter in the context of fatigue damage modeling. The evidence

of the set of model classes emerges as a key variable for the assessment of the overall set of

classes, as it accounts for the averaged amount of information that the set of models needs

to extract from data to make accurate predictions. Then, Bayes’ Theorem converts such evi-

dences into posterior probabilities that rigorously allows us for model set comparison.

1which would be an instance of the Mind Projection Fallacy [19], confusing reality with a state of knowledge
about reality.
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I used to be indecisive, but now

I’m not so sure

Boscoe Pertwee (s. XVIII)

12
Conclusions and future works

Modeling the progression of fatigue damage in composite materials is a challenge mainly

due to the lack of knowledge about the multi-scale physics of the fatigue damage process. As

a result, there is uncertainty related to the choice of a particular model class among a set of

possible candidates for predicting damage behavior. In this doctoral thesis, a full Bayesian

framework was presented to give a rigorous way to incorporate the modeling uncertainties

for the inference about damage progression in composites. Several model classes were de-

fined and ranked based on estimated probabilities that measure the relative degree of plau-

sibility of each model class within the set of candidates for representing the system (fatigue

damage degradation) based on data from the system response. The overall procedure was

demonstrated by several case studies using damage data from CFRP and GFRP laminates

subjected to tension-tension fatigue loads. The results showed that the most probable model

classes among the competing candidates result to be the simplest models that provided rea-

sonable goodness of fit with data. Thus, the principle of Ockham’s razor, that in this context

can be stated as simpler models that are consistent with data are to be preferred over unnecessar-
ily complicated ones, seems to hold true for the fatigue modeling framework investigated in

this thesis. This conclusion should not be interpreted as an imposed condition but a natural

outcome when dealing with models informed by data within a Bayesian framework, since

the application of Bayes’ Theorem has been shown to automatically enforce a quantitative

Ockham’s razor.

In addition, the following general conclusions are also extracted from each of the hy-

pothesis investigated in this thesis, outlined in Chapter 2. Further works and limitations are

also highlighted:
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Hypothesis 1: Damage progression in composites can be idealized as a Markovian-type stochastic
process.

A new modeling scheme based on Markov chains was developed in Chapter 5 to

deal with the well-known variability that is observed in the fatigue damage accu-

mulation process in composite materials. The key contribution was a new model pa-

rameterization to efficiently account for the non-stationarity of the damage process

based on a generalization of the time transformation-condensation method by Bog-

danoff and Kozin [47]. The model was validated in Chapter 9 for two datasets through

the definition of several model parameterizations, showing efficiency and accuracy in

the predictions. As a general comment, it was observed that accounting for the non-

stationarity significantly improves the model datafit but also implies less robustness,

in the sense of a small variation of model parameters may confer a significant change in

the model prediction. Then, the Bayesian model class assessment framework adopted

in this thesis enables us to rigorously select the ”optimal” model class among the set of

candidates through a balance between the information gained from data and the aver-

age goodness of fit. In addition, the Bayesian approach proposed for fatigue modeling

has allowed us to obtain a measure of the information gain from each test repetition

that can be used to select a minimum set of specimens for the dataset, with the ultimate

benefit being the avoidance of unnecessary costs in fatigue experimental programs.

A typical criticism of Markov chain models is their lack of a physical basis, given

that they are purely based on statistical concepts and monitoring data. However,

we find clear advantages with respect to other models due to their ability to deal

with complex processes with no further computational effort. Hence, a future work

in this direction would be the extension of the proposed Markov chain models in

application to problems of damage accumulation in the context of a full-scale com-

posite component or structure. In addition, as further works, it would be desirable

to obtain plausible relations between the predominance of certain fatigue damage

mechanisms (e.g., microcracks, delamination, etc.) and the parameters of the Markov

chain. Furthermore, a continuous-time version of the Markov chain model would be

beneficial, given that it would eliminate the dependence of the estimated value of the

model parameters on the selected duty cycle.

Hypothesis 2: Physics-based models are expected to better represent the fatigue behavior of
composites as compared to data-driven approaches.

In Chapter 11, the set of damage mechanics model classes defined in Chapter 6 was

compared to the set of Markov chain model classes defined in Chapter 5. The com-

parison was carried out using multi-scale damage data from CFRP laminates (Dataset

2) by means of an extension of the Bayesian model class selection methodology to
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the level of the set of models classes. As apparent from the results, the set of damage

mechanics model classes resulted in the most plausible set (with almost total probabil-

ity) to represent the observed damage response in relation to the set of Markov chain

model classes. As with model class assessment, the amount of information that the

overall set of model classes needs to extract from the data emerged as a key measure

for the model set assessment. The evidence of the set of classes accounts for such in-

formation gain and Bayes’ Theorem at the level of the set of model classes converts

such evidences to posterior probabilities, which rigorously allowed us for the model

set comparison.

As discussed in Chapter 11, these results may not serve to conclude that Markov chain

models are not valid to predict damage growth, or even more, that the hypothesis

made about damage accumulation for Markov chain models are false while the hy-

pothesis for damage mechanics models are true. From a pragmatic point of view, all

we can say is that, conditional on the data and the available prior information, the set

of Markov chain model classes is not plausible in relation to the set of damage me-

chanics model classes. If any of the given conditions change, Bayes’ Theorem enables

us to update the previous state of knowledge about these sets of model classes, leading

to new posterior probabilities for the set.

Given that the proposed methodology for model set assessment is general in nature,

it can be extended to a wide range of modeling problems in which not one but several

families of model classes can be formulated and hypothesized to represent the system.

Hypothesis 3: Simpler models for fatigue damage evolution in composites that agree reasonably
well with the data are expected to overperform more sophisticated competing candidates.

The Bayesian model class selection approach pursued in thesis was applied to two

sets of model classes for damage growth (Markov chain models and damage mechan-

ics models) to assess the relative degree of plausibility of each model class within the

set of candidates. This plausibility was computed by means of Bayes’ Theorem us-

ing the evidence for the model class given by the data and the choice of the prior

probability for each model class. In view of the results, the simpler model classes that

provided reasonable goodness of fit turned out to be the most probable candidates

when selected by striking a balance between average goodness of fit and amount of

information extracted from data. This conclusion holds true for the two sets of model

classes investigated in this thesis, namely, the Markov chain models and the damage

mechanics models. The amount of information that each model class gains from the

data emerged as a key variable for the Bayesian assessment since it actually deter-

mines the ”information-theoretic complexity” of the model class, rather than the use

of more complex formulations for the damage models. The evidence of the model class
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accounts for such information gain as a penalty term and implicitly enforces a quan-

titative Ockham’s razor, such that simpler models that are consistent with data are

preferred.

As a limitation of the method, it is highlighted the high computational cost of the

Bayesian inference problem using the Metropolis-Hasting (M-H) algorithm. The use of

a GPU accelerated M-H algorithm was shown to drastically reduce the computational

complexity of the problem, however the implementation in the GPU is not a trivial

task. Then, the use of the ABC-SubSim algorithm proposed in Chapter 7 was revealed

as a promising solution since it provided satisfactory results for the inference with

a moderate computational cost. In addition, this algorithm has raised to an original

contribution in the specialized literature for Approximate Bayesian Computation due

to its higher efficiency in relation to most recent ABC algorithms. A future work in this

context would be the use of ABC-SubSim algorithm to efficiently estimate the evidence

of a model class for Bayesian model class assessment, as well as the extension of ABC-

SubSim algorithm for real-time filtering problems for prognostics applications.

Finally, as further works, more research effort would be needed to incorporate the

effects of other manifestations of fatigue damage such as delamination in the proposed

Bayesian framework, and in general, to extend this approach to other engineering

materials with uncertain damage or evolutive behavior, such as biomaterials.
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Soĺıa estar indeciso, pero ahora

no estoy tan seguro

Boscoe Pertwee (s. XVIII)

13
Conclusiones y trabajos futuros

La modelización del proceso de daño por fatiga en materiales compuestos es un reto de

investigación debido principalmente a la falta de conocimiento sobre la fı́sica del proceso

subyacente de daño. En consecuencia, existe incertidumbre en relación con la selección

de una determinada clase de modelos de entre un conjunto de posibles candidatos para

la predicción de la evolución del daño por fatiga. En esta tesis doctoral se ha propuesto

un marco Bayesiano que permite incorporar de forma rigurosa la incertidumbre proce-

dente de la selección de un modelo particular en la inferencia del daño en materiales com-

puestos. Varias clases de modelos han sido definidas y clasificadas en base a valores de

probabilidad que miden el grado de plausibilidad relativo de cada clase para representar un

sistema según la información procedente de la respuesta del sistema. Este procedimiento ha

sido demostrado mediante varios casos de estudio que usan datos reales de daño en lami-

nados de fibra de carbono y vidrio expuestos a cargas de fatiga tipo tensión-tensión. Los re-

sultados mostraron que las clases más probables entre las posibles candidatas resultaron ser

aquellas que, siendo las más simples, proporcionaron un ajuste razonable con los datos. Se

observa por tanto el principio del ”cuchillo de Ockham” para los modelos de fatiga investi-

gados en esta tesis, que en este contexto puede enunciarse como los modelos más simples que
sean consistentes con los datos son preferibles sobre aquellos innecesariamente más complejos. Esta

conclusión no debe interpretarse como una condición impuesta, sino como un resultado

natural cuando se trata de modelos informados por datos dentro de un marco Bayesiano, ya

que se ha demostrado que la aplicación del Teorema de Bayes automáticamente implica una

expresión cuantitativa del principio del cuchillo de Ockham.
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A continuación se exponen una serie de conclusiones generales que son extraı́das de

cada una de las hipótesis iniciales investigadas en esta tesis, descritas en el Capı́tulo 2. Ası́

mismo se exponen las limitaciones de esta investigación ası́ como futuras lı́neas de trabajo.

Hipótesis 1: La evolución del daño en materiales compuestos puede ser idealizada como un proceso
estocástico de tipo Markoviano

Un nuevo modelo escotástico basado en cadenas de Markov se ha presentado en el

Capı́tulo 5 con objeto de idealizar el proceso de acumulación de daño en materi-

ales compuestos teniendo en cuenta la manifiesta variabilidad del proceso. Un punto

clave fue la propuesta de una nueva parametrización del modelo estocástico basado

en una generalización del método de condensación del tiempo propuesta por Bog-

danoff y Kozin [47], con objeto poder considerar de forma eficiente la no estacionar-

iedad del proceso de daño. El modelo estocástico fue validado en el Capı́tulo 9 us-

ando dos conjuntos distintos de datos de daño, demostrando eficacia y precisión en

la predicción. Como comentario general, se ha observado que la consideración de la

no estacionariedad mejora significativamente el ajuste a los datos pero a su vez im-

plica una menor robustez, en el sentido de que una pequeña variación en el valor de

los parámetros del modelo puede ocasionar un cambio significativo en la predicción

del modelo. En este contexto, el marco Bayesiano de evaluación de clases de modelos

propuesto en esta tesis ha permitido seleccionar rigurosamente el modelo ”óptimo”

de entre un conjunto de posibles candidatos considerando para ello un balance entre

la bondad de ajuste de cada modelo y la información extraı́da de los datos. Además

el enfoque Bayesiano propuesto ha permitido obtener una medida de la ganancia de

información procedente de la incorporación de una nueva repetición al conjunto de

datos, que puede ser usado para seleccionar el número mı́nimo de muestras a ensayar,

con el beneficio final de evitar costes innecesarios en los programas experimentales de

fatiga.

Una crı́tica tı́pica de los modelos de daño basados en cadenas de Markov es la falta

de significado fı́sico, en el sentido de que están basados netamente en conceptos

estadı́sticos y en datos de monitorización. Sin embargo, estos modelos ofrecen

claras ventajas con respecto a otro tipo de modelos debido a su eficacia para hacer

frente a procesos complejos de daño sin necesidad de altos requerimientos computa-

cionales. Por lo tanto, una lı́nea futura trabajo en este sentido serı́a la extensión de los

modelos basados en cadenas de Markov en aplicación a problemas de acumulación

de daño en el contexto de un componente o estructura de material compuesto a escala

real. Serı́a ası́ mismo deseable obtener relaciones plausibles entre el predominio de

ciertos mecanismos fı́sicos de daño por fatiga (microgrietas, delaminación, etc.) y

los parámetros del modelo de Markov. Además, una versión en tiempo continuo del
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modelo de cadenas de Markov serı́a beneficiosa puesto que eliminarı́a la dependen-

cia del valor de los parámetros en la elección de la discretización del tiempo de ensayo.

Hipótesis 2: Se espera que los modelos basados en fı́sica representen mejor el comportamiento a
fatiga en materiales compuestos en comparación a otros modelos basados en datos

En el Capı́tulo 11, el conjunto de modelos basados en mecánica del daño (definidos

en el Capı́tulo 6) fue comparado con el conjunto de modelos basados en cadenas de

Markov, presentados en el Capı́tulo 5. La comparación se llevó a cabo mediante una

extensión de la metodologı́a Bayesiana de selección de modelos al nivel del conjunto

de modelos, utilizando para ello datos multi-escala de daño por fatiga en laminados de

fibra de carbono (presentado como ”Dataset 2” en esta tesis). Los resultados eviden-

ciaron que el conjunto de modelos basados en mecánica del daño resultó ser el más

plausible (con una probabilidad casi total) para representar la respuesta observada

por los datos en relación al conjunto de modelos basados en cadenas de Markov. Al

igual que fue observado con la evaluación Bayesiana para un modelo, la cantidad de

información que el conjunto de modelos necesita extraer de los datos emergió como

una medida clave para la evaluación de la plausibilidad del conjunto de modelos. La

evidencia del conjunto modelos tiene en cuenta dicha medida de la ganancia de infor-

mación y posteriormente el Teorema de Bayes convierte dicha evidencia en valores de

probabilidad a posteriori, posibilitando una comparación rigurosa entre conjuntos de

modelos.

Como fue discutido en el Capı́tulo 11, estos resultados no deben servir para con-

cluir que los modelos basados en cadenas de Markov no son válidos para predecir la

evolución del daño por fatiga, o incluso, que las hipótesis adoptadas sobre evolución

de daño para los modelos de Markov son falsas, mientras que las hipótesis de los

modelos basados en mecánica de daño son las verdaderas. Desde un punto de vista

pragmático, lo único que se puede afirmar es que, según los datos y teniendo en

cuenta la información a priori disponible, el conjunto de modelos basados en cadenas

de Markov no es plausible en relación al conjunto de modelos basados en mecánica

del daño. Si se diese algún cambio en alguna de las condiciones iniciales dadas, el Teo-

rema de Bayes permitirı́a actualizar la información a priori disponible, dando lugar a

nuevas probabilidades a posteriori.

Dado que la metodologı́a propuesta para la evaluación de un conjunto de modelos es

general, esta puede ser extendida a una amplia gama de problemas de modelización

en los que existan varias familias posibles de modelos para representar un mismo

sistema.

Hipótesis 3: Se espera que los modelos más simples para la evolución de daño por fatiga en
materiales compuestos, que ajusten razonablemente bien a los datos, se comporten mejor que
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otros modelos más sofisticados

El marco de selección Bayesiana de modelos propuesto en esta tesis fue aplicado a dos

conjuntos de modelos para evolución de daño por fatiga (los basados en cadenas de

Markov y aquellos basados en mecánica del daño) para evaluar el grado relativo de

plausibilidad de los modelos pertenecientes a cada conjunto de candidatos. La plau-

sibilidad fue calculada mediante el Teorema de Bayes utilizando la evidencia de cada

clase según la información procedente de los datos y la información a priori. En vista

de los resultados obtenidos, las clases más simples que proporcionaron un ajuste ra-

zonable con los datos resultaron ser las más probables mediante un equilibrio entre

la bondad media de ajuste y la cantidad de información extraı́da de los datos. Esta

conclusión es válida para los dos conjuntos de modelos investigados en esta tesis. La

cantidad de información que los modelos obtienen de los datos emergió como una me-

dida clave para la evaluación Bayesiana, puesto que realmente determina la compleji-

dad de los modelos desde el punto de vista de la teorı́a de la información, en lugar de

la utilización de expresiones de mayor complejidad para los modelos de daño. La ev-

idencia de cada modelo tiene en cuenta la ganancia de información como un término

de penalización, de forma que hace cumplir de manera cuantitativa el principio del

cuchillo de Ockham, mediante el cual los modelos más simples que sean consistentes

con los datos resultan ser los más evidentes.

Como limitación del método se destaca el alto coste computacional del algoritmo

Metropolis-Hasting (M-H) usado para la inferencia Bayesiana de los modelos. La

aceleración del algoritmo mediante su implementación en GPU ha demostrado re-

ducir drásticamente el tiempo de computación, aunque es de destacar que la imple-

mentación en GPU no es trivial. Una solución prometedora a este problema se obtuvo

mediante el uso del algoritmo ABC-SubSim propuesto en el Capı́tulo 7, puesto que

proporciona soluciones satisfactorias para la inferencia con un coste computacional

moderado. Además, este algoritmo ha propiciado una contribución original en la lit-

eratura especializada de Computación Bayesiana Aproximada (en inglés, ABC) de-

bido a su mayor eficiencia en relación con la mayorı́a de los algoritmos propuestos

recientemente para ABC. Un trabajo futuro en este contexto serı́a el uso del algoritmo

ABC-SubSim para estimar de manera eficiente la evidencia de una clase de modelos,

ası́ como su extensión a problemas de filtrado de información en tiempo real en apli-

caciones de pronóstico.

Por último, como trabajos futuros se proponen la incorporación de los efectos de otras

manifestaciones de daño por fatiga, como delaminación, etc., en el marco Bayesiano

propuesto, y en general, ampliar el marco Bayesiano en aplicación a otros materiales

de ingenierı́a cuya evolución temporal o comportamiento frente daño sea incierto,

como ocurre por ejemplo con ciertos biomateriales.
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A
Basics relations

This appendix provides the expressions of some of the terms and relations used in the

formulation of the damage mechanics models defined in Chapter 6.

The function a in Equation 6.1 for the effective longitudinal Young’s modulus is defined

as:

a =
E2t90

E1tφ


1− ν(φ)xy

ν
(φ)
xy t90

E(φ)
y

+
ν12tφ

E2

t90

E(φ)
y

+
tφ
E1




1− ν12ν
(φ)
xy

1− ν2
12

E2
E1

(A.1)

In the last and subsequent equations, the subscripts {1, 2, 3} refer to ply properties de-

fined in local axis while subscripts {x, y, z} refer to sub-laminate or laminate properties de-

fined in global axis, that corresponds to the laminate coordinate system. Note that the first

local direction ”1” coincides with fibers direction in a given ply or lamina, and directions

”2-3” are the in-plane and out-of-plane transverse directions. For global axes, ”x” refers

to the fatigue loading direction, while ”y” and ”z” refer to the in-plane and out-of-plane

transverse directions, respectively. In addition, superscript (φ) denotes ”property referred

to the
[
φ nφ

2

]
-sublaminate”.

The ply and laminate properties appearing in Equation A.1 and rest of equations in this

appendix are defined in the List of Symbols of this thesis, however for the sake of clarity

they are reproduced here in Table A.1 below.

The constants α1, α2 involved in the average stress perturbation function of Equa-

tion 6.2b are defined as α1 = 1
2
√

2
√

q− p, and α2 = 1
2
√

2
√

q + p respectively, where p
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Laminate Ex,0 Initial longitudinal Young’s modulus tφ [φ nφ
2
]-sublaminate thickness

E∗x Effective long. Young’s modulus Ply t Ply thickness
h Laminate half-thickness d0 Interlaminar layer thickness
B Laminate half-width Gm Interlaminar layer shear modulus

Sublaminate E(φ)
x Longitudinal Young’s modulus E1 Longitudinal Young’s modulus

E(φ)
y Transverse Young’s modulus E2 Transverse Young’s modulus
ν
(φ)
xy In-plane Poisson ratio ν12 In-plane Poisson ratio

G(φ)
xy In-plane shear modulus ν23 Out-of-plane Poisson ratio

G(φ)
xz Out-of-plane shear modulus G12 In-plane shear modulus

t90 [90n90 ]-sublaminate half-thickness G23 Out-of-plane shear modulus

Table A.1: Nomenclature table. Nominal values of main ply and geometry parameters are provided in Table 10.2

and q are known functions of the ply properties defined as p = C2−C4
C3

, q = C1
C3

. The terms

Ci, i : {1, . . . , 4} in last equations are calculated as follows:

C1 =
1

E2
+

1

λE(φ)
x

(A.2)

C2 =

(
λ+

2
3

)
ν23

E2
− λν

(φ)
xz

3E(φ)
x

(A.3)

C3 = (1 + λ)
(

3λ2 + 12λ+ 8
) 1

60E2
(A.4)

C4 =
1
3

(
1

G23
+

λ

G(φ)
xz

)
(A.5)

In Equations A.2 to A.5, λ =
tφ
t90

and ν23 and G23 are the out-of-plane Poisson ratio and

shear modulus of the ply, respectively. Both terms are related as G23 = E2
2(1+µ23)

. For the

cross-ply laminates considered in Chapter 10, the fibers direction in the outer sub-laminate

is φ = 0◦, and thus, the laminate and sub-laminate global axes {x, y, z} coincide with ply

local axes {1, 2, 3}. In this particular case, the following identities hold:

E(0)
x = E1; E(0)

y = E2; ν
(0)
xy = ν12; G(0)

xy = G12; G(0)
xz = G12

The initial longitudinal Young’s modulus of the laminate Ex,0 can be obtained using the

classical laminate plate theory [145]; however, for the composite materials considered in

Chapter 10 it can be readily approximated using a simple rule of mixtures:

Ex,0 ≈
t0E1 + t90E2

t0 + t90
(A.6)

Regarding the COD-based model by [134], the matrices Ak are given by (k denotes that

it is referred to the k-th ply):

Ak = Nk
I(S

k)−1 (A.7)
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where Sk is the inplane compliance matrix of ply k, and Nk
I is a matrix defined by the vector

normal to the surface of transverse crack, nk, as:

Nk
I =




nk
1 0 nk

2

0 nk
2 nk

1

0 0 0


 , nk =




nk
1

nk
2

0


 (A.8)

The matrix βki is related to the average crack opening displacement of matrix micro-cracks

and also with the tension on the crack surface:

βki = 0, ∀k 6= i; βkk =



βk

1 0 0

0 βk
2 0

0 0 βk
3


 (A.9)

where

βk
1 =

4
π
γ1

ln
(

cosh
(
π tkρk

2

))

(tkρk)2 (A.10a)

βk
2 =

π

2
γ2

10

∑
j=1

a j

(1 + tkρk) j (A.10b)

βk
3 =

π

2
γ3

9

∑
j=1

b j

(1 + tkρk) j−2 (A.10c)

γ1 =
1

2G12
(A.10d)

γ2 = γ3 =
1

E2
− ν

2
12

E1
(A.10e)

The constants a j and b j can be found in the literature (see for example Table 1 in [134] or

Table 4.2 in [7]).

127





B
Related publications

The outcomes of the research presented in this thesis and other related contributions of the

author are partially reflected in the refereed journal papers, book chapters and conference

papers listed below:

B.1 Journal articles

◦ Juan Chiachı́o, Manuel Chiachı́o, Abhinav Saxena, Shankar Sankararaman,

Guillermo Rus, Kai Goebel. Bayesian model selection and parameter estimation for

fatigue damage progression models in composites. International Journal of Fatigue
(2014) DOI:10.1016/j.ijfatigue.2014.08.003 (I.F.: 1.694, Rank: 31-126=24%)

◦ Manuel Chiachı́o, Juan Chiachı́o, Guillermo Rus, James L. Beck. Predicting Fa-

tigue in Composites. A Bayesian Framework. Structural Safety (2014), 51, 57-
68. (I.F.: 2.392, Rank: 11-124=8%, 1 cite)

◦ Manuel Chiachı́o, James L. Beck, Juan Chiachı́o, Guillermo Rus. Approximate

Bayesian Computation by Subset Simulation. SIAM Journal on Scientific Computing
(2014), 36 (3), A1339-A1358 (I.F.: 1.940, Rank: 19-250=7%)

◦ Manuel Chiachı́o, Juan Chiachı́o, Guillermo Rus. Reliability in composites-A selective

review and survey of current development. Composites Part B: Engineering (2012), 43,
902-913. (I.F.: 2.604, Rank: 7-87=8%, 22 cites)

B.2 Book chapters

◦ Juan Chiachı́o, Manuel Chiachı́o, Shankar Sankararaman, Abhinav Saxena, Kai

Goebel. Prognostics Design for Structural Health Management, To appear in: Emerging
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Design Solutions in Structural Health Monitoring Systems, Advances in Civil and Industrial
Engineering Series (September 2014), Ed. IGI Global.
◦ Manuel Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Kai Goebel. An Energy-based Prog-

nostic Framework to Predict Evolution of Damage in Aerospace Structures, To ap-
pear in: Structural Health Monitoring (SHM) in Aerospace Structures (November 2014),
Ed. Woodhead Publishing Limited.
◦ R. Muñoz, G. Rus, N. Bochud, D. Barnard, J. Melchor, J. Chiachı́o, M. Chiachı́o, S. Can-

tero, A. Callejas, L. Peralta. Nonlinear ultrasonics as an early damage signature, To
appear in: Emerging Design Solutions in Structural Health Monitoring Systems, Advances in
Civil and Industrial Engineering Series (September 2014), Ed. IGI Global.

B.3 Conference papers

◦ Juan Chiachı́o, Manuel Chiachı́o, Abhinav Saxena, Guillermo Rus, Kai Goebel. A

model-based prognostics framework to predict fatigue damage evolution and reliabil-

ity in composites. In Proceedings of the European Conference of the Prognostics and Health
Management Society, 2014, ISBN-978-1-936263-16-5 pp. 732-742. (BEST-PAPER AWARD)

◦ Manuel Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Guillermo Rus, Kai Goebel. An

efficient simulation framework for prognostics of asymptotic processes-a case

study in composite materials. In Proceedings of the European Conference of the
Prognostics and Health Management Society, 2014, ISBN-978-1-936263-16-5, pp. 202-
214. (NOMINATED TO BEST-PAPER AWARD)

◦ Juan Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Shankar Sankaraman, Kai Goebel. A

robust modeling approach for fatigue damage in composites based on Bayesian model

class selection. In Proceedings of the American Society for Composites 29th Technical Con-
ference, 16th US-Japan Conference on Composites Materials, and ASTM D30 meeting,
2014, pp. 1-18, (pending ISBN assignment).
◦ Manuel Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Shankar Sankaraman, Kai

Goebel. Predicting remaining useful life in CRFP laminates under fatigue loads: A

new efficient algorithm. In Proceedings of the American Society for Composites 29th Techni-
cal Conference, 16th US-Japan Conference on Composites Materials, and ASTM D30 meeting,
2014, pp. 1-20, (pending ISBN assignment).
◦ Manuel Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Guillermo Rus, Kai Goebel. An ef-

ficient algorithm to predict the expected end-of-life in composites. In Proceedings of the
16th European Conference on Composite Materials, 2014, pp.1-8, (pending ISBN assignment).
◦ Juan Chiachı́o, Manuel Chiachı́o, Abhinav Saxena, Guillermo Rus, Kai Goebel. An

Energy- Based Prognostic Framework to Predict Fatigue Damage Evolution in Com-

posites. In Proceedings of the Annual Conference of the Prognostics and Health Management
Society, 2013, ISBN-978-1-936263-06-6 pp. 363-371.
◦ Manuel Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Guillermo Rus, Kai Goebel. Fatigue

damage prognosis in FRP composites by combining multi-scale degradation fault

130



modes in an uncertainty Bayesian framework. In Proceedings of the Structural Health
Monitoring, 2013, ISBN: 978-1-60595-115-7, pp.1368-1376,
◦ Juan Chiachı́o, Manuel Chiachı́o, Guillermo Rus. Fatigue diagnosis in composites-A

Robust Bayesian approach. In Proceedings of the 15th European Conference on Composite
Materials, 2012, pp.1-8, ISBN: 978-88-88785-33-2.
◦ Juan Chiachı́o, Manuel Chiachı́o, Guillermo Rus, Nicolas Bochud, Laura Maria Per-

alta, Juan M. Melchor. A stochastic model for tissue consistence evolution based on

the inverse problem. In Proceedings of the ESB2012, Journal of Biomechanics, 45, Supple-
ment 1, July 2012, pp. S652.
◦ Juan Chiachı́o, Manuel Chiachı́o, Guillermo Rus. An Inverse-Problem Based Stochas-

tic Approach to Model the Cumulative Damage Evolution of Composites. Procedia En-
gineering, Volume 14, 2011, pp. 1557-1563.

B.4 International conferences

◦ Juan Chiachı́o, Manuel Chiachı́o, Abhinav Saxena, Guillermo Rus, Kai Goebel. A

model-based prognostics framework to predict fatigue damage evolution and relia-

bility in composites. 2nd European Conference of the Prognostics and Health Man-

agement Society, Nantes, France, July 7-10, 2014.

◦ Juan Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Shankar Sankaraman, Kai Goebel. A

robust modeling approach for fatigue damage in composites based on Bayesian

model class selection. 29th Technical Conference of the American Society for Com-

posites, 16th US-Japan Conference on Composites Materials, and ASTM D30 meeting.

San Diego (USA), September 2014

◦ Juan Chiachı́o, Juan Chiachı́o, Abhinav Saxena, Shankar Sankaraman, Kai Goebel. Pre-

dicting remaining useful life in CRFP laminates under fatigue loads: A new ef-

ficient algorithm. 29th Technical Conference of the American Society for Compos-

ites, 16th US-Japan Conference on Composites Materials, and ASTM D30 meeting.

San Diego (USA), September 2014

◦ Juan Chiachı́o, Manuel Chiachı́o, Guillermo Rus. Tissue consistence evolution: A sta-

tistical approach. Work Conference on Bioinformatics and Biomedical Engineering

(IWBBIO 2014), EU Annual Meeting, Granada (Spain), June 7-10, 2014.

◦ Juan Chiachı́o, Manuel Chiachı́o, Abhinav Saxena, Kai Goebel. An Energy-Based Prog-

nostic Framework to Predict Fatigue Damage Evolution in Composites. Conference of

the Prognostics and Health Management Society (PHM’13), New Orleans-(USA) Oc-

tober 14-17, 2013.

◦ Juan Chiachı́o, Manuel Chiachı́o, Abhinav Saxena, Guillermo Rus, Kai Goebel. Ro-

bust fatigue damage prognostics in composites. International Congress on Numerical

Methods in Engineering 2013, Bilbao (Spain), June 25-28, 2013.
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◦ Juan Chiachı́o, Manuel Chiachı́o, Guillermo Rus. Fatigue Diagnosis in Composites.

A Robust Bayesian Approach. 15th European Conference on Composite Materials,

Venice (Italy), 24-28 June, 2012.

◦ Juan Chiachı́o, Manuel Chiachı́o,Guillermo Rus. Bayesian state estimation for on line

assessment and prognosis of fatigue damage in composite materials. 6th European

Congress on Computational Methods in Applied Sciences, Vienna (Austria), 6-14

September, 2012.

◦ Juan Chiachı́o, Manuel Chiachı́o, Guillermo Rus. Tissue Consistence Evolution: A

Statistical Approach. Tissue Engineering and Regenerative Medicine International So-

ciety (TERMIS), 31th Annual Meeting, Granada (Spain), June 7-10, 2011.

◦ Juan Chiachı́o, Manuel Chiachı́o, Guillermo Rus. Predicting the evolution of dam-

age of composites materials-An inverse stochastic approach. Congresso de Metodos

Numericos em Engenharia CEMNI Coimbra (Portugal), 20-25 June, 2011.

B.5 Patents

◦ Manuel Chiachio, Juan Chiachio, Guillermo Rus. Self-stressed structure for all-

composite bridge (ES 2332442 B1). Spanish Bureau of Patents (OEPM).

◦ G. Rus, N. Bochud, J. Melchor, J. Chiachio, M. Chiachio. Petri-dish ultrasound-based

monitoring device. (ES 2387770 B1). Spanish Bureau of Patents (OEPM).
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