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Abstract

Background: Meta-analysis is very useful to summarize the effect of a treatment or a risk factor for a given disease.
Often studies report results based on log-transformed variables in order to achieve the principal assumptions of a
linear regression model. If this is the case for some, but not all studies, the effects need to be homogenized.

Methods: We derived a set of formulae to transform absolute changes into relative ones, and vice versa, to allow
including all results in a meta-analysis. We applied our procedure to all possible combinations of log-transformed
independent or dependent variables. We also evaluated it in a simulation based on two variables either normally or

asymmetrically distributed.

Results: In all the scenarios, and based on different change criteria, the effect size estimated by the derived set of
formulae was equivalent to the real effect size. To avoid biased estimates of the effect, this procedure should be
used with caution in the case of independent variables with asymmetric distributions that significantly differ from
the normal distribution. We illustrate an application of this procedure by an application to a meta-analysis on the
potential effects on neurodevelopment in children exposed to arsenic and manganese.

Conclusions: The procedure proposed has been shown to be valid and capable of expressing the effect size of a
linear regression model based on different change criteria in the variables. Homogenizing the results from different
studies beforehand allows them to be combined in a meta-analysis, independently of whether the transformations
had been performed on the dependent and/or independent variables.
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Background

A meta-analysis is a systematic review of the literature
that uses statistical methods to combine the results of
two or more eligible studies [1]. It is useful because it
provides a more accurate effect estimate by identifying
clinically important effects, which, because of their size,
may not have been detected in the primary studies. Fur-
thermore, with meta-analyses it is possible to obtain a
higher level of precision thanks to a larger sample size.
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The type of measurement used to calculate effect size
depends on the estimators used in the studies included
in the meta-analysis [2]. Therefore, one of the possible
limitations in a meta-analysis is that published studies
report results that were obtained through different
analytical approaches and measures of association. When
performing a meta-analysis of an effect size estimated with
linear regression models, this limitation can be (at least to a
certain extent) overcome by using different transforma-
tions. Consequently, variables in linear regression models
are usually transformed to achieve the principal assump-
tions of i) linearity of the relationship, ii) independence of
the residual values, iii) homoscedasticity (constant variance)
of the residuals, and iv) normal distribution of the residuals
[3, 4]. Depending on the transformation applied in each
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case (natural logarithm, base 2 logarithm, base 10, etc.), and
whether it is performed on an independent variable,
dependent variable or both, the regression coefficient is
interpreted differently (3, 4].

In a linear relationship between two untransformed
variables, we quantify the absolute change in one of them
by an absolute change in the other. However, when a vari-
able is transformed logarithmically, the absolute variation
in the logarithm equals a relative variation of the original
variable (Fig. 1) For example, an increase of one unit in
the logarithmically transformed variable is equivalent to
multiplying the original variable by the base of the loga-
rithm used. The existence of these transformations will,
therefore, affect the interpretation of the effect size.

Page 2 of 9

Thus, before performing a meta-analysis, some pre-
processing procedure to homogenize the magnitude
of effect observed in each study is required. This
means that recalculating each effect to express it as a
change in the dependent variable that corresponds to
the same change in the independent variable is
required. These changes, depending on the absence
or presence of logarithmic transformation, can be
expressed in either absolute or relative terms. Recent
studies have applied a methodology to standardize
the results of linear regression models through the
logarithmic transformation of the independent va-
riable in different bases for their inclusion in a meta-
analysis [5].
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This study aimed to develop a set of formulae to ex-
press results from linear regression models with different
log-transformations of independent and/or dependent
variables as the same effect size to be included in a
meta-analysis.

Methods

The linear regression model, a commonly used statistic
tool, establishes a linear relation between two variables
and estimates its association. The simplest linear regres-
sion models can be written as

Y=a+pX+e

where «a is the ordinate at the origin of the straight line
that relates X to Y, B is the slope of the straight line that
relates X to Y, and ¢ is the random error.

If we call & and [3 the estimates of & and 3 by the least
squares approach (that is, minimizing the squared dis-
tance between the estimation and the observed value),
then we can write the following equation:

Y=a+BX

The estimator /;’ measures the strength of association
between X and Y, as this represents the absolute change
in the mean of Y for an increase of one unit in X. How-

ever, the meaning of j is not as intuitive when variables
are transformed.

All possible regression models with all possible com-
binations of log-transformations for the dependent or
independent variables were considered. Thus, the follow-
ing models were formulated: (i) no transformation
(model A), (ii) only the independent variable trans-
formed (model B), (iii) only the dependent variable
transformed (model C), and (iv) both the dependent and
independent variables transformed (model D) (see Fig. 1).
Log-transformations were expressed in a general base a
for the dependent variable and in base b for the inde-
pendent variable. Absolute change in a variable was set
as ¢ units and relative change was considered to be a
ratio k between values.

Table 1 shows all possible scenarios based on the
model (A to D) considered and the combination of ab-
solute or relative change in the dependent or in-
dependent variables. The effect size and the 95%
confidence interval (CI) are shown in each cell. The
diagonal line in the table indicates the expression of
the effect size and the 95% CI that directly corre-
sponds to that particular model [3]. The other formu-
lae proposed express effects that differ from those
obtained directly from the model. The formulae stem
from basic transformations to express absolute changes as
relative changes and vice versa:
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- Equivalent absolute change ¢ in X for a relative
change k in X.

The objective was to obtain the equivalent of an abso-
lute change of ¢ units in the independent variable for a
relative change equal to k in the independent variable.
For that purpose, we approximated the absolute change
that would occur in the independent variable as a rela-
tive change equal to k in the mean of its distribution.

¢ = (k-1)-E[X] (1)

- Equivalent relative change k in X for an absolute
change ¢ in X.

Similarly, the relative change corresponding to an ab-
solute change of ¢ units in the independent variable was
approximated as follows:

k =1+ c/E[X] (2)

- Equivalent relative change k" in Y for an absolute
change ¢’ in Y.

In the case of the non-transformed dependent variable,
the regression model provided the absolute change in Y
(c"=c-p) for an absolute or relative change in X. Ana-
logously to Eq. (2), the following approximation was
performed to obtain the equivalent relative change in Y:

k =1+c/E[Y]=1+cB/E[Y] (3)

- Equivalent absolute change ¢' in Y for a relative
change k" in Y.

When the dependent variable was log-transformed,
the model provided the relative change in Y(k' =a°#)
for an absolute or relative change in X. Analogously to
Eq. (1), the following approximation was performed to
obtain an equivalent absolute change in Y:

¢ = (k-1)-E[Y] = (a“F-1)-E[Y] (4)

Thus, with these transformations the formulae in
Table 1, based on the combinations of the different models
and effect expressions, were obtained (see Additional file 1
for derivations).

Simulation

To evaluate the error resulting from the approximations,
we built each of the four models and ran simulations. A
database with random samples of 500 values from stand-
ard distributions of probability (normal and lognormal
distributions) was generated. Natural logarithm trans-
formed and untransformed variables were used, and the
real values of the regression coefficient and the standard
errors from each model A to D were estimated (Tables 2,
3, 4 and 5). Next, the formulae in Table 1 were applied
to these values to obtain the effect size from the differ-
ent change expressions. The simulation was performed
for four different scenarios, depending on the following
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Table 2 Simulation results when X and Y are normally distributed
Model A Model B l\/lo/d\e\ C R M%jgl D R
V=a+BX Y=a+pB10gy(X) log,(¥)=a+BL-X log,(V)=0a+B:log,(X)
Beta-hat coefficient and standard error from regression model [3 =0995 [3 =9587 [3 =0.020 E =0.193
se(B) =0.054 se(8)=0.520 se(B)=0.001 se(B)=0.011
Absolute change in Y for an absolute change Effect size  0.995 0914 1.006 0928
of ¢ units in X 95% Cl (0889-1.101)  (0817-1011) (0895-1.118) (0827-1.029)
Absolute change in Y for a relative change Effect size 0995 0914 1.006 0928
of k times in X
95% Cl (0.889-1.101) (0.817-1.011) (0.895-1.118) (0.827-1.029)
Relative change in Y for an absolute change Effect size 1.0199 1.0183 1.0201 1.0186
of c units in X 95% Cl (10178-10220) (10163-10202)  (10179-10224)  (1.0165-1.0206)
Relative change in Y for a relative change Effect size 1.0199 1.0183 1.0201 1.0186
of ktimes in X 95% Cl (10178-10220) (10163-10202)  (10179-10224)  (1.0165-1.0206)

Note: c=1and k=1.1

distributions of dependent and independent variables:
when the two variables are normally distributed, when
the two variables have asymmetric distributions, and
when one of the variables has a normal distribution
and the other has an asymmetric distribution. In all
cases, the mean value of the dependent variable was
equal to 50 and the mean value of the independent
value was equal to 10. The variables were generated
in such a way that the increase of a unit in X was as-
sociated with an increase of approximately one unit
inY.

For the simulations, the parameters ¢=1 and k=1.1
were fixed to reflect the effect of an absolute change in
one unit or a relative change of 10% in the independent
variable (equivalent to one unit given that the mean
value of X is 10). Tables 2, 3, 4 and 5 show the results of
the simulations. The diagonal positions in these tables
correspond to the real effect size, which is obtained
from the regression coefficient and the standard error
of the specific model. The remainder of the values in
each row represents the estimated effect size when
using the formulae.

Results

In all of the scenarios, the effect size estimated from the
formulae, based on different change criteria, was equiva-
lent to the real effect size. In the model without trans-
formation (model A), the variation of a unit in X is
associated with a variation of 0.995 units in Y. When the
formula to express a variation of X in relative terms was
applied (i.e. an increase of 10% in X as equivalent to one
unit), the same result (beta =0.995) was produced. On
the other hand, the estimated effect on Y in relative
terms was 1.0199, i.e. a variation of 1.99%. Given that
the mean value of Y is 50 units, that variation is equiva-
lent to an increase of 0.995 units, which is equal to the
real effect observed (Table 1).

For the other models, the result was the same. In
model B, the real absolute change was 0.914, whereas
the estimated relative change was 1.0183 (1.83% or 0.914
units), while in model C, the real relative change of
1.0201 equaled the estimated absolute change of 1.006
units, and in model D the real relative change of 1.0186
was equivalent to the estimated absolute change of 0.928.
This equivalence, based on the different distributions of

Table 3 Simulation results when X and Y have an asymmetric distribution

Model A Model B l\/lo/d\e\ C R Mg(j\el D R
V=a+8X Y=a+pB10gy(X) log,(¥)=a+BL-X log,(V)=0a+B:log,(X)
Beta-hat coefficient and standard error from regression model B:AO.997 B:A6.O71 B:AO.O18 B =0.115
se(B)=0.009 se(B)=0.213 se() =0.0002 se(8) =0.003
Absolute change in Y for an absolute change Effect size 0997 0.579 0.894 0.551
of ¢ units in X 959% Cl (0980-1014)  (0.539-0618) (0874-0.915) (0.518-0.584)
Absolute change in Y for a relative change Effect size 0997 0.579 0.894 0.551
of ktimes in X 95% Cl (0980-1014)  (0.539-0618) (0.874-0915) (0.518-0.584)
Relative change in Y for an absolute change Effect size 1.0199 10116 1.0179 10110
of ¢ units in X 95% Cl (10196-10203) (1.0108-10124)  (1.0175-1.0183)  (1.0100-10117)
Relative change in Y for a relative change Effect size 1.0199 10116 1.0179 1.0110
of k times in X
95% Cl (1.0196-1.0203) (1.0108-1.0124) (1.0175-1.0183) (1.0100-1.0117)

Note: c=1and k=1.1
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Table 4 Simulation results when Y has an asymmetric distribution
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Model A Model B Model C R Model D R
V=a+B-X ¥ =0a+p-109,(X) log,(¥)=0a+B-X log,(y)=a+Blogy(X)
Beta-hat coefficient and standard error from regression model = 0.625 B=5834 B=0011 B=0.103
se(B)=0.254 se(B) = 2441 se(B)=0.005 se(B) =0.044
Absolute change in Y for an absolute change  Effect size  0.625 0.557 0.551 0.493
of ¢ units in X 95% C| (0128-1122)  (0.101-1013) (0.100-1.006) (0.080-0.909)
Absolute change in Y for a relative change Effect size 0625 0.557 0.551 0493
of ktimes in X 95% C| (0128-1122)  (0.101-1013) (0.100-1.006) (0080-0.909)
Relative change in Y for an absolute change Effect size 1.0125 1.0111 1.0110 1.0099
of ¢ units in X 95% Cl (10026-1.0224) (10020-10203)  (10020-1.0201)  (1.0016-10182)
Relative change in Y for a relative change Effect size 1.0125 10111 1.0110 1.0099
of ktimes in X 95% Cl (10026-10224) (10020-10203)  (10020-10201)  (1.0016-10182)

Note: c=1and k=1.1

variables X and Y (Tables 2, 3, 4 and 5), was maintained in
all the scenarios contemplated.

The variation in effect size between the various models
differed depending on the shape of the distribution of
variables. For the relationship between normally distrib-
uted variables, the range of variation in the absolute
effect was 0.914 to 1.006, and 1.0183 to 1.0201 in the
relative effect. When the independent variable only was
skewed, the absolute effect varied between 0.133 and
0.288 and the relative effect between 1.0027 and 1.0058,
while when the dependent variable only was skewed, the
absolute effect varied between 0.493 and 0.625 and the
relative effect between 1.0099 and 1.0125, and when
both variables were skewed, the absolute effect varied
between 0.551 and 0.997 and the relative effect between
1.0110 and 1.0199.

Empirical example

The method proposed in this study was successfully
used in a systematic review that performed a meta-
analysis on the potential effects on neurodevelopment in
children exposed to arsenic (As) and manganese (Mn)

Table 5 Simulation results when X has an asymmetric distribution

[5]. Additional details on the search strategy, target
population, inclusion and exclusion criteria, and assess-
ment of methodological quality have been previously
reported [5]. Studies that evaluated neurodevelopment
using the same scale (the Wechsler scale [6]) and linear
regression techniques to estimate the effect were in-
cluded in a meta-analysis. Three independent meta-
analyses were performed as per the metallic element
studied and the sample type: arsenic in urine (five stud-
ies included) [7-11], arsenic in drinking water (four
studies) [8-11] and manganese in hair (four studies)
[12-15]. To assess the association of metal exposure
with the full-scale intelligence quotient (IQ) from the
Wechsler scale, all the studies used model A (without
transformations) or model B (with log-transformed inde-
pendent variable), with metal exposure as the independ-
ent variable and intelligent quotient as the dependent
variable. Table 6 shows the type of transformation on X,
original regression coefficients and transformed effect
sizes, in accordance with the formulae proposed in this
study. All effect sizes were expressed as the absolute
change in the dependent variable (Y) for an increase of

Model A Model B Model C R Model D R
V=a+B-X ¥ =0a+B-109,(X) log,(¥)=a+B-X log,(y)=a+Blogy(X)
Beta-hat coefficient and standard error from regression model = 0.288 B=1517 B =0.005 B=0028
se(8)=0.015 se(8)=0.133 se() =0.0003 se(8) =0.003
Absolute change in Y for an absolute change Effect size 0288 0.145 0.263 0.133
of ¢ units in X 95% Cl (0259-0317)  (0.120-0.169) (0236-0.291) (0.109-0.156)
Absolute change in Y for a relative change Effect size  0.288 0.145 0.263 0.133
of ktimes in X 95% C| (0259-0317)  (0.120-0.169) (0236-0.291) (0.109-0.156)
Relative change in Y for an absolute change Effect size 1.0058 1.0029 1.0053 1.0027
of ¢ units in X 95% C| (10052-10063) (10024-10034)  (10047-10058)  (1.0022-1.0031)
Relative change in Y for a relative change Effect size 1.0058 1.0029 1.0053 1.0027
of ktimes in X 95% Cl (10052-1.0063) (1.0024-10034)  (10047-10058)  (1.0022-10031)

Note: c=1and k=1.1
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Table 6 Original regression coefficients and transformed effect size for studies included in the meta-analysis

Author (Year) Mean of X Units Transf. on X B SE(B) [S] SE®)
As in urine
Hamadani (2011)-Girls [7] pg/L Ln —140 0.66 -0.57 027
Hamadani (2011)-Boys [7] pg/L Ln 0.70 0.56 0.28 0.23
Rocha-Amador (2007) [8] pg/gr crea Ln —5.72 193 —2.32 0.78
von Ehrenstein (2007) [9] 78 pg/L None —0.0007 0.0008 —-0.03 0.03
Wasserman (2007) [10] hg/gr crea Ln -1.78 142 -0.72 0.58
Wasserman (2004) [11] pg/gr crea Ln -2.90 171 -1.18 0.69
As in water
Rocha-Amador (2007) [8] pg/L Ln -6.15 187 —249 0.76
von Ehrenstein (2007) [9] 147 pg/L None —0.0002 0.0004 -0.01 0.03
Wasserman (2007) [10] pg/L Ln -1.06 0.57 —043 0.23
Wasserman (2004) [11] pg/L Ln -1.64 0.64 —0.66 0.26
Mn in hair
Bouchard (2011) [12] Ha/g log10 -3.30 143 -0.58 0.25
Menezes-Filho (2011) [13] ug/g log10 -578 284 -1.02 0.50
Riojas-Rodriguez (2010) [14] 6.35 ug/g None -0.20 0.11 —0.64 036
Wright (2006) [15] 047 1g/g None -10.00 5.00 -235 118

As, arsenic, Mn manganese, 0 transformed effect size for k= 1.5, Ln natural logarithm, log10 base 10 logarithm, gr crea grams of creatinine

50% in the independent variable (X), which is equivalent
to a coefficient k=1.5. Thus, transformed effect sizes
express the absolute change in the intelligence quotient
for a 50% increase in the metal levels.

For example, results from Rocha-Amador in the meta-
analysis of As in urine are from a regression model with
natural logarithmic transformation of the independent
variable (model B). To obtain the absolute change in the
outcome for a relative increase of 1.5 times in the expos-
ure, we apply the formulae in model B for that scenario
(see Additional file 1, formulae (13) and (14)):

log, (k)-B = In(1.5)-(-5.72) = -2.32
log, (k)-[8 + 1.96-se(B)] = In(1.5)-(~5.72 + 1.96-1.93)
=-2.32+1.53

To obtain the equivalent effect size from von
Ehrenstein’s results (which used model A without
transformation) formulae (7) and (8) from Additional
file 1 must be used:

(k-1)-E(X)-B = 0.5-78-(~0.0007) = -0.03
(k-1)-E(X)-[B + 1.96-se(B)] = 0.5-78-(~0.0007 = 1.96-0.0008)
— -0.03 £ 0.06

The results of the meta-analysis suggested that for
every 50% increase in arsenic levels (either in urine or in
regular drinking water) there could be an approximately
0.5 decrease in the IQ of children aged 5-15 years.
Moreover, a 50% increase in manganese levels in hair
would be associated with a decrease of 0.7 points in the
IQ of children aged 6—13 years [5].

This approach allowed the results from regression
models using different formulations to be combined,
and, thus obtain a pooled measure of association that
included all available results.

Discussion

To establish causality, well-conducted and free-of-bias
systematic reviews that include a meta-analysis have
been proposed as the epidemiological design at the
top rank of the evidence-based medicine pyramid
[16]. However, the main bias in such design is publi-
cation bias and while there are statistical methods
that can be used to study the presence of this error,
it cannot be controlled [17].

Another problem in meta-analyses is the difficulty of
including all the studies dealing with the research topic,
either because of a specific transformation performed on
the variables of the model or because the effect measure-
ments in said study were not relevant to the research
question. When all studies on a specific topic cannot be
included, the meta-analysis loses external validity. This
difficulty would be solved if it were possible to access the
original data (not only the results) that the authors had
amassed. However, in almost all cases, accessing this kind
of information is practically impossible.

An alternative would be to contact the author of the
published study and request the results that were ob-
tained from the original data but which do not appear in
the publication. Occasionally this strategy provides a
way to access the data required for the study to be
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included in the meta-analysis. However, such efforts are
generally not successful, as positive responses are rare;
particularly if the study had been conducted several
years beforehand.

On the other hand, there are other initiatives that
allow access to anonymized original data obtained in
other studies. A relevant example of this is the data-
sharing policy of the BM]J journals [18]. In fact, after
2013, the publication of the results from any clinical trial
on drugs or medical devices requires the authors to
make the relevant patient-level data available (on reason-
able request) to other researchers.

In the absence of this type of strategy being consoli-
dated and expanded, there is the urgent need to develop
procedures that can be used to standardize results ob-
tained with different methodological approaches so that
they can then be validly combined in a meta-analysis.
Such procedures would optimize meta-analyses as they
would make it possible to include a maximum number
of results, even when the analyses carried out were not
identical. This would not only increase the statistical
potential of the meta-analysis, but would also reduce
the risk of any selection bias that might occur if
some of the studies identified in the systematic review
had to be excluded.

This study proposes a procedure to homogenize the
estimated effect sizes with linear regression models that
use different transformations of dependent and/or inde-
pendent variables. The application of these transforma-
tions to express all the effect sizes based on the same
change criterion enables the results from studies that
have built their regression models with different tra-
nsformations to estimate the effect to be combined.
Furthermore, the generalization of the method also
allows the effect size to be recalculated, independent of
the logarithm base applied in the transformation. Simply
reflecting the same change in the independent variable is
all that is required.

The simulation results showed that this procedure
provided an estimation of the effect that was equal to
that obtained with the original model. Moreover, the
approximation was not affected by the form of the distri-
bution of the variables. Nevertheless, it is also important
to compare the effects of the four models since, from a
practical perspective, this procedure will be used to
compare the results of different regression models.

As can be observed in the simulation, the effect esti-
mate obtained by using a model without transformations
is not the same as that obtained with a model that uses
some type of transformation. In other words, if an
author presents the result of a model with the log-
transformed dependent variable and we then apply the
procedure described to recalculate the effect based on a
model without transformation, we would not obtain the
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same result as the author would from their own data in
a model without transformation.

This limitation can produce a certain degree of bias in
the effect estimate. Based on the simulation results, the
size of this bias basically depends on the symmetry of
the independent variable (X). When X and Y have a nor-
mal distribution, the variation of the effect size in regard
to model A is, at most, 8%. When Y has an asymmetric
distribution and X a normal distribution, the variation is
approximately 10%. However, when the independent
variable is asymmetric, the bias can be as high as 50% of
the value of the effect estimated with model A.

To apply this model, the standard should be regarded
as the most generalized model of all the results, and
then the effect should be transformed for those results
that use a different model. To apply the proposed
formulae featured, an Excel spreadsheet is available as
Additional file 2.

Conclusions

In conclusion, the method proposed in this study was
shown to be valid and capable of expressing the effect
size of a linear regression model consistent with different
change criteria in the variables involved. The previous
homogenization of the results from different studies
allows them to be combined in a meta-analysis, in-
dependent of the transformations performed on the
dependent and/or independent variables. However, in
order to avoid biased effect estimates, this procedure
should be used with caution in the case of independent
variables with asymmetric distributions that significantly
differ from normal ones.

Additional files

Additional file 1: Derivation of formulae in Table 1. (DOCX 19 kb)

Additional file 2: Excel template to transform original effect size using
the proposed formulae. (XLSX 19 kb)
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