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SUMMARY

Chronic neuropathic pain is amajor morbidity of neu-
ral injury, yet itsmechanisms are incompletely under-
stood. Hypersensitivity to previously non-noxious
stimuli (allodynia) is a common symptom. Here, we
demonstrate that the onset of cold hypersensitivity
precedes tactile allodynia in a model of partial nerve
injury, and this temporal divergence was associated
with major differences in global gene expression in
innervating dorsal root ganglia. Transcripts whose
expression change correlates with the onset of cold
allodynia were nociceptor related, whereas those
correlating with tactile hypersensitivity were immune
cell centric. Ablation of TrpV1 lineage nociceptors re-
sulted in mice that did not acquire cold allodynia but
developed normal tactile hypersensitivity, whereas
depletion of macrophages or T cells reduced neuro-
pathic tactile allodynia but not cold hypersensitivity.
We conclude that neuropathic pain incorporates
reactive processes of sensory neurons and immune
cells, each leading to distinct forms of hypersensitiv-
ity, potentially allowing drug development targeted
to each pain type.

INTRODUCTION

Peripheral neuropathic pain in animal models is associated with

hypersensitivity to noxious and non-noxious stimuli in areas of

tissue that neighbor those normally innervated by the damaged
Cell Re
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nerves. Changes both in the peripheral nervous system (PNS)

and central nervous system (CNS) contribute to the development

of this pain hypersensitivity (Costigan et al., 2009b). Global gene

expression studies in the adult rodent dorsal root ganglia (DRG)

in response to sciatic nerve injury have helped define the

peripheral mechanisms likely to contribute to the changes in

neuropathic pain-like hypersensitivity (Costigan et al., 2009b;

LaCroix-Fralish et al., 2011), as well as novel targets for therapy

(Dib-Hajj and Waxman, 2014; Tegeder et al., 2006).

Following sciatic nerve injury, the ipsilateral L3-5 lumbar DRGs

contain the cell bodies of injured and non-injured primary

sensory neurons, satellite cells, fibroblasts, and blood vessels,

as well as resident immune cells and those recruited from the

blood (Hu et al., 2007). Peripheral nerve injury induces transcrip-

tional changes in each of these diverse cell types (Costigan et al.,

2002, 2010; Watkins andMaier, 2002). Peripheral nerve injury in-

duces pain-like hypersensitivity in rodents that develops over the

first week or so following the axonal damage (Colleoni and

Sacerdote, 2010; Jaggi et al., 2011). Here, we have determined

the onset of two chronic pain-like sensory modalities (tactile

and cold allodynia) in C57BL/6 mice at high temporal resolution

(daily) over the first 10 days in the spared nerve injury (SNI) model

(Decosterd and Woolf, 2000), and we found clear differences

in their temporal evolution, with cold sensitivity developing

quicker than tactile allodynia. The temporal separation of these

two clinically important neuropathic pain modalities (Jensen

and Finnerup, 2014) led us to design a global gene expression

study in lumbar DRGs ipsilateral to the nerve injury to directly

correlate the relative timing of transcript expression and sensory

modality changes.

We demonstrate differences in the kinetics of early neuronal

and late immune gene regulation events, changes which closely
ports 22, 1301–1312, January 30, 2018 ª 2018 The Authors. 1301
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Figure 1. Differences in the Onset of Cold and Tactile Allodynia
(A and B) Cold allodynia (A) develops relatively quickly post-injury, whereas

tactile allodynia (B) develops at a slower pace.

(C) The onset time of cold hypersensitivity is illustrated by the blue line (cold)

relative to the later onset of tactile hypersensitivity illustrated by the orange line

(tactile).

Statistically significant differences between the values frommice after SNI and

their basal measures in (A) and (B); *p < 0.01 (one-way repeated-measures

ANOVA followed by Bonferroni post hoc test). There were no statistically

significant differences between basal measures and values after sham

surgery (gray lines, one-way repeated-measures ANOVA). Error bars indicate

SEM (n = 13 or 14 per group; see Supplemental Experimental Procedures).
mirror the onset of cold and tactile allodynia respectively.

These data indicate that different cellular and molecular mecha-

nisms may be responsible for development of tactile and cold al-

lodynia in the damaged PNS, which we confirmed by selectively

targeting the immune and nervous systems. Understanding the
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differences in pain hypersensitivity features should allow us

to develop new therapies tailored to their distinct underlying

mechanisms.

RESULTS

Onset of Cold and Tactile Allodynia
Tactile and cold allodynia both develop subsequent to peripheral

nerve injury and are major clinical concerns of neuropathic pain

patients (Jensen and Finnerup, 2014). A high-density time-

course analysis of neuropathic pain-related behavioral onset

showed that cold and tactile hypersensitivity developed to

maximal levels in the first week after nerve injury and persisted

for at least 15 days. Cold allodynia developed relatively quickly,

reaching a statistically significant increase at 3 days and

achieving peak levels 4–5 days post-SNI (Figure 1A); however,

tactile allodynia became established over a slower time frame,

with a statistically significant decrease of the mechanical

threshold at 5 days and reaching maximal levels 7–8 days

post-SNI (Figures 1B and 1C). These data agreewith previous re-

ports in which cold allodynia develops faster than mechanical

hypersensitivity (Decosterd and Woolf, 2000; Pertin et al.,

2007; Wijnvoord et al., 2010). Sham-operated controls did not

show alterations in either cold or tactile hypersensitivity (Figures

1A and 1B, respectively).

Transcripts Regulated in the DRG Post-SNI
The differences in the onset time of cold and tactile allodynia led

us to consider if these pain modalities may have different mech-

anisms. To investigate this, we performed an expression array

profiling experiment over a similar high-resolution time course

to the behavioral studies. We evaluated global gene expression

in the ipsilateral DRG daily for the first 10 days post-SNI and also

at 8 and 16 hr post-SNI.

We initially assessed changes in gene expression in the DRG

over 10 days post-SNI in all 1,704 probes differentially regulated

over time between naive and injured conditions (moderated F-

statistic, p < 0.01; Table S1) by a weighted gene co-expression

network analysis (WGCNA) (Parikshak et al., 2015). By employ-

ing amodulemerger step that used Euclidean distance to cluster

the average module regulation patterns across time (not shown),

wewere able to reveal eight distinct expression clusters (clusters

I–VIII) comprising 1,699 of the regulated probes (Figure 2) and 5

additional probes that did not fit in any of the eight clusters

(Table S1). Ingenuity Pathway Analysis (IPA) of content of each

cluster annotated their general functional identity, which delin-

eate the most overrepresented descriptors of gene function

assigned to each transcript in each cluster (see ‘‘Function/Cell

type’’ and ‘‘Example Genes’’ in Figure 2).

A similarity plot of average gene expression across time for

each cluster demonstrates that each has distinct expression pat-

terns, although similarities are observed between clusters III and

VI (two of the neuronal modules), and also between the clusters

VII and VIII (mixed function and late immune) (Figure 3A). By plot-

ting the relative expression of each gene cluster across time, we

could identify four cluster groups with distinct kinetic patterns

(Figures 3B–3E). Genes in cluster I (largely chemotaxis related)

showed an immediate but short-lived expression change that



Figure 2. WGCNA Analysis of All Regulated

Transcripts in DRG

Significantly regulated probes (moderated F-

statistic, n = 1,704) were subject to WGCNA

analysis to produce unbiased clusters of co-

regulated transcripts representing the entire

regulatory network of transcripts in the DRG

following peripheral nerve injury (SNI) for 10 days

sampled at least once a day over this period. The

first column defines the clusters present, and the

second shows heatmaps of each gene in each

cluster. Blue represents low-level expression and

red high-level expression. The third column gives

a brief description of cluster function as defined

by IPA software. Below this is the number of

probes in each cluster and the p value IPA

ascribed the function given. The final column

gives example transcripts from each functional

subdivision. See also Table S1.
peaked several hours post-SNI (Figure 3B). The next kinetic

group contained the predominantly neuronal regulatory clusters

II, III, andVI,whichdisplay amonophasic expressionpattern (Fig-

ure 3C). Clusters II and III demonstrate a late decrease in relative

expression, although average expression did not fall back to

baseline by 10 days post-SNI. In contrast, the expression level

of cluster VI remained at or around maximal levels until 10 days

after SNI.Next, genes in clusters IVandV initially showedadown-

regulation in reaction to the injury and then displayed a relatively

strong increase that peaked at �3 days after nerve injury before

settling to approximately naive levels at later time points (Fig-

ure 3D). The final kinetically distinct group contained two clusters

that demonstrated sustained increases of expression, reaching

maximal levels over 10 days, with the rise of cluster VII (mixed

neuronal/support cell and immune) preceding that of cluster VIII

(late immune) (Figure 3E). Each cluster contains not only genes

regulated in the direction depicted in Figures 3B–3E but also
Cell Repo
genes regulated in a pattern mirroring

that shown (reciprocal regulation events).

Figure 2 shows all gene regulation pat-

terns both positive and negative.

We performed a transcription factor

binding site (TFBS) enrichment analysis

for each of the eight clusters to uncover

the potential regulatory network contrib-

uting to the observed gene regulation

patterns after nerve injury. To avoid

confounders and identify only the most

statistically robust sites, we used 3

different control datasets as background

(1,000 bp sequences upstream of all

mouse genes, mouse CpG islands, and

the mouse chromosome 19 sequence).

We identified 210 TFs (Figure S1A) whose

DNA binding motifs were over repre-

sented in the promoters of each gene

cluster set (Table S2). Interestingly, hier-

archical clustering of the TFBS enrich-
ment score for each cluster revealed a separation of neuronal

and immune-associated gene modules, suggesting distinct

regulatory control by transcription of these gene sets after nerve

injury (Figure S1A).

To identify potential protein signaling pathways operational

after nerve injury, we determined the protein-protein interaction

(PPI) network represented by all the differentially regulated

genes (see Experimental Procedures). We screened for experi-

mentally validated PPI among all possible combinations of

gene pairs present in the DRG regulated gene set, obtaining a

PPI network consisting of 310 nodes and 442 edges. This re-

vealed certain key signaling molecules such as ATF3, JUN,

BDNF, mitogen-activated protein kinase 1/3 (MAPK1/3), trans-

forming growth factor b1 (TGF-b1), STAT3, TCF3, CCR5, and

interleukin-1b (IL-1b) (Figure S2) and certain transcription factors

(TFs) as major hubs, potentially regulating many of the genes

present in the global injury response; including SP1, ESR1,
rts 22, 1301–1312, January 30, 2018 1303
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Figure 3. Transcript Regulation in the DRGafter SNI FollowsDistinct
Patterns

(A) Similarity plot of the module eigengenes of each cluster showing very little

overlap in pattern regulation.
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SMAD3, TP53, and STAT5A (Figure S2). Next, by screening for

signaling pathways in the PPI network, we observed enrichment

of several important signaling pathways that may contribute to

nerve injury response, including the neurotrophin, MAPK, TGF-

b, chemokine, and ErbB signaling pathways (Table S3). To iden-

tify signaling cascades activated over time after nerve injury, we

also examined for the presence of signaling pathway genes in

each cluster. These analyses show that there is a group of

strongly represented neuronal signaling pathways, including

NGF, EGFR, p38MAPK, and TGF-b in clusters III, IV, and VII (Fig-

ure S3), suggesting co-activation of multiple signaling pathways

in response to nerve injury (Abe and Cavalli, 2008).

Analysis of the full gene expression dataset suggested a

generalized kinetic separation of groups of neuronal and im-

mune-rich transcripts across time, such that overall neuronal

gene changes preceded alterations in immune transcript expres-

sion in the DRG over the first 10 days after nerve damage (Fig-

ures 3C and 3E, respectively). This led us to consider whether

such expression differences could reveal information on the

functional origins of the diverse behavioral manifestations of

neuropathic pain.

Genes Correlated with Cold and Tactile Allodynia in the
DRG
To define those transcripts with expression changesmost corre-

lated with cold and tactile allodynia, we chose transcripts with a

Pearson correlation coefficient greater than 0.85 (directly corre-

lated) or less than �0.85 (inversely correlated) with each behav-

ioral hypersensitivity onset curve (Figures 4A and 4B). The cold

allodynia time course closely correlated with the temporal

pattern of 145 probes, corresponding to 137 distinct transcripts,

of which 107 (78%) were upregulated and 30 (22%) were down-

regulated (Figure 4A). The list of the transcripts correlated with

cold allodynia and their Pearson correlation values can be found

in Table S4. For tactile allodynia, we identified 40 probes, corre-

sponding to 36 distinct transcripts whose expression closely

correlated to the onset of mechanical sensitivity. Of these, 33

transcripts (92%) were upregulated and 3 (8%) were downregu-

lated (Figure 4B). The list of the transcripts correlated with tactile

allodynia and their Pearson correlation values can be found in

Table S5.

We performed a biological validation of the gene lists that

made up the cold- and tactile- correlated groups by comparing

these lists with results from DRG transcriptome profiling ob-

tained using RNA sequencing (RNA-seq) (naive and 1, 3, and

7 days after SNI) from biologically distinct tissue to that used in

the array studies. We found 116 common genes in the acetone

(neuronal) list and 36 common genes in the von Frey (immune)

list in both platforms. The heatmaps of common genes from

the arrays and RNA-seq for each sensory modality are shown

in Figures S2A–S2D, and these data demonstrate that the overall
(B–E) Representations of the regulation of each cluster given as singles line

plots with intensity of regulation on the y axis and time on the x axis. Cluster I

(B), clusters II, III, and VI (C), clusters IV and V (D), and clusters VII and VIII (E).

Each cluster contains not only genes regulated in the fashion drawn but also

reciprocal regulation events.

See also Figures S1, S2, and S3 and Tables S1, S2, and S3.
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Figure 4. Transcript Expression in the DRG Correlating with the Temporal Profile of Cold Allodynia Was Nociceptor Related, whereas That

with Tactile Hypersensitivity Was Immune Cell Centric

Gene expression was correlated with the time courses of cold and tactile allodynia development using the Pearson coefficient of similarity.

(A) Heatmap of the relative expression of the probes that most tightly correlate with cold allodynia onset.

(B) Relative expression of the probes that most tightly correlate with tactile allodynia.

(C and D) Representative functional characteristics using IPA of these cold- (C) and tactile-related (D) transcripts.

(E and F) Strongest GO terms for transcripts correlated with cold (E) and tactile (F) allodynia.

(G) Cross-comparison of transcripts present in each cluster with transcript lists derived from isolated DRGnociceptors and isolatedmacrophages/T cells. Orange

represents genes contained only in the immune gene list, blue represents genes contained only in the nociceptor list, gray represents genes present in both lists,

and white represents genes not contained in either list.

See also Tables S4, S5, S6, S7, S8, and S9 and Figure S4.
expression patterns of the constituent genes were virtually iden-

tical regardless of the platform used to define gene regulation.

This RNA-seq dataset also allows validation of the other regu-

lated transcripts described in Figure 2.

When the group of genes correlated with cold allodynia was

processed by IPA, ‘‘Neurological disease’’ was the top biological

function defined for 33 genes (24%). ‘‘Seizures,’’ ‘‘Migraines,’’

and ‘‘Neuropathic pain’’ were also among functional subgroups

identified as present (Figure 4C). (See Table S6 for the content of

genes in each annotated function.) In contrast, for the group of

genes significantly correlated with tactile allodynia, with IPA,
‘‘Immune disease’’ was identified as the top biological function,

with 19 transcripts (53%). ‘‘Systemic autoimmune syndrome,’’

‘‘Antigen presentation activation,’’ ‘‘Insulin-dependent diabetes

mellitus,’’ and ‘‘Rheumatoid arthritis’’ were other functional

subgroups identified as present (Figure 4D). (See Table S7 for

the content of genes in each annotated function.)

To further assay genes associated with the development of

cold and tactile allodynia, we investigated amore inclusive group

of transcripts including those genes directly and inversely corre-

lated with a Pearson coefficient of correlation >0.75 (see Exper-

imental Procedures). These gene sets were then subjected to
Cell Reports 22, 1301–1312, January 30, 2018 1305



A

B C

Figure 5. Trpv1 Lineage Neuronal Deletion

Mice Develop Tactile, but Not Cold, Allody-

nia after SNI Injury

(A) When naive mice are given the choice

between two opposing temperatures, wild-type

control littermate (LM) mice move toward the

more ambient temperature, whereas Trpv1 DTA

mice do not. Each point on the graph measures

the amount of time spent on plate A in a 30-s

window (y axis) when the plate was set to the

temperature given on the lower x axis. The top x

axis gives the temperature of the alternate plate

for that time bin.

(B) TrpV1 lineage DTA mice and their LM control

counterparts develop tactile allodynia post-SNI.

Statistically significant differences between the

values from mice after SNI and their basal mea-

sures are shown (**p < 0.01). However, there was

no significant difference between the two curves

(two-way repeated-measures ANOVA).

(C) TrpV1 lineage DTA mice develop very

weak levels of cold allodynia relative to their LM

controls. Statistically significant differences be-

tween the values from mice after SNI and their

basal measures (**p < 0.01) and between wild-type

LM controls and TrpV1 DTAmice in cold sensitivity

(##p < 0.01) are shown (two-way repeated-mea-

sures ANOVA, Bonferroni post hoc test).

For (A), n = 9 (TrpV1-DTA), n = 10 (LM controls); for

(B) and (C), n = 8 (both groups). Error bars indicate

SEM. See also Figure S5.
Gene Ontology (GO) analysis to find the most related functional

terms (Figures 4E and 4F). Transcripts in this set whose expres-

sion over time correlated with the onset of cold allodynia

(375 probes) were almost entirely related to neuronal function

(Figure 4E). (See Table S8 for the content of genes in each anno-

tated function.) The genes most related to the development of

tactile allodynia in the GO analysis were almost entirely related

to immune function (130 probes). (See Table S9 for the content

of genes in each annotated function.) Both GO analyses accord

with the IPA-based data (shown in Figures 4E and 4F).

An enrichment of a particular IPA functional annotation or GO

category signifies that multiple genes participating in the same

process correlate with the phenotype in question. Using two

thresholds of correlation allowed us to span the expression

data more exhaustively than using one. The fact that each of

these lists result in very complementary functional descriptions

using two different pathway search tools with different correlated

transcript inclusion criteria represents an internal control for the

validity of the associations.

We also compared the cold- and tactile-allodynia-correlated

transcripts to previously published analyses of genes specifically

expressed either in nociceptor DRG neurons (Chiu et al., 2014) or

in activated macrophages and T cells (Brown et al., 2015; Rosas

et al., 2014) (see Experimental Procedures). This analysis revealed

that 37% of the genes identified as correlated with cold allodynia

are expressed specifically in nociceptors, with 16% specific to

leukocytes. Using the same approach to assay genes whose
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expression correlates with tactile allodynia, 51% are specifically

expressed in leukocytes, with only 6% specific to nociceptors.

Therefore, transcripts correlated with the onset of tactile allodynia

have a stronger immune component than neuronal, with the

reverse holding true for cold allodynia (Figure 4G).

TrpV1 Lineage Neurons and Neuropathic Allodynia
To determine if changes in a specific set of DRG sensory

neurons are responsible for development of cold allodynia

post-SNI, we examined TrpV1CreDTAflox-stop mice that lack

TrpV1-lineage nociceptors but retain mechanoreceptors

(Mishra et al., 2011). We first assessed cold sensitivity in naive

(uninjured) TrpV1CreDTAflox-stop mice and their wild-type litter-

mates in a dynamic thermal place cold aversion challenge.

While the littermate control mice rapidly manifested a prefer-

ence for moderate (11�C–25�C) rather than noxious cold

(4�C–11�C) temperatures, TrpV1CreDTAflox-stop mice displayed

no aversion to noxious cold. These data indicate that TrpV1

lineage nociceptors are essential for cold detection under

baseline conditions (Figure 5A).

Next, we determined the temporal development of tactile and

cold allodynia after SNI in the TrpV1 neuron ablated mice relative

to their littermate controls. TrpV1 DTA mice showed a total loss

of TrpV1 expression in the DRG (Figure S5A), indicating the effi-

ciency of the ablation. The tactile behavioral hypersensitivity was

fully apparent in these mice at 7 days post-SNI injury and

continued at similar levels until at least 21 days post-SNI



(Figure 5B). In contrast, TrpV1 DTA mice failed to develop cold

allodynia 7 or 14 days after nerve injury (Figure 5C). The lack of

normal cold- or injury-induced cold sensitivity in these animals

may reflect the absence of TrpM8 expression in the DRG relative

to wild-type controls (Figure S5B). At later time points (21 days),

injured TrpV1 DTAmice developed a slight level of cold allodynia

relative to naive TrpV1 DTAmice (Figure 5C). The mechanism for

this late and muted response is unclear, although it likely repre-

sents compensatory changes in gene expression/function in the

remaining (non TRPV1 lineage) intact sensory neurons that

enable them to develop sufficient cold thermoception to drive

the central circuits that produce cold allodynia. Some residual

TrpA1 (but not TrpM8) expression is present in the DRGs of

TrpV1 DTA mice (�20% of wild-type levels) (Figure S5C), and

TrpA1 is implicated in neuropathic cold allodynia (del Camino

et al., 2010), suggesting this channel maybe the source of this

late-onset low-level activity. The early loss in cold allodynia in

TrpV1 DTA mice is consistent with the primarily neuronal gene

expression changes in the DRG that correlate with its onset.

Based on these findings, we conclude that an alteration in

TrpV1 lineage sensory neurons is required for early development

of this phenotype.

Peripheral Macrophages Are Crucial to the
Development of Tactile, but Not Cold, Allodynia
Genes whose expression pattern matched the time course of

tactile allodynia onset are primarily expressed in immune cells.

Specifically, they appear to be enriched in macrophages and

T cells (Figure 4G), two leukocyte populations present in DRGs

after nerve injury (Hu andMcLachlan, 2002; Moalem and Tracey,

2006) (see also Figures 7A and 7B). To assess whether circu-

lating macrophages have a role in mediating allodynia, we

transiently depleted them in C57BL/6 mice using liposomal

clodronate. Macrophages naturally phagocytose these lipo-

somes within the blood; this releases clodronate intracellularly

and results in their death. Following a single liposomal clodro-

nate dose, animals regenerate a full macrophage blood count

from bone marrow precursors over the next 2 weeks (Camilleri

et al., 1995). Animals administered with liposomal clodronate

1 day before nerve injury (SNI) developed minimal tactile allody-

nia at 7 and 10 days post-SNI relative to control mice treated with

empty liposomes (Figure 6A). However, clodronate-treated and

control animals developed cold allodynia to a similar extent

post-SNI (Figure 6B). By assaying the blood at 7 days post-

SNI, we found markedly reduced myeloid cells in clodronate-

treated mice relative to liposome controls (Figure 6C). These

changes also translated to the DRG tissue (Figures 6D and 6E),

which may explain the large differences in mechanical threshold

in the same mice (Figure 6F). We confirmed the decrease in

macrophages/monocytes by immunohistochemistry; liposome

control mice showed amarked IBA1 immunoreactivity in the ipsi-

lateral L3-5 DRGs 7 days post-SNI, and this was markedly

decreased in clodronate-treated mice (Figures 6G and 6H,

respectively). We further quantified the relative expression

within the injured DRG by qPCR of the macrophage/monocyte

markers CD68 and CD11b, which both showed significant

decreases relative to liposome control mice (Figures 6I and 6J,

respectively). In addition, we quantified the transcript of CD163
(a marker of tissue resident macrophages), which was strongly

decreased following clodronate treatment (Figure 6K).

Consequence of Absence of T and B Cells on Nerve-
Injury-Induced Tactile and Cold Hypersensitivity
To demonstrate whether in addition to macrophages, activated

T cells were also present in the ipsilateral DRG 7 days post-

SNI injury, we utilized a combination of a Lck-zsGreen mouse

line, which expresses the fluorescent marker zsGreen in acti-

vated T cells (Zhang et al., 2005), and immunostaining for

IBA1. In the uninjured Lck-zsGreen transgenic DRG, very few

labeled T cells were present and there was little IBA1 staining

(Figure 7A). In ipsilateral DRGs 7 days post-SNI, there were in

contrast many labeled T cells and a strong IBA1 signal (red, Fig-

ure 7B). To test whether the absence of T cells had any effect on

cold and tactile allodynia, we exploited Rag1�/� mice that lack T

and B cells (Figure 7C, left and middle). In agreement with our

previous observations (Costigan et al., 2009a), we found a

marked reduction in tactile hypersensitivity in Rag1�/� animals

relative to their littermate controls (Figure 7D). We extended

this by showing that introducing CD4+/CD8+ T cells into Rag1�/�

mice (Figure 7C) could rescue the tactile allodynia phenotype for

at least 4 weeks post-SNI (Figure 7D). The full rescue of tactile

allodynia by T cells in reconstituted Rag1�/� mice, which still

lack B cells, argues against a role for this latter immune cell

type in this phenotype (Figures 7C and 7D). In contrast, we wit-

nessed little difference in the extent of cold allodynia in Rag1�/�

animals (Figure 7E), suggesting that both T and B cells are

dispensable for that response.

Taken together, these data strongly support a role for of each

of these two leukocyte cell types (macrophages and T cells) in

the establishment of tactile allodynia after peripheral nerve dam-

age but demonstrate that they are dispensable for the develop-

ment of cold allodynia.

DISCUSSION

By assaying the development of two common clinical manifesta-

tions of stimulus-evoked neuropathic pain (cold and tactile allo-

dynia) (Jensen and Finnerup, 2014) at high temporal resolution,

we demonstrate that they develop over different time courses

in the first week post-surgery in the SNI model. This difference

led us to hypothesize that there may be mechanistic differences

underlying these two pain modalities and that these could

perhaps be revealed by correlating the changes in global tran-

script expression in the PNS in response to nerve injury with

the temporal evolution of the behavior. To investigate this, we

generated DRG expression array profiles beginning immediately

after the nerve injury and at a higher temporal definition than in

previous investigations (Costigan et al., 2010; Li et al., 2015).

To assay global transcript expression changes in the DRG

following SNI, we separated all of the potentially regulated genes

into co-regulated clusters using WGCNA, since groups of genes

with similar expression patterns across large datasets are often

functionally connected as part of the same tissue, cell type, or

biological pathway (Parikshak et al., 2015). There were relatively

few clustered groups of co-regulated transcripts in the injured

DRG over the 10 days following the injury (eight in total), with a
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Figure 6. Mice Depleted of Peripheral Macrophages/Monocytes Using Clodronate Develop Delayed Tactile Allodynia but Normal

Neuropathic Cold Allodynia

(A) Clodronate-treated mice develop markedly less tactile allodynia post-peripheral nerve injury than empty-liposome-treated controls.

(B) Clodronate-treated mice develop significant levels of cold allodynia post-SNI. Statistically significant differences between the values frommice after SNI and

their basal measure (**p < 0.01) and between mice treated with clodronate or vehicle in tactile allodynia (##p < 0.01) are shown (two-way repeated-measures

ANOVA, Bonferroni post hoc test). Clodronate-treated C57BL/6mice develop significant levels of cold allodynia post-SNI (*p < 0.05, **p < 0.01), but there were no

significant differences in cold allodynia between clodronate- and vehicle-treated mice (p = 0.323; two-way repeated-measures ANOVA).

For (A) and (B), n = 10 clodronate, n = 13 vehicle.

(C–E) Levels of myelocytes (CD45+CD11b+CD11c�SiglecF�CD3�) measured by FACS in blood (C) and DRG (D and E) 7 days after SNI in mice treated with

clodronate or vehicle.

(F) Mechanical threshold in these mice.

For (C)–(F), p values are given (unpaired Student’s t test).

(G and H) Iba1 immunoreactivity in the DRG from SNI mice treated with vehicle liposomes (G) or clodronate liposomes (H). Scale Bar: 100 mm.

(I–K) Real-time qPCR of the macrophage/monocyte markers CD68 (I), CD11b (J), and CD163 (K) in the DRG of SNI mice treated with liposomes or clodronate.

p values are given (n = 5 per group; unpaired Student’s t test).

Error bars indicate SEM.
temporal analysis suggesting an early pattern of neuronal gene

regulation followed later by regulation of immune transcripts.

Correlation of the distinct trajectories of cold and tactile hyper-

sensitivity onset respectively with gene expression further

suggested a link between the two. The patterns suggest pre-

dominant involvement of sensory neurons in the onset of cold

allodynia and a contribution of activated peripheral immune cells

in the generation of tactile allodynia. Next, we used a combina-

tion of genetically targeted and cell depletion protocols to test

these predictions.

TrpV1-mediated Cre expression in the embryo occurs in all

thermo-sensing progenitor neurons, which are consequently
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deleted by DTA expression. This removes all TrpM8 expression

and, therefore, all normo-cold sensation in the adult mouse, as

shown here and in previous studies (McKemy, 2011; Mishra

et al., 2011). We demonstrate that ablating TrpV1 lineage noci-

ceptors results in a lack of cold allodynia after nerve injury,

consistent with this process occurring primarily through neuronal

mechanisms. In addition, recent independent data are entirely

consistent with cold allodynia occurring through neuronal

signaling pathways (Lippoldt et al., 2016).

Cold allodynia, like tactile allodynia following SNI, must be the

consequence of input to the CNS transmitted by uninjured sural

nerve axons. This raises the question of whether something



Figure 7. T and B Cell-Deficient Rag1�/� Mice Develop Normal

Neuropathic Cold Allodynia, but Not Complete Tactile Allodynia,

following SNI Injury

T cell reintroduction into Rag1�/� mice abolishes tactile sensitivity differences

present between Rag1�/� mice and wild-type control littermates (LM) but

leaves cold allodynia unaltered.

(A and B) Immunohistochemistry for the monocyte/macrophage marker IBA1

(red) in noninjured (A) and 7-day SNI-injured DRG in Lck Cre-zsGreen mice,

which express labeled T cells (green) (B). Scale Bar: 50 mm.

(C) Representative FACS plots of CD4 versus CD8 cell counts from splenic

preparation showing cells positive for both markers in the wild-type and in

Rag1�/� and Tmice, but notRag1�/�mice (top). Representative FACS plots of

CD4 versus B220 counts showing the presence of B cells in wild-type LMs, but

not Rag1�/� or reconstituted Rag1�/� mice.

(D)Rag1�/�mice develop less tactile allodynia post-SNI than their LM controls

(Rag versus WT, p = 0.003; Rag versus Rag and T, p = 0.002). Reconstituted

Rag1�/� mice (Rag1�/� and T) showed full levels of tactile sensitivity (WT

versus Rag and T, not significantly different). Significant differences between

the values after SNI and their basal measures are shown (**p < 0.01, Rag1�/�

mice versus WT littermates [blue #]; Rag1�/� mice versus Rag and T [red #];

#p < 0.05, ##p < 0.01, two-way repeated-measures ANOVA, Bonferroni post

hoc test).

(E) Wild-type LMs, Rag1�/�, and T cell-reconstituted mice develop similar

neuropathic cold allodynia (no significant differences among the three curves).

For (D) and (E), error bars indicate SEM (wild-type LM, n = 15; Rag1�/�, n = 10;

Rag1�/� and T, n = 15).
changes in these ‘‘uninjured’’ peripheral neurons due to the SNI

procedure, such that previously innocuous stimuli can now acti-

vate a set of nociceptors or if there is an abnormal reaction in the

CNS, such that the ‘normal input’ generated by innocuous tem-

peratures in spared fibers now elicits pain-like behavior? For the

former, one might speculate that injured sensory neurons may

produce paracrine signals in the DRG that somehow alter the

sensitivity of neighboring non-injured thermo-nociceptors to

cold. For the latter, as injured C-nociceptors become ectopically

active early following peripheral nerve injury (4–13 hr) (Kirillova

et al., 2011), this abnormal afferent drive could maintain central

sensitization altering the central processing of low-threshold

thermoceptor inputs in the dorsal horn, leading to them being

perceived as painful (Latremoliere and Woolf, 2009).

In spite of the marked reduction in cold allodynia seen in the

TrpV1DTA line, we found relatively normal levels of tactile allody-

nia in these mice, which rules out the specific need for this noci-

ceptor lineage in the production of this form of stimulus-evoked

pain hypersensitivity after nerve injury. These findings are in

agreement with previous reports showing that ablation of either

TrpV1 or Nav1.8 lineage nociceptor neurons does not alter

neuropathic tactile allodynia (Abrahamsen et al., 2008; Lager-

ström et al., 2011; Mishra et al., 2011). Tactile allodynia must

require other sensory neurons for its manifestation, and indeed

many studies have indicated that it is carried by low-threshold

mechanoreceptors (Campbell and Meyer, 2006; Xu et al., 2015).

The correlation of immune related transcripts with the devel-

opment of tactile allodynia suggested that the immune system

may play a role in the development of this hypersensitivity, but

that these cells are largely dispensable for cold allodynia. To

test this prediction, we targeted two leukocyte populations,

macrophages/monocytes and T cells, as these cells represent

a large portion of the immune reaction within the DRG following

nerve injury (Hu and McLachlan, 2002; Moalem and Tracey,
Cell Reports 22, 1301–1312, January 30, 2018 1309



2006), and found that both peripheral macrophages and T cells

contribute to the development of neuropathic tactile sensitivity

but minimally to cold allodynia.

T cells and macrophages play a major role in orchestrating the

actions of one another during the early and late phases of the im-

mune response (Biswas et al., 2012; Roberts et al., 2015). The

complex interplay between innate and adaptive components of

the immune system is a major component of the reaction of the

PNS to damage, with functional roles in clearance of debris and

promotion of regeneration (DeFrancesco-Lisowitz et al., 2015).

However, recruitment of these leukocytes following nerve injury

can lead to effects on sensory neurons that activate or sensitize

them, leading to neuropathic pain (Costigan et al., 2009b).

Following nerve injury, macrophage-derived signaling mole-

cules such as IL-1b, TNF-a, and CCL2 likely contribute to pain-

like hypersensitivity (Andrade et al., 2014; Schuh et al., 2014;

Zhu et al., 2014) as well as the initiation of axonal regrowth

(Dubový et al., 2013). In turn, Th1 T cell-derived interferon-g

(IFN-g) can recruit macrophages to sites of inflammation and

cause pain (Liou et al., 2011), whereas type 2 inflammatory

cytokines, such as IL-4, IL-10, and TGF-b, can ameliorate neuro-

pathic pain-like behavior (Chen et al., 2015; Dengler et al., 2014;

Kiguchi et al., 2015). The balance between these pro- and anti-

inflammatory subsets in different experimental settings may

explain the differences seen between studies focused on the

role of T cells on neuropathic pain (Austin et al., 2012; Kiguchi

et al., 2015); some studies did not find any impact on the pain

phenotype of T cell actions (Sorge et al., 2015), whereas we

and several others have (Cao and DeLeo, 2008; Costigan

et al., 2009a; Kobayashi et al., 2015; Leger et al., 2011; Zhang

et al., 2014).

While the mechanisms by which macrophages and T cells

interact to co-produce a convergent set of changes in the DRG

that lead to tactile allodynia now need to be explored, our data

indicate that they must act on sensory fibers other than TrpV1

lineage nociceptors. Activated macrophages are seen preferen-

tially around injured large-diameter A-fiber sensory neuron cell

bodies in the DRG after sciatic nerve injury (Vega-Avelaira et al.,

2009), but the functional consequence of this on these sensory

neurons is still unknown. It is possible that activated immune cells

in the DRG may stimulate injured A-fibers into initiating ectopic

activity, which contributes to the maintenance of central sensiti-

zation in the dorsal horn, such that central pain neurons begin

to be activated by low-threshold mechanoreceptors. In the naive

state, only C-fibers can initiate central sensitization, but after

nerve injury, A-fibers develop this capacity by a phenotypic

switch (Decosterd et al., 2002), and this shift may be triggered

by immune cell activation in the DRG. Consistent with this,

ectopic firing of injured A-fiber neuronsmanifests later after nerve

injury than in C-fibers (ectopic A-fiber activity is seen at 4–7 days)

(Kirillova et al., 2011). Alternatively, spared high-threshold A-fiber

nociceptors may be sensitized by immune cell action following

peripheral nerve damage. Either of these mechanisms, or

possibly a combination of both,may lead tomechanical allodynia.

What we now show conclusively, however, is that themechanism

responsible is dependent on peripheral immune cells.

Distinct mechanistic etiologies for these two neuropathic

pain symptoms may in consequence require different treatment
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strategies, if our findings translate to humans, one targeted at a

particular set of TRPV1 lineage nociceptors for patients whose

primary symptoms are cold allodynia and another for patients

with predominant tactile allodynia, which could incorporate

either targeting the actions of the immune component of nerve

injury (macrophages and/or T cells) or non-TRPV1-expressing

afferents (mechanoreceptors). Identifying the key elements of

immune-neural signaling that underlie the development of

allodynia after nerve damage using cell-specific profiling tech-

nologies will be important for developing targeted therapies for

peripheral neuropathic pain.

EXPERIMENTAL PROCEDURES

Experiments were performed in adult (9–10 weeks old) male C57BL/6J mice

(Jackson Laboratory [Jax], ME). Heterozygous TrpV1-Cre (strain 017769)

and heterozygous DTA stop animals (strain 010527) were bred together to

produce TrpV1 DTA animals. Rag1 null (strain 2216) mice were also used.

To reveal T cell infiltration in the injured DRG, we bred Lck-Cre (Jackson

Laboratory [Jax] 3802) mice with zsGreen reporter mice (Rosa-CAG-LSL-

ZsGreen1-WPRE) (Jax 7906). All studies performed in USA were reviewed

and approved by the IACUC at Boston Children’s Hospital under animal

protocols 15-04-2928R and 16-01-3080R. All experimental procedures per-

formed in Spain were conducted in strict accordance to European standards

(European Communities Council Directive 2010/63) and after approval of the

animal protocols by regional (Junta de Andalucı́a) and institutional (Research

Ethics Committee of the University of Granada, Spain) authorities.

Detailed description of the animal strains used and the experimental proced-

ures for surgeries (SNI), behavioral tests (von Frey test, acetone test and dy-

namic thermal place aversion test), immune cell depletion or reconstitution,

gene expression analysis by microarray, RNA-seq and real-time qPCR,

bioinformatics (weighted gene co-expression network analysis, correlation

between expression changes and the pain phenotype, functional enrichment

analysis, transcription-factor-binding site enrichment, and PPI network

analyses); fluorescence-activated cell sorting to determine myeloid cells

or T and B cells, and immunohistochemistry are described in Supplemental

Experimental Procedures.

Statistical Significance

Gene regulation in the expressionmicroarrays was determined by amoderated

F-statistics using Bioconductor packages. In the rest of the experiments,

multiple comparisons were analyzed using repeated-measures ANOVA

with Bonferroni post-test, and single comparisons were analyzed using an

unpaired Student’s t test. Statistical analyses were performed with SigmaPlot

12.0 software (Systat Software, CA), with significance defined as p < 0.05.

DATA AND SOFTWARE AVAILABILITY

The accession number for all microarray and RNA-seq datasets reported in

this paper is GEO: GSE102937.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and nine tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.01.006.
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AUTHOR CONTRIBUTIONS

Conceptualization, M.C. and C.J.W.; Methodology, M.C., C.J.W., E.J. Cobos,

and E.J. Chesler; Formal Analysis, E.J. Cobos, C.A.N., F.G., V.C., M.W.P.,

D.H.G., G.C., M.R., C.J.W., and M.C.; Investigation, E.J. Cobos, C.A.N.,

I.B.-C., R.G.-C., N.A.A., A.L., C.R.S., G.P., F.R.N., N.J., M.W.P., P.R., M.R.,

and M.C.; Resources, G.C. and D.H.G.; Data Curation, E.J. Cobos, G.C.,

F.G., D.H.G., and M.C.; Writing – Original Draft, M.C., E.J. Cobos, and

C.J.W.; Writing – Review & Editing, E.J. Cobos, C.A.N., F.G., V.C., I.B.-C.,

R.G.-C., P.R., N.A.A., A.L., C.R.S., G.P., F.R.N., N.J., M.W.P., C.H.E.M.,

T.O., E.J. Chesler, D.H.G., G.C., M.R., C.J.W., and M.C.; Visualization,

E.J. Cobos, I.B.-C., A.L., V.C., and M.C., Supervision, M.C., G.C., and

C.J.W.; Project Administration, E.J. Cobos, G.C., M.C., and C.J.W.; Funding

Acquisition, E.J. Cobos, M.C., and C.J.W.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 17, 2017

Revised: August 23, 2017

Accepted: January 2, 2018

Published: January 30, 2018

REFERENCES

Abe, N., andCavalli, V. (2008). Nerve injury signaling. Curr. Opin. Neurobiol. 18,

276–283.

Abrahamsen, B., Zhao, J., Asante, C.O., Cendan, C.M., Marsh, S., Martinez-

Barbera, J.P., Nassar, M.A., Dickenson, A.H., and Wood, J.N. (2008). The

cell and molecular basis of mechanical, cold, and inflammatory pain. Science

321, 702–705.

Andrade, P., Hoogland, G., Del Rosario, J.S., Steinbusch, H.W., Visser-

Vandewalle, V., and Daemen, M.A. (2014). Tumor necrosis factor-a inhibi-

tors alleviation of experimentally induced neuropathic pain is associated

with modulation of TNF receptor expression. J. Neurosci. Res. 92, 1490–

1498.

Austin, P.J., Kim, C.F., Perera, C.J., and Moalem-Taylor, G. (2012). Regulatory

T cells attenuate neuropathic pain following peripheral nerve injury and exper-

imental autoimmune neuritis. Pain 153, 1916–1931.

Biswas, S.K., Chittezhath, M., Shalova, I.N., and Lim, J.Y. (2012). Macrophage

polarization and plasticity in health and disease. Immunol. Res. 53, 11–24.

Brown, C.C., Esterhazy, D., Sarde, A., London, M., Pullabhatla, V., Osma-

Garcia, I., Al-Bader, R., Ortiz, C., Elgueta, R., Arno, M., et al. (2015). Retinoic

acid is essential for Th1 cell lineage stability and prevents transition to a Th17

cell program. Immunity 42, 499–511.

Camilleri, J.P., Williams, A.S., Amos, N., Douglas-Jones, A.G., Love,W.G., and

Williams, B.D. (1995). The effect of free and liposome-encapsulated clodro-

nate on the hepatic mononuclear phagocyte system in the rat. Clin. Exp.

Immunol. 99, 269–275.

Campbell, J.N., and Meyer, R.A. (2006). Mechanisms of neuropathic pain.

Neuron 52, 77–92.

Cao, L., and DeLeo, J.A. (2008). CNS-infiltrating CD4+ T lymphocytes

contribute to murine spinal nerve transection-induced neuropathic pain. Eur.

J. Immunol. 38, 448–458.
Chen, G., Park, C.K., Xie, R.G., and Ji, R.R. (2015). Intrathecal bone marrow

stromal cells inhibit neuropathic pain via TGF-b secretion. J. Clin. Invest.

125, 3226–3240.

Chiu, I.M., Barrett, L.B., Williams, E.K., Strochlic, D.E., Lee, S., Weyer, A.D.,

Lou, S., Bryman, G.S., Roberson, D.P., Ghasemlou, N., et al. (2014). Transcrip-

tional profiling at whole population and single cell levels reveals somatosen-

sory neuron molecular diversity. eLife 3, e04660.

Colleoni, M., and Sacerdote, P. (2010). Murine models of human neuropathic

pain. Biochim. Biophys. Acta 1802, 924–933.

Costigan, M., Befort, K., Karchewski, L., Griffin, R.S., D’Urso, D., Allchorne, A.,

Sitarski, J., Mannion, J.W., Pratt, R.E., and Woolf, C.J. (2002). Replicate

high-density rat genome oligonucleotide microarrays reveal hundreds of

regulated genes in the dorsal root ganglion after peripheral nerve injury.

BMC Neurosci. 3, 16.

Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M.,

Herbert, T.A., Barrett, L., Brenner, G.J., Vardeh, D.,Woolf, C.J., and Fitzgerald,

M. (2009a). T-cell infiltration and signaling in the adult dorsal spinal cord is a

major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 29,

14415–14422.

Costigan, M., Scholz, J., and Woolf, C.J. (2009b). Neuropathic pain: a mal-

adaptive response of the nervous system to damage. Annu. Rev. Neurosci.

32, 1–32.

Costigan, M., Belfer, I., Griffin, R.S., Dai, F., Barrett, L.B., Coppola, G., Wu, T.,

Kiselycznyk, C., Poddar, M., Lu, Y., et al. (2010). Multiple chronic pain states

are associated with a common amino acid-changing allele in KCNS1. Brain

133, 2519–2527.

Decosterd, I., and Woolf, C.J. (2000). Spared nerve injury: an animal model of

persistent peripheral neuropathic pain. Pain 87, 149–158.

Decosterd, I., Allchorne, A., and Woolf, C.J. (2002). Progressive tactile

hypersensitivity after a peripheral nerve crush: non-noxious mechanical

stimulus-induced neuropathic pain. Pain 100, 155–162.

DeFrancesco-Lisowitz, A., Lindborg, J.A., Niemi, J.P., and Zigmond, R.E.

(2015). The neuroimmunology of degeneration and regeneration in the periph-

eral nervous system. Neuroscience 302, 174–203.

del Camino, D., Murphy, S., Heiry, M., Barrett, L.B., Earley, T.J., Cook, C.A.,

Petrus, M.J., Zhao, M., D’Amours, M., Deering, N., et al. (2010). TRPA1 con-

tributes to cold hypersensitivity. J. Neurosci. 30, 15165–15174.

Dengler, E.C., Alberti, L.A., Bowman, B.N., Kerwin, A.A., Wilkerson, J.L.,

Moezzi, D.R., Limanovich, E., Wallace, J.A., andMilligan, E.D. (2014). Improve-

ment of spinal non-viral IL-10 gene delivery by D-mannose as a transgene

adjuvant to control chronic neuropathic pain. J. Neuroinflammation 11, 92.

Dib-Hajj, S.D., andWaxman, S.G. (2014). Translational pain research: Lessons

from genetics and genomics. Sci. Transl. Med. 6, 249sr4.
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