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It is shown that in the large Nc limit heavy baryon masses can be estimated quantitatively in a 1/Nc

expansion using the Hartree approximation. The results are compared with available lattice calculations 
for different values of the ratio between the square root of the string tension and the heavy quark 
mass 

√
σ/mQ . These estimates implement important 1/Nc corrections and assume a string tension 

independent of Nc . Using a potential adjusted to agree with the one obtained in lattice QCD, a variational 
analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave 
functions. Relativistic corrections through the quark kinetic energy are included. The results provide good 
estimates for the first sub-leading in 1/Nc corrections.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

QCD in the large Nc limit becomes a non-trivial theory in terms 
of an arbitrary and fixed ’t Hooft coupling λ = αs Nc [1]. In that 
limit, baryons [2], unlike mesons, remain as complicated structures 
(for a recent review see e.g. [3,4] and references therein). This is 
the result of the strong coupling of mesons to baryons O(

√
Nc), 

giving baryons a light meson cloud which contributes to its mass 
at leading order in Nc . In the world of QCD with only heavy 
quarks, the meson cloud becomes suppressed in �Q C D/mQ , mQ

being the heavy quark mass, and baryonic states become amenable 
to a treatment based on non-relativistic QCD. Thus, heavy baryons 
are a good laboratory to study the 1/Nc expansion. This simpler 
setting of QCD permits a straightforward application of the mean 
field approach, which will be used in the present work and which 
should provide a good description of baryons in the large Nc and 
large quark mass limits.

The quantitative understanding of the 1/Nc expansion has be-
come possible in the light meson sector [5], where meson masses 
have been determined in lattice QCD (LQCD) calculations at differ-
ent values of Nc and in the quenched approximation, where the 
leading O(1/Nc) corrections are absent, and moderate Nc values 
allow for a safe extrapolation to the large Nc limit. In addition, es-
timates based on short distance constraints provide an analytical 

* Corresponding author.
E-mail addresses: albertus@ugr.es (C. Albertus), earriola@ugr.es (E. Ruiz Arriola), 

ishara@jlab.org (I.P. Fernando), goity@jlab.org (J.L. Goity).
http://dx.doi.org/10.1016/j.physletb.2015.09.030
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
understanding of those results [6]. More recently, LQCD calcula-
tions of low lying baryon masses for Nc = 3, 5 and 7 [7,8] have 
opened the door for a quantitative test of the 1/Nc expansion 
in baryons as well. Those pioneering calculations, which are in 
the quenched approximation, have quark masses in the light to 
moderately heavy range. The present work is largely motivated by 
the possibility that such LQCD calculations could be extended to 
heavier quark masses, where the framework presented here would 
become realistically applicable.

In his seminal paper, Witten [2] discussed specifically heavy 
baryons in the large Nc limit and invoked the mean field Hartree 
approximation. For heavy quarks, it is built from the simple two-
body Hamiltonian, where the interaction is the OGE (one gluon 
exchange) (see [9] for details) for the short range part of the in-
teraction. In addition, there are the long range confining forces, 
whose effects become suppressed as mQ grows, and also short dis-
tance radiative corrections must be taken into account (running of 
αs) (see [10]). Furthermore, the effects of three-body interactions 
are of potential interest; for a recent discussion in the quark model 
see Ref. [11]. They will be discussed briefly in this work.

At leading order in the 1/Nc expansion, the ground state of 
the heavy baryon will be described by a wave function which is 
the direct product of single-quark wave functions. Since the hy-
perfine interactions have spin-flavor non-singlet effects which are 
O (1/Nc), it is clear that at leading order the ground state baryon 
is in the totally symmetric spin-flavor state, and the baryon has a 
spin-flavor contracted symmetry [12,13], which holds in the limit 
Nc → ∞ at fixed quark mass. The effect of removing the center of 
mass (CM) motion is sub-leading in 1/Nc , and can be implemented 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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using standard techniques such as the Peierls–Yoccoz projection 
(for a review see e.g. [14,15] and references therein).

The mean field for heavy quarks at large Nc has been studied in 
Refs. [16,17] along with possible implications for baryonic matter. 
This work builds on that one and compares to recent lattice calcu-
lations for Nc = 3, 5, 7 [7,8] after including some important 1/Nc

effects such as the CM correction. Brief discussions of the role of 
hyperfine splittings as well as the expected corrections of many-
body forces are also given. A previous large Nc analysis has been 
conducted in Ref. [18].

Note that in order to have low lying baryons with different 
spins it is necessary to have more than one flavor of heavy quark. 
The mass of the baryon will then have an O (1/Nc) hyperfine con-
tribution (dependent on the spin S of the baryon). The masses of 
ground state baryons take the form of a rotational band,

MB(S) = Ncm0 + C H F

Nc
(S(S + 1) − 3

4
Nc) +O

(
1/N2

c

)
, (1)

where m0 and C H F are O
(
N0

c

)
and have an expansion in 1/Nc , 

and depend on the quark mass mQ . The hyperfine independent 
component of the baryon mass given by m0 is obtained by the 
following combination of baryon masses:

m0 = 2

N2
c (Nc + 1)(Nc + 3)2

×
Nc
2∑

S= 1
2

(3 + Nc(3Nc + 2) − 8(Nc − 3)S) MB (S) . (2)

The baryon masses studied here will be the ones with the hy-
perfine effects removed, i.e., M̊B ≡ Ncm0. These will be later com-
pared with the available LQCD results of Refs. [7,8,18].

Of course, for any different value of Nc one has a different the-
ory. Thus, in order to relate them one must assume that some 
observables are Nc independent. Actually, on general grounds one 
has that:

m0√
σ

= F (Nc,
mQ√

σ
), (3)

where σ sets the scale of QCD and can be identified for instance 
with the string tension, and mQ is the heavy quark mass. F is 
a universal function O

(
N0

c

)
which admits an expansion in 1/Nc , 

and which for large mQ can be more conveniently expressed as 
F (Nc, 

mQ√
σ

) = mQ√
σ

f (Nc, 
mQ√

σ
).

The present work goes beyond Refs. [16,17] by analyzing the 
main 1/Nc contributions such as the CM effect, and relativistic 
corrections, and actually compares to available LQCD results. For 
Nc = 3, triply heavy baryons have been studied on the lattice as a 
�bbb state [19], and also re-addressed in quark models within sev-
eral schemes [10,11,20] which, however, have not addressed larger 
Nc values.

One important goal on the lattice has been to make the quarks 
as light as possible. Actually, quarkonium studies based on LQCD 
proceed always through the determination of the Q̄ Q potential, 
and a subsequent solution of the non-relativistic Schrödinger equa-
tion (see e.g. [21]). The present work takes a similar point of view 
as a Nc-body problem. It should be emphasized that studying 
heavy baryons at varying values of Nc will help with the under-
standing of the 1/Nc expansion in a setting where an analytic 
approach with small model dependencies can be applied.
2. Color singlet states

The starting point is the Hamiltonian for heavy quarks. Using 
non-relativistic heavy quark field operators Q (x), the Hamiltonian 
is given by:

H =
∫

d3x

[
− 1

2mQ
Q †(x) ∇2 Q (x) + mQ Q †(x)Q (x)

]

+ 1

2

∫
d3x d3x′ Q †(x)

λa

2
Q (x) Q †(x′)λ

a

2
Q (x′)V (x − x′), (4)

where λa are the SU(Nc) generators in the fundamental represen-
tation, and in perturbation theory V (r) = αs/r is the OGE inter-
action. Here, only two-body interactions are included. The role of 
many body interactions is commented below. An equivalent repre-
sentation for the case of a heavy baryon is the Hamiltonian

H =
∑

i

[
mQ + p2

i

2mQ

]
+ 1

4

Nc∑
i< j

λa(i) ⊗ λa( j)V (xi − x j) (5)

The λ ⊗ λ interaction implies exact Casimir scaling of the potential 
energy. Casimir scaling for the Q Q̄ potential holds perturbatively 
up to two loops (there are three-loop violations) [22] and numeri-
cally on the lattice [23].

For a color singlet state the wave function is completely sym-
metric in the orbital and spin-flavor quantum numbers, and the 
baryon behaves effectively as a bosonic system. In particular, for 
ground state baryons the wave function is the product of a sym-
metric spacial wave function and a symmetric spin-flavor wave 
function and reads as follows:

�(x1, . . . , xN) = ψ(x1, . . . , xN)χS F , (6)

where χS F is the spin-flavor wave function. For excited baryon 
states, spin-flavor and spatial mixed symmetry states also occur. 
The color matrix elements for arbitrary Nc in the ground state can 
be computed as follows. Starting with the quadratic Casimir oper-
ator for the fundamental representation given by (F a = λa/2)


Fq · 
Fq = 
Fq̄ · 
Fq̄ = N2
c − 1

2Nc
, (7)

for a baryon (color singlet) state one obtains:

0 = 〈B|(
Nc∑

i=1


Fi)
2|B〉

= 〈B|
Nc∑

i=1

(
Fi)
2|B〉 + 2

∑
i< j

〈B|
Fi · 
F j|B〉

= Nc〈B|(
Fq)
2|B〉 + Nc(Nc − 1)〈B|
Fq · 
Fq′ |B〉, (8)

and likewise for a meson state one obtains:

0 = 〈M|(
Fq + 
Fq̄)
2|M〉

= 2〈M|(
Fq)
2|M〉 + 2〈M|
Fq · 
Fq̄|M〉 (9)

These equations lead to

〈B|
Fq · 
Fq′ |B〉 = −1

2

(
1 + 1

Nc

)
(10)

〈M|
Fq · 
Fq̄|M〉 = − N2
c − 1

(11)

2Nc



C. Albertus et al. / Physics Letters B 750 (2015) 331–337 333
At very short distances the potential between a heavy quark and 
antiquark should be described with perturbative QCD, and approx-
imately given by an Nc-independent expression at leading order 
(LO) in terms of the running strong coupling αNc

s (r),

V Nc,LO
Q Q̄

(r) = − N2
c − 1

2Nc

αNc
s (r)

r
= 1

r

6

11 log(r�MS)
. (12)

At long distances it is of linear confining form and the correspond-
ing string tension σ is determined in LQCD. For Nc = 3 the Q̄ Q
potential has been computed in LQCD in the quenched approxima-
tion [24], and for Nc > 3 also [7,8]. For Nc = 3, it is well described 
by the bosonic string model [25], namely:

V Nc=3
Q Q̄

(r) = − π

12r
+ σ r . (13)

The Coulomb term on the RHS is what results from the fluctua-
tions of the string. It is remarkable that it provides the bulk of the 
Coulomb interaction down to the lattice spacings used in present 
day calculations. Using �MS/

√
σ = 0.503(2)(40) +0.33(3)(3)/N2

c +
O(N−4

c ) obtained in [26] one gets that at r
√

σ ∼ 0.2 the 1/r term 
in Eqs. (12) and (13) coincide. For the heavy quark mass corre-
sponding to Compton wave lengths much smaller than present 
lattice spacings, where the long distance potential plays a minor 
role, the Coulomb interaction will increasingly become the one 
predicted by perturbative QCD, Eq. (12).

At arbitrary Nc , V Nc

Q Q̄
will only receive corrections O

(
1/N2

c

)
, as 

required by the 1/Nc expansion in pure gluodynamics. Assuming 
the leading scaling in Nc for αs and σ , and Eq. (11), the potential 
becomes:

V Nc

Q Q̄
(r) = 9

8

N2
c − 1

N2
c

V Nc=3
Q Q̄

(r)

= (1 +O
(

1/N2
c

)
)V Nc=3

Q Q̄
(r). (14)

This Nc dependence will be loosely named “Casimir scaling”. This 
is verified by the ’t Hooft coupling λ = 4π Ncαs used in Refs. [7,8]. 
Clearly this follows only if the above assumption is made, and with 
the present calculation at Nc > 3 it can be verified, as discussed 
below.

As mentioned earlier, the 1/Nc expansion requires definition 
because it compares different theories. The most obvious way to 
proceed is to require that certain quantities are independent of Nc , 
e.g., the string tension and quark masses at a given scale. Since the 
LQCD results of Refs. [7,8] have the property that the string tension 
is approximately independent of Nc , i.e., σ = 9

8
N2

c −1
N2

c
σ(3) ∼ const, 

this condition is adopted in what follows. The result from Fig. 1
vividly shows the Nc independence of the Q Q̄ potential within 
the current lattice uncertainties and the astonishing agreement 
with the bosonic string model [25]. Thus, generalizing the Nc lat-
tice findings [24] the potential for all Nc will be taken to be:

V Nc

Q Q̄
(r) = V Nc=3

Q Q̄
(r) = − π

12r
+ σ r (15)

From Eqs. (10)–(15) the two-body interaction potential in the 
baryon becomes:

V Nc
Q Q (r) =

V Nc

Q Q̄
(r)

Nc − 1
= 1

Nc − 1

(
− π

12r
+ σ r

)
(16)

3. Mean field approximation and beyond

3.1. Mean field approximation

The calculation for different values of Nc = 3, 5, 7, . . . of the 
baryon mass with the Hamiltonian Eq. (5) requires solving separate 
Fig. 1. Quark–antiquark potential on the lattice in units of the string tension for 
Nc = 3, 5, 7 compared with the bosonic string model [25] (full line). The values for 
different Nc : 3 (blue), 5 (red) and 7 (black), have been transported to avoid clutter-
ing of points. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

few body problems with their inherent technical complications. In 
the large Nc limit, however, an important simplification arises as a 
mean field approach becomes valid. Due to its color antisymmetry, 
the Nc-quark wave function in the baryon must be totally symmet-
ric under simultaneous permutations of position and spin-flavor 
indices. In the ground state of the baryon, the Nc-quark spatial 
wave function is given in the Hartree approximation by [2]:

ψ(x1, . . . , xN) =
N∏

i=1

φ(xi) . (17)

For a single baryon, the baryon mass M̊B = 〈ψ |H |ψ〉 ≡ 〈H〉ψ is 
given by:

M̊B = NcmQ + Nc

∫
d3x

1

2mQ
|∇φ(x)|2

+ Nc(Nc − 1)

2

∫
d3xd3x′|φ(x′)|2|φ(x)|2 V Q Q (x − x′). (18)

The large Nc scaling becomes obvious after the relation, Eq. (14) is 
used. It is useful to define the effective mean field potential V̄ (x)
generated by Nc − 1 quarks

V̄ (x) = (Nc − 1)

∫
d3x′V Q Q (x − x′)|φ(x′)|2

=
∫

d3x′V Q Q̄ (x − x′)|φ(x′)|2 , (19)

where the Casimir scaling assumption provided by Eq. (16) has 
been used. The mean field potential is the self-energy of a quark 
within the hadron which sees the remaining Nc − 1 quarks (which 
are coupled into the anti-fundamental representation F̄ ).

The mean field equations are then obtained by minimizing with 
respect to a normalized φ(x) leading to the eigenvalue problem:

− 1

2mQ
∇2φ(x) + V̄ (x)φ(x) = εφ(x). (20)

3.2. Numerical and variational solution

The mean field equations Eqs. (20) and (19) can be solved by it-
erations until self-consistency solution is obtained. Actually, for the 
case σ = 0 the system can be written as a coupled Schrödinger–
Newton equation, which was already solved in Ref. [27]. A Gaus-
sian ansatz of the form
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φ(r) =
(

2

πb2

) 3
4

e−r2/b2
(21)

yields a good approximation to this solution and allows for a sim-
ple analytical discussion.1

3.3. CM corrections and mass formula

One standard and well documented problem of the mean field 
approximation in nuclear physics is the violation of Galilean in-
variance [15,14] which is a symmetry of the starting Hamilto-
nian, Eq. (5), namely the invariance under the boost operation 
with velocity v, �(x1, . . . , xN ) → eimQ v·∑i xi �(x1, . . . , xN ), which 
implies the energy of the moving system to be given by E(P ) =
M + P 2/2mQ Nc where the rest mass differs from the inertial mass 
M �= NcmQ .

Since the interest here is to include 1/Nc corrections in the 
calculation, it is important to build a wave function that is an 
eigenfunction of the momentum. This is achieved by implement-
ing, e.g., the Peierls–Yoccoz projection method [15,14].2 However, 
for the simple Gaussian single particle wave function, Eq. (21), this 
corresponds just to replace Nc → Nc − 1 in the kinetic energy con-
tribution. Thus, the projection becomes trivial to deal with, and 
one obtains for a moving baryon of momentum P :

M̊B = NcmQ + P 2

2mQ Nc
+ 3(Nc − 1)

2b2mQ
+ Nc

b
√

π

(
−λ2 + b2 σ

)
,

(22)

where λ2 = π/12. Minimizing with respect to b (b0) yields the 
baryon mass at rest. At large mQ , b0 and the baryon mass become:

b0 = 3
√

π

λ2mQ

Nc − 1

Nc

(
1 − 9π

(
Nc − 1

Nc

)2 σ

λ6m2
Q

)

+ O
(

1/m5
Q

)

M̊B = NcmQ + P 2

2mQ Nc

− (Nc − 1)

((
Nc

Nc − 1

)2
λ4mQ

6π
− 3σ

λ2mQ

)

+ O
(

1/m2
Q

)
, (23)

which shows a delayed onset of the heavy quark regime due to 
large numerical factors, namely in b0 the factor 9π( Nc−1

Nc
)2 1

λ6
σ

m2
Q

=
1575( Nc−1

Nc
)2 σ

m2
Q

and in M̊B the factor 3σ
λ2mQ

= 11.46 σ
mQ

. Thus, one 

should expect relativity to play a role even for moderately heavy 
quarks.

3.4. Relativistic corrections

Of course, a full relativistic treatment implies particle creation 
as implied by locality, and Poincaré invariant Hamiltonian meth-
ods with a fixed number of particles exhibit well known features 

1 In the σ = 0 case one has M̊B − 3mQ = −0.00034α2
s mQ [27] vs M̊B − 3mQ =

−0.00031α2
s mQ from Eq. (21). For the case σ �= 0 more sophisticated ansätze were 

tried embodying better short and long distance behaviors, but improvement is at 
the per cent level since the quarks are located in the mid-range region. Discussion 
of several possibilities will be given elsewhere.

2 Semiclassical collective quantization methods provide an alternative after due 
attention to zero modes is paid [15,14].
(see e.g. Ref. [28] and included references). While this can be im-
proved, here only an estimate of the relativistic corrections is con-
sidered by the standard replacement at the single particle level, 
mQ + p2

i /2mQ →
√

p2
i + m2

Q , which leads remarkably to an an-

alytical expression for the zero momentum projected variational 
energy

M̊rel
B = 1√

2π b

(b2m2
Q Nc

3/2e
b2m2

Q Nc
4(Nc−1) K1

(
b2m2

Q Nc

4(Nc−1)

)
√

Nc − 1

+ √
2 Nc

(
−λ2 + b2σ

))
, (24)

which reproduces from the simple non-relativistic CM rule Nc →
Nc − 1 in the kinetic energy in the heavy quark limit.3 The scheme 
as in the mean field case of minimizing with respect to the oscilla-
tor parameter b yields the final baryon mass at any Nc .4 This case 
will be used in order to compare with the LQCD results in Refs. [7,
8], where the largest quark masses used are still not in the heavy 
regime.

3.5. Ground state correlations

As expected Eqs. (20) and (19) are Nc independent and corre-
spond to the leading order approximation. These equations have 
corrections corresponding to different physical effects. Within the 
Gaussian ansatz for the single particle states Eq. (21) a Harmonic 
oscillator shell model interpretation applies since the baryon is in 
a (1s)Nc state. In this picture, ground state correlations correspond 
to virtual excitations to higher shell states (n1l1) . . . (nNc lNc ).

In order to quantify the accuracy of the Hartree approxi-
mation within the large Nc framework, one evaluates the vari-
ance of the Hamiltonian defined by 
H2

ψ = 〈H2〉 − 〈H〉2 where 
〈O 〉 ≡ 〈ψ |O |ψ〉. When solving the equation approximately, as 
it is done here using a variational wave function, it turns out 
that 
Hvar/〈H〉 = O

(
1/

√
Nc

)
typical of statistical fluctuations. 

Straightforward calculation, explicitly using the mean field equa-
tion Eq. (20), shows that5


H2
ψ = Nc(Nc − 1)

2

[
〈V Q Q ′ 〉2 + 〈V 2

Q Q ′ 〉 − 2〈V Q Q ′ V Q ′ Q ′′ 〉
]

.

(25)

Only when the self-consistent Hartree mean field equation is ex-
actly satisfied and due to the Casimir scaling assumption, Eq. (16), 
one has 
HHartree = O

(
N0

c

)
, which means 
Hψ/〈H〉 = O (1/Nc)

for the correction relative to the baryon mass.

3.6. Multiquark interactions

In general, there are multiquark interactions which contribute 
to the baryon mass at the nominal leading O (Nc). For heavy 

3 Note that here one projects and does not boost the mean field solution. In 
the relativistic case the rest and inertial masses ought to coincide due to Poincaré 
invariance. The necessary identity between boosting and projecting onto linear mo-
mentum only holds for exact solutions [29]. At the mean field level the identity is 
guaranteed at the mean field solution [30].

4 Note that the direct extrapolation of Eq. (24) to light quarks mq → 0 leads to 
the rest mass M̊B/(Nc

√
σ) = 1.81 − 0.50/Nc − 0.19/N2

c + . . . , which is the crude 
estimate for the multiplet center in the quenched approximation.

5 Here the notation corresponds to

〈V Q Q ′ 〉 ≡
∫

d3x d3 y V Q Q (x − y)|φ(x)|2|φ(y)|2

〈V Q Q ′ V Q ′ Q ′′ 〉 ≡
∫

d3x d3 y d3z V Q Q (x − y)V Q Q (y − z)|φ(x)|2|φ(y)|2|φ(z)|2
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quarks one expects that in the baryon only n-body interactions 
with n ≤ Nc are of any significance. For Nc = 3 there is a long 
history of studying the 3-quark interactions, where there are two 
competing alternatives to confining forces of quarks in baryons, the 

 (pairwise triangle shape) and the Y (junction shape) inspired by 
string models [31].

Three body interactions have been addressed perturbatively 
[32] for arbitrary Nc . In the present case, the non-perturbative ef-
fect of 3-body interactions can be visualized with one example. 
Consider a 3-body potential of the form:

V 3(x1, x2, x3) =
3∑

i=1

v3(xi − X) dabc λa ⊗ λb ⊗ λc, (26)

where X is the CM position of the three quarks. The expectation 
value of V 3 in the baryon ground state at rest can be evaluated 

explicitly choosing v3(r) = 1
N2

c

(
− λ2

3
r + σ3 r

)
where λ3 and σ3 are 

O
(
N0

c

)
, one obtains for the Gaussian wave function:

〈V 3〉 = 2

√
3

π

(
Nc − 5

Nc
+ 4

N3
c

)(
−λ2

3

b
+ σ3 b

)
, (27)

where the color matrix element for the baryon was used,

〈dabc λa ⊗ λb ⊗ λc〉 = 4
(Nc − 3)!

Nc! (N3
c − 5Nc + 4

Nc
). (28)

Note that the expectation value of the 2-body interaction Eq. (22)
and the one of the 3-body interaction studied here have the same 
form except that their Nc scalings differ by terms which are of 
relative order 1/N2

c . Therefore, the 3-body forces cannot be distin-
guished from the 2-body ones unless those higher order terms in 
the expansion are taken into account. This is in a sense direct con-
sequence of the mean field approximation, which naturally “hides” 
the n-body nature of the interactions. Other n-body forces are in 
principle possible for a large Nc baryon, whose color structure is 
given by 1/Nn−1

c da1···an λ
a1 ⊗ · · · ⊗ λan , where da1···an is the rank n

invariant symmetric tensor of SU (Nc). A simple calculation shows 
that they contribute to the baryon mass with an overall factor 
Nc/n!, which implies that even for very large Nc , n-body forces 
with n > 5 become very suppressed.

3.7. Hyperfine effects

The simple OGE potential contains hyperfine components
O(m−2

Q ), which have implications on meson spectra (see e.g. 
Ref. [33]), as they contribute at O

(
N0

c

)
in mesons, but contribute 

to hyperfine splitting in baryons only at O (1/Nc). They can be 
easily evaluated as perturbations using the wave function obtained 
here. A quick calculation generalizing the Nc = 3 result [34] to ar-
bitrary Nc gives for the hyperfine mass shifts:

δM H F
B (S) = 8

3
√

π

αNc
s (mQ )

m2
Q b3

(S(S + 1) − 3

4
Nc). (29)

They play no role for the spin-weighted average baryon mass 
Eq. (2).

4. Towards relating to LQCD results

Following the motivation of this work, the aim here is to com-
pare the mean field description including relativistic and CM cor-
rections with results from LQCD. At present, the only available 
LQCD results for ground state baryon masses at several Nc val-
ues are those of Refs. [7,8] (slightly updated in Ref. [18]), where 
Fig. 2. Baryon mass as a function of the string tension for Gaussian wave function. 
Depicted are the results for non-relativistic (full curves) and relativistic (dashed) 
calculations, and the lattice QCD results for m0 defined by Eq. (2) (diamonds) [18]. 
The color coding is that of Fig. 1, and in green the limit Nc → ∞. The string tension 
corresponding to the lattice QCD results was obtained as explained in the text. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

quenched calculations have been undertaken at several values of 
the quark mass and at Nc = 3, 5, and 7. While the purpose there 
was to pursue the light quark limit, here the opposite situation is 
emphasized where simplifications are expected and the quenched 
approximation is better fulfilled.

As discussed earlier, the explicit Nc dependence is inferred from 
taking σ to be Nc independent. The lattice results displayed in 
Refs. [7,8,18] are given in lattice units, with a the lattice spacing. 
Using the form of the quark–quark potential the Sommer parame-
ter r1 is determined by the standard definition

−r2
1 V ′

Q Q̄
(r1) = −1 , (30)

yielding in the present case

r2
1σ = 1 − π

12
. (31)

This value, namely r1
√

σ = 0.859, is roughly valid for the LQCD 
calculations with Nc = 3, 5 and 7, where the respective results 
from Table I of Ref. [7] are 0.856(5), 0.850(4) and 0.845(2). Us-
ing the values of r1/a in the same Table one obtains respectively √

σ a = 0.219(2), 0.225(2), and 0.216(1). For the level of preci-
sion of the present comparison it is therefore sufficient to take √

σ a = 0.22 for all Nc . While the main goal of [7,8] was to pursue 
the lowest quark mass limit, some moderately high quark masses 
were included. These are now used to compare with the results of 
this work.

The numerical results are presented in Fig. 2. As expected, the 
relativistic effects start becoming significant for 2

√
σ ∼ mQ . The 

lattice data of Refs. [7,8] stop at twice larger values, so it would 
be highly interesting to extend the lattice calculations to the non-
relativistic regime, where the comparison of the approach used 
and LQCD becomes more realistic. Qualitatively, it seems that there 
is a trend of the model and the LQCD results towards some agree-
ment. The LQCD qualitative feature that M̊B (Nc)/Nc increases with 
Nc is also shown by the model, although it is not in good quanti-
tative agreement.

At this point it is important to mention the issues involved 
in comparing the model with LQCD results. The main obstacle 
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Fig. 3. Effective potential for a heavy quark in a heavy baryon with mQ = 2
√

σ
(dashed) and 10

√
σ (full). The same color coding as in Fig. 2. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

pertains to the quark mass mQ . While in the model it is a pa-
rameter (identifiable with a constituent quark mass), in LQCD it 
is a genuine QCD parameter which depends on the renormaliza-
tion scheme [35,36]. Thus, the comparison made in Fig. 2 is only 
qualitative as it assumes that the masses are identical. For a more 
rigorous comparison one could proceed in different ways. Perhaps 
the best one would be to consider the spectrum of baryons for 
each Nc , adjusting the relation between the model and LQCD quark 
mass to best fit the LQCD results. While this would give a very re-
alistic comparison, it seems unlikely that the spectrum of excited 
baryons at Nc > 3 could be calculated in LQCD in the foreseeable 
future. An intermediate approach is to compare the differences 
(M̊B(Nc)/Nc − M̊B(N ′

c)/N ′
c), also adjusting the masses to a best 

fit (as mentioned earlier, it can be done with the present available 
LQCD results, but due to the rather small mQ values of those re-
sults it is still unrealistic to compare). A rigorous approach along 
the lines discussed here would entail the use of an effective non-
relativistic QCD theory for the heavy baryon [37], similar to the 
one for heavy quarkonium [38], where in principle it is possible 
to relate within QCD the quark mass of the effective theory to 
that of LQCD. Finally, an approach with immediate physical mean-
ing would be to write the heavy baryon masses as a function of 
the corresponding quarkonium masses avoiding in this way hav-
ing to relate quark masses and the use of the string tension as 
a fundamental parameter. Unfortunately, there are no direct LQCD 
evaluations of quarkonium masses; their masses are calculated via 
the use of the LQCD determined potential, similarly to what has 
been done in the present work for baryons.

The mean field approximation is visualized through the mean 
field potential V̄ (r) created by the Nc − 1 quarks, see Eq. (19). 
In the present case, for zero momentum states and the Gaussian 
profile, Eq. (21) one obtains:

V̄ (r) = b0 σ√
2π

e
− 2r2

b0
2

−
(

λ2 − σ

(
b2

0

4
+ r2

))
1

r
erf

(√
2r

b0

)
, (32)

which is shown for illustration, in Fig. 3 for different values of Nc

and mQ . Improvements to this behavior correct for long distance 
behavior and will be discussed in a forthcoming publication.
5. Conclusions

In the present work, a scheme is put forward where the large 
Nc expansion of baryon masses in the lattice can be described in 
terms of the mean field approximation as originally advocated by 
Witten and 1/Nc corrections thereof. The quark–quark potential is 
assumed to follow Casimir scaling at arbitrary Nc and hence pro-
portional to the quark–antiquark potential, which to good accuracy 
as per current LQCD calculations is Nc -independent. This provides 
a universal Nc independent scheme where the ratio of the baryon 
mass to Nc

√
σ can be numerically evaluated.

It was shown that the corrections to the mean field energy 
are generically O(

√
Nc), but become O(N0

c ), when the mean 
field energy takes its minimum value. This accuracy is the re-
sult of the density of quarks in the baryon growing as propor-
tional with Nc . Among the estimated corrections are the lead-
ing in Nc relativistic O(m−3

Q ) and subleading O(N0
c ) CM correc-

tions. Hyperfine splittings are removed by suitably averaging over 
spin states. When compared with available LQCD calculations, the 
present results account within 20% for the dimensionless ratio 
(M̊B − NcmQ )/(Nc

√
σ) which is of natural size. This is encourag-

ing, as it suggests to push the LQCD calculations to heavier quark 
masses and also to refine the calculations in the present work. The 
comparison undertaken here is so far just qualitative, as discussed 
in Section 4, due to the ambiguities in matching the model calcu-
lations to LQCD. More progress in this regard is needed in order to 
draw more rigorous comparisons.

One of the obvious benefits of the present investigation is the 
possibility of going beyond the ground state and extend these ideas 
to the excited baryon spectrum, where lattice calculations are ad-
mittedly more involved and less accurate. LQCD calculations of 
excited baryons for Nc > 3 may still be an unreachable goal. How-
ever, it is likely that this will be achieved first with heavy quarks, 
and in that case the approach followed here can be easily used 
to make predictions of excited states. Finally, other heavy baryon 
properties, such as form factors, are easily derived with the wave 
functions obtained here.
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