
UNIVERSITY OF GRANADA
Department of Computer Science and

Artificial Intelligence

PhD Programme
Information and Communication Technologies

PhD Thesis Dissertation
New Methods and Data Structures for

Evaluating Influence Diagrams

PhD Student
Rafael Cabañas de Paz

Advisors
Andrés Cano Utrera

Manuel Gómez Olmedo

Granada, March 2017

Editor: Universidad de Granada. Tesis Doctorales
Autor: Rafael Cabañas de Paz
ISBN: 978-84-9163-521-5
URI: http://hdl.handle.net/10481/48313

http://hdl.handle.net/10481/48313

El doctorando / The doctoral candidate Rafael Cabañas de Paz y los directores
de la tesis / and the thesis supervisors: Andrés Cano Utrera, Manuel Gómez
Olmedo.

Garantizamos, al firmar esta tesis doctoral, que el trabajo ha sido realizado por el
doctorando bajo la dirección de los directores de la tesis y hasta donde nuestro
conocimiento alcanza, en la realización del trabajo, se han respetado los derechos
de otros autores a ser citados, cuando se han utilizado sus resultados o publica-
ciones.

/

Guarantee, by signing this doctoral thesis, that the work has been done by the doctoral

candidate under the direction of the thesis advisor/s and, as far as our knowledge reaches,

in the performance of the work, the rights of other authors to be cited (when their results

or publications have been used) have been respected.

Lugar y fecha / Place and date:

Granada, 15/03/2017

Directores de la tesis / Thesis supervisors Doctorando / Doctoral candidate

Firma / Signed Firma / Signed

v

Agradecimientos

Me gustarı́a comenzar dándole las gracias a mis directores de tesis Andrés Cano
Utrera y Manuel Gómez Olmedo, cuyos consejos y ayuda han sido indispensables
para poder acabar con éxito esta etapa. Durante los años de doctorado, he tenido
la posibilidad de visitar centros de investigación en el extranjero, primero el De-
partamento de Ciencias de la Computación de la Universidad de Aalborg, bajo la
tutela Anders L. Madsen, y posteriormente en el centro IDSIA de Lugano bajo
la supervisión de Alessandro Antonucci. Quisiera agradecerles a ambos el trato
recibido y todo lo que aprendı́ trabajando con ellos.

Deseo extender mi agradecimiento a los miembros del Departamento de Cien-
cias de la computación e Inteligencia Artificial de la Universidad de Granada, y en
especial al resto de miembros del grupo UTAI. Un agradecimiento muy especial
a mis compañeros y amigos del CITIC. Con ellos he compartido muchas horas de
trabajo en un excelente ambiente.

También me gustarı́a agradecer a los miembros del grupo de investigación
SIMD de la Universidad de Castilla-La Mancha ya que con ellos dı́ mis PGMs.
Un agradecimiento especial a los miembros del Departamento de Matemáticas de
la Universidad de Almerı́a y a los miembros del proyecto AMIDST, con quienes
he tenido la oportunidad de trabajar durante los meses previos a la defensa de la
tesis.

En último lugar, y no por ello menos importante, también debo agradecer el
apoyo de mi familia y mis amigos. En especial, a todas las nuevas amistades que
han hecho que Granada sea mi segunda casa.

¡MUCHAS GRACIAS!

Esta tesis doctoral ha sido financiada por el Ministerio de Economı́a y Competi-

tividad y por el Fondo Europeo de Desarrollo Regional (FEDER) con los proyectos

TIN2010-20900-C04-01, TIN2013-46638-C3-2-P y TIN2016-77902-C3-2-P, y por la be-

ca FPI BES-2011-050604.

vii

Acknowledgements

First of all, I would like to express my gratitude to my Andrés Cano Utrera and
Manuel Gómez Olmedo, whose advise and help have been essential to success-
fully complete this stage. As a PhD student, I had the opportunity to visit some
foreign research centres, first the Department of Computer Sciences of Aalborg
University, under the supervision of Anders L. Madsen, and afterwards the Swiss
AI Lab IDSIA in Lugano under the protection of Alessandro Antonucci. I would
like to thank both of them for treating me so well and for how much I learnt work-
ing with them.

I want to extend my gratitude to all the members of the Department of Com-
puter Science and Artificial Intelligence of the University of Granada, and in par-
ticular to the rest of the member of the UTAI group. Special thanks to my col-
leagues and friends from CITIC. With them, I have spent many working hours in
an excellent environment.

I also would like to thank to the members of the research group SIMD of the
University of Castilla-La Mancha, with whom I started working in the field of
PGMs. A very special thanks goes out to the members Department of Mathemat-
ics of the University of Almerı́a and to the members of the AMIDST project. I
had the opportunity to work with them during the months preceding to thesis pre-
sentation.

Last but not least, I also must thank the support of my family and friends. In
particular, I express my gratitude to those who have made Granada my second
home.

THANKS YOU VERY MUCH!

This doctoral thesis has been jointly supported by the Spanish Ministry of Economy

and Competitiveness and by the European Regional Development Fund (FEDER) under

the projects TIN2010-20900-C04-01, TIN2013-46638-C3-2-P and TIN2016-77902-C3-

2-P, and by the FPI scholarship BES-2011-050604.

Contents

I Introduction 1

1 Introducción (in Spanish) 3

1.1 Contribuciones . 5

1.1.1 Reducción del coste computacional 5

1.1.2 Evaluación eficiente de problemas de decisión asimétricos 7

1.1.3 Extensión a modelos imprecisos 8

1.2 Conclusiones y lı́neas futuras . 9

1.2.1 List of publications . 10

1.2.2 Lı́neas Futuras . 12

2 Introduction 15

2.1 Contributions . 17

2.1.1 Computational cost reduction 17

2.1.2 Efficient evaluation of asymmetric decision problems . . . 19

2.1.3 Extension to imprecise models 20

2.2 Overview . 21

3 Fundamentals 23

3.1 Reasoning under uncertainty . 23

3.2 Graph theory . 24

ix

x Contents

3.2.1 Basics . 24

3.2.2 Graphs and d-separation 26

3.3 Probability Theory . 28

3.3.1 Basics . 29

3.3.2 Probabilities for variables 31

3.3.3 Marginal and conditional independence 35

3.3.4 More general forms of independence 38

3.3.4.1 Context-specific independencies 38

3.3.4.2 Partial conditional independencies 40

3.3.4.3 Contextual-weak independencies 41

3.4 Probabilistic graphical models 44

3.4.1 Bayesian networks . 44

4 Probabilistic Graphical Models for Decision Reasoning 47

4.1 Decision theory . 47

4.2 Decision trees . 49

4.3 Influence diagrams . 52

4.3.1 Definitions and notation 52

4.3.1.1 Syntax . 53

4.3.1.2 Semantics . 56

4.3.2 Evaluation . 58

4.3.2.1 Operations with potentials 58

4.3.2.2 Optimal policies and strategies 65

4.4 Independence assumptions in IDs 69

4.4.1 D-separation in IDs . 69

4.4.2 Minimalization of an ID 71

4.5 Influence diagrams evaluation algorithms 73

Contents xi

4.5.1 Variable elimination . 73

4.5.1.1 Elimination heuristics 77

4.5.2 Arc reversal . 78

4.5.3 Lazy evaluation . 83

II Representation 87

5 Binary Trees 89

5.1 Introduction . 89

5.2 Previous approaches for potential representation 92

5.2.1 Numerical trees . 92

5.2.2 Recursive probability trees 95

5.3 Binary trees . 96

5.3.1 Definitions and notation 96

5.3.2 Extended configuration 101

5.3.3 Independencies encoded with BTs 102

5.4 Learning exact and approximate BTs 109

5.4.1 Building binary trees . 109

5.4.1.1 Splitting criteria 111

5.4.1.2 Efficient computation of the information gain . 113

5.4.2 Pruning Binary Trees . 114

5.5 Conclusions . 116

6 Asymmetries Representation with Binary Trees 117

6.1 Introduction . 117

6.2 Motivation . 118

6.2.1 Asymmetric decision problems 118

xii Contents

6.2.2 IDs and asymmetries . 123

6.3 Asymmetries and binary trees 128

6.3.1 Constraint rules . 128

6.3.2 Binary constraints trees 129

6.4 Conclusions . 131

7 Interval-valued Potentials 133

7.1 Introduction . 133

7.2 Related work . 134

7.3 Interval-valued potentials . 136

7.4 Conclusions . 141

III Evaluation 143

8 Evaluation with Binary Trees 145

8.1 Introduction . 145

8.2 Operations with binary trees . 146

8.2.1 Restriction . 146

8.2.2 Element-wise operations 148

8.2.3 Marginalizations . 155

8.2.4 Complexity analysis . 158

8.3 ID evaluation algorithms with BTs 160

8.3.1 Variable elimination . 160

8.3.2 Lazy evaluation . 162

8.3.3 Symbolic probabilistic inference 163

8.4 Experimental work . 165

8.4.1 Multi-objective optimization problems 165

Contents xiii

8.4.2 Objectives and procedure 166

8.4.3 Results for the NHL ID 169

8.4.3.1 Storage requirements and computation time . . 169

8.4.3.2 Error against time 173

8.4.4 Results for the rest of IDs 175

8.4.4.1 Storage requirements and computation time . . 175

8.4.4.2 Error against time 176

8.5 Conclusions . 177

9 Elimination Heuristics with BTs 179

9.1 Introduction . 179

9.2 Motivation . 180

9.3 Proposed heuristics . 181

9.3.1 Minimum combined tree 181

9.3.2 Minimum marginalised tree 182

9.4 Experimental work . 183

9.5 Conclusions . 185

10 Evaluation of Asymmetric Decision Problems with BTs 187

10.1 Introduction . 187

10.2 Applying constraints to potentials 188

10.2.1 Applicability of a constraint rule 188

10.2.2 Applying BCTs . 190

10.2.3 Improved operations . 195

10.3 ID Evaluation with BCTs . 199

10.4 Experimental work . 202

10.5 Conclusions . 206

xiv Contents

11 Evaluation with Interval-valued Potentials 207

11.1 Introduction . 207

11.2 Interval-valued influence diagrams 208

11.3 Basic operations for evaluating IIDs 210

11.4 New evaluation algorithms for IIDs 215

11.4.1 Variable elimination in IIDs by linear programming 215

11.4.1.1 Chance variables elimination from IPPs 216

11.4.1.2 Chance variables elimination from IUPs 218

11.4.1.3 Decision variables elimination 220

11.4.2 A faster outer approximation 221

11.4.3 Arc reversal in IIDs by linear programming 223

11.4.4 Complexity analysis . 225

11.5 Sensitivity analysis . 226

11.6 Experimental work . 229

11.7 Conclusions . 232

12 Efficient Evaluation with Tables 235

12.1 Introduction . 235

12.2 Motivation . 236

12.2.1 Definition of the problem 239

12.3 Symbolic probabilistic inference for IDs 240

12.3.1 Overview . 240

12.3.2 Combination candidate set 241

12.3.3 Removal of chance variables 244

12.3.4 Removal of a decision 248

12.3.5 Combination heuristics 250

12.3.6 Probabilistic Barren . 250

Contents xv

12.3.7 Example . 251

12.4 Correctness and complexity of SPI 253

12.5 SPI Lazy Evaluation . 256

12.6 Optimization of variable elimination 257

12.7 Experimental work . 259

12.7.1 Procedure and objectives 259

12.7.2 Singletons and probabilistic barren 261

12.7.3 Optimization of variable elimination 266

12.7.4 Comparison of SPI and VE 269

12.7.5 Pre-analysis algorithm 271

12.8 Conclusions . 272

IV Conclusions 275

13 Conclusions and Future Work 277

13.1 List of publications . 279

13.2 Future work . 281

Appendices 283

A Proof of Proposition 6 285

A.1 Information gain computation with Kullback-Leibler divergence . 285

A.2 Information gain computation with Euclidean distance 287

B Additional Information about the Experimental Work 291

B.1 Code and system details . 291

B.2 Influence diagrams details . 292

B.3 Constraint rules . 316

xvi Contents

Index 319

Bibliography 323

List of Figures

3.1 Directed graph (a), undirected graph (b) and partially directed
graph (c). 25

3.2 DAG modelling the car start problem described in Example 1. . . 26

3.3 Different types of connections in a DAG 27

3.4 Graph of a BN modelling the car start problem. We have used the
abbreviations F (Fuel?), C (Clean P lugs), S (Start?), and M
(Fuel Meter). 46

4.1 Decision tree representing the oil wildcatter’s problem described
in Example 10. 51

4.2 Graph of an ID modelling the oil wildcatter’s decision problem . . 55

4.3 Example of an ID where a predecessor of a decision belongs to In. 57

4.4 ID in Figure 4.3 with non-forgetting arcs shown explicitly. 58

4.5 Example of an ID obtained from [64, page 226]. 70

4.6 Example of an ID obtained from [64, page 141] including all the
non-forgetting arcs. 72

4.7 ID shown in Figure 4.6 after removing all redundant arcs. 73

4.8 Transformations applied to the graph during the evaluation the oil
wildcatter’s ID using the AR algorithm. 82

4.9 Strong junction tree for the ID shown in Figure 4.6 with the sets
of potentials associated to each clique. 83

xvii

xviii List of Figures

4.10 Flow of messages in a strong junction tree for the ID shown in
Figure 4.6 . 86

5.1 Two exact NTs representing φ(X|Y, Z) and ψ(Y,X,D) from Ex-
ample 20. 93

5.2 Two pruned NTs approximating φ(X|Y, Z) and ψ(Y, Z,D) from
Example 20. 94

5.3 Example of a NT and a RPT representing a PP φ(A,B|C). 96

5.4 Exact BTs representing the potential φ(X|Y, Z) from Example 20.
We use a superscript number at each node of BT φ(X, Y, Z), in or-
der to easily identify them. 97

5.5 Exact BTs representing the UP ψ(Y, Z,D) from Example 20. . . 98

5.6 Leaf nodes related to the CSIs and PCIs present in φ(X|Y, Z)

when such PP is represented as a NT and as BT. 104

5.7 Leaf nodes related to the CWI present in φ(D|B,A) when such
PP is represented as a NT and as BT. 106

5.8 A more compact representation of the potential shown in 5.7 as a
BT and obtained by reordering its nodes. 107

5.9 A NT and a BT representing the potential ψ(Y, Z,D). 108

5.10 Example of a UP represented as a table. 109

5.11 Three BTs of different sizes representing the potential ψ(A,B) . . 109

5.12 Process for building a BT from the potential in Figure 5.10 112

5.13 Example of pruning a terminal tree in a BT 115

6.1 Decision tree representing the reactor problem described in Ex-
ample 25. Details for building and evaluating this decision tree
are given in [3]. 121

6.3 BCTs representing the sets of constraints rules stated in Exam-
ple 28 for the reactor problem. 130

List of Figures xix

7.1 CS represented with the extreme points ext[K(O)]= {[1, .0, .0]T ,

[.5, .5, .0]T , [.4, .4, .2]T , [.8, .0, .2]T}. 135

8.1 Restriction of a BT representing a UP to the set of states {a2, a3}
of the variable A. 148

8.2 Multiplication of two BTs. 151

8.3 Addition of two BTs. 152

8.4 Division of two BTs. 152

8.5 Maximum of two BTs. 153

8.6 Sum-marginalization (left) and max-marginalization (right) of vari-
able A in the same BT. 158

8.7 Hyper-volume for a minimization problem. 166

8.8 Size of the potentials during the NHL ID evaluation with tables,
NTs and BTs with two different ε threshold values and the VE
algorithm. 170

8.9 Size of the potentials during the NHL ID evaluation with tables,
NTs and BTs with two different ε threshold values and the LE
algorithm. 170

8.10 Size of the potentials during the NHL ID evaluation with tables,
NTs and BTs with two different ε threshold values and the SPI
algorithm. 170

8.11 Evaluation time and speed up obtained during NHL ID evaluation
with NTs and BTs and different values for ε with the VE algo-
rithm. The evaluation time with tables is approximately 15900
ms. 171

8.12 Evaluation time and speed up obtained during NHL ID evaluation
with NTs and BTs and different values for ε with the LE algo-
rithm. The evaluation with tables is approximately 12040 ms. . . . 172

xx List of Figures

8.13 Evaluation time and speed up obtained during NHL ID evaluation
with NTs and BTs and different values for ε with the SPI algo-
rithm. The evaluation time with tables is approximately 9970 ms. . 172

8.14 Comparison of the absolute error versus the computation time of
the NHL ID using the VE algorithm. 173

8.15 Comparison of the absolute error versus the computation time of
the NHL ID using the LE algorithm. 174

8.16 Comparison of the absolute error versus the computation time of
the NHL ID using the SPI algorithm. 174

9.1 Combination of the PPs and UPs if variable A is chosen to be
removed . 181

9.2 Combination of the PPs and UPs performed if variable C is cho-
sen to be removed . 181

9.3 Size of all potentials stored in memory during the NHL ID (left)
and IctNeo ID (right) evaluation comparing the heuristics min-
imum weight, minumum combined tree, minumum marginalised
and minimum fill-in arcs weight using BTs and different threshold
values. 184

10.1 Process for multiplying the same BTs than in Example 38 but
without the unnecessary computations. 197

10.2 Storage requirements for evaluating six IDs where potentials are
represented using as trees (NTs and BTs) with and without con-
straint rules. 204

10.3 Running time for evaluating six IDs where potentials are repre-
sented using as trees (NTs and BTs) with and without constraint
rules. 205

11.1 Graph of an IID modelling the oil wildcatter’s decision problem . 209

11.2 Size of the interval-valued MEU as a function of the perturbation
level . 228

List of Figures xxi

11.3 Absolute (y-axis) and relative (numbers over the bars) running
times for the IIDs in Table 11.1. 230

11.4 Size of interval-valued MEU as a function of the perturbation level
ε of the IPPs. 231

11.5 Size of interval-valued MEU as a function of the perturbation level
ε of the IUPs. 232

12.1 An example of an ID whose partial order is the following: {A} ≺
D1 ≺ {B,C,E, F,G}. 237

12.2 Combination order of the potentials obtained using SPI for remov-
ing the chance set I1 = {B,C,E, F,G} during the evaluation of
the ID shown in Figure 12.1. 252

12.3 Comparison of the computation time using the basic version of
SPI with different combination heuristics and considering the im-
provements of singletons and probabilistic barren (SPIB, SPIS
and SPIBS) and without them (SPI). 263

12.4 Comparison of the average computation time using the basic ver-
sion of the SPI-LE algorithm with different combination heuris-
tics and considering the improvements of singletons and proba-
bilistic barren (SPI-LEB, SPI-LES and SPI-LEBS) and with-
out them (SPI-LE). 265

12.5 Comparison of the average computation time required by V E and
the optimized version with different heuristics. 267

12.6 Comparison of the average computation time required by the basic
V E − LE and the optimized version with different heuristics. . . 268

12.7 Average computation time comparing the best scheme of V E against
SPI and the best scheme of V E-LE against SPI-LE for evalu-
ating each ID. 270

B.1 Graph of the Appendicitis ID. 292

B.2 Graph of the Car Buyer ID. 293

xxii List of Figures

B.3 Graph of the Chest Clinic ID. 294

B.4 Graph of the Competitive Asymmetries ID. 295

B.5 Graph of the Dating ID. 296

B.6 Graph of the Diabetes ID. 297

B.7 Graph of the Jaundice ID. 298

B.8 Graph of the Jensen et al. 1 ID. 300

B.9 Graph of the Jensen et al. 2 ID. 301

B.10 Graph of the Maze ID. 302

B.11 Graph of the Mildew 1 ID. 303

B.12 Graph of the Mildew 4 ID. 304

B.13 Graph of the Motivation ID. 305

B.14 Graph of the NHL ID. 306

B.15 Graph of the Oil ID. 308

B.16 Graph of the Oil Split Costs ID. 309

B.17 Graph of the Poker ID. 310

B.18 Graph of the Poker Extended ID. 311

B.19 Graph of the Reactor ID. 312

B.20 Graph of the Thinkbox ID. 313

B.21 Graph of the Threat of Entry ID. 314

B.22 Graph of the Wildlife ID. 315

List of Tables

6.1 Configurations leading to impossible scenarios in the reactor prob-
lem. 123

8.1 Particularizations of the generic combination operation⊗ and their
corresponding functions f . For the division, convention 0/0 = 0

is adopted. 149

8.2 Particularizations of the generic marginalization operation

Σ

and
their corresponding functions g. 155

8.3 Features of the IDs used in the experimentation. More details of
these IDs are given in Appendix B.2. 167

8.4 Space savings that results from using trees (NTs and BTs) instead
of tables during NHL ID evaluation with two different ε thresh-
olds values and the algorithms VE, LE and SPI. 169

8.5 Hyper-volume values obtained from points shown in Figures 8.14,
8.15 and 8.16. 175

8.6 Average space saving obtained using trees instead of tables with
different ε values. 175

8.7 Average speedup for IDs using tables and trees (NTs and BTs). . . 176

8.8 Results of the Wilcoxon test for the results using NTs and BTs. . . 176

9.1 Mean and maximum storage requirements in number of nodes for
the evaluation of the NHL ID 185

xxiii

xxiv List of Tables

9.2 Mean and maximum storage requirements in number of nodes for
the evaluation of the Jaundice ID 185

10.1 Number of chance, decision and utility nodes for the benchmark
IDs . 202

11.1 Number of chance, decision and utility nodes for the benchmark
IIDs. More details about the corresponding precise models are
given in Appendix B.2. 229

12.1 Features of the IDs used in the experimentation. More details
about these models are given in Appendix B.2. 260

12.2 Features of the strong junction trees used for the experimental
work obtained with minimum size heuristic. 261

12.3 Cumulative time (ms) for evaluating all the IDs using the basic
version of the SPI algorithm with different combination heuristics
and considering the improvements of singletons and probabilistic
barren (SPIB, SPIS and SPIBS) and without them (SPI). . . . 264

12.4 Cumulative time for evaluating all the IDs using the basic version
of the SPI-LE algorithm with different combination heuristics and
considering the improvements of singletons and probabilistic bar-
ren (SPI-LEB, SPI-LES and SPI-LEBS) and without them
(SPI-LE). 266

12.5 Cumulative time for evaluating all the IDs using V E and the op-
timized version with different heuristics. 267

12.6 Cumulative time for evaluating all the IDs using V E − LE and
the optimized version with different heuristics. 269

12.7 Number of arithmetic operations and evaluation time for evaluat-
ing each ID with V Eopt and SPIBS using the heuristicsmin size
and min utility respectively. The time for evaluating each ID
with both methods in a qualitative way is also given (pre-analysis
time). 272

List of Tables xxv

B.1 Details of each variable in the Appendicitis ID. 292

B.2 Details of each variable in the Car Buyer ID. 293

B.3 Details of each variable in the Chest Clinic ID. 294

B.4 Details of each variable in the Competitive Asymmetries ID. . . . 295

B.5 Details of each variable in the Dating ID. 296

B.6 Details of each variable in the Diabetes ID. 297

B.7 Details of each variable in the Jaundice ID. 299

B.8 Details of each variable in the Jensen et al. 1 ID. 300

B.9 Details of each variable in the Jensen et al. 2 ID. 301

B.10 Details of each variable in the Maze ID. 302

B.11 Details of each variable in the Mildew 1 ID. 303

B.12 Details of each variable in the Mildew 4 ID. 304

B.13 Details of each variable in the Motivation ID. 305

B.14 Details of each variable in the NHL ID. 307

B.15 Details of each variable in the Oil ID. 308

B.16 Details of each variable in the Oil Split Costs ID. 309

B.17 Details of each variable in the Poker ID. 310

B.18 Details of each variable in the Poker Extended ID. 311

B.19 Details of each variable in the Reactor ID. 312

B.20 Details of each variable in the Thinkbox ID. 313

B.21 Details of each variable in the Threat of Entry ID. 314

B.22 Details of each variable in the Wildlife ID. 315

Part I

Introduction

1

Chapter 1

Introducción (in Spanish)

Los modelos gráficos probabı́sticos (PGMs) son una potente herramienta de mo-
delado para el aprendizaje y razonamiento en dominios con incertidumbre. Cons-
tan de una componente cualitativa y otra cuantitativa. En primer lugar, la compo-
nente cualitativa viene dada por un grafo que representa un conjunto de depen-
dencias entre las variables (nodos) del dominio modelado. En segundo lugar, la
componente cuantitativa consiste en un conjunto de funciones que cuantifican di-
chas dependencias.

Esta tesis se centra en los diagramas de influencia (IDs) [87, 56], que son un
tipo especı́fico de PGM usado para el modelado y resolución de problemas de de-
cisión bajo incertidumbre. En este tipo de problemas, el decisor debe elegir entre
varias acciones, cada una de las cuales conlleva múltiples consecuencias posibles.
Cada consecuencia tiene asociada una utilidad (por ejemplo, beneficio económi-
co) y el decisor preferirá aquella con mayor utilidad. Sin embargo, no siempre se
trata de una elección directa, ya que la consecuencia de cada acción puede que no
se conozca con certeza.

La evaluación de IDs facilita el cálculo de la utilidad esperada asociada a ca-
da acción y por lo tanto, permite la identificación de las mejores acciones para el
decisor. En general, un ID es un PGM cuya componente cualitativa es un grafo
acı́clico dirigido con tres tipos de nodos: decisión, que corresponde con las ac-
ciones que el decisor puede controlar; azar, que representan la incertidumbre del

3

4 Chapter 1. Introducción (in Spanish)

problema; y utilidad, representando las preferencias del usuario. Por otro lado, la
componente cuantitativa está formada por un conjunto de distribuciones de pro-
babilidad condicionada (asociadas a los nodos de azar) y de funciones de utilidad
(asociadas a los nodos de utilidad).

Otra ventaja de los IDs reside en su naturaleza intuitiva. Esto hace que puedan
ser fácilmente comprendidos por expertos de otros campos que no están familia-
rizados con los métodos de aprendizaje automático. Por esta razón, los IDs se han
aplicado en múltiples ámbitos: medicina [76, 3, 88, 77], economı́a [34], ciencias
ambientales [81, 29], defensa [46, 82], etc.

A pesar de todas las ventajas previamente mencionadas, el formalismo de los
IDs tiene algunos inconvenientes:

• Elevado coste computacional: los potenciales intermedios generados du-
rante la evaluación pueden ser extremadamente grandes. Como consecuen-
cia, la evaluación de IDs tiene un elevado coste computacional en térmi-
nos de memoria y tiempo. Esta situación es incluso más problemática en
diagramas complejos, cuya evaluación puede no ser factible debido a las
limitaciones de los ordenadores.

• Evaluación ineficiente de problemas de decisión asimétricos: en muchos
problemas de decisión reales, los valores que una variable puede tomar de-
penden del pasado. Por ejemplo, consideremos un problema de decisión en
que existe la posibilidad de realizar un test. Si se opta por no realizarlo,
entonces cualquier resultado de dicho test no debe ser considerado en la
evaluación. Este tipo de problemas recibe el nombre de asimétricos [108, 4]
y un inconveniente importante de los IDs está relacionado con la incapaci-
dad para representarlos de forma eficiente. Para poder modelar un problema
asimétrico con un ID, hay que transformarlos en simétricos. Esto se con-
sigue añadiendo estados artificiales a los dominios de algunas variables.
Además, los potenciales pueden contener algunas configuraciones imposi-
bles (debido a las asimetrı́as) que no son relevantes para resolver el proble-
ma. Esto implica que los algoritmos de evaluación convencionales requieran
gran cantidad innecesaria de memoria y tiempo de computación.

1.1. Contribuciones 5

• Incapacidad para expresar imprecisión: en el formalismo clásico de los
IDs, los potenciales son funciones que asignan valores precisos a cada com-
binación de estados para un conjunto de variables (por ejemplo, la proba-
bilidad de X = x1 es 0.75). Esto puede ser un inconveniente al modelar
problemas reales, donde los potenciales se suelen obtener a partir de valo-
raciones de los expertos o de datos parcialmente fiables.

Para solucionar estos problemas, proponemos varias estructuras de datos para
representar la información cuantitativa y cualitativa de un ID. Además, propone-
mos varios algoritmos de evaluación con dichas estructuras.

1.1 Contribuciones

1.1.1 Reducción del coste computacional

Una de las contribuciones principales de esta tesis es el uso de árboles binarios
(BTs) en lugar de tablas para representar los potenciales asociados a un ID. Con
esto, se pretende resolver el problema de la generación de potenciales de gran ta-
maño y reducir el coste de la evaluación. Un BT es una estructura en forma de
árbol cuyos nodos hoja están etiquetados con los valores numéricos del potencial.
Cada nodo interno está etiquetado con una variable y siempre tiene dos arcos sa-
lientes etiquetados con subconjuntos de los estados de la variable. La ventaja de
utilizar BTs reside en su capacidad para representar formas generales de indepen-
dencia que no pueden ser codificadas por la estructura de los IDs. Esto es posible
porque algunos valores idénticos del potencial se pueden agrupar. Con esto se
consigue que la representación de potenciales sea más compacta. Puesto que estas
formas generales de independencia son habituales en IDs complejos que represen-
tan problemas de decisión reales, su evaluación debe ser más eficiente. Además,
si un BT es extremadamente grande, se puede podar con lo que se aproxima el
potencial (y por lo tanto la evaluación).

Los conceptos clave para la representación de potenciales como BTs se de-
tallan en el Capı́tulo 5: se dan las definiciones básicas sobre BTs con especial

6 Chapter 1. Introducción (in Spanish)

atención a las formas de independencia que pueden ser codificadas usándolos.
También proponemos algoritmos heurı́sticos para construir (a partir de tablas) y
podar BTs que representan potenciales de probabilidad y utilidad. La evaluación
de IDs usando esta estructura de datos se explica en el Capı́tulo 8. Para ello, pro-
ponemos algoritmos recursivos para realizar las operaciones básicas directamente
sobre BTs. También explicamos como algunos de los principales algoritmos de
evaluación pueden se adaptados para trabajar con este tipo de representación de
potenciales. En el trabajo experimental comparamos los BTs con otras representa-
ciones en varios aspectos: tiempo de computación, memoria y error. El contenido
relacionado con los BTs fue publicado en la revista internacional IJUFKS [19] y
presentado en el workshop PGM’12 [17] y en CAEPIA’13 [13].

Algunos de los algoritmos adaptados para funcionar con BTs son algoritmos
greedy que eligen a cada paso qué variable eliminar. Esta decisión normalmente se
toma basándose en alguna heurı́stica que trata de minimizar la complejidad de las
operaciones involucradas en la evaluación. Sin embargo, estas heurı́sticas pueden
no ser adecuadas si los potenciales están representados mediante BTs. Por esta
razón, en el Capı́tulo 9 se proponen dos nuevas heurı́sticas que consideran que los
potenciales están representados mediante BTs. Estas nuevas heurı́sticas estiman
el tamaño del BT generado al eliminar una variable. Haciendo esto, pretendemos
reducir incluso más la complejidad de la evaluación. Este trabajo fue publicado en
la conferencia SCAI’13[16].

En el Capı́tulo 12 también exploramos distintas alternativas para reducir el
coste de la evaluación asumiendo que los potenciales están representados usando
tablas. Nos basamos en la siguiente idea: algunos de los principales algoritmos de
evaluación requieren la realización de varias combinaciones y marginalizaciones
con los potenciales asociados al ID. Encontrar un orden óptimo para dichas ope-
raciones es un problema NP-difı́cil [5] y es elemento de gran importancia para la
eficiencia de la evaluación. Por lo tanto, la evaluación de un ID se puede ver como
un problema de optimización combinatoria, es decir, en el problema de encontrar
un orden óptimo para las operaciones de combinación y marginalización.

1.1. Contribuciones 7

En esta tesis, se proponen varias formas para optimizar el orden de las ope-
raciones involucradas en la evaluación de IDs. En primer lugar, adaptamos el al-
goritmo symbolic probabilistic inference (SPI) para evluar IDs. En segundo lu-
gar, se propone una mejora del algoritmo Variable Elimination (VE). Esta mejora
consiste en utilizar un algoritmo greedy para minimizar el coste de cada opera-
ción requerida. Se puede ver como una extensión la estructura binary join tree
propuesta por P.P. Shenoy [106] . En el trabajo experimental, analizamos el com-
portamiento de todos estos algoritmos utilizando varios diagramas presentes en
la literatura. Se prueba de forma empı́rica que los algoritmos propuestos pueden
mejorar la eficiencia de la evaluación. Además, SPI supera a VE en muchos IDs.
Versiones preliminares de este contenido fueron presentadas en los congresos IP-
MU’14 [20] y PGM’14 [14] . Finalmente, una versión extendida fue publicada en
la revista internacional IJAR [15].

1.1.2 Evaluación eficiente de problemas de decisión asimétri-
cos

El problema relacionado con la evaluación de IDs modelando problemas de de-
cisión asimétricos también se puede solucionar usando BTs. En nuestra propues-
ta, la información cualitativa sobre el problema (restricciones debidas a las asi-
metrı́as) se repreresenta con BTs y se denominan binary constraint trees (BCTs).
La estructura de estos BTs es la misma que la de aquellos que representan po-
tenciales, aunque las hojas sólo pueden estar etiquetadas con un 0 o un 1. Una
hoja con un 0 identifica una combinación imposible de estados de las variables
en el BCT. Puesto que la misma estructura de datos se utiliza para representar
asimetrı́as y potenciales, los BCTs se pueden aplicar para reducir el número de
escenarios a considerar. Como resultado, se mejora la eficiencia de la evaluación
de IDs representando problemas de decisión asimétricos. Con este método se pre-
tende mantener el marco de los IDs sin cambios, además de utilizar los algoritmos
estándar de evaluación.

En el Capı́tulo 6 se dan las definiciones básicas sobre BCTs. Detallamos cómo
los BCTs se pueden construir a partir de reglas de restricción, que son expresiones

8 Chapter 1. Introducción (in Spanish)

lógicas destinadas a definir asimetrı́as de forma más intuitiva. En el Capı́tulo 10
explicamos cómo evaluar un ID con asimetrı́as . En particular, proponemos una
extensión de VE que funciona con BCTs. En el trabajo experimental, mostramos
que la aplicación de restricciones representadas mediante BTs puede reducir la
complejidad de la evaluación en términos de memoria y tiempo. Este método fue
presentado en la conferencia internacional ECSQARU’13 [18].

1.1.3 Extensión a modelos imprecisos

Otra contribución importante de esta tesis consiste en extender el formalismo de
los IDs a intervalos. Haciendo esto, pretendemos resolver el problema de la in-
capacidad de los IDs para expresar imprecisión o vaguedad en los potenciales
(normalmente obtenida de expertos o de datos parcialmente fiables). En particu-
lar, proponemos reemplazar los valores precisos en los potenciales por intervalos.
Esta generalización se denomina potenciales con intervalos. Un ID con este ti-
po de potenciales se puede ver como una colección de IDs clásicos (precisos)
consistentes con las restricciones impuestas por los intervalos. También se propo-
nen extensiones de algunos algoritmos para poder evaluar IDs con intervalos. Los
métodos propuestos son aproximaciones externas1 de las soluciones exactas. Sin
embargo, el uso de métodos de programación lineal evita que se produzcan apro-
ximaciones externas de gran tamaño sin aumentar la complejidad computacional.
Usando intervalos, la evaluación exacta es imposible: se require entonces de un
modelo de imprecisión más general. Sin embargo, esto aumentarı́a exponencial-
mente la complejidad de la evaluación.

La formalización del concepto de potencial con intervalos se da en el Capı́tu-
lo 7. Los algoritmos propuestos para la evaluación de IDs con intervalos se deta-
llan en el Capı́tlulo 11. También se realiza una comparación experimental contra
un método similar para este tipo de modelos, con lo que se muestra una mejora
en términos de tiempo y precisión. Esta extensión a intervalos fue inicialmente

1Un método es una aproximación externa o ”outer approximation´´ cuando la solución obte-
nida contiene a la exacta.

1.2. Conclusiones y lı́neas futuras 9

presentada en la conferencia ECSQARU’15 [11]. Posteriormente, fue publicada
en la revista internacional IJAR [12] con todos los métodos aquı́ propuestos y con
descripciones y ejemplos más precisos.

1.2 Conclusiones y lı́neas futuras

En esta sección resumimos todas las conclusiones que se presentan a lo largo de
esta memoria. También se enumeran las publicaciones con la mayorı́a del trabajo
presentado. Finalmente, concluimos con las lı́neas de trabajo futuro.

Esta tesis está dedicada, tal y como indica su nombre, a nuevas estructuras de
datos y métodos para la evaluación de IDs. En particular, con el trabajo presentado
se han abordado algunos problemas de los IDs: alto coste computacional, evalua-
ción ineficiente de problemas de decisión asimétricos e incapacidad para expresar
imprecisión.

Hemos propuesto el uso de BTs para representar los potenciales en IDs. Con
ello, se ha conseguido reducir el coste computacional de la evaluación debido
al menor tamaño de los potenciales. Se han propuesto métodos para construir y
aproximar BTs. Además, se ha indicado cómo se pueden adaptar algunos de los
algoritmos de evaluación tradicionales para evaluar IDs directamente con BTs. En
el trabajo experimental, se ha demostrado que, en general, el uso de BTs requiere
menos recursos de memoria que otros tipos de representaciones, como son el caso
de los NTs o las tablas. Como consecuencia, la evaluación es habitualmente más
rápida usando BTs. Sin embargo, para algunos IDs es necesario aproximar los po-
tenciales para obtener algún beneficio del uso de BTs. Otra conclusión es que el
uso de BTs permite obtener mejores soluciones aproximadas: el mismo nivel de
error es obtenido con un menor tiempo de cómputo.

En relación a uno de los algoritmos adaptados para trabajar con BTs, en par-
ticular VE, hemos propuesto dos nuevas heurı́sticas para determinar el orden de
eliminación. La novedad de dichas heurı́sticas reside en éstas consideran que los
potenciales están representados mediante BTs. En el trabajo experimental se ha

10 Chapter 1. Introducción (in Spanish)

demostrado que, con estas heurı́sticas, el coste computacional se puede reducir
aún más.

Para abordar el problema del coste computacional, también hemos estudiado
distintas alternativas que permiten representar los potenciales con tablas. En parti-
cular, hemos propuesto adaptar el algoritmo SPI para evaluar IDs, y una optimiza-
ción de VE. Estos nuevos métodos tratan de optimizar el orden de las operaciones
involucradas. En la evaluación experimental, se ha demostrado que con los algo-
ritmos propuestos se puede mejorar la eficiencia de la evaluación. Al comparar
ambas propuestas, hemos visto que SPI puede superar a VE en muchos IDs.

El segundo inconveniente de los IDs es la evaluación ineficiente de IDs mo-
delando problemas de decisión asimétricos. Este problema también puede ser sol-
ventado utilizando BTs. En nuestra propuesta, los potenciales se representan me-
diante BT pero también las asimetrı́as. Al usar el mismo tipo de representación,
las asimetrı́as se pueden aplicar fácilmente a los potenciales. Con esto se reduce el
número de escenarios a considerar durante la evaluación. En esta tesis hemos de-
mostrado de forma empı́rica que, con nuestra propuesta, normalmente se mejora
la eficiencia de la evaluación de IDs que modelan problemas de decisión asimétri-
cos. Sin embargo, para IDs muy pequeños la aplicación de restricciones puede ser
contraproducente (debido a la sobrecarga introducida).

Otra propuesta de representación de potenciales en IDs son los denominados
potenciales con intervalos. Se ha formalizado esta representación y se han da-
do varios algoritmos para evaluar IDs con potenciales imprecisos. En el análisis
empı́rico hemos mostrado que los nuevos métodos basados en técnicas de progra-
mación lineal son los más precisos para evaluar IDs con intervalos.

1.2.1 List of publications

El trabajo desarrollado en esta tesis ha sido presentado en las siguientes publica-
ciones.

1.2. Conclusiones y lı́neas futuras 11

Publicaciones en revistas internacionales

R. Cabañas, A. Antonucci, A. Cano, and M Gómez-Olmedo. Evaluating
interval-valued influence diagrams. International Journal of Approximate Reaso-
ning, 80:393–411, 2017

R. Cabañas, A. Cano, M. Gómez-Olmedo, and A. L. Madsen. Improvements
to variable elimination and symbolic probabilistic inference for evaluating influen-
ce diagrams. International Journal of Approximate Reasoning, 70:13–35, 2016

R. Cabañas, M. Gómez-Olmedo, and A. Cano. Using binary trees for the
evaluation of influence diagrams. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 24(01):59–89, 2016

Publicaciones en conferencias internacionales y workshops

R. Cabañas, A. Antonucci, A. Cano, and M. Gómez-Olmedo. Variable elimi-
nation for interval-valued influence diagrams. In Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty: 13th European Conference, ECSQARU
2015, Compiègne, France, July 15-17, 2015. Proceedings, volume 9161 LNAI,
pages 541–551. Springer, 2015

R. Cabañas, A. Cano, M. Gómez-Olmedo, and A. L. Madsen. On SPI-lazy
evaluation of influence diagrams. In Probabilistic Graphical Models: 7th Euro-
pean Workshop, PGM 2014, Utrecht, The Netherlands, September 17-19, 2014.
Proceedings, pages 97–112. Springer International Publishing, 2014

R. Cabañas, A. L. Madsen, M. Gómez-Olmedo, and A. Cano. On SPI for eva-
luating Influence Diagrams, pages 506–516. Springer International Publishing,
Cham, 2014

R. Cabañas, M. Gómez-Olmedo, and A. Cano. Evaluating asymmetric deci-
sion problems with binary constraint trees. In Symbolic and Quantiative Approa-
ches to Resoning with Uncertainty: 12th European Conference, ECSQARU 2013,
Utrecht, The Netherlands, July 8-10, 2013, Proceedings, volume 7958 LNAI, pa-
ges 85–96. Springer, 2013

R. Cabañas, M. Gómez, and A. Cano. Approximate inference in influence
diagrams using binary trees. In Proceedings of the Sixth European Workshop on

12 Chapter 1. Introducción (in Spanish)

Probabilistic Graphical Models (PGM-12), 2012

Publicaciones en conferencias nacionales

R. Cabañas, A Cano, M Gómez-Olmedo, and A. L. Madsen. Approximate
lazy evaluation of influence diagrams. In Advances in Artificial Intelligence: 15th
Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2013,
Madrid, September 17-20, 2013, Proceedings, volume 8109, page 321. Springer,
2013

R. Cabañas, A. Cano, M Gómez-Olmedo, and A.L. Madsen. Heuristics for
determining the elimination ordering in the influence diagram evaluation with bi-
nary trees. In Twelfth Scandinavian Conference on Artificial Intelligence: SCAI
2013, volume 257 of Frontiers in Artificial Intelligence and Applications, pages
65–74. IOS Press, 2013

1.2.2 Lı́neas Futuras

En relación con las lı́neas futuras de trabajo con BTs, se pueden estudiar formas
alternativas de aplicar la operación de poda durante la evaluación. En la propues-
ta quı́ presentada, todos los BTs se podan antes de la evaluación. Sin embargo,
podrı́amos considerar aplicar la poda sólo si se estima que una operación con po-
tenciales va a ser muy costosa. Haciendo esto, se podrı́a minimizar el error de la
aproximación. También podrı́amos considerar el uso de estructuras de datos que
representan un modelo completo, tales como los RPTs [23, 24, 25].

En lo que se refiere a la evaluación de problemas de decisión asimétricos, se
podrı́a estudiar el comportamiento de los BTs con restricciones usando otros al-
goritmos, por ejemplo Arc Reversal [102], Lazy evaluation [79], etc.

Tal y como se presenta en esta tesis, el algoritmo SPI sólo considera el si-
guiente par de potenciales para combinar. Por lo tanto, una posible lı́nea de in-
vestigación podrı́a ser el estudio de dicho algoritmo utilizando un grado mayor
de vecindad. También podrı́a ser interesante hacer un estudio que nos permitiese
determinar qué caracterı́sticas de un ID hacen que SPI funcione mejor que VE.

1.2. Conclusiones y lı́neas futuras 13

Aunque los potenciales con intervalos son una alternativa eficiente para mo-
delar la imprecisión en los IDs, podrı́amos extenderlos a un marco más general de
imprecisión, como por ejemplo los conjuntos credales representados por puntos
extremos. Esto afectarı́a a la complejidad computacional de la evaluación, por lo
que serı́a necesario el desarrollo de algoritmos aproximados. Una posible solución
serı́a la utilización de BTs para representar potenciales imprecisos.

14 Chapter 1. Introducción (in Spanish)

Chapter 2

Introduction

Probabilistic Graphical Models (PGMs) constitute a powerful modelling frame-
work for learning and reasoning under uncertainty and are defined by two com-
ponents: first, a qualitative component in the form of a graph that encodes a set
of dependencies among the variables (i.e., nodes) in the domain being modelled;
secondly, a quantitative component consisting of a set of functions quantifying
such dependencies.

This dissertation focuses on discrete influence diagrams (IDs) [87, 56], which
are a class of PGM intended to model and solve decision problems under uncer-
tainty. In this kind of problems, the decision maker has to choose between a set
of decision options. Each of them could give rise to more than one possible out-
come. The decision maker will prefer the outcome with the highest utility (e.g.,
economic profit). However, this is not a straightforward choice as the outcome of
each decision option might not be known with certainty. Then, the expected util-
ity of each decision option should be calculated, which is the probability-weighted
average utility of the possible outcomes.

The ID formalism simplifies the computation of expected utilities of various
decision options given the information known at the time of the decision. Thus,
the evaluation (i.e., inference) of an ID allows the identification of the best deci-
sion options for the decision maker given previous observations and decisions. In

15

16 Chapter 2. Introduction

general, an ID is a PGM whose qualitative component is a directed acyclic graph
(DAG) with three types of nodes: decision nodes that correspond with the actions
which the user can control; chance nodes representing the uncertainty; and utility
nodes representing the decision maker preferences. On the other hand, the quan-
titative component of an ID is a set of conditional probability distributions and
utility functions associated to the chance and utility nodes respectively. In gen-
eral, we will talk about probability and utility potentials.

Besides being useful in the computation of expected utilities, IDs also have
an intuitive nature. This makes that IDs could easily be understood by experts
from other fields who are usually not familiar with machine learning methods. For
that reason, IDs are suitable models for many real application domains: medicine
[76, 3, 88, 77], economics [34], environmental sciences [81, 29], defence [46, 82],
etc.

In spite of all the advantages previously stated, the classical ID formalism has,
however, some drawbacks:

• High computational cost: the intermediate potentials generated during the
evaluation of IDs may be extremely large. As a consequence, the evaluation
has a high computational cost in terms of memory space and time. This
situation is even more problematic in complex IDs, whose evaluation may
become infeasible due to the limitations of the computer.

• Inefficient evaluation of asymmetric decision problems: in many real
decision problems, the possible outcomes and decision options for some
variables may depend on the past. For example, let us consider a decision
problem where you have the option of doing a test, then any possible re-
sult for this test is meaningless if you have decided not doing it. This kind
of poblems are so-called asymmetric [108, 4] and an important drawback
of IDs is related to their inability for efficiently representing them. To be
modelled as an ID, asymmetric decision problems must be symmetrized by
adding artificial states to the domains of some variables. Even more, poten-
tials might contain some impossible configurations (due to the asymmetries
of the problem) that are not relevant for solving the decision problem. This

2.1. Contributions 17

implies that the evaluation with conventional algorithms, though feasible,
involves a considerable amount of unnecessary memory space and compu-
tation time.

• Incapacity to express imprecision: in the classical ID formalism, poten-
tials are functions that assigns sharp (i.e., precise) values to each possible
combination of states for a set of variables (e.g., the probability of X = x1

is 0.75) . This might be an issue with real models, whose potentials are
typically obtained from expert judgements or partially reliable data: sharp
values can be unable to express a qualitative expert judgement or a statis-
tical analysis based on scarce or missing data (e.g., which is the number
modelling the probability for an option more probable than its negation?
And which is the value modelling that the probability of X = x1 is high?).

For addressing these problems, in this dissertation we propose several data
structures for representing the quantitative and the qualitative components of an
ID. Additionally, several evaluation methods using these data structures are also
proposed.

2.1 Contributions

2.1.1 Computational cost reduction

One main contribution of this thesis is the proposal of binary trees (BTs) instead
of tables for representing and managing the potentials involved in IDs. In doing
so, we aim to address the problem of the large generated potentials and reduce
the computational complexity of the evaluation. A BT is a tree based structure
where leaf nodes labelled with the numerical values of the potential. Each inter-
nal node is labelled with a variable and they always have two outgoing branches
labelled with subsets of the states of the variable. The advantage of BTs resides
in their capability of representing general forms of independence that cannot be
structurally encoded by IDs. This is possible because some identical values in the
potential can be grouped into a single one. This enhanced capability makes the
representation of potentials even more compact. As this forms of independence

18 Chapter 2. Introduction

are quite frequent in large IDs representing real world decision problems, their
evaluation should be more efficient. Additionally, if BTs are still extremely large,
they can be pruned leading to faster but approximate solutions.

The key concepts for representing potentials as BTs are detailed in Chapter 5:
basics definitions of BTs are given with special focus on the forms of indepen-
dences that can be encoded using BTs. We also propose heuristic algorithms for
building (from tables) and pruning BTs representing probability and utility po-
tentials. The ID evaluation using this data structure is explained in Chapter 8.
For that, we propose recursive algorithms for doing the basics operations directly
on BTs. Then, we explain how some of the main evaluation algorithms can be
adapted for working with this potential representation. In the experimental work,
we compare BTs with other representations in different aspects: computation
time, storage requirements and error. The content related to BTs was published
in the international journal IJUFKS [19] and presented at the workshop PGM’12
[17] and at CAEPIA’13 [13].

Some evaluation methods proposed for working with BTs are greedy algo-
rithms that choose at each step the next variable to remove. This decision is taken
based on any heuristic that tries to minimize the complexity of the operations in-
volved in the evaluation. However, these heuristics might not be suitable if poten-
tials are represented using BTs. For that reason, in Chapter 9, two new heuristics
that consider that potentials are represented using BT are proposed. These heuris-
tics estimate the size of BTs generated when removing a variable. In doing so, we
aim to reduce even more the complexity of the evaluation. This work was pub-
lished in a conference paper at SCAI’13 [16].

In Chapter 12, we also explore different alternatives for reducing the computa-
tional cost of the evaluation assuming that the potentials of the ID are represented
as tables. We base on the following idea: some of the main evaluation algorithms
require performing several combinations and marginalizations on the potentials
attached to the ID. Finding an optimal order for these operations is a NP-hard
problem [5] and it is an element of crucial importance for the efficiency of the

2.1. Contributions 19

evaluation. The evaluation of an ID can be considered as a combinatorial opti-
mization, that is the problem of finding an optimal order in which combinations
and marginalizations are performed.

In this dissertation, different approaches for optimizing the order of the op-
erations involved in the evaluation of IDs are considered. First, we adapt the
symbolic probabilistic inference (SPI) algorithm [104, 74] for evaluating IDs.
Secondly, an optimization of variable elimination (VE). This optimization con-
sists of using a greedy algorithm for minimizing the cost of each operation with
the potentials required for the evaluation. This optimization can be seen as an
extension of the binary join trees of P.P. Shenoy [106] to IDs. In the exper-
imental work, we analyse the behaviour of all these algorithms using a set of
IDs from the literature. It is empirically proved that the proposed algorithms
can improve the efficiency of the evaluation. Moreover, SPI outperforms VE in
many IDs. Preliminary versions of this content were presented at IPMU’14 [20],
at the workshop PGM’14 [14] and finally published at the international journal
IJAR [15].

2.1.2 Efficient evaluation of asymmetric decision problems

The problem related to the evaluation of IDs modelling asymmetric decision prob-
lems can also be solved using BTs. In our approach, the qualitative information
about the problem (constraints, due to asymmetries) is represented using BTs and
will be called binary constraint trees (BCTs). The structure of these BTs is the
same that the one for representing potentials, yet the leaves can only be labelled
either with a 0 or a 1. A leaf with a 0 identifies an impossible combination of the
states of the variables in the BCT. As the same data structure is used for both, po-
tentials and asymmetries, they can be easily applied in order to reduce the number
of scenarios to consider. As a consequence, the efficiency of the evaluation of IDs
representing asymmetric decision problems is improved. With this approach, we
try to keep the framework without changes, as well as using the standard algo-
rithms as much as possible.

20 Chapter 2. Introduction

In Chapter 6, the basic definition about BCTs are given. We detail how BCTs
can be build from constraint rules, which are logical expressions for defining
asymmetries in a more intuitive way. In Chapter 10 we explain how an ID with
asymmetries can be evaluated. In particular, an extension of the variable elimina-
tion algorithm for working with BCTs is proposed. In the experimental work, we
show that application of constraints represented as BTs can reduce the complexity
of the evaluation in terms of time and memory. This approach was presented at
the international conference ECSQARU’13 [18].

2.1.3 Extension to imprecise models

Another main contribution of this dissertation consists of extending the ID formal-
ism to the interval-valued case. In doing so, we address the problem of incapacity
of standard IDs to express the imprecision or vagueness in their potentials (usually
obtained from experts or from partially reliable data). In particular, we propose
replacing the sharp values of potentials involved in an ID with intervals. Such
generalization is called interval-valued potentials. An ID with this kind of poten-
tials is an interval-valued ID and it can be seen as a collection of classical (i.e.,
precise) IDs consistent with the interval constraints. Some standard approaches to
IDs evaluation are generalized in order to cope with the interval-valued case. The
proposed algorithms are outer approximations1 of the exact solutions. Yet, the use
of linear programming methods avoid to produce unnecessarily large outer ap-
proximations without increasing the computational complexity: this remains the
same as with precise potentials for both algorithms. Note that using intervals, the
exact evaluation is infeasible: a more general imprecise framework would be re-
quired. Yet, this would increase exponentially the complexity of the evaluation.

The formalization of the concept of interval-valued potential is given in Chap-
ter 7. Then, the proposed algorithms for evaluation IDs with intervals are detailed

1A method is an outer approximation when the obtained solution encompasses the exact one.

2.2. Overview 21

in Chapter 11. An experimental comparison against a similar approach for these
models is also given, and it shows a clear improvement in terms of both evaluation
time and accuracy. This extension of the ID formalism to intervals was initially
presented at the conference ECSQARU’15 [11]. Afterwards, it was published in
the international journal IJAR [12] with all the methods here proposed and with
more accurate descriptions and examples.

2.2 Overview

This dissertation is divided across four parts. Part I is an introductory section
composed of four chapters. Chapter 1 resumes the main conclusions achieved
with this dissertation, and it has been written in Spanish to fulfil the requirements
given by the University of Granada related to the Doctoral theses that aim to ob-
tain the International mention. Chapter 2 provides an introduction to the topic of
this thesis and explains the main contributions. The required background about
the topic is given in Chapter 3. The notation and basic concepts about IDs is in-
troduced in Chapter 4.

The second part, Part II, introduces the new data structures proposed in this
dissertation for representing the quantitative and qualitative information in IDs.
Chapters 5 and 6 focus on the use of BTs for representing, respectively, potentials
and constraints. Chapter 7 provides the formalization of the concept of interval-
valued potential as proposed in this dissertation. Part III focuses on the evaluation
of IDs with different data structures: Chapters 8 and 9 details the evaluation with
BTs. Chapter 10 explains how an ID with asymmetries can be evaluated using
BTs for representing potentials and constraints. In Chapter 11, extensions of some
evaluation algorithms to cope with intervals are given. Additionally, efficient al-
gorithms for evaluating IDs where potentials are represented as tables are given in
Chapter 12.

Finally, Part IV contains one chapter, Chapter 13. This chapter provides a
discussion of the main conclusions of the thesis and states the lines for future

22 Chapter 2. Introduction

work. Also, a list of publications supporting the contributions of this dissertation
is provided.

Chapter 3

Fundamentals

3.1 Reasoning under uncertainty

Randomness and uncertain judgements are inherent in most of the real-world
problems. While humans have the ability to assimilate and reason with uncer-
tain information (i.e. incomplete, contradictory, or subject to change), this is not
so straightforward for computers. Reasoning under uncertainty is the branch of
artificial intelligence that is concerned with modelling this facet of human skill. In
other words, it deals with the problematic of creating automatic systems that take
the available information and derive conclusions (i.e. infer some new knowledge).
In order to illustrate the process of reasoning under uncertainty, let us consider the
following situation.

Example 1 (car start problem [64]) In the morning, my car will not start. I can
hear the starter turn, but nothing happens. There may be several reasons for
my problem. I can hear the starter roll, so there must be power in the battery.
Therefore, the most probable causes are that there is not fuel or that the spark
plugs are dirty. To find out, I first look at the fuel meter. It shows full, so I decide
to clean the spark plugs.

In previous example, a human can easily deduce that the problem is that the
spark plus are dirty based on the available information (i.e. there must be power
in the battery and there is fuel). For making a computer simulate that kind of

23

24 Chapter 3. Fundamentals

reasoning, we need ways of representing the problem and ways of performing
inference in this representation.

Several paradigms for reasoning under uncertainty have been suggested, such
as fuzzy ruled based systems [112], neural networks [33], etc. In this dissertation
we will focus on probabilistic graphical models (PGMs) which offer an intuitive
representation and are based on a well-established theoretical foundation of graph
and probability theory. In Section 3.4 we will define the basic concepts about
PGMs. Yet, it is required to introduce first the two theories previously mentioned.

3.2 Graph theory

3.2.1 Basics

Graph theory is the field that studies the mathematical structures which represent
the relation between a set of objects (e.g. variables in a problem). These structures
are called graphs, which can be defined as follows.

Definition 1 (graph) A graph is a pair G := 〈X,L〉 where X is a set of nodes
X := {X1, ..., Xn} and L is a set of links or arcs L := {l1, ..., lI}. A graph
gives an abstract representation of a set of objects represented by the nodes in
X together with binary relations between distinct nodes, represented by the set of
links L ⊆ {(Xi, Xj) ∈ X×X}.

Each link connects a different pair of nodes from X, and the specification of
the link will define its nature. A link that connects two nodes Xi, Xj , can be
directed Xi → Xj or Xi ← Xj or undirected Xi −Xj . Depending on the nature
of the links, we can consider the following types of graphs (Figure 3.1 shows an
example of each type):

• Directed if all its links are directed.

• Undirected if all its links are undirected

• Partially directed containing both, directed and undirected links.

3.2. Graph theory 25

A B

C

E F

(a)

A B

C

E F

(b)

A B

C

E F

(c)

Figure 3.1: Directed graph (a), undirected graph (b) and partially directed
graph (c).

If there is a link (directed or undirected) that connects two nodes Xi and Xj ,
we will say that Xi is a neighbour of Xj and vice versa. In case of directed links,
the sets of parents (i.e. predecessors) of a node Xi according to G is denoted
pa(Xi). Similarly, its set of children (i.e. successors) is denoted ch(Xi). For
example, in Figure 3.1 (a), nodes A and C are neighbours, pa(C) = {A,B} and
ch(C) = {E,F}.

We define a path between two nodes Xi and Xj as a sequence of nodes
{Xi, . . . , Xj} such that there exists a link for each pair of consecutive nodes in
the sequence, i.e. they are neighbours. We say that a path is directed if each node
in such sequence is a parent of the next one. Otherwise, if each node is a parent or
a child we call it undirected path (a.k.a active path). In Figure 3.1 (a), {A,C,B}
is an undirected path while {A,C, F} is a directed one.

For the scope of this dissertation, we should introduce the concept of directed
acyclic graph (DAG) which is the underlying graphical structure of Bayesian net-
works and influence diagrams. A DAG is a directed graph with no cycles. A
cycle in a graph is a directed path {X1, ..., Xk} where X1 = Xk. As an exam-
ple of DAG, we have the graph shown Figure 3.1 (a). Note that the sequence
{B,C, F,B} does not define a directed path and hence it is not a cycle. By con-
trast, the same path in Figure 3.1 (c) is directed and so it is a cycle.

26 Chapter 3. Fundamentals

3.2.2 Graphs and d-separation

DAGs can be used for modelling reasoning problems in a graphical and intuitive
way. Moreover, a DAG represents the relations of dependence (and independence)
between the variables in the problem. The nodes in the DAG correspond to the
variables, therefore, from now on we will use both terms interchangeably. The
set of possible values or states that a variable can take is called domain. In this
dissertation, only discrete domains will be considered, i.e. variables can take a
finite number of mutually exclusive states. As an example, let us consider the
graphical representation of the car star problem as follows.

Example 2 (DAG for the car start problem) Figure 3.2 depicts the DAG mod-
elling the reasoning problem described in Example 1. It contains the following
nodes: Fuel meter indicating the output of the fuel meter standing and whose
domain is {full, half, empty}; Fuel? that shows the presence of fuel in the tank
whose domain is {yes, no}; Start? indicating if the car engiene stars with two
possible values {yes, no}; Clean plugs that indicates if the spark plugs are clean
or not.

Fuel meter

Fuel?

Start?

Clean plugs

Figure 3.2: DAG modelling the car start problem described in Example 1.

In a DAG representing a reasoning problem, a link from Xi to Xj represents
a direct dependence, i.e. Xi depends on Xj and vice versa. In Example 3.2, there
is a link from Fuel? to Fuel meter which means that the amount of fuel in the
tank is reflected in the output of the fuel meter standing. In general, we can say
that every variable can be in only one state at one time point, and changes in those
states can lead to changes in the remaining variables (not only in the neighbours).
We will be interested in reasoning processes such as: “if there is fuel in the tank,
and I know that the car does not start, should I clean the spark plugs”. When we

3.2. Graph theory 27

know the state in which a variable is, we say that there is evidence about that vari-
able (i.e. it observed).

DAGs can be used to follow how a change of certainty in some variables af-
fects to the rest of variables. Here we present the graphical criterion used for this
kind of analysis, which is called d-separation [32, 53, 103]. When two variables
X and Y are d-separated given the variable Z means that, a change of certainty
in one variable does not affect to the other one when Z is known, i.e. they are
independent. Otherwise, they are d-connected, i.e. they are dependent.

In short, for determining if two variables are d-separated, we should verify if
all the possible (undirected) paths between them are blocked. A path is blocked
if at least one of its connections is blocked. Figure 3.3 depicts the three possible
types of connections in a DAG between a node X and Y connected through Z.

X Z Y X Z Y X Z Y

serial diverging converging

Figure 3.3: Different types of connections in a DAG

In a serial connection, also called head to tail, if we do not have evidence
about Z, a knowledge of X will influence our knowledge on Y through Z, and
vice versa. In other words, the flow of information can travel through the connec-
tion and therefore it is not blocked. By contrast, if Z is observed the flow cannot
travel and so the connection is blocked. The same holds for a diverging connec-
tion, also called tail to tail, where the flow of information can travel unless Z is
observed. Finally, in a converging connection or head to head, the flow can only
travel when Z or any of its children are observed. Otherwise, the connection is
blocked. Having explained these concepts, we can now give a definition of the
d-separation as follows.

28 Chapter 3. Fundamentals

Definition 2 (d-separation) Let X, Y and Z be pairwise disjoint 1 sets of nodes
in a DAG. Let us consider all undirected paths between them. Then X and Y are
d-separated given Z if and only if along every of these paths there is an interme-
diate node A such that either:

(i) the connection is serial or diverging and A belongs to Z

or

(ii) the connection is converging and neither A nor any of its descendants are
in Z.

otherwise X and Y are d-connected given Z.

As an example, let us consider the DAG shown in Figure 3.2: if we
know the actual amount of fuel in the tank, the output of the meter does not
give us any new information about the probability of the car to start: the path
{Fuel meter, Fuel?, Start?} contains a diverging connection with an observed
node and hence the path it is blocked (case i). As there is not any other path
connecting both variables, we conclude that Fuel meter and Start? are inde-
pendent given Fuel?. On the other hand, if the car does not start, the amount
of fuel in the tank will tell us if we have to clean the spark plugs: the path
{Fuel?, Start?, Clean plugs} contains a converging connection with an
observed node so the path is not blocked (case ii). Therefore, we can say that
Fuel? and Clean plugs are d-connected given Start?.

3.3 Probability Theory

In previous section, it was explained how the presence of dependency relations
between variables in a reasoning problem under uncertainty can be represented
using graphs. The next step is quantifying these dependencies. For example, in
the car start problem, by analysing the graph we know that there is a dependency

1A family of sets is pairwise disjoint or mutually disjoint if every two different sets in the
family are disjoint.

3.3. Probability Theory 29

between the cleanness of the spark plugs and the fact that the car will not start.
However, it could happen that 6 out of 10 times the car will start despite the dirty in
the spark plugs. The quantification of the dependency relations is done by means
of the (Bayesian) probability theory, whose basic concept are here explained.

3.3.1 Basics

When using the term “probability” in day we refer to a degree of confidence that
an event of an uncertain nature may occur. An event might be the different out-
comes of throwing a die, the outcome of a horse race, the weather configurations,
or the possible failures of a piece of machinery. Thus, an event is an outcome
of an experiment to which a probability is assigned. Probability theory deals with
the formal foundations for assigning probabilities to uncertain events and the rules
they should obey.

Formally, we define events by assuming that there is a set of all possible out-
comes, called event space and denoted by Ω. For example, if we consider the
experiment of throwing a die, the event space is Ω = {1, 2, 3, 4, 5, 6}. In addition,
we assume that there is a set of measurable events S to which we are willing to
assign probabilities, i.e. a σ-algebra2 on Ω. An event is any element of S . For
example, in the die experiment, the event {5} represents the case in which the die
shows the number 5. Another event can be {5} ∪ {6} which represent the case in
which we obtain either a 5 or a 6.

The probability of an event α, denoted P (α), is a number quantifying the
degree of confidence that α will occur. For example, the probability of getting a 5

is P ({5}) = 1
6
. Probabilities obey the following basic axioms:

Axiom 1 For any event α ∈ S, its probability belongs to the interval [0, 1]. If

2A σ-algebra on Ω is any sub-set S of the power set of Ω satisfying the following conditions:
it contains the empty event ∅ and the trivial event Ω; it is closed under union, i.e. if α, β ∈ S, then
(α ∪ β) ∈ S; It is closed under complementation, i.e. if α ∈ S, then (Ω− α) ∈ S.

30 Chapter 3. Fundamentals

P (α) = 1 we are certain that one of the outcomes in α occurs. By contrast, if
P (α) = 0 means that α is an imposible event.

Axiom 2 For any two events α, β ∈ S such that they are mutually exclusive, the
probability that either α or β occurs is:

P (α ∪ β) = P (α) + P (β)

From previous axioms, we can deduce that trivial event Ω, allowing all possi-
ble outcomes, has the maximal possible probability of 1, i.e. P (Ω) = 1. For ex-
ample, in the die experiment, it holds that P ({1}∪{2}∪{3}∪{4}∪{5}∪{6}) = 1.
By contrast, the empty event is an impossible event, i.e. P (∅) = 0.

For any two events α and β, the probability that both α and β occur is called
the joint probability of such events and denoted P (α ∩ β) or simply P (α, β).
Intuitively, the joint probability is the proportion of events in the event space Ω

satisfying both α and β. Note that if both events are mutually exclusive it holds
that P (α, β) = 0. For example, in the die experiment, let us consider the three
following events α = {3} ∪ {4}, β = {1} ∪ {2} ∪ {3} and δ = {4} ∪ {5} ∪ {6}.
Then we can obtain that P (α, β) = P ({3}) = 1

6
while P (β, δ) = P (∅) = 0.

Rather than giving the probability of an event, in general we will be more
interested in expressing its probability conditioned by other known factors (i.e.
conditional probability). In the die example, we can say that the probability of
getting a 5 is 1

6
given that the die is fair. By contrast, the probability of a die

turning up a 5 assuming that it is not fair could be, for instance, 2
6
.

Definition 3 (conditional probability) The conditional probability of an event α
given β can be written as P (α|β) = p. This means that if β is true and everything
else known is irrelevant for α, then the probability of α is p. The conditional
probability of α given β can be computed as follows.

P (α|β) =
P (α, β)

P (β)
(3.1)

3.3. Probability Theory 31

Intuitively, P (α|β) is the relative proportion of outcomes satisfying α among
those that satisfy β. (Note that the conditional probability is not defined when
β is an impossible event). From the definition of conditional probability, we can
obtain the third axiom of probability calculus (a.k.a fundamental rule).

Axiom 3 For any two events α and β, the joint probability of α and β is

P (α, β) = P (α|β) · P (β) = P (β|α) · P (α) (3.2)

From (3.1) and (3.2) we can obtain the Bayes’ rule which is important since
it allows us to compute the conditional probability P (α|β) from the “inverse”
conditional probability P (β|α).

P (α|β) =
P (β|α) · P (α)

P (β)
(3.3)

3.3.2 Probabilities for variables

By now, our discussion on probabilities has dealt with events. However, when
modelling reasoning problems, it would be more natural to consider variables tak-
ing finite number of mutually exclusive states. Herein we present the concepts
about probabilities in terms of variables.

More precisely, we will consider random (or chance) variables: those vari-
ables representing an entity of uncertain nature. That is, its value is subject to
variations due to chance. For example, a random variable could represent the ex-
periment of rolling a die with the possible values {1, 2, 3, 4, 5, 6}. Thus, we can
say that the events are clustered around variables.

We will usually use upper-case roman letters to denote random variables and
lower-case letters for its values (or states). For example, ifX is a random variable,
x will denote a generic state of X . The set of possible values that X can take is
called domain and denoted ΩX . In this dissertation, only discrete domains will
be considered, i.e. variables can take a finite number of mutually exclusive states.
Similarly, we use bold-face upper-case roman letter to denote sets of variables,

32 Chapter 3. Fundamentals

e.g. X := {X1, . . . , Xm} is a set of m variables. The domain of X is defined
as ΩX = ΩX1×,ΩX2 ,× · · · × ΩXm . Its elements are called configurations and
denoted using bold-face lower-case letters, e.g. x ∈ ΩX.

The uncertainty of a random variable is quantified by means of a probability
distribution, which is a function defining the probability of each possible event
described by the random variable. Formally, a probability distribution can be
defined as follows.

Definition 4 (probability distribution) Let X be a (random) variable with do-
main ΩX . Then a probability distribution over X , denoted P (X), is a mapping
P : ΩX → [0, 1] such that

∑

x∈ ΩX

P (X = x) = 1

where P (X = x) is the probability of X being x.

Note that if the variable is obvious from the context, we will simply write P (x)

instead of P (X = x). A probability distribution can also be seen as a vector of n
probabilities summing 1 where n is the number of states of the variable:

P (X) =







P (x1) x1

P (x2) x2

...
P (xn) xn

The probability distribution of only one variable is often called marginal dis-
tribution. However, in many situations we are interested in questions that involve
the values of several random variables. For example, we might be interested in
the event Fuel? = empty and Clean plugs = false. To discuss such events, we
need to consider the joint distribution over these two random variables. In general,
the joint probability over a set of variables is defined as follows.

3.3. Probability Theory 33

Definition 5 (joint probability distribution) Let X := {X1, . . . , Xk} be a set of
k variables with domain ΩX. Then a probability distribution over X, denoted
either P (X) or P (X1, X2, . . . , Xk), is a mapping P : ΩX → [0, 1] such that

∑

x∈ ΩX

P (x) = 1

Let us consider the particular case two variablesX and Y takes n andm states
respectively, then the joint probability P (X, Y) can be represented as a table of
n ·m entries as depicted below. Note that the sum of all entries should be 1.

P (X, Y) =

y1 y2 ym





P (x1, y1) P (x1, y2) · · · P (x1, ym) x1

P (x2, y1) P (x2, y2) · · · P (x2, ym) x2

...
...

P (xn, y1) P (xn, y2) · · · P (xn, ym) xn

(3.4)

The joint distribution of two random variables has to be consistent with the
marginal distribution, in that we can state the rule of total probability as follows.

Proposition 1 (rule of total probability) Let P (X, Y) be a joint probability dis-
tribution for two variables X and Y . As ΩX and ΩY are exhaustive sets of mutu-
ally exclusive states of X and Y , it holds that:

P (x) = P (x, y1) + P (x, y2) + . . .+ P (x, ym) =
∑

y∈ΩY

P (x, y) (3.5)

for each x ∈ ΩX .

In a more compact notation, we may write this rule as P (X) =
∑

Y P (X, Y).
This operation is often referred as to sum-marginalization or simply marginaliza-
tion. That is, in previous expression we may say that we “sum-marginalize out
variable Y from P (X, Y)”. Considering the representation shown in (3.4), the
rule of total probability implies that, for computing P (X), we have to sum all the
entries in the same row.

34 Chapter 3. Fundamentals

The notion of conditional probability can also be considered for random vari-
ables. Thus, we need to introduce the concept of conditional probability distribu-
tion over some variables conditioned over the states of some others.

Definition 6 (conditional probability distribution) Let X and Y be two sets of
disjoint variables with domains ΩX and ΩY. A conditional probability distribu-
tion (CPD) of X given Y, denoted P (X|Y) is a mapping P : ΩX × ΩY → [0, 1]

such that

∑

x∈ ΩX

P (x|y) = 1

for each y ∈ ΩY.

Intuitively, P (X|Y) assigns a probability distribution over X to each config-
uration in ΩY. The set of variables on the left of the conditioning bar (i.e. in the
head) are often called conditioned variables. By contrast, those on the right (i.e.
in the tail) are called conditioning variables.

If the variables X and Y takes n and m states respectively, then P (X|Y) can
be represented as a table of n · m entries as depicted below. Note that, in the
following representation, the sum of all the entries in a column should be 1.

P (X|Y) =
y1 y2 ym[]

P (X|y1) P (X|y2) · · · P (X|ym) =

=

y1 y2 ym





P (x1|y1) P (x1|y2) · · · P (x1|ym) x1

P (x2|y1) P (x2|y2) · · · P (x2|ym) x2

...
...

P (xn|y1) P (xn|y2) · · · P (xn|ym) xn

(3.6)

3.3. Probability Theory 35

When applied to variables, the fundamental rule (see (3.2)) can be written as
follows. Note that operations with probability distributions, such as multiplication
or division, are made element-wise.

P (X, Y) = P (X|Y) · P (Y) = P (Y |X) · P (X) (3.7)

And therefore, the set of conditional probability distribution P (X|Y) can be
compute as shown below.

P (X|Y) =
P (X, Y)

P (Y)
(3.8)

Finally, from (3.7) and (3.8) we can obtain the Bayes’ rule for probability
distributions:

P (X|Y) =
P (Y |X) · P (X)

P (Y)
(3.9)

3.3.3 Marginal and conditional independence

In Section 3.2.2 we already introduced the concept of independence between vari-
ables and a graphical criterion for its detection. Intuitively, two variables are inde-
pendent if a change of certainty in one variable does not change the certainty for
the other one. This is reflected in the probability distributions of such variables in
the sense that, if two variables X and Y are independent we expect P (X|Y) to be
equal to P (X). The independence between two variables (or sets of variables) is
often called marginal independence and can be defined as follows [70].

Definition 7 (marginal independence) Let X and Y be two sets of variables.
We say that X and Y are (marginal) independent and denote I(X⊥Y) if and
only if:

P (x|y) = P (x)

for each possible value of (x,y) ∈ ΩX × ΩY such as P (y) > 0.

36 Chapter 3. Fundamentals

Previous definition implies that, given a configuration of the conditioned
variables, the probability is the same regardless of the configuration
of the conditioning variables. As an example, let x be a state of X and let Y
be a variable taking m values, if X and Y are independent then it holds that
P (x | y1) = P (x | y2) = . . . = P (x | ym). If we consider the table representation
shown in (3.6), the independence of X and Y implies that all the values in a row
are the same. A more complex example of independence is shown below.

Example 3 Let as consider the following probability distributions over the vari-
ables X and Y :

P (X|Y) =

y1 y2 y3





0.25 0.25 0.25 x1

0.25 0.25 0.25 x2

0.1 0.1 0.1 x3

0.4 0.4 0.4 x4

P (Y) =







0.5 y1

0.2 y2

0.3 y3

The marginal probability of X can be calculated by sum-marginalizing out vari-
able Y from the joint probability distribution:

P (X) =
∑

Y

P (X|Y) · P (Y) =







0.25 x1

0.25 x2

0.1 x3

0.4 x4

It holds that P (x|y) = P (x) for any each possible value of (x, y) ∈ ΩX × ΩY .
Thus, X and Y are independent, i.e. I(X⊥Y).

Even though marginal independence is a useful property, it is not a frequent
situation finding two marginal independent variables. A more usual case is when
two variables are independent given some others. In that case we say that there is
a conditional independence (CI) [70], which can be defined as follows.

3.3. Probability Theory 37

Definition 8 (conditional independence) Let X, Y and Z three sets of variables.
Then X and Y are conditional independent given Z, denoted I(X⊥Y|Z) if and
only if:

P (x|y, z) = P (x|z)

for each possible value of (x,y, z) ∈ ΩX × ΩY × ΩZ, such as P (y, z) > 0.

As stated for marginal independence, previous definition also implies the pres-
ence of some identical values. Now, if variables X and Y are independent given
Z, then it holds P (x | y1, z) = P (x | y2, z) = . . . = P (x | ym, z) for each possible
value of (x, z) ∈ ΩX × ΩZ .

Example 4 Let as consider the following probability distributions over the vari-
ables X, Y and Z:

P (X|Y, Z) =

x1 x2 x3 x4





0.25 0.25 0.1 0.4 y1

0.25 0.25 0.1 0.4 y2 z1

0.25 0.25 0.1 0.4 y3

0.0 0.5 0.3 0.2 y1

0.0 0.5 0.3 0.2 y2 z1

0.0 0.5 0.3 0.2 y3

P (Y) =







0.5 y1

0.3 y2

0.2 y3

P (X|Z) can be calculated by multiplying3 previous distributions and marginaliz-
ing out variable Y :

P (X|Z) =
∑

Y

P (X|Y, Z) · P (Y) =

x1 x2 x3 x4[]
0.25 0.25 0.1 0.4 z1

0.0 0.5 0.3 0.2 z2

3the multiplication of two probability distributions is the element-wise product.

38 Chapter 3. Fundamentals

It holds that P (x|y, z) = P (x|z) for each value of (x, y, z) ∈ ΩX × ΩY × ΩZ .
Thus, X and Y are conditionally independent given Z, i.e. I(X⊥Y |Z).

Note that the marginal independence can be seen as a particular case of the
conditional one: if we have that Z = ∅, the conditional independence is reduced
to a marginal one. Thus instead of writing I(X⊥Y|∅) we write I(X⊥Y).

CI can be used to facilitate the acquisition, representation, and inference of
probabilistic knowledge. In particular, in Section 3.4, we will see how probabilis-
tic graphical models can capture such independencies for reducing the represen-
tation of the joint probability distribution over a set of variables.

3.3.4 More general forms of independence

It is well-known that the notion of conditional independence is too restrictive
to capture independencies that only hold for certain subsets of the variable do-
mains (i.e. in certain partitions or subsets of tuples in the probability distribution).
Herein we review some other types of independencies which are more general
than CIs, namely context-specific independence (CSI) [7] , partial conditional
independence (PCI) [92, 75] and contextual weak independence (CWI) [110, 10].

3.3.4.1 Context-specific independencies

Independencies that only hold for certain contexts, i.e. given a specific assignment
of values to some variables, are called context-specific independencies (CSIs).
These were first introduced by Boutilier [7] and can be defined as follows.

Definition 9 (context-specific independence) Let X,Y,Z and C be pairwise dis-
joint sets of variables, then X and Y, are contextually independent given Z and
the context C = c, denoted I(X⊥Y|Z, c), if:

P (x|y, z, c) = P (x|, z, c)

for each possible value of (x,y, z) ∈ ΩX × ΩY × ΩZ, such as P (y, z, c) > 0.

3.3. Probability Theory 39

Previous definition implies that, if variables X and Y are independent given
Z and the context C = c, then it holds that P (x | y1, z, c) = P (x | y2, z, c) =

. . . = P (x | ym, z, c) for each possible value of (x, z) ∈ ΩX × ΩZ .

Example 5 In order to introduce this new kind of independence, let us consider
the following probability distributions:

P (X|Y, Z) =

x1 x2 x3 x4





0.25 0.25 0.1 0.4 y1

0.25 0.25 0.1 0.4 y2 z1

0.25 0.25 0.1 0.4 y3

0.1 0.5 0.2 0.2 y1

0.1 0.5 0.2 0.2 y2 z2

0.15 0.35 0.3 0.2 y3

P (Y) =







0.5 y1

0.3 y2

0.2 y3

The distribution P (X|Z) can be calculated by multiplying previous distributions
and sum-marginalizing out variable Y :

P (X|Z) =
∑

Y

P (X|Y, Z) · P (Y) =

x1 x2 x3 x4[]
0.25 0.25 0.1 0.4 z1

0.11 0.47 0.22 0.2 z1

We can observe that X and Y are not conditionally independent given Z: it is not
true that P (x|y, z) = P (x|z) for each (x, y, z) ∈ ΩX×ΩY×ΩZ (see Definition 8).
However, such condition is true if we only consider the configurations where Z
takes the values z1. Thus, we say thatX and Y are contextually independent given
the context Z = z1 i.e. I(X⊥Y |Z = z1). By contrast, they are not contextually
independent given the context Z = z2.

Note that CSI is a more general form of independence: a CI is basically a CSI
that holds for all the contexts. In Example 4 (page 37) variables X and Y are
conditional independent given Z, i.e. I(X⊥Y |Z). We can also say that X and Y
are contextually independent given all the states of Z, i.e. I(X⊥Y |Z = z1) and
I(X⊥Y |Z = z1).

40 Chapter 3. Fundamentals

3.3.4.2 Partial conditional independencies

Partial conditional independence (PCI) is a generalization of CSI: a PCI is basi-
cally a CSI that holds if a certain subset of the variable domains are considered.
This type of independence, which is defined below, was introduced by Pensar [92]
and by Lintusaari [75].

Definition 10 (partial conditional independence) Let X,Y and C three disjoint
sets of variables. We say that X and Y are partial conditional independent in the
domain Ω∗Y ⊆ ΩY given the context C = c , denoted I(X⊥Y|Ω∗Y, c), if:

P (x|y, c) = P (x|y′, c)

holds for all (x,y), (x,y′) ∈ ΩX × Ω∗Y whenever P (y, c) = P (y′, c)

Note that if C = ∅. then I(X⊥Y|Ω∗Y) is simply called partial independence
(PCI). Here below an example of this type of independence is given.

Example 6 Let us consider the probability distribution P (X|Y, Z) depicted in
Example 5, where X and Y are contextually independent give Z = z1 but not
Z = z2. If we focus on the probability values consistent with Z = z2 we can
observe that:

P (x1|y1, z2) = P (x1|y2, z2) 6= P (x1|y3, z2)

P (x2|y1, z2) = P (x2|y2, z2) 6= P (x2|y3, z2)

P (x3|y1, z2) = P (x3|y2, z2) 6= P (x3|y3, z2)

P (x4|y1, z2) = P (x4|y2, z2) = P (x4|y3, z2)

If we restrict the domain of Y to {y1, y2}, the conditions of independence
given the context Z = z2 are satisfied. Therefore, X and Y are partially con-
ditional independent in the domain {y1, y2} and given the context Z = z2, i.e.
I(X⊥Y | {y1, y2}, z2).

3.3. Probability Theory 41

3.3.4.3 Contextual-weak independencies

Another form of independence generalizing CSI is contextual weak independence
(CWI), introduced by Wong and Butz [110, 10]. With CWIs, we might say, for
instance, that variables X and Y are weakly independents given the context C =

c. Unlike CSIs, in this case the partition in which the independence holds is not
explicitly defined by the context C = c. Formally, it can be defined as follows.

Definition 11 (contextual-weak independence) Let X,Y and C, be pairwise
disjoint sets of variables. Given a distribution P (X|Y,C), let us define T as
the set of tuples or configurations whose probability is higher that 0, i.e. T :=

{t = (x,y, c)|P (x|y, c) > 0}. Let θ(XC = c) and θ(C = cY) be partitions
4 of T . We say that X and Y are weakly independent given the context C = c ,
denoted WI(X⊥Y|c) if the following two conditions hold:

(i) θ(XC = c) ◦ θ(C = cY) = θ(C = cY) ◦ θ(XC = c) where ◦ denotes the
composition5 operator, and

(ii) there exists an equivalence class π in θ(XC = c) ◦ θ(C = cY) such that:
for any given (x,y) ∈ Ωπ

X × Ωπ
Y:

P (x| y, c) = P (x| c)

where Ωπ
X and Ωπ

Y are the sets of values of X and Y appearing in π.

Condition (i) states that the composite relation θ(XC = c) ◦ θ(C = cY)

is an equivalence relation. This is a necessary condition for the conditional weak
independence to hold. Condition (ii) says that X and Y are independent in context

4 θ(XC = c) is the equivalence relation induced by X and by the configuration C = c. Each
equivalence class π ∈ θ(XC = c) is a subset of tuples of T with the same configuration for X
and with C = c.

5Given two equivalence relations θ1 and θ2, the binary operator ◦ called composition is defined
by: for ti, tk ∈ T , ti(θ1 ◦ θ2)tk if for some tj ∈ T it holds that tiθ1tj and tjθ2tk.

42 Chapter 3. Fundamentals

C = c if we only consider the tuples present in any of the equivalence class of the
composite relation.

Example 7 Let us consider the CPD shown below. We aim to proof that D and
B are weakly independent given the context A = a1, i.e. WI(D⊥B|A = a1).

P (D|B,A) =

d1 d2 d3 d4





0.3 0.7 0 0 b1

0.3 0.7 0 0 b2 a1

0 0 0.1 0.9 b3

0 0 0.1 0.9 b4

0.6 0.4 0 0 b1

0.8 0.2 0 0 b2 a2

0 0 0.2 0.8 b3

0 0 0.3 0.7 b4

If only those configurations with a probability value higher than 0 are considered,
P (D|B,A) can be depicted as follows.

D B A P (D|B,A)

t1 d1 b1 a1 0.3

t2 d2 b1 a1 0.7

t3 d1 b2 a1 0.3

t4 d2 b2 a1 0.7

t5 d3 b3 a1 0.1

t6 d4 b3 a1 0.9

t7 d3 b4 a1 0.1

t8 d4 b4 a1 0.9

D B A P (D|B,A)

t9 d1 b1 a2 0.6

t10 d2 b1 a2 0.4

t11 d1 b2 a2 0.8

t12 d2 b2 a2 0.2

t13 d3 b3 a2 0.2

t14 d4 b3 a2 0.8

t15 d3 b4 a2 0.3

t16 d4 b4 a2 0.7

Let us now consider the following equivalence relations:

θ1(DA = a1) = {{t1, t3}, {t2, t4}, {t5, t7}, {t6, t8}}
θ2(BA = a1) = {{t1, t2}, {t3, t4}, {t5, t6}, {t7, t8}}

3.3. Probability Theory 43

Condition (i) in Definition 11 is satisfyed as the composition of θ1 and θ2 is also
an equivalence relation as it holds that:

θ1 ◦ θ2 = {π1 = {t1, t2, t3, t4}, π2 = {t5, t6, t7, t8}} = θ2 ◦ θ3 (3.10)

Given the equivalence class π1 obtained in (3.10), we can compute the following
domains for variables D and B:

Ωπ1
D = {d1, d2} Ωπ1

B = {b1, b2} (3.11)

If we consider the values of P (D|B,A) consistent with these domains, it holds
that:

P (d1|b1, a1) = 0.3 = P (d1|b2, a1)

P (d2|b1, a1) = 0.7 = P (d2|b2, a1)

in other words, D and B are independent given A = a1 with respect to the new
domains. Thus condition (ii) is satisfied and we can say that D and B are weakly
independent given the context A = a1, i.e. WI(D⊥B|A = a1). Now we can
similarly proceed and compute the new domains in the equivalence class π2:

Ωπ2
D = {d3, d4} Ωπ2

B = {b3, b4} (3.12)

Now we observe that:

P (d3|b3, a1) = 0.1 = P (d3|b4, a1)

P (d4|b3, a1) = 0.9 = P (d4|b4, a1)

Thus, variables D and B are also independent given A = a1 with respect to the
new domains in equivalence class π2.

If it holds that C = ∅, it will be simply called weak independence (i.e. non
contextual) and denoted WI(X⊥Y).

44 Chapter 3. Fundamentals

3.4 Probabilistic graphical models

A probabilistic graphical model (PGM), also known as probabilistic network, is a
visual representation of a reasoning problem under uncertainty used to infer new
knowledge. The representational components of a PGM are a qualitative and a
quantitative. The former encodes a set of (conditional) dependence and indepen-
dence relations among a set of variables. The quantitative component, on the other
hand, quantifies the strength of such dependencies.

More formally, a PGM contains three elements 〈X, P,G〉 where X is the set
of variables in the problem with a joint probability distribution P (X) and G is a
graph that represents the dependence (and independence) relations between the
variables. Note that P (X) and G are related in the sense that all the independen-
cies between variables expressed in G due to the d-separation criterion are also
conditional independencies 6 in the probability distribution P .

There are several types of PGMs such as Bayesian networks [89, 91], chain
graphs [100], Markov decision models [49], Influence diagrams [87, 56], etc. The
latter are fundamental for the scope of this dissertation and hence they are de-
scribed more in detail in Section 4.3. Bayesian networks, on the other hand, are
not directly connected with the topic of this thesis. Yet, in the following section
we briefly introduce them for two reasons: they are one of the types of PGMs more
commonly used and an influence diagram can be seen as an augmented bayesian
network with additional kinds of nodes.

3.4.1 Bayesian networks

A Bayesian network (BN) [89, 91] is a class of PGM representing a joint proba-
bility distribution over a finite set of random variables. The nodes in the network
represent the variables in a reasoning problem, and the links represent the (condi-

6For more details about d-separation and conditional independence see Sections 3.2.2 and
3.3.3 respectively.

3.4. Probabilistic graphical models 45

tional) dependencies and independencies among the variables. More formally, a
BN can be defined as follows.

Definition 12 (Bayesian network) A Bayesian network (BN) is a tuple 〈X,P,G〉
where:

• X is a set of discrete random variables.

• G is a DAG where each node represents a variable in X.

• P is a set of CPDs, containing one distribution P (X |pa(X)) for each
X ∈ X where pa(X) is the set of parents7 of X according to G.

The set P defines a joint probability distribution through the factorisation
(a.k.a the chain rule for Bayesian networks):

P (X) =
∏

X∈X
P (X|pa(X)) (3.13)

From previous equation we can observe that, in a BN, each variable X ∈ X is
conditional independent of its non-decendants given its parents. Moreover, BNs
admits d-seaparation as presented in Definition 2, page 27. This is the power of
BNs, which provide space saving in the representation of the joint probability.

Example 8 (BN for the car start problem) Figure 3.4 depicts the graph G
of a BN modelling the reasoning problem described in Example 1. The set of
random variables is X = {F,C,M, S}, while the set of probability distributions
is P = {P (F), P (C), P (M |F), P (S|F,C)}. The numerical values of these dis-
tributions are reported here below in a table form, with the corresponding states
depicted in grey.

7If a node X has no parents (i.e. pa(X) = ∅), then the distribution associated to X in P is the
marginal distribution P (X).

46 Chapter 3. Fundamentals

P (F) =
[]
0.98 f

0.02 e
, P (C) =

[]
0.96 y

0.04 n
,

P (M |F) =

f e






0.39 0.001 f

0.60 0.001 h

0.01 0.998 e
P (S|F,C) =

y n

f e f e[]
0.99 1.0 0.99 1.0 y

0.01 0.0 0.01 0.0 n

M

F

S

C

Figure 3.4: Graph of a BN modelling the car start problem. We have used the
abbreviations F (Fuel?), C (Clean P lugs), S (Start?), and M (Fuel Meter).

Considering previous example, a table representing the joint probability dis-
tribution P (F,C,M, S) requires 48 entries (i.e. 2 · 2 · 3 · 2) while only 18 are
required due to the factorisation.

Making probabilistic inference in BNs (a.k.a belief updating) consists of the
computation of the posterior probability distribution for a set of variables of inter-
est given some evidence over some other variables. In Example 8, we might be
interested, for instance, in computing P (C|S = n,M = f), i.e., the probability
for the plugs to be clean knowing that the car does not start and the fuel meter indi-
cates that the tank is full. During the last three decades, probabilistic inference has
attracted the interest of researchers in the field of BNs, leading to the development
of both, exact [116, 42, 79] and approximate algorithms [61, 90, 38].

Chapter 4

Probabilistic Graphical Models for
Decision Reasoning

Since their introduction in the mid 1970s, influence diagrams (IDs) [87, 56] have
become a popular and standard modelling tool for decision-making under uncer-
tainty. In this chapter, we introduce this kind of probabilistic graphical model:
Section 4.1 presents some basic concepts about decision theory, which provides a
formal foundation for IDs; Section 4.2 describes decision trees, which are another
tool for representing and solving decision problems. Section 4.3 introduces the
notation and basics concepts about IDs; finally, Section 4.5 describes some al-
gorithms present in the literature for evaluating IDs, namely variable elimination
[116, 64], arc reversal [102] and lazy evaluation [79].

4.1 Decision theory

In the task of decision making under uncertainty, the decision maker has to choose
between a set of possible actions (take a decision). Each of them can lead to one
of several outcomes (or consequences), which the decision maker can prefer to
different degrees. However, the outcome of each action might not be known with

47

48 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

certainty. Thus, both the probabilities of each outcome and the preferences must
be taken into account. In order to introduce the decision problems under uncer-
tainty, let us first consider the following example.

Example 9 (Investor’s decision problem [70]) An investor has two decide be-
tween two investment opportunities: he can spend his money in a high-technology
company (t), where he can make a profit of $4 million with 20 percent probabil-
ity and $0 with 80 percent probability; or he can invest in pork belly futures (p),
where he can make $3 million with 25 percent probability and $0 with 75 percent
probability.

In the previous example, the possible actions correspond to the kind of inver-
sion, i.e. t or p. The uncertain outcomes are to obtain a profit or not. We assume
that this profit determines the preference for each action. The expected utility (or
profit) of each action can be computed as follows:

EU(t) = 0.2 · 4 + 0.8 · 0 = 0.8

EU(p) = 0.25 · 3 + 0.75 · 0 = 0.75

As it holds that EU(t) > EU(p), then we can say that the best option is to
invest in a high-technology company (t). More formally, we can define a decision
problem under uncertainty as follows:

Definition 13 A decision problem under uncertainty is defined by the following
elements:

• a set of outcomes O := {o1, . . . , on};

• a set of possible actions that the decision maker can take,A := {a1, . . . , ak};

• a probability distribution P : O × A → [0, 1] such that
∑

o∈O P (o|a) = 1

for each a ∈ A.

• a utility function U : O ×A → R that represents the user preferences.

4.2. Decision trees 49

Solving a decision problem is done by following the principle of maximum ex-
pected utility (MEU) [83]: if we have to choose between a set of possible actions,
we should choose the one with the maximum expected utility. More formally:

Definition 14 (MEU principle) The principle of maximum expected utility as-
serts that, in a decision problem under uncertainty, we should choose the action
a ∈ A that maximizes the expected utility:

EU(a) =
∑

o∈O
P (o|a) · U(o, a) (4.1)

Note that in previous definitions, we consider that only one decision is taken.
However, in real problems, we usually have to take a sequence of decisions. Deci-
sion trees and influence diagrams, which are explained in the following sections,
can also represent this kind of more complex decision problems.

4.2 Decision trees

Decision trees [96], which are the classical framework for representing and solv-
ing decision problems under uncertainty. Even though this thesis is not focused on
decision trees, we should first briefly introduce this class of PGM for a better un-
derstanding of influence diagrams, which are a compact representation of decision
trees. Let us first consider the oil wildcatter’s problem detailed in Example 10.

Example 10 (the oil wildcatter’s decision problem [96, 105]) An oil wildcatter
must decide whether to drill (D = d) or not (D = nd). He is uncertain whether
the amount of oil (O) in the place is soaking (s), wet (w) or empty (e). The profits
are 200Me in case of being soaking and 50Me in case of being wet. By contrast,
if there is not oil, he will lose 70Me. The wildcatter can make seismic tests (S)
that will give a closed reflection pattern (c) indicating much oil, an open pattern
(o) indicating for some oil, or a diffuse pattern (d) denoting almost no hope for oil.
The tests imply a cost of 10Me and they are not completely reliable, thus he also
has to decide if it is worthy to do the test (T = t) or not (T = nt). The uncertainty
in the problem is modelled with the following probability distributions:

50 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

P (O) =







0.5 e

0.3 w

0.2 s

, P (S|O, T) =

t nt

e w s e w s






0.1 0.3 0.5 1
3

1
3

1
3

c

0.3 0.4 0.4 1
3

1
3

1
3

o

0.6 0.3 0.1 1
3

1
3

1
3

d

The oil wildcatter’s problem can be represented and solved with a decision
tree as shown in Figure 4.1. Basically, a decision tree is a tree-like structure in
which the internal nodes represent the variables in the problem. Their outgoing
arcs correspond with the possible states that a variable can take. Variables are
denoted with upper-case letters while their states are denoted using lower-case
letters. We can distinguish two types of internal nodes: decision nodes, depicted
as squares, which correspond with the variables that the decision maker can con-
trol; and chance nodes, represented by circles, that correspond with the random
variables in the problem. For example, in the decision tree representing the oil
wildcatter’s problem, decision nodes are T and D while the chance nodes are S
and O. In case of an outgoing arc from a chance node Y labelled with the state
y, it is also labelled with the conditional probability P (y|left(Y)) where left(Y)

are the states labelling the arcs from the root node to Y . Note that these probabli-
ties might not be available in the initial definition of the problem, and hence the
will be need to be computed when building the tree.

In this kind of representation, a path from the root to a leaf is a scenario. e.g.
in Figure 4.1 , {nt, d, nd} (upper-most path) is a scenario for the sequence of
variables {T, S,D} while {t, c, d, e} (bottom-most path) is another scenario for
the sequence {T, S,D,O}.

For evaluating a decision tree, leaves nodes are initially labelled with the utility
of each scenario. Then, the evaluation is done from right to left by calculating the
expected utility associated to each node as explained in Proposition 2.

4.2. Decision trees 51

Figure 4.1: Decision tree representing the oil wildcatter’s problem described in
Example 10.

52 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

Proposition 2 (expected utility associated to a node in a decision tree) Let Y be
a node in a decision tree taking values in ΩY , let left(Y) be the states labelling
the arcs from the root node to Y , and let U(y, left(Y)) the utilities associated
to a node on the right reached through the arc labelled with y. Then, the utility
associated to Y and denoted U(left(Y)) can be computed as follows:

• If Y is a chance node, then:

U(left(Y)) :=
∑

y∈ΩY

U(y, left(Y)) · P (y|left(Y))

where P (y|left(Y)) is the posterior probability labelling the arc associated
to the state y.

• otherwise (it is a decision node):

U(left(Y)) := max
y∈ΩY

U(y, left(Y))

Note that if Y is a decision node, the optimal alternative (given left(Y)) is the
state y of Y with a maximal U(y, left(Y)). In Figure 4.1, the utilities associated
to each internal node are shown in bold. To illustrate these computations, let us
consider the chance node O in the bottom-most branch whose expected utility is:

U(t, c, d) = 0.4167 · 190.0 + 0.375 · 40.0 + 0.2083 · (−80.0) = 77.509

For the decision node D in the same branch, its utility is:

U(t, c) = max{−10.0, 77.509} = 77.509

4.3 Influence diagrams

4.3.1 Definitions and notation

Influence diagrams (IDs) [87, 56] are a class of probabilistic graphical models
designed to formalize sequential decision problems with uncertainty. Compared

4.3. Influence diagrams 53

to decision trees, IDs offer a compact encoding of the independence relations
between variables, which prevents an exponential growth in the problem repre-
sentation as in the case of decision trees.

4.3.1.1 Syntax

Let us first define the basic notation. Like for decision trees, we use upper-case let-
ters for variables and lower-case for their possible values (or states). Given a vari-
able X , x is an element of the domain of X , which we denote as ΩX . We assume
that all the variables are discrete. Given a set of n variables X := {X1, . . . , Xn},
and a multi-valued index J ⊆ {1, . . . , n}, XJ is the joint variable including any
Xi such that i ∈ J . Thus, ΩXJ

= ×i∈JΩXi , where × is the Cartesian product.
The elements of ΩXJ

are called configurations and denoted xJ . Given two sets
of variables XI and XJ , their union is denoted XI ∪XJ or simply XI∪J . Analo-
gously, their intersection is denoted XI ∩XJ or XI∩J . The notation xI ∼ xJ is
used to express consistency, i.e., to denote the fact that both configurations have
the same values on XI∩J .

An ID over a set of chance variables UC and a set of decisions UD is made
of a qualitative and a quantitative part. The qualitative part is an acyclic directed
graph G with three types of nodes. Chance nodes are depicted as circles and rep-
resent the chance or random variables in the problem, i.e., those in UC . Decision
nodes are depicted as squares and associated to decision variables, i.e., those in
UD. Decisions variables correspond with the actions which the decision maker can
control. Utility nodes are depicted as diamonds and represent the user maker pref-
erences. The terms node and variable are used interchangeably for both chance
and decision variables. Utility nodes are not associated to variables. Yet, these
nodes are jointly denoted as UV . Note that we consider that the decision and
chance variables are discrete while the utility nodes have no states.

In the description of an ID, it is more convenient to use the terms of predeces-
sors and successors (instead of parents and children). The set of predecessors of
a node X is the set of all its ancestors, i.e. nodes along directed paths into X . In
particular, the set of direct predecessors of a node X , denoted pa(X), is the set of
parents of a nodeX according to G while the set of indirect predecessors is the set

54 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

formed by removing from its predecessors all its direct predecessors. In a similar
way, the set of all the descendants of a node X are called successors. The set
of children of X are called direct successors and denoted ch(X). The remaining
successors are called indirect successors. Some evaluation algorithms require IDs
to be regular (see Proposition 3). Here we consider only such kind of IDs.

Proposition 3 (regularity) An ID is regular if it satisfies the following condi-
tions:

1. The graph G has no directed cycles.

2. The utility nodes have no direct successors.

3. The graph G contains at least a directed path connecting all decisions
nodes.

Once the qualitative part of an ID has been considered, we can describe the the
quantitative one which is made of a set of probability potentials (PPs) and of a set
of utility potentials (UPs). PPs represent the uncertainty whereas UPs represent
the user preferences. A PP over the set of variables XI , denoted as φ(XI), is a
map φ : ΩXI

→ [0, 1]. Similarly, a UP over XK , denoted as ψ(XK), is a map
ψ : ΩXK

→ R. The operator dom returns the variables in the domain of a poten-
tial, e.g. dom(φ(XI)) = XI . For each chance node, a PP over the corresponding
variable and its direct predecessors is defined, while, for each utility node, a UP
potential over the parents must be assessed. In the algorithms explained in this
dissertation, all the PPs are also CPDs1. Thus we will include the conditioning
bar in the notation of PPs to make explicit which are the conditioned variables
(i.e. in the head or on the left) and which are conditioning ones (i.e. in the tail
or on the right). For example, in the PP φ(XI |XJ), the conditioned variables are
those in XI while the conditioning ones are those in XJ . Overall, the formal def-
inition of an ID is the following.

1A conditional probability distribution (CPD) over two disjoint sets of variables XI and
XJ , denoted P (XI |XJ), is a particular type of PP such that

∑
xI∈ΩXI

P (xI |xJ) = 1 for each
xJ ∈ ΩXJ

. For more details see Definition 6 at page 34.

4.3. Influence diagrams 55

Definition 15 (influence diagram) An influence diagram (ID) is a tuple 〈G,UC ,
UD, UV ,Φ,Ψ〉, where G is an acyclic directed graph over nodes UC ∪ UD ∪ UV ,
while Φ = {φ(X|pa(X))}X∈UC and Ψ = {ψ(pa(U))}U∈UV are collections of,
respectively, PPs and UPs.

Example 11 (the oil wildcatter’s ID [96, 105]) Figure 4.2 depicts the graph of
an ID modelling the decision problem described in Example 10. The set of chance
variables is UC = {S,O}, while the set of decisions is UD = {T,D}. The utility
nodes P and C describe the profit possibly obtained from the presence of oil and
the cost of the tests. The sets of potentials are Φ = {φ(O), φ(S|O, T)}, and
Ψ = {ψ(T), ψ(O,D)}. The numerical values of these potentials are reported
here below in a table form, with the corresponding states depicted in grey.

φ(O) =







0.5 e

0.3 w

0.2 s

, ψ(T) =
[]−10 t

0 nt
, ψ(O,D) =

d nd






−70 0 e

50 0 w

200 0 s

φ(S|O, T) =

t nt

e w s e w s






0.1 0.3 0.5 1
3

1
3

1
3

c

0.3 0.4 0.4 1
3

1
3

1
3

o

0.6 0.3 0.1 1
3

1
3

1
3

d

O
(oil)

S
(seismic)

T
(test)

D
(drill)

C
(cost)

P
(pay)

Figure 4.2: Graph of an ID modelling the oil wildcatter’s decision problem

56 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

4.3.1.2 Semantics

Because of the acyclicity of G, the path connecting all decision nodes defines a
topological ordering2 over the decision variables. Without lack of generality, the
indexes of the decision nodes, say UD := {D1, . . . , Dn}, can be assumed to re-
flect such order, i.e., D1 ≺ . . . ≺ Dn, with the symbol ≺ denoting topological
precedence. We partition the chance variables UC in n + 1 disjoint sets {Ii}ni=0.
For each i = 0, . . . , n − 1, Ii includes the chance nodes directly preceding Di+1

but not preceding Di. If a chance variable is a direct predecessor of more than
a decision node, it belongs to the set associated to the decision variable with the
smallest index. The remaining chance variables, i.e., those not having decision
nodes among their direct successors, belong to In. This forms a partition of UC ,
i.e., ∪ni=0Ii = UC and Ii ∩ Ij = ∅ for each i, j = 0, 1, . . . , n, i 6= j. Overall,
regular IDs are characterized by the following partial order of the variables:

I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In

Such order reflects a temporal interpretation: the chance variables in Ii are ob-
served by the decision maker before decision Di+1 is taken. Thus I0 is the set of
chance nodes observed before any decision is taken while In are observed after
the last decision is taken (or never observed). The ordering over UD reflects the
order in which the different decisions are taken. For example, in the oil wildcat-
ter’s ID, the partial order is T ≺ {S} ≺ D ≺ {O}. This implies that, when
deciding whether to drill or not (decision D), the decision maker knows if the test
has been done and its result (variables T and S). Note that an indirect predecessor
of a decision Di might belong to In, instead of Ij with j < i. This is the case of
the ID shown in Figure 4.3, where chance node C is an indirect predecessor of D2

but it belongs to I2.

The chance variables are observed at the time of decision, but not (necessar-
ily) at the time of analysis. We will assume that chance variables are always
unobserved from the point of view of the analyst.

2A topological ordering of a directed graph is a linear ordering of its nodes such that for every
directed arc (Xi, Xj) from, Xi comes before Xj in the ordering.

4.3. Influence diagrams 57

E B A

C

D1 D2 U1

Figure 4.3: Example of an ID where a predecessor of a decision belongs to In.
The partial order is {E} ≺ D1 ≺ {B} ≺ D2 ≺ {A,C}.

The arcs in G have different meaning depending on the target. Conditional
arcs are those into chance and utility nodes and represent probabilistic and func-
tional dependence respectively. Thus, direct predecessors of utility and chance
nodes are called conditional predecessors. By contrast, arcs into decision nodes
are called informational arcs and imply a time precedence. Thus direct predeces-
sors of decision nodes are called informational predecessors.

When representing a decision problem with an ID, the non-forgetting assump-
tion [102, 56] is required (perfect recall): previous decisions and observations are
known at each decision. For example, in the ID shown in Figure 4.3, variables E
and D1 are known when deciding about D2 (B is also known since it is its direct
predecessor). This perfect recall has the following implication:

Proposition 4 (non-forgetting assumption [102, 56]) If decision node Di pre-
cedes decision node Dj in a regular ID, then Di and all of its informational
predecessors should be informational predecessors of Dj .

Informational arcs that satisfy Proposition 4 are called non-forgetting arcs
and they are usually assumed implicit to reduce complexity of the graphical dis-
play. When all the non forgetting arcs are present, it holds that pa(Di) = I0 ∪
{D1} ∪ · · · ∪ Ii−1. Figure 4.4 shows this ID with the non-forgetting arcs depicted
as dashed arcs.

58 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

E B A

C

D1 D2 U1

Figure 4.4: ID in Figure 4.3 with non-forgetting arcs shown explicitly.

4.3.2 Evaluation

As we have seen, an ID offers a compact representation of a decision problem
under uncertainty. Its graphical display can be useful to understand and to reason
about the problem. Furthermore, we will be interested in inferring new knowl-
edge for helping the decision maker. In particular, we will have to identify the
best alternatives for each decision given previous observations and decisions (op-
timal policy). This process, which is called evaluation, is performed according
to the MEU principle (see Definition 14), which asserts that if we have to choose
between a set of possible actions, we should choose the one with the maximum
expected utility. Herein we formalize these concepts, but we should first review
the basics operations with potentials required during the evaluation.

4.3.2.1 Operations with potentials

To evaluate an ID we need to define some simple operations, namely combination,
division, marginalization and restriction.

The combination operation represents aggregation of knowledge. Given two
potentials (no matter whether UPs or PPs) φ and ψ, their combination gives as
a result a new potential whose domain is dom(φ) ∪ dom(ψ). In the evaluation

4.3. Influence diagrams 59

of an ID, depending on the potentials involved, we can distinguish two types of
combination: multiplication and addition. Two PPs are combined using the mul-
tiplication while two UPs are combined with the addition instead (we assume an
additive model). When combining a PP with a UP, we will proceed as in the case
of two PPs. Thus, the combination can be defined as follows:

Definition 16 (combination) The combination (multiplication) φ · ψ of a PP
φ(XI |XJ) with a UP ψ(XK) is a UP over XL := XI∪J∪K defined by element-
wise products, i.e.,

(φ · ψ)(xI∪J∪K) := φ(xI |xJ) · ψ(xK), (4.2)

for each xI∪J∪K ∈ ΩXI∪J∪K , with xI ,xJ ,xK ∼ xI∪J∪K . Finally, the combina-
tion φ · φ′ of two PPs, say φ(XI |XJ) and φ′(XK |XL), is a PP over XI∪K given
X(J∪L)\(I∪K) defined by element-wise products, i.e.,

(φ · φ′)(xI∪K |x(J∪L)\(I∪K)) := φ(xI |xJ) · φ(xK |xL) (4.3)

for each xI∪K ∈ ΩXI∪K and x(J∪L)\(I∪K) ∈ ΩX(J∪L)\(I∪K)
, with xI ,xJ ,xK ,xL ∼

xI∪K ,x(J∪L)\(I∪K). The combination (addition) ψ + ψ′ of two UPs, say ψ(XI)

and ψ′(XJ), is a UP over XI∪J obtained by element-wise sums, i.e.,

(ψ + ψ′)(xI∪J) := ψ(xI) + ψ′(xJ) (4.4)

for each xI∪J ∈ ΩXI∪J , with xI ,xJ ∼ xI∪J .

The multiplication of two potentials is denoted by a dot, which is often hidden.
The symbol Π is used for denoting the multiplication of a collection of potentials,
e.g.

∏
φ∈Φ φ. The commutative law applies to multiplication i.e. φ1φ2 = φ2φ1,

and so does the associative law i.e. (φ1φ2)φ3 = φ1(φ2φ3). These laws also apply
to addition, i.e. ψ1 + ψ2 = ψ2 + ψ1 and (ψ1 + ψ2) + ψ3 = ψ1 + (ψ2 + ψ3). The
distributive law applies to addition as well, i.e φ · (ψ1 +ψ2) = φ ·ψ1 +φ ·ψ2. The
symbol Σ is used for denoting the addition of a collection of UPs, e.g.

∑
ψ∈Ψ ψ.

Example 12 (combination) Let us consider the potentials depicted in Example 11
associated to the oil wildcatter’s ID. Then, three examples of the combination op-
eration with these potentials are shown here below:

60 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

ψ1(T,O,D) = ψ(T) + ψ(O,D) =

t nt

d nd d nd






−80.0 −10.0 −70.0 0.0 e

40.0 −10.0 50.0 0.0 w

190.0 −10.0 200 0.0 s

(4.5)

φ1(S,O|T) = φ(O) · φ(S|O, T) =

t nt

e w s e w s






0.05 0.09 0.1 1
6

1
10

1
15

c

0.15 0.12 0.08 1
6

1
10

1
15

o

0.3 0.09 0.02 1
6

1
10

1
15

d

(4.6)

ψ2(S,O, T,D) = φ1(S,O|T) · ψ(O,D) =

t nt

d nd d nd





−3.5 0.0 −11.667 0.0 e

4.5 0.0 5.0 0.0 w c

20.0 0.0 13.333 0.0 s

−10.5 0.0 −11.667 0.0 e

6.0 0.0 5.0 0.0 w o

16.0 0.0 13.333 0.0 s

−21.0 0.0 −11.667 0.0 e

4.5 0.0 5.0 0.0 w d

4.0 0.0 13.333 0.0 s

(4.7)

The division or ratio of two potentials can also be used during the evaluation
of an ID, and it is defined as follows:

Definition 17 (division) The division between a UP ψ(XI) and a PP φ(XJ) is a
UP ψ/φ over XI∪J such that, for each xI∪J ∈ ΩXI∪J :

(ψ/φ)(xI∪J) := ψ(xI)/φ(xJ) (4.8)

with xI ,xJ ∼ xI∪J . With zero denominators, the result is set to +∞ for positive
numerators and −∞ for negative ones. When both, numerator and denominator,
are zero, the convention 0

0
= 0 is adopted.

4.3. Influence diagrams 61

The division of two PPs is analogously defined. Note that the laws previously
mentioned (commutative, associative and distributive) do not apply to division.

The marginalization (projection) is an operation that removes a variable from
the domain of a potential. During the evaluation of an ID, two types of marginal-
ization (projection) can be used: sum-marginalization and max-marginalization.
These operations are defined as follows:

Definition 18 (sum-marginalization) The sum-marginalization
∑

Y ψ of a UP
ψ(Y,XI) is a UP over XI such that:

(∑

Y

ψ

)
(xI) :=

∑

y∈ΩY

ψ(y,xI) (4.9)

(4.10)

for each xI ∈ ΩXI
.

The commutative law applies to sum-marginalization, i.e.
∑

Y

∑
Z ψ =

∑
Z

∑
Y ψ.

The sum-marginalization of a PP is analogously defined. Let φ(XI |XJ) be a PP,
then it holds that

∑

XI

φ(XI |XJ) = 1XJ

where 1XJ
is a unity potential, i.e. a potential defined on XJ assigning the value

1 to each configuration of ΩXJ
.

Definition 19 (max-marginalization) The max-marginalization maxY ψ of a UP
ψ(Y,XI) is a UP over XI such that:

(
max
Y

ψ
)

(xI) := max
y∈ΩY

ψ(y,xI) (4.11)

for each xI ∈ ΩXI
.

The max-marginalization of a PP is analogously defined. The commutative
law also applies to max-marginalization, i.e. maxY maxZ ψ = maxZ maxY ψ.
However, sum-marginalization and max-marginalization are not in general com-
mutative, i.e.

∑
Y maxZ ψ 6= maxZ

∑
Y ψ (see Proof 1).

62 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

Example 13 (marginalization and division) Let us consider the potentials
ψ2(S,O, T,D) and φ1(S,O|T) obtained in Example 12 (Equations (4.7) and (4.6)
respectively). Then, the result of sum-marginalizing out the variable O from these
potentials is:

ψ3(S, T,D) =
∑

O

ψ2(S,O, T,D) =

t nt

d nd d nd






21.0 0.0 6.667 0.0 c

11.5 0.0 6.667 0.0 o

−12.5 0.0 6.667 0.0 d

(4.12)

φ2(S|T) =
∑

O

φ1(S,O|T) =

t nt






0.24 1
3

c

0.35 1
3

o

0.41 1
3

d
(4.13)

The division of the UP and the PP previously obtained gives as a result the fol-
lowing UP:

ψ4(S, T,D) =
ψ3(S, T,D)

φ2(S|T)
=

t nt

d nd d nd






87.5 0.0 20.0 0.0 c

32.857 0.0 20.0 0.0 o

−30.488 0.0 20.0 0.0 d

(4.14)

Finally, the max-marginalization of decision D from ψ4(S, T,D) is:

ψ5(S, T) = max
D

ψ4(S, T,D) =

t nt






87.5 20.0 c

32.857 20.0 o

0.0 20.0 d
(4.15)

4.3. Influence diagrams 63

Proof 1 Let us consider the potential φ1(S,O|T) obtained in Example 12 (Equa-
tions (4.6)). If variable O is first sum-marginalized and then variable S is max-
marginalized out, we obtain:

max
S

∑

O

φ1(S,O|T) =

[]
0.41 t

1
3

nt (4.16)

if the order of the operations is changed, we obtain:

∑

O

max
S

φ1(S,O|T) =

[]
0.52 t

1
3

nt (4.17)

the potentials obtained in (4.16) and (4.17) are different, and hence we can state
that the sum-marginalization and max-marginalization are not in general commu-
tative.

Another auxiliary usually required for the evaluation is the restriction, which
is the instantiation of one the variables in the potential. This operation can be
defined as follows.

Definition 20 (restriction) The restriction ψR(Y=y) of a UP ψ(Y,XI) is a UP
over XI such that:

(
ψR(Y=y)

)
(xI) := ψ(Y = y,xI) (4.18)

for each xI ∈ ΩXI
.

The restriction of a PP is analogously defined. The commutative law also
applies to restriction, i.e.

(
ψR(Y=y)

)R(Z=z)
=
(
ψR(Z=z)

)R(Y=y)
= ψR(Y=y,Z=z).

Example 14 (restriction) Let us consider the potential ψ4(S, T,D) obtained in
Example 13 (Equation (4.13)). Then, the result of restricting this UP to D = d

is:

64 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

ψ6(S, T) = ψ
R(D=d)
4 (S, T,D) =

t nt






87.5 20.0 c

32.857 20.0 o

−30.488 20.0 d
(4.19)

For the scope of this dissertation, we also need to define the restriction to a set
of states as follows.

Definition 21 (restriction to a set of states) Let Y be a variable and let SY ⊆
ΩY be a subset of its states with more than one element. Then the restriction
ψR(Y,SY) of a UP ψ(Y,XI) is a UP over {Y } ∪XI such that:

(
ψR(Y,SY)

)
(y,xI) := ψ(y,xI) (4.20)

for each (y,xI) ∈ ΩY × ΩXI
.

Again, the restriction of a PP is analogously defined and the commutative law
applies to the restriction. Note that, in previous definition, we consider that the
set SY contains more than one element. Otherwise, the basic restriction operation
(i.e., to one state) given in Definition 20 will be considered.

Example 15 (restriction to a set of states) Let us consider the potential
ψ4(S, T,D) obtained in Example 13 (Equation (4.13)). Then, the result of re-
stricting this UP to the set SS = {c, o} is:

ψ7(S, T,D) = ψ
R(S,{c,o})
4 (S, T,D) =

t nt

d nd d nd[]
87.5 0.0 20.0 0.0 c

32.857 0.0 20.0 0.0 o
(4.21)

4.3. Influence diagrams 65

4.3.2.2 Optimal policies and strategies

An ID encodes a joint probability distribution over all the chance variables given
all the decisions. The set of all PPs specifies a multiplicative factorization of the
joint probability distribution of UC given UD as represented by the chain rule.

Theorem 1 (the chain rule for IDs) Consider an ID as in Definition 15 which is
also regular and satisfies the non-forgetting assumption. Let UC and UD be the
set of chance and decision variables and pa(X) the conditional predecessors of a
node X , then the probability distribution representing the uncertainty is:

P (UC |UD) :=
∏

X∈UC
φ(X|pa(X)) (4.22)

Due to the chain rule, we can see that an ID is a compact representation of a
joint expected utility function:

EU(UC ,UD) :=
∏

X∈UC
φ(X|pa(X))

∑

U∈UV
ψ(pa(U)) (4.23)

A policy for a decision variable Di is a mapping δDi : Ωpa(Di) → ΩDi asso-
ciating a state of Di (i.e., a decision) to its past observations and decisions. A
strategy ∆ is a collection of policies, one for each decision variable, i.e., ∆ :=

{δD1 , δD2 , . . . , δDn}. Evaluating IDs consists in the identification of an optimal
strategy ∆̂, which maximizes the expected value of the sum of the UPs. The
(optimal) policies of an optimal strategy and the maximum expected utility are
defined as follows.

Definition 22 (optimal policy and maximum expected utility [64]) Consider an
ID as in Definition 15 which is also regular and satisfies the non-forgetting as-
sumption. Let the temporal order be described as I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺
In. For each i = 1, . . . , n, the optimal policy for decision Di is

66 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

δ̂Di(I0, D1, . . . , Ii−1) :=

arg max
Di

∑

Ii
max
Di+1

· · ·max
Dn

∑

In

∏

X∈UC
φ(X|pa(X))

∑

U∈UV
ψ(pa(U))

(4.24)

The expected utility for Di (and acting optimally in the future) is:

EUDi(I0, D1, . . . , Ii−1) :=
1

φ(I0, . . . , Ii−1|D1, . . . , Di−1)

max
Di

∑

Ii
max
Di+1

· · ·max
Dn

∑

In

∏

X∈UC
φ(X|pa(X))

(∑

U∈UV
ψ(pa(U))

)
(4.25)

and the maximum expected utility is

MEU :=
∑

I0
max
D1

· · ·max
Dn

∑

In

∏

X∈UC
φ(X|pa(X))

∑

U∈UV
ψ(pa(U)), (4.26)

Equation (4.24) returns the value of Di maximizing the (unnormalized) ex-
pected value of the sum of the UPs. At the moment of that decision, all the
previous decisions have been already taken and all the chance variables in the
past observed. The maximization is indeed achieved with respect to Di and the
subsequent decisions, with the expectation computed with respect to the uncer-
tainty about the chance variables in the future of Di. The expected utility for
Di in Equation (4.25) can be regarded as the expected utility given the past vari-
ables and assuming that the optimal decisions are taken in the future. Similarly,
the MEU in Equation (4.26) can be regarded as the expected value of the sum of
the utilities when the decision maker takes his/her decisions on the basis of the
optimal policies in Equation (4.24). In other words, an ID can be solved by re-
moving from the joint expected utility function (Equation (4.23)) all the variables
in reverse order of information precedence given by ≺. In particular, chance vari-
ables are removed using sum-marginalization (Definition 18) whereas decisions
are removed using max-marginalization (Definition 19). Overall, an example of
the evaluation of an ID using formulas in Definition 22 is shown here below.

4.3. Influence diagrams 67

Example 16 (optimal oil wildcatter’s policy) Let us consider the oil wildcatter’s
ID (Example 11). The joint probability φ(S,O|T) was given in Equation (4.6).
The joint expected utility EU(O, S, T,D) can be computed as follows:

EU(O, S, T,D) = φ(O) · φ(S|O, T) ·
(
ψ(T) + ψ(O,D)

)
=

=

t nt

d nd d nd





−4.0 −0.5 −11.667 0.0 c

−12.0 −1.5 −11.667 0.0 o e

−24.0 −3.0 −11.667 0.0 d

3.6 −0.9 5.0 0.0 c

4.8 −1.2 5.0 0.0 o w

3.6 −0.9 5.0 0.0 d

19.0 −1.0 13.333 0.0 c

15.2 −0.8 13.333 0.0 o s

3.8 −0.2 13.333 0.0 d

(4.27)

For computing the optimal policy for decision D, we apply Equation (4.24). That
is, we have to remove from EU(O, S, T,D) all the variables in the future of D,
and restrict to the states in ΩT that maximize the expected utility :

δ̂D(S, T) = arg max
D

∑

O

EU(O, S, T,D) =

= arg max
D

t nt

d nd d nd






18.6 −2.4 6.667 0.0 c

8.0 −3.5 6.667 0.0 o

−16.6 −4.1 6.667 0.0 d

=

t nt






d d c

d d o

nd d d

(4.28)

and the expected utility from following the optimal policy δ̂D(S, T) can be calcu-
lated using Equation (4.25):

68 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

EUD(S, T) = 1
maxD

∑
O φ(S,O|T)

·maxD
∑

O EU(O, S, T,D) =

= 1

t nt






0.24 1
3

c

0.35 1
3

o

0.41 1
3

d

·

t nt






18.6 6.667 c

8.0 6.667 o

−4.1 6.667 d

=

t nt






77.5 20.0 c

22.857 20.0 o

−10.0 20.0 d

(4.29)

We proceed similarly for computing the optimal policy for T :

δ̂T = arg maxT
∑

S maxD
∑

O EU(O, S, T,D) =

= arg maxT
[]
22.5 t

20.0 nt
= [t]

(4.30)

Note that δ̂T has not arguments since there is not any variable on its past (T is the
first decision and I0 = ∅). Thus, the best alternative for T is always t, i.e. to test.
The expected utility from following the optimal policy δ̂T is:

EUT = 1
maxT

∑
S maxD

∑
O φ(S,O|T)

·maxT
∑

S maxD
∑

O EU(O, S, T,D) =

= maxT
∑

S maxD
∑

O EU(O, S, T,D) = 22.5
(4.31)

Another consequence of not having any variable on the past of T is that the EUT
is equal to the MEU : it holds that maxT

∑
S maxD

∑
O φ(S,O|T) = 1.

Although IDs avoid the exponential growth in the problem representation,
the evaluation using formulas in Definition 22 might be intractable when the

4.4. Independence assumptions in IDs 69

problem contains a high number of variables: the computation of φ(UC |UD) and
EU(UC ,UD) might be too costly as the sizes of these potentials are exponential in
the number of variables in the ID. Thus we must look for methods that allow us to
deal with smaller potentials. In Section 4.5 we will review some of the evaluation
algorithms from the literature that deal with this problem.

4.4 Independence assumptions in IDs

The power of IDs lies in the representation of independence relations which can be
exploited in order to avoid the exponential growth in the problem representation
and to provide computational savings during the evaluation process: like in BNs,
each chance variable in an ID is conditional independent from its non-successors
given its direct predecessors. This property is exploited by IDs to reduce the size
of the joint probability distribution P (UC |UD) since it can be expressed as the
product of all the PPs (see Theorem 1). In this section we define such relations,
explain how they can be detected using the d-separation criterion and how these
concepts can be used to reduce the complexity of an ID prior the evaluation (min-
imalization).

4.4.1 D-separation in IDs

As explained in Section 3.2.2, d-separation is a criterion for detecting indepen-
dences in probabilistic graphical models (and therefore in IDs). This criterion can
be addapted for IDs [103, 64] as follows.

Definition 23 (d-separation for IDs) Let X, Y and Z be pairwise disjoint sets
of nodes in a DAG. Let us consider all undirected paths between them that neither
contain informational arcs nor utility nodes. Then X and Y are d-separated given
Z if and only if along every of these paths there is an intermediate node A such
that either:

(i) the connection is serial or diverging and A belongs to Z

or

70 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

(ii) the connection is converging and neither A nor any of its descendants are
in Z.

When X and Y are d-separated given Z, we write I(X⊥Y|Z) to indicate
that this CI can be derived 3. Otherwise, X and Y are conditionally dependent
given Z.

In previous definition, Z can be empty. In that case, X and Y are d-separated
if and only if every path contains at least one converging connection. In that case,
we can deduce that X and Y are independent, i.e. I(X⊥Y) = I(X⊥Y |∅).

Note that the d-separation criterion for IDs is almost the same that the one
for BNs (see Definition 2 at page 27). The only difference is that informational
arcs and utility nodes are ignored. For example, in the ID shown in Figure 4.5,
variables C and T are d-separated given B. Also, A is d-separated from D2, i.e.
I(A⊥D2) since the only possible path is {A,B,C,D2} which contains the con-
verging connection {B,C,D2}. Note that the paths through T are not considered
because (T,D2) is an informational arc.

U2A B C

T

D1

D2U1

Figure 4.5: Example of an ID obtained from [64, page 226].

3For more details about marginal and conditional independence see Section 3.3.3.

4.4. Independence assumptions in IDs 71

For decision variables, the question is whether an action will have impact in
the certainty for chance variables. The effects of a decision cannot “go back in
time”, i.e. any decision is d-separated from its predecessors. In relation to this
idea, Jensen and Nielsen [64, page 226] obtained the following conclusion:

Proposition 5 Let A ∈ Ii and let Dj be a decision variable with i < j. Then,

(i) A and Dj are d-separated and hence

P (A|Dj) = P (A)

(ii) Let W be any set of variables prior to Dj in the temporal order. Then, A
and Dj are d-separated given W and hence

P (A|Dj,W) = P (A|W)

4.4.2 Minimalization of an ID

Before the evaluation, an ID can be simplified (minimalization) by removing re-
dundant informational arcs and barren nodes. These two transformations map
the original ID into an equivalent and less complex one (two IDs are equivalent if
they have the same MEU and the same optimal policies).

As stated in Definition 22, the optimal policy δ̂Di is defined over all past obser-
vations and decisions, i.e. I0, D1, . . . , Ii−1. However, some of the informational
predecessors of Di might not be requisite for computing δ̂Di . Informally speak-
ing, an observation (or decision) is non-requisite for a decision [48, 86], if the
outcome of the observation does not impact the choice of the decision option. A
more formal definition is:

Definition 24 (non-requisite informational predecessors) LetX be an informa-
tional predecessor of a decision Di, then X is non-requisite if X is d-separated
from all the utility nodes that are (direct or indirect) successors of Di given the
rest of informational predecessors and Di.

72 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

Informational arcs from non-requisite observations are called redundant arcs
and can be removed in reverse order. That is, we first identify and remove re-
dundant arcs into Dn, then those into Dn−1, etc. Note that after the removal of
redundant arcs, some nodes might become barren, which are defined as follows.

Definition 25 (barren node [102]) A chance or decision node is a barren node if
it is sink, in other words, it has no successors or only barren successors.

For evaluating an ID, barren nodes have no impact on the decisions and there-
fore they can be directly removed without processing. After the minimalization,
the direct predecessors of a decision compose its relevant past.

Example 17 (redundant arcs removal) Let us consider the ID shown in Fig-
ure 4.6 including all the non-forgetting arcs. Its partial order is {B} ≺ D1 ≺
{E,F} ≺ D2 ≺ {} ≺ D3 ≺ {G} ≺ D4 ≺ {A,C,D,H, I, J,K, L}.

U1 U2

U3

U4

D1

D2

D3

D4A

B

C

D

E

F

G

H

I

J

K

L

Figure 4.6: Example of an ID obtained from [64, page 141] including all the non-
forgetting arcs.

Let us first considerD4 whose set of informational predecessors pa(D4) is {B,D1,

E, F,D2, D3, G}. Thus we should check if each of these variables are d-separated
from U4 given the rest of them (U4 is the only utility node which is a successor of

4.5. Influence diagrams evaluation algorithms 73

D4). Doing that we get that G and D2 compose the relevant past of D4. Note that
the paths G − I − L − U4 and D2 − I − L − U4 are not blocked. The rest of
informational predecessors are non-requisite and therefore their corresponding
informational arcs into D4 are redundant (they can be removed). If we proceed in
the same way for decisions D3, D2, D1 we obtain the ID depicted in Figure 4.7.

U1 U2

U3

U4

D1

D2

D3

D4A

B

C

D

E

F

G

H

I

J

K

L

Figure 4.7: ID shown in Figure 4.6 after removing all redundant arcs.

4.5 Influence diagrams evaluation algorithms

4.5.1 Variable elimination

Variable elimination (VE) is a typical approach to inference in graphical models
such as Bayesian networks [116]. VE algorithms for IDs [64] are commonly used
to solve Equation (4.26): it starts with a set of potentials and it eliminates all the
variables one by one. Unlike VE for Bayesian networks, in regular IDs the elim-
ination order is not arbitrary: it should be the inverse of an order consistent with
the partial order associated to the ID (called strong elimination order [68]). When
the last variable is eliminated, the algorithm returns a potential with no arguments
(i.e., a single value) whose value is the MEU in Equation (4.26). Every time a
decision variable is eliminated, the corresponding optimal policy is also obtained.
The general scheme of VE for IDs is shown in Algorithm 1.

74 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

Algorithm 1 Variable Elimination Scheme
input : Φ,Ψ (sets of potentials in the ID), {I0, D1, I1, . . . , Dn, In} (partitions of
nodes in the ID).

1: for k ← n to 0 do
2: while Ik 6= ∅ do
3: Select X ∈ Ik . Pick a chance variable to eliminate
4: (Φ,Ψ)← ElimVar(X,Φ,Ψ) . Chance variable elimination

(Algorithm 2)
5: Ik ← Ik\{X}
6: end while
7: if k > 0 then
8: (Φ,Ψ)← ElimVar(Dk,Φ,Ψ) . Decision variable elimination

(Algorithm 2)
9: end if

10: end for

Another difference with regard to the VE for Bayesian networks is related
to the elimination of decision variables. While chance variables are removed by
sum, as in Bayesian networks, decision variables are instead eliminated by maxi-
mization. Algorithm 2 shows how to remove a single variable, no matter whether
chance or decision, from an ID. All the required operations with potentials were
defined in Section 4.3.2.1.

In order to remove a variable Y , all the potentials containing such variable in
their domains are selected and combined, giving as a result a PP and a UP denoted
as φY and ψY (lines 1 and 2). Then, in case of a chance variable, Y is separately
removed from the PPs and UPs using sum-marginalization (line 4). In case of a
decision (line 6), Y can be eliminated by instantiating (restriction) an arbitrary
value y ∈ ΩY : when removing a decision, usually there are not PPs containing it
and if any, the decision is not affecting the values of such PP since any decision
is d-separated from its predecessors (see Proposition 5) and any successor has
already been removed. When eliminating a decision variable, the resulting UP
is obtained by removing Y using the max-marginalization operation. In addition,

4.5. Influence diagrams evaluation algorithms 75

the argument that maximizes such UP also gives the corresponding optimal policy
(line 7).

Algorithm 2 ElimVar - Elimination of a single variable
input : Y (variable to remove), Φ,Ψ (sets of current potentials)
output : Φ,Ψ (updated sets of current potentials without Y)

1: (ΦY ,ΨY)← ({φ ∈ Φ|Y ∈ dom(φ)}, {ψ ∈ Ψ|Y ∈ dom(ψ)}) . Select
2: (φY , ψY)← (

∏
φ∈ΦY

φ,
∑

ψ∈ΨY
ψ) . Combine

3: if Y ∈ UC then
4: (φ′Y , ψ

′
Y)← (

∑
Y φY ,

∑
Y φY ·ψY∑
Y φY

) . Remove by sum (chance vars)
5: else
6: (φ′Y , ψ

′
Y)← (φ

R(Y=y)
Y ,maxY ψY) . Remove by max (decision vars)

7: δ̂Y ← arg maxY ψY . Optimal policy
8: end if
9: (Φ,Ψ)← (Φ\ΦY ∪ {φ′Y },Ψ\ΨY ∪ {ψ′Y }) . Update

10: return (Φ,Ψ)

Finally, in line 9 the sets of current potentials in the ID are updated: potentials
containing variable Y are replaced by those obtained in lines 4 and 6. If the
resulting PP is a unity potential, this potential does not need to be included in the
potential set Φ.

Example 18 (evaluation of the oil wildcatter’s ID using VE) Let us consider the
ID shown in Example 11 with the potentials Φ = {φ(O), φ(S|O, T)}, and Ψ =

{ψ(T), ψ(O,D)}. Then, the computations required for evaluating such ID using
the VE algorithm considering the elimination order {O,D, S, T} are:

1. ElimVar(O,Φ,Ψ):

(a) Select and combine relevant potentials (with variable O):

φ(O, S|T)← φ(O) · φ(S|O, T) (probabilities)

ψ(O,D) (utilities)

(b) Remove by sum:

φ(S|T)←∑
O φ(O, S|T) ψ(S, T,D)←

∑
O φ(O,S|T)·ψ(O,D)∑

O φ(O,S|T)

76 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

(c) Update the sets of current potentials:

Φ← {φ(S|T)} Ψ← {ψ(S, T,D), ψ(T)}

2. ElimVar(D,Φ,Ψ):

(a) Select and combine relevant potentials (with variable D):

ψ(S, T,D) (utilities)

(b) Remove by max:

ψ(S, T)← maxD ψ(S, T,D)

δ̂D(S, T)← arg maxD ψ(S, T,D)

(c) Update the sets of current potentials:

Φ← {φ(S|T)} Ψ← {ψ(S, T), ψ(T)}

3. ElimVar(S,Φ,Ψ):

(a) Select and combine relevant potentials (with variable S):

φ(S|T) (probabilities)

ψ(S, T) (utilities)

(b) Remove by sum:

1T ←
∑

S φ(S|T) ψ2(T)←
∑
S φ(S|T)·ψ(T)∑

S φ(S|T)

(c) Update the sets of current potentials:

Φ← ∅ Ψ← {ψ(T), ψ2(T)}

4. ElimVar(T,Φ,Ψ):

(a) Select and combine relevant potentials (with variable T):

ψ3(T)← ψ(T) + ψ2(T) (utilities)

(b) Remove by max:

MEU ← maxD ψ3(T)

δ̂T ← arg maxD ψ3(T)

The set of all variables contained in the relevant potentials for the removal
of a variable is called clique candidate or group. That is CY := {dom(φY) ∪
dom(ψY)} is the clique candidate created when Y is removed. Even though the

4.5. Influence diagrams evaluation algorithms 77

concept of clique is usually only used with triangulation algorithms, it corresponds
with the variables involved during the elimination of a variable using VE algo-
rithm. The size of a clique candidate |CY | is the number of variables on it. The
weight of a clique candidate is the product of the number of states of each vari-
able, i.e. w(CY) :=

∏
Xi∈CY |ΩXi|.

During the elimination process, it could happen that two variables, that are not
together in any of the potentials, might appear in the new potentials resulting of
removing a variable. When that happens, we say that a fill-in arc has been added.
For example, let us consider we aim to remove a variable Y from φ(Y |A) and
ψ(Y,B), then the resulting UP is ψ(A,B). In this case, a fill-in arc is added be-
tween A and B as there is not any potential in ΦY ∪ΨY containing both variables.
The weight of an arc (A,B) is defined as w(A,B) := |ΩA| · |ΩB|.

The complexity of VE is linear in the size of the largest potential generated
during the evaluation [70], which will be either the result of the combination
of φY · ψY in line 4 of Algorithm 2 or the potential ψY in line 6. That is, the
complexity of VE for evaluating and ID with n variables (chance or decision) is
O(n · Nmax) where Nmax is the largest potential ever created during the evalua-
tion. However, the size of a potential is exponential in the number of variables
in its domain. Thus, the computational cost of the VE algorithm depends on the
sizes of the intermediate potentials generated. Note that the complexity can be
related to the notion of treewidth [6, 98] which correspond swith the size of the
largest clique generated if the optimal order is followed. Suppose we have an ID
with treewidth w, then the complexity of VE, following an optimal elimination
order, is O(n · exp(w)).

4.5.1.1 Elimination heuristics

An element of crucial importance for the efficiency of the VE algorithm is finding
an optimal elimination order, which can reduce the complexity of operations per-
formed during the ID evaluation. Like for BNs, the problem of finding an optimal
order (an optimization problem) is NP-hard [68]. In fact, any method for finding

78 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

an optimal order in a BN can be adapted for IDs. The single difference is that
it must be consistent with the partial temporal order I0 ≺ D1 ≺ I1 ≺ · · · ≺
Dn ≺ In. Thus, the problem consists on finding an order for each Ii. Several ap-
proaches have been proposed in order to search for close-to-optimal elimination
orderings. Some of the most efficient methods are greedy algorithms that choose
at each step the next variable to remove using a deterministic heuristic. Some of
these heuristics are:

• Minimum size: this heuristic is based on selecting as the next variable to
be removed that one which minimises the size of the generated candidate
clique [99]. That is, it selects a variable Y with a minimal |CY |.

• Minimum weight: this heuristic is based on selecting as the next variable to
be removed that one which minimises the weight of the generated candidate
clique [68]. That is, it selects a variable Xi with a miminal w(CY).

• Cano and Moral: this heuristic is very similar to minumum weight, at each
case it chooses a variable Xi that minimises w(CY)/|ΩY | [27]. That is, it
first removes variables of a larger number of states.

• Minimum fill-in arcs weight: this heuristic selects a variable to remove
that one which minimises the weights of the fill-in arcs added [45].

4.5.2 Arc reversal

Arc reversal (AR) [102] is another evaluation algorithm for IDs. In AR the ori-
entation of an arc among two chance nodes can be reversed by Bayes rule. AR is
based on a simple observation: the elimination of a variable, no matter whether
chance or decision, having a utility node as unique direct successor involves only
two potentials, thus does not affect the overall inferential complexity. Such pat-
terns can be always created by properly changing the orientation of some arcs. In
the original proposal, AR copes with IDs with a single utility node. If this is not
the case, it is sufficient to apply Definition 26.

4.5. Influence diagrams evaluation algorithms 79

Definition 26 (merging utility nodes) Given an ID with multiple utility nodes
and assuming an additive model, add a new utility node Ũ , which is a barren
child of all the parents of the utility nodes, i.e., pa(Ũ) :=

⋃
U∈UV pa(U). Define

a UP associated to Ũ as ψ(pa(Ũ)) :=
∑

U∈UV ψ(pa(U)). Finally, remove all the
utility nodes different from Ũ and the corresponding UPs.

In order to evaluate an ID, AR uses three basic transformations: chance node
removal, decision node removal and arc reversal. These transformations, which
are described here below, maps the original ID into an equivalent one (two IDs
are equivalent if they have the same expected utility and the same optimal policies
for the remaining decisions).

Transformation 1 (chance node removal) Assume that a chance node Y has the
utility node U as unique direct successor. Let XI be the direct predecessors of Y ,
and let XJ the direct predecessors of U without Y . The elimination of Y is done
by conditional expectation: replace the PP φ(Y |XI) and the UP ψ(Y,XJ), with
the UP ψ(XI∪J) :=

∑
y∈ΩY

ψ(y,XJ) · φ(y|XI). We finally remove Y from G and
add arcs to connect the nodes in XI with U .

Transformation 2 (decision node removal) Assume that a decision node D has
the utility node U as unique direct successor. Let XI be the direct predecessors
of Y . Assume that the direct predecessors of U others than D, and denoted as
XJ , are also direct predecessors of D. To eliminate D, replace the UP ψ(D,XJ)

with the UP ψ(XJ) := maxd∈ΩD ψ(d,XJ). Finally, D should be removed from
the graph together with its incoming and leaving arcs.

Transformation 3 (arc reversal) Assume that the chance nodes Y and X are di-
rectly connected by an arc, but not by other directed paths. Let φ(Y |XI) and
φ(X|Y,XJ) be the relative PPs, which means that XI are the direct predeces-
sors of Y and XJ those of X others than Y . Change the orientation of the arc
and add arcs from XI towards X and from XJ towards Y . The new PP for X
is φ(X|XI ,XJ) :=

∑
y φ(y|XI) · φ(X|y,XJ), while the PP for Y is such that

φ(y|x,XI ,XJ) ∝ φ(y|XI) · φ(x|Y,XJ), with the proportionality constant ob-
tained by normalization.

80 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

AR applies previous transformations until only the utility node remains. The
UP attached to this unique utility node is the MEU. Algorithm 3 outlines the whole
scheme: at each iteration, the algorithm tries to remove a chance node (lines 2 to
3); if it’s not possible a decision might be removed (lines 5 to 7). In case neither a
chance node nor a decision could be removed, an arc X → Y is reversed and X
is removed (lines 10 to 16).

The optimal policies are computed when each decisionD is removed by Trans-
formation 2, i.e. δ̂D(XJ) := arg maxD ψ(D,XJ). After the removal of a deci-
sion, any of the chance or decision nodes might become barren. In that case, they
can be directly removed.

Algorithm 3 ArcRev - Arc Reversal Scheme

1: while pa(U) 6= ∅ do
2: if exists X ∈ UC ∩ pa(U) such that ch(X) = { U} then
3: remove X . Transformation 1
4:

5: else if exists D ∈ UD ∩ pa(U) such that pa(U) ⊂ pa(D) ∪ {D} then
6: remove D . Transformation 2
7: remove barren nodes
8:

9: else
10: find X ∈ UC ∩ pa(U) such that UD ∩ ch(X) = ∅
11: while UC ∩ ch(X) 6= ∅ do
12: find Y ∈ UC ∩ pa(X) such that
13: there is no other directed path from X to Y
14: reverse arc X → Y . Transformation 3
15: end while
16: remove X
17: end if
18: end while

4.5. Influence diagrams evaluation algorithms 81

Compared to VE, the complexity of AR is not reduced because of the addi-
tional arcs added when reversing the arcs. Unlike VE, each step of AR can be
regarded as a transformation of an ID in an equivalent one with fewer variables.
It has been proved empirically that the complexity of VE is never higher than the
complexity of AR [1, 9].

Example 19 (Evaluation of the oil wildcatter’s ID using AR) Consider the ID
in Example 11 with the graph in Figure 4.2. We first apply Definition 26 to merge
the two utility nodes C and P . The resulting equivalent ID with a single utility
node is in Figure 4.8.a. Then we reverse the arc from O to S by Definition 3. As
shown in Figure 4.8.b, this makes the utility node P̃ the unique direct successor
of O. The new PPs attached to nodes O and S are:

φ(O|S, T) =
φ(O) · φ(S|O, T)∑
O φ(O) · φ(S|O, T)

φ(S|T) =
∑

O

φ(O) · φ(S|O, T)

The chance nodeO can be now eliminated by means of the procedure in Trans-
formation 1, resulting the graph shown in Figure 4.8.c. Quantitatively this corre-
sponds to replace the potentials φ(O|S, T) and ψ(O,D) with the following UP:

ψ(S, T,D) =
∑

O

φ(O|S, T) · ψ(O, S)

In the resulting model, D can be removed by Transformation 2 since the other
direct predecessors of P̃ are also predecessors of D. The resulting graph is de-
picted in Figure 4.8.d while the new UP attached to the utility node and the opti-
mal policy for D are computed as follows:

ψ(S, T) = max
D

ψ(S, T,D) δ̂D(S, T) = arg max
D

ψ(S, T,D)

By similarly continuing we eliminate chance node S, resulting the ID shown
in Figure 4.8.e and the following UP attached to P̃ :

ψ(T) =
∑

S

φ(S|T) · ψ(S, T)

82 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

Finally, decision node T can be removed. The resulting ID contains a unique
utility node (see Figure 4.8.f), whose constant UP is the MEU. The optimal policy
for T is computed as well:

MEU = max
T

ψ(T) δ̂T = arg max
T

ψ(T)

O
(oil)

S
(seismic)

T
(test)

D
(drill)

P̃
(pay+cost)

O
(oil)

S
(seismic)

T
(test)

D
(drill)

P̃
(pay+cost)

(a) (b)

S
(seismic)

T
(test)

D
(drill)

P̃
(pay+cost)

S
(seismic)

T
(test)

P̃
(pay+cost)

(c) (d)

T
(test)

P̃
(pay+cost)

P̃
(pay+cost)

(e) (f)

Figure 4.8: Transformations applied to the graph during the evaluation the oil
wildcatter’s ID using the AR algorithm.

4.5. Influence diagrams evaluation algorithms 83

4.5.3 Lazy evaluation

Lazy evaluation (LE) was already used for making inference in BNs [80], so it can
be adapted for evaluating IDs [79]. The basic idea of this method is to maintain
the decomposition of the potentials and to postpone computations for as long as
possible, as well as to exploit barren variables. LE is based on message passing
in a strong junction tree, which is a representation of an ID built by moralization
and by triangulating the moral graph using a strong elimination order [68]. Nodes
in the strong junction trees correspond to cliques (maximal complete sub-graphs)
of the triangulated graph. Each clique is denoted by Ci where i is the index of
the clique. The root of the strong junction tree is denoted by C1. Two neighbour
cliques are connected by a separator which contains the intersection of the vari-
ables in both cliques. Figure 4.9 shows the strong junction tree for the ID shown
in Figure 4.6.

C1

B,D1, E, F,D

C6

F,D3, H

C14

D3, H,K

C15

H,K, J

C5

E,D2, G

C8

D2, G,D4, I

C16

D4, I, L

C10

B,E,D,C

C11

B,C,A

F E B,E,D
S6 S5 S10

D3, H D2, G B,C
S14 S8 S11

K,H D4, I

S15 S16

Root
ΦC1 = {φ(D|B,D1), φ(F |D)}
ΨC1 = {ψ(D1)}

ΦC6 = {φ(H|F)}
ΨC6 = {ψ(D3)}

ΦC14 = {φ(K|H,D3)}
ΨC14 = ∅

ΦC15 = {φ(J |H)}
ΨC15 = {ψ(K, J)}

ΦC5 = {φ(E|G)}
ΨC5 = ∅

ΦC8 = {φ(I|G,D2)}
ΨC8 = ∅

ΦC16 = {φ(L|D4, I)}
ΨC16 = {ψ(L)}

ΦC10 = {φ(B), φ(E|C,D)}
ΨC10 = ∅

ΦC11 = {φ(C|A,B)}
ΨC11 = ∅

Figure 4.9: Strong junction tree for the ID shown in Figure 4.6 with the sets of
potentials associated to each clique.

84 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

LE is a message-passing algorithm whose general scheme is shown in Algo-
rithm 4. Initially, each potential in the ID is associated to the clique closest to
the root containing all its variables. These potentials are not combined, so dur-
ing propagation each clique and separator keeps two sets of potentials (one for
probabilities and another for utilities). Sets of potentials stored in a clique Cj are
denoted ΦCj and ΨCj . Similarly, sets of potentials (or messages) stored in a sep-
arator Sj are denoted Φ∗Sj and Ψ∗Sj . Message propagation starts by invoking the
CollectMessage in the root (Algorithm 5). This algorithm is used for traversing
the tree until the leaves.

Algorithm 4 LazyEvaluation
input : Φ,Ψ (sets of potentials in the ID), {I0, D1, I1, . . . , Dn, In} (partitions of
nodes in the ID).

1: Build a strong junction tree with root C1 from the ID

2: Associate each potential in Φ ∪ Ψ to the clique closest to the root containing
all its variables

3: Invoke CollectMessage in C1 . Algorithm 5

Algorithm 5 CollectMessage
/* Let Cj be a clique where Collect Message is invoked,

then:*/

1: Cj invokes Collect Message in all its children

2: The message to the clique parent of Cj is built and sent by absorption (Algorithm 6)

When a clique has received all the messages from its children it can send
the message to its parent (Absorption) as detailed in Algorithm refalgo:absorb.
Consider a clique Cj and its parent separator Sj . Absorption in Cj amounts to
eliminating the variables of Cj\Sj from the list of probability and utility poten-
tials associated with Cj and with each separator S ′ ∈ ch(Cj) and then associating
the obtained potentials with Sj . Initially, the algorithm collects the potentials in

4.5. Influence diagrams evaluation algorithms 85

the clique an child seprators (line 1). Then it determines which are the variables
X to be removed, i.e. those present in the clique but not in the parent separator
(line 2). Afterwards, a removal order is chosen and the removes X from the rele-
vant potentials. Finally, the resulting sets of potentials are associated to the parent
separator.

Algorithm 6 Absorption
/* Let Cj be a clique, Sj be the parent separator

and S′ ∈ ch(Cj) be each of the child separators. If

Absorption is invoked on Cj, then:*/

1: RSj ← ΦCj ∪ΨCj ∪
⋃
S′∈ch(Cj)

(Φ∗S′ ∪Ψ∗S′) . Relevant potentials

2: X← {X|X ∈ Cj , X 6∈ Sj}; . Variables to be removed

3: Choose a strong order to remove the variables in X

4: Marginalize out all variables in X from RSj . Let Φ∗Sj and Ψ∗Sj be the set of proba-
bility and utility potentials obtained

5: Associate Φ∗Sj and Ψ∗Sj to the parent separator Sj

Note that the original proposal [79] uses VE for removing the variables. Thus,
we will refer to this method as VE-Lazy Evaluation (VE-LE). Figure 4.10 shows
the flow of messages in strong junction tree for the ID shown in Figure 4.6.

The propagation finishes when the root clique has received all the messages.
The optimal policy δ̂Di is recorded when Di is eliminated from the closest clique
to the root and containing the decision. In case of decisions that are attached to the
root node, the optimal policy is calculated by marginalizing out all the variables
in the root clique that do not belong to the relevant past of the decision. Finally to
compute the MEU, all the variables in the root node are eliminated.

86 Chapter 4. Probabilistic Graphical Models for Decision Reasoning

C1

B,D1, E, F,D

C6

F,D3, H

C14

D3, H,K

C15

H,K, J

C5

E,D2, G

C8

D2, G,D4, I

C16

D4, I, L

C10

B,E,D,C

C11

B,C,A

F E B,E,D
S6 S5 S10

D3, H D2, G B,C
S14 S8 S11

K,H D4, I

S15 S16

Root

Φ∗
S6

= ∅
Ψ∗
S6

= {ψ(F)}−→

Φ∗
S14

= ∅
Ψ∗
S14

= {ψ(H,D3)}−→

Φ∗
S15

= ∅
Ψ∗
S15

= {ψ(H,K)}−→

Φ∗
S5

= ∅
Ψ∗
S5

= {ψ(E)}−→

Φ∗
S8

= ∅
Ψ∗
S8

= {ψ(D2, G)}−→

Φ∗
S16

= ∅
Ψ∗
S16

= {ψ(D4, I)}−→

Φ∗
S10

= {φ(E|B,D)}
Ψ∗
S10

= ∅−→

Φ∗
S11

= {φ(C|B)}
Ψ∗
S11

= ∅−→

Figure 4.10: Flow of messages in a strong junction tree for the ID shown in Fig-
ure 4.6

Part II

Representation

87

Chapter 5

Binary Trees

5.1 Introduction

Traditionally, potentials in PGMs with discrete variables (and so in IDs) have
been represented using tables. In fact, this is the data structure used in previous
chapters to introduce the concepts of potential and CPD. A table representing a PP
φ(XI |XJ) is denoted T φ(XI ,XJ). Similarly, a table representing a UP ψ(XI) is
denoted T ψ(XI). Example 20 shows two potentials represented as tables.

Example 20 (A PP and a UP represented using tables) LetX, Y, Z andD four
discrete variables whose domains are ΩX = {x1, x2, x3, x4}, ΩY = {y1, y2, y3},
ΩZ = {z1, z2} and ΩD = {d1, d2, d3}. Let φ(X|Y, Z) and ψ(Y, Z,D) be a PP
and a UP respectively with the following representation as tables:

T φ(X, Y, Z) =

x1 x2 x3 x4





0.25 0.25 0.1 0.4 y1

0.25 0.25 0.1 0.4 y2 z1

0.25 0.25 0.1 0.4 y3

0.1 0.5 0.2 0.2 y1

0.1 0.5 0.2 0.2 y2 z2

0.15 0.35 0.3 0.2 y3

89

90 Chapter 5. Binary Trees

T ψ(Y, Z,D) =

z1 z2

d1 d2 d3 d1 d2 d3





30 30 30 30 30 30 y1

45 45 45 −5 −5 25 y2

0 0 0 0 0 5 y3

One problem of tables is that this representation is exhaustive, which means
that a table entry is required for all the possible configurations of the variables in
a given potential. The number of these entries is the size of the table, and can be
defined more formally as follows.

Definition 27 (Size of a table representing a potential) Let ψ be a potential (no
matter whether PP or UP) defined over the set of variables XI . Then, the size of
a table T ψ representing such potential is:

size(T ψ) =
∏

Xi∈XI

|ΩXi|

Note that the size of a table increases exponentially with the number of vari-
ables. During the evaluation, intermediate potentials can be extremely large as
they usually contain many variables. As a consequence, the evaluation of IDs
modelling complex decision problems may become infeasible due to its compu-
tational cost: the set of information states may exceed the storage capacity of a
computer or the optimal policy could need a large computation time to be ob-
tained.

To address this problem, IDs can be evaluated with alternative methods such
as LIMIDs [72], or simulation techniques [31, 22]. Other solutions propose us-
ing alternative representations for the potentials (instead of tables) trying to offer
efficient data structures for storing and managing quantitative information (proba-
bilities and utilities). In Section 5.2, we review some of these alternative represen-
tations such as recursive probability trees (RPTs) or numerical trees (NTs). These
representations are tree-based where identical values can be grouped into a single

5.1. Introduction 91

one offering a compact storage. This is possible due to the presence of context-
specific independencies (CSIs) [7]. Moreover, when trees are too large they can
be pruned and converted into smaller trees leading to approximate encodings. As
a consequence, less memory space is required for storing the potentials using this
tree-based structures.

In this dissertation, we propose representing potentials in IDs using binary
trees (BTs), i.e. a tree-based structure whose internal nodes always have two chil-
dren. The advantage of BTs resides in their capability of representing not only
CSIs, but also other forms of independencies which are more fine-grained com-
pared to those encoded using NTs. In Section 3.3.4 we described some of these
forms of independence such as partial conditional independencies (PCIs) [92, 75]
and contextual weak independencies (CWIs) [110, 10]. This enhanced capability
makes the representation of potentials even more compact. As PCIs and CWIs
are quite frequent in large IDs representing real world decision problems, their
evaluation should be more efficient. In addition, approximate solutions obtained
with BTs should be more accurate than those obtained with NTs.

In the literature about PGMs, there are other approaches for taking advantage
of these types of independecies. Geiger and Heckerman [52] proposed the use of
Bayesian multinets. This approach consists on defining multiple standard BNs,
one for each context. Boutilier et al. [7] proposed using a single BNs but includ-
ing auxiliary nodes to capture CSIs. Some types of PGMs can encode natively
CSIs, such as probabilistic decision graphs (PDGs) proposed by M. Jaeger [59].
It should be remarked, however, that these approches are not applyed to IDs.

The chapter is organized as follows. Section 5.2 reviews some of the previ-
ous potential representations that take advantage of CSIs. In Section 5.3 the key
concepts for representing potentials as BTs are explained. The procedures for
learning and approximating BTs (from tables) are detailed in Section 5.4.

92 Chapter 5. Binary Trees

5.2 Previous approaches for potential representation

5.2.1 Numerical trees

Numerical trees (NTs), also called probability trees, have been used to repre-
sent potentials in BNs [28, 101] and IDs [54]. This tree-like representation takes
advantage of context-specific independencies (see Section 3.3.4.1) so that many
identical values can be grouped into a single one offering a compact storage.
Moreover, when NTs are too large they can be pruned and converted into smaller
trees leading to approximate encodings. A NT can be defined as follows.

Definition 28 (numerical tree) A NT defined over the set of variables XI is a
directed tree, where each internal node is labelled with a variable (random or
decision), and each leaf node is labelled with a number (a probability or a utility
value). We use Lt to denote the label of node t. Each internal node has an out-
going arc for each state of the variable associated with that node. Outgoing arcs
from node Xi are labelled with a state (xi ∈ ΩXi) of Xi.

NTs can be used for representing any function defined over a set of discrete
variables. However, we will focus on how they can be used for representing the
potentials involved in an ID: a NT representing a PP φ(XI |XJ) will be called nu-
merical probability tree and denotedNT φ(XI ,XJ). Similarly, a NT representing
a UP ψ(XI) will be called numerical utility tree and denoted NT ψ(XI).

A numerical tree on the set of variables XI = {Xi|i ∈ I} represents a poten-
tial (no matter whether PP or UP) ψ : ΩXI

→ R if for each xI ∈ ΩXI
the value

ψ(xI) is the number stored in the leaf node that is reached by starting from the
root node and selecting the child corresponding to state xi for each internal node
labelled Xi. For example, the potentials previously shown with tables in Exam-
ple 20 are depicted as NTs in Figure 5.1.

The size of a given NT , denoted size(NT), corresponds with the number of
nodes (internal nodes and leaves). The main advantage of NTs is that the size of
the potentials can be reduced since some identical values can be grouped into a

5.2. Previous approaches for potential representation 93

NT φ(X,Y, Z)

X

Z

0.25

z1

Y

0.1

y1

0.1

y2

0.15

y3

z2

x1

Z

0.25

z1

Y

0.5

y1

0.5

y2

0.35

y3

z2

x2

Z

0.1

z1

Y

0.2

y1

0.2

y2

0.3

y3

z2

x3

Z

0.4

z1

0.2

z2

x4

NT ψ(Y,Z,D)

Y

30.0

y1

Z

45.0

z1

D

-5.0

d1

-5.0

d2

25.0

d3

z2

y2

Z

0.0

z1

D

0.0

d1

0.0

d2

5.0

d3

z2

y3

Figure 5.1: Two exact NTs representing φ(X|Y, Z) and ψ(Y,X,D) from Exam-
ple 20.

single one. For example, for NTs shown in Figure 5.1, we obtain the following
reductions (w.r.t. the table representation): T φ(X, Y, Z) contains 24 table entries
while NT φ(X, Y, Z) has 22 nodes. For the UP, the size is reduced from 18 to
14. This reduction is possible due to the presence of CSIs. For example, for
φ(X|Y, Z), it holds that I(X⊥Y |Z = z1) . In other words, when Z = z1, the
probability will not depend on the value of Y . Therefore, all the values consistent

94 Chapter 5. Binary Trees

with Z = z1 and with the same value of X can be represented with a single value.

When we use the term of independence, we actually refer to a probabilistic
independence (e.g. the probability of X is independent of Y). In practice this
means that a given PP takes the same value for a subset of configurations. A simi-
lar situation can be found in the UPs, but in this case we will talk about functional
independencies. For example, in ψ(Y, Z,D) we can find (among others) the fol-
lowing CSIs: when Y = y1 the potential will always take the value 30.0; when
Y = y2 and Z = z1 the potential is always equal to 45.0.

Another advantage is that NTs can be pruned [28, 101, 54] in order to reduce
even more its storage size. Thus, approximate versions of the potentials will be
obtained. Figure 5.2 presents pruned NTs approximating the potentials φ(X|Y, Z)

and ψ(Y, Z,D). The pruning process consists in replacing some terminal trees1

by the average of their leaves. Even though this obtains an smaller representation,
it introduces error during computing. But it must be considered that an exact so-
lution will be infeasible for some complex IDs.

NT φ(X,Y, Z)

X

Z

0.25

z1

0.117

z2

x1

Z

0.25

z1

0.45

z2

x2

Z

0.1

z1

0.233

z2

x3

Z

0.4

z1

0.2

z2

x4

NT ψ(Y, Z,D)

Y

30.0

y1

Z

45.0

z1

D

-5.0

d1

-5.0

d2

25.0

d3

z2

y2

Z

0.0

z1

1.667

z2

y3

Figure 5.2: Two pruned NTs approximating φ(X|Y, Z) and ψ(Y, Z,D) from Ex-
ample 20.

1We say that a part of a NT is a terminal tree if it contains only one node labeled with a
variable, and all the children are leaves.

5.2. Previous approaches for potential representation 95

5.2.2 Recursive probability trees

Recursive probability trees (RPTs) [23, 24, 25] are a generalization of NTs. They
are also tree-like structures that allow to capture CSIs, but now they can maintain a
potential in a factorized way. The recursivity comes by the fact that each factor can
be again represented by a recursive subtree, and so on. So the capacity to represent
context-specific independencies and decomposition of potentials at the same time,
usually produce more compact representations than NTs. We can define RPTs as
follows.

Definition 29 (recursive probability tree) A RPT defined over the set of vari-
ables XI is a directed tree representing a potential φ(XI). A node in a RPT can
be:

• A Split node represents a variable Xi ∈ XI . It has an outgoing arc for each
xi ∈ ΩXi; each state labels one arc.

• A List node is used to list the factors in which a potential is decomposed. It
has as many outgoing arcs as factors in the decomposition. Each child of a
list node is again a recursive probability sub-tree that represents a potential
(a factor) for a subset of variables XJ , XJ ⊆ XI .

• A Potential node stores a potential. Internally can be represented using any
data-structure (e.g. tables, NTs, etc.)

• A Value node stores a non-negative real number.

Figure 5.3 shows an example of a NT and a RPT representing a PP φ(A,B|C).
This RPT contains a list node depicted as a split ellipse. The rest of the internal
nodes are split nodes while all the leaves are value nodes. This RPT does not
contain any potential node. In this PP, we can find the following proportionality:
2 · φ(a1, B|c1) = φ(a1, B|c2). Therefore, the sub-tree NT φ(a1, B, C) can be ex-
pressed as a multiplicative factorization using a list node.

96 Chapter 5. Binary Trees

NT φ(A,B,C)

A

B

C

0.1

c1

0.3

c2

b1

C

0.2

c1

0.6

c2

b2

a1

B

0.3

b1

0.1

b2

a2

RPT φ(A,B,C)

A

C

0.1

c1

0.3

c2

B

1

b1

2

b2

a1

B

0.3

b1

0.1

b2

a2

Figure 5.3: Example of a NT and a RPT representing a PP φ(A,B|C).

RPTs can be considered as a general representation for potentials involved in
PGMs, moreover an RPT is able to represent a full model like a BN. It should be
noticed that, until now, the only existing works about RPTs propose their use for
making inference in BNs. Yet, RPTs could be easily adapted for evaluating IDs.

5.3 Binary trees

5.3.1 Definitions and notation

A binary tree (BT) [26, 17, 19] is another tree-like structure representing a poten-
tial for a set of variables. Like NTs, this data structure can also encode CSIs and
can be pruned when approximate solutions are required. In fact, a BT can be seen
as a particularization of a NT, but in this case each internal node has always two
outgoing arcs (or branches). More formally, a BT can be defined as follows.

Definition 30 (binary tree) A BT defined over the set of variables XI is a di-
rected tree, where each internal node is labelled with a variable (random or de-
cision), and each leaf node is labelled with a number (a probability or a utility
value). We use Lt to denote the label of node t. Each internal node has always
two children. We denote by Llb(t) and Lrb(t) the labels (two proper disjoint subsets

5.3. Binary trees 97

of ΩXi) of the left and right branches of node t. Then, we denote by tl and tr the
two children of t (tr for the right child and tl for the left one).

BTs can be used for representing any potential over a set of discrete variables
involved in an IDs: a BT representing a PP φ(XI |XJ) will be called binary prob-
ability tree and denoted BT φ(XI |XJ). For example, the PP previously shown as
a table in Example 20 and as NTs in Figure 5.1 is depicted as BT in Figure 5.4.

BT φ(X,Y, Z)

X(1)

Z(2)

0.25(3)

z1

Y (4)

0.1(5)

y1, y2

0.15(6)

y3

z2

x1

X(7)

Z(8)

0.25(9)

z1

Y (10)

0.5(11)

y1, y2

0.35(12)

y3

z2

x2

X(13)

Z(14)

0.1(15)

z1

Y (16)

0.2(17)

y1, y2

0.3(18)

y3

z2

x3

Z(19)

0.4(20)

z1

0.2(21)

z2

x4

x3, x4

x2, x3, x4

Figure 5.4: Exact BTs representing the potential φ(X|Y, Z) from Example 20.
We use a superscript number at each node of BT φ(X, Y, Z), in order to easily
identify them.

In the same way, a BT representing a UP ψ(XI) will be called binary utility
tree and denoted BT ψ(XI). The UP previously shown as a table in Example 20
and as NTs in Figure 5.1 is depicted as BT in Figure 5.5.

98 Chapter 5. Binary Trees

BT ψ(Y, Z,D)

Y

Y

30.0

y1

Z

45.0

z1

D

-5.0

d1, d2

25.0

d3

z2

y2

y1, y2

Z

0.0

z1

D

0.0

d1, d2

5.0

d3

z2

y3

Figure 5.5: Exact BTs representing the UP ψ(Y, Z,D) from Example 20.

In a BT, we can differ two types of nodes. First, we have the internal nodes,
which are those labelled with a variable and having two children. Secondly, the
leaves are those nodes labelled with a number and without any children. For ex-
ample, in BT φ(X, Y, Z) shown in Figure 5.4, the node (2) is an internal one while
the node (3) is a leaf. Note that the root will be considered as an internal node if
there is more than a node in the BT.

The number of both internal and leaf nodes is the size of a given BT and de-
noted size(BT). The number of its leaf nodes is denoted leaves(BT). Theorem 2
states the relationship between the size of a tree and the number of leaves.

Theorem 2 A binary tree BT with n = size(BT) contains n+1
2

leaf nodes.

Proof 2 We will use induction on n to prove the previous theorem. When n = 1,
there is 1+1

2
= 1 leaf which is the single node in the BT .

If we assume that a given BT has n ≥ 3 nodes2 and l = n+1
2

leaves, the resulting

2Any BT always contains an odd number of nodes.

5.3. Binary trees 99

tree of removing two leaves with a common parent3 in BT must have n − 2 and
l−2+1 leaves (the common node turns into a leave). Therefore the new tree with
n− 2 nodes must have n+1

2
− 2 + 1 = (n−2)+1

2
leaves. �

As an example of previous theorem, in Figure 5.4, BT φ(X, Y, Z) has 21

nodes, being 21+1
2

= 11 of them leaf nodes. On the other hand, the size of
BT ψ(Y, Z,D) is 13 and it has 13+1

2
= 7 leaves.

As variables are not usually binary, a variable in a BT (XI) might appear more
than once labelling the nodes in the path from the root to a given node t. The set of
variables in such path is called the ancestors of t and denoted by Xt

I . For example,
the set of ancestors of node (3) in BT φ(X, Y, Z) is {X,Z}. Moreover, the union
of the states labelling the outgoing branches of a given node is not always equal
to the domain of the variable labelling such node. This is the case of node (13)
in BT φ(X, Y, Z) in Figure 5.4, where only the states x3 and x4 appear in the
outgoing branches. All the states of a given variableXi that can label the outgoing
branches of a node t conform its set of available states which is denoted by Ωt

Xi
.

The way for computing such set and an example are given in Definition 31 and in
Example 21 respectively.

Definition 31 (set of available states calculation) Let t be a node in a BT de-
fined over the set of variables XI and let Xi be any variable in XI . If Xi ∈ Xt

I ,
then Ωt

Xi
is equal to the set of states labelling the outgoing branch of Xi in its last

occurrence in the path from the root to t. Otherwise, Ωt
Xi

is equal to ΩXi .

Example 21 Let as consider the BT φ(X, Y, Z) show Figure 5.4. It is trivial that
for the root node, as it has not ancestors, the set of available states of any variable
is equal to their domains, i.e. if t = (1) then it holds that Ωt

X = ΩX , Ωt
Y = ΩY ,

Ωt
Z = ΩZ . By contrast, for the node (7) the set of available states of X is
{x2, x3, x4}, which is the label of the outgoing branch of X in its last occurrence,
i.e. node (1).

3Internal nodes in a BT have exactly 2 children.

100 Chapter 5. Binary Trees

A binary tree BT on the set of variables XI = {Xi|i ∈ I} represents a potential
(no matter whether PP or UP) ψ : ΩXI

→ R if for each xI ∈ ΩXI
the value ψ(xI)

is the number obtained with the recursive Algorithm 7. The procedure starts from
the root node t of the given BT , traversing recursively the full structure to the
leaves. Depending on the kind of node, the algorithm applies a different action.
If t is a leaf node, the corresponding value is returned (lines 2 and 3); otherwise
t is an internal node, then the procedure is recursively called to the child with the
given configuration (lines 4 to 11).

Algorithm 7 getValue
input : t (node of a BT defined on XI), xI (a configuration)
output : BT (xI)

1: Let val be a new numerical variable

2: if t is a leaf node then
3: val← Lt

4: else
5: Let Xi be the variable labelling t
6: Let xi the state of Xi consistent with xI

7: if xi ∈ Llb(t) then
8: val← getValue(tl, xI)
9: else if xi ∈ Llr(t) then

10: val← getValue(tr, xI)
11: end if
12: end if
13: return val

5.3. Binary trees 101

Example 22 Let us consider the binary tree BT φ(X, Y, Z) shown in Figure 5.4.
We want to obtain the value associated to the configuration {b4, a1}, then we
invoke Algorithm 7, i.e. getValue((1), {x2, y1, z1}). The recursive calls are ex-
plained bellow.

• getValue((1), {x2, y1, z1}): node (1) is an internal node labelled with the
variable X so the algorithm will continue traversing the BT. The label
of the right outgoing arc contains the state x2, then the algorithm is now
recursively invoke on the right child (lines 9 to 10).

• getValue((7), {x2, y1, z1}): again, the algorithm has reached a node which
is not a leaf, so the algorithm is recursively called on the left child which is
labelled with x2 (lines 7 to 8).

• getValue((7), {x2, y1, z1}): node (8) is an internal node labelled with the
variable Z. As the left outgoing arc contains the state Z1, the algorithm is
called on the left child (lines 7 to 8).

• getValue((8), {x2, y1, z1}) the algorithm has reached a leaf node and the
value 0.5 is assigned to the numerical variable val (lines 2 to 3) and re-
turned (line 13).

Finally, each of the recursive calls in the stack also assign the returned value to
the numerical variable val.

5.3.2 Extended configuration

As explained in Section 4.3, given a set of variables XI , the elements of ΩXI

are called configurations and denoted xI . A configuration can also be seen as a
mapping assigning to each Xi ∈ XI a state xi ∈ ΩXi . In a table representing a
potential, each entry corresponds to only one configuration. However, this is not
the case of BTs, where each leaf may correspond to a set of configuration. For
that reason, it is necessary to generalize the concept of configuration and hence
we can define an extended configuration as follows.

102 Chapter 5. Binary Trees

Definition 32 (extended configuration) An extended configuration for a
set of variables XI , denoted by AXI

or simply A, is defined as the multi-set
{Ai ⊆ ΩXi|Xi ∈ XI}.

An extended configuration can also be seen as a mapping assigning to each
Xi ∈ XI a subset Ai ⊆ ΩXi . Note that a (usual) configuration can also be seen
as an extended configuration that assigns subsets with exactly one element. The
intuition behind this new concept, is that an extended configuration for a set of
variables defines a set of configurations for that set of variables. That is, the set
of configurations defined by AXI

is denoted by SAXI
and it is obtained with the

Cartesian product of the subsets of sates in AXI
.

Example 23 Let us consider the set of variables XI = {A,B} whose domains
are ΩA = {a1, a2, a3} and ΩB = {b1, b2, b3, b4} respectively. Then, xI = {a3, b1}
is a configuration and AXI

= {{a3}, {b1, b2}} is an extended configuration which
defines the set of configurations SAXI

= {{a3, b1}, {a3, b2}}.

The associated extended configuration for t, denoted by At, is the multi-set
{Ωt

Xi
|Xi ∈ XI}. For example, let us consider the binary tree BT φ(X, Y, Z)

shown in Figure 5.4, the associated extended configuration for the node (13) is
{{x3, x4}, {y1, y2, y3}, {z1, z2}}. We denote by ψR(At) the potential consistent
with At; it corresponds to the sub-tree where t is the root node.

5.3.3 Independencies encoded with BTs

Like NTs, the advantage of using BTs instead of tables for representing potentials
is that the storage requirements are reduced. This tree-like structure is not an
exhaustive representation since identical values can be grouped into a single one,
i.e. a leaf node might corresponds to more than one configuration. The presence
of similar values in a PP is usually possible due to the presence of independencies
between the variables in the ID. The advantage of representing potentials as trees
is that they allow encoding independencies that are more general4, i.e. more fine-

4 In Section 3.3.4 we described the following forms of independence: CSIs, PCIs and CWIs.

5.3. Binary trees 103

grained, than those structurally encoded by IDs, i.e. conditional independencies
(CIs) (see Sections 3.3.3 and 4.4). Unlike CIs, these fine-grained independencies
hold if we only consider some states in the variables domains.

NTs, and by extension BTs, can encode context-specific independencies (CSIs)
(see Section 3.3.4.1). In short, CSIs are a kind of independence that only hold for
certain contexts, i.e. given a specific assignment of values to some variables. As
an example, let us consider the PP φ(X|Y, Z) represented as a table as follows.

T φ(X, Y, Z) =

x1 x2 x3 x4





0.25 0.25 0.1 0.4 y1

0.25 0.25 0.1 0.4 y2 z1

0.25 0.25 0.1 0.4 y3

0.1 0.5 0.2 0.2 y1

0.1 0.5 0.2 0.2 y2 z2

0.15 0.35 0.3 0.2 y3

In previous PP, X and Y are contextually independent given Z = z1, i.e.
I(X⊥Y |Z = z1). This independence implies that, for each x ∈ ΩX , if Z = z1

the value of the probability is the same regardless of the state of Y . When repre-
senting this PP as a tree (NT or BT) the leaf nodes related to this independence
will be collapsed into a single one. Figure 5.6 depicts previous PP as a NT and as
a BT. All the leaf nodes that represent more than one configuration due to this CSI
are highlighted with a dashed box. This is the case of the left-most leaf node in
NT φ(X, Y, Z) and in BT φ(X, Y, Z), which correspond with the configurations
defined by the extended configuration {{x1}, {y1, y2, y3}, {z1}}.

Another kind of fine-grained independence is partial conditional indepen-
dence (PCI), which is basically a CSI that holds if certain subsets of the variable
domains are considered. If we consider again the previous PP, we can observe that
X and Y are partially conditional independent in the domain {y1, y2} and given
the contextZ = z2, i.e. I(X⊥Y | {y1, y2}, z2). NTs cannot take advantage of PCIs
as, by definition, any internal node in a NT contains an outgoing branch for each
of the states in the domain of the variable labelling such node. This is not the case
for BTs, where outgoing branches might be labelled with a subset of the variable

104 Chapter 5. Binary Trees

I(X⊥Y |Z = z1)

I(X⊥Y |{y1, y2}, Z = z2)

NT φ(X,Y, Z)

X

Z

0.25

z1

Y

0.1

y1

0.1

y2

0.15

y3

z2

x1

Z

0.25

z1

Y

0.5

y1

0.5

y2

0.35

y3

z2

x2

Z

0.1

z1

Y

0.2

y1

0.2

y2

0.3

y3

z2

x3

Z

0.4

z1

0.2

z2

x4

BT φ(X,Y, Z)

X

Z

0.25

z1

Y

0.1

y1, y2

0.15

y3

z2

x1

X

Z

0.25

z1

Y

0.5

y1, y2

0.35

y3

z2

x2

X

Z

0.1

z1

Y

0.2

y1, y2

0.3

y3

z2

x3

Z

0.4

z1

0.2

z2

x4

x3, x4

x2, x3, x4

Figure 5.6: Leaf nodes related to the CSIs and PCIs present in φ(X|Y, Z) when
such PP is represented as a NT and as BT.

5.3. Binary trees 105

domain. In Figure 5.6, all the leaf nodes related to this PCI are highlighted with
a dotted pattern. For example, let us consider the configurations {x2, y2, z2} and
{x2, y3, z2}. In NT φ(X, Y, Z) two equal leaf nodes are required. By contrast, in
BT φ(X, Y, Z) these two configurations correspond to only one leaf node.

The structural capacity of encoding CSIs and PCIs makes the representation
with BTs more compact. In the example, a table representing φ(X, Y, Z) requires
24 entries. By contrast,NT φ(X, Y, Z) requires 22 nodes (14 of them are leaves).
Similarly, BT φ(X, Y, Z) requires 20 nodes (11 of them are leaves).

Another form of independence generalizing CSI is contextual weak indepen-
dence (CWI) (see Section 3.3.4.3). Unlike CSIs, in this case the sub-domains
of the variables in which the independence holds is not explicitly defined by a
particular assignment. For example, in φ(D|B,A), depicted as a table below,
D and B are weakly independent given the context A = a1, i.e. it holds that
WI(D⊥B| A = a1)5

T φ(D,B,A) =

d1 d2 d3 d4





0.3 0.7 0 0 b1

0.3 0.7 0 0 b2 a1

0 0 0.1 0.9 b3

0 0 0.1 0.9 b4

0.6 0.4 0 0 b1

0.8 0.2 0 0 b2 a2

0 0 0.2 0.8 b3

0 0 0.3 0.7 b4

Like PCIs, these independencies can be exploited by BTs but not by NTs.
Figure 5.7 shows a NT and a BT representing φ(D|B,A) from Example 7. All
the leaf nodes related to this CWI are highlighted with a dash-dot pattern.

5 The independence holds in the domains defined by the equivalence
classes π1 = {(d1, b1, a1), (d2, b1, a1), (d1, b2, a1), (d2, b2, a1)} and π2 =

{(d3, b3, a1), (d4, b3, a1), (d3, b4, a1), (d4, b4, a1)} from the equivalence relation θ1(DA =

a1) ◦ θ(BA = a1).

106 Chapter 5. Binary Trees

W
I
(D
⊥
B
|A

=
a
1)

N
T
φ
(D
,B
,A

)

A

D

B

0.3

b
1

0.3

b
2

0.0 b
3

0.0

b
4

d
1

B

0.7

b
1

0.7

b
2

0.0 b
3

0.0

b
4

d
2

B

0.0

b
1

0.0

b
2

0.1 b
3

0.1

b
4

d
3

B

0.0

b
1

0.0

b
2

0.9 b
3

0.9

b
4

d
4

a
1

D

B

0.6

b
1

0.8

b
2

0.0 b
3

0.0

b
4

d
1

B

0.4

b
1

0.2

b
2

0.0 b
3

0.0

b
4

d
2

B

0.0

b
1

0.0

b
2

0.2 b
3

0.3

b
4

d
3

B

0.0

b
1

0.0

b
2

0.8 b
3

0.7

b
4

d
4

a
2

BT
φ
(D
,B
,A

)

A

D

D

B

0.3

b
1 ,b

2

0.0

b
3 ,b

4

d
1

B

0.7

b
1 ,b

2

0.0

b
3 ,b

4

d
2

d
1 ,d

2

D

B

0.0

b
1 ,b

2

0.1

b
3 ,b

4

d
3

B

0.0

b
1 ,b

2

0.9

b
3 ,b

4

d
4

d
3 ,d

4

a
1

D

D

B

B

0.6

b
1

0.8

b
2

b
1 ,b

2

0.0

b
3 ,b

4

d
1

B

B

0.4

b
1

0.2

b
2

b
1 ,b

2

0.0

b
3 ,b

4

d
2

d
1 ,d

2

D

B

0.0

b
1 ,b

2

B

0.2

b
3

0.3

b
4

b
3 ,b

4

d
3

B

0.0

b
1 ,b

2

B

0.8

b
3

0.7

b
4

b
3 ,b

4

d
4

d
3 ,d

4

a
2

Figure
5.7:L

eafnodes
related

to
the

C
W

Ipresentin
φ

(D
|B
,A

)
w

hen
such

PP
is

represented
as

a
N

T
and

as
B

T
.

5.3. Binary trees 107

In addition, if we change the order of appearance of the variables in
BT φ(D,B,A) we obtain a more compact representation. The result is shown
in Figure 5.8.

WI(D⊥B|A = a1)BT φ(D,B,A)

D

B

D

A

D

0.3

d1

0.7

d2

a1

D

B

0.6

b1

0.8

b2

d1

B

0.4

b1

0.2

b2

d2

a2

d1, d2

0.0

d3

b1, b2

D

0.0

d1, d2

A

0.1

a1

B

0.2

b3

0.3

b4

a2

d3

b3, b4

d1, d2, d3

B

0.0

b1, b2

A

0.9

a1

B

0.8

b3

0.7

b4

a2

b3, b4

d4

Figure 5.8: A more compact representation of the potential shown in 5.7 as a BT
and obtained by reordering its nodes.

It can be observed that the representation of φ(D|B,A) as a BT reduces
the size of the potential as well: T φ(D,B,A) requires 32 table entries, while
BT φ(D,B,A) contains 29 nodes (15 of them are leaves).

When we use the term of independence, we actually refer to a probabilistic
independence (e.g. the probability of X is independent of Y). In practice this
means that a given PP takes the same value for a subset of configurations. A simi-
lar situation can be found in the UPs, but in this case we will talk about functional
independencies. As happens when representing PPs, a BT is a more compact
representation for a UP than a NT: many of the identical values that cannot be
grouped into a single value in a NT, can actually be grouped when using a BT.

108 Chapter 5. Binary Trees

As an example, Figure 5.9 shows a comparison of a NT and a BT representing the
potential ψ(Y, Z,D). Note that now the size is reduced to 14 and 13 nodes (9 and
7 of them are leaves).

NT ψ(Y,Z,D)

Y

30.0

y1

Z

45.0

z1

D

-5.0

d1

-5.0

d2

25.0

d3

z2

y2

Z

0.0

z1

D

0.0

d1

0.0

d2

5.0

d3

z2

y3

BT ψ(Y, Z,D)

Y

Y

30.0

y1

Z

45.0

z1

D

-5.0

d1, d2

25.0

d3

z2

y2

y1, y2

Z

0.0

z1

D

0.0

d1, d2

5.0

d3

z2

y3

Figure 5.9: A NT and a BT representing the potential ψ(Y, Z,D).

Another advantage of BTs (also present in NTs) is that they can be pruned in
order to reduce even more their sizes and the required execution time in propaga-
tion algorithms. In the following section, we propose an algorithm for building
(i.e. learning) and pruning BTs.

5.4. Learning exact and approximate BTs 109

5.4 Learning exact and approximate BTs
5.4.1 Building binary trees

The method for building a BT (from a table) representing a PP was described in
a previous work [26] while the equivalent one for UPs was described in [17, 19].
Such methods are inspired by the algorithms for learning classification trees from
a set of examples [95]. It must be noticed that, in general, many BTs can be built
to represent the same potential. However, we are interested in finding the smaller
one. As an example, let us consider the following UP:

T ψ(A,B) =

b1 b2 b3 b4





30 30 30 30 a1

15 15 20 20 a2

25 25 25 25 a3

Figure 5.10: Example of a UP represented as a table.

This potential can be represented with many BTs of different sizes. Some of
them are depicted in Figure 5.11. Note that these BTs contain 7, 9 and 11 nodes
respectively.

A

30

a1

A

B

15

b1, b2

20

b3, b4

a2

25

a3

a2, a3

A

30

a1

B

A

15

a2

25

a3

b1, b2

A

20

a2

25

a3

b3, b4

a2, a3

B

A

A

30

a1

15

a2

a1, a2

25

a3

b1, b2

A

A

30

a1

20

a2

a1, a2

25

a3

b3, b4

(a)

(b) (c)

Figure 5.11: Three BTs of different sizes representing the potential ψ(A,B)

The task of building a BT from a table can be seen as an optimization prob-
lem interested in choosing the labels for internal nodes (variables) and branches

110 Chapter 5. Binary Trees

(states). This requires a heuristic procedure for ordering the variables according to
their information. The most informative ones will be located at the highest nodes
of the tree. The motivation for such ordering is to obtain neighbor leaf nodes as
similar as possible. This condition will minimize the error produced when prun-
ing the trees collapsing several leaves into a single one.

The proposed algorithm builds a BT using a top-down approach, choosing
at each iteration a variable and a partition of its states. The general scheme for
building a BT representing a potential ψ defined over the set of variables XI is
detailled in Algorithm 8. Note that this procedure is almost the same for building
trees representing PPs or UPs. The kind of potential only affects to the spliting
criteria used for selecting the next node and states for expanding the tree (step
2.b).

Algorithm 8 Build an exact BT

1. Build an initialBT with a single node labelled with the average of the values
in the potential: Lt =

∑
xI∈ΩXI

ψ(xI)/|ΩxI |

2. While BT contains any leaf node t that can be expanded:

(a) Select a leaf node t.

(b) According to any criteria (see Section 5.4.1.1), select a variableXi and
a partition of its available states at t into two subsets, Ωtl

Xi
and Ωtr

Xi
.

(c) Expand the leaf node t (with t rooting the terminal tree and being tl
and tr its children).

(d) Label t with Xi and the two outgoing arcs with Ωtl
Xi

and Ωtr
Xi

. The
two leaf nodes tl and tr will be labelled with the average of values
consistent with the states labelling the path from the root to tl and tr
respectively.

3. Return BT

The process begins with an initial BT 0 which has only one node labelled with
the average of the values in the potential (step 1). Then, a greedy algorithm (step

5.4. Learning exact and approximate BTs 111

2) is applied until an exact tree is obtained (there is not any leaf node that can be
expanded). At each iteration, a new BT j+1 is generated from the previous one,
BT j . This new tree is the result of expanding one of the leaf nodes t in BT j with
a terminal tree (with t rooting the terminal tree and being tl and tr its children).
The label of the node t will be replaced with one of the candidate variables. A
variableXi is candidate if the associated extended configuration At contains more
than one state for Xi. The set of available states Ωt

Xi
of the chosen candidate vari-

able Xi will be partitioned into two subsets, Ωtl
Xi

and Ωtr
Xi

. Each subset labels one
of the two outgoing arcs (left and right) of t. The two leaf nodes tl and tr in the
new terminal tree will be labelled with the average of values consistent with the
states labelling the path from the root to tl and tr respectively.

5.4.1.1 Splitting criteria

The candidate variable and the partition of its states must be chosen using any
criteria or heuristic (step 2.b in Algorithm 8). Any partition of Ωt

Xi
would be pos-

sible, but checking all of them would be a very time-consuming task. In order to
reduce the complexity, we assume that the set of available states for Xi at node
t is ordered and we only check partitions into subsets with consecutive states.
For example, given a variable X with Ωt

X = {x1, x2, x3}, we will only check
the partitions {{x1}, {x2, x3}} and {{x1, x2}, {x3}}. In our approach we propose
choosing the variable and partition that maximizes the information gain that can
be defined as follows.

Definition 33 (information gain) Let ψ be the potential (no matter whether PP
or UP) to be represented as a tree, BT j and BT j+1(t,Xi,Ω

tr
Xi
,Ωtl

Xi
) the resulting

tree of expanding the leaf node t with the candidate variable Xi and a partition of
its available states into sets Ωtl

Xi
and Ωtr

Xi
. LetD(ψ,BT j) be the distance between

a potential and a tree. The information gain can be defined as:

I(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) = D(ψ,BT j)−D(ψ,BT j+1(t,Xi,Ω

tl
Xi
,Ωtl

Xi
)) (5.1)

112 Chapter 5. Binary Trees

That is, the information gain is the difference between the distance from the
current tree to the real potential before and after expanding the leaf node labelled
with Xi. Thus, we need to use a distance or a similarity measure between an exact
potential and a tree. When building a BT representing a PP, Kullback Leibler
divergence will be used (Equation (5.2)). In the case of utilities we propose to use
the Euclidean distance (Equation (5.3)).

DKL(φ,BT) =
∑

xI∈ΩxI

ψ(xI) · log
ψ(xI)

BT (xI)
(5.2)

DEU(ψ,BT) =

√ ∑

xI∈ΩXI

(ψ(xI)− BT (xI))
2 (5.3)

where BT (xI) is the value that the tree assigns to the configuration xI . Now we
will denote the information gain by IKL or IEU depending on distance used.

Example 24 In order to illustrate the process for building a BT, let us consider
the potential shown in Figure 5.10. The intermediate trees obtained during the
building process of this tree are shown in Figure 5.12.

24.17 A

30
a1

21.25
a2, a3

A

30

a1

A

17.5
a2

25
a3

a2, a3

A

30
a1

A

B

15
b1, b2

20
b3, b4

a2

25

a3

a2, a3

BT 0 BT 1 BT 2 BT 3

⇒ ⇒ ⇒

Figure 5.12: Process for building a BT from the potential in Figure 5.10

The initial tree BT 0 contains a single node labelled with the value 24.17, which is
approximately the average of all the values in the potential. Then, the information
gain for each candidate variable and partition is calculated as follows:

IEU(t, A, {a1}, {a2, a3}) ' 18.484− 11.726 = 6.758

5.4. Learning exact and approximate BTs 113

IEU(t, A, {a1, a2}, {a3}) ' 18.484− 18.371 = 0.113

IEU(t, B, {b1}, {b2, b3, b4}) ' 18.484− 18.409 = 0.075

IEU(t, B, {b1, b2}, {b3, b4}) ' 18.484− 18.257 = 0.227

IEU(t, B, {b1, b2, b3, }, {b4}) ' 18.484− 18.409 = 0.075

The highest value for the information gain is obtained if the variable A and the
partition {{a1}, {a2, a3}} are chosen to expand the node. After that, the algorithm
repeats the same process until the exact BT is obtained. The node labelled with 30

at BT 1 will not be expanded any more: all configurations in the utility potential
consistent with A = a1 are equal to 30.

5.4.1.2 Efficient computation of the information gain

Some of the computations performed to calculate the information gain when a
node is expanded are also performed in posterior iterations when the children are
expanded. Proposition 6 shows an alternative expression for computing the infor-
mation gain that takes advantage of these repeated computations.

Proposition 6 Suppose that we aim to represent a potential as a BT. Let BT j be
an intermediate tree in the building process and BT j(t,Xi,Ω

tl
Xi
,Ωtr

Xi
) the tree re-

sulting of expanding the leaf node t with the candidate variableXi and a partition
of its available states into sets Ωtl

Xi
and Ωtr

Xi
. Let sum(•) be the addition of all

the values in a given potential and let sumSqr(•) be the addition of all its square
values. If we aim to build a tree representing a PP, say φ, then the information
gain (Equation (5.1)) using the Kullback Leibler divergence can be calculated in
the following way.

114 Chapter 5. Binary Trees

IKL(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) = sum(φR(At)) · log(

∣∣Ωt
Xi

∣∣ /sum(φR(At)))

+sum(φR(Atl)) · log(sum(φR(Atl))/
∣∣Ωtl

Xi

∣∣)

+sum(φR(Atr)) · log(sum(φR(Atr))/
∣∣Ωtr

Xi

∣∣)

(5.4)

Otherwise, if we aim to build a tree representing a UP, say ψ, then the information
gain using the Euclidean distances will be computed as follows.

IEU(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) =

√
sumSqr(ψR(At))− (sum(ψR(At)))2

size(ψR(At))

−
√
sumSqr(ψR(Atl))− (sum(ψR(Atl)))2

size(ψR(Atl))
+ sumSqr(ψR(Atr))− (sum(ψR(Atr)))2

size(ψR(Atr))

(5.5)

It should be noticed that computing the information gain with previous ex-
pressions is more efficient than using Equation (5.1), since the first term can be
obtained from the information gain computed when the father node was expanded.
In Appendix A, it is proved that the expressions (5.4) and (5.5) for computing the
information gain are equivalent to Equation (5.1).

5.4.2 Pruning Binary Trees

Sometimes the size of a BT can be too large making infeasible its management
during the propagation. In that case, it can be pruned in order to get an approxi-
mate one. Pruning a BT consists of replacing a terminal tree6 by the average value

6We say that a part of a BT is a terminal tree if it contains only one node labeled with a
variable, and its two children are leaves.

5.4. Learning exact and approximate BTs 115

of its leaves. Figure 5.13 shows an example of pruning, where the node consistent
with the configuration A = {a2} in the left tree has been replaced by the average
value of its children in the right tree.

A

30

a1

A

B

15

b1, b2

20

b3, b4

a2

25

a3

a2, a3

A

30

a1

A

17.5

a2

25

a3

a2, a3

=⇒

Figure 5.13: Example of pruning a terminal tree in a BT

We apply the following heuristic procedure to decide when to prune a terminal
tree. This procedure is guided by a threshold ε.

Definition 34 (pruning condition of a terminal tree) Let BT be a binary tree
encoding a potential, t the root of a terminal tree of BT labelled withXi, tl and tr
its children, Ωtl

Xi
and Ωtr

Xi
the sets of states for the left and right child respectively,

and ε a given threshold such that ε ≥ 0. Then we will consider the following
conditions to decide whether the terminal tree can be pruned or not:

• If BT represents a UP ψ, the terminal tree can be pruned if:

IEU(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) ≤ ε · (max(ψ)−min(ψ)) (5.6)

where max(ψ) and min(ψ) are the maximum and minimum values in ψ.

• Alternativelly, if BT represents a PP, the terminal tree can be pruned if:

IKL(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) ≤ ε (5.7)

In previous definition, it should be noted that IEU and IKL can be locally com-
puted using Equations (5.5) or (5.4) respectively. The goal of pruning involves de-
tecting leaves that can be replaced by one value without a great increment in the

116 Chapter 5. Binary Trees

distance between BT and the exact potential. Here, IEU and IKL are considered
as the information loss produced in a BT when a terminal tree is removed. The
pruning process would finish when there are not any other terminal tree in BT
verifying the condition in Equations (5.6) or (5.7). In case of trees representing
UPs, which are not normalized, the highest information loss allowed when prun-
ing depends on a threshold ε ≥ 0 but also on the maximum and minimum values
in ψ. Low values of ε will produce large trees with low errors while low values
of ε will lead to small trees and big errors. If ε = 0, there is not approximation: a
terminal tree will be pruned only if both children have the same value.

5.5 Conclusions

In this chapter we have formalized the use of BTs for representing the potentials
involved in IDs. This kind of tree allows representing context-specific indepen-
dencies that are more fine-grained compared to those encoded using NTs or tables.
In particular, some of these forms of independence are partial conditional indepen-
dencies and contextual weak independencies. As a result, this tree-like structure
allows a compact representation of the potentials: many equal values can be rep-
resented with the same leaf node. Additionally, BTs can be pruned leading to
approximate versions of the potentials. In particular, we have provided detailed
methods for building and pruning a BTs representing PPs and UPs.

In Chapter 8, we will explain how IDs whose potentials are represented as
BTs can be evaluated. Another advantage of BTs is that they can be used for
representing the qualitative information in a decision problem due to asymmetries.
This capability is detailed in Chapter 6.

Chapter 6

Asymmetries Representation with
Binary Trees

6.1 Introduction

In some decision problems, particular acts or events can lead to very different pos-
sibilities and, as a consequence, not all decisions and variables are considered in
all circumstances. Such kind of problems are so-called asymmetric [108], and an
important drawback of IDs is related to their inability for efficiently representing
them. To be modelled as an ID, asymmetric decision problems must be sym-
metrized by adding artificial states to the domains of some variables. Even more,
potentials might contain some impossible configurations (due to the asymmetries
of the problem) that are not relevant for computing the optimal policies. However,
in conventional evaluation algorithms, operations on potentials are performed with
all their values. This implies that a considerable amount of unnecessary memory
space and computation may be involved during the evaluation of IDs representing
asymmetric decision problems.

Several approaches have been made to solve this drawback. Call and Miller
[21], Fung and Shachter [104], Smith et al. [108], Qi et al. [94], Covaliu and
Oliver [36], Shenoy [107], Nielsen and Jensen [84], Demirer and Shenoy [43],
Dı́ez and Luque [44] have proposed different frameworks for solving asymmetric

117

118 Chapter 6. Asymmetries Representation with Binary Trees

decision problems. Some of these approaches imply important changes in the ID
framework and require new specific evaluation algorithms. Our approach, how-
ever, tries to keep the framework without changes, as well as using the standard
algorithms as much as possible. In particular, we propose the use of BTs in order
to improve the efficiency of the evaluation of IDs representing asymmetric deci-
sion problems. Our proposal consists of using BTs for representing potentials and
asymmetries. As the same data structure is used for both, potentials and asym-
metries, they can be easily applied in order to reduce the number of scenarios to
consider.

In Section 6.2, we first explain the problematic related to the evaluation of
IDs representing problems with asymmetries. Then, in Section 6.3.1 we intro-
duce constraints rules, which are logical expressions for defining asymmetries in
a more intuitive way. The basic concepts about the representation of asymmetries
as BTs, namely binary constraints trees, are described in Section 6.3.2.

6.2 Motivation

6.2.1 Asymmetric decision problems

In asymmetric decision problems [108], the possible outcomes and decision op-
tions for some variables may depend on the past. For example, let us consider a
decision problem where you have the option of doing a test. After that decision,
any possible result for this test is meaningless if you have decided not doing it.
In general, in asymmetric decision problems, we will find conditioned scenarios
such as “if X takes the value x1, then Y cannot take y2”.

There are several possible sources of asymmetries in decision problems. Though
there are different classifications in the literature, we will follow the one proposed
by Jensen and Nielsen [64]:

• Functional asymmetries: the domain of a variable (chance or decision) may
vary depending on the value taken by another variable.

6.2. Motivation 119

• Structural asymmetries: the very occurrence of an observation or a decision
depends on the past.

• Order asymmetries: several orderings of the decisions are possible.

In our approach we will only consider those asymmetries where the domain
of a variable is partially or totally restricted, (i.e., functional and structural asym-
metries).

For a better comprehension of asymmetric decision problems we will intro-
duce the so-called reactor problem, which was initially described by Covaliu and
Oliver [36] and modified by Bielza and Shenoy [3, 4]. Example 25 gives the de-
tails of the modified version of this problem.

Example 25 (the reactor problem) An electric company must decide about the
type of reactor to build (D2). There are three alternatives: a reactor of conven-
tional design (c), a reactor of advanced design (a), or neither (n). The conven-
tional one is less profitable but safer: such kind of reactor (C) has a probability
0.02 of failing (cf) while a probability of 0.98 of being success (cs). By con-
trast, an advanced reactor (A) has probability 0.096 of a major accident (am),
probability 0.244 of a limited accident (al) and probability 0.66 of being success
(as). The profits for the conventional reactor are $8B in case of being success
while −$4B if there is a failure. For the advanced one, profits are $12B in case
of being success, −$6B if there is a limited accident, and −$10B if there is a
major accident. Before taking the decision, the company can make a test (D1) for
analysing the components of the advanced reactor that costs $1B. Thus, it should
be decided if the test is made (t) or not (nt). The results of this test (T) can be
excellent (e), good (g), bad (b). If the test is not made, there are not available
results (nr). In case of a bad result, the company directly discards the option of
building an advanced reactor.

In the reactor problem, there are several examples of functional asymmetries
in this problem:

120 Chapter 6. Asymmetries Representation with Binary Trees

A1. If the test is not made (D1 = nt), there are not available results (T = nr).

A2. If the test is made (D1 = t), the possible outcomes of the test are excellent,
good or bad (T ∈ {e, g, b}).

A3. In case of obtaining bad results (T = b), the company will discard the option
of building an advanced reactor (i.e., D2 cannot take the value a and hence
D2 ∈ {c, n}).

On the other hand, the structural asymmetries present in this problem are:

A4. If the decision is not to build an advanced reactor (D2 ∈ {c, n}) or the result
for the test is bad (T = b), the probabilities of failure in such kind of reactor
will not affect to the expected profit (A ∈ {}).

A5. If the decision is to build a reactor different to the conventional one (D2 ∈
{a, n}), the probabilities of failure in such kind of reactor will not affect to
the expected profit (C ∈ {}).

The reactor problem does not contain order asymmetries since the order of
decisions is fixed at the time the model is specified.

Unlike IDs, decision trees, which were explained in Section 4.2, are flexible
and expressive enough to take advantage of asymmetries. For example, Figure 6.1
depicts the previous problem as a decision tree that has been simplified thanks to
the asymmetries. In case of functional asymmetries, some outgoing branches can
be removed. For example, due to asymmetry A2, the node T consistent with
D1 = t does not contain any outgoing branch labelled with nt. In case of struc-
tural asymmetries, some variables do not appear in some scenarios1. For example,
due to asymmetry A5 the variable C does not appear in every scenario consistent
with D2 = a or D2 = n.

1In a decision tree, a path from the root to a leaf is a scenario.

6.2. Motivation 121

Figure 6.1: Decision tree representing the reactor problem described in Exam-
ple 25. Details for building and evaluating this decision tree are given in [3].

Based on the tree representation of a decision problem, Definition 35 states a
simple way for determining if a decision problem is asymmetric.

122 Chapter 6. Asymmetries Representation with Binary Trees

Definition 35 A decision problem is said to be asymmetric if there exists at least
one tree representation satisfying one of the following conditions:

(i) The number of scenarios is not equal to the cardinality of the Cartesian
product of the domains of all chance and decision variables.

(ii) The sequence of variables is not the same in all the scenarios.

In the previous decision tree there are scenarios with different sequences of
variables, e.g. {D1 = nt,D2 = a,A = as} and {D1 = t, T = e,D2 = a,A =

am}. Therefore, condition (ii) of Definition 35 is satisfied and hence this problem
is asymmetric. Condition (i) is neither satisfied as this tree shows 21 scenarios but
the cardinality of the Cartesian product of the domains is 108.

Note that the (functional or structural) asymmetries imply that some scenarios
in the problem are not allowed. These are called impossible scenarios and are
not relevant for the evaluation of the problem. For example, in the reactor prob-
lem, the scenario defined by {D1 = t, T = nr,D2 = a,A = am} is impossible
due to the asymmetry A1. Moreover, any scenario containing the configuration
{D1 = t, T = nr} will lead to an impossible scenario. In an asymmetric de-
cision problem, we can identify those configurations of variables leading to an
impossible scenario, which will be called impossible configurations. Given the
asymmetries previously detailed, the configurations leading to impossible scenar-
ios in the reactor problem are shown in Table 6.1.

In the decision tree representation, the simplification is done by removing any
scenario containing impossible configurations. In our approach for reducing the
complexity of the evaluation of asymmetric decision problems, we will also need
to identify these impossible configurations in order to exclude them from the com-
putations.

6.2. Motivation 123

Asymmetry Impossible configurations

A1 {D1 = t, T = nr}
A2 {D1 = nt, T = e}, {D1 = nt, T = g}, {D1 = nt, T = b}
A3 {T = b,D2 = a}
A4 {T = b, A = as}, {T = b, A = al}, {T = b, A = am},

{D2 = c, A = as}, {D2 = c, A = al}, {D2 = c, A = am},
{D2 = n,A = as}, {D2 = n,A = al}, {D2 = n,A = am},

A5 {D2 = a, C = cs}, {D2 = a, C = cf}, {D2 = n,C = cs},
{D2 = n,C = cf},

Table 6.1: Configurations leading to impossible scenarios in the reactor problem.

6.2.2 IDs and asymmetries

The drawback of using IDs to model asymmetric decision problem is well known:
to be modelled as an ID, such problems must be symmetrized by adding artificial
states. For example, let us consider the ID modelling the reactor problem as shown
in Example 26. Note that we must include the state nr to represent the situation
in which the test is not performed (and hence, there are not results). This artificial
state does not appear in the decision tree modelling the reactor problem (see Fig-
ure 6.1). However, the state nr does appear in the corresponding ID representation
for the same problem. As a consequence, the addition of artificial states increases
the size of the potentials. Moreover, potentials in IDs representing asymmetric de-
cision problems might contain impossible configurations. For instance, ψ(C,D2)

is defined for {D2 = a, C = cs}, {D2 = a, C = cf}, {D2 = n,C = cs} and
{D2 = n,C = cf} which are impossible configurations due to the asymmetry A5
detailed in the previous section.

Example 26 (the reactor ID [3]) Figure 6.2 shows an ID for the reactor prob-
lem. The sets of nodes are UC = {T,A,C}, UD = {D1, D2} and
UV = {U1, U2, U3}. The sets of PPs and UPs are Φ = {φ(T |D1, A), φ(A), φ(C)}
and Ψ = {ψ(D1), ψ(A,D2), ψ(C,D2)} respectively. Their numerical values are
depicted below. Table entries corresponding with impossible configurations are
shown in grey.

124 Chapter 6. Asymmetries Representation with Binary Trees

φ(T |D1, A) =

t nt

as al am as al am





0.818 0.147 0.25 0.0 0.0 0.0 e

0.182 0.565 0.437 0.0 0.0 0.0 g

0.0 0.288 0.313 0.0 0.0 0.0 b

0.0 0.0 0.0 1.0 1.0 1.0 nr

φ(A) =







0.660 as

0.244 al

0.096 am

, φ(C) =
[]
0.98 cs

0.02 cf
, ψ(D1) =

[]−10 t

0.0 nt
,

ψ(A,D2) =

as al am






12.0 −6.0 −12.0 a

0.0 0.0 0.0 c

0.0 0.0 0.0 n

, ψ(C,D2) =

cs cf






0.0 0.0 a

8.0 −4.0 c

0.0 0.0 n

,

D1 T A C

D2

U3 U2 U1

Figure 6.2: ID representing the reactor problem described in Example 25.

In conventional evaluation algorithms, operations on potentials are performed
with all their values, even with those corresponding to impossible configurations.
This implies that a considerable amount of unnecessary memory space and op-
erations may be involved during the evaluation. We will say that unnecessary
(arithmetic) operations are those done for computing values in a potential associ-

6.2. Motivation 125

ated to impossible configurations. To illustrate this drawback, Example 27 details
the operations performed with the VE algorithm2 during the first iteration.

Example 27 (the reactor ID evaluated with VE) Let us consider the removal or-
der A,C,D1, T,D2. In the first iteration, Algorithm 2 is invoked for removing
variable A:

• Step 1: the sets of relevant PPs and UPs for removing A, are
ΦA = {φ(T |D1, A), φ(A))} and Ψ = {ψ(A,D2)}.

• Step 2: combine the PPs obtaining φA(T,A|D1). As there is only one UP
containing A, the combination of utilities is not done, i.e. ψA(A,D2) =

ψ(A,D2).

φA(T,A|D1) = φ(T |D1, A) · φ(A) =

t nt

as al am as al am





0.540 0.036 0.024 0.0 0.0 0.0 e

0.120 0.138 0.042 0.0 0.0 0.0 g

0.0 0.070 0.030 0.0 0.0 0.0 b

0.0 0.0 0.0 0.660 0.244 0.096 nr

(6.1)

The resulting potential φA(T,A|D1) contains 15 values associated to im-
possible configurations due to asymmetries A1, A2 and A3. Therefore, the
computation of this PP implies 15 unnecessary multiplications, out of 24.

• Step 4: sum-marginalize variable A out of φA(T,D1|A):

φ′A(T |D1) =
∑

A

φA(T,A|D1) =

t nt





0.6 0.0 e

0.3 0.0 g

0.1 0.0 b

0.0 1.0 nr

(6.2)

2More details about the VE algorithm are given in Section 4.5.1.

126 Chapter 6. Asymmetries Representation with Binary Trees

Previous potential contains 4 values associated to impossible configura-
tions due to asymmetries A1 and A2. Thus, this sum-marginalization implies
8 unnecessary additions out of 16.

Combine the PP and UP:

ψ(D2, T,D1, A) = φA(T,A|D1) · ψA(A,D2) =

t nt

as al am as al am






6.479 −0.215 −0.288 0.0 0.0 0.0 e

1.441 −0.827 −0.503 0.0 0.0 0.0 g a

0.0 −0.422 −0.361 0.0 0.0 0.0 b

0.0 0.0 0.0 7.92 −1.464 −1.152 nr

0.0 0.0 0.0 0.0 0.0 0.0 e

0.0 0.0 0.0 0.0 0.0 0.0 g c

0.0 0.0 0.0 0.0 0.0 0.0 b

0.0 0.0 0.0 0.0 0.0 0.0 nr

0.0 0.0 0.0 0.0 0.0 0.0 e

0.0 0.0 0.0 0.0 0.0 0.0 g n

0.0 0.0 0.0 0.0 0.0 0.0 b

0.0 0.0 0.0 0.0 0.0 0.0 nr

(6.3)

The potential ψ(D2, T,D1, A) contains 63 values associated to impossible
configurations due to asymmetries A1, A2, A3 and A4. Thus, 63 unnecessary
multiplications out of 72 are performed.

Sum-marginalize A out of ψ(D2, T, A,D1):

6.2. Motivation 127

ψ(D2, D1, T) =
∑

A

ψ(D2, T,D1, A) =

t nt

e g b nr e g b nr






5.975 0.111 −0.782 0.0 0.0 0.0 0.0 5.304 a

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 c

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n

(6.4)

The resulting UP of the sum-marginalization has 13 values associated to
impossible configurations due to asymmetries A1, A2 and A3. The compu-
tation of each value requires 2 additions. Thus, this operation implies 26
unnecessary additions out of 48.

Normalize the resulting UP:

ψ′A(D2, D1, T) =
ψ(D2, D1, T)

φ′A(T |D1)
=

t nt

e g b nr e g b nr






9.963 0.370 −7.800 0.0 0.0 0.0 0.0 5.304 a

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 c

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n

(6.5)

This UP has 13 values associated to impossible configurations due to asym-
metries A1, A2 and A3. As a consequence, this division of potentials implies
13 unnecessary divisions out of 24.

• Step 9: update the sets of potentials: Φ = {φ′A(T |D1), φ(C)}, and Ψ =

{ψ(D1), ψ′A(D2, D1, T), ψ(C,D2)}.

With previous example, we have illustrated that, if asymmetries are not taken
into account, many unnecessary operations are involved during the evaluations:

128 Chapter 6. Asymmetries Representation with Binary Trees

only for the removal of variable A, a total of 184 arithmetic operations are re-
quired and 126 of them are unnecessary. This number could be higher if we also
consider as unnecessary those operations whose operands are values associated to
impossible configurations. Moreover, potentials in asymmetric decision problems
usually contain a high number of values equal to 0.0. Thus, many multiplications
could also be avoided if we detect that one of the operands is equal to 0.0.

6.3 Asymmetries and binary trees

6.3.1 Constraint rules

A constraint rule is intuitive representation of an asymmetry present in a decision
problem. More formally, a constraint rule κ is a logical expression in the form of
antecedent⇒ consequent. An atomic sentence is a pair (variable, set of values):
X ∈ {xi, . . . xj}. If this set of values contains only one element, e.g., X ∈ {xi},
we can use the notation X = xi. Atomic sentences can be connected with logical
operators to form logical sentences. Valid logical operators are ∧(and), ∨(or)

and ¬(not). For constraint rules, both antecedents and consequents are expressed
using logical sentences.

Example 28 (constraint rules for the reactor problem) The asymmetries detailed
in Section 6.2.1 for the reactor problem can be defined by the following set of con-
straint rules3:

κ1 : D1 = t⇒ T ∈ {e, g, b}
κ2 : D1 = nt⇒ T ∈ {nr}
κ3 : T = b⇒ D2 ∈ {c, n}
κ4 : (T = b) ∨ (D2 ∈ {c, n})⇒ A ∈ {}
κ5 : D2 ∈ {a, n} ⇒ C ∈ {}

3In this example, the asymmetry A1 corresponds with the constraint rule κ1, A2 with κ2, and
so on.

6.3. Asymmetries and binary trees 129

Impossible configurations can be identified using the constraint rules, which usu-
ally correspond with the values equal to 0 in the potential. Considering the con-
straint rule κ1 and the probability potential φ(T |D1, A), we can state that:

φ(nr|t, as) = φ(nr|t, al) = φ(nr|t, am) = 0

The configuration {D1 = t, T = nrt} corresponds to an impossible scenario
(see Table 6.1) that must not be considered for computations. An atomic sentence
could have an empty set of values for the consequent, e.g the constraint rule κ5

means that {D2 = a, C = cs}, {D2 = a, C = cf}, {D2 = n,C = cs} and
{D2 = n,C = cf} lead to impossible scenarios.

The use of constraint rules have several advantages. First of all, they make
the elicitation process easier (reducing the number of scenarios and therefore the
number of parameters to assess); secondly, they help to make both qualitative and
quantitative knowledge consistent; and thirdly, they clearly state invalid scenarios,
making the contingent nature of the decision problem clear. In IDs representing
asymmetric decision problems, we will often have more than one constraint rule.
Thus, a set of such logical expressions will be denoted as K.

6.3.2 Binary constraints trees

Even though the use of constraint rules is an intuitive way for describing asymme-
tries in a decision problem, we need to combine the information encoded in these
rules with the quantitative information of an ID (i.e., potentials). Assuming that
potentials are represented using BTs, constraint rules should be also transformed
into BT before the evaluation. In doing so, the combination is almost straightfor-
ward as the same data structure is used. A BT that represents a constraint rule will
be called binary constraint tree (BCT).

In a previous work, the use of NTs for representing constraint rules [54] was
proposed. However, BTs can capture more fine-grained independencies than those

130 Chapter 6. Asymmetries Representation with Binary Trees

captured using NTs. Potentials and constraints need less memory space to be rep-
resented as a BT than as a NT. As a consequence, more efficient evaluation algo-
rithms will be obtained.

Definition 36 (binary constraint tree) A binary constraint tree BT κ(XI) for a
constraint rule κ with variables XI is a BT whose leaf nodes contain either a 0 or
1. Given a configuration xI ∈ XI , if BT κ(xI) is equal to 0 means that xI is an
impossible configuration.

Example 29 (BCTs for the reactor problem) Given the set of constraint rules
stated in Example 28, the BCTs representing such sets of constraints are shown in
Figure 6.3.

BT κ1(D1, T)

κ1 : D1 = t⇒ T ∈ {e, g, b}

T

1.0

e, g, b

D1

0.0

t

1.0

nt

nr

BT κ2(D1, T)

κ2 : D1 = nt⇒ T ∈ {nr}

D1

1.0

t

T

0.0

e, g, b

1.0

nr

nt

BT κ3(T,D2)

κ3 : T = b⇒ D2 ∈ {c, n}

D2

T

1.0

e, g

T

0.0

b

1.0

nr

b, nr

a

1.0

c, n

BT κ4(T,D2, A)

κ4 : (T = b) ∨ (D2 ∈ {c, n})⇒ A ∈ {}

D2

T

1.0

e, g

T

0.0

b

1.0

nr

b, nr

a

0.0

c, n

BT κ5(D2, C)

κ5 : D2 ∈ {a, n} ⇒ C ∈ {}

D2

0.0

a

D2

1.0

c

0.0

n

c, n

Figure 6.3: BCTs representing the sets of constraints rules stated in Example 28
for the reactor problem.

Given a BT κ(XI) representing a constraint rule κ, impossible scenarios de-
fined by κ are all the configurations consistent with each leaf node t labelled with
0, i.e. Ωt

XI
. For example, the impossible configurations defined by BT κ2(D1, T)

6.4. Conclusions 131

are {D1 = nt, T = e}, {D1 = nt, T = g}, {D1 = nt, T = b}. A value equal
to 1 means that, taking into account only this constraint tree, the configuration is
possible (it could be impossible according to another constraint). For instance,
the configuration {D1 = nt, T = e} is possible according to BT κ1(D1, T) but
impossible according to BT κ2(D1, T) .

Given a constraint rule κ over the set of variables XI , the process for building
BT κ is quite simple: First, create a table T (XI). Then, the logical expression κ
is evaluated for each xI ∈ XI . If the result is true, then set T (xI) to 1, otherwise
set T (xI) to 0. Finally, build BT κ from T (XI) using the same algorithm that was
proposed for building a BT representing a potential (see Section 5.4). Notice that
in a BCT branches with the same value can be grouped (as happens with a BT
from a potential) and as a consequence, a variable in the domain of the constraint
may not appear in any node of the tree. This situation happens, for example, in
BT κ5(D2, C) where variable C is not present in the tree. Despite of that, the
variable C should be taken into account for checking the applicability of the rule
(concepts about the applicability of the rules are explained in Chapter 10).

6.4 Conclusions

In this chapter, we have introduced the so-called asymmetric decision problems,
where a particular action or observation can lead to very different possibilities
and, as a consequence, not all decisions and variables are considered in all cir-
cumstances. In particular, this kind of problems are characterized by the presence
of configurations of variables that are not allowed (i.e., they are impossible) due
to the asymmetries. We have explained the drawback of IDs related to their in-
ability for efficiently representing this kind of problems: potentials might contain
some of these impossible configurations that are not relevant for computing the
optimal policies. In standard evaluation algorithms, operations on potentials are
performed with all their values, including those related to impossible configura-
tions. As a consequence, a considerable amount of unnecessary memory space
and computation may be involved.

132 Chapter 6. Asymmetries Representation with Binary Trees

For addressing this problem, we have introduced constraints rules, which are
logical expressions used for intuitively defining asymmetries. We have proposed
transforming these rules into BTs, which are called binary constraint trees (BCTs).
This makes possible their combination with the potentials and hence avoids much
of the unnecessary computation. In this chapter we have explained the basic con-
cepts about BCTs. The details for their application during the evaluation will be
later given in Chapter 10.

Chapter 7

Interval-valued Potentials

7.1 Introduction

Exactly as BNs, IDs usually demand a sharp estimation of their parameters (i.e.,
the set of associated potentials). Both probabilities and utilities might be quanti-
fied by expert knowledge or statistical learning. Yet, the structures for the repre-
sentation of potentials detailed in previous chapters (i.e. tables or trees) assign a
single (i.e., sharp or precise) value to each configuration in the potential. Thus,
these data structures can be unable to express an imprecise expert judgement (e.g.,
which is the number modelling the probability for an option more probable than
its negation? And the probability of X = x1 is high). This issue appears also
when coping with scarce or missing data (e.g., probabilities conditional on rare
events).

In order to deal with this problem, in this dissertation we propose replacing
with intervals the sharp values of potentials involved in an ID . Such generaliza-
tion, namely interval-valued potentials, is formalized in this chapter. By con-
trast, the algorithms for evaluating IDs with interval-valued potentials are later
explained in Chapter 11.

133

134 Chapter 7. Interval-valued Potentials

7.2 Related work

In the last two decades, various extensions of BNs intended to support generalized
probabilistic statements have been proposed. These models have been developed
in the fields of possibility theory [2], evidence theory [111], and imprecise prob-
ability [35, 93]. The latter models, called credal set (CS) [37], are closed convex
sets of probability distributions: a CS represents an infinite number of probability
distributions. CSs are a very suitable and general tool for the representation of
the quantitative information in PGMs. First, they can be used for modelling im-
precision, being therefore suited to model in a natural way ignorance, vagueness
and contrast. For example, they can model statements such as “the probability of
X = x1 is high” or “X = x1 is more probable than X = x2”. Secondly, they are
very general: the majority of the models used nowadays for the representation of
uncertainty can be considered as special cases of CSs.

A CS for a random variable X is denoted by K(X) and it holds
that

∑
x∈ΩX

P (x) = 1 for each P (X) ∈ K(X). Geometrically, K(X) is a poly-
tope in the hyperplane of all possible probability distributions for the variable X .
Such CS can be described by enumerating only the set of its extreme probabil-
ity distributions, which is finite and corresponds to the vertices of the polytope.
These vertices are called extreme points and denoted ext[K(X)]. An example of
CS described by its extreme points is given below.

Example 30 From the oil wildcatter’s decision problem detailed in Example 10
(page 49), let us consider the random variableO with the domain ΩO = {e, w, s}.
In the elicitation process we obtain the following constraints:

• P (s) is low, let us say 0.2 or lower.

• P (e) is greater or equal than P (w).

Then, a CS considering such information is depicted in Figure 7.1. Each point
in the graphic is a tuple (P (e), P (w), P (s)), i.e., a probability distribution P (O).
Two overlapped planes are shown. The grey one represents any possible point

7.2. Related work 135

satisfying P (e) + P (w) + P (s) = 1. On the other hand, the blue one represents
those points also satisfying previous constraints.

Figure 7.1: CS represented with the extreme points ext[K(O)]= {[1, .0, .0]T ,

[.5, .5, .0]T , [.4, .4, .2]T , [.8, .0, .2]T}.

A BN with CSs attached to each node is called a credal network [37]. We can
consider the following sensitivity-analysis interpretation: a credal network defines
a collection of Bayesian networks, all over the same variables and with the same
graph, whose parameters are consistent with constraints modelling a limited abil-
ity in the assessment of sharp estimates. Note that CSs are a generalization of
the interval potentials proposed here, however they have an important drawback:
the complexity of the inference increases exponentially in the number of extreme
points.

Something similar has been also done with decision trees [58, 60, 67], while
the situation is different for IDs. The early attempts of Fertig and Breese [50, 51]
first, and Zaffalon [47] after, to extend these models to non-sharp quantification

136 Chapter 7. Interval-valued Potentials

are among the few works in this direction.1,2

The Fertig and Breese work can be considered as the closest approach to ours.
They also propose the use of an interval (i.e. a lower and upper bound) for each
configuration in a potential. In case of PPs, only the lower bounds are specified,
while the upper ones are computed from the lower ones. Here, we will use the term
one-sided potential to refer to such generalization. For example, let us consider a
PP over X , then for each state x in ΩX we have a lower bound denoted b(x). Each
upper bound u(x) is computed as follows.

u(x) = 1−
∑

x′∈ΩX\{x}
b(x′) (7.1)

7.3 Interval-valued potentials

Herein we formalize the notion of interval-valued potential that will be used in this
dissertation. It is basicaly a generalization of the notions of UP and PP explained
in Section 4.3. For the case of utilities we base on the interval utilities proposed
by Fertig and Brese [50, 51], and we will call them interval-valued utility poten-
tials (IUPs). By contrast, for the probabilities, we use the notion of probability
interval proposed by Campos et al. [41], and we will use the term interval-valued
probability potential (IPP). Thus notion of UP can be extended to intervals as
follows.

Definition 37 (interval utilities) An interval-valued utility potential (IUP) over
the set of variables XI is a pair of UPs over XI . We use the compact notation
ψ(XI) for an IUP over XI , ψ and ψ are the two UPs involved in the specification
and are called, respectively, the lower and upper bounds of the IUP. The extension

1The work of Zhou et al. [114] combining sharp probabilities with interval-valued utilities is
just a trivial special case of the general framework we present here.

2Sensitivity analysis does not require the specification of more general classes of models,
being only focused on the results of the inferences. Thus, it should be regarded as a different
topic, which, as a matter of fact, received more attention (e.g., [85]).

7.3. Interval-valued potentials 137

ψ
∗
(XI) of this IUP is the set of UPs consistent with the bounds, i.e.,

ψ
∗
(XI) :=

{
ψ : ΩXI

→ R
∣∣ψ(xI) ≤ ψ(xI) ≤ ψ(xI), ∀xI ∈ ΩXI

}
. (7.2)

Note that we consider the following sensitivity-analysis interpretation: an IUP
is a set of (precise) UPs consistent with the interval constraints. Such set is called
extension, and for an IUP ψ is non-empty if and only if ψ(xI) ≤ ψ(xI) ∀xI ∈
ΩXI

. Similarly, PPs can be extended as follows.

Definition 38 (interval probabilities) An interval-valued probability potential
(IPP) over XI given XJ is a pair of (in general not normalized) PPs over XI

given XJ . We denote such an IPP as φ(XI |XJ), where φ(XI |XJ) and φ(XI |XJ)

are the two (unnormalized) bounds. The extension φ
∗
(XI |XJ) of this IPP is the

set of PPs consistent with the bounds, i.e.,

φ
∗
(XI |XJ) :=




φ : ΩXI

× ΩXJ
→ R+

0

∣∣∣∣∣∣∣

∑
xI
φ(xI |xJ) = 1

φ(xI |xJ) ≤ φ(xI |xJ) ≤ φ(xI |xJ)

∀(xI ,xJ) ∈ ΩXI
× ΩXJ




.

(7.3)

The difference between an IPP and a precise one is that, instead of
a single value, associated to each configuration (xI ,xJ) there is an interval
[φ(xI |xJ), φ(xI |xJ)]. Note that an IPP represents a bounded and infinite set of
precise PPs (its extension). If the extension is non-empty, the IPP is said to be
proper. More formally, this concept can be defined as follows.

Definition 39 (proper interval probability potential) Let φ(XI |XJ) be an IPP,
then we say that this IPP is proper iff satisfies that:

∑

xI∈ΩXI

φ(xI |xJ) ≤ 1 ≤
∑

xI∈ΩXI

φ(xI |xJ) , ∀xJ ∈ ΩXJ
(7.4)

We will require an additional condition for PPs, called reachability [41], which
can be defined as follows.

138 Chapter 7. Interval-valued Potentials

Definition 40 (reachable interval probability potential) Let φ(XI |XJ) be an IPP,
then we say that this IPP is reachable iff satisfies the following two conditions:

φ(xI |xJ) +
∑

x′I∈ΩXI
\{xI}

φ(x′I |xJ) ≤ 1 (7.5)

φ(xI |xJ) +
∑

x′I∈ΩXI
\{xI}

φ(x′I |xJ) ≥ 1 (7.6)

for each (xI ,xJ) ∈ ΩXI
× ΩXJ

The meaning is that for each p ∈ [φ(xI |xJ), φ(xI |xJ)], there is at least a PP
φ ∈ φ∗ such that φ(xI |xJ) = p. Note also that an IPP with non-empty extension
can be always reduced to a reachable one by shrinking its bounds and this has no
effect on its extension. Given an IPP, we always check whether it is reachable and,
if not, we apply the transformation detailed in Proposition 7. In all the algorithms
with IPPs proposed in this dissertation, the reachability transformation will be ap-
plied after any modification of the IPPs.

Proposition 7 (reachability transformation) Let φ(XI |XJ) be a proper IPP. Then
φ
′
(XI |XJ) is the reachable IPP associated whose upper and lower bounds are:

φ′(xI |xJ) = max{φ(xI |xJ), 1 −
∑

x′I∈ΩXI
\{xI}

φ(x′I |xJ)} (7.7)

φ
′
(xI |xJ) = min{φ(xI |xJ), 1 −

∑

x′I∈ΩXI
\{xI}

φ(x′I |xJ)} (7.8)

for each (xI ,xJ) ∈ ΩXI
× ΩXJ

Both the extensions of an IUP and an IPP are convex sets of, respectively,
UPs and PPs. Convex sets of UPs and PPs which are not extensions of IUPs
and IPPs can be also considered, but this topic would be beyond the scope of this
dissertation. In Example 31 we illustrate the concepts of interval-valued potentials
and reachability.

7.3. Interval-valued potentials 139

Example 31 Consider the precise potentials attached to the oil wildcatter ID
specified in Example 11 in page 55. Then, we can specify the following interval-
valued potentials over the same variables as follows3.

φ(O) =







[.475, .525] e
[.285, .335] w
[.190, .240] s

ψ(T) =
[]
[−10,−5] t

[−5, 5] nt

ψ(O,D) =

d nd






[−75,−65] [−5, 5] e
[45, 55] [−5, 5] w

[195, 205] [−5, 5] s

φ(S|O, T) =

t nt
e w s e w s







[.095, .145] [.285, .335] [.475, .525] [.317, .367] [.317, .367] [.317, .367] c
[.288, .335] [.380, .430] [.380, .430] [.317, .367] [.317, .367] [.317, .367] o
[.570, .620] [.285, .335] [.095, .145] [.317, .367] [.317, .367] [.317, .367] d

,

It is a trivial exercise to check that these potentials have non-empty extensions, the
UPs and PPs in Example 11 are included in these extensions. In order to check
that the IPPs are reachable, we have to check conditions given in Definition 40.
As an example, φ(O) is reachable as the following conditions are satisfied.

φ(e) + φ(w) + φ(s) = 0.475 + 0.335 + 0.24 = 1.05 ≥ 1

φ(e) + φ(w) + φ(s) = 0.525 + 0.285 + 0.19 = 1 ≤ 1

φ(e) + φ(w) + φ(s) = 0.525 + 0.285 + 0.24 = 1.05 ≥ 1

3When showing IPPs in matrix form, the integer digits will be omitted in probability values
lower that 1 (e.g., 0.475 will be displayed as .475).

140 Chapter 7. Interval-valued Potentials

φ(e) + φ(w) + φ(s) = 0.475 + 0.335 + 0.19 = 1 ≤ 1

φ(e) + φ(w) + φ(s) = 0.525 + 0.335 + 0.19 = 1.05 ≥ 1

φ(e) + φ(w) + φ(s) = 0.475 + 0.285 + 0.24 = 1 ≤ 1

The difference w.r.t. other similar approaches is that upper bounds are explic-
itly defined. In the one-sided potentials (see Section 7.2) upper bounds are com-
puted from the lower ones. As a consequence, the intervals defined by one-sided
potentials might be unnecessarily large compared to those defined by interval-
valued potential (assuming that reachability transformation has been applied). An
example of such situation is shown below.

Example 32 Let X be a variable with the domain ΩX = {x1, x2, x3}. Let us
consider the following reachable IPP:

φ(X) =







[.2, .3] x1

[.5, .6] x2

[.1, .2] x3

Now, consider the equivalent one-sided potential with the same lower bounds, i.e.,
b(x1) = 0.2, b(x2) = 0.5 and b(x3) = 0.1. Using Equation 7.1, the upper bounds
can be computed as follows.

u(x1) = 1− (b(x2) + b(x3)) = 1− (0.5 + 0.1) = 0.4

u(x2) = 1− (b(x1) + b(x3)) = 1− (0.2 + 0.1) = 0.7

u(x3) = 1− (b(x1) + b(x2)) = 1− (0.2 + 0.5) = 0.3

Note that the size of the intervals defined by the one-sided potentials are larger
that those defined by the IPP, i.e., it holds that φ(xi)− φ(xi) < u(xi)− b(xi) for
each xi ∈ ΩX .

7.4. Conclusions 141

7.4 Conclusions

In this chapter we have presented the notion of interval-valued potential. This
will allow to generalize the standard ID formalism to intervals, allowing an im-
precise estimation of their potentials. The definitions of the usual operations over
interval potentials and the generalization of the evaluation algorithms will be later
described in Chapter 11.

142 Chapter 7. Interval-valued Potentials

Part III

Evaluation

143

Chapter 8

Evaluation with Binary Trees

8.1 Introduction

In Chapter 5, we described the key issues about BTs for representing the poten-
tials involved in an ID (i.e. PPs and UPs). In particular, methods for building
and pruning BTs were given. As a reminder, the advantage of this kind of tree is
the possibility of representing context-specific independencies that are more fine-
grained compared to those encoded using other representations. This enhanced
capability can be used to improve the efficiency of the inference algorithms used
for evaluating IDs.

In this chapter, we explain how to evaluate IDs whose potentials are repre-
sented as BTs. For that, operations considered in Section 4.3.2.1 for tables need
to be extended to BTs. Then, we explain how to adapt the main ID evaluation
algorithms to work with BTs. In the experimentation section, the behaviour of
these algorithms using BTs is analysed . For that purpose, BTs, NTs and tables
are compared in different aspects (computation time, storage and error level) .

145

146 Chapter 8. Evaluation with Binary Trees

8.2 Operations with binary trees

Evaluating an ID requires performing several operations with its potentials. Herein
we describe how these operations can be performed directly on BTs. In particular,
evaluation algorithms require the restriction operation, multiple types of element-
wise operations (multiplication, division, addition and maximum) and two types
of marginalizations (sum-marginalization and max-marginalization).

8.2.1 Restriction

First, we will explain the restriction operation which is required by other oper-
ations on BTs (e.g., by combinations). The restriction of a given BT to a set
of states SX , denoted by BT R(X,SX), consists of returning the part of the poten-
tial that is compatible with SX . In other words, we select those configurations
in which X takes one of the values in SX . The proposed procedure for this op-
eration is detailed in Algorithm 9, which describes the restriction of a BT to a
set of states SX (SX ⊆ ΩX) of a variable X . The inputs of the procedure are: t
(root node of BT); X (variable to restrict); SX (set of states of X to restrict). The
procedure starts from the root node t, traversing recursively the full structure to
the leaves. At each node, the algorithm selects those branches consistent with SX
and discards the rest of them. In particular, the following cases can be considered
depending on the variable and states labelling the current node t and the outgoing
branches respectively:

• Case A (line 5): the current node is labelled with the target variable X and
the left branch does not contain any of the states in SX . Then, the current
node is replaced by the resulting BT of restricting the right child to the set
of states Lrb(t) ∩ SX . In doing so, the current node and the left branch are
removed from the resulting BT.

• Case B (line 7): the current node is labelled with the target variable X and
the left branch contains some of the states in SX but the right branch does
not. Then, the current node is replaced by the resulting BT of restricting the
left child to the set of states Llb(t) ∩SX . In doing so, the procedure removes
the current node and the right branch from the resulting BT.

8.2. Operations with binary trees 147

• Case C (lines 9 to 12): the current node is labelled with the target variable
X and the labels of both outgoing branches contain states in SX . Then the
states not present in SX are removed from the new outgoing branches. The
left child is replaced by the resulting BT of restricting the left child to the set
of states Llb(t)∩SX . Analogously, the right child is replaced by the resulting
BT of restricting the left child to the set of states Lrb(t) ∩ SX .

• Case D (lines 15 and 16): the current node is not labelled with the target
variable X . Then the algorithm is invoked on both children without chang-
ing current node.

Algorithm 9 Restriction
input : t (root node of BT); X (variable to restrict); SX (set of states of X to
restrict)
output : The root of BT R(SX)

1: if t is not a leaf node then
2: if Lt = X then
3: Set SlX ← Llb(t) ∩ SX and SrX ← Lrb(t) ∩ SX
4: if SlX = ∅ then . Case A
5: return Restriction(tr,X ,SrX)
6: else if SrX = ∅ then . Case B
7: return Restriction(tl,X ,SlX)
8: else . Case C
9: Llb(t) ← SlX . Sets the labels of both branches

10: Lrb(t) ← SrX
11: tl ← Restriction(tl,X ,SlX) . the new left child of t
12: tr ← Restriction(tr,X ,SrX) . the new right child of t
13: end if
14: else . Case D
15: tl ← Restriction(tl,X ,SX) . Sets children
16: tr ← Restriction(tr,X ,SX)

17: end if
18: end if
19: return t

148 Chapter 8. Evaluation with Binary Trees

As an example, Figure 8.1 shows the restriction of a BT to set of states {a2, a3}
of the variable A.

BT

A

B

25

b1
50

b2

a1

A

B

45

b1
20

b2

a2

B

25

b1
50

b2

a3

a2, a3

BT R(A,{a2,a3})

A

B

45

b1
20

b2

a2

B

25

b1
50

b2

a3

→

Figure 8.1: Restriction of a BT representing a UP to the set of states {a2, a3} of
the variable A.

8.2.2 Element-wise operations

Herein we will explain how to perform directly on BTs all the element-wise op-
erations required for the ID evaluation: the two types of combinations (multipli-
cation and addition), the division and the auxiliary maximum operations. Each of
them can be seen as particularization of a generic combination operation, which
is defined as follows.

Definition 41 (generic combination of BTs) Let BT 1 and BT 2 be two binary
trees defined on the sets of variables XI and XJ respectively. Their generic com-
bination BT 1 ⊗ BT 2 is another binary tree over XI ∪XJ such that:

(BT 1 ⊗ BT 2)(x) = f(BT 1(x↓XI),BT 2(x↓XJ)) (8.1)

for each configuration x ∈ ΩXI∪XJ
, where f is a function from R2 on R.

According to previous definition, each leaf node of the resulting BT is labelled
with the result of the function f that depends on the particular operation we are

8.2. Operations with binary trees 149

carrying out. Table 8.1 shows these functions for each particular combination of
two binary trees BT 1 and BT 2 whose root nodes are t1 and t2 respectively.

Operation notation f

multiplication(t1, t2) BT 1 · BT 2 BT 1(x↓XI) · BT 2(x↓XJ)

addition(t1, t2) BT 1 + BT 2 BT 1(x↓XI) + BT 2(x↓XJ)

division(t1, t2) BT 1/BT 2 BT 1(x↓XI)/BT 2(x↓XJ)

maximum(t1, t2) maximum(BT 1,BT 2) max(BT 1(x↓XI),BT 2(x↓XJ))

Table 8.1: Particularizations of the generic combination operation ⊗ and their
corresponding functions f . For the division, convention 0/0 = 0 is adopted.

The details of the recursive procedure implementing the generic combination
operation ⊗ of two binary trees BT 1 and BT 2 are given in Algorithm 10. The in-
puts for the algorithm are t1 and t2, the root nodes of both trees. At each recursive
call of the algorithm, the following cases are considered:

• Case A (line 4): when t1 and t2 are leaf nodes, a new node tn labelled with
the result of applying the corresponding function f is built.

• Case B (lines 6 to 10): If t1 is a leaf node but t2 is not, a new node tn is
built labelled with the variable in t2. The left child of tn is the result of the
generic combination operation between t1 and the left child of t2. Similarly,
the right child of tn is the combination between t1 with the right child of t2.
In doing so, the tree BT 2 is traversed until both nodes are leaf nodes.

• Case C (lines 13 to 18): If t1 is not a leaf node a new node tn with the same
label t1 and the same labels Llb(t1) and Lrb(t1) for its branches is built. The
left child of tn is the result of the generic combination operation between
the left child of t1 and the restriction of t2 to the states of Llb(t1). Similarly,
the right child of the new tree is the result of the generic combination op-
eration between the right child of t1 and the restriction of t2 to the states of
Lrb(t1). In doing so, BT 1 is traversed until a leaf node is reached.

150 Chapter 8. Evaluation with Binary Trees

Algorithm 10 Generic Combination algorithm
input : t1 and t2 (root nodes of BT 1 and BT 2)
output : the root of BT = BT 1 ⊗ BT 2

1: Build a new node tn
2: if t1 is a leaf node then
3: if t2 is a leaf node then . Case A
4: Ltn ← f(Lt1 , Lt2) . Sets the label of the leaf
5: else . Case B
6: Ltn ← Lt2 . Sets the label of tn
7: Llb(tn) ← Llb(t2) . Sets labels for both branches
8: Lrb(tn) ← Lrb(t2)

9: tnl ← combination(t1, t2l) . Sets children
10: tnr ← combination(t1, t2r)
11: end if
12: else . Case C
13: Let Xi be the variable labelling t1
14: Ltn ← Lt1 . Sets the label of tn
15: Llb(tn) ← Llb(t1) . Sets the labels of both branches
16: Lrb(tn) ← Lrb(t1)

17: tnl ← combination(t1l ,BT
R(Xi,Llb(t1))

2) . Sets children
18: tnr ←combination(t1r ,BT

R(Xi,Lrb(t1))

2)
19: end if
20: return tn

Note that, with the proposed algorithm, the structure of the resulting BT is the
same regardless of the particular type of combination (only the values in the leaves
are different). This situation can be seen in Example 33, where an example of each
type of combination is shown. Additionally, the recursive process for multiplying
two BTs is illustrated in Example 34.

8.2. Operations with binary trees 151

Example 33 (generic combination of BTs) Let us consider the binary treesBT 1

and BT 2 depicted below that represent two UPs.

BT 1(A,B)

A

0.0

a0

B

A

30.0

a1

50.0

a2

b0

A

10.0

a1

20.0

a2

b1

a1, a2

BT 1(B,C)

C

B

C

10.0

c0

5.0

c1

b0

10.0

b1

c0, c1

B

5.0

b0

100.0

b1

c2

Then, the result of applying to BT 1 and BT 2 the operations of multiplication,
addition, division and maximum is shown in Figures 8.2, 8.3, 8.4 and 8.5 respec-
tively.

BT 1(A,B) · BT 1(B,C)

A

C

B

C

0.0

c0

0.0

c1

b0

0.0

b1

c0, c1

B

0.0

b0

0.0

b1

c2

a0

B

A

C

C

300.0

c0

150.0

c1

c0, c1

150.0

c2

a1

C

C

500.0

c0

250.0

c1

c0, c1

250.0

c2

a2

b0

A

C

100.0

c0, c1

1000.0

c2

a1

C

200.0

c0, c1

2000.0

c2

a2

b1

a1, a2

Figure 8.2: Multiplication of two BTs.

152 Chapter 8. Evaluation with Binary Trees

BT 1(A,B) + BT 1(B,C)

A

C

B

C

10.0

c0

5.0

c1

b0

10.0

b1

c0, c1

B

5.0

b0

100.0

b1

c2

a0

B

A

C

C

40.0

c0

35.0

c1

c0, c1

35.0

c2

a1

C

C

60.0

c0

55.0

c1

c0, c1

55.0

c2

a2

b0

A

C

20.0

c0, c1

110.0

c2

a1

C

30.0

c0, c1

120.0

c2

a2

b1

a1, a2

Figure 8.3: Addition of two BTs.

BT 1(A,B)/BT 1(B,C)

A

C

B

C

0.0

c0

0.0

c1

b0

0.0

b1

c0, c1

B

0.0

b0

0.0

b1

c2

a0

B

A

C

C

3.0

c0

6.0

c1

c0, c1

6.0

c2

a1

C

C

5.0

c0

10.0

c1

c0, c1

10.0

c2

a2

b0

A

C

1.0

c0, c1

0.1

c2

a1

C

2.0

c0, c1

0.2

c2

a2

b1

a1, a2

Figure 8.4: Division of two BTs.

8.2. Operations with binary trees 153

maximum (BT 1(A,B), BT 1(B,C))

A

C

B

C

10.0

c0

5.0

c1

b0

10.0

b1

c0, c1

B

5.0

b0

100.0

b1

c2

a0

B

A

C

C

30.0

c0

30.0

c1

c0, c1

30.0

c2

a1

C

C

50.0

c0

50.0

c1

c0, c1

50.0

c2

a2

b0

A

C

10.0

c0, c1

100.0

c2

a1

C

20.0

c0, c1

100.0

c2

a2

b1

a1, a2

Figure 8.5: Maximum of two BTs.

Example 34 (multiplication of BTs) Let us consider two binary trees BT 1 and
BT 2 representing the potentials φ(A|B) and ψ(A,C) respectively. If we apply
Algorithm 10, the process for performing the combination BT 1 · BT 2 is detailed
below. Those nodes being processed by the algorithm at each step are highlighted
with a dashed pattern.

A

0.0

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

A

C

10

c1

C

15

c2

16

c3

c2, c3

a1

A

10

a2

5

a3

a2, a3· A

0.0 · C

10

c1

C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0 · 10
c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0 · 15
c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3 · 10
a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

0.5 · 10
a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

2.5

a3

b2

a2, a3

step 1 step 2

step 3 step 4

step 5 step 6

step 7 step 8

step 9 step 10

step 11 step 12

step 13 step 14

−→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→

154 Chapter 8. Evaluation with Binary Trees

A

0.0

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

A

C

10

c1

C

15

c2

16

c3

c2, c3

a1

A

10

a2

5

a3

a2, a3· A

0.0 · C

10

c1

C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0 · 10
c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0 · 15
c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3 · 10
a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

0.5 · 10
a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

2.5

a3

b2

a2, a3

step 1 step 2

step 3 step 4

step 5 step 6

step 7 step 8

step 9 step 10

step 11 step 12

step 13 step 14

−→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→

A

0.0

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

A

C

10

c1

C

15

c2

16

c3

c2, c3

a1

A

10

a2

5

a3

a2, a3· A

0.0 · C

10

c1

C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0 · 10
c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0 · 15
c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3 · 10
a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

0.5 · 10
a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

2.5

a3

b2

a2, a3

step 1 step 2

step 3 step 4

step 5 step 6

step 7 step 8

step 9 step 10

step 11 step 12

step 13 step 14

−→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→

A

0.0

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

A

C

10

c1

C

15

c2

16

c3

c2, c3

a1

A

10

a2

5

a3

a2, a3· A

0.0 · C

10

c1

C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0 · 10
c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0 · 15
c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3 · 10
a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

0.5 · 10
a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

2.5

a3

b2

a2, a3

step 1 step 2

step 3 step 4

step 5 step 6

step 7 step 8

step 9 step 10

step 11 step 12

step 13 step 14

−→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→

A

0.0

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

A

C

10

c1

C

15

c2

16

c3

c2, c3

a1

A

10

a2

5

a3

a2, a3· A

0.0 · C

10

c1

C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0 · 10
c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0 · 15
c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3 · 10
a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

0.5 · 10
a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

2.5

a3

b2

a2, a3

step 1 step 2

step 3 step 4

step 5 step 6

step 7 step 8

step 9 step 10

step 11 step 12

step 13 step 14

−→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→

A

0.0

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

A

C

10

c1

C

15

c2

16

c3

c2, c3

a1

A

10

a2

5

a3

a2, a3· A

0.0 · C

10

c1

C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0 · 10
c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0 · 15
c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3 · 10
a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

0.5 · 10
a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

2.5

a3

b2

a2, a3

step 1 step 2

step 3 step 4

step 5 step 6

step 7 step 8

step 9 step 10

step 11 step 12

step 13 step 14

−→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→

8.2. Operations with binary trees 155

A

0.0

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

A

C

10

c1

C

15

c2

16

c3

c2, c3

a1

A

10

a2

5

a3

a2, a3· A

0.0 · C

10

c1

C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0 · 10
c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

0.0 · C

15

c2

16

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0 · 15
c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0 · 16
c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3

a2

0.7

a3

b1

0.5

b2

a2, a3

· A

10

a2

5

a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

0.3 · 10
a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

0.7 · 5
a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

0.5

b2

a2, a3

· A
10

a2

5

a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

0.5 · 10
a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

0.5 · 5
a3

b2

a2, a3

A

C

0.0

c1

C

0.0

c2

0.0

c3

c2, c3

a1

B

A

3

a2

3.5

a3

b1

A

5

a2

2.5

a3

b2

a2, a3

step 1 step 2

step 3 step 4

step 5 step 6

step 7 step 8

step 9 step 10

step 11 step 12

step 13 step 14

−→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→ −→

−→ −→

8.2.3 Marginalizations

Now we will explain how to perform on BTs the two types of marginalization used
in the ID evaluation: sum-marginalization and max-marginalization. These two
operations can be seen as particularization of a generic marginalization operator
which is defined as follows.

Definition 42 (generic marginalization of a BT) Let BT be a binary tree rep-
resenting defined on the set of variables XI and a variable Y ∈ XI where
ΩY = {y1, y2, . . . yn}. The generic marginalization of Y out of BT , denoted

Σ

Y BT , is another binary tree defined over XI\{Y } such that:

(

Σ

Y BT)(x) = g(BT (x, y1),BT (x, y2), . . . ,BT (x, yn)) (8.2)

for each configuration x ∈ ΩXI\{Y }, where g is a function from Rn on R.

Table 8.2 shows the functions g for carrying out each particular marginaliza-
tion of a variable Y out of a binary tree BT whose root node is t.

Operation notation g

sum-marginalization(t, Y, |ΩY |)
∑

Y BT BT (x, y1) + BT (x, y2) + · · ·+ BT (x, yn)

max-marginalization(t, Y) maxY BT max(BT (x, y1),BT (x, y2), . . . ,BT (x, yn))

Table 8.2: Particularizations of the generic marginalization operation

Σ

and their
corresponding functions g.

156 Chapter 8. Evaluation with Binary Trees

Algorithm 11 describes the generic marginalization

Σ

of a variable Y out of a
binary tree BT . This algorithm must be called using |ΩY | as the input parameter
k. In recursive calls to the algorithm, k will be set to the number of available states
of Y at the current node of the tree. This algorithm is recursively executed until a
node labelled with the variable to be removed is found or a leaf node is reached.
In particular, the proposed procedure considers the following cases:

• Case A (lines 2 to 7): when a leaf node is reached, the new leaf node
is returned whose value depends on the specific type of marginalization:
for the max-marginalization this node takes the value Lt and for the sum-
marginalization takes the value Lt · k.

• Case B (lines 9 to 16): a node labelled with the variable to be removed
is reached, the algorithm marginalizes the left and right children trees and
combines both them. The type of this combination depends on the type of
marginalization: addition is used when sum-marginalizing while maximum
is used when max-marginalizing.

• Case C (lines 18 to 23) : If the variableLt labelling the current node t differs
from the variable to be removed Y (lines 18 to 23), a new node labelled with
Lt is built. Their children are then marginalized.

Note that, using the algorithm proposed, the structure of the resulting BT is the
same regardless of the particular type of marginalization (only the values in the
leaves are different). This situation can be seen in Example 35, where an example
of each type of marginalization is shown.

8.2. Operations with binary trees 157

Algorithm 11 Generic Marginalization algorithm
input : t (root node of BT); Y (variable to remove); k (a factor for multiplying
the labels of leaf nodes)
output : the root of

Σ

Y BT
1: Build a new node tn
2: if t is a leaf node then . Case A
3: if sum-marginalization then
4: Ltn ← Lt · k
5: else
6: Ltn ← Lt . max-marginalization
7: end if
8: else
9: if Lt = Y then . Case B

10: t1 ← marginalization(tl, Y, |Llb(tn)|) . Make recursive calls
11: t2 ← marginalization(tr, Y, |Llr(tn)|)
12: if sum-marginalization then
13: tn ← addition(t1, t2)

14: else
15: tn ← maximum(t1, t2)

16: end if
17: else . Case C
18: Ltn ← Lt . Sets the label of the new node
19: (Llb(tn), Llr(tn))← (Llb(t), Llr(t)) . Sets the label of branches
20: tnl ← marginalization(tl, Y, k) . Make recursive calls on children
21: tnr ← marginalization(tr, Y, k)
22: end if
23: end if
24: return tn

158 Chapter 8. Evaluation with Binary Trees

Example 35 (generic marginalization of BTs) Let us consider the binary tree
BT depicted below that represents a UP.

BT (A,B,C)

A

30

a1

A

B

C

45

c1

10

c2

b1

20

b2

a2

B

25

b1

50

b2

a3

a2, a3

Then, the result of applying to BT the operations of sum-marginalization and
max-marginalization is shown in Figure 8.6.

∑
B BT (A,B,C)

A

60

a1

A

C

65

c1

30

c2

a2

75

a3

a2, a3

maxB BT (A, B, C)

A

30

a1

A

C

45

c1

20

c2

a2

50

a3

a2, a3

Figure 8.6: Sum-marginalization (left) and max-marginalization (right) of vari-
able A in the same BT.

8.2.4 Complexity analysis

The complexity of the operations on potentials depends on the size of the structure
used to represent them. That is, the number of values in a table or the number of
nodes in the completely expanded tree (internal nodes and leaves).

8.2. Operations with binary trees 159

Let φ(X1, X2, . . . Xm) be a potential with n variables. Assuming that all the
variables have the same number of states, i.e. k = |ΩX1| = |ΩX2| = · · · = |ΩXm|,
the size of a table T , representing this potential is given by Equation (8.3), which
corresponds with the size of the Cartesian product of the variable domains (i.e.
the total number of configurations).

size(T) = |ΩX1| · |ΩX2| · . . . · |ΩXm | = km (8.3)

In the level 0 of a NT representing φ there is only one node (the root). In a
level i with i = 1, . . . ,m, there are ki nodes. Then, the size of NT :

size(NT) = 1 +
m∑

i=1

ki =
km+1 − 1

k − 1
(8.4)

A completely expanded BT representing φ has km leaves (number of values
in φ). Thus, from Theorem 2 in page 98 we obtain:

size(BT) = 2 · km − 1 (8.5)

It can be observed that in general the size of BTs is higher than NTs or ta-
bles but the complexity of traversing these representations is similar: exponential
O(km). However, as BTs allow a more compact representation encoding more
context-specific independencies, it is expected a certain benefit when pruning op-
erations are performed. This point is demonstrated empirically in Section 8.4.

160 Chapter 8. Evaluation with Binary Trees

8.3 ID evaluation algorithms with BTs

Evaluation algorithms for IDs can be easily adapted for working with BTs. The
global structure of the algorithms is not changed: the main difference is that they
require an initialization phase where initial BTs are built from tables and pruned
in order to obtain smaller trees. BTs are built and pruned using the procedures
explained in Sections 5.4.1 and 5.4.2 respectively. Once all the potentials are
transformed into BTs and pruned, the evaluation algorithms are quite similar to the
algorithms that use tables: computation is done using operations for BTs (Section
8.2), instead of their counterparts for tables. Herein three ID evaluation algorithms
from the literature are described for working with BTs: variable elimination, lazy
evaluation and symbolic probabilistic inference.

8.3.1 Variable elimination

The VE algorithm is one of the most common methods used for evaluating IDs.
As a reminder of Section 4.5.1, its general scheme for evaluating an ID regard-
less of the potential representation is as follows: it starts with a set of poten-
tials and it eliminates all the variables one by one. All the variables must be
removed in reverse order of the information precedence given by ≺. Secondly,
chance variables are removed using sum-marginalization whereas for decisions
max-marginalization is used. That is, it first sum-marginalizes In, then max-
marginalizes Dn, sum-marginalizes Ii−1, etc.

The VE algorithm, adapted for working with BTs, is shown in Algorithm 12.
We assume that, in the specification of the ID, potentials are initially represented
using tables. Thus, before the removal loop, an initialization phase is included
where the potentials are transformed into pruned BTs using the methods explained
in Sections 5.4.1 and 5.4.2 respectively. The algorithm contains an additional
parameter, namely ε, which is the pruning threshold. We will use the same value
of ε for probabilities and utilities. Yet, different thresholds for PPs and UPs could
be used. In line 2 for PPs and 6 for UPs, the exact BTs are built. In lines 3 and 7
they are pruned and replaced in the potential sets Φ or Ψ (i.e. the sets of PPs and
UPs in the ID).

8.3. ID evaluation algorithms with BTs 161

Algorithm 12 Variable Elimination with BTs
input : Φ,Ψ (sets of potentials in the ID), {I0, D1, I1, . . . , Dn, In} (partitions of
nodes in the ID), ε (pruning threshold).

/*Initialization phase*/

1: for all φ ∈ Φ do
2: Build a sorted binary tree BT φ representing φ
3: Φ← Φ\{φ} ∪ {prune(BT φ, ε)}
4: end for
5: for all ψ ∈ Ψ do
6: Build a sorted binary tree BT ψ representing ψ
7: Ψ← Ψ\{ψ} ∪ {prune(BT ψ, ε)}
8: end for

/*Removal Loop*/

9: for k ← n to 0 do
10: while Ik 6= ∅ do
11: Select X ∈ Ik . Pick a chance variable to eliminate
12: (Φ,Ψ)← ElimVarBT(X,Φ,Ψ) . Chance variable elimination

(Algorithm 13)
13: Ik ← Ik\{X}
14: end while
15: if k > 0 then
16: (Φ,Ψ)← ElimVarBT(Dk,Φ,Ψ) . Decision variable elimination

(Algorithm 13)
17: end if
18: end for

Now potentials in Φ and Ψ are represented as BTs and, as a consequence,
operations over BTs must be used in the removal loop. Note that the algorithm
ElimVarBT is invoked in lines 12 and 16 for removing a chance and a decision
variable respectively. This procedure, which is detailed in Algorithm 13, is simi-
lar to the one explained for the standard version of VE (see Algorithm 2, page 2)
but we explicitly show that operations on potentials are performed over BTs. Note
that BTs are not pruned nor sorted after each removal: this would introduce an im-
portant overhead and a large error in the approximation.

162 Chapter 8. Evaluation with Binary Trees

Algorithm 13 ElimVarBT - Elimination of a single variable
input : Y (variable to remove), Φ,Ψ (sets of current potentials)
output : Φ,Ψ (updated sets of current potentials without Y)

1: ΦY ← {BT φ ∈ Φ|Y ∈ dom(BT φ)} . Select

2: ΨY ← {BT ψ ∈ Ψ|Y ∈ dom(BT ψ)}
3: BT φY ←∏

BT φ∈ΦY
BT φ . Combine

4: BT ψY ←∑
BT ψ∈ΨY

BT ψ

5: if Y ∈ UC then
6: (BT φ′Y ,BT ψ′Y)← (

∑
Y BT φY ,

∑
Y BT φY ·BT ψY∑

Y BT φY
) . Remove by sum

7: else
8: (BT φ′Y ,BT ψ′Y)← ((BT φY)R(Y=y),maxY BT ψY) . Remove by max

9: δ̂Y ← arg maxY BT ψY . Optimal policy

10: end if
11: (Φ,Ψ)← (Φ\ΦY ∪ {BT φ

′
Y },Ψ\ΨY ∪ {BT ψ

′
Y }) . Update

12: return (Φ,Ψ)

8.3.2 Lazy evaluation

As explained in Section 4.5.3, LE is an evaluation algorithm based on message
passing in a strong junction tree, which is a representation of an ID built by moral-
ization and by triangulating the graph using a strong elimination order [68]. Nodes
in the strong junction tree correspond to cliques (maximal complete sub-graphs)
of the triangulated graph. Two neighbour cliques are connected by a separator
which contains the intersection of the variables in both cliques. Initially, each
potential is associated to the closest clique to the root containing all its variables.
Propagation is performed by message-passing from the leaves to the root. A mes-
sage consists on a list of potentials from which variables not present in the parent
separator has been removed using the VE algorithm.

The general scheme of LE for working with BTs is shown in Algorithm 14.
This adaptation includes also an initialization phase (lines 1 to 9) where poten-
tials are transformed into trees and pruned with a given threshold ε passed as a

8.3. ID evaluation algorithms with BTs 163

parameter. For the message computation, operations with BTs are used instead
of their counterparts for tables. Even though the potentials are transformed into
BTs before building the strong junction tree, this auxiliary structure is the same
regardless of whether potentials are represented using tables or BT.

Algorithm 14 Lazy Evaluation with BTs
input : Φ,Ψ (sets of potentials in the ID), {I0, D1, I1, . . . , Dn, In} (partitions of
nodes in the ID), ε (pruning threshold).

/*Initialization phase*/

1: for all φ ∈ Φ do
2: Build a sorted binary tree BT φ representing φ
3: Φ← Φ\{φ} ∪ {prune(BT φ, ε)}
4: end for
5: for all ψ ∈ Ψ do
6: Build a sorted binary tree BT ψ representing ψ
7: Ψ← Ψ\{ψ} ∪ {prune(BT ψ, ε)}
8: end for
9: Build a strong junction tree with root C1 from the ID

/*Propagation phase*/

10: Associate each potential in Φ ∪ Ψ to the closest clique to the root containing all its
variables

11: Invoke CollectMessage in C1 . Algorithm 5

8.3.3 Symbolic probabilistic inference

In this dissertation, a new ID evaluation algorithm will be proposed, namely the
SPI algorithm (see Chapter 12). In short, this method tries to find the optimal
order for the combinations and marginalizations by choosing at each step the best
operation. For evaluating IDs, as VE does, SPI removes all variables in the deci-
sion problem in reverse order of the partial ordering imposed by the information
constraints. Yet, VE is guided by an elimination order while SPI is guided by a
combination order. That is, SPI chooses the next pair of potentials to combine and
eliminate the variables when possible. In this sense SPI is finer grained than VE.

164 Chapter 8. Evaluation with Binary Trees

For adapting this method for working with BTs (see Algorithm 15), we will pro-
ceed like in previous algorithms: we include an initialization phase for building
the trees and use the corresponding operations with BTs.

Algorithm 15 SPI-algorithm with BTs
input : Φ,Ψ (sets of potentials in the ID), {I0, D1, I1, . . . , Dn, In} (partitions of
nodes in the ID), ε (pruning threshold).

/*Initialization phase*/

1: for all φ ∈ Φ do
2: Build a sorted binary tree BT φ representing φ
3: Prune BT φ using ε as threshold
4: Φ← Φ\{φ} ∪ {BT φ}
5: end for
6: for all ψ ∈ Ψ do
7: Build a sorted binary tree BT ψ representing ψ
8: Prune BT ψ using ε as threshold
9: Ψ← Ψ\{ψ} ∪ {BT ψ}

10: end for
/*Removal loop*/

11: for k ← n to 0 do
12: (ΦX,ΨX)← ({φ ∈ Φ|dom(φ) ∩ Ik 6= ∅}, {ψ ∈ Ψ|dom(ψ) ∩ Ik 6= ∅})
13: (Φ,Ψ)← (Φ\ΦX, Ψ\ΨX)

14: (Φ′X, Ψ′X)← RemoveChanceSet(Ik,ΦX,ΨX) . Algorithm 24
15: (Φ,Ψ)← (Φ ∪ Φ′X, Ψ ∪Ψ′X)

16: if k > 0 then
17: (ΦD,ΨD)← ({φ ∈ Φ|Dk ∈ dom(φ)}, {ψ ∈ Ψ|Dk ∈ dom(ψ)})
18: (Φ,Ψ)← (Φ\ΦD, Ψ\ΨD)

19: (Φ′D, ψ
′
D)← RemoveDecision(Dk,ΦD,ΨD) . Algorithm 26

20: (Φ,Ψ)← (Φ ∪ Φ′D, Ψ ∪ {ψ′D})
21: end if
22: end for

8.4. Experimental work 165

8.4 Experimental work

In this section, the performance of NTs and BTs for IDs inference is analysed.
However, we must introduce first some concepts about multi-objective optimiza-
tion problems.

8.4.1 Multi-objective optimization problems

When performing approximate evaluation of IDs there are two objectives to con-
sider: time and error of the approximation. These two objectives can be controlled
with the threshold for pruning, ε. The use of low values of ε will produce slow
evaluations with low errors. On the hand, high values will lead to fast evaluations
and big errors. Thus, the problem of finding the best approximation can be consid-
ered as a multi-objective optimization problem (MOP) [66] with two objectives to
be minimized. Hence, optimizing means finding a solution with acceptable values
for all the objectives.

There are several possible solutions for this optimization problem as there is
not additional information about the preferred objective. In MOPs the set of ac-
ceptable solutions composes the Pareto set (non-dominated solutions). In order
to compare two solution sets (produced by two different representations of poten-
tials) we have used the hyper-volume indicator [117]. It is based on representing
the solution set in a n-dimensional space being n the number of objectives. In this
space a reference point r characterizes the worst possible solution. In our case,
the axis of the space represents computation time and the error produced by the
approximation. The hyper-volume indicator is an unary value measuring the per-
centage of area dominated by a certain set of solutions (Pareto-set). Its maximum
value is 1 and corresponds to a solution set dominating the rest of possible solu-
tions (the best one). Figure 8.7 shows an example of a Pareto-set containing six
different solutions represented by x1, x2, x3, x4, x5, and x6. The hyper-volume
measures the portion of area in grey.

166 Chapter 8. Evaluation with Binary Trees

Figure 8.7: Hyper-volume for a minimization problem.

8.4.2 Objectives and procedure

There are several objectives related to the set of experiments performed in this
chapter. Given a certain set of IDs whose potentials are represented as BTs, NTs
and tables we try:

• To test if the representation as BTs requires less memory space than using
NTs or tables. The gain in memory space should imply two benefits: a
reduction in the computation time as well as the ability to evaluate more
complex models.

• To check what representation gives better performance (respect to memory
space, time and error) when computing approximate solutions varying ε.

For the empirical validation, a set of 15 IDs from the literature are used: NHL
and Jaundice are two real world IDs used for medical purposes [76, 97]; Appen-
dicitis and ChestClinic are two synthetic diagrams modelling a medical decision
problems [69]; two versions of the oil wildcatter’s [96, 40, 55]; an ID representing
the Car Buyer problem [94]; two IDs representing a decision problem in the poker
game [64]; two different IDs used at agriculture for treating mildew [64]; an ID
for solving the maze problem [113]; Competitive Asymm. and Theat of Entry are
two IDs from the business domain. An ID modelling the reactor decision problem
as described by Bielza and Shenoy [3, 4]. The details of these IDs are shown in

8.4. Experimental work 167

Table 8.3, which contains the number of nodes of each kind, the size of the largest
partition Ii of chance nodes and the average potential size.

average
ID |UC | |UD| |UV | max |Ii| potential size

Appendicitis 4 1 1 2 3.6

Car Buyer 3 3 1 1 64.5

ChestClinic 8 2 2 5 5.2

Competitive Asymm. 10 9 1 10 35.182

Jaundice 21 2 1 10 41.5

Maze 14 2 1 6 3100.2

Mildew 1 6 1 2 6 28.375

Mildew 4 7 2 2 4 32.222

NHL 17 3 1 11 468.111

Oil 2 2 2 1 7.25

Oil Split Costs 2 2 3 1 6.2

Poker 7 1 1 7 94

Poker Extended 9 3 1 4 129.3

Reactor 3 2 3 2 7.667

Threat of Entry 3 9 1 3 46

Table 8.3: Features of the IDs used in the experimentation. More details of these
IDs are given in Appendix B.2.

Note that the IDs used for the experimentation must be simple enough to allow
an exact evaluation as well. This is the only way to compute the error introduced
in the approximate solutions. The analysis of the results is divided in two parts.
First, in Section 8.4.3 we analyse in detail the evaluation of the NHL. Secondly,
the results obtained with the rest of IDs is analysed in Section 8.4.4.

For the experiments, each ID is evaluated using tables, NTs and BTs with
different values of ε in the interval [0, 1]. The inference algorithms employed are
VE, LE, and SPI (see Section 8.3). For each evaluation it is measured:

168 Chapter 8. Evaluation with Binary Trees

• The size of all the potentials1 is measured before and after the removal of
each variable (or a set of variables for the SPI algorithm). That is:

totalPotSizeNT =
∑

φ∈Φ

size(NT φ) +
∑

ψ∈Ψ

size(NT ψ) (8.6)

totalPotSizeBT =
∑

φ∈Φ

size(BT φ) +
∑

ψ∈Ψ

size(BT ψ) (8.7)

totalPotSizetables =
∑

φ∈Φ

∏

Xi∈dom(φ)

|ΩXi| +
∑

ψ∈Ψ

∏

Xj∈dom(ψ)

|ΩXj | (8.8)

where Φ and Ψ are the set of PPs and UPs in a given evaluation stage. The
reduction in memory space requirements for NTs and BTs is computed as
follows.

spaceSavingsNT = 1− totalPotSizeNT
totalPotSizetables

(8.9)

spaceSavingsBT = 1− totalPotSizeBT
totalPotSizetables

(8.10)

• The gain respect to computation time is computed with Equation (8.11). It
should be noticed that the evaluation time with trees also includes the time
required for building the trees from tables and pruning them.

speedup =
timetables
timetrees

(8.11)

• To analyse the error produced by the approximation, the MEU is calculated
using trees and tables (see Equation (4.26)). Then, the absolute error is
computed with Equation (8.12) . The error is analysed together with the
computation time: all the pairs (meanPotSizetrees, absoluteError) for the

1The size of a potential represented as a table corresponds with its number of entries. In case
of trees, it is the number of nodes (internal ones and leaves).

8.4. Experimental work 169

same kind of representation compose a solution set. Pareto front and hyper-
volume are computed for every solution set.

absoluteError = |MEUtrees(∆̂)−MEUtables(∆̂)| (8.12)

8.4.3 Results for the NHL ID

8.4.3.1 Storage requirements and computation time

Figures 8.8, 8.9 and 8.10 show the storage requirements for handling all the po-
tentials during the evaluation of the NHL ID using the algorithms VE, LE and SPI
respectively. Additionally, for each algorithm and data structure, two different
values of ε are compared. The vertical axis represents the storage size (i.e., see
Equations 8.6, 8.7 and 8.8) using a logarithmic scale. The horizontal axis indi-
cates the evaluation stages. The corresponding space savings are shown in Table
8.4. It can be observed that, using any of the three algorithms, less space is needed
with trees (NTs and BTs) than with tables. As long as ε is increased the memory
space reduction is more noticeable. We can also observe that, in the final eval-
uation stages, there are not noticeable differences in storage requirements. This
may be due to the combination of the potentials producing another ones where the
effect of the initial prune is lost. If we compare the space savings obtained with
both kinds of trees, the reduction is higher with BTs than with NTs. Similar space
savings values are obtained for all the evaluation algorithms analysed.

VE LE SPI
ε = 0.0 ε = 0.05 ε = 0.0 ε = 0.05 ε = 0.0 ε = 0.05

NTs 0.318 0.959 0.431 0.965 0.55 0.924

BTs 0.525 0.997 0.666 0.997 0.592 0.98

Table 8.4: Space savings that results from using trees (NTs and BTs) instead of
tables during NHL ID evaluation with two different ε thresholds values and the
algorithms VE, LE and SPI.

170 Chapter 8. Evaluation with Binary Trees

Figure 8.8: Size of the potentials during the NHL ID evaluation with tables, NTs
and BTs with two different ε threshold values and the VE algorithm.

Figure 8.9: Size of the potentials during the NHL ID evaluation with tables, NTs
and BTs with two different ε threshold values and the LE algorithm.

Figure 8.10: Size of the potentials during the NHL ID evaluation with tables, NTs
and BTs with two different ε threshold values and the SPI algorithm.

8.4. Experimental work 171

Figures 8.11, 8.12 and 8.13 show the computation time with different ε val-
ues. Since the evaluation time using tables is much higher than using trees, this
is not shown in the graphic. The evaluation time for each algorithm with tables
is approximately 15900 ms, 12040 ms and 9970 ms. As expected, the reduction
in the size of the potentials implies a reduction in the computation time: for all
the algorithms proposed, the evaluation with BTs is faster that with NTs or ta-
bles. It can be observed that the computation with BTs requires less time with a
decreasing reduction as long as ε value increases. Perhaps this can be explained
due to the behaviour of pruning operation on NTs: the values for all the states
are collapsed into a single one. That is, this operation is more drastic on NTs
although more error will be introduced in the solutions. If the speed up values
obtained with each algorithm are compared, it can be observed that the highest
improvements are obtained with the VE algorithm for BTs. The reason for that is
that the VE algorithm for tables is the slowest one. We can also observe that the
computation time required by LE with trees is higher than the required by VE: the
reason for that is that LE has an overhead due to the time needed for building the
strong junction tree (which is independent of the potential representation). Thus,
another conclusion is that the use of BTs makes the VE algorithm faster than LE.

Figure 8.11: Evaluation time and speed up obtained during NHL ID evaluation
with NTs and BTs and different values for ε with the VE algorithm. The evalua-
tion time with tables is approximately 15900 ms.

172 Chapter 8. Evaluation with Binary Trees

Figure 8.12: Evaluation time and speed up obtained during NHL ID evaluation
with NTs and BTs and different values for εwith the LE algorithm. The evaluation
with tables is approximately 12040 ms.

Figure 8.13: Evaluation time and speed up obtained during NHL ID evaluation
with NTs and BTs and different values for ε with the SPI algorithm. The evalua-
tion time with tables is approximately 9970 ms.

8.4. Experimental work 173

8.4.3.2 Error against time

The experiments reveal that, using any of the algorithms proposed, BTs produce
better approximations than NTs: the same error level is achieved requiring less
time. This situation can be shown in Figures 8.14, 8.15 and 8.16. For each algo-
rithm, it is shown one graphic showing a comparison of the absolute error versus
the running time required for computing the MEU of the NHL ID. Each point
corresponds to a different evaluation with certain value of ε. It can be observed
that the dominated area is always bigger for BTs.

All the pairs (timetrees, absoluteError) for the same representation compose
a solution set. For each solution set the Pareto front and hyper-volume are com-
puted using the reference point r. These numbers are included in Table 8.5. Each
column corresponds to one evaluation algorithm whereas each row is used for ev-
ery kind of potential: NT and BT. It can be observed that the higher hyper-volume
values using BTs (HBT) are always larger (better) than those using NTs (HBT).
Thus, we conclude that better approximations are achieved using BTs for this ID.

Figure 8.14: Comparison of the absolute error versus the computation time of the
NHL ID using the VE algorithm.

174 Chapter 8. Evaluation with Binary Trees

Figure 8.15: Comparison of the absolute error versus the computation time of the
NHL ID using the LE algorithm.

Figure 8.16: Comparison of the absolute error versus the computation time of the
NHL ID using the SPI algorithm.

8.4. Experimental work 175

VE LE SPI

HNT 0.68 0.615 0.217

HBT 0.826 0.78 0.512

Table 8.5: Hyper-volume values obtained from points shown in Figures 8.14, 8.15
and 8.16.

8.4.4 Results for the rest of IDs

8.4.4.1 Storage requirements and computation time

Table 8.6 includes the average space savings obtained using NTs and BTs and
for different ε values (see Equations (8.9) and (8.10)). When exact evaluation
is carried out (ε = 0) tables require less space than trees: for small IDs with a
low number of context-specific independencies, the representation with tables is
more efficient due to the additional space required for storing the internal nodes
in tree representations. Yet, when approximate evaluation is performed (ε > 0)
the representation with BTs requires less space. Similar space savings values are
obtained for all the evaluation algorithms analysed.

ε = 0.0 ε = 0.05 ε = 0.5 ε = 1.0

VE
NTs −0.418 0.132 0.384 0.483

BTs −0.461 0.521 0.893 0.938

LE
NTs −0.348 0.15 0.368 0.47

BTs −0.358 0.521 0.877 0.934

SPI
NTs −0.515 0.019 0.266 0.371

BTs −0.581 0.538 0.87 0.88

Table 8.6: Average space saving obtained using trees instead of tables with differ-
ent ε values.

The improvement in computation time can be analysed using the speedup
(Equation (8.11)). Table 8.7 contains the speedup values for tables, NTs and BTs
with different values of ε. It can be seen the improvements achieved by BTs: the
algorithms VE and SPI are faster when using BTs than with NTs or tables. How-

176 Chapter 8. Evaluation with Binary Trees

ever, the LE algorithm has a better performance with tables if exact evaluation
is carried out. When this method is used with trees, the overhead introduced by
pruning and sorting the trees consumes all the benefits for reduced size potentials.

ε = 0.0 ε = 0.05 ε = 0.5 ε = 1.0

VE
NTs 1.177 1.436 1.679 1.718

BTs 1.412 2.2 2.503 2.507

LE
NTs 0.868 0.947 1.089 1.077

BTs 0.909 1.117 1.286 1.406

SPI
NTs 1.087 1.261 1.385 1.397

BTs 1.153 1.605 1.674 1.676

Table 8.7: Average speedup for IDs using tables and trees (NTs and BTs).

8.4.4.2 Error against time

Table 8.8 contains the results of performing a Wilcoxon signed-rank test with the
hyper-volumes for all the random IDs evaluated with the VE, LE and SPI algo-
rithms. The null hypothesis states that there is no difference between the hyper-
volumes for BTs and NTs (both share a similar performance). The significance
level for rejecting the hypothesis is 5%. For each algorithm the table contains
the p − value, the percentage of IDs where BTs outperform NTs and finally the
conclusion of the test. It can be observed that the null hypothesis is rejected for
the methods VE and SPI. As BT outperforms in a higher number of IDs, we can
conclude that, for such algorithms, better aproximate solutions are obtained using
BTs than NTs.

p-value BTs wins rejected

VE 0.0245 66.67% yes

LE 0.4263 53.33% no

SPI 0.0085 86.67% yes

Table 8.8: Results of the Wilcoxon test for the results using NTs and BTs.

8.5. Conclusions 177

8.5 Conclusions

In this chapter we have explained how BTs are used during the evaluation of IDs
using the three different algorithms (VE, LE and SPI). For that, detailed methods
for operating with potentials represented as BTs are given.

The experimental work shows that, in general, less memory space is required
for storing potentials as a BT than using a NT or a table. As a consequence, the
ID evaluation is faster using BTs. However, for some IDs it is necessary to use
a threshold higher to 0 for pruning in order to obtain any benefits from the use
of BTs. Another conclusion is that using BTs for evaluating IDs offers better ap-
proximate solutions than using NTs: the same error level is achieved with a lower
computation time. If the three evaluation algorithms are compared, the best im-
provements achieved by BTs are obtained with the VE and SPI algorithms. By
contrast, the required time for building the strong junction tree limits the improve-
ment by the LE algorithm.

In Chapter 9 we propose some heuristics considering that potentials are rep-
resented as BTs. Besides, in Chapter 10 of this dissertation, we consider the
evaluation of ID with restrictions represented as BTs (i.e., BCTs). This would
allow addressing asymmetric decision problems.

As regards future directions of research, we can study alternative ways of ap-
plying the pruning operation during the evaluation. In the approach presented
here, all the BTs are pruned before the evaluation. Instead, we might consider
applying an on-line operation that only prunes the BTs involved in a specific op-
eration if this is extremely costly. In doing so, we might minimize the error of the
approximation as the pruning is only done for a few potentials. We could also con-
sider using data structures representing a full model such as RPTs Section 5.2.2
for evaluating IDs.

178 Chapter 8. Evaluation with Binary Trees

Chapter 9

Elimination Heuristics with BTs

9.1 Introduction

In Chapter 8, BTs have been shown as an effective data structure for representing
the potentials in IDs. VE is one of the evaluation algorithms adapted for evalu-
ating IDs when potentials are represented as BTs. This method starts with a set
of potentials and it eliminates one variable at each time. As it happens with the
corresponding algorithm for Bayesian networks (BNs) [116], the efficiency of VE
depends heavily on the optimality of the elimination order. In fact, any method
for finding an optimal ordering in a BN, which is an NP-hard problem [68], can
be adapted for IDs. Some of the most efficient methods for BNs are greedy al-
gorithms that choose at each step the next variable to remove using a heuristic
procedure (see Section 4.5.1.1). These heuristics try to minimize the complexity
of the operations involved in the evaluation.

The problem of traditional heuristics is that they assume that potentials are
represented using tables, but the complexity of the operations might be different
if potentials are represented using pruned BTs. In the present chapter two new
heuristics that consider that potentials are represented using BTs are proposed.
These heuristics estimate the size of the generated BTs during the removal of a
variable.

179

180 Chapter 9. Elimination Heuristics with BTs

9.2 Motivation

In order to illustrate the need for new elimination heuristics, let us consider the
following example. Let {A,B,C,D} be a set of variables in an ID and the sizes
of their respective domains are: |ΩA| = 2, |ΩB| = 4, |ΩC | = 2, |ΩD| = 2. Let us
suppose that A and C are the two candidate variables to be removed. Assume the
ID contains the following potentials:

A

0.25
a1

B

0.0
b1, b2

1.0
b3, b4

a2

C

D

0.4
d1

0.6
d2

c1

D

0.2
d1

0.8
d2

c2

A

C

10.0
c1

5.0
c2

a1

C

1.0
c1

100.0
c2

a2

BT φ1(B,A) BT φ2(D,C) BT ψ3(A,C)

The generated clique candidate1 if variableA is eliminated isCA = {A,B,C}.
By contrast, if C is the removed variable, the generated clique candidate is CC =

{A,C,D}. The weights of each clique can be calculated as follows.

w(CA) = |ΩA| · |ΩB| · |ΩC | = 2 · 4 · 2 = 16

w(CC) = |ΩA| · |ΩC | · |ΩD| = 2 · 2 · 2 = 8

If the minimum weight heuristic is used, then variable C is selected as the next
variable to eliminate. The weights w(CA) and w(CA) correspond to the sizes of
the tables representing the potentials ψA = φ1 · ψ3 and ψC = φ2 · ψ3 respectively.
That is, the resulting potentials from combining all the relevant potentials to re-
move A or C respectively. However, if the potentials are represented using BTs
previously pruned, the weight might not correspond with the size of the resulting
potential. Moreover, the variable that generates a clique of minimal weight might
not be the variable that generates a minimal BT. For example, Figures 9.1 and

1As defined in page 76, a clique candidate is the set of all variables contained in the relevant
potentials for the removal of a variable.

9.3. Proposed heuristics 181

9.2 shows the resulting BTs of combining the relevant potentials for removing A
and C respectively. The BT representing ψA contains 9 nodes whereas the BT
representing ψC contains 15. Therefore, the best option is to choose the variable
A. However, the worst option is chosen (removing variable C) when the minimum
weight heuristic is used.

A

0.25
a1

B

0.0
b1, b2

1.0
b3, b4

a2

A

C

10.0
c1

5.0
c2

a1

C

1.0
c1

100.0
c2

a2

A

C

2.5
c1

1.25
c2

a1

B

0.0
b1, b2

C

1.0
c1

100.0
c2

b3, b4

a2· =

BT φ1 BT ψ3 BT ψA
(5 nodes) (7 nodes) (9 nodes)

Figure 9.1: Combination of the PPs and UPs if variableA is chosen to be removed

C

D

0.4
d1

0.6
d2

c1

D

0.2
d1

0.8
d2

c2

A

C

10.0
c1

5.0
c2

a1

C

1.0
c1

100.0
c2

a2

C

D

A

4.0
a1

0.4
a2

d1

A

6.0
a1

0.6
a2

d2

c1

D

A

1.0
a1

20.0
a2

d1

A

4.0
a1

80.0
a2

d2

c2· =

BT φ2 BT ψ3 BT ψC
(7 nodes) (7 nodes) (15 nodes)

Figure 9.2: Combination of the PPs and UPs performed if variable C is chosen to
be removed

9.3 Proposed heuristics

9.3.1 Minimum combined tree

If the VE algorithm is used to evaluate an ID, the highest memory requirements
are achieved when combining all the relevant potentials to remove a variable. Here
the minimum combined tree heuristic is proposed, which is similar to the minimum
weight since it aims to calculate the size of the resulting potential of the combina-
tion. However, this new heuristic considers that potentials are represented using
trees.

182 Chapter 9. Elimination Heuristics with BTs

Let us suppose that we aim to remove a variable Y , the resulting potential of
combining all the relevant potentials is ψY = (((φ1)·φ2)·. . .·φn)·(ψ1+. . .+ψm).
The generated candidate clique is denoted CY . The size of the tree representing
ψY can be estimated using Equation (9.1).

size(BT ψY) ' size(BT φ1) + leaves(BT φ1) · (2 ·
∏

Xi∈CY
Xi 6∈dom(φ1)

|ΩXi| − 2) (9.1)

This heuristic computes the size of BT ψY from the size of the first potential
BT φ1 involved in the combination. It checks which of the variables in CY are not
present in BT φ1 and it supposes that a sub-tree with all these variables is added to
each leaf of BT φ1 . With this heuristic, it is selected the variable Y with a minimal
BT ψY . For example, let us consider the potentials shown in Section 9.2, then the
estimated sizes are:

size(BT ψA) ' size(BT ψ1)+leaves(BT ψ1)·(2·|ΩC |−2) = 5+3·(2·2−2) = 11

size(BT ψC) ' size(BT ψ2)+leaves(BT ψ2)·(2·|ΩA|−2) = 7+4·(2·2−2) = 15

Therefore, using the heuristic minimum combined tree, variable A is selected
since it generates a minimal tree when combining all the potentials involved. No-
tice that if trees are completely expanded, the estimated size is the real one. If
trees have been previously pruned, it is not possible to compute the real size with-
out combining them, which is not efficient.

9.3.2 Minimum marginalised tree

Here, we propose another heuristic to select a variable to be removed. This heuris-
tic is called minimum marginalised tree and it is quite similar to the Cano and
Moral heuristic (see Section 4.5.1.1). In this case, we aim to choose a variable
that generates a minimal tree after the removal. For example, the variable Y that
minimises size(BT ψY)/|ΩY | is selected. As it happen with minimum combined
tree, it computes an approximation of the tree size.

9.4. Experimental work 183

9.4 Experimental work

The aim of the experimental work is to show that the use of specific heuristics
for trees reduces the storage size of the potentials during the evaluation. For that
purpose two real world IDs are used. First an ID used for the treatment of gastric
NHL disease [76] with 3 decisions, 1 utility node and 17 chance nodes. Second,
an ID from IctNeo System for jaundice management [97] which contains 2 de-
cisions, 1 utility node and 23 chance nodes. More details about these IDs are
given in Appendix B.2. Both IDs are evaluated using BTs for representing the
potentials. We will compare the proposed heuristics, namely minimum combined
tree (MIN COMB TREE) and minimum marginalised tree (MIN MARG TREE),
with two of the traditional ones: minimum weight (MIN WEIGHT) and mini-
mum fill-in arcs weight (MIN FILL WEIGHT). All BTs are pruned before start-
ing evaluation. The threshold ε used for pruning are 0, 0.05 and 0.075.

During the evaluation of both IDs, the storage requirements for representing
all potentials are analysed (number of nodes). In particular, the measurements are
performed after combining all relevant potentials for removing each variable. It
is important to reduce the size of potentials after combinations since at this step
largest potentials are generated. Figure 9.3 shows size of all potentials stored
in memory during the NHL (left) and Jaundice (right) evaluation using different
heuristics and threshold values. The vertical axis indicates the storage size using
a logarithmic scale. The horizontal axis indicate the variable removed. It can be
observed that when the exact prune is performed (threshold value 0), there is not
relevant differences in the storage requirements. In fact, at some stages of the
evaluation, MIN WEIGHT and MIN FILL WEIGHT require less storage size.
However, using a threshold for pruning greater than 0, specific heuristics for BTs
(MIN COMB TREE and MIN MARG TREE) offer better results. When a high
threshold value is used, the size of a BT is much smaller than the size of a table
representing the same potential. Since MIN WEIGHT and MIN FILL WEIGHT
assume that potentials are represented with tables, it is not able to take advantage
of such information.

184 Chapter 9. Elimination Heuristics with BTs

Figure 9.3: Size of all potentials stored in memory during the NHL ID (left) and
IctNeo ID (right) evaluation comparing the heuristics minimum weight, minumum
combined tree, minumum marginalised and minimum fill-in arcs weight using BTs
and different threshold values.

The storage requirements can be analysed in more detail with Tables 9.1 and
9.2, which show the mean and maximum storage requirements in number
of nodes for evaluating NHL and Jaundice IDs respectively. Specific heuristics
(MIN COMB TREE and MIN MARG TREE) require less storage size if an im-
portant prune is performed.

9.5. Conclusions 185

Mean storage size Maximum storage size
ε = 0 ε = 0.05 ε = 0.075 ε = 0 ε = 0.05 ε = 0.075

MIN WEIGHT 6.51 · 104 325 115 4.03 · 105 2670 676

MIN COMB TREE 8.33 · 104 192 89.2 7.33 · 105 1010 340

MIN MARG TREE 9.92 · 104 190 86.8 1.61 · 106 1010 340

MIN FILL WEIGHT 2.25 · 104 508.15 225.15 1.41 · 105 2730 1360

Table 9.1: Mean and maximum storage requirements in number of nodes for the
evaluation of the NHL ID

Mean storage size Maximum storage size
ε = 0 ε = 0.05 ε = 0.075 ε = 0 ε = 0.05 ε = 0.075

MIN WEIGHT 1.84 · 104 1690 984 2.7 · 105 2.16 · 104 1.13 · 104

MIN COMB TREE 1.84 · 104 1390 798 2.7 · 105 1.44 · 104 7510

MIN MARG TREE 1.42 · 104 1390 800 1.8 · 105 1.44 · 104 7510

MIN FILL WEIGHT 1.42 · 104 1390 800 1.8 · 105 1.44 · 104 7510

Table 9.2: Mean and maximum storage requirements in number of nodes for the
evaluation of the Jaundice ID

9.5 Conclusions

Finding an elimination ordering that minimises the size of potentials during the
evaluation is an element of crucial importance for the efficiency of the VE algo-
rithm. Some greedy algorithms use deterministic heuristics for choosing the next
variable to remove. However, these heuristics are not appropriate if potentials are
represented using BTs. In this chapter, two new heuristics that estimate the sizes
of intermediate potentials during the evaluation have been proposed. In the exper-
imentation, it has been shown that the use of these heuristics reduce the storage
requirements. In particular, these heuristics offer the best results if high thresholds
for pruning the BTs are used.

Related to the optimization of the evaluation process, in Chapter 12 we will
study different alternatives for optimizing the evaluation assuming that the poten-
tials of the ID are represented as tables. With the heuristics proposed in this chap-
ter, it is only possible to optimize the order of the marginalizations involved in the
evaluation. By contrast, in Chapter 12 we will explore different alternatives for op-

186 Chapter 9. Elimination Heuristics with BTs

timizing al the operations with potentials (e.g., combination, sum-marginalization,
max-marginalization, etc.) Finding an optimal ordering will reduce the complex-
ity of operations and therefore the efficiency of the evaluation. Some methods
such as symbolic probabilistic inference (SPI) [104, 74] reorder the combination
and marginalization operations to reduce the complexity of computations. Thus,
the SPI algorithm will be adapted for evaluating IDs. Additionally, an optimiza-
tion of VE will be proposed.

Chapter 10

Evaluation of Asymmetric Decision
Problems with BTs

10.1 Introduction

As explained in Chapter 6, the evaluation of IDs representing asymmetric deci-
sion problem implies that a considerable amount of unnecessary memory space
and computation may be involved. For that reason, we proposed representing po-
tentials and asymmetries using BTs. Asymmetries represented as BTs are called
binary constraint trees (BCTs).

Here we will explain how to evaluate ID where potentials and asymmetries
are represented with BTs. In our approach we try to keep separately qualitative
(graph and constraints due to asymmetries) and quantitative (potentials) knowl-
edge, merely because a constraint may affect several potentials, with some of
them not being present in the model (i.e. distributions managed during the evalu-
ation process and derived from the initial ones). Potentials are represented using
BTs instead of tables. On the other hand, asymmetries are initially represented as
constraint rules. However, during the evaluation, these constraint rules are trans-
formed into BCTs making their application possible.

187

188 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

NTs were already used for this purpose in [54], however the use of BTs
will improve the efficiency even in those cases where the use of NTs is counter-
productive (the application of the asymmetries has an overhead). Our approach is
evaluated against the corresponding one with NTs in terms of running time and
storage requirements.

10.2 Applying constraints to potentials

10.2.1 Applicability of a constraint rule

In order to take advantage of asymmetries and avoid unnecessary computations,
the information about impossible scenarios present in constraint rules should be
combined with the information represented in potentials. We say that a constraint
rule is applicable to a potential if it meets the conditions given in Proposition 8.

Proposition 8 (applicability of a constraint rule) Let ψ be a potential (no mat-
ter if PP or UP) defined over XI and κ a constraint rule for the variables in XJ .
The constraint rule κ is applicable to ψ if and only if both the antecedent and
the consequent are applicable. To decide if each of them are applicable we will
consider the following cases:

• Case A: An atomic sentence in κ for Xj is applicable if Xj ∈ XJ ∩XI .

• Case B: The negation of a logical expression is applicable if and only if the
logical expression itself is applicable.

• Case C: A conjunction is applicable if and only if the two conjuncts are
applicable.

• Case D: A disjunction is applicable if and only if at least one of the disjuncts
is applicable.

10.2. Applying constraints to potentials 189

The applicability is verified by starting with the simplest well-formed formulas
in a logical expression, i.e. a atomic sentence. For composed logical expressions,
the applicability can be checked if it has been verified for their composing for-
mulas. An example is given below with one of the constraint rules in the reactor
problem.

Example 36 (applicability of a constraint rule) Let us consider the potential
φ(T |D1, A) and the constraint rule κ4 : (T = b) ∨ (D2 ∈ {c, n}) ⇒ A ∈ {}
in Examples 26 and 28 respectively. The set of common set of variables is {T,A}.
Considering Proposition 8, we will reason as follows.

• The atomic sentence in T = b is applicable because T belongs to the set of
common variables (case A).

• The atomic sentenceD2 ∈ {c, n} is not applicable because does not belongs
to the set of common variables (case A).

• The antecedent is applicable since one of the disjuncts, i.e., (T = b), is
applicable (case D).

• The consequent is applicable because it is an atomic sentence for the vari-
able A, which is in the set of common variables (case A).

As both the antecedent and consequent are applicable, κ4 is applicable to φ(T |D1, A).

From Proposition 8 it can be deduced that, if a constraint rule is applicable
to a potential, then they have at least a variable in common. This is a necessary
but not sufficient condition for the applicability of a constraint rule. For example,
the constraint rule (T = b) ∧ (D2 ∈ {c, n}) ⇒ A ∈ {} is not applicable to
φ(T |D1, A) even though the set of common variables is {T,A}.

190 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

10.2.2 Applying BCTs

Even though defining a set of constraint rules is an intuitive way to identify the
impossible configurations, they must be transformed into BTs for their application
to potentials (represented as BTs) in an ID. A BT representing a constraint rule is
called a binary constraint tree and was already defined in Section 6.3.2.

The process for applying κ(XJ) to a binary tree BT ψ(XI) representing a po-
tential (no matter if PP or UP) is the following:

1. The applicability must be checked as explained in previous section.

2. A binary tree BT κ(XJ) from κ is built1.

3. Non-common variables are removed fromBT κ(XJ) using max-marginalization,
and the resulting tree is multiplied by the BT representing the potential

The result of this process is a new BT, denoted BT κ·ψ(XI), that represent ψ
but it takes the value 0.0 for those configurations that are not allowed due to the
asymmetry represented by κ. This process is summarized in Equation (10.1).

BT κ·ψ(XI) =

(
max
XJ\XI

BT κ(XJ)

)
· BT ψ(XI) (10.1)

When evaluating an ID, we will be interested in applying a set of constraints
rather than a single one. Algorithm 16 details the process for a applying a set of
constraints rules to a binary tree BT ψ(XI). For each rule κ ∈ K, the applicability
is checked . If applicable, a BCT is built2 and multiplicated with the all applicable
constraints (lines 2 to 11). Note that non-common variables are max-marginalized
out. Finally, the BCT representing all the constraints is combined with the target
BT (lines 12 to 16). The output is a BT representing the same potential but taking
a 0.0 for the impossible configurations.

1The process for building a BCT from a constraint rule was explained in Section 6.3.2
2The building process can be avoided if the BCT was previously built during the evaluation.

10.2. Applying constraints to potentials 191

Algorithm 16 ApplyConstraints
input : K (set of constraint rules), BT ψ(XI) (target BT representing a PP or UP)
output : BT K′·ψ(XI) (resulting BT of applying constraints)

1: BT K′ ← null

2: for all κ(XJ) ∈ K do
3: if κ(XJ) is applicable to BT ψ(XI) then
4: Build a sorted BT κ(XJ)

5: if BT K′ = null then
6: BT K′ ← maxXJ\XI

BT κ
7: else
8: BT K′ ← BT K′ ·maxXJ\XI

BT κ
9: end if

10: end if
11: end for
12: if BT K′ 6= null then
13: BT K′·ψ ← BT K′ · BT ψ
14: else
15: BT K′·ψ ← BT ψ
16: end if
17: return BT K′·ψ(XI)

By simply applying a BCT to a potential, a reduction in the size cannot be
assured. For that reason, we will apply the exact pruning operation3 (i.e. with
threshold ε = 0.0) in order to group, as much as possible, all the new leaves
labelled with 0.0. Yet, in Section 10.2.3, improved versions of the algorithms
for performing the operations over BTs are given. With them, the pruning of the
resulting BT is not needed.

Example 37 (application of a set of constraint rules to a potential) Let us con-
sider that BT φ(T,D1, A) represents the PP φ(T |D1, A) given in Example 26 and
the set of constraint rules in Example 28. Then, the process for applying this set
of constraints is the following.

3For more details about the pruning operation in BTs, see Section 5.4.2.

192 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

1. The constraint rules that are applicable to φ(T |D1, A) are κ1(D1, T), κ2(D1, T)

and κ4(T,D2, A). The BCTs representing these constraints rulesBT κ1(D1, T),
BT κ2(D1, T) and BT κ4(T,D2, A) are built. For BT κ4(T,D2, A) the max-
marginalization is performed since it includes the variable D2 which is not
present in φ(T |D1, A). Then the multiplication of all the relevant BCTs is
done:

BT κ1(D1, T)

κ1 : D1 = t⇒ T ∈ {e, g, b}

T

1.0

e, g, b

D1

0.0

t

1.0

nt

nr

BT κ2(D1, T)

κ2 : D1 = nt⇒ T ∈ {nr}

D1

1.0

t

T

0.0

e, g, b

1.0

nr

nt

BT κ4(T,D2, A)

κ4 : (T = b) ∨ (D2 ∈ {c, n})⇒ A ∈ {}

D2

T

1.0

e, g

T

0.0

b

1.0

nr

b, nr

a

0.0

c, n

· · =maxD2()
T

1.0

e, g, b

D1

0.0

t

1.0

nt

nr

D1

1.0

t

T

0.0

e, g, b

1.0

nr

nt

T

1.0

e, g

T

0.0

b

1.0

nr

b, nr

T

D1

T

1.0

e, g

0.0

b

t

0.0

nt

e, g, b

D1

0.0

t

1.0

nt

nr

· · =

2. We obtain a BCT representing all the constraint rules, denoted BT κ1·κ2·κ4 .
Such BCT is combined (i.e. multiplied) with the PP:

10.2. Applying constraints to potentials 193

BT κ1·κ2·κ4(D1, T, A)

T

D1

T

1.0

e, g

0.0

b

t

0.0

nt

e, g, b

D1

0.0

t

1.0

nt

nr ·

BT φ(T,D1, A)

T

T

D1

A

A

0.818

as

0.147

al

as, al

0.25

am

t

0.0

nt

e

D1

A

A

0.182

as

0.565

al

as, al

0.437

am

t

0.0

nt

g

e, g

T

D1

A

A

0.0

as

0.288

al

as, al

0.313

am

t

0.0

nt

b

D1

0.0

t

1.0

nt

nr

b, nr

3. The result of combining the BCT with the PP is a new BT denotedBT κ1·κ2·κ4·φ.
This tree represents the same PP but taking 0.0 for the configurations lead-
ing to impossible scenarios:

BT κ1·κ2·κ4·φ(T,D1, A)

T

D1

T

T

A

A

0.818

as

0.147

al

as, al

0.25

am

e

A

A

0.182

as

0.565

al

as, al

0.437

am

g

e, g

A

A

0.0

as

0.0

al

as, al

0.0

am

b

t

T

T

0.0

e

0.0

g

e, g

0.0

b

nt

e, g, b

D1

0.0

t

1.0

nt

nr

194 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

4. By applying the BCT to the PP, the size of the BT remains the same: it
contains 27 nodes. We will apply the exact pruning operation (i.e. with
threshold ε = 0.0) in order to group all the leaves labelled with 0.0. The
final result is the following.

prune
(
BT κ1·κ2·κ4·φ(T,D1, A), ε = 0.0

)

T

D1

T

T

A

A

0.818

as

0.147

al

as, al

0.25

am

e

A

A

0.182

as

0.565

al

as, al

0.437

am

g

e, g

0.0

b

t

0.0

nt

e, g, b

D1

0.0

t

1.0

nt

nr

10.2. Applying constraints to potentials 195

10.2.3 Improved operations

The potentials of IDs representing asymmetric decision problems contain 0.0 val-
ues for many configurations. In fact, the application of a constraint rule to po-
tentials consist of replacing some values by 0.0. Yet, the algorithms given in
Section 8.2 for operating with BTs do take advantage of that situation. In order
to illustrate this problem, let us consider the multiplication shown in the example
below.

Example 38 (multiplication of two BTs containing 0.0 values) Let us consider
two binary trees BT 1 and BT 2 representing the potentials φ(A|B) and ψ(A,C)

respectively. If we apply Algorithm 10 (page 150), the process for performing the
multiplication BT 1 · BT 2 is detailed below. Those nodes being processed by the
algorithm at each step are highlighted with a dashed pattern.

196 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

Notice that in step 2, the algorithm aims to multiply a leaf node labelled with
0.0 and a BT with variable the C in the root. A similar situation happens in step
7, where the second operand is a leaf node labelled with 0.0. At these steps, we
already now that the result will be a BT with all their leaves labelled with 0.0.
Thus, there is no need to traverse the BT: the current node can be simply labelled
with 0.0 as shown in Figure 10.1.

10.2. Applying constraints to potentials 197

A

0.0

a0

B

A

0.3

a1

0.7

a2

b0

0.5

b1

a1, a2

A

C

10.0

c0

C

15.0

c1

16.0

c2

c1, c2

a0

0.0

a1, a2· A

0.0 · C

10.0

c0

C

15.0

c1

16.0

c2

c1, c2

a0

B · 0.0

A

0.3

a1

0.7

a2

b0

0.5

b1

a1, a2

A

0.0

a0

B · 0.0

A

0.3

a1

0.7

a2

b0

0.5

b1

a1, a2
A

0.0

a0

0.0

a1, a2

step 1 step 2

step 3 step 4

−→ −→

−→ −→

Figure 10.1: Process for multiplying the same BTs than in Example 38 but without
the unnecessary computations.

Now we will explain how operations on potentials can be modified in order
to avoid the unnecessary computations previously described. The improvement
proposed is based on the idea that, when multiplying or dividing two BTs, if any
of the operands is a leaf node labelled with the value 0.0, the result is also a leaf
node labelled with 0.0. Note that, in any division (with real numbers) performed
with the VE algorithm, if the denominator is equal to 0.0, so is the numerator. In
that case, the convention 0

0
= 0 is adapted.

In Section 8.2, the algorithms for performing the multiplication and division
were described by means of the definition of the generic combinator operator ⊗,
which also allows describing other operations such as the addition or the max-
imum. Algorithm 17 shows the improved version of this operation. The new
additional code corresponds to lines 3 to 9: the boolean variable stop, which is
used to control if the combination process can be stopped, is initialized to false.
If any of the BTs is a leaf node labelled with 0.0, then the label of the new node
is set to 0.0 and stop is set to true (lines 5 to 8). The algorithm will only perform
more recursive calls if stop is equal to false. This improvement is only included
for two types of combinations: multiplication and division.

198 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

Algorithm 17 Improved Generic Combination
input : t1 and t2 (root nodes of BT 1 and BT 2)
output : the root of BT = BT 1 ⊗ BT 2

1: Build a new node tn
2: stop← false

/*Check if the process can be stopped*/

3: if multiplication or division then
4: if (t1 is a leaf node and Lt1 = 0)
5: or (t2 is a leaf node and Lt1 = 0) then
6: Ltn ← 0.0 . Sets the label of tn
7: stop← true

8: end if
9: end if

10: if stop = false then . The process cannot be stopped
11: if t1 is a leaf node then
12: if t2 is a leaf node then
13: Ltn ← f(Lt1 , Lt2) . Sets the label of the leaf
14: else
15: Ltn ← Lt2 . Sets the label of tn
16: Llb(tn) ← Llb(t2) . Sets labels for both branches
17: Lrb(tn) ← Lrb(t2)

18: tnl ← combination(t1, t2l) . Sets children
19: tnr ← combination(t1, t2r)
20: end if
21: else
22: Let Xi be the variable labelling t1
23: Ltn ← Lt1 . Sets the label of tn
24: Llb(tn) ← Llb(t1) . Sets the labels of both branches
25: Lrb(tn) ← Lrb(t1)

26: tnl ← combination(t1l ,BT
R(Xi,Llb(t1))

2) . Sets children

27: tnr ←combination(t1r ,BT
R(Xi,Lrb(t1))

2)
28: end if
29: end if
30: return tn

10.3. ID Evaluation with BCTs 199

As a reminder of Section 8.2, in line 13 the leaf node of the new tree is labelled
with the result of a function f , which will depend on the particular type of com-
bination. For example, in case of multiplying two BTs, this function is defined
as f(Lt1 , Lt2) = Lt1 · Lt2 . On the other hand, for the division, it is defined as
f(Lt1 , Lt2) =

Lt1
Lt2

.

A noticeable aspect of using this implementation of the combination operation
is that, the size of the resulting BTs can be reduced without pruning them before
the application of constraints.

10.3 ID Evaluation with BCTs

This section shows how BCTs can be applied to evaluate IDs. In particular, we
work with the VE algorithm, which was explained in its general version in Sec-
tion 4.5.1. This method for working with BTs was given in Section 8.3. Algo-
rithm 18 adapts it for working with BTs representing potentials and constraints
(i.e., BCTs).

The algorithm includes an additional input parameter, which is the set of con-
straint rules in the ID, denoted as K. If we compare this procedure with the one
without BCTs (Algorithm 12, page 161), we observe that such algorithm differs in
the initialization phase (lines 1 to 5). After building each BT representing an ini-
tial potential, the constraints are applied by invoking applyConstraints (previously
explained in Section 10.2.2). Note that for their application, constraint rules will
be transformed into BCTs. If the improved versions of the operations explained in
previous section are used, this application already reduces the size of potentials.
However, a greatest reduction can be achieved if the nodes in the BT are sorted
and pruned4.

4The methods for sorting and pruning were explained in Section 5.4

200 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

Algorithm 18 Variable Elimination with BCTs
input : Φ,Ψ (sets of potentials in the ID), {I0, D1, I1, . . . , Dn, In} (partitions of
nodes in the ID), ε (pruning threshold), K (set of constraint rules).

/*Initialization phase*/

1: for all φ ∈ Φ do
2: Build a binary tree BT φ representing φ
3: BT K′·φ ← applyConstraints(K,BT φ) . Algorithm 16
4: Φ← Φ\{φ} ∪ {prune(sort(BT K′·φ), ε)}
5: end for
6: for all ψ ∈ Ψ do
7: Build a binary tree BT ψ representing ψ
8: BT K′·ψ ← applyConstraints(K,BT ψ) . Algorithm 16
9: Ψ← Ψ\{ψ} ∪ {prune(sort(BT K′·ψ), ε)}

10: end for
/*Removal Loop*/

11: for k ← n to 0 do
12: while Ik 6= ∅ do
13: Select X ∈ Ik . Pick a chance variable to eliminate
14: (Φ,Ψ)← ElimVarBCT(X,Φ,Ψ,K) . Chance variable elimination

(Algorithm 19)
15: Ik ← Ik\{X}
16: end while
17: if k > 0 then
18: (Φ,Ψ)← ElimVarBCT(Dk,Φ,Ψ,K) . Decision variable elimination

(Algorithm 19)
19: end if
20: end for

During the removal loop in the previous algorithm, intermediate potentials
might contain values different to 0 but corresponding with impossible configura-
tions. It could happen that some constraint rules are not applicable to any of the
initial potentials but they are applicable to some of the generated potentials during
the evaluation. For that reason, the constraint application is also required after

10.3. ID Evaluation with BCTs 201

obtaining such intermediate potentials, i.e., when invoking ElimVarBCT, which is
shown in Algorithm 19.

Algorithm 19 ElimVarBCT - Elimination of a single variable
input : Y (variable to remove), Φ,Ψ (sets of current potentials), K (set of con-
straints rules)
output : Φ,Ψ (updated sets of current potentials without Y)

1: ΦY ← {BT φ ∈ Φ|Y ∈ dom(BT φ)} . Select

2: ΨY ← {BT ψ ∈ Ψ|Y ∈ dom(BT ψ)}
3: BT φY ←∏

BT φ∈ΦY
BT φ . Combine

4: BT ψY ←∑
BT ψ∈ΨY

BT ψ

5: BT K′·φY ← applyConstraints(K,BT φY)

6: BT K′·ψY ← applyConstraints(K,BT ψY)

7: if Y ∈ UC then
8: (BT φ′Y ,BT ψ′Y)← (

∑
Y BT K

′·φY ,
∑
Y BT K

′·φY ·BT K′·ψY∑
Y BT K

′·φY
) . Remove by

sum
9: else

10: (BT φ′Y ,BT ψ′Y)← ((BT K′·φY)R(Y=y),maxY BT K
′·ψY) . Remove by

max
11: δ̂Y ← arg maxY BT K

′·ψY . Optimal policy

12: end if
13: BT K′·φ′Y ← applyConstraints(K,BT φ′Y)

14: BT K′·ψ′Y ← applyConstraints(K,BT ψ′Y)

15: (Φ,Ψ)← (Φ\ΦY ∪ {BT K
′·φ′Y },Ψ\ΨY ∪ {BT K

′·ψ′Y }) . Update

16: return (Φ,Ψ)

In the previous algorithm, the constraint rules are applied after combining
all the potentials (lines 5 and 6) and after the marginalization of the variable Y
(lines 13 and 14). Note that, in this case, BTs are not sorted and pruned after
the application of the constraints: these operations are time-consuming, therefore
sorting and pruning the BTs at each iteration is counter-productive. Yet, as the

202 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

improved versions of the combination algorithms explained in previous section
are used, the application of constraints can reduce the size of potentials without
the need of sorting and pruning the BTs.

10.4 Experimental work

For an empirical validation of the VE algorithm for IDs proposed in this chapter,
we consider a benchmark of six IDs modelling real decision tasks. Table 10.1
details the number of nodes of each type for these models.

Name of the ID |UC | |UD| |UV |
Car Buyer 3 3 1

Dating 12 4 7

Diabetes 4 3 3

Reactor 3 2 3

NHL 17 3 1

Maze 14 2 1

Table 10.1: Number of chance, decision and utility nodes for the benchmark IDs

Some of these IDs have often been used in the literature for illustrating the
problematic related to the evaluation of asymmetric decision problems: the car
buyer ID [94]; an ID representing the dating decision problem [71]; the reactor
ID, which was detailed in Chapter 6 for introducing the asymmetries in decision
problems. Some other IDs that are not usually related to the literature about asym-
metries but being highly asymmetric are: the NHL ID, which is a large real world
IDs used for medical purposes [76], and the ID for solving the maze problem
[113]. More details of these IDs are given in Appendix B.2. The set of constraint
rules of each ID is detailed in Appendix B.3.

We compare the ID evaluation including constraint rules represented as NTs
and BTs (NTWC and BTWC schemes in the graphics) with their counterparts

10.4. Experimental work 203

without including them (NT and BT schemes). The ID evaluation with BTs for
representing potentials without the application of constraint rules was explained
in Chapter 8. For simplicity, we only consider the pruning thresholds ε = 0.0,
ε = 0.05 and ε = 0.5. In addition, we compare our approach with the evaluation
using tables, which does not admit the application of constraint rules.

Figure 10.2 shows the storage requirements using each one of the considered
schemas. In particular, we show the average total potential size (i.e. number of
nodes of all the potentials and BCTs) along the evaluation. The measurements
were performed before and after the removal of each variable, i.e. in steps 7 and
16 of Algorithm 19. For a better understanding and interpretation of the results,
each bar in the graphic is labelled with the space savings5 obtained w.r.t. the eval-
uation with tables (which does not admit the application of constraint rules).

As expected, the application of constraints represented as BT implies a reduc-
tion in the storage requirements (i.e., BTWC w.r.t. BT) during the evaluation of
most of the IDs. Only for a small one, namely Reactor, the storage requirements
are increased: the reduction due to the asymmetries is insignificant compared
with the additional space required for storing the BCTs. This is not the case of
the largest IDs (i.e. NHL and Maze) where, indeed, the highest reductions are
obtained. If we consider the evaluation with NTs (i.e. NTWC and NT schemes),
we can observe that there are not great differences for all the IDs but for NHL.
With this kind of tree, many of the impossible configurations (labelled with 0.0)
in the potentials of the small IDs cannot be grouped together.

A reduction in the size of the potentials should lead to a reduction in the com-
putation time. Figure 10.3 shows the running times and the relative durations (i.e.,
speed up6) when compared with the evaluation with tables. We consider as com-
putation time as the time required for building all the trees from tables and the

5The concept of space savings was introduced in page 168. In short, a positive value implies
a reduction in the storage requirements.

6The concept of speed up was introduced in page 168. A value higher to 1 implies a reduction
in the computation time.

204 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

Figure 10.2: Storage requirements for evaluating six IDs where potentials are
represented using as trees (NTs and BTs) with and without constraint rules.

time for performing the evaluation (i.e. removal loop). For most the IDs, the best
results are obtained with the scheme BTWC, i.e., the application of constraints
represented as BTs improves the efficiency of the evaluation. Only for the ID
representing the Reactor problem, the computation time is increased: as this is
a small ID, the reduction in the number of scenarios to consider does not com-
pensate the overhead introduced by the application of constraints. Additionally,
we can observe that the reduction in the computation time is not as important as

10.4. Experimental work 205

the reduction in the storage requirements: the application of constraints does not
reduce the initialization time (it is actually increased). The same holds for the
evaluation with high pruning thresholds values. Thus, great reductions will be
obtained when evaluating large networks (such as the NHL and Maze IDs). If we
compare the running time for the schemes NT and NTWC, we see that the com-
putation time is, in most of the cases, increased: as the size of potentials is barely
reduced, the application of constraints is counter-productive due to the overhead
introduced.

Figure 10.3: Running time for evaluating six IDs where potentials are represented
using as trees (NTs and BTs) with and without constraint rules.

206 Chapter 10. Evaluation of Asymmetric Decision Problems with BTs

10.5 Conclusions

In the present chapter, we have proposed a new method for representing and eval-
uating asymmetric decision problems with IDs: potentials and asymmetries (con-
straint trees) are represented using BTs. Using this kind of representation allows
to reduce the number of scenarios to consider and also to approximate the poten-
tials. This chapter shows how constraints can be used to improve the efficiency
of the VE algorithm. In the experimental work, it has been proved that evaluat-
ing IDs with BCTs improves the efficiency and reduces the storage requirements,
specially for large IDs. By contrast, if the ID is too small, the application of the
constraints might be counter-productive (the application of asymmetries has an
overhead). If we compare BTs and NTs for representing asymmetries, we have
seen that the efficiency is improved even in many cases where the use of NTs is
counter-productive.

As regards to future directions of research, we shall study the behaviour of
BTs with constraints using alternatives to the VE inference algorithm, like arc
reversal [102], lazy evaluation [79], etc.

Chapter 11

Evaluation with Interval-valued
Potentials

11.1 Introduction

In Chapter 7 we formalized the concept of interval-valued potentials. Here We
extend to the interval-valued case the formalism of IDs by keeping the same
sensitivity-analysis interpretation of credal networks [37]. Such generalized ID is
therefore equivalent to a collection of classical (i.e., “precise”) IDs whose param-
eters are consistent with the interval constraints. In this framework, the expected
utility of a policy becomes interval-valued. A decision criterion to detect the op-
timal decision when comparing intervals is therefore needed. We adopt a con-
servative approach, called interval dominance in the imprecise-probability jargon
[109], which rejects all the decisions leading to certainly sub-optimal strategies.

In this chapter, some standard approaches to IDs evaluation, namely variable
elimination [64, 116] and arc reversal [102], are generalized in order to cope
with the interval-valued case. The extension to intervals does not increase the
computational complexity which remains the same as with sharp parameters for
both the algorithms. This is achieved at the price of an outer approximation in
the inferences, which is required to preserve the interval-valued modelling. An
experimental comparison against the arc reversal technique proposed by Fertig

207

208 Chapter 11. Evaluation with Interval-valued Potentials

and Breese in [51, 50, 8] (i.e., the only practical approach proposed so far these
models) shows a clear improvement in terms of both evaluation time and accuracy.

Additionally, the proposed algorithms can be also used for practical sensitivity
analysis in (standard) IDs. By replacing the sharp values of some parameters with
intervals, we can decide whether or not the original optimal strategy is robust with
respect to a perturbation consistent with the intervals. The maximal level of per-
turbation leaving the strategy unchanged can be therefore regarded as a robustness
descriptor. This allows to identify the more critical parameters of the model and,
for instance, deciding which ones deserve a more careful elicitation.

The chapter is organized as follows. Section 11.2 defines interval-valued in-
fluence diagrams and the basic operations for their evaluations corresponding are
detailed in Section 11.3. The algorithms to evaluate interval-valued IDs are in
Section 11.2, while the procedure for sensitivity analysis is in Section 11.5. The
empirical analysis is presented in Section 11.6.

11.2 Interval-valued influence diagrams

IDs can be extended to intervals just by replacing the PPs and UPs with an equal
number of IPPs and IUPs defined over the same domains. A model of this kind
is called an interval-valued influence diagram (IID). As an example, the interval-
valued potentials in Example 31 (page 139) can be used to transform the oil wild-
catter’s ID into an IID as follows.

Example 39 (the oil wildcatter’s IID) Figure 11.1 depicts the graph of an IID
modelling the decision problem described in Example 10. The set of chance vari-
ables is UC = {S,O}, while the set of decisions is UD = {T,D}. The utility nodes
P and C describe the profit possibly obtained from the presence of oil and the cost
of the tests. The sets of interval-valued potentials are Φ = {φ(O), φ(S|O, T)},
and Ψ = {ψ(T), ψ(O,D)}. The lower and upper bounds these of potentials are

11.2. Interval-valued influence diagrams 209

reported below in a table form.

φ(O) =







[.475, .525] e
[.285, .335] w
[.190, .240] s

ψ(T) =

[]
[−10,−5] t

[−5, 5] nt

ψ(O,D) =

d nd






[−75,−65] [−5, 5] e
[45, 55] [−5, 5] w

[195, 205] [−5, 5] s

φ(S|O, T) =

t nt
e w s e w s







[.095, .145] [.285, .335] [.475, .525] [.317, .367] [.317, .367] [.317, .367] c
[.288, .335] [.380, .430] [.380, .430] [.317, .367] [.317, .367] [.317, .367] o
[.570, .620] [.285, .335] [.095, .145] [.317, .367] [.317, .367] [.317, .367] d

,

O
(oil)

S
(seismic)

T
(test)

D
(drill)

C
(cost)

P
(pay)

Figure 11.1: Graph of an IID modelling the oil wildcatter’s decision problem

IIDs offer a direct sensitivity analysis interpretation. An IID can be regarded
as a collection of so-called consistent IDs, all with the same graph and set of vari-
ables, with PPs and UPs taking their values from the extensions of the IPPs and
IUPs of the IID. Note that the ID described in Example 11 is one of the IDs rep-
resented by the previous IID.

Considering this sensitivity analysis interpretation, IID evaluation is therefore
intended as the calculation of the interval spanned by the MEU values of the con-
sistent IDs. We similarly define the optimal policies of an IID as the union of

210 Chapter 11. Evaluation with Interval-valued Potentials

those optimal, in the sense of Equation (4.24), for at least a consistent ID. This set
of policies will be called credal policy. An example of the credal policy for the
oil wildcatter’s IID will be given in Section 11.4.1.3.

11.3 Basic operations for evaluating IIDs

To evaluate an IID, operations considered in Section 4.3.2.1 for precise potentials
need to be extended to intervals. For such definitions, we will keep the same
sensitivity analysis interpretation: an interval-valued potential represents a set of
precise potentials consistent with the interval constraints. Thus, the result of op-
erating over such interval-valued potential will be a new imprecise potential that
represents (among others) all possible precise resulting potentials.

We will start by extending the combination operation to intervals. Like in
the precise case (Definition 16 in page 59), this operation represents aggregation
of knowledge. Given two interval-valued potentials (no matter whether IUPs or
IPPs) their combination gives as a result a new interval potential whose domain
is the union of the domains of both potentials. In the evaluation of an ID with
interval constraints, depending on the potentials involved, we can distinguish two
types of combination: multiplication and addition. Two IPPs are combined using
the multiplication while two IUPs are combined with the addition instead (we
assume an additive model). When combining an IPP with an IUP, we will proceed
as in the case of two IPPs. Thus, the combination can be defined as follows:

Definition 43 (combination of interval-valued potentials) The combination (ad-
dition) ψ + ψ′ of two IUPs, say ψ(XI) and ψ

′
(XJ), is an IUP over XI∪J such that

ψ + ψ′(xI∪J) := ψ(xI) + ψ
′
(xJ) , (11.1)

ψ + ψ′(xI∪J) := ψ(xI) + ψ′(xJ) , (11.2)

for each xI∪J ∈ ΩXI∪J , with xI ,xJ ∼ xI∪J . The combination (multiplication)
φ · ψ of an IPP φ(XI |XJ) with an IUP ψ(XK) is an IUP over XI∪J∪K such that

11.3. Basic operations for evaluating IIDs 211

φ · ψ(xI∪J∪K) :=

{
φ(xI |xJ) · ψ(xK) if ψ(xK) > 0

φ(xI |xJ) · ψ(xK) otherwise

}
(11.3)

φ · ψ(xI∪J∪K) :=

{
φ(xI |xJ) · ψ(xK) if ψ(xK) > 0

φ(xI |xJ) · ψ(xK) otherwise

}
(11.4)

for each xI∪J∪K ∈ ΩXI∪J∪K , with xI ,xJ ,xK ∼ xI∪J∪K . Finally, the combination
(multiplication) φ · φ′ of two IPPs, say φ(XI |XJ) and φ

′
(XK |XL) is an IPP over

XI∪K given X(J∪L)\(I∪K) such that

φ · φ′(xI∪K |x(J∪L)\(I∪K)) := φ(xI |xJ) · φ′(xK |xL) , (11.5)

φ · φ′(xI∪K |x(J∪L)\(I∪K)) := φ(xI |xJ) · φ′(xK |xL) , (11.6)

for each xI∪K ∈ ΩXI∪K and x(J∪L)\(I∪K) ∈ ΩX(J∪L)\(I∪K)
, with xI ,xJ ,xK ,xL ∼

xI∪K ,x(J∪L)\(I∪K).

Example 40 (interval-valued potential combination) Consider the IPPs and IUPs
in Example 31 associated to the oil wildcatter’s ID. It is a straightforward exercise
to check that the following combined potentials

ψ(T,O,D) := ψ(T) + ψ(O,D) ,

φ(S,O|T) := φ(O) · φ(S|O, T) ,

ψ(S,O, T,D) := φ(S,O|T) · ψ(O,D) ,

have the following numerical values

ψ(T,O,D) =

t nt

d nd d nd






[−90,−70] [−20, 0] [−80,−60] [−10, 10] e

[30, 50] [−20, 0] [40, 60] [−10, 10] w

[180, 200] [−20, 0] [190, 210] [−10, 10] s

,

212 Chapter 11. Evaluation with Interval-valued Potentials

φ(S,O|T) =

t nt

e w s e w s






[.045, .076] [.081, .112] [.090, .126] [.150, .192] [.090, .123] [.060, 0.088] c

[.135, .176] [.108, .144] [.072, .103] [.150, .192] [.090, .123] [.060, 0.088] o

[.271, .326] [.081, .112] [.018, .035] [.150, .192] [.090, .123] [.060, 0.088] d

,

ψ(S,O, T,D) =

t nt

d nd d nd





[−5.709,−2.933] [−.381, .381] [−14.437,−9.777] [−.962, .962] e

[3.655, 6.172] [−.561, .561] [4.061, 6.756] [−.614, .614] w c

[17.599, 25.83] [−.630, .630] [11.732, 18.040] [−.440, .440] s

[−13.191,−8.799] [−.879, .879] [−14.437,−9.777] [−.962, .962] e

[4.873, 7.923] [−.720, .720] [4.061, 6.756] [−.614, .614] w o

[14.079, 21.156] [−.516, .516] [11.732, 18.040] [−.440, .440] s

[−24.413,−17.599] [−1.627, 1.627] [−14.437,−9.777] [−.962, .962] e

[3.655, 6.172] [−.561, .561] [4.061, 6.756] [−.614, .614] wd

[3.520, 7.134] [−.174, .174] [11.732, 18.040] [−.440, .440] s

.

The above combination operator generalizes the combination of precise poten-
tials in Definition 16 by keeping the same commutative and associative properties.
A deeper characterization is provided by the following result, which provides a
sensitivity-analysis justification for the proposed generalization of the combina-
tion operator.

Proposition 9 Given two potentials (no matter whether IUPs or IPPs) ψ and φ,
the combination of the elements of their extensions is included in the extension of
their combination, i.e.,

{
ψ ⊗ φ

∣∣∣ψ ∈ ψ∗, φ ∈ φ∗
}
⊆ ψ ⊗ φ∗ . (11.7)

The proof easily follows from the fact that potentials consistent with the bounds on
the right-hand side of Equations (11.2-11.6) cannot produce bounds not consistent

11.3. Basic operations for evaluating IIDs 213

with those on the left-hand side. The other operations over sharp-valued poten-
tials required by the usual evaluation algorithms (division, sum-marginalization
and max-marginalization) can also be generalized to intervals and similar charac-
terizations provided.

Definition 44 (dividing interval-valued potentials) The ratio between an IUP
ψ(XI) and an IPP φ(XJ) is an IUP ψ/φ over XI∪J such that, for each xI∪J ∈
ΩXI∪J ,

ψ/φ(xI∪J) := ψ(xI)/φ(xJ) , (11.8)

ψ/φ(xI∪J) := ψ(xI)/φ(xJ) , (11.9)

with xI ,xJ ∼ xI∪J .

The ratio of two IPPs is analogously defined. With zero denominators, the
result is set to +∞ for positive numerators and−∞ for negative ones. When both
numerator and denominator are zero, we set 0

0
= 0.

Definition 45 (sum-marginalization) The sum-marginalization
∑

X ψ of an IUP
ψ(X,XI) is an IUP over XI such that

∑

X

ψ(xI) :=
∑

x∈ΩX

ψ(x,xI) , (11.10)

∑

X

ψ(xI) :=
∑

x∈ΩX

ψ(x,xI) , (11.11)

for each xI ∈ ΩXI
.

The sum-marginalization of an IPP is analogously defined.

Definition 46 (max-marginalization) The max-marginalization maxD ψ of an
IUP ψ(D,XI) is an IUP over XI such that

max
D

ψ(xI) := max
d∈ΩD

ψ(d,xI) , (11.12)

max
D

ψ(xI) := max
d∈ΩD

ψ(d,xI) , (11.13)

for each xI ∈ ΩXI
.

214 Chapter 11. Evaluation with Interval-valued Potentials

The max-marginalization of an IPP is analogously defined. Envelope theo-
rems analogous to that in Proposition 9 can be proved for all the operators defined
in this section.

Example 41 (marginalization and division) Consider the interval-valued poten-
tials ψ(S,O, T,D) and φ(S,O|T) obtained in Example 40. By sum-marginalizing
out the variable O, we obtain

ψ(S, T,D) =
∑

O ψ(S,O, T,D) =

t nt

d nd d nd






[15.544, 29.069] [−1.572, 1.572] [1.356, 15.019] [−2.017, 2.017] c

[5.762, 20.279] [−2.116, 2.116] [1.356, 15.019] [−2.017, 2.017] o

[−17.238,−4.292] [−2.363, 2.363] [1.356, 15.019] [−2.017, 2.017] d

,

φ(S|T) =
∑

O

φ(S,O|T) =

t nt






[.217, .314] [.301, .403] c

[.316, .423] [.301, .403] o

[.37, .473] [.301, .403] d
.

The division of the previously obtained IUP and IPP gives the following IUP

ψ
2
(S, T,D) =

ψ(S,T,D)

φ(S|T)
=

t nt

d nd d nd






[49.45, 134.207] [−7.256, 7.256] [3.363, 49.924] [−6.704, 6.704] c

[13.617, 64.201] [−6.698, 6.698] [3.363, 49.924] [−6.704, 6.704] o

[−46.585,−9.084] [−6.385, 6.385] [3.363, 49.924] [−6.704, 6.704] d

,

11.4. New evaluation algorithms for IIDs 215

Finally, the max-marginalization of D from ψ
2
(S, T,D) is

ψ(S, T) = max
D

ψ
2
(S, T,D) =

t nt






[49.45, 134.207] [3.363, 49.924] c

[13.617, 64.201] [3.363, 49.924] o

[−6.385, 6.385] [3.363, 49.924] d
.

11.4 New evaluation algorithms for IIDs

Both the VE and AR schemes can be adopted for IIDs evaluation by replacing the
operations over sharp potentials with the analogous operations for interval-valued
potentials defined in Section 11.3. We show that this approach might produce
unnecessarily large outer approximations. To avoid that, we propose a sophisti-
cation of these algorithms based on linear programming (Section 11.4.1 for VE
and Section 11.4.3 for AR) as well as an alternative VE which gives faster but less
accurate inferences (Section 11.4.2). The latter approach gives an outer approx-
imation analogous to the generalization of the AR algorithm proposed by Fertig
and Breese [51, 50, 8].

11.4.1 Variable elimination in IIDs by linear programming

Consider the VE scheme outlined by Algorithm 1 (page 74). The procedure to
eliminate a variable, detailed by Algorithm 2, is based on two sequential steps:
first the potentials including the variable to eliminate in their arguments are com-
bined (line 2), then the elimination is performed on the combined potential (lines
4 or 6). When coping with IIDs, we perform the last combination together with
the elimination. This corresponds to a linear program, that avoids unnecessary
additional approximations.

216 Chapter 11. Evaluation with Interval-valued Potentials

11.4.1.1 Chance variables elimination from IPPs

Here we will explain how to eliminate a chance variable, say Y , from a set of
IPPs. Because of Definition 15, only one of the PPs to be combined in line 2 of
Algorithm 2 has Y on the left-hand side of its argument. The same holds with the
IPPs. When eliminating a chance variable from the IPPs of an IID, we proceed as
follows. First we combine (Definition 43) all the IPPs apart from the one having
Y on the left. The resulting IPP is combined indeed with the only IPP having Y
on the left-hand side and, simultaneously, the variable is sum-marginalized (first
term in line 4 of Algorithm 2) as described by Definition 45. The procedure is
detailed here below.

Definition 47 (eliminating chance variables from IPPs) Consider the elimina-
tion of the chance variable Y during VE. Let φ(XI |XJ , Y) denote the IPP ob-
tained by combining all the IPPs with Y on the right-hand side, and φ(Y,XK |XL)

the only IPP with Y on the left. The elimination of Y from the combination of
these two IPPs generates an IPP φ(XK ,XI |XL,XJ). For each xI∪K ∈ ΩXI∪K

and xL∪J ∈ ΩXL∪J , an outer approximation of the lower bound φ(xK∪I |xL∪J) is
the solution of the following task:

minimize
∑

y∈ΩY

φ(xI |xJ , y) · φ(y,xK |xL) ,

subject to φ(xI |xJ , y) ≤ φ(xI |xJ , y) ≤ φ(xI |xJ , y) ,

φ(y,xK |xL) ≤ φ(y,xK |xL) ≤ φ(y,xK |xL),∀y ∈ ΩY .

Analogously, an outer approximation of the upper bound φ(xK∪I |xL∪J) can be
calculated by maximizing the previous objective function instead.

In the previous linear program, the optimization variables1 {φ(xI |xJ , y)}y∈ΩY are
free to vary one independently of the other. Each one of these variables is in a dif-
ferent term of the objective function. Thus, in case of computing the lower bound,

1The optimization variables should not be confused with the variables in an ID. A linear
program is solved when the best values of the variables (given an objective function) have been
identified.

11.4. New evaluation algorithms for IIDs 217

we can easily minimize with respect to these variables and replace φ(xI |xJ , y)

with the lower bound φ(xI |xJ , y). This reduces the task to a linear program over
the optimization variables {φ(y,xK |xL)}y∈ΩY . Analogously, when computing the
upper bound, we can replace φ(xI |xJ , y) with φ(xI |xJ , y).

It should be noticed that the optimization variables {φ(y,xK |xL)}y∈ΩY are
not only required to satisfy the separate constraints reported in the above task, but
also the normalization constraint of the PPs consistent with the IPP φ(y,xK |xL).
These are constraints among the different tasks corresponding to the different
values of xK . By considering the reachability constraints for φ(XK |XL) :=∑

Y φ(XK , Y |XL) (see Definition 18), we have

1−
∑

x′K 6=xK ,y

φ(y,x′K |xL) ≤
∑

y

φ(y,xK |xL) ≤ 1−
∑

x′K 6=xK ,y

φ(y,x′K |xL) .

(11.14)

Note that if XK = ∅ the constraint in Equation (11.14) degenerates in the trivial
normalization of the potential and becomes useless.

Example 42 Consider the elimination of the chance variable O from the IID as-
sociated to the graph in Figure 4.2 with the IPPs and IUPs as in Example 31.
This consists in the combination φ(S,O|T) := φ(O) · φ(S|O, T), and then the
sum-marginalization φ(S|T) :=

∑
o φ(S, o|T). To show how this works, let us

compute the upper bound φ(S = c|T = t). The corresponding linear program is:

maximize 0.145 · φ(e) + 0.335 · φ(w) + 0.525 · φ(s) ,

subject to 0.475 ≤ φ(e) ≤ 0.525 ,

0.285 ≤ φ(w) ≤ 0.335 ,

0.190 ≤ φ(s) ≤ 0.240 ,

φ(e) + φ(w) + φ(s) = 1 .

The objective function is maximized when φ(e) = 0.475, φ(w) = 0.285 and
φ(s) = 0.240, which gives φ(c|t) ' 0.290. By iterating this procedure for all the
values of S and T and for the lower bounds too, the following IPP is obtained:

218 Chapter 11. Evaluation with Interval-valued Potentials

φ(S|T) =

t nt






[.221, .290] [.317, .367] c
[.330, .385] [.317, .367] o
[.375, .444] [.317, .367] d

It is worth noticing that not including the additional constraints in Equation (11.14)
would have produced larger intervals.

11.4.1.2 Chance variables elimination from IUPs

Let us consider here how the second term of line 4 of Algorithm 2, i.e., the elim-
ination of a chance variable Y from the utility potentials, can be achieved with
IIDs. We first combine all the IUPs including Y in their arguments as in Defini-
tion 43. For the IPPs, we proceed as in the previous section by first combining
all the IPPs with Y on the right-hand side. The remaining combinations and the
division are performed simultaneously as described in the following definition.

Definition 48 (eliminating chance variables from IUPs) Let φ(XI |XJ , Y) be the
IPP obtained by combining all the IPP with Y on the right-hand side, φ(Y,XK |XL)

be the only IPP with Y on the left-hand side and ψ(Y,XM) the combination of all
the IUPs with Y in the argument. The elimination of a chance variable Y from the
combination of these potentials produces a new IPP ψ(XI ,XJ ,XK ,XL,XM).
For each xI∪J∪K∪L∪M ∈ ΩXI∪J∪K∪L∪M , an outer approximation of the lower
bound ψ(xI∪J∪K∪L∪M) is the solution of the task

minimize

∑
y∈ΩY

φ(xI |xJ , y) · φ(y,xK |xL) · ψ(y,xM)∑
y∈ΩY

φ(xI |xJ , y) · φ(y,xK |xL)
,

subject to φ(xI |xJ , y) ≤ φ(xI |xJ , y) ≤ φ(xI |xJ , y) ,

φ(y,xK |xL) ≤ φ(y,xK |xL) ≤ φ(y,xK |xL) ,

ψ(y,xM) ≤ ψ(y,xM) ≤ ψ(y,xM) .

Analogously, an approximation of the upper bound ψ(xI∪J∪K∪L∪M) can be cal-
culated by maximizing the previous objective function instead.

11.4. New evaluation algorithms for IIDs 219

The task has a linearly constrained cubic fractional objective function. When
calculating the lower bound, the minimization with respect to the optimization
variables associated to an IUP can be trivially achieved by setting ψ(y,xM) =

ψ(y,xM). Similarly, in case of computing the upper bound, ψ(y,xM) can be re-
placed with ψ(y,xM).

Unlike the task in Definition 47, the optimization with respect to the opti-
mization variables {φ(xI |xJ , y)} is not trivial as the variables appear both in the
numerator and in the denominator of the objective function. Nevertheless, we
can regard the product φ(y,xK |xL) · φ(xI |xJ , y) as a single optimization variable
subject to

φ(y,xK |xL) · φ(xI |xJ , y) ≤ φ(y,xK |xL) · φ(xI |xJ , y) ≤ φ(y,xK |xL)φ(xI |xJ , y) .

(11.15)

In this way the task becomes a linear-fractional program which can be re-
duced to a linear program using the classical Charnes-Cooper transformation [30].
This introduces an outer approximation, which can be partially mitigated by ad-
ditional reachability constraints as in the previous section. In this case the con-
straints are

1−
∑

{x′K ,x′I}6={xK ,xI},y
φ(y,x′K |xL) · φ(xI |,xJ , y) ≤

∑

y

φ(y,xK |xL) · φ(xI |xJ , y)

≤ 1−
∑

{x′K ,x′I}6={xK ,xI},y
φ(y,x′K |xL) · φ(x′I |xJ , y) .

(11.16)

As in the previous section, if XK = XI = ∅ the constraint becomes ineffective
and the problem becomes linear instead of linear-fractional.

220 Chapter 11. Evaluation with Interval-valued Potentials

Example 43 Consider the VE scheme applied to the oil wildcutter’s IID. To re-
move the chance variable O from the IUPs, we should consider the IPPs φ(O)

and φ(S|O, T) and the IUP ψ(O,D). A new IUP ψ(S, T,D) is obtained. The
upper bound ψ(e, t, d) requires the solution of the fractional task

maximize
−65 · φ(e) · φ(c|e, t) + 55 · φ(w) · φ(c|w, t) + 205 · φ(s) · φ(c|s, t)

φ(e) · φ(c|e, t) + φ(w) · φ(c|w, t) + φ(s) · φ(c|s, t) ,

subject to .475 · .095 ≤ φ(e) · φ(c|e, t) ≤ .525 · .145 ,

0.285 · 0.285 ≤ φ(w) · φ(c|w, t) ≤ 0.335 · 0.335 ,

0.190 · 0.475 ≤ φ(s) · φ(c|s, t) ≤ 0.240 · 0.525 ,

0.217 ≤ φ(e) · φ(c|e, t) + φ(w) · φ(c|w, t) + φ(s) · φ(c|s, t) ≤ 0.314 .

The maximum is 108.44 which is achieved when the first two variables takes their
minimum value and the third its maximum. By solving similar tasks for each joint
state in ΩS × ΩT × ΩD, we obtain the IUP

ψ(S, T,D) =

(t,d) (t,nd) (nt,d) (nt,nd)






[60.8, 108.44] [−5.0, 5.0] [3.96, 41.57] [−5.0, 5.0] c
[16.17, 53.0] [−5.0, 5.0] [3.96, 41.57] [−5.0, 5.0] o

[−40.58,−10.27] [−5.0, 5.0] [3.96, 41.57] [−5.0, 5.0] d

.

In this particular case, as 0.475 · 0.095 + 0.285 · 0.285 + 0.19 · 0.475 ' 0.217, not
including the additional constraints in Equation (11.16) does not make the result
less accurate.

11.4.1.3 Decision variables elimination

Here we discuss how to extend the operations in lines 6 and 7 of Algorithm 2 to
IIDs. The arg max operation is intrinsically related to the fact that a UP has sharp
values. To decide the optimal options when comparing intervals, we adopt a con-
servative approach, called interval dominance in the imprecise-probability jargon
[109], which rejects all the decisions leading to certainly sub-optimal strategies.
The procedure is described here below.

11.4. New evaluation algorithms for IIDs 221

Definition 49 (interval optimality) Let ψ be an IUP over Y ∪ XI . An element
y ∈ ΩY is interval-optimal given xI ∈ ΩXI

if there is no y′ ∈ ΩY \ {y} such that
ψ(y′,xI) > ψ(y,xI).

Let D be a decision variable to be eliminated from ψ(D,XI) during the VE
(if there are multiple potentials they are combined using Definition 43). To detect
the optimal policy δ̂D(XI) we compute the interval-optimal states ofD given each
xI ∈ ΩXI

. This corresponds to a so-called credal policy allowing for indecision
between two or more possible options. Finally the maximization of the IUP giving
as result a new IUP ψ(XI) is done as explained in Definition 46, i.e., by acting
separately on the two bounds. Note that the elimination of a decision does not
involve any computation over IPPs.

Example 44 In the oil wildcatter’s IID, the removal of the decisionD involves the
IUPψ(S, T,D) obtained in Example 43. The resulting IUP and the corresponding
optimal policy are

ψ(S, T) =

t nt






[60.8, 108.44] [3.96, 41.57] c
[16.17, 53.0] [3.96, 41.57] o

[−5.0, 5.0] [3.96, 41.58] d

, δ̂D(S, T) =

t nt






{d} {d, nd} c
{d} {d, nd} o
{nd} {d, nd} d

.

Note that for some configurations, the interval resulting from the maximization
corresponds with only one of the alternatives given as optimal.

11.4.2 A faster outer approximation

In this section we propose an alternative approach to the generalization of VE to
IIDs, which does not require any linear program to be solved. This corresponds
to a heuristic approach to the solution of those optimizations, that introduces an
additional outer approximation.

First, the chance variable elimination from IPPs is done like in the precise
case but using the operations for interval-valued potentials (Section 11.3). On
the other hand, for the chance variable elimination from IUPs, we propose the

222 Chapter 11. Evaluation with Interval-valued Potentials

following procedure: suppose that we aim to remove a variable Y from an IPP
φ(Y,XI |XJ) and an IUP ψ(Y,xK). The elimination of Y generates a new IUPs
ψ(XI∪J∪K) such that, for each xI∪J∪K ∈ ΩXI∪J∪K ,

ψ(xI∪J∪K) :=
∑

y∈ΩY

φ(y,xI |xJ)

φ(y,xI |xJ) +
∑

y′ 6=y φ(y′,xI |xJ)
· ψ(y,xK) (11.17)

ψ(xI∪J∪K) =
∑

y∈ΩY

φ(y,xI |xJ)

φ(y,xI |xJ) +
∑

y′ 6=y φ(y′,xI |xJ)
· ψ(y,xK) (11.18)

If there is more than an IPP with Y (either on the left or on right), all the IPPs
are combined using Definition 43. Compared to what is done by Definition 48,
the above considered potential provides an outer approximation based on the one-
sided potentials defined in Section 7.3. For the removal of a decision we proceed
as described in Section 11.4.1.3. An example of this heuristic approach is shown
here below.

Example 45 The removal of the chance variable O (from the IUPs) involves the
IPPs φ(O) and φ(S|O, T) and the IUP ψ(O,D). A new IUP ψ(S, T,D) is ob-
tained. E.g., according to Equation. (11.18), ψ(c, t, d) = 107.302, which corre-
sponds to

ψ(c, t, d) = 0.525·0.145·(−65)
0.525·0.145 + 0.285·0.285 + 0.19·0.475

+

+ 0.335·0.335·55
0.475·0.095 + 0.335·0.335 + 0.19·0.475

+

+ 0.24·0.525·205
0.475·0.095 + 0.285·0.285 + 0.24·0.525

= 107.302

By similarly proceeding for all the joint states in ΩS × ΩT × ΩD, we obtain the
IUP shown below. Note that the intervals in Example 43 are included in those of
the current IUP.

11.4. New evaluation algorithms for IIDs 223

ψ(S, T,D) =

(t,d) (t,nd) (nt,d) (nt,nd)






[64.124, 107.302] [−3.849, 6.3] [10.971, 38.662] [−4.1, 5.988] c
[21.95, 51.444] [−4.088, 6.003] [10.971, 38.662] [−4.1, 5.988] o

[−32.605,−15.972] [−4.358, 5.681] [10.971, 38.662] [−4.1, 5.988] d

11.4.3 Arc reversal in IIDs by linear programming

The AR scheme outlined in Algorithm 3 (page 80) evaluates IDs by perform-
ing three basic operations: elimination of chance (Transformation 1) and deci-
sion (Transformation 2) variables and arc reversal (Transformation 3). The first
operation is just a particular case of the chance variable elimination from IUPs
explained in Section 11.4.1.2. Yet, in AR, the removal of a chance variable Y
always involves an IPP φ(Y |XI) such that Y is the only variable on the left-hand
side and an IUP ψ(Y,XJ). Because of the normalization constraint,

∑
Y φ(Y |XJ)

is a constant potential always equal to one and the removal corresponds to a simple
linear program without fractional terms. Similarly, the second operation consists
in removing a decision variable D from an IUP, say ψ(D,XI), and deciding the
optimal policy δ̂Di . This is done exactly in the same way as for the VE algorithm
(see Section 11.4.1.3). Finally, to reverse arcs, we generalize Transformation 3 to
intervals as follows.

Transformation 4 (interval arc reversal) Assume that the chance nodes Y and
X of an IID are directly connected by an arc, but not by other directed paths. Let
φ(Y |XI) and φ(X|Y,XJ) be the relative PPs, which means that XI are the direct
predecessors of Y and XJ those of X others than Y . Change the orientation of
the arc and add arcs from XI towards X and from XJ towards Y . Then replace
the original IPPs with φ(X|XI ,XJ) and φ(Y |X,XI ,XJ), where the first IPP is
obtained by sum-marginalization and the second is such that φ(y|x,xI ,xJ) is the
minimum of

φ(y|xI) · φ(x|y,xJ)∑
y′∈ΩY

φ(y′|xI) · φ(x|y′,xJ)
, (11.19)

with respect to the interval constraints induced by the two original IPPs, for each
x ∈ ΩX , y ∈ ΩY , and xI∪J ∈ ΩXI∪J .

224 Chapter 11. Evaluation with Interval-valued Potentials

To solve the above optimization, we can use the same optimization strategy
considered by Zaffalon in his naive credal classifier [115]. Accordingly, we divide
the denominator by the numerator and rewrite Equation (11.19) as


1 +

∑

y′ 6=y

φ(y′|xI) · φ(x|y′,xJ)

φ(y|xI) · φ(x|y,xJ)



−1

. (11.20)

Then, as f(t) = [1 + t]−1 is a monotone decreasing function of t ∈ R, we
reduce the minimization of the objective function in Equation (11.19) or Equa-
tion (11.20), to the maximization of

∑

y′ 6=y

φ(y′|xI) · φ(x|y′,xJ)

φ(y|xI) · φ(x|y,xJ)
. (11.21)

As there are no constraints over the optimization variables {φ(x|y,xJ)}y∈ΩY

we perform the optimization with respect to these variable and obtain the objective
function

∑

y′ 6=y

φ(y′|xI) · φ(x|y′,xJ)

φ(y|xI) · φ(x|y,xJ)
, (11.22)

which is a linearly constrained linear-fractional objective function. The task can
be therefore reduced to a linear program.

Example 46 The reversal of the arc fromO to S involves the IPPs φ(S|O, T) and
φ(O). The resulting IPPs are φ(S|T) and φ(O|S, T). Computing the upper bound
φ(e|c, t) of the IPP attached to O corresponds to the following linear program

minimize
φ(w) · 0.285

φ(e) · 0.145
+
φ(s) · 0.475

φ(e) · 0.145
,

subject to 0.475 ≤ φ(e) ≤ 0.525 ,

0.285 ≤ φ(w) ≤ 0.335 ,

0.19 ≤ φ(s) ≤ 0.24 ,

φ(e) + φ(w) + φ(s) = 1 .

11.4. New evaluation algorithms for IIDs 225

The minimum value of the previous function is 2.2525, and hence

φ(e|c, t) =
1

1 + 2.2525
' 0.307 .

By solving similar linear programs for each bound and state of ΩO × ΩS × ΩT ,
we obtain the IPP

ψ(S, T,D) =

(e,t) (e,nt) (w,t) (w,nt) (s,t) (s,nt)






[.169, .307] [.439, .561] [.375, .494] [.439, .561] [.66, .766] [.439, .561] c
[.294, .453] [.256, .368] [.292, .41] [.256, .368] [.187, .28] [.256, .368] o
[.333, .499] [.168, .268] [.192, .298] [.168, .268] [.041, .09] [.168, .268] d

.

The upper bound φ(c|t) of the IPP attached to the final parent is the solution of
a linear program with the same constraints as in the previous optimization and
objective function to be maximized: φ(e) · 0.145 + φ(w) · 0.335 + φ(s) · 0.525.
This function is maximized for φ(e) = 0.475, φ(w) = 0.285 and φ(s) = 0.24.
Thus, φ(c|t) = 0.29. If similar programs are solved for each bound and state of
ΩS × ΩT , the following IPP is obtained

φ(S|T) =

c o d[]
[.221, .290] [.330, .385] [.375, .449] t
[.317, .367] [.317, .367] [.317, .367] nt

.

11.4.4 Complexity analysis

The asymptotic complexity of the algorithms proposed in this section for IIDs
evaluation is just the same as that of their IDs counterparts. Roughly speaking,
with intervals, we perform the double of the number of arithmetic operations re-
quired with sharp values. The time required to run the linear programs is poly-
nomial in the number of variables and constraints, which in turn depends on the
arity of the local potentials involved during the elimination.

226 Chapter 11. Evaluation with Interval-valued Potentials

11.5 Sensitivity analysis

The algorithms for IIDs evaluation developed in Section 11.2 can be used for prac-
tical sensitivity analysis in standard IDs. The sharp-valued potentials of an ID can
be replaced by interval-valued potentials whose extensions include the original
potentials (e.g., as the extensions of the interval-valued potentials in Example 31
contain the potentials in Example 11). These sets of potentials are intended to de-
scribe the possible effects of a perturbation of the sharp values of the parameters.
In particular, we want to parametrize the level of perturbation as described in the
following definition.

Definition 50 (nested perturbations) Given a potential ψ, no matter whether
PP or UP, a parametrized nested perturbation of ψ is denoted as ψ

ε
. For each

ε ≥ 0, ψ
ε

is an interval-valued potential. We require that: (i) ε ≤ ε′ ⇒ ψ
∗
ε
⊆ ψ

∗
ε′

;
and (ii) ψ

∗
ε=0

= ψ.

Let us describe some practical ways to implement nested perturbations as in
Definition 50. For UPs, we perform a rectangular perturbation symmetrical with
respect to the original sharp values. In other words, if ψ(XI) is a UP over the set
of variables XI , then ψ

ε
(XI) is an IPP such that, for each xI ∈ ΩXI

,

ψ
ε
(xI) := ψ(xI)− ε , (11.23)

ψε(xI) := ψ(xI) + ε . (11.24)

Rectangular perturbations cannot be applied to PPs, because of the normal-
ization and non-negativity constraints. We consider instead nested perturbations
in the form of ε-contaminations. Given an (unconditional) PP φ over XI , the
perturbed IPP φ

ε
is such that, for each xI ∈ ΩXI

,

φ
ε
(xI) := (1− ε) · φ(xI) , (11.25)

φε(xI) := (1− ε) · φ(xI) + ε . (11.26)

11.5. Sensitivity analysis 227

Such perturbation is only defined for 0 ≤ ε ≤ 1 and, for ε = 1 the exten-
sion of the PP coincide with the so-called vacuous set, including any possible PP
specification over XI . We can similarly perturb a conditional PP φ(XI |XJ), by
applying the above procedure for each xJ ∈ ΩXJ

.

Finally, let us introduce the notion of critical level of perturbation ε∗. We
define ε∗ as the maximum value of ε such that all the optimal policies of the cor-
responding IID (obtained according to Definition 49) return single decisions. The
value of ε∗ can be obtained with a bracketing over the parameter ε by running
the IID evaluation algorithms described in Section 11.2 for different perturbation
levels. Alternatively, we can also characterize the robustness of the model by
computing the failure level of perturbation ε∗∗, which is intended as the minimum
value of ε such that all the optimal policies of the corresponding IID are vacu-
ous, i.e., all the decisions are returned. The perturbation can be simultaneously
applied to all the potentials in the IID or restricted to a specific IPPs or IUPs. In
the latter case it is possible to determine which one of the potentials of an ID has
a higher impact on the MEU. This gives important information about the param-
eters deserving a more careful elicitation. A demonstrative example is reported
here below.

Example 47 (sensitivity analysis of the oil wildcatter’s problem) Consider the
ID in Example 11. To evaluate the corresponding IID obtained by perturbation
of this model the VE algorithm with linear programs is considered. We perturb
the PPs associated to S (Seismic) and to O (Oil), i.e. φ(S|O, T) and φ(O). Fig-
ure 11.2 depicts the size of the interval-valued MEU for increasing level of per-
turbation ε of these two potentials. The result is clear: perturbing φ(S|O, T) has
a stronger effect than perturbing φ(O). Accordingly, we might conclude that the
PP of S deserves a more careful quantification than that of O. Similar results are
obtained by computing the critical perturbation levels (ε∗ = 0.0082 for S and
ε∗ = 0.0089 for O) and the failure perturbation levels (ε∗∗ = 0.3749 for S and
ε∗∗ = 0.7499 for O). Similar values and conclusions are obtained with the AR
algorithm.

228 Chapter 11. Evaluation with Interval-valued Potentials

Figure 11.2: Size of the interval-valued MEU as a function of the perturbation
level

11.6. Experimental work 229

11.6 Experimental work

For an empirical validation of the VE and AR algorithms extended for IIDs pro-
posed in Section 11.2, we consider a benchmark of nine IDs modelling real deci-
sion tasks. Table 11.1 details the number of nodes of each type for these models.
These IDs are transformed in IIDs by a perturbation of the original parameters
(i.e., potentials) based on the procedure described in Section 11.5. Besides the
three algorithms proposed in Section 11.2, we also consider the generalization of
the AR to IIDs as proposed by Fertig and Breese [51]. We denote as VElp our VE
scheme based on linear programming, as VEouter the faster version proposed in
Section 11.4.2, as ARlp our AR scheme (Section 11.4.3), and as ARfb the algo-
rithm of Fertig and Breese.

Name of the ID |UC | |UD| |UV |
Appendicitis 4 1 1

Chest Clinic 8 2 2

Comp. Assym. 3 5 1

Jaundice 21 2 1

NHL 17 3 1

Oil 2 2 2

Oil Split Costs 2 2 3

Thinkbox 5 2 4

Threat of Entry 3 9 1

Table 11.1: Number of chance, decision and utility nodes for the benchmark IIDs.
More details about the corresponding precise models are given in Appendix B.2.

Figure 11.3 shows the running times and the relative durations when compared
with those of the precise counterparts (VE or AR for IDs). As expected, the two
simplest approaches (ARfb and VEouter) roughly take the double of the time re-
quired by the precise evaluations (both upper and lower bounds are computed).
Methods using linear programs (ARlp and VElp) are slower due to the time re-
quired by the linear solver. In particular, the evaluation might be demanding if
there are chance variables with many states, this being the case of NHL (which
has a chance variable with twelve states). If we compare the interval versions of
AR against VE, we see that the differences are typically small for small ID/IIDs,

230 Chapter 11. Evaluation with Interval-valued Potentials

while with large models such as NHL or Jaundice AR might be very slow. In
fact the reversal of an arc might introduce very large potentials, this being a very
well-known issue even with standard IDs.

Figure 11.3: Absolute (y-axis) and relative (numbers over the bars) running times
for the IIDs in Table 11.1.

We also analyse the size of the interval-valued MEU as a function of the size
of the intervals in the initial potentials (parametrized by the perturbation level ε).
The results obtained with precise utilities are depicted in Figure 11.4. As ex-
pected, the results based on the linear programming (ARlp and VElp) are the most
informative ones for all the IIDs. ARfb is much less accurate with Comp. Assym.
and Threat of Entry. This might be due to the high number of decisions: a weak-
ness of ARfb is that the maximization of an IUP is done by taking the highest

11.6. Experimental work 231

upper bounds and the lowest upper bounds (instead of the highest lower bounds).
VEouter is also generally inaccurate and should be regarded as the algorithm of
choice only if very severe constraints are posed on the running time.

Figure 11.4: Size of interval-valued MEU as a function of the perturbation level ε
of the IPPs.

Similar results, with a sharp specification of the IPPs and intervals only in the
IUPs are reported in Figure 11.5. The two VE methods, which differs only in the
treatment of the IPPs, produce the same results. In general, when only utilities
are imprecise, ARlp offers the best results. Finally, by comparing the y-scales in
Figures 11.4 and 11.5, it can be observed that the imprecision in the IPPs seems
to have a stronger effect than that in the IUPs on the size of the interval MEU.

232 Chapter 11. Evaluation with Interval-valued Potentials

Figure 11.5: Size of interval-valued MEU as a function of the perturbation level ε
of the IUPs.

11.7 Conclusions

We have extended the ID formalism to support an interval-valued specification of
the potentials. The corresponding models, called IIDs, have a direct sensitivity-
analysis interpretation: an IID is equivalent to a collection of precise IDs whose
potentials are consistent with the constraints induced by the intervals. Conse-
quently, the set-valued (so-called credal) optimal policies of an IID include the

11.7. Conclusions 233

single-valued optimal policies of the consistent IDs, as well as the interval-valued
MEU of an IID contains all the MEU of the consistent IDs. Moreover, we
extended to IIDs the classical variable elimination and arc reversal evaluation
schemes for IDs. These two extensions are achieved by local optimization tasks,
reduced to linear programs. For VE, a faster but less accurate procedure, that does
not require linear programming, is also proposed. The latter approach introduces
an additional outer approximation similar to that characterizing the generalization
of the AR algorithm proposed by Fertig and Breese [51, 50]. All these algorithms
have the same asymptotic complexities of their classical, sharp-valued, counter-
parts. The empirical analysis showed that the approximations we introduce to
keep the same complexity as with IDs did not compromise the informativeness of
the inferences. In particular, the new methods based on linear programming are
clearly more accurate than the algorithm of Fertig and Breese. Finally, we also
proposed a possible application of IIDs to practical sensitivity analysis in precise
IDs. Computing the maximal level of perturbation, no matter whether local or
global, might allow to decide which are the potential/variables deserving a more
careful elicitation process.

As a future work we intend to extend this formalism to more general imprecise
frameworks, e.g., credal sets represented by extreme points or generic linear con-
straints. This should affect to the computational complexity of the evaluation pro-
cess, thus making necessary the development of specific approximate algorithms.
We also intend to extensively test the procedure we proposed for sensitivity anal-
ysis in practical IDs and compare it against the methods proposed so far with the
same goal. Additionally, we could also consider using BTs for representing im-
precise potentials. In doing so, we will be able to prune the BTs in order to obtain
approximate solutions.

234 Chapter 11. Evaluation with Interval-valued Potentials

Chapter 12

Efficient Evaluation with Tables

12.1 Introduction

In Chapters 8 and 10, we showed how the potentials in an ID can be represented
as BTs in order to improve the efficiency of the evaluation. In the present chap-
ter, by contrast, we explore different alternatives for optimizing the evaluation
assuming that the potentials of the ID are represented as tables. We base on
the following idea: the evaluation algorithms reviewed in Section 4.5 (i.e. VE,
AR and LE) require performing several combinations and marginalizations on the
potentials attached to the ID. Finding an optimal order for these operations is a
NP-hard problem [5] and it is an element of crucial importance for the efficiency
of the evaluation. The evaluation of an ID can be considered as a combinatorial
optimization problem, that is the problem of finding an optimal order in which
combinations and marginalizations are performed. This idea was already used
to make inference in BNs with the first version of the Symbolic Probabilistic In-
ference algorithm (SPI) [104] and with an improved algorithm in the SPI family
called set-factoring [74]. In a related work [39] some experiments with SPI were
performed to evaluate decision networks, however no details of the algorithm were
provided.

In this dissertation, different approaches for optimizing the order of the oper-
ations involved in the evaluation of IDs are considered. First, we adapt the SPI

235

236 Chapter 12. Efficient Evaluation with Tables

algorithm for evaluating IDs taking into account the differences of an ID compared
to a BN: two kinds of potentials, the temporal order of decisions, etc. Secondly, an
optimization of the VE algorithm based on [106] is also proposed. This optimiza-
tion consists of using a greedy algorithm for minimizing the cost of the combina-
tion of all the potentials involved in the removal of a variable. This optimization
can be seen as an extension of the binary join trees of P.P. Shenoy [106] to IDs.
Both algorithms are described for the direct evaluation of IDs (without using any
auxiliary structure) and for the computation of clique-to-clique messages in Lazy
Evaluation (LE) of IDs. In the experimental work, we analyse the behaviour of
all these algorithms using a set of IDs from the literature. It is demonstrated that
the proposed algorithms can improve the efficiency of the evaluation. Moreover,
SPI outperforms VE in many instances. We also propose a pre-analysis algorithm
based on the number of arithmetic operations that could help to predict which of
the algorithms is the most appropriate one for evaluating each ID.

This chapter is organized as follows: in Section 12.2 the motivation of this
work is explained; the SPI algorithm for the direct evaluation of IDs is explained
in Section 12.3 while the use of this algorithm for computing clique-to-clique
messages in LE is described in Section 12.5; the description of the optimization
of VE is given in Section 12.6; Section 12.7 includes the experimental work and
results. Finally, Section 12.8 details our conclusions and lines for future work.

12.2 Motivation

In order to explain the motivation, let us consider the ID shown in Figure 12.1. The
optimal policy for D1 can be calculated directly from Equation (4.24) as stated in
Equation (12.1).

δ̂D1(A) =

arg max
D1

∑

G,F,E,C,B

φ(G)φ(F)φ(E)φ(C)φ(B|C,E, F,G)φ(A|B) (ψ1(G,F,D1) + ψ2(E,C,D1))

(12.1)

12.2. Motivation 237

AB

C

E

F

G

D1

U1

U2

Figure 12.1: An example of an ID whose partial order is the following: {A} ≺
D1 ≺ {B,C,E, F,G}.

The table representing the joint probability of all the chance variables might
be too large. For that reason, some evaluation algorithms such as VE for IDs iter-
atively removes variables following a strong elimination order (see Section 4.5.1).
The advantage of VE is that the removal of a variable Xi only involves computa-
tions with those potentials withXi in their domain. Assuming that all the variables
are binary, the optimal order for removing variables in I1 is G,F,E,C,B and the
computations done are:

1. Removal of G (96 multiplications, 48 additions, 32 divisions):
∑

G φ(G) · φ(B|C,E, F,G) =
∑

G φ(G,B|C,E, F) = φ(B|C,E, F)

∑
G φ(G,B|C,E,F)·ψ1(G,F,D1)

φ(B|C,E,F)
= ψ(D1, F, B, C,E)

2. Removal of F (48 multiplications, 24 additions, 16 divisions):
∑

F φ(F) · φ(B|C,E, F) =
∑

G φ(F,B|C,E) = φ(B|C,E)

∑
F φ(F,B|C,E)·ψ(D1,F,B,C,E)

φ(F,B|C,E)
= ψ(D1, B, C,E)

3. Removal of E (24 multiplications, 28 additions, 8 divisions):
∑

E φ(E) · φ(B|C,E) =
∑

E φ(E,B|C) = φ(B|C)

∑
E φ(E,B|C)·(ψ(D1,B,C,E)+ψ2(E,C,D1))

φ(B|C)
= ψ(D1, B, C)

238 Chapter 12. Efficient Evaluation with Tables

4. Removal of C (12 multiplications, 15 additions, 4 divisions):
∑

C φ(C) · φ(B|C) =
∑

C φ(B,C) = φ(B)

∑
C φ(B,C)·ψ(D1,B,C)

φ(C)
= ψ(D1, B)

5. Removal of B (12 multiplications, 15 additions, 4 divisions):
∑

B φ(B) · φ(A|B) =
∑

B φ(A,B) = φ(A)

∑
B φ(A,B)ψ(D1,B)

φ(A)
= ψ(D1, A)

We can see that the removal of the variables in I1 using VE requires 366
arithmetic operations (192 multiplications, 110 additions and 64 divisions). Inde-
pendently of the elimination order used to solve this ID, VE will always have to
combine the marginal potentials with a large potential. However, with a re-order
of the operations, this situation can be avoided:

1. Removal of F,G (112 multiplications, 40 additions, 16 divisions):
∑

F,G φ(B|C,E, F,G) · (φ(F) · φ(G)) =
∑

F,G φ(B,F,G|C,E) = φ(B|C,E)

∑
F,G φ(B,F,G|C,E)·ψ1(G,F,D1)

φ(B|C,E)
= ψ(B,C,E,D1)

2. Removal of B,C,E (68 multiplications, 42 additions, 4 divisions):
∑

B,C,E (φ(A|B) · (φ(E) · φ(C))) · φ(B|C,E) =
∑

B,C,E φ(A,E,C,B) = φ(A)

∑
B,C,E φ(A,E,C,B)(ψ(B,C,E,D1)+ψ2(E,C,D1))

φ(A)
= ψ(D1, A)

Now the removal of I1 requires 282 arithmetic operations (180 multiplica-
tions, 82 additions and 20 divisions). From this example we can deduce that
sometimes it could be better to combine small potentials even if they do not share
any variable (e.g., φ(E) and φ(C)). This combination will never be performed
using VE since it is guided by the elimination order. Thus, the efficiency of the
evaluation can be improved if an optimization of the order of both operations,
marginalization and combination, is performed simultaneously[74].

12.2. Motivation 239

12.2.1 Definition of the problem

Evaluating an ID can be seen as an optimization problem in which we try to
find an order that minimizes the cost of the operations involved in the evalua-
tion. Moreover, due to temporal restrictions, the problem can be divided into two
sub-problems. The first one consists of finding the optimal order of the operations
involved in the removal of a set of chance variables from a set of PPs and UPs.
Similarly, the second sub-problem consists of finding the optimal order of all the
operations involved in the removal of a decision from a set of UPs.

For the first problem, assume that we shall remove the set of chance variables
X from the sets of PPs and UPs ΦX and ΨX (potentials with any variable of X in
the domain). That is, we shall calculate Equation (12.2).

∑

X

∏

φX∈ΦX

φX

(∑

ψX∈ΨX

ψX

)
=
∑

X

∏

φX∈ΦX

φX

∑
X

(∏
φX∈ΦX

φX

(∑
ψX∈ΨX

ψX

))

∑
X

(∏
φX∈ΦX

φX

)

(12.2)

Previous expression is a factorization of potentials, thus we should calculate
the set of potentials Φ′X and Ψ′X such that:

∏

φ′∈Φ′X

φ′ =
∑

X

∏

φX∈ΦX

φX

∑

ψ′∈Ψ′X

ψ′ =

∑
X

(∏
φX∈ΦX

φX

(∑
ψX∈ΨX

ψX

))

∑
X

(∏
φX∈ΦX

φX

)

(12.3)

To compute previous expression we should find an optimal order for the oper-
ations of sum-marginalization, multiplication, addition and division. Let Y ∈ X

be a chance variable, let ΦY and ΨY be the set of PPs and UPs containing Y in
the domain, Φ∗ = ΦX\ΦY and Ψ∗ = ΨX\ΨY . Applying the distributive law, the
removal of Y can be performed using Equation (12.4).

240 Chapter 12. Efficient Evaluation with Tables

∑

X\Y


 ∏

φ∗∈Φ∗

φ∗
(∑

Y

∏

φY ∈ΦY

φY

)
 ∑

ψ∗∈Ψ∗

ψ∗ +

∑
Y

(∏
φY ∈ΦY

φY

(∑
ψY ∈ΨY

ψY

))

∑
Y

(∏
φY ∈ΦY

φY

)






(12.4)

From Equation (12.4) we get that a variable Y can only be removed if the
product of all the potentials in ΦY has been calculated. Moreover, the removal
must be performed at the same time from the UPs and PPs.

For the second sub-problem, assume that we aim to remove a decision variable
D from the set of UPs ΨD (potentials with D in the domain). Then we should
calculate Equation (12.5). In this case, the decision variable is removed using
max-marginalization.

ψ′D = max
D

∑

ψD∈ΨD

ψD (12.5)

Note that, when removing a decision, usually there are not PPs containing it
and if any, the decision is not affecting the values of such PP since any decision is
d-separated from its predecessors (see Proposition 5 in page 71) and any successor
has already been removed.

In both sub-problems, we try to find the optimal order for all the operations
involved. This optimization will reduce the size of intermediate potentials and
therefore the evaluation should be more efficient.

12.3 Symbolic probabilistic inference for IDs

12.3.1 Overview

The Symbolic Probabilistic Inference algorithm (SPI) was already used for mak-
ing inference in BNs [104, 74]. This is also a greedy algorithm that considers the
removal of a set of variables as a combinatorial factorization problem. That is, SPI
tries to find the optimal order for the combinations and marginalizations by choos-
ing at each step the best operation. Herein we describe how the SPI algorithm

12.3. Symbolic probabilistic inference for IDs 241

can be used for directly evaluating IDs. The correctness and complexity analysis
is shown in Section 12.4. For evaluating IDs, as VE does, SPI removes all the
variables in reverse order of the partial ordering imposed by the information con-
straints (called a strong elimination order [68]). That is, it first sum-marginalizes
In, then max-marginalizes Dn, sum-marginalizes Ik−1, etc. The general scheme
of the SPI algorithm as presented in this dissertation is shown in Algorithm 20.

Algorithm 20 SPI-algorithm
input : Φ,Ψ (sets of potentials in the ID), {I0, D1, I1, . . . , Dn, In} (partitions of
nodes in the ID)

1: for k ← n to 0 do
2: (ΦX,ΨX)← ({φ ∈ Φ|dom(φ) ∩ Ik 6= ∅}, {ψ ∈ Ψ|dom(ψ) ∩ Ik 6= ∅})
3: (Φ,Ψ)← (Φ\ΦX, Ψ\ΨX)

4: (Φ′X, Ψ′X)← RemoveChanceSet(Ik,ΦX,ΨX) . Algorithm 24
5: (Φ,Ψ)← (Φ ∪ Φ′X, Ψ ∪Ψ′X)

6: if k > 0 then
7: (ΦD,ΨD)← ({φ ∈ Φ|Dk ∈ dom(φ)}, {ψ ∈ Ψ|Dk ∈ dom(ψ)})
8: (Φ,Ψ)← (Φ\ΦD, Ψ\ΨD)

9: (Φ′D, ψ
′
D)← RemoveDecision(Dk,ΦD,ΨD) . Algorithm 26

10: (Φ,Ψ)← (Φ ∪ Φ′D, Ψ ∪ {ψ′D})
11: end if
12: end for

SPI and VE algorithms differ in the way they solve these problems: VE
chooses at each step a variable to remove while SPI chooses a pair of potentials
to combine and eliminate variables when possible. In this sense SPI is more fine-
grained than VE. The latter only considers the next variable to eliminate, and not
the order in which potentials are combined.

12.3.2 Combination candidate set

The SPI algorithm uses a data structure for storing the candidate pairs of poten-
tials to combine in the next iteration. Herein we introduce this data structure and
detail the related algorithms used in posterior sections.

242 Chapter 12. Efficient Evaluation with Tables

Given a set of potentials ΦX, we define the combination candidate set B as
the set of all possible pairs of potentials in ΦX. That is B := {{φi, φj}|φi, φj ∈
ΦX, φi 6= φj}. Algorithm 21 takes two input arguments: a set of potentials ΦX

and an existing combination candidate set B. If B is empty, this algorithm re-
turns a set B with all pairwise combinations of elements of ΦX. Otherwise, the
algorithm updates B by adding any missing pair with elements from ΦX (without
removing those pairs already in B). Notice that, if potentials are represented as
tables, {φi, φj} is equivalent to {φj, φi}. Thus, the pair {φj, φi} is not added to B
if {φi, φj} is already present (line 4). For example, given a set of potentials ΦX =

{φ1, φ2, φ3}, the combination candidate set is {{φ1, φ2}, {φ1, φ3}, {φ2, φ3}}.

Algorithm 21 addPairwiseCombinations
input : ΦX = {φ1, φ2, . . . φm} (set of m potentials), B (existing combination
candidate set)
output : B (updated combination candidate set)

1: for i← 1 to m− 1 do
2: for j ← i+ 1 to m do
3: p← {φi, φj}
4: if p /∈ B then
5: B ← B ∪ {p}
6: end if
7: end for
8: end for
9: return B

A pair is a set of two potentials, thus any operation with sets can be used
with pairs. For example, given the pairs p = {φ1, φ2}, p′ = {φ1, φ3} and p′′ =

{φ3, φ4}, the intersection p ∩ p′ is {φ1} while the intersection p ∩ p′′ is ∅. Thus,
given a combination candidate set B and a pair p ∈ B, the removal of any
pair p′ ∈ B containing at least one potential in common with p is denoted as
{p′ ∈ B|p′ ∩ p = ∅}. Similarly, the removal of both potentials in p from a poten-
tial set ΦX is denoted as ΦX\p.

12.3. Symbolic probabilistic inference for IDs 243

Once the pairwise combination candidate set is built, a pair of potentials should
be selected to combine. Algorithm 22 shows the procedure for selecting a pair
from B minimizing any score or heuristic. Some examples of these heuristics are
later explained in Section 12.3.5.

Algorithm 22 selectBest
input : B = {p1, . . . , pl} (combination candidate set with l pairs)
output : bestPair (the best pair in B minimizing any score)

1: minScore← +∞
2: for i← 1 to l do
3: s← score(pi)

4: if s < minScore then
5: bestPair ← pi

6: minScore← s

7: end if
8: end for
9: return bestPair

In the original proposal of SPI algorithm for BNs, the combination candidate
set B does not contain singletons. That is B is composed only of pairs of poten-
tials. In our approach, the set B can also contain singleton potentials containing
any variable that can be directly removed. That is a variable which is only present
in one potential. With this improvement, the algorithm is not forced to combine at
least two potentials in order to remove the first variable. On the other hand, these
variables are not directly removed because it cannot be assured that the cost of
this removal is lower that the cost of selecting a pair of potentials.

For example, let X = {A,B,C}, be a set of chance variables that we want to
remove from the set of probability potentials ΦX = {φ(A|B), φ(B|C,E), φ(C)},
then the candidate combination set generated is:

244 Chapter 12. Efficient Evaluation with Tables

B =

{
{φ(A|B), φ(B|C,E)}, {φ(A|B), φ(C)}, {φ(B|C,E), φ(C)}, {φ(A|B)}

}

Previous set B contains the singleton {φ(A|B)} because variable A only be-
longs to the domain of this potential and thereby it can be sum-marginalized with-
out the need of performing first a combination. Although variable E only belongs
to φ(B|C,E), this potential is not added as a singleton because E is not contained
in the set X of variables we aim to remove. The procedure for adding the sin-
gletons to an existing combination candidate set B, given a set of variables X to
remove from ΦX is shown in Algorithm 23.

Algorithm 23 addSingletons
input : ΦX = {φ1, φ2, . . . φ|Φ|} (set of potentials), X (set of variables to remove),
B (existing combination candidate set)
output : B (updated combination candidate set)

1: for i← 1 to |ΦX| do
2: if ∃Y ∈ dom(φi) ∩X|∀φ ∈ ΦX\{φi} : X 6∈ dom(φ) then
3: B ← B ∪ {{φi}} . {φi} is a singleton
4: end if
5: end for
6: return B

12.3.3 Removal of chance variables

In order to remove a subset of chance variables X from ΦX and ΨX, SPI consid-
ers PPs and UPs separately: first, SPI tries to find the best order for combining all
potentials in ΦX as shown in Algorithm 24. For that purpose, all possible pair-
wise combinations between the PPs are stored in the combination candidate set B
(line 3). Besides, B also contains those PPs or singletons (line 4) that contain any
variable of X which is not present in any other potential of ΦX.

12.3. Symbolic probabilistic inference for IDs 245

Algorithm 24 RemoveChanceSet
input : X (subset of chance variables), ΦX (set of PPs relevant for removing X),
ΨX (set of UPs relevant for removing X)
output : Sets of potentials Φ′X and Ψ′X resulting from removing X (Eq. (12.3)))

1: B ← ∅ . Empty combination candidate set
2: repeat
3: B ← addPairwiseCombinations(ΦX, B)

4: B ← addSingletons(ΦX,X, B)

5: p← selectBest(B)

6: if p is a pair then
7: φij ← φi · φj . p is a pair {φi, φj}
8: else
9: φij ← φi . p is a singleton {φi}

10: end if
11: W← {W ∈ dom(φij) ∩X|∀φ ∈ ΦX\p : W 6∈ dom(φ)}
12: ΨW ← {ψ ∈ ΨX|W ∩ dom(ψ) 6= ∅}
13: if W 6= ∅ then
14: (φ′ij,Ψ

′
W)← Sum-marginalize(W, φij,ΨW)

15: else
16: (φ′ij,Ψ

′
W)← (φij,ΨW)

17: end if
18: B ← {p′ ∈ B|p′ ∩ p = ∅} . Update
19: X← X\W
20: ΦX ← (ΦX\p) ∪ {φ′ij}
21: ΨX ← (ΨX\ΨW) ∪Ψ′W
22: until X = ∅
23: (Φ′X,Ψ

′
X)← (ΦX,ΨX)

24: return (ΦX,ΨX)

At each iteration, an element of B is selected (line 5). If it is a pair (line 7),
both potentials are combined. The procedure stops when all variables in X have
been removed. A variable can be removed at the moment it only appears in a sin-
gle PP. Thus, after each combination it is computed the set of variables W ⊆ X

satisfying such condition (line 11) and the set of UPs ΨW containing any variable

246 Chapter 12. Efficient Evaluation with Tables

in W (line 12). If there is any variable that can be removed, a similar procedure is
performed for combining utilities and sum-marginalizing the variables in W (line
14). At the end of each iteration sets B,X,ΦX and ΨX are updated. Notice that
this algorithm produces a factorization of potentials as stated in Equation (12.3).

Example 48 To illustrate Algorithm 24, let us suppose we aim to remove the set of
variables X = {A,C} from the sets of potentials ΦX = {φ(A), φ(C), φ(B|A,C)}
and ΨX = {ψ(A), ψ(A,B,C)}. Initially, the combination candidate set B is
{{φ(A), φ(C)}, {φ(A), φ(B|A,C)}, {φ(C), φ(B|A,C)}}. Suppose that our heuris-
tic chooses the pair {{φ(A), φ(C)} in line 5, then we combine both potentials
obtaining φ(A,C) as a result in line 7. Notice that these two potentials are never
combined by the VE algorithm since they do not share any variable. The set of
removable variables W is equal to ∅ and the sum-marginalize algorithm is not
invoked in line 14. At the end of this iteration, set B is now empty and ΦX is
{φ(A,C), φ(B|A,C)}. The sets X and ΨX have not changed. In the second it-
eration the single pair in B = {{φ(A,C), φ(B|A,C)}} are combined, obtaining
φ(A,B,C) as a result. Now W is equal to {A,C} and the sum-marginalization
algorithm is invoked in line 14.

In Algorithm 24 only PPs are combined while UPs are not. The UPs must
be combined with φij which is the resulting potential of combining all potentials
containing X . Thus, in order to avoid additional computations, the utilities are
only combined when a variable can be removed. That is the moment when φij
has been calculated. The procedure for sum-marginalizing a set of variables (Al-
gorithm 25) involves finding a good order for summing the UPs. The procedure
for that is quite similar to the one for combining probabilities, the main difference
is that at the moment a variable can be removed, the PPs and UPs resulting from
the marginalization are computed (line 16). Notice that this procedure is invoked
on ΨW ⊆ ΨX.

12.3. Symbolic probabilistic inference for IDs 247

Algorithm 25 Sum-marginalize
input : W (subset of chance variables), φ (probability potential relevant for
removing W), ΨW (set of utility potentials relevant for removing W)
output : Potential φ′ and set of potential Ψ′W resulting from removing W

1: B′ ← ∅ . Empty combination candidate set
2: if ΨW = ∅ then
3: return (

∑
W φ, ∅)

4: end if
5: repeat
6: B′ ← addPairwiseCombinations(ΨW, B′)

7: B′ ← addSingletons(ΨW,W, B′)

8: q ← selectBest(B′)

9: if q is a pair then
10: ψij ← ψi + ψj . q is a pair {ψi, ψj}
11: else
12: ψij ← ψi . q is a singleton {ψi}
13: end if
14: V← {V ∈ dom(ψij) ∩W|∀ψ ∈ ΨW\q : V 6∈ dom(ψ)}
15: if V 6= ∅ then
16: (φ′V, ψ

′
V)← (

∑
V φ,

∑
V(φ⊗ψij)
φ′V

)

17: else
18: (φ′V, ψ

′
V)← (φ, ψij)

19: end if
20: B′ ← {q′ ∈ B′|q′ ∩ q = ∅} . Update
21: W←W\V
22: φ = φ′V
23: ΨW ← (ΨW\q) ∪ {ψ′V}
24: until W = ∅
25: (φ′, Ψ′W)← (φ, ΨW)

26: return (φ, ΨW)

Example 49 Suppose Algorithm 25 is invoked to remove W = {A,C}
from φ = φ(A,B,C) and ΨW = {ψ(A), ψ(A,B,C)}. Initially, B’ is equal

248 Chapter 12. Efficient Evaluation with Tables

to {{ψ(A), ψ(A,B,C)}, {ψ(A,B,C)}}. Notice that now the combination can-
didate set contains the singleton ψ(A,B,C) because variableC is in only one po-
tential. Suppose that in the first iteration we select this singleton, then V is equal
to {C}. Thus in line 16 variable C is sum-marginalize out obtaining as a result
the potentials φ(A,B) and ψ(A,B). Now the sets are updated as W = {A} and
ΨW = {ψ(A), ψ(A,B)}. In the second iteration, B′ is {ψ(A), ψ(A,B)} so the
UPs in the single pair are added and the sum-marginalization of A is performed.
Finally the output of the algorithm is the PP φ(B) and set of UPs {ψ(B)}.

12.3.4 Removal of a decision

The removal of a decision variable D from a set of PPs ΦD and from a set of UPs
ΨD is shown in Algorithm 26. This procedure does not imply the combination of
any PP since any decision is d-separated from its predecessors (see Proposition 5,
page 71) and any successor has already been removed (the removal order of the
disjoint subsets of variables must respect the temporal constraints). Thus, any PP
φ(Dk,X) must be directly transformed into φ(X) if Dk is a decision and X is a
set of chance variables that belong to Ii with i < k. In practice, this means that
each PP φ ∈ ΦD is restricted to any of the values d ∈ ΩD (line 3). This restriction
is denoted as φR(D=d).

Algorithm 26 RemoveDecision
input : D (decision variable), ΦD (set of PPs relevant for removing D), ΨD (set
of UPs relevant for removing D)
output : Φ′D (set of PPs resulting from removing D), ψ′D (UP resulting from
removing D)

1: Φ′D ← ∅
2: for each φ ∈ ΦD do
3: Φ′D ← Φ′D ∪ {φR(D=d)}
4: end for
5: ψ′D ← max-marginalize(D,ΨD)

6: return (Φ′D, ψ
′
D)

12.3. Symbolic probabilistic inference for IDs 249

Algorithm 27 shows the procedure for finding the best order for summing all
UPs containing a decision D. Notice that the pairwise candidate set does not
contain singletons and the sum-marginalization is performed once all UPs have
been summed.

Algorithm 27 max-marginalize
input : D (decision variable), ΨD (set of UPs relevant for removing D)
output : ψ′D (UPs resulting from removing D)

1: B′ ← ∅
2: while |ΨD| > 1 do
3: B ← addPairwiseCombinations(ΨD, B

′)

4: q ← selectBest(B′)

5: ψij ← ψi + ψj

6: B′ ← {q′ ∈ B′|q′ ∩ q = ∅} . Update
7: ΨD ← (ΨD\q) ∪ {ψij}
8: end while
9: Let ψD be the single potential in ΨD

10: ψ′D ← maxD ψ
D

11: δ̂D ← arg maxD ψ
D

12: return ψ′D

Example 50 In order to illustrate Algorithms 26 and 27, let us consider that we
aim to remove decision D with ΩD = {d0, d1, d2} from ΦD = {φ(A|D)} and
ΨD = {ψ(A,D), ψ(D,B,A), ψ(D)}. In lines 2 and 3 of Algorithm 26, deci-
sion is removed from the PPs. That is, Φ′D = {φ(A|D)R(D=d0)} = {φ(A)}.
Then,max-marginalize(D,ΨD) is invoked. The combination candidate setB′ is
{{ψ(A,D), ψ(D,B,A)}, {ψ(A,D), ψ(D)}, {ψ(D,B,A), ψ(D)}}. Suppose that
the pair {ψ(A,D), ψ(D)} is selected, then both UPs are added giving as a result
a new UP ψ(A,D). In the second iteration B′ is {{ψ(A,D), ψ(D,B,A)}} so the
addition ψ(D,B,A) = ψ(A,D) + ψ(D,B,A) is done. Finally, in lines 9 and 10
D is max-marginalized out and its optimal policy is recorded.

250 Chapter 12. Efficient Evaluation with Tables

12.3.5 Combination heuristics

During the removal of a set of chance variables, at each iteration a pair of PPs is
selected to be combined (Algorithm 24, line 5). Since computing the cost of future
combinations and marginalizations could be extremely expensive, the decision
must be taken using a heuristic. Some heuristics used with VE for selecting the
next variable to remove can be adapted for choosing a pair in the SPI algorithm.
Let p = {φi, φj} be a candidate pair to be combined, let φij = φi · φj be the
resulting potential of the combination. Then, the heuristics minimum size [99],
and minimum weight [68] are defined as:

min size(p) = |dom(φi) ∪ dom(φj)| = |dom(φij)| (12.6)

min weight(p) =
∏

X∈dom(φij)

|ΩX | (12.7)

The previous heuristics choose the next pair to combine using only informa-
tion from the PPs involved. However, they do not consider if the pair chosen will
imply a costly combination with the utilities. As explained in Section 12.3.3, util-
ities are only combined at the moment a variable can be removed. Let W be the
set of variables that can be removed after combining potentials in the pair p, let
ΨW be the set of UPs containing any variable in W and let ψ =

∑
ψk∈ΨW

ψk.
Then the heuristic minimum utility can be defined as follows:

min utility(p) =
∏

X∈dom(φij)

|ΩX | ·
∏

Y ∈dom(ψ)\dom(φij)

|ΩY | (12.8)

Any of the heuristics previously mentioned can also be used for selecting a
pair of utility potentials at steps 7 and 4 of Algorithms 25 and 27 respectively.
These heuristics will be considered in the experimental analysis.

12.3.6 Probabilistic Barren

A variable is probabilistic barren if it is barren when only the set of probability
potentials of the ID is considered. In other words, such variable only belongs to

12.3. Symbolic probabilistic inference for IDs 251

one PP and, at least to one UP. Let Y be probabilistic barren and let φ(Y |XI) be
a PP, then:

∑

Y

φ(Y |XI) = 1XI

where 1XI
is a unity potential, that is a potential defined on XI assigning the value

1 to each configuration of ΩXI
. When a probabilistic barren variable is removed,

the sum-marginalization and division can be avoided (Algorithm 25, line 16). By
contrast, the sum-marginalization from the UPs cannot be avoided. Unlike barren
nodes (see Section 4.4.2), probabilistic barren variables cannot be removed during
the minimalization phase as they have impact on the decisions. In conclusion, the
efficiency of the computation can be improved if singletons are allowed and a
detection a priori of probabilistic barren variables is performed. This point is
empirically demonstrated in the experimental Section 12.7.

12.3.7 Example

Let us consider the ID in Figure 12.1 in order to illustrate the behaviour of the SPI
algorithm as described in this dissertation. For sake of simplicity, φ(X1, . . . , Xn)

will be denoted φX1,...,Xn . First, SPI proceeds to remove variables in the chance
set I1 = {B,C,E, F,G} using Algorithm 24. The initial combination candidate
set is:

{φC , φE}, {φC , φF}, {φC , φG}, {φC , φBCEFG}, {φC , φAB}, {φE, φF},
{φE, φG}, {φE, φBCEFG}, {φE, φAB}, {φF , φG}, {φF , φBCEFG},
{φF , φAB}, {φG, φBCEFG}, {φG, φAB}, {φBCEFG, φAB}

If the minimum size heuristic is used for selecting the next pair of potentials,
there are 6 pairs minimizing this score. Let us suppose that the pair {φC , φE} is
chosen, then the resulting potential is φCE . At this point there is not any variable
that can be removed, since variables C and E are contained in another potential
(e.g., φBCEFG). Then, the set B is updated by removing pairs containing φC or
φE and by adding new pairwise combinations with φCE:

252 Chapter 12. Efficient Evaluation with Tables

{φCE, φF}, {φCE, φG}, {φCE, φBCEFG}, {φCE, φAB}, {φF , φG},
{φF , φBCEFG}, {φF , φAB}, {φG, φBCEFG}, {φG, φAB}, {φBCEFG, φAB}

The process will keep on choosing pairs to combine until all variables have
been removed. The whole process is shown in Figure 12.2 using factor graphs [5].
Nodes without any parent correspond to initial potentials while child nodes to the
resulting ones of a combination. The numbers above potentials indicate the com-
bination order and arcs labels indicate the variables that are sum-marginalized.

φ
(9)
A

φ
(6)
ABCE

φ
(3)
ABCE

φ
(1)
CE

φC φE

φAB

φ
(4)
BCEFG

φ
(2)
FG

φF φG

φBCEFG

↓ {B,C,E}

↓ {F,G}

ψ
(5)
D1BCE

φBCEF ψD1FG

ψ
(8)
D1A

φABCE ψ
(7)
D1BCE

ψD1BCE ψD1CE

(a) (b) (c)

Figure 12.2: Combination order of the potentials obtained using SPI for removing
the chance set I1 = {B,C,E, F,G} during the evaluation of the ID shown in
Figure 12.1.

In the 4th iteration, after generating the potential φBCEFG, variables F and G
can be removed. Then, the Algorithm 25 is executed in order to combine util-
ity potentials and max-marginalize these variables: the combination candidate set
of utility potentials is B = {{ψD1FG}} and the resulting potentials are φBCE
and ψD1BCE . Similarly, in the 5th iteration, variables B,C and E can be re-
moved. Now, the combination candidate set contains a pair and a singleton, that
is B = {{ψD1CE, ψD1BCE}, {ψD1BCE}}. The element selected from B is the pair
{ψD1CE, ψD1BCE}. The variables B,C and E can be removed after adding both

12.4. Correctness and complexity of SPI 253

utility potentials in the pair, thus it is not necessary to perform any additional it-
eration. The resulting potentials are φA and ψD1A which are also, in this example,
the resulting potentials in Algorithm 24. SPI will now proceed to remove decision
D1 using Algorithm 26 and chance variable A using Algorithm 24.

12.4 Correctness and complexity of SPI

In this section we prove the correctness of the SPI algorithm by proving that it is
a correct reordering of the operations used by VE (the correctness of VE can be
found in [64]). Evaluating an ID involves performing several sum-marginalizations
and max-marginalizations of the variables in the ID (see Equations (4.24), (4.25)
and (4.26)). The order of these two operations are not always interchangeable
and therefore variables must be removed according to a strong elimination order.
This condition is satisfied by the SPI algorithm (as described in Algorithm 20):
RemoveChanceSet sum-marginalizes out In, RemoveDecision max-marginalizes
out Dn, RemoveChanceSet sum-marginalizes out In−1, etc.

As explained in Section 12.2.1, the RemoveChanceSet algorithm should give
as a result a factorization of probability potentials in the following form.

∑

X

∏

φX∈ΦX

φX

Let us suppose that our method aims to remove a set of variables V ⊆ X

(Algorithm 25, line 16). Previously all PPs in Φ′X ⊆ ΦX have been combined.
In other words, the input argument φ of Algorithm 25 is equal to

∏
φX∈ΦX

φX.
Notice that it is guaranteed that any PP containing any variable in V has been
combined (Algorithm 24, line 13). Using the distributive law we get:

254 Chapter 12. Efficient Evaluation with Tables

∑

X

∏

φX∈ΦX

φX =

=
∑

X


 ∏

φX∈ΦX\Φ′X

φX

∏

φi∈Φ′X

φi


 =

=
∑

X\V


 ∏

φX∈ΦX\Φ′X

φX

∑

V

∏

φi∈Φ′X

φi


 =

=
∑

X\V


 ∏

φX∈ΦX\Φ′X

φX

∑

V

φ


 =

=
∑

X\V


 ∏

φX∈ΦX\Φ′X

φXφ
′
V




We see that the result of eliminating V implies removing each potential in Φ′X
and replacing them by φ′V . This is done in line 20 of Algorithm 24. Therefore,
operations with probabilities are correct. Similarly, RemoveChanceSet algorithm
should give also as a result a factorization of UPs in the following form.

α
∑

X

∏

φX∈ΦX

φX

(∑

ψX∈ΨX

ψX

)
(12.9)

where α =
∑

X

∏
φX∈ΦX

φX. Let us now consider computations with UPs needed
for removing V. Previously all the addition of all UPs in Ψ′X ⊆ ΨX has been
done. Notice that it is guaranteed that any utility potential containing any variable
in V has been combined (Algorithm 25, line 15). Using the distributive law we
obtain:

12.4. Correctness and complexity of SPI 255

α
∑

X

∏

φX∈ΦX

φX

(∑

ψX∈ΨX

ψX

)
=

= α
∑

X


 ∏

φX∈ΦX\Φ′X

φX

∏

φi∈Φ′X

φi


 ∑

ψX∈ΨX\Ψ′X

ψX +
∑

ψi∈Ψ′X

ψi




 =

= α
∑

X


 ∏

φX∈ΦX\Φ′X

φX

∏

φi∈Φ′X

φi
∑

ψX∈ΨX\Ψ′X

ψX +
∏

φX∈ΦX\Φ′X

φX

∏

φi∈Φ′X

φi
∑

ψi∈Ψ′X

ψi


 =

= α
∑

X\V

∏

φX∈ΦX\Φ′X

φX

∑

V

∏

φi∈Φ′X

φi


 ∑

ψX∈ΨX\Ψ′X

ψX +

∑
V

(∏
φi∈Φ′X

φi
∑

ψi∈Ψ′X
ψi

)

∑
V

∏
φi∈Φ′X

φi


 =

=

∑
X\V

∏
φX∈ΦX\Φ′X

φXφ
′
V

(∑
ψX∈ΨX\Ψ′X

ψX + ψ′V

)

∑
X\V

∏
φX∈ΦX\Φ′X

φXφ′V

From previous expression, we see that the result of eliminating V also im-
plies removing each potential in Ψ′X and replacing them by ψ′V . This is done
in line 23 of Algorithm 25. Therefore, operations with UPs are also correct.
When removeDecision is invoked for removingDn out of ΨD, the result should be
ψ′D = maxD

∑
ψD∈ΨD

ψD. This procedure is correct since in Algorithm 27 max-
marginalization operation is not made until the addition of all UPs is performed.

Similarly to VE, the complexity of the SPI algorithm is also linear to the size of
the largest potential generated during the evaluation. The largest potential will be
obtained right before the sum-marginalization or max-marginalization of a vari-
able. That is, the result of the combination φ ·ψij in line 16 of Algorithm 25 or the
potential ψD in line 9 of Algorithm 27. Thus, the complexity of the SPI algorithm
for evaluating an ID with n variables (chance or decision) is O(nN ′max) where
N ′max is the largest potential ever created during the evaluation. However, the size
of a potential is exponential to the number of variables in its domain. Thus, the
computational cost of the VE algorithm depends on the sizes of the intermediate
potentials generated and on the order of operations with potentials.

256 Chapter 12. Efficient Evaluation with Tables

12.5 SPI Lazy Evaluation

LE is based on message passing between cliques in a strong junction tree (see
Section 4.5.3). Basically, the computation of these messages consists of removing
variables not present in the parent separator from the sets of potentials in a clique.
The original approach [79] uses VE for removing the variables. Thus, we will
refer to this method as VE-Lazy Evaluation (VE-LE). Here we propose SPI Lazy
Evaluation (SPI-LE), which is a variant of Lazy Evaluation that uses SPI instead
of VE in order to compute the messages. This idea was already considered in
a previous paper [78] where the SPI algorithm was used in Lazy Propagation in
BNs. The process for building the strong junction tree and Collect Message algo-
rithm are the same. The general scheme of the Absorption algorithm is slightly
different (see Algorithm 28).

Algorithm 28 Absorption-SPI

1: (Φ∗Sj ,Ψ
∗
Sj

)← (ΦCj ∪
⋃

S′∈ch(Cj)

Φ∗S′ ,ΨCj ∪
⋃

S′∈ch(Cj)

Ψ∗S′) . Relevant potentials

2: X← {X|X ∈ Cj, X 6∈ Sj} . Variables to remove
3: Partition X into disjoint sets of chance variables or sets of single decisions. Let
{X1 ≺ X2 ≺ · · · ≺ Xn} a partial order respecting the temporal constraints.

4: for k ← n to 1 do
5: (ΦXk

, ΨXk
)← ({φ ∈ Φ∗S |Xk∩dom(φ) 6= ∅}, {ψ ∈ Ψ∗S |Xk∩dom(ψ) 6= ∅})

6: (Φ∗Sj , Ψ∗Sj)← (Φ∗Sj\ΦXk
, Ψ∗Sj\ΨXk

)

7: if Xk ⊆ UC then
8: (Φ′Xk

, Ψ′Xk
)← RemoveChanceSet(Xk,ΦXk

,ΨXk
) . Algorithm 24

9: (Φ∗Sj , Ψ∗Sj)← (Φ∗Sj ∪ Φ′Xk
, Ψ∗Sj ∪Ψ′Xk

)

10: else
11: Let Dk the single variable in Xk

12: (Φ′Xk
, ψ′Xk

)← RemoveDecision(Dk,ΦXk
,ΨXk

) . Algorithm 26
13: (Φ∗Sj , Ψ∗Sj)← (Φ∗Sj ∪ Φ′Xk

, Ψ∗Sj ∪ {ψ′Xk
})

14: end if
15: end for
16: Associate Φ∗Sj and Ψ∗Sj to the parent separator Sj .

12.6. Optimization of variable elimination 257

The main difference is that the set of variables to remove is partitioned into
disjoint subsets of chance variables or single sets of decisions because variables
in an ID should be removed according to an order that respects the temporal con-
straints. Notice that the removal of a subset of variables Xk is invoked only on the
set of potentials containing any variable in Xk. Another difference is the way vari-
ables are removed: in SPI-LE, procedures explained in Section 12.3.3 and 12.3.4
are used instead of VE.

12.6 Optimization of variable elimination

When evaluating an ID using the VE algorithm, variables are removed in reverse
order of information precedence (see Section 4.5.1). The removal of a variable Xi

implies combining all PPs and UPs with Xi in the domain (Algorithm 2 line 2).
Here we propose using a greedy algorithm for optimizing the combination of the
potentials involved in the removal of a variable. The procedure for combining a
set of PPs is shown in Algorithm 29.

Algorithm 29 combineProbabilities
input : ΦXi (set of PPs relevant for removing Xi)
output : φXi (PP resulting from combining all the potentials in ΦXi)

1: B ← ∅
2: while |ΦXi| > 1 do
3: B ← addPairwiseCombinations(ΦXi , B)

4: p← selectBest(B) . p is a pair {φi, φj}
5: [φij ← φi · φj]
6: B ← {p ∈ B′|p′ ∩ p = ∅} . Update

7: ΦXi ← (ΦXi\p) ∪ {φij}
8: end while
9: Let φXi be the single potential in ΦXi

10: return φXi

258 Chapter 12. Efficient Evaluation with Tables

This algorithm is quite similar to the procedure used by Shenoy [106] for
building the binary join trees. However, in our approach no tree-like structure is
created, potentials are directly combined. A similar approach must be considered
for adding all UPs (see Algorithm 30).

Algorithm 30 addUtilities
input : ΨXi (set of UPs relevant for removing Xi)
output : ψXi (UP resulting from combining all the potentials in ΨXi)

1: B′ ← ∅
2: while |ΨXi| > 1 do
3: B′ ← addPairwiseCombinations(ΨXi , B

′)

4: q ← selectBest(B′) . q is a pair {ψi, ψj}
5: ψij ← ψi + ψj

6: B′ ← {q′ ∈ B′|q′ ∩ q = ∅} . Update

7: ΨXi ← (ΨXi\q) ∪ {ψij}
8: end while
9: Let ψXi be the single potential in ΨXi

10: return ψXi

Basically, in the two previous algorithms, at each iteration a pair of potentials
is selected to be combined. For that, we use the combination candidate set as
previously described in Section 12.3.2. For determining which is the best pair to
combine, heuristics explained in Section 12.3.5 can be used. These algorithms
stop when all the potentials have been combined.

12.7. Experimental work 259

12.7 Experimental work

12.7.1 Procedure and objectives

In general, the aim of the experimental work is to analyse the behaviour of all
the algorithms considered in this chapter. We compare VE and SPI for directly
evaluating an ID and for computing clique-to-clique messages in LE as well. The
objectives of this experimentation are:

(a) Analyse if the SPI algorithm offers better results if probabilistic barren
nodes are exploited and singletons are allowed. The combination heuris-
tics explained in Section 12.3.5 are also compared.

(b) Compare the improved version of VE (Section 12.6) with the original one.

(c) Compare the algorithms VE and SPI.

A set of 18 IDs from the literature are used: NHL and Jaundice are two real
world IDs used for medical purposes [76, 97]; the Appendicitis ID is a synthetic
diagram modelling a medical decision problem [69]; the oil wildcatter’s problem
with one and two utilities [96, 40]; an ID representing the Car Buyer problem
[94]; an ID used to evaluate the population viability of wildlife species [81]; the
Chest Clinic ID [55] obtained from the Asia BN; an ID representing the decision
problem in the poker game [64]; two different IDs used at agriculture for treating
mildew [64]; an ID to model a simplified version of the dice game called Think-
box [57];an ID for solving the maze problem [113]; finally, three synthetic IDs
are used: the motivation example shown in Figure 12.1 and two IDs proposed by
Jensen et al.[62]. The details of these IDs are shown in Table 12.1, which contains
the number of nodes of each kind, the size of the largest partition Ii of chance
nodes and the total table size (number of entries in a table containing all the vari-
ables).

260 Chapter 12. Efficient Evaluation with Tables

average
ID |UC | |UD| |UV | max |Ii| potential size

Appendicitis 4 1 1 2 3.6

Car Buyer 3 3 1 1 64.5

ChestClinic 8 2 2 5 5.2

Competitive Asymm. 10 9 1 10 35.182

Jaundice 21 2 1 10 41.5

Jensen et al. 1 4 2 2 3 5

Jensen et al. 2 12 4 4 8 4.875

Maze 14 2 1 6 3100.2

Mildew 1 6 1 2 6 28.375

Mildew 4 7 2 2 4 32.222

Motivation ID 6 1 2 5 27.5

NHL 17 3 1 11 468.111

Oil 2 2 2 1 7.25

Oil Split Costs 2 2 3 1 6.2

Poker 7 1 1 7 94

Thinkbox 5 2 4 2 20.444

Threat of Entry 3 9 1 3 46

Wildlife 9 1 1 9 5

Table 12.1: Features of the IDs used in the experimentation. More details about
these models are given in Appendix B.2.

To compare VE and SPI for computing the clique-to-clique messages, a strong
junction tree is built from each ID using the minimum size heuristic [99] for tri-
angulating the graph. Table 12.2 shows, for each tree, the number of cliques, the
minimum and maximum clique sizes |C| and clique weights w(C).

The SPI algorithm and the improved version of VE may have non-trivial addi-
tional computational costs for selecting the next potentials to combine. In order to
check that these new algorithms do not have a large overhead, all the comparisons
are made in terms of computation time. Moreover, the portion of time correspond-
ing to this overhead is shown in all the graphics. To avoid the influence of outliers,
each ID is evaluated 100 times with each evaluation scheme.

12.7. Experimental work 261

|C| w(C)

ID Cliques min max min max

Appendicitis 1 4 4 16 16

Car Buyer 1 6 6 384 384

ChestClinic 5 3 6 8 64

Competitive Asymm. 3 4 6 96 1152

Jaundice 9 4 12 16 1.555·105

Jensen et al. 1 3 3 4 8 16

Jensen et al. 2 9 3 5 8 32

Maze 3 5 12 1.984·104 4.032·105

Mildew 1 2 3 3 64 112

Mildew 4 4 4 6 256 9408

Motivation ID 2 3 6 30 432

NHL 8 5 12 32 5.530·105

Oil 1 4 4 36 36

Oil Split Costs 1 4 4 36 36

Poker 5 3 3 32 324

Thinkbox 2 4 6 8 384

Threat of Entry 3 4 9 48 1728

Wildlife 7 3 4 8 16

Table 12.2: Features of the strong junction trees used for the experimental work
obtained with minimum size heuristic.

12.7.2 Singletons and probabilistic barren

Here, the objective (a) is considered, that is we analyse if the efficiency of the
computation can be improved if singletons are allowed and a detection a priori
of probabilistic barren is performed. For that purpose each ID is evaluated us-
ing different schemes and algorithms. For the basic version of the SPI algorithm,
four evaluation schemes are considered: SPI, SPIB, SPIS and SPIBS where
the subscript B means that probabilistic barren nodes are detected and the sub-
script S means that singletons are allowed. Similarly, each ID is also evaluated
using the SPI-LE algorithm considering the schemes SPI-LE, SPI-LEB, SPI-

262 Chapter 12. Efficient Evaluation with Tables

LES and SPI-LEBS . Figure 12.3 shows the average computation time needed
for evaluating each ID using the schemes of the basic version of the SPI algorithm.
The combination heuristics considered are those explained in Section 12.3.5. For
the majority of the IDs, the algorithm without any improvement (SPI) offers
the worst performance. By contrast, the best results are obtained if both of the
improvements proposed are applied (SPIBS). This scheme is the fastest for eval-
uating 11, 14, and 10 networks when using the heuristics min size, min weight
and min utility respectively.

If we analyse the effect of adding singletons to the combination candidate set,
we can observe that for some large IDs such as NHL the computation time can in-
crease if these improvements are considered (SPIS and SPIBS withmin weight
heuristic). The reason for that is that the search space is too large and the algo-
rithm will give preference to selecting singletons even if the operations with the
utilities are costly. This problem disappears if the heuristic considers the cost of
operations with the utility (min utility). The detection of probabilistic barren
nodes (SPIB) does not have any drawback: it is a simple procedure that will
never increase the number of operations and in many cases will reduce it.

Figure 12.3 also includes the overhead introduced by the SPI algorithm (bars
in black). That is, the time required for selecting the next pair to combine (oper-
ations with the combination candidate set) and for updating the sets of potentials
and variables. It can be observed that for most of the IDs, this overhead is small
or insignificant: most of the time corresponds with the time required for comput-
ing with potentials. However, when evaluating the Wildlife ID the overhead is
high. In this ID, all the chance nodes are in a single and large partition I. As the
overhead increases exponentially in the number of potentials, the overhead will
be high. Even though there are other IDs with partitions of a similar size, they
contain larger potentials. As a consequence, the overhead is smaller compared to
the time required for computing with potentials.

12.7. Experimental work 263

Figure 12.3: Comparison of the computation time using the basic version of SPI
with different combination heuristics and considering the improvements of single-
tons and probabilistic barren (SPIB, SPIS and SPIBS) and without them (SPI).

Table 12.3 shows the total time for evaluating all the IDs. It can be observed
that the lowest cumulative time is obtained with SPIBS using the minimum utility
heuristic. Considering also that, in most of the IDs, the scheme SPIBS offers
the best performance and that the heuristic min weight avoids the problems pro-

264 Chapter 12. Efficient Evaluation with Tables

duced by considering the singletons, we state that the best results are obtained
with SPIBS using the minimum utility heuristic.

min size min weight min utility

SPI 21540 35100 345100

SPIB 21350 34980 343800

SPIS 35400 73960 17650

SPIBS 31730 69250 16420

Table 12.3: Cumulative time (ms) for evaluating all the IDs using the basic version
of the SPI algorithm with different combination heuristics and considering the
improvements of singletons and probabilistic barren (SPIB, SPIS and SPIBS)
and without them (SPI).

Similarly, Figure 12.4 shows the average time required for evaluating each ID
using the four schemes of LE with SPI for computing the clique-to-clique mes-
sages (SPI-LE, SPI-LEB, SPI-LES and SPI-LEBS). This evaluation time
includes the time required for building the strong junction tree and for propagat-
ing the messages.

It can be observed that, for most of the considered IDs, SPI-LEBS is the
most efficient scheme. Moreover, it can also be observed that the problem about
the growth of the evaluation time in large IDs disappears: the search space for
selecting a pair is now smaller (a large part of this search is now made during the
building of the strong junction tree). In fact, there are less differences between
schemes and heuristics: the combinatorial problem is divided into several sub-
problems. As a consequence there is less room for improvement but the overhead
is smaller. In fact, the large overhead introduced by the algorithm for evaluating
the Wildlife ID is now insignificant. SPI-LEBS with minimum weight will be
considered as the best scheme since it offers the best results for all the IDs used
in the experimentation. In addition, the lowest cumulative time for evaluating all
the IDs is obtained with this heuristic (see Table 12.4).

12.7. Experimental work 265

Figure 12.4: Comparison of the average computation time using the basic version
of the SPI-LE algorithm with different combination heuristics and considering the
improvements of singletons and probabilistic barren (SPI-LEB, SPI-LES and
SPI-LEBS) and without them (SPI-LE).

266 Chapter 12. Efficient Evaluation with Tables

min size min weight min utility

SPI-LE 12800 12050 12610

SPI-LEB 11790 10880 11410

SPI-LES 12980 12160 12690

SPI-LEBS 11210 10590 11100

Table 12.4: Cumulative time for evaluating all the IDs using the basic version of
the SPI-LE algorithm with different combination heuristics and considering the
improvements of singletons and probabilistic barren (SPI-LEB, SPI-LES and
SPI-LEBS) and without them (SPI-LE).

12.7.3 Optimization of variable elimination

In Section 12.6 a variation of the algorithm VE is proposed. This version of the
algorithm optimizes the combination of the potentials involved in the removal of
a variable using a greedy algorithm. Thus, the performance of VE should be im-
proved (objective (b)). In order to simplify the experimentation, the equivalent
heuristic for selecting the variable to remove is used for selecting the pair of po-
tentials to combine. In particular, heuristics minimum size and minimum weight
are considered.

Figure 12.5 shows the computation required time by the basic version of V E
and the optimized one (V Eopt) for evaluating each ID. For most of the IDs, the
optimized version requires less time and, in those IDs where V Eopt offers the
worst performance, the results are quite similar. These graphics also include the
overhead introduced by the optimization but also the one corresponding to the
time required for choosing the next variable to remove. It can be observed that the
optimization does not introduce a large overhead.

V Eopt using minimum size or minimum weight heuristics are considered as the
best configuration schemes since the total time for evaluating all the IDs are the
lowest (see Table 12.5).

12.7. Experimental work 267

Figure 12.5: Comparison of the average computation time required by V E and
the optimized version with different heuristics.

min size min weight

V E 1749 1751

V Eopt 1532 1534

Table 12.5: Cumulative time for evaluating all the IDs using V E and the opti-
mized version with different heuristics.

268 Chapter 12. Efficient Evaluation with Tables

Similarly, Figure 12.6 shows the comparison of LE using both methods for
computing the clique-to-clique messages (V E-LE and V Eopt-LE). Again, the
optimized version is faster for evaluating most of the IDs. V Eopt-LE with any of
the heuristics are considered as the best configuration schemes for computing the
clique-to-clique messages since the cumulative time is the lowest (see Table 12.6).

Figure 12.6: Comparison of the average computation time required by the basic
V E − LE and the optimized version with different heuristics.

12.7. Experimental work 269

min size min weight

V E-LE 9045 9048

V E-LEopt 8621 8662

Table 12.6: Cumulative time for evaluating all the IDs using V E − LE and the
optimized version with different heuristics.

12.7.4 Comparison of SPI and VE

In previous subsections, it has been studied which is the best configuration for the
algorithms SPI and VE. Figure 12.7 shows the average computation time compar-
ing the best scheme of V E against SPI and the best scheme of V E-LE against
SPI-LE for evaluating each ID (objective (c)).

First, it is compared V Eopt using the minimum size heuristic against SPIBS
with the minimum utility heuristic. The SPI algorithm offers the best results in 10
out 18 IDs. If we analyse those IDs were VE offers better performance than SPI,
in 3 of them there are not great differences (ChestClinic, Jensen et al. 2 and Threat
of Entry). Secondly both algorithms are also compared for computing clique-to-
clique messages. That is, V E-LEopt using minimum size heuristic against SPIBS
with the minimum weight heuristic. Now the SPI algorithm for computing the
messages offers the best results for evaluating 16 out of 18 IDs.

270 Chapter 12. Efficient Evaluation with Tables

Figure 12.7: Average computation time comparing the best scheme of V E against
SPI and the best scheme of V E-LE against SPI-LE for evaluating each ID.

12.7. Experimental work 271

12.7.5 Pre-analysis algorithm

In the results previously given, we have seen that SPI can outperform V E in
many IDs. However, it cannot be assured that this will always be the case. The
efficiency of these algorithms depends on several heuristics for determining the
order of the operations involved in the evaluation. Therefore, we cannot assure
which method (or heuristic) will offer the best results with a given ID until we
evaluate it. However, we know that there is a correlation between the number
of arithmetic operations and the efficiency of the methods. Table 12.7 shows the
number of arithmetic operations and evaluation time for evaluating each ID with
V Eopt and SPIBS using the heuristics min size and min utility respectively. It
can be observed that in 16 out of 18 a reduction in the number of operations means
a reduction in the evaluation time. In the largest IDs (NHL, Jaundice and Maze),
where it is more important to determine which is the best method, there is a high
correlation. By contrast, in the Car Buyer and Mildew 1 IDs the reduction in the
number of operations does not mean a reduction in the evaluation time. These two
IDs are quite small and the time required by the arithmetic operations has a lower
weight in the total evaluation time.

Taking into account this correlation, a pre-analysis algorithm for predicting
which method is the most efficient one can be developed. This algorithm com-
putes the number of arithmetic operations by evaluating an ID with each method
in a qualitative way. This kind of evaluation is similar to the numerical (usual)
evaluation but it does not perform the operations with potentials (domain of the
resulting potentials are only computed). As the pre-analysis algorithm knows the
domains of potentials involved in each operation with potentials, the number of
arithmetic operations can be easily computed. Finally, the pre-analysis algorithm
will base its decision on the of number arithmetic operations.

In the rightmost column of Table 12.7, the time for performing this pre-analysis.
It can be observed that, for large IDs, the pre-analysis time is much smaller than
the time required for evaluating the ID. By contrast, in smaller IDs, this pre-
analysis could take more time than the evaluation.

272 Chapter 12. Efficient Evaluation with Tables

operations time (ms.)

V Eopt SPIBS V Eopt SPIBS time

ID min size min utility min size min utility pre-analysis

Motivation ID 5939 1982 9.927 2.776 2.4

Oil 133 121 2.456 0.932 3.319

Oil Split Costs 145 133 2.794 1.354 1.753

NHL 3.570·106 2.384·106 1.031·104 6240.162 75.438

Jaundice 4.791·105 8.704·105 1227.203 1639.544 220.016

Maze 1.802·106 4.846·106 3515.281 8256.285 48.482

Car Buyer 1375 1487 9.536 4.748 3.334

Mildew 1 395 511 3.211 1.361 1.884

Mildew 4 3.272·104 4.432·104 44.636 45.154 6.446

Poker 1586 7034 6.573 9.163 2.886

ChestClinic 593 2465 9.601 10.52 3.572

Appendicitis 65 59 2.309 0.896 1.721

Jensen et al. 1 123 119 3.351 1.105 3.95

Jensen et al. 2 449 779 20.725 24.358 6.358

Thinkbox 1891 1793 11.31 7.079 3.86

Threat of Entry 3755 3971 86.247 87.95 4.774

Wildlife 155 163 17.657 46.948 5.092

Competitive Asymm. 3431 3135 39.094 36.536 2.747

Table 12.7: Number of arithmetic operations and evaluation time for evaluating
each ID with V Eopt and SPIBS using the heuristics min size and min utility
respectively. The time for evaluating each ID with both methods in a qualitative
way is also given (pre-analysis time).

12.8 Conclusions

In this chapter, two algorithms for optimizing the operation order in the evalua-
tion of IDs are described. First, the details of the adaptation of the SPI algorithm
for evaluating IDs are given. This method was already used for making inference
on BNs and it is more fine-grained than other methods in the literature such as
VE. For this adaptation, differences between IDs and BNs have been taken into

12.8. Conclusions 273

account: two kinds of potentials, temporal order between variables, etc. Secondly,
an optimization of VE have also been proposed. This improved version consists
of using a greedy algorithm for minimizing the cost of the combination of all the
potentials involved in the removal of a variable. Both algorithms have been de-
scribed for the direct evaluation of IDs and for the computation of clique-to-clique
messages as well.

In the experimental work, these algorithms have been tested using a set of IDs
from the literature. It has been demonstrated that, for many of the IDs considered,
the SPI algorithm is more efficient if singletons are allowed and a priori detec-
tion of probabilistic barren is performed. For some large IDs the improvement of
allowing singletons can produce an important growth in the evaluation time. How-
ever, this problem is solved if a combination heuristic that also considers the size
of the utility potentials is used. For the computation of clique-to-clique messages,
where the search space is smaller, this growth disappears. By contrast, the detec-
tion of probabilistic barren will never increase the evaluation time (it will remain
the same or lower). Secondly, it has also been demonstrated that the optimized
version of VE offers better results than the basic version. Finally, the best config-
uration schemes of both algorithms have been compared. For the direct evaluation
of IDs and for the clique-to-clique message computation, SPI can outperform VE
in many IDs.

The proposed SPI algorithm only considers the next pair of potentials to com-
bine. Thus, a line of future research could be to study the behaviour of the algo-
rithm using a higher neighbourhood degree. It could also be interesting to make a
study that let us to characterize which features of an ID make SPI outperform VE.
Concerning to the pre-analysis, alternative indicators to the number of operations
could be studied.

274 Chapter 12. Efficient Evaluation with Tables

Part IV

Conclusions

275

Chapter 13

Conclusions and Future Work

This last chapter summarizes all the conclusions that have been presented through-
out this dissertation. The list of publications with the majority of the work pre-
sented here is included. This chapter concludes with an enumeration of the future
research to be performed on the topic.

The whole dissertation has been devoted, as its title indicates, to new data
structures and methods for evaluating IDs. In particular, we have addressed some
drawbacks of IDs: high computational cost, inefficient evaluation of asymmetric
decision problems and incapacity to express imprecision.

We have proposed the use of BTs for representing and managing the poten-
tials involved in influence diagrams. This kind of tree allows representing general
forms of independencies that are more fine-grained compared to those encoded
using other representations. This enhanced capacity allows to reduce the compu-
tational cost of the evaluation due to the smaller size of the potentials. Moreover,
binary trees allow computing approximate solutions when exact inference is not
feasible. Heuristic methods for building (from tables) and pruning BTs have been
proposed. Besides, we have explained how some existing evaluation algorithms
can be adapted for working with BTs. The experimental evaluation showed that,
in general, this approach demands lower memory resources than other representa-
tions such as NTs or tables. As a consequence, the ID evaluation is usually faster
using BTs. However, for some IDs it is necessary to approximate the potentials
in order to obtain any benefits from the use of BTs. Another conclusion is that

277

278 Chapter 13. Conclusions and Future Work

using BTs for evaluating IDs offers better approximate solutions than using NTs:
the same error level is achieved with a lower computation time.

In relation to one of the algorithms adapted for working with BTs, namely
VE, we have proposed two new heuristics for determining the elimination order.
Unlike traditional heuristics, these consider that potentials are represented as BTs
instead as tables. In doing so, the computational cost (storage and time) is reduced
even more.

For addressing the problem of the computational cost, we have also explored
different alternatives that allow to represent the potentials as tables. In particular,
we have proposed the adaptation of the SPI algorithm for evaluating IDs and an
optimization of VE. These methods aim to optimize the order of the operations
with potentials involved in the evaluation. In the experimental work, these algo-
rithms have been tested using a set of IDs from the literature. It has been demon-
strated that, the algorithms proposed can improve the efficiency of the evaluation.
When comparing these two new algorithms, we have seen that SPI can outperform
the optimized version of VE in many IDs.

The second drawback of IDs, namely the inefficient evaluation of IDs rep-
resenting asymmetric decision problems, can also be solved using BTs. In our
approach, potentials are represented as BTs but also the qualitative information
about the problem (constraints, due to asymmetries). As the same data structure
is used for both, potentials and asymmetries, they can be easily applied in order
to reduce the number of scenarios to consider. We have empirically proved that
this approach usually improves the efficiency of the evaluation of IDs representing
asymmetric decision problems. However, for very small IDs, the efficiency might
not be improved due to the overhead introduced by the application of constraints.

Another proposal for the representation of potentials in IDs are interval-valued
potentials. These are basically a generalization of the precise potentials that as-
signs intervals (i.e., a lower and upper bound) instead of sharp values to each
configuration. We have proposed replacing the precise potentials in an ID by

13.1. List of publications 279

interval-valued potentials. In doing so, we address the problem of incapacity of
standard IDs to express the imprecision or vagueness in their potentials. Some
evaluation algorithms have been generalized in order to cope with the interval-
valued case. These are outer approximations of the exact solutions. Yet, the use
of linear programming methods avoids to produce unnecessarily large outer ap-
proximations without increasing the computational complexity: this remains the
same as with precise potentials for both the algorithms. The empirically analysis
have shown that the new methods based on linear programming are clearly more
accurate than other approaches for evaluating IDs with intervals.

13.1 List of publications

The different studies included in this dissertation have been presented in the fol-
lowing publications:

Publications in International Journals

R. Cabañas, A. Antonucci, A. Cano, and M Gómez-Olmedo. Evaluating
interval-valued influence diagrams. International Journal of Approximate Rea-
soning, 80:393–411, 2017

R. Cabañas, A. Cano, M. Gómez-Olmedo, and A. L. Madsen. Improvements
to variable elimination and symbolic probabilistic inference for evaluating influ-
ence diagrams. International Journal of Approximate Reasoning, 70:13–35, 2016

R. Cabañas, M. Gómez-Olmedo, and A. Cano. Using binary trees for the
evaluation of influence diagrams. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 24(01):59–89, 2016

Publications in International Conferences and Workshops

R. Cabañas, A. Antonucci, A. Cano, and M. Gómez-Olmedo. Variable elim-
ination for interval-valued influence diagrams. In Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty: 13th European Conference, ECSQARU
2015, Compiègne, France, July 15-17, 2015. Proceedings, volume 9161 LNAI,
pages 541–551. Springer, 2015

280 Chapter 13. Conclusions and Future Work

R. Cabañas, A. Cano, M. Gómez-Olmedo, and A. L. Madsen. On SPI-lazy
evaluation of influence diagrams. In Probabilistic Graphical Models: 7th Euro-
pean Workshop, PGM 2014, Utrecht, The Netherlands, September 17-19, 2014.
Proceedings, pages 97–112. Springer International Publishing, 2014

R. Cabañas, A. L. Madsen, M. Gómez-Olmedo, and A. Cano. On SPI for
evaluating Influence Diagrams, pages 506–516. Springer International Publish-
ing, Cham, 2014

R. Cabañas, M. Gómez-Olmedo, and A. Cano. Evaluating asymmetric de-
cision problems with binary constraint trees. In Symbolic and Quantiative Ap-
proaches to Resoning with Uncertainty: 12th European Conference, ECSQARU
2013, Utrecht, The Netherlands, July 8-10, 2013, Proceedings, volume 7958 LNAI,
pages 85–96. Springer, 2013

R. Cabañas, M. Gómez, and A. Cano. Approximate inference in influence
diagrams using binary trees. In Proceedings of the Sixth European Workshop on
Probabilistic Graphical Models (PGM-12), 2012

Publications in National Conferences

R. Cabañas, A Cano, M Gómez-Olmedo, and A. L. Madsen. Approximate
lazy evaluation of influence diagrams. In Advances in Artificial Intelligence: 15th
Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2013,
Madrid, September 17-20, 2013, Proceedings, volume 8109, page 321. Springer,
2013

R. Cabañas, A. Cano, M Gómez-Olmedo, and A.L. Madsen. Heuristics for
determining the elimination ordering in the influence diagram evaluation with bi-
nary trees. In Twelfth Scandinavian Conference on Artificial Intelligence: SCAI
2013, volume 257 of Frontiers in Artificial Intelligence and Applications, pages
65–74. IOS Press, 2013

13.2. Future work 281

13.2 Future work

This last section attempts to provide a general overview of the comments regard-
ing future lines of research.

Concerning to the use of BTs, we can study alternative ways of applying the
pruning operation during the evaluation. In the approach presented here, all the
BTs are pruned before the evaluation. Instead, we might consider applying an on-
line operation that only prunes the BTs involved in a specific operation if this is
extremely costly. In doing so, we might minimize the error of the approximation
as the pruning is only done for a few potentials. We could also consider using data
structures representing a full model such as RPTs for evaluating IDs.

In relation to the evaluation of asymmetric decision problems, we shall study
the behaviour of BTs with constraints using alternatives to the VE inference algo-
rithm, like Arc Reversal [102], Lazy propagation [79], etc.

As presented in this dissertation, the SPI algorithm only considers next pair
of potentials to combine. Thus, a line of future research could be studying the
behaviour of the algorithm using a higher neighbourhood degree. It could also
be interesting to make a study that let us to characterize which features of an ID
make it for a possible candidate for choosing SPI over VE.

Although the interval-valued potentials have been shown as an efficient alter-
native for modelling imprecision in IDs, we could intend to extend this formalism
to more general imprecise frameworks, e.g., credal sets represented by extreme
points or generic linear constraints. This should affect the computational com-
plexity of evaluation process, thus making necessary the development of specific
approximate algorithms. One possible solution could be using BTs for represent-
ing imprecise potentials.

282 Chapter 13. Conclusions and Future Work

Appendices

283

Appendix A

Proof of Proposition 6

Herein we demonstrate the correctness of the alternative expression for computing
the information gain given in Proposition 6 (page 113). That is, we show that these
expressions are equivalent to the one given in the definition of the information
gain (see Definition 33). The proof for the information gain computation using
the Kullback Leibler divergence is given in Section A.1. The analogous one for
the case of the Euclidean distance is given in Section A.2.

A.1 Information gain computation with Kullback-
Leibler divergence

Let t be the candidate node to be expanded. Let v1, v2, . . . , vn the values in φR(At).
Let tl and tr the new children of t. The values in φR(Atl) are vl1, vl2, . . . , vlnl and
those consistent with φR(Atr) are vr1, vr2, . . . , vrnr . Then, the Kullback Leibler
divergence between each intermediate tree to the real potential can be written as
follows.

DKL(φ,BT j) =
n∑

i=1

vi · log
vi∑n
i=1 vi
n

=

(
n∑

i=1

vi

)
· log

n∑n
i=1 vi

+
n∑

i=1

vi log vi

(A.1)

285

286 Appendix A. Proof of Proposition 6

DKL(φ,BT j+1(t,Xi,Ω
tl
Xi
,Ωtl

Xi
)) =

=

nl∑

i=1

vli · log
vli∑nl
i=1 vli
nl

+
nr∑

i=1

vri · log
vri∑nl
i=1 vri
nr

=

=

(
nl∑

i=1

vli

)
· log

nl∑nl
i=1 vli

+

nl∑

i=1

vli log vli+

+

(
nl∑

i=1

vri

)
· log

nr∑nl
i=1 vri

+
nr∑

i=1

vri log vli

(A.2)

Using (A.1) and (A.2), the information gain in Equation (5.1) can be rewritten as
follows.

IKL(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) = DKB(ψ,BT j)−DKL(ψ,BT j+1(t,Xi,Ω

tl
Xi
,Ωtl

Xi
)) =

=

(
n∑

i=1

vi

)
· log

n∑n
i=1 vi

+
n∑

i=1

vi log vi

−
(

nl∑

i=1

vli

)
· log

nl∑nl
i=1 vli

+

nl∑

i=1

vli log vli

−
(

nl∑

i=1

vri

)
· log

nr∑nl
i=1 vri

+
nr∑

i=1

vri log vli

(A.3)

It holds that
Ω
tl
Xi

ΩtXi
= nl

n
and

ΩtrXi
ΩtXi

= nr
n

. Then, we obtain:

A.2. Information gain computation with Euclidean distance 287

IKL(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) =

(
n∑

i=1

vi

)
· log

∣∣Ωt
Xi

∣∣
∑n

i=1 vi
+

+

(
nl∑

i=1

vli

)
· log

∑nl
i=1 vli∣∣Ωtl
Xi

∣∣ +

+

(
nl∑

i=1

vri

)
· log

∑nl
i=1 vri∣∣Ωtr
Xi

∣∣

(A.4)

Finally, using the notation sum(•), we obtain:

IKL(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) = sum(φR(At)) · log

∣∣Ωt
Xi

∣∣
sum(φR(At))

+ sum(φR(Atl)) · log
sum(φR(Atl))∣∣Ωtl

Xi

∣∣

+ sum(φR(Atr)) · log
sum(φR(Atr))∣∣Ωtr

Xi

∣∣

(A.5)

which is the expression given in Equation (5.4). �

A.2 Information gain computation with Euclidean
distance

Let t be the candidate node to be expanded. Let v1, v2, . . . , vn the values in ψR(At).
Let tl and tr the new children of t. The values in ψR(Atl) are vl1, vl2, . . . , vlnl and
those consistent with ψR(Atr) are vr1, vr2, . . . , vrnr . Then, the information gain

288 Appendix A. Proof of Proposition 6

in Equation (5.1) can be rewritten as follows.

I(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) = D(ψ,BT j)−D(ψ,BT j+1(t,Xi,Ω

tl
Xi
,Ωtl

Xi
)) =

=

√√√√
n∑

i=1

(vi −
∑n

i=1 vi
n

)2 −

√√√√
nl∑

i=1

(vli −
∑nr

i=1 vli
nl

)2 +
nr∑

i=1

(vri −
∑nr

i=1 vri
nr

)2

(A.6)

The variance σ2 of v1, v2, . . . , vn is:

σ2 =

∑n
i=1(vi −

∑n
i=1 vi
n

)2

n
⇔ σ2 · n =

n∑

i=1

(vi −
∑n

i=1 vi
n

)2 (A.7)

Similarly, the variance σ2
l of vl1, vl2, . . . , vlnl and the variance σ2

r of vr1, vr2, . . . , vrnr
are:

σ2
l =

∑nl
i=1(vli −

∑nl
i=1 vli
nl

)2

nl
⇔ σ2

l · nl =

nl∑

i=1

(vli −
∑nl

i=1 vli
nl

)2 (A.8)

σ2
r =

∑nr
i=1(vri −

∑nr
i=1 vri
nr

)2

nr
⇔ σ2

r · nr =
nr∑

i=1

(vri −
∑nr

i=1 vri
nr

)2 (A.9)

Using Equations (A.7), (A.8), and (A.9), the information gain in Equation (A.6)
can be written as:

I(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) =
√
σ2 · n−

√
σ2
l · nl + σ2

r · nr (A.10)

Since the variance of a variable is the mean of the square variable minus the square
of the mean, then:

I(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) =

√√√√
(∑n

i=1 v
2
i

n
−
(∑n

i=1 vi
n

)2
)
· n

−

√√√√
(∑nl

i=1 vl
2
i

nl
−
(∑nl

i=1 vli
nl

)2
)
· nl +

(∑nr
i=1 vr

2
i

nr
−
(∑nr

i=1 vri
nr

)2
)
· nr

(A.11)

A.2. Information gain computation with Euclidean distance 289

Finally, simplifying the following expression is obtained:

I(t,Xi,Ω
tl
Xi
,Ωtr

Xi
) =

√√√√
n∑

i=1

v2
i −

(
∑n

i=1 vi)
2

n

−

√√√√
nl∑

i=1

vl2i −
(
∑nl

i=1 vli)
2

nl
+

nr∑

i=1

vr2
i −

(
∑nr

i=1 vri)
2

nr
(A.12)

which is the expression given in Equation (5.5). �

290 Appendix A. Proof of Proposition 6

Appendix B

Additional Information about the
Experimental Work

B.1 Code and system details

All the experimental work described in this dissertation has been performed using
the Elvira software1, which is an open-source tool for modelling PGMs. All the
algorithms here described have been coded in Java. A Github repository including
the source code and IDs (in Elvira format) used in the experimentation has been
created 2. All the experiments were run in a Intel Core i7 with 2.0 GHz and 8GB
of memory. Additionally, the algorithms explained in Chapter 10 involved the
solution of linear programming tasks. For that, lp solve3 5.5 was used. This is a
GNU library coded in C for solving linear (integer) programming problems based
on the revised simplex method and the Branch-and-bound method for the integers.

1http://leo.ugr.es/elvira/
2https://github.com/rcabanasdepaz/bayelvira
3http://lpsolve.sourceforge.net

291

http://leo.ugr.es/elvira/
https://github.com/rcabanasdepaz/bayelvira
http://lpsolve.sourceforge.net

292 Appendix B. Additional Information about the Experimental Work

B.2 Influence diagrams details

Herein we give a brief description of all the IDs used in the experiments of this
dissertation. In particular, for each ID, we show its graph and the details of each
variable (i.e., type and domain).

Appendicitis
This is an example of a simple ID modelling a medical decision problem [69].

whitecellscount

appendicitis

feverpain

U

Operate

Figure B.1: Graph of the Appendicitis ID.

name type states
whitecellscount chance normal, high
appendicitis chance false, true
fever chance false, true
pain chance false, true
Operate decision now, wait

Table B.1: Details of each variable in the Appendicitis ID.

B.2. Influence diagrams details 293

Car Buyer
This ID models the used car buyer problem, which was proposed by Qi et al. [94]
as an example of an ID representing an asymmetric decision problem.

NetValue

CarsConditions

SecondTestResultsFirstTestResults

PurchaseDecisionSecondTestDecisionFirstTestDecision

Figure B.2: Graph of the Car Buyer ID.

name type states
CarsConditions chance Peach, Lemon
SecondTestResults chance NoResults, Defects0, Defects1
FirstTestResults chance NoResults, Defects0, Defects1,

Defects2
PurchaseDecision decision No, Yes
SecondTestDecision decision NoTest, Differential
FirstTestDecision decision NoTest, Steering, Transmission,

FuelElect
A chance present, absent

Table B.2: Details of each variable in the Car Buyer ID.

294 Appendix B. Additional Information about the Experimental Work

ChestClinic
This is an ID [55] obtained from the well-known Asia BN, originally due to Lau-
ritzen and Spiegelhalter [73].

Asia Smoker

Tuberculosis LungCancer Bronchitis

Either

Dyspnoea

TakeXRay

XRay

Hospitalize

UtilHosp

UtilXRay

Figure B.3: Graph of the Chest Clinic ID.

name type states
Asia chance yes, no
Smoker chance yes, no
Tuberculosis chance yes, no
LungCancer chance yes, no
Bronchitis chance yes, no
Either chance yes, no
Dyspnoea chance yes, no
TakeXRay decision yes, no
XRay chance positive, negative
Hospitalize decision yes, no

Table B.3: Details of each variable in the Chest Clinic ID.

B.2. Influence diagrams details 295

Competitive Asymmetries
This ID is one of the networks developed for teaching MBA students competitive
analysis, at New York University Stern School of Business [57].

IncreaseDistinction

Interdepency

NumberOfBuyers

Asymetry

Information

ProductDifferentiation

EntryExitBarriers

Competition

NumberOfCompetitors

Figure B.4: Graph of the Competitive Asymmetries ID.

name type states
Interdepency chance Domination, Symbiosis, Depen-

dancy, FreePlayers
NumberOfBuyers decision One, Few, Many
Asymetry chance High, Moderate, None
Information decision Proprietary, Restricted, Perfec-

tAvaibility
ProductDifferentiation decision Extensive, Moderate, Low, None
EntryExitBarriers decision Legal, High, Significant, None
Competition chance Intense, Limited
NumberOfCompetitors decision One, Two, Few, Many

Table B.4: Details of each variable in the Competitive Asymmetries ID.

296 Appendix B. Additional Information about the Experimental Work

Dating
This ID represents the dating decision problem [71].

Accept

ToDo

LikesMe

TV

TVExp

Club

MeetFr

NCExp

mMood mExprMood rExp

Ask?

NClub?

MovieRest

U1

U2

U3

U4

U5
U6 U7

Figure B.5: Graph of the Dating ID.

name type states
Accept chance yes, no, noresp
ToDo chance movie, restaurant, nopref
LikesMe chance yes, no
TV chance good, bad
TVExp chance positive, negative, unknown
Club chance positive, negative, unknown
MeetFr chance positive, negative, unknown
NCExp chance positive, negative, unknown
mMood chance good, bad, unknown
mExp chance positive, negative, unknown
rMood chance good, bad, unknown
rExp chance positive, negative, unknown
Ask? decision yes, no
NClub? decision yes, no, nodec
Movie decision action, romantic, nodec
Rest decision expensive, cheap, nodec

Table B.5: Details of each variable in the Dating ID.

B.2. Influence diagrams details 297

Diabetes
This ID models the problem of diagnosing diabetes [65].

Symtom Diabetes

Result1 Result2

Test1
Test2

Therapy

Cost2

Quality

Cost1

Figure B.6: Graph of the Diabetes ID.

name type states
Symtom chance negative, positive
Diabetes chance absent, present
Result1 chance bloodpositive, bloodnegative, urinepositive,

urinenegative, nores
Result2 chance bloodpositive, bloodnegative, urinepositive,

urinenegative, nores
Test1 decision notest, urine, blood
Test2 decision notest, urine, blood
Therapy decision no, yes

Table B.6: Details of each variable in the Diabetes ID.

298 Appendix B. Additional Information about the Experimental Work

Jaundice
This is a real-world ID for neonatal jaundice management [97].

Valor

DHBrb

DHBrb2

DHBrb1

DTer

DTer2

DTer1

PatLG IRh

CHgb2

CBrb2

EH2

CHgb1

CBrb1

EH1

Rzm

AP

Ict

TCmIRhTChIRh

FRhm

FRhh

Terapia2Terapia1

Figure B.7: Graph of the Jaundice ID.

B.2. Influence diagrams details 299

name type states
DHBrb chance NULO, BAJO, MEDIO, ALTO, MUYALTO, EX-

TREMO
DHBrb2 chance NULO, BAJO, MEDIO, ALTO, MUYALTO, EX-

TREMO
DHBrb1 chance NULO, BAJO, MEDIO, ALTO, MUYALTO, EX-

TREMO
DTer chance NULO, BAJO, MEDIO, ALTO, MUYALTO
DTer2 chance NULO, BAJO, MEDIO, ALTO, MUYALTO
DTer1 chance NULO, BAJO, MEDIO, ALTO, MUYALTO
PatLG chance Leve, Grave, MuyGrave
IRh chance Ausente, Presente
CHgb2 chance Baja, Media, Alta
CBrb2 chance Normal, Alta
EH2 chance menosde24horas, masde24horas
CHgb1 chance Baja, Media, Alta
CBrb1 chance Normal, Alta
EH1 chance menosde12horas, masde12horas
Rzm chance Negra, Caucasica, Asiatica, Gitana
AP chance Primeriza, Multipara
Ict chance Normal, Amarillo, Pies, Calabaza
TCmIRh chance Negativo, Positivo
TChIRh chance Negativo, Positivo
FRhm chance NEGATIVO, POSITIVO
FRhh chance NEGATIVO, POSITIVO
Terapia2 decision TerNo, ObsAlt, Obs6, Fot6, Fot12, Fot24,

Fot6ExaFot6, Fot6ExaFot12, ObsTer
Terapia1 decision TerNo, Fot6, Fot12, Fot24, ObsTer

Table B.7: Details of each variable in the Jaundice ID.

300 Appendix B. Additional Information about the Experimental Work

Jensen et al. 1
This is a synthetic ID used by Jensen et al. [64, page 226] to illustrate some prop-
erties of the IDs. Similarly, in this dissertation, this ID was used for illustrating
the d-separation in ID (page 70).

U2A B C

T

D1

D2U1

Figure B.8: Graph of the Jensen et al. 1 ID.

name type states
A chance present, absent
B chance present, absent
C chance present, absent
T chance present, absent
D1 decision yes, no
D2 decision yes, no

Table B.8: Details of each variable in the Jensen et al. 1 ID.

B.2. Influence diagrams details 301

Jensen et al. 2
This is a synthetic ID used by Jensen et al. [64, page 141] to illustrate some prop-
erties of the IDs. Similarly, in this dissertation, this ID was used for illustrating
the minimalization of an ID (page 72).

U1 U2

U3

U4

D1

D2

D3

D4A

B

C

D

E

F

G

H

I

J

K

L

Figure B.9: Graph of the Jensen et al. 2 ID.

name type states
D1 decision yes, no
D2 decision yes, no
D3 decision yes, no
D4 decision yes, no
A chance present, absent
B chance present, absent
C chance present, absent
D chance present, absent

name type states
E chance present, absent
F chance present, absent
G chance present, absent
H chance present, absent
I chance present, absent
J chance present, absent
K chance present, absent
L chance present, absent

Table B.9: Details of each variable in the Jensen et al. 2 ID.

302 Appendix B. Additional Information about the Experimental Work

Maze
This is an ID for solving the problem of finding a path in a maze [113].

u

x2

y2

d1

ns1

es1

ss1

ws1

x1

y1

d0

ns0

es0

ss0

ws0

x0

y0

Figure B.10: Graph of the Maze ID.

name type states
x2 chance x0, x1, x2, x3, x4, x5, x6, x7, x8
y2 chance y0, y1, y2, y3, y4, y5, y6
d1 decision North, East, South, West, Notmove
ns1 chance 0, 1
es1 chance 0, 1
ss1 chance 0, 1
ws1 chance 0, 1
x1 chance x0, x1, x2, x3, x4, x5, x6, x7, x8
y1 chance y0, y1, y2, y3, y4, y5, y6
d0 decision North, East, South, West, Notmove
ns0 chance 0, 1
es0 chance 0, 1
ss0 chance 0, 1
ws0 chance 0, 1
x0 chance x0, x1, x2, x3, x4, x5, x6, x7, x8
y0 chance y0, y1, y2, y3, y4, y5, y6

Table B.10: Details of each variable in the Maze ID.

B.2. Influence diagrams details 303

Mildew 1
This ID [63] a decision problem in agriculture where a farmer has to decide on a
treatment with fungicides for a wheat field.

Q

OQ

H

M Ms

U

A

OM C

Figure B.11: Graph of the Mildew 1 ID.

name type states
Q chance f, a, g, v
OQ chance f, a, g, v
H chance r, b, p, f, a, g, v
M chance no, l, m, s
Ms chance no, l, m, s
A decision no, l, m, h
OM chance no, l, m, s

Table B.11: Details of each variable in the Mildew 1 ID.

304 Appendix B. Additional Information about the Experimental Work

Mildew 4
This is an extended version of the previous ID [63].

OH

T

COM A

U

Ms

M

H

OQ

Q

Figure B.12: Graph of the Mildew 4 ID.

name type states
OH chance r, b, p, f, a, g, v
T decision now, wait1week, wait2weeks
OM chance no, l, m, s
A decision no, l, m, h
Ms chance no, l, m, s
M chance no, l, m, s
H chance r, b, p, f, a, g, v
OQ chance f, a, g, v
Q chance f, a, g, v

Table B.12: Details of each variable in the Mildew 4 ID.

B.2. Influence diagrams details 305

Motivation ID
This is a synthetic ID was used in this dissertation for motivating the improved
evaluation methods proposed in Chapter 12. It was originally proposed at [20].

AB

C

E

F

G

D1

U1

U2

Figure B.13: Graph of the Motivation ID.

name type states
A chance a1, a2, a3, a4, a5
B chance present, absent
C chance present, absent
E chance high, medium, low
F chance f1, f3, f3, f4
G chance high, medium, low
D1 decision maybe, yes, no

Table B.13: Details of each variable in the Motivation ID.

306 Appendix B. Additional Information about the Experimental Work

NHL
This a real world ID used in medicine for the management of primary gastric
non-Hodgkin lymphoma [76].

Utility

FiveYearRes

EarlyResult

ImmediateSurv

PostSurgicalSurv

PostCtRtSurv

TherapyAdjust

Hemorrhage

Perforation

BmDepression

Eradication

HelicoPylory

HistologicalClassif GeneralHealthStat

ClinicalPres

CStage

BulkyDisease

Age

CtRtSchedule

Surgery

HelicoTreat

Figure B.14: Graph of the NHL ID.

B.2. Influence diagrams details 307

name type states
FiveYearRes chance ALIVE, DEATH
EarlyResult chance CR, PR, NC, PD
ImmediateSurv chance NO, YES
PostSurgicalSurv chance NO, YES
PostCtRtSurv chance NO, YES
TherapyAdjust chance NO, YES
Hemorrhage chance NO, YES
Perforation chance NO, YES
BmDepression chance NO, YES
Eradication chance NO, YES
HelicoPylory chance ABSENT, PRESENT
HistologicalClassif chance LOWGRADE, HIGHGRADE
GeneralHealthStat chance POOR, AVERAGE, GOOD
ClinicalPres chance NONE, HEMORRHAGE, PERFORA-

TION, OBSTRUCTION
CStage chance I, II1, II2, III, IV
BulkyDisease chance YES, NO
Age chance v1019, v2029, v3039, v4044, v4549,

v5054, v5559, v6064, v6569, v7079,
v8089, GE90

CtRtSchedule decision NONE, RadioTherapy, ChemoTherapy,
ChemoTherapyNEXTRadioTherapy

Surgery decision NONE, CURATIVE, PALLIATIVE
HelicoTreat decision NO, YES

Table B.14: Details of each variable in the NHL ID.

308 Appendix B. Additional Information about the Experimental Work

Oil
This ID represents the oil wildcatter’s decision problem [96, 105]. In this
dissertation, this ID was used to illustrate the basic concepts about IDs (page 55).
Yet, here the full names of the variables and states are shown (e.g., ’empty’ instead
of ’e’).

OilSeismic

PayDrill

Test

Cost

Figure B.15: Graph of the Oil ID.

name type states
Oil chance empty, wet, soak
Seismic chance closed, open, diff
Drill decision drill, notDrill
Test decision test, notTest

Table B.15: Details of each variable in the Oil ID.

B.2. Influence diagrams details 309

Oil Split Costs
This ID is equivalent to the previous one, but with an additional utility node rep-
resenting the cost of drilling. In the original diagram, this cost is included in the
utility potential associated to the node Pay.

DrillCost

OilSeismic

PayDrillCost

Test

Figure B.16: Graph of the Oil Split Costs ID.

name type states
Oil chance empty, wet, soak
Seismic chance closed, open, diff
Drill decision drill, notDrill
Test decision test, notTest

Table B.16: Details of each variable in the Oil Split Costs ID.

310 Appendix B. Additional Information about the Experimental Work

Poker
This is an ID representing the decision problem in the poker game [64, page 111].

Besthand

OH2

MH

OH1

SC

OH0

FC

D U

Figure B.17: Graph of the Poker ID.

name type states
Besthand chance myhand, opponent
OH2 chance no, 1a, 2v, 2a, fl, st, 3v, stfl
MH chance no, 1a, 2v, 2a, fl, st, 3v, stfl
OH1 chance no, 1a, 2cons, 2s, 2v, fl, st, 3v, stfl
SC chance 0Changed, 1Changed, 2Changed
OH0 chance no, 1a, 2cons, 2s, 2v, fl, st, 3v, stfl
FC chance ochanged, 1changed, 2changed, 3changed
D decision yes, no

Table B.17: Details of each variable in the Poker ID.

B.2. Influence diagrams details 311

Poker Extended
This is an extended version of the previous ID representing the decision problem
in the poker game [64, page 137].

MSCMFC

MH0 MH1 MH

UD

Besthand

OH2

OH1

SC

OH0

FC

Figure B.18: Graph of the Poker Extended ID.

name type states
MSC decision 0changed, 1changed, 2changed
MFC decision 0changed, 1changed, 2changed, 3changed
MH0 chance no, 1a, 2cons, 2s, 2v, fl, st, 3v, stfl
MH1 chance no, 1a, 2cons, 2s, 2v, fl, st, 3v, stfl
MH chance no, 1a, 2v, 2a, fl, st, 3v, stfl
D decision fold, call
Besthand chance myhand, opponent
OH2 chance no, 1a, 2v, 2a, fl, st, 3v, stfl
OH1 chance no, 1a, 2cons, 2s, 2v, fl, st, 3v, stfl
SC chance 0Changed, 1Changed, 2Changed
OH0 chance no, 1a, 2cons, 2s, 2v, fl, st, 3v, stfl
FC chance 0changed, 1changed, 2changed, 3changed

Table B.18: Details of each variable in the Poker Extended ID.

312 Appendix B. Additional Information about the Experimental Work

Reactor
This is an ID modelling the Reactor decision problem as described by Bielza and
Shenoy [3, 4]. In Chapter 6, this ID was used to introduce asymmetric decision
problems. Note that the long names for the variables and states have been used.

AdavancedTest ConventionalD1

D2

U1U2U3

Figure B.19: Graph of the Reactor ID.

name type states
Adavanced chance aSuccess, aLimited, aMajor
Test chance excellent, good, bad, noresult
Conventional chance cSuccess, cFailure
D1 decision test, notest
D2 decision advanced, conventional, none

Table B.19: Details of each variable in the Reactor ID.

B.2. Influence diagrams details 313

Thinkbox
This ID models a simplified version of the dice game called “Tænkeboks” [57].

ArneDice BenteDice

AB1

BB1

U4

AB2

BB2

U5

U6

AB3 U7

Figure B.20: Graph of the Thinkbox ID.

name type states
ArneDice chance v1, v2
BenteDice chance v1, v2
AB1 chance v1, v2, v2*1, v2*2
BB1 decision v2, v2*1, v2*2, call
AB2 chance v2*1, v2*2, call
BB2 decision v2*2, call
AB3 chance call

Table B.20: Details of each variable in the Thinkbox ID.

314 Appendix B. Additional Information about the Experimental Work

Threat of Entry
This ID is one of the networks developed for teaching MBA students competitive
analysis, at New York University Stern School of Business [57].

Utility

EntryStrategy

Retaliation LegalBarriers

AccessToDistribution

CustomerLoyalty BrandAwareness

BarriersToEntry

ThreatOfEntry

ProductDifferentiation

AbsCostAdvOfEntr

EconomicsOfScale

CapitalRequirements

Figure B.21: Graph of the Threat of Entry ID.

name type states
EntryStrategy chance Niche, Differentiation, PriceCutting,

AbandonEntry
Retaliation decision HighlyExpected, NotExpected
LegalBarriers decision GovRegulation, QuasiMonopoly, Few
AccessToDistribution decision FreeAccess, FixedCostsInCarryingNew-

Products, DistributorsPreference-
ToEstablishedFirms

CustomerLoyalty decision Strong, Weak
BrandAwareness decision Strong, Weak
BarriersToEntry chance StrongBarriers, WeakBarriers
ThreatOfEntry chance HightThreat, LowThreat
ProductDifferentiation decision VeryHigh, Moderate, Low
AbsCostAdvOfEntr decision Yes, No
EconomicsOfScale decision Necessary, Unnecessary
CapitalRequirements decision Low, High

Table B.21: Details of each variable in the Threat of Entry ID.

B.2. Influence diagrams details 315

Wildlife
This is an ID used to evaluate the population viability of wildlife species [81].

D

Proxy1 Proxy2 Proxy3

KEC1 KEC2 KEC3

SumHabitat1 SumHabitat2

PopulResp Utility

Figure B.22: Graph of the Wildlife ID.

name type states
D decision yes, no
Proxy1 chance high, low
Proxy2 chance high, low
Proxy3 chance high, low
KEC1 chance high, low
KEC2 chance high, low
KEC3 chance high, low
SumHabitat1 chance high, low
SumHabitat2 chance high, low
PopulResp chance high, low

Table B.22: Details of each variable in the Wildlife ID.

316 Appendix B. Additional Information about the Experimental Work

B.3 Constraint rules

For the empirical validation of the proposed method for solving asymmetric deci-
sion problems (Section 10.4), a set of six IDs was used. Herein we detail the set
of constraint rules of each these IDs.

Car Buyer
FirstTestDecision ∈ {NoTest} ⇔ FirstTestResults ∈ {NoResults}
FirstTestResults ∈ {Defects2} ⇒ FirstTestDecision ∈ {FuelElect}
SecondTestDecision ∈ {NoTest} ⇔ SecondTestResults ∈ {NoResults}

Dating
Ask? ∈ {no} ⇔ Accept ∈ {noresp}
Accept ∈ {noresp, no} ⇔ ToDo ∈ {nopref}
Rest ∈ {nodec} ⇔ rMood ∈ {unknown}
Rest ∈ {nodec} ∨ rMood ∈ {unknown} ⇔ rExp ∈ {unknown}
Movie ∈ {nodec} ⇔ mMood ∈ {unknown}
Movie ∈ {nodec} ∨mMood ∈ {unknown} ⇔ mExp ∈ {unknown}
NClub? ∈ {nodec, yes} ⇔ TV Exp ∈ {unknown}
NClub? ∈ {nodec, no} ⇔ Club ∈ {unknown}
NClub? ∈ {nodec, no} ⇔MeetFr ∈ {unknown}
Club ∈ {unknown} ∨MeetFr ∈ {unknown} ⇔ NCExp ∈ {unknown}

Diabetes
Test1 ∈ {notest} ⇔ Result1 ∈ {nores}
Test1 ∈ {urine} ⇔ Result1 ∈ {urinepositive, urinenegative}
Test1 ∈ {blood} ⇔ Result1 ∈ {bloodpositive, bloodnegative}
Test2 ∈ {notest} ⇔ Result2 ∈ {nores}
Test2 ∈ {urine} ⇔ Result2 ∈ {urinepositive, urinenegative}
Test2 ∈ {blood} ⇔ Result2 ∈ {bloodpositive, bloodnegative}

B.3. Constraint rules 317

Maze
d0 ∈ {North} ⇒ d1 6∈ {South}
d1 ∈ {North} ⇒ d0 6∈ {South}
d0 ∈ {South} ⇒ d1 6∈ {North}
d1 ∈ {South} ⇒ d0 6∈ {North}
d0 ∈ {East} ⇒ d1 6∈ {West}
d1 ∈ {East} ⇒ d0 6∈ {West}
d0 ∈ {West} ⇒ d1 6∈ {East}
d1 ∈ {West} ⇒ d0 6∈ {East}
x0 ∈ {x0} ⇒ x1 ∈ {x0, x1}
x0 ∈ {x1} ⇒ x1 ∈ {x1, x0, x2}
x0 ∈ {x2} ⇒ x1 ∈ {x2, x1, x3}
x0 ∈ {x3} ⇒ x1 ∈ {x3, x2, x4}
x0 ∈ {x4} ⇒ x1 ∈ {x4, x3, x5}
x0 ∈ {x5} ⇒ x1 ∈ {x5, x4, x6}
x0 ∈ {x6} ⇒ x1 ∈ {x6, x5, x7}
x0 ∈ {x7} ⇒ x1 ∈ {x7, x6, x8}
x0 ∈ {x8} ⇒ x1 ∈ {x8, x7}
x1 ∈ {x0} ⇒ x2 ∈ {x0, x1}
x1 ∈ {x1} ⇒ x2 ∈ {x1, x0, x2}
x1 ∈ {x2} ⇒ x2 ∈ {x2, x1, x3}
x1 ∈ {x3} ⇒ x2 ∈ {x3, x2, x4}
x1 ∈ {x4} ⇒ x2 ∈ {x4, x3, x5}
x1 ∈ {x5} ⇒ x2 ∈ {x5, x4, x6}
x1 ∈ {x6} ⇒ x2 ∈ {x6, x5, x7}
x1 ∈ {x7} ⇒ x2 ∈ {x7, x6, x8}
x1 ∈ {x8} ⇒ x2 ∈ {x8, x7}
y0 ∈ {y0} ⇒ y1 ∈ {y0, y1}
y0 ∈ {y1} ⇒ y1 ∈ {y1, y0, y2}
y0 ∈ {y2} ⇒ y1 ∈ {y2, y1, y3}
y0 ∈ {y3} ⇒ y1 ∈ {y3, y2, y4}
y0 ∈ {y4} ⇒ y1 ∈ {y4, y3, y5}
y0 ∈ {y5} ⇒ y1 ∈ {y5, y4, y6}
y0 ∈ {y6} ⇒ y1 ∈ {y6, y5}

318 Appendix B. Additional Information about the Experimental Work

y1 ∈ {y0} ⇒ y2 ∈ {y0, y1}
y1 ∈ {y1} ⇒ y2 ∈ {y1, y0, y2}
y1 ∈ {y2} ⇒ y2 ∈ {y2, y1, y3}
y1 ∈ {y3} ⇒ y2 ∈ {y3, y2, y4}
y1 ∈ {y4} ⇒ y2 ∈ {y4, y3, y5}
y1 ∈ {y5} ⇒ y2 ∈ {y5, y4, y6}
y1 ∈ {y6} ⇒ y2 ∈ {y6, y5}

NHL
HelicoTreat ∈ {NO} ⇒ Surgery ∈ {NONE}
HelicoTreat ∈ {NO} ⇒ CtRtSchedule ∈ {NONE}

Reactor 4

D1 ∈ {test} ⇒ Test ∈ {excelent, good, bad}
D1 ∈ {notest} ⇒ Test ∈ {noresult}
Test ∈ {bad} ⇒ D2 ∈ {conventional, none}
D2 ∈ {conventional, none} ∨ Test ∈ {b} ⇒ Advanced ∈ {}
D2 ∈ {advanced, none} ⇒ Conventional ∈ {}

4The constraint rules for the Reactor ID are depicted using the long names for variables and
states given in page 312.

Index

absorption, 84, 256
addition, 58, 148, 210
algebra of potentials, 58
ancestor, 99
applicability, 188
arc

arc in a graph, 24
barren node, 72
conditional arc, 56
informational arc, 56
non-forgetting arc, 57
redundant arc, 72

arc reversal (AR), 78
asymmetries

asymmetric decision problem, 117,
187

functional asymmetries, 118
order asymmetries, 118
structural asymmetries, 118

available states, 99

barren, 72
Bayes’ rule, 31, 35
Bayesian network (BN), 44
building, 109

chain rule, see joint probability 45, see
joint probability 65

chance node, 53

chance variable, 31
clique, 76, 83, 162

clique candidate, 76
size, 76
weight, 76

combination, 58, 148, 195, 210
combination candidate set, 241
combination heuristic, 250
conditional independence, 69
conditional probability, 30
conditional probability distribution (CPD),

34, 54
configuration, 32, 53
connection

converging connection, 27
diverging connection, 27
serial connection, 27

consistency, 53
constraint rule, 128, 188
credal network, 134
credal set, 134

d-separation, 26, 69
DAG , see graph25
decision node, 53
decision problem, 48
decision theory, 47
decision tree, 49
division, 60, 148, 195

319

320 Index

domain, 53
domain of a variable, 53
dominated solution, 165

elimination heuristic, 77
equivalent ID, 79
evaluation, 65
event, 29
event space, 29
expected utility, 48, 65
extended configuration, 101

fill-in arc, 77

graph, 24
directed acyclic graph (DAG), 25
directed graph, 24
undirected graph, 24

group, 76

head to head, see connection 27
head to tail, see connection 27
hypervolume, 165

impossible configuration, 122
impossible scenario, 122
independence, 102

conditional independence (CI), 35
context-specific independence (CSI),

38, 102
contextual weak independence (CWI),

41
contextual-weak independence (CWI),

102
marginal independence, 35
partial conditional independence (PCI),

40, 102
influence diagram (ID), 52

ID evaluation, 58, 65, 160, 199
ID evaluation algorithms, 73, 160,

199
regular ID, 54

information gain, 111
internal node, 92, 98
interval, 136, 207
interval dominance, 207, 220
interval-optimal, 220
interval-valued influence diagram (IID),

208
evaluation, 210

interval-valued potential, 207

joint expected utility, 65
joint probability, 33, 45, 65
joint variable, 53

lazy evaluation (LE), 83, 162
leaf ndoe, 92
leaf node, 98
linear programming, 215
link

link in a graph, 24

marginal distribution, 32
marginalization, 61

max-marginalization, 61, 155, 213
sum-marginalization, 33, 61, 155,

213
maximum, 148
maximum expected utility (MEU), 49,

65
MEU principle, 49

minimalization, 71
Multi-objective optimization, 165
multiplication, 37, 58, 148, 195, 210

Index 321

non-dominated solution, 165
non-forgetting

non-forgetting arcs, 57
non-forgetting assumption, 57

non-requisite, 71

operations with potentials, 58, 146, 195,
210

Pareto front, 165
partial order, 56
path, 25
perfect recall, 57
perturbation, 226
policy, 65
potential, 54

interval-valued potential, 136
interval-valued probability potential

(IPP), 137
interval-valued utility potential (IUP),

136
probability potential (PP), 54
utility potential (UP), 54

predecessor, 25
conditional predecessor, 56
direct predecessor, 53
indirect predecessor, 53
informational predecessor, 56

probabilistic barren, 250
probabilistic graphical model (PGM), 44
probability, 29
probability distribution, 32
projection, see marginalization 61
proper IPP, 137
pruning, 94, 114
pruning threshold, 114

random variable see chance variable, 31

reachability, 138
redundancy, 72
regularity, 54
restriction, 63, 146

sensitivity analysis, 226
singletons, 244
space savings, 168
speedup, 168
SPI lazy evaluation (SPI-LE), 256
spliting criteria, 111
state, 53
strategy, 65
strong junction tree, 83
successor

direct successor, 53
indirect succssor, 53

sucessor, 25
symbolic probabilistic inference (SPI),

163, 240

table, 89
tail to tail, see connection 27
terminal tree, 114
tree

binary tree, 96
numerical tree (NT), 92
recursive probability tree (RPT), 95
terminal tree, 94

treewidth, 77

unity potential, 61
utility node, 53

variable elimination (VE), 73, 160, 199,
257

322 Index

Bibliography

[1] M. A. Artaso Landa. An empirical comparison of Influence Diagrams al-
gorithms. Master’s thesis, UNED, Escuela Técnica Superior de Ingenierı́a
Informática, 2014.

[2] S. Benferhat and S. Smaoui. Hybrid possibilistic networks. International
Journal of Approximate Reasoning, 44(3):224 – 243, 2007.

[3] C. Bielza and P. P. Shenoy. A comparison of graphical techniques for asym-
metric decision problems: Supplement to management science paper. Tech-
nical report, Working Paper, 1998.

[4] C. Bielza and P. P. Shenoy. A comparison of graphical techniques for asym-
metric decision problems. Management Science, 45(11):1552–1569, 1999.

[5] Mark Bloemeke and Marco Valtorta. A hybrid algorithm to compute
marginal and joint beliefs in Bayesian networks and its complexity. In Pro-
ceedings of the 14th conference on Uncertainty in AI, pages 16–23. Morgan
Kaufmann Publishers Inc., 1998.

[6] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions
of small treewidth. In Proceedings of the twenty-fifth annual ACM sympo-
sium on Theory of computing, pages 226–234. ACM, 1993.

[7] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific
independence in Bayesian networks. In Proceedings of the 12th Interna-
tional Conference on Uncertainty in Artificial Intelligence, pages 115–123.
Morgan Kaufmann Publishers Inc., 1996.

323

324 Bibliography

[8] J. S. Breese and K. W. Fertig. Decision making with interval influence
diagrams. In Proceedings of the Sixth Annual Conference on Uncertainty
in Artificial Intelligence, pages 467–480. Elsevier Science Inc., 1990.

[9] C. J. Butz, J. Chen, K. Konkel, and P. Lingras. A comparative study of
variable elimination and arc reversal in Bayesian network inference. In
FLAIRS Conference, 2009.

[10] C. J. Butz and M. J. Sanscartier. On the role of contextual weak inde-
pendence in probabilistic inference. In Advances in Artificial Intelligence,
pages 185–194. Springer, 2002.

[11] R. Cabañas, A. Antonucci, A. Cano, and M. Gómez-Olmedo. Variable
elimination for interval-valued influence diagrams. In Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty: 13th European Confer-
ence, ECSQARU 2015, Compiègne, France, July 15-17, 2015. Proceedings,
volume 9161 LNAI, pages 541–551. Springer, 2015.

[12] R. Cabañas, A. Antonucci, A. Cano, and M Gómez-Olmedo. Evaluating
interval-valued influence diagrams. International Journal of Approximate
Reasoning, 80:393–411, 2017.

[13] R. Cabañas, A Cano, M Gómez-Olmedo, and A. L. Madsen. Approxi-
mate lazy evaluation of influence diagrams. In Advances in Artificial In-
telligence: 15th Conference of the Spanish Association for Artificial In-
telligence, CAEPIA 2013, Madrid, September 17-20, 2013, Proceedings,
volume 8109, page 321. Springer, 2013.

[14] R. Cabañas, A. Cano, M. Gómez-Olmedo, and A. L. Madsen. On SPI-lazy
evaluation of influence diagrams. In Probabilistic Graphical Models: 7th
European Workshop, PGM 2014, Utrecht, The Netherlands, September 17-
19, 2014. Proceedings, pages 97–112. Springer International Publishing,
2014.

[15] R. Cabañas, A. Cano, M. Gómez-Olmedo, and A. L. Madsen. Improve-
ments to variable elimination and symbolic probabilistic inference for eval-
uating influence diagrams. International Journal of Approximate Reason-
ing, 70:13–35, 2016.

Bibliography 325

[16] R. Cabañas, A. Cano, M Gómez-Olmedo, and A.L. Madsen. Heuristics for
determining the elimination ordering in the influence diagram evaluation
with binary trees. In Twelfth Scandinavian Conference on Artificial Intel-
ligence: SCAI 2013, volume 257 of Frontiers in Artificial Intelligence and
Applications, pages 65–74. IOS Press, 2013.

[17] R. Cabañas, M. Gómez, and A. Cano. Approximate inference in influence
diagrams using binary trees. In Proceedings of the Sixth European Work-
shop on Probabilistic Graphical Models (PGM-12), 2012.

[18] R. Cabañas, M. Gómez-Olmedo, and A. Cano. Evaluating asymmetric
decision problems with binary constraint trees. In Symbolic and Quantia-
tive Approaches to Resoning with Uncertainty: 12th European Conference,
ECSQARU 2013, Utrecht, The Netherlands, July 8-10, 2013, Proceedings,
volume 7958 LNAI, pages 85–96. Springer, 2013.

[19] R. Cabañas, M. Gómez-Olmedo, and A. Cano. Using binary trees for the
evaluation of influence diagrams. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 24(01):59–89, 2016.

[20] R. Cabañas, A. L. Madsen, M. Gómez-Olmedo, and A. Cano. On SPI
for evaluating Influence Diagrams, pages 506–516. Springer International
Publishing, Cham, 2014.

[21] H. J. Call and W. A. Miller. A comparison of approaches and implemen-
tations for automating decision analysis. Reliability Engineering & System
Safety, 30(1):115–162, 1990.

[22] A. Cano, M. Gómez, and S. Moral. A forward–backward Monte Carlo
method for solving influence diagrams. International Journal of Approxi-
mate Reasoning, 42(1):119–135, 2006.

[23] A. Cano, M. Gómez-Olmedo, S. Moral, and C. B. Pérez-Ariza. Recur-
sive probability trees for bayesian networks. In Current Topics in Artificial
Intelligence, pages 242–251. Springer, 2009.

326 Bibliography

[24] A. Cano, M. Gómez-Olmedo, S. Moral, C. B. Pérez-Ariza, and
A. Salmerón. Learning recursive probability trees from probabilistic poten-
tials. International Journal of Approximate Reasoning, 53(9):1367–1387,
2012.

[25] A. Cano, M. Gómez-Olmedo, S. Moral, C. B. Pérez-Ariza, and
A. Salmerón. Inference in bayesian networks with recursive probability
trees: data structure definition and operations. International Journal of
Intelligent Systems, 28(7):623–647, 2013.

[26] A. Cano, M. Gómez-Olmedo, and S. Moral. Approximate inference in
Bayesian networks using binary probability trees. International Journal of
Approximate Reasoning, 52(1):49–62, 2011.

[27] A. Cano and S. Moral. Heuristic algorithms for the triangulation of graphs.
Advances in Intelligent Computing—IPMU’94, pages 98–107, 1995.

[28] A. Cano, S. Moral, and A. Salmerón. Penniless propagation in join trees.
International Journal of Intelligent Systems, 15(11):1027–1059, 2000.

[29] J. F. Carriger and M. G. Barron. Minimizing risks from spilled oil to
ecosystem services using influence diagrams: The deepwater horizon spill
response. Environmental science & technology, 45(18):7631–7639, 2011.

[30] A. Charnes and W. W. Cooper. Programming with linear fractional func-
tionals. Naval Research logistics quarterly, 9(3-4):181–186, 1962.

[31] J. M. Charnes and P. P. Shenoy. Multistage Monte Carlo method for solving
influence diagrams using local computation. Management Science, pages
405–418, 2004.

[32] E. Charniak. Bayesian networks without tears. AI magazine, 12(4):50,
1991.

[33] B. Cheng and D. M. Titterington. Neural networks: A review from a statis-
tical perspective. Statistical science, pages 2–30, 1994.

[34] B. R. Cobb. Hybrid influence diagrams for threat identifica-
tion. In Proceedings of the 14th Army Conference on Applied

Bibliography 327

Statistics, Lexington, VA. Available online at: http://www. vmi.
edu/uploadedfiles/faculty webs/ecbu/cobbbr/edited books/acas2009. pdf.
Citeseer, 2008.

[35] G. Corani, A. Antonucci, and M. Zaffalon. Bayesian networks with impre-
cise probabilities: Theory and application to classification. In Data Mining:
Foundations and Intelligent Paradigms, pages 49–93. Springer, 2012.

[36] Z. Covaliu and R.M. Oliver. Representation and solution of decision
problems using sequential decision diagrams. Management Science,
41(12):1860–1881, 1995.

[37] F. G. Cozman. Credal networks. Artificial Intelligence, 120:199–233, 2000.

[38] P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian
inference. Artificial Intelligence, 93(1):1–27, 1997.

[39] B. D’Ambrosio and S. Burgess. Some experiments with real-time decision
algorithms. In Proceedings of the 12th international conference on Uncer-
tainty in AI, pages 194–202. Morgan Kaufmann Publishers Inc., 1996.

[40] P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks
and expert systems: Exact computational methods for Bayesian networks.
Springer, 2007.

[41] L. M. de Campos, J. F. Huete, and S. Moral. Probability intervals: a tool for
uncertain reasoning. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 2(02):167–196, 1994.

[42] R. Dechter. Bucket elimination: A unifying framework for probabilistic
inference. In Learning in graphical models, pages 75–104. Springer, 1998.

[43] R. Demirer and P.P. Shenoy. Sequential valuation networks for asym-
metric decision problems. European Journal of Operational Research,
169(1):286–309, 2006.

[44] F. J. Dı́ez and M. Luque. Representing decision problems with decision
analysis networks. Technical report, UNED, Madrid, Spain, 2010.

328 Bibliography

[45] Hugin Expert. Hugin api–reference manual, version 7.0. Hugin Expert A/S,
2008.

[46] B.C. Ezell, S.P. Bennett, D. Von Winterfeldt, J. Sokolowski, and A.J.
Collins. Probabilistic risk analysis and terrorism risk. Risk Analysis,
30(4):575–589, 2010.

[47] E. Fagiuoli and M. Zaffalon. Decisions under uncertainty with credal in-
fluence diagrams. Technical Report 51-98, IDSIA, 1998. (unpublished).

[48] E. Fagiuoli and M. Zaffalon. A note about redundancy in influence dia-
grams. International Journal of Approximate Reasoning, 19(3):351–365,
1998.

[49] E. A. Feinberg and A. Shwartz. Handbook of Markov decision processes:
methods and applications, volume 40. Springer Science & Business Media,
2012.

[50] K. W. Fertig and J. S. Breese. Interval influence diagrams. In Proceedings
of the Fifth Annual Conference on Uncertainty in Artificial Intelligence,
pages 149–162. North-Holland Publishing Co., 1990.

[51] K. W. Fertig and J. S. Breese. Probability intervals over influence dia-
grams. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(3):280–286, 1993.

[52] D. Geiger and D. Heckerman. Advances in probabilistic reasoning. In
Proceedings of the Seventh Conference on Uncertainty in Artificial Intelli-
gence, pages 118–126. Morgan Kaufmann Publishers Inc., 1991.

[53] D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian
networks. Networks, 20(5):507–534, 1990.

[54] M. Gómez-Olmedo and A. Cano. Applying numerical trees to evaluate
asymmetric decision problems. In T.D. Nielsen and N. Zhang, editors,
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, vol-
ume 2711 of Lecture Notes in Computer Science, pages 196–207. Springer
Berlin Heidelberg, 2003.

Bibliography 329

[55] C. Goutis. A graphical method for solving a decision analysis problem.
Systems, Man and Cybernetics, IEEE Transactions on, 25(8):1181–1193,
1995.

[56] R. A. Howard and J. E. Matheson. Influence diagram retrospective. Deci-
sion Analysis, 2(3):144–147, 2005.

[57] HUGIN A/S. Hugin GUI help.
http://download.hugin.com/webdocs/manuals/Htmlhelp/. Ac-
cessed: 20th February 2017.

[58] N. Huntley and M. C. M. Troffaes. Normal form backward induction for decision
trees with coherent lower previsions. Annals of Operations Research, 195(1):111–
134, 2012.

[59] M. Jaeger. Probabilistic decision graphs—combining verification and AI tech-
niques for probabilistic inference. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 12(supp01):19–42, 2004.

[60] G. Jeantet and O. Spanjaard. Computing rank dependent utility in graphical mod-
els for sequential decision problems. Artificial Intelligence, 175(7):1366–1389,
2011.

[61] C. S. Jensen, U. Kjærulff, and A. Kong. Blocking Gibbs sampling in very large
probabilistic expert systems. International Journal of Human-Computer Studies,
42(6):647–666, 1995.

[62] F. Jensen, F. V. Jensen, and S. L. Dittmer. From Influence Diagrams to junction
trees. In Proceedings of the 10th international conference on Uncertainty in AI,
pages 367–373. Morgan Kaufmann Publishers Inc., 1994.

[63] F. V. Jensen. Introduction to Bayesian Networks. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1st edition, 1996.

[64] F. V. Jensen and T. D. Nielsen. Bayesian networks and decision graphs. Springer
Verlag, 2007.

[65] F. V. Jensen, T. D. Nielsen, and P. P. Shenoy. Sequential influence diagrams: A
unified asymmetry framework. International Journal of Approximate Reasoning,
42(1-2):101–118, 2006.

http://download.hugin.com/webdocs/manuals/Htmlhelp/

330 Bibliography

[66] Y. Jin and B. Sendhoff. Pareto-based multiobjective machine learning: An
overview and case studies. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 38(3):397–415, 2008.

[67] D. Kikuti, F. G. Cozman, and C. P. de Campos. Partially ordered preferences in
decision trees: computing strategies with imprecision in probabilities. In IJCAI
workshop on advances in preference handling, pages 118–123, 2005.

[68] U. B. Kjærulff. Triangulation of graphs–algorithms giving small total state space.
Technical report, Aalborg University, 1990.

[69] U. B. Kjaerulff and A. . Madsen. Bayesian networks and influence diagrams.
Springer Science+ Business Media, 200:114, 2008.

[70] D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[71] C. L. König. Representing asymmetric decision problems with decision analysis
networks. Master Thesis Advanced Artificial Intelligence, 2012.

[72] S. L. Lauritzen and D. Nilsson. Representing and solving decision problems with
limited information. Management Science, pages 1235–1251, 2001.

[73] S. L. Lauritzen and D. J Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological), pages 157–224, 1988.

[74] Z. Li and B. D’Ambrosio. Efficient inference in Bayes networks as a combinatorial
optimization problem. International Journal of Approximate Reasoning, 11(1):55–
81, 1994.

[75] J. Lintusaari. PCSI-labeled Directed Acyclic Graphs. PhD thesis, University of
Helsinki, 2014.

[76] P. J. F. Lucas, H. Boot, and B. G. Taal. Computer-based decision support in the
management of primary gastric non-hodgkin lymphoma. Methods of Information
in Medicine-Methodik der Information in der Medizin, 37(3):206–219, 1998.

[77] M. Luque, F. J. Dıez, and C. Disdier. Influence diagrams for medical decision
problems: Some limitations and proposed solutions. Proceedings of the Intelligent
Data Analysis in Medicine and Pharmacology, pages 85–86, 2005.

Bibliography 331

[78] A. L. Madsen. Variations over the message computation algorithm of lazy propa-
gation. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 36(3):636–648, 2005.

[79] A. L. Madsen and F. V. Jensen. Lazy evaluation of symmetric Bayesian decision
problems. In Proceedings of the 15th Conference on Uncertainty in AI, pages
382–390. Morgan Kaufmann Publishers Inc., 1999.

[80] A. L. Madsen and F. V. Jensen. Lazy propagation: a junction tree inference algo-
rithm based on lazy evaluation. Artificial Intelligence, 113(1-2):203–245, 1999.

[81] B.G. Marcot, R.S. Holthausen, M.G. Raphael, M.M. Rowland, and M.J. Wisdom.
Using Bayesian belief networks to evaluate fish and wildlife population viabil-
ity under land management alternatives from an environmental impact statement.
Forest ecology and management, 153(1):29–42, 2001.

[82] J. Merrick and G. S. Parnell. A comparative analysis of pra and intelligent adver-
sary methods for counterterrorism risk management. Risk Analysis, 31(9):1488–
1510, 2011.

[83] L. J. Neumann and O. Morgenstern. Theory of games and economic behavior.
Princeton University Press Princeton, NJ, 1947.

[84] T. D. Nielsen and F. V. Jensen. Representing and solving asymmetric Bayesian
decision problems. In Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence, pages 416–425. Morgan Kaufmann Publishers Inc., 2000.

[85] T. D. Nielsen and F. V. Jensen. Sensitivity analysis in influence diagrams. Sys-
tems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
33(2):223–234, 2003.

[86] D. Nilsson and S. L. Lauritzen. Evaluating influence diagrams using LIMIDs. In
Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence,
pages 436–445. Morgan Kaufmann Publishers Inc., 2000.

[87] S. M. Olmsted. Representing and solving decision problems. Dissertation Ab-
stracts International Part B: Science and Engineering, 45(3), 1984.

[88] D. K. Owens, R. D. Shachter, and R. F. Nease. Representation and analysis of
medical decision problems with influence diagrams. Medical Decision Making,
17(3):241–262, 1997.

332 Bibliography

[89] J. Pearl. Bayesian networks: A model of self-activated memory for evidential
reasoning. University of California (Los Angeles). Computer Science Department,
1985.

[90] J. Pearl. Evidential reasoning using stochastic simulation of causal models. Arti-
ficial Intelligence, 32(2):245–257, 1987.

[91] J. Pearl and S. Russell. Bayesian networks. Computer Science Department, Uni-
versity of California, 1998.

[92] J. Pensar, H. Nyman, J. Lintusaari, and J. Corander. The role of local partial inde-
pendence in learning of Bayesian networks. Int. J. Approx. Reasoning, 69(C):91–
105, February 2016.

[93] A. Piatti, A. Antonucci, and M. Zaffalon. Building knowledge-based systems by
credal networks: a tutorial. Nova Science, page 0, 2010.

[94] R. Qi, L. Zhang, and D. Poole. Solving asymmetric decision problems with in-
fluence diagrams. In Proceedings of the Tenth international conference on Uncer-
tainty in artificial intelligence, pages 491–497. Morgan Kaufmann Publishers Inc.,
1994.

[95] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[96] H. Raiffa. Decision analysis: Introductory lectures on choices under uncertainty.
Addison-Wesley, 1968.

[97] S. Rı́os-Insua, M. Gómez, C. Bielza, and J. A. Fernández del Pozo. Implementa-
tion of IctNeo: a decision support system for jaundice management. In Operations
Research Proceedings 1999, pages 554–559. Springer, 2000.

[98] N. Robertson and P. D. Seymour. Graph minors. IV. tree-width and well-quasi-
ordering. Journal of Combinatorial Theory, Series B, 48(2):227–254, 1990.

[99] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. Graph theory and computing, 183:217, 1972.

[100] N. Wermuth S. L. Lauritzen. Graphical models for associations between variables,
some of which are qualitative and some quantitative. The Annals of Statistics,
17(1):31–57, 1989.

Bibliography 333

[101] A. Salmerón, A. Cano, and S. Moral. Importance sampling in Bayesian networks
using probability trees. Computational Statistics & Data Analysis, 34(4):387–413,
2000.

[102] R. D. Shachter. Evaluating influence diagrams. Operations research, pages 871–
882, 1986.

[103] R. D. Shachter. Bayes-ball: Rational pastime (for determining irrelevance and
requisite information in belief networks and influence diagrams). In Proceedings
of the Fourteenth conference on Uncertainty in artificial intelligence, pages 480–
487. Morgan Kaufmann Publishers Inc., 1998.

[104] R. D. Shachter, B. D’Ambrosio, and B. Del Favero. Symbolic probabilistic infer-
ence in belief networks. In AAAI, volume 90, pages 126–131, 1990.

[105] P. P. Shenoy. Valuation-based systems for Bayesian decision analysis. Operations
research, 40(3):463–484, 1992.

[106] P. P. Shenoy. Binary join trees for computing marginals in the shenoy-shafer archi-
tecture. International Journal of Approximate Reasoning, 17(2):239–263, 1997.

[107] P. P. Shenoy. Valuation network representation and solution of asymmetric de-
cision problems. European Journal of Operational Research, 121(3):579–608,
2000.

[108] J. E. Smith, S. Holtzman, and J. E. Matheson. Structuring conditional relationships
in influence diagrams. Operations Research, 41(2):280–297, 1993.

[109] M. C. M. Troffaes. Decision making under uncertainty using imprecise probabili-
ties. International Journal of Approximate Reasoning, 45(1):17–29, 2007.

[110] S. K. M. Wong and C. J. Butz. Contextual weak independence in Bayesian net-
works. In Proceedings of the 15th conference on Uncertainty in AI, pages 670–679.
Morgan Kaufmann Publishers Inc., 1999.

[111] H. Xu and P. Smets. Reasoning in evidential networks with conditional belief
functions. International Journal of Approximate Reasoning, 14(2–3):155–185,
1996.

[112] R. R. Yager and L. A. Zadeh. An introduction to fuzzy logic applications in intel-
ligent systems, volume 165. Springer Science & Business Media, 2012.

334 Bibliography

[113] C. Yuan, X. Wu, and E. A. Hansen. Solving multistage influence diagrams using
branch-and-bound search. Proceedings of the 26th Conference on Uncertainty in
Artificial Intelligence, UAI 2010, pages 691–700, 2010.

[114] Lihua Z., Weiyi L., and Lizhen W. Influence diagram model with interval-valued
utilities. In Eighth IEEE International Conference on Dependable, Autonomic and
Secure Computing, pages 601–605. IEEE Computer Society, 2009.

[115] M. Zaffalon. The naive credal classifier. Journal of Statistical Planning and Infer-
ence, 105(1):5–21, 2002.

[116] N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian network
inference. Journal of Artificial Intelligence Research, 5:301–328, 1996.

[117] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On
the design of pareto-compliant indicators via weighted integration. In Evolutionary
Multi-Criterion Optimization, pages 862–876. Springer, 2007.

	I Introduction
	Introducción (in Spanish)
	Contribuciones
	Reducción del coste computacional
	Evaluación eficiente de problemas de decisión asimétricos
	Extensión a modelos imprecisos

	Conclusiones y líneas futuras
	List of publications
	Líneas Futuras

	Introduction
	Contributions
	Computational cost reduction
	Efficient evaluation of asymmetric decision problems
	Extension to imprecise models

	Overview

	Fundamentals
	Reasoning under uncertainty
	Graph theory
	Basics
	Graphs and d-separation

	Probability Theory
	Basics
	Probabilities for variables
	Marginal and conditional independence
	More general forms of independence
	Context-specific independencies
	Partial conditional independencies
	Contextual-weak independencies

	Probabilistic graphical models
	Bayesian networks

	Probabilistic Graphical Models for Decision Reasoning
	Decision theory
	Decision trees
	Influence diagrams
	Definitions and notation
	Syntax
	Semantics

	Evaluation
	Operations with potentials
	Optimal policies and strategies

	Independence assumptions in IDs
	D-separation in IDs
	Minimalization of an ID

	Influence diagrams evaluation algorithms
	Variable elimination
	Elimination heuristics

	Arc reversal
	Lazy evaluation

	II Representation
	Binary Trees
	Introduction
	Previous approaches for potential representation
	Numerical trees
	Recursive probability trees

	Binary trees
	Definitions and notation
	Extended configuration
	Independencies encoded with BTs

	Learning exact and approximate BTs
	Building binary trees
	Splitting criteria
	Efficient computation of the information gain

	Pruning Binary Trees

	Conclusions

	Asymmetries Representation with Binary Trees
	Introduction
	Motivation
	Asymmetric decision problems
	IDs and asymmetries

	Asymmetries and binary trees
	Constraint rules
	Binary constraints trees

	Conclusions

	Interval-valued Potentials
	Introduction
	Related work
	Interval-valued potentials
	Conclusions

	III Evaluation
	Evaluation with Binary Trees
	Introduction
	Operations with binary trees
	Restriction
	Element-wise operations
	Marginalizations
	Complexity analysis

	ID evaluation algorithms with BTs
	Variable elimination
	Lazy evaluation
	Symbolic probabilistic inference

	Experimental work
	Multi-objective optimization problems
	Objectives and procedure
	Results for the NHL ID
	Storage requirements and computation time
	Error against time

	Results for the rest of IDs
	Storage requirements and computation time
	Error against time

	Conclusions

	Elimination Heuristics with BTs
	Introduction
	Motivation
	Proposed heuristics
	Minimum combined tree
	Minimum marginalised tree

	Experimental work
	Conclusions

	Evaluation of Asymmetric Decision Problems with BTs
	Introduction
	Applying constraints to potentials
	Applicability of a constraint rule
	Applying BCTs
	Improved operations

	ID Evaluation with BCTs
	Experimental work
	Conclusions

	Evaluation with Interval-valued Potentials
	Introduction
	Interval-valued influence diagrams
	Basic operations for evaluating IIDs
	New evaluation algorithms for IIDs
	Variable elimination in IIDs by linear programming
	Chance variables elimination from IPPs
	Chance variables elimination from IUPs
	Decision variables elimination

	A faster outer approximation
	Arc reversal in IIDs by linear programming
	Complexity analysis

	Sensitivity analysis
	Experimental work
	Conclusions

	Efficient Evaluation with Tables
	Introduction
	Motivation
	Definition of the problem

	Symbolic probabilistic inference for IDs
	Overview
	Combination candidate set
	Removal of chance variables
	Removal of a decision
	Combination heuristics
	Probabilistic Barren
	Example

	Correctness and complexity of SPI
	SPI Lazy Evaluation
	Optimization of variable elimination
	Experimental work
	Procedure and objectives
	Singletons and probabilistic barren
	Optimization of variable elimination
	Comparison of SPI and VE
	Pre-analysis algorithm

	Conclusions

	IV Conclusions
	Conclusions and Future Work
	List of publications
	Future work

	Appendices
	Proof of Proposition 6
	Information gain computation with Kullback-Leibler divergence
	Information gain computation with Euclidean distance

	Additional Information about the Experimental Work
	Code and system details
	Influence diagrams details
	Constraint rules

	Index
	Bibliography

