ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA

UNIVERSIDAD DE GRANADA

CONSTRUCCIÓN 4 . 5º CURSO

PATOLOGÍA DE LA CONSTRUCCIÓN

Patología de las cimentaciones . Recalces

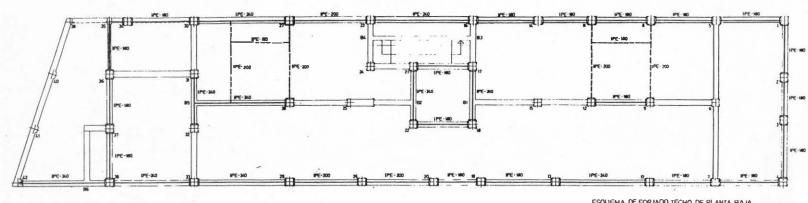
EMILIO HERRERA CARDENETE . ROSER MARTÍNEZ RAMOS DEPARTAMENTO DE CONSTRUCCIONES ARQUITECTÓNICAS

CAUSAS DE PATOLOGIAS EN LA CIMENTACION QUE GENERAN LA NECESIDAD DE UN RECALCE

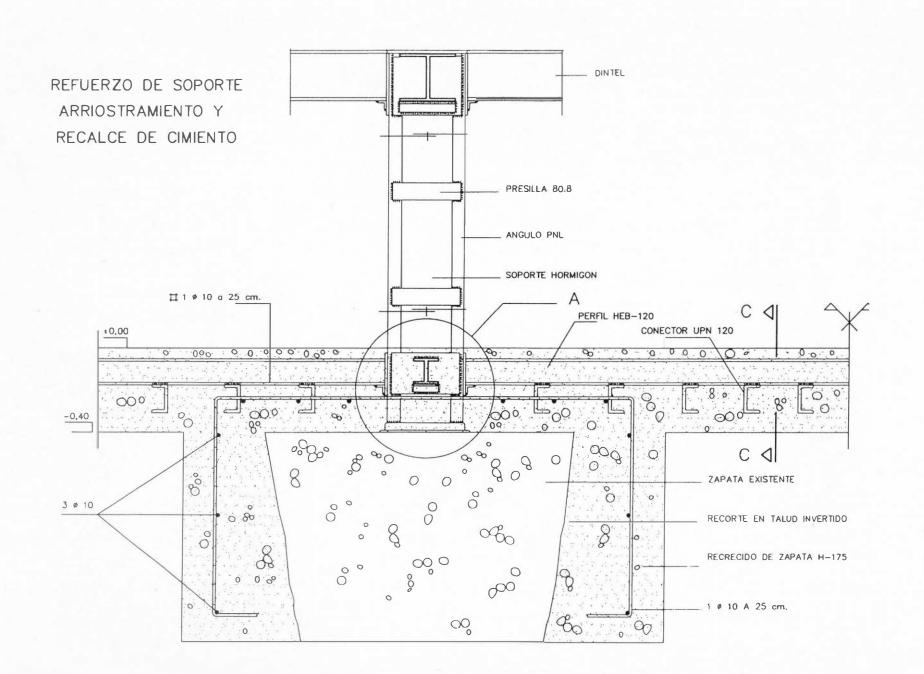
- DEFICIENCIAS O DETERIOROS DE CIMENTACION COMO ELEMENTO CONSTRUCTIVO - ESTRUCTURAL
- INSUFICIENCIA INICIAL DE LA CAPACIDAD PORTANTE DEL TERRENO
- INSUFICIENCIA SOBREVENIDA DE LA CAPACIDAD PORTANTE DEL TERRENO
- DISMINUCION SOBREVENIDA DE LA CAPACIDAD PORTANTE DEL TERRENO

RECALCES

PARA SUBSANAR DEFICIENCIAS O DETERIOROS DEL CIMIENTO

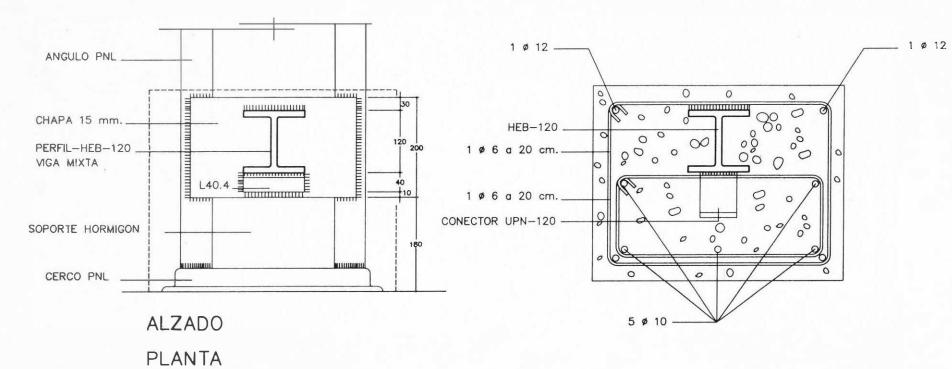

- DEMOLICION DEL CIMIENTO PRIMITIVO Y SUSTITUCIÓN POR OTRO
- REFUERZO DEL CIMIENTO PRIMITIVO MEDIANTE ZUNCHO PERIMETRAL O VIGA CINTURA
- REFUERZO DEL CIMIENTO PRIMITIVO MEDIANTE INTRODUCCION DE ARMADURAS, TENSORES O POSTENSADO

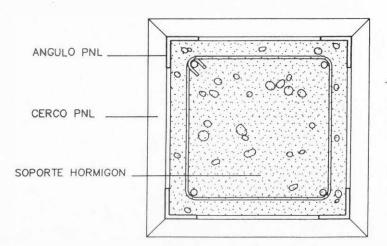
PARA PRODUCIR EQUILIBRIO ENTRE CARGA DE TRANSMISION DEL CIMIENTO Y CAPACIDAD PORTANTE DEL TERRENO

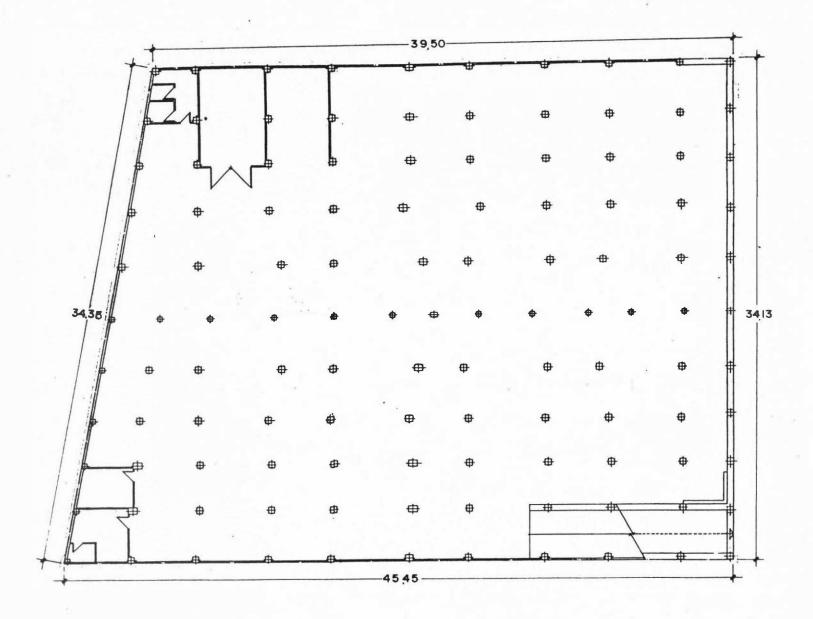

- RECALCES SUPERFICIALES
- RECALCES PROFUNDOS
- RECALCES ESPECIALES
- MEJORA DEL TERRENO

RECALCES SUPERFICIALES

- RECRECIDO DE ZAPATAS
- DISPOSICION DE VIGAS
- DISPOSICION DE LOSAS
- PROFUNDIZACION DEL PLANO DE APOYO
- REFUERZO O CREACION DE ZAPATAS

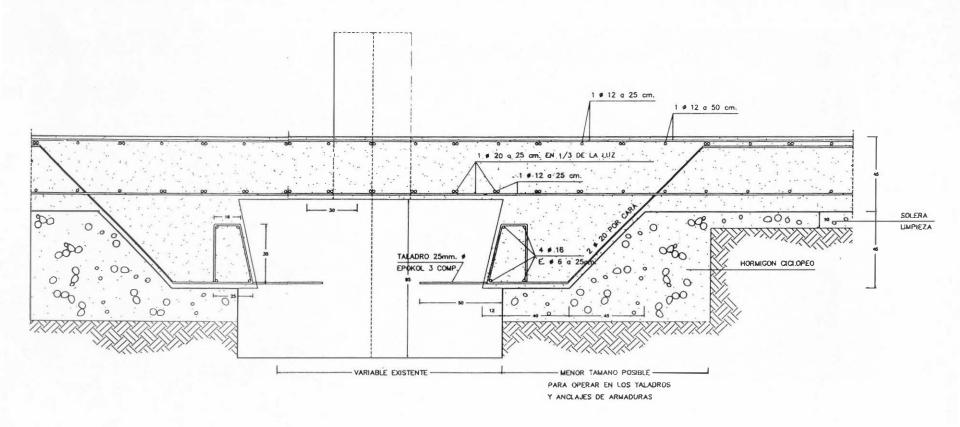


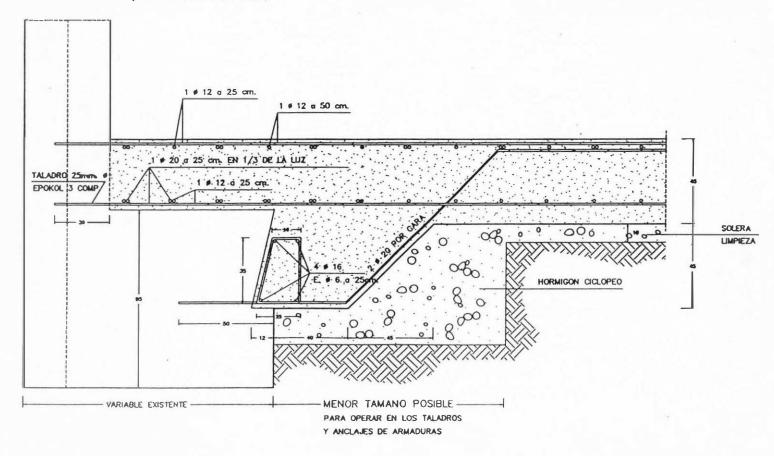

ESQUEMA DE FORJADO TECHO DE PLANTA BAJA



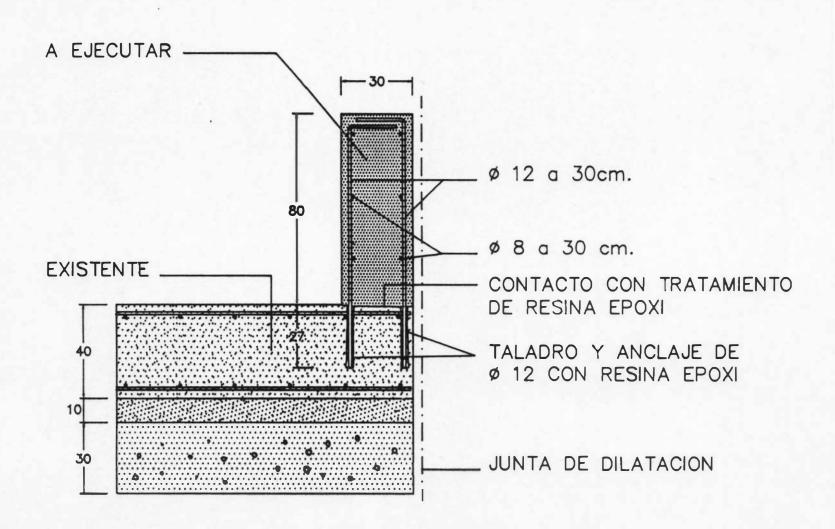
DETALLE A BASE DE SOPORTE

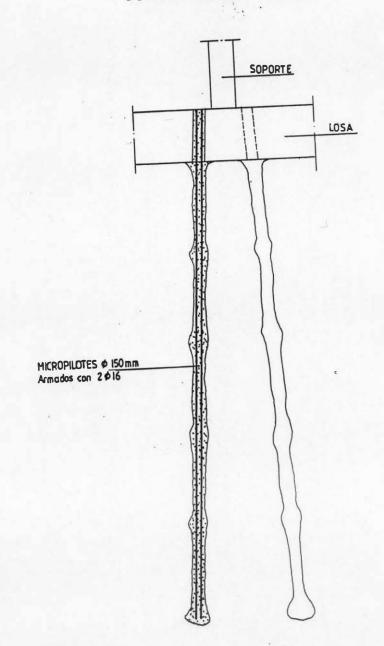
SECCION C-C RIOSTRA

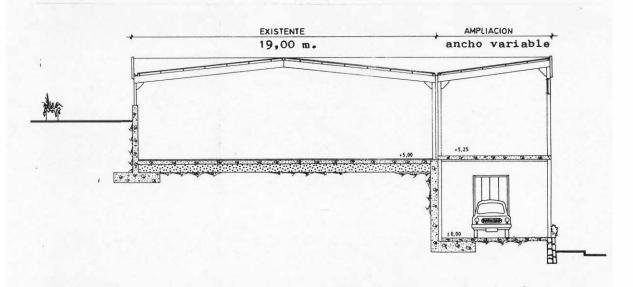




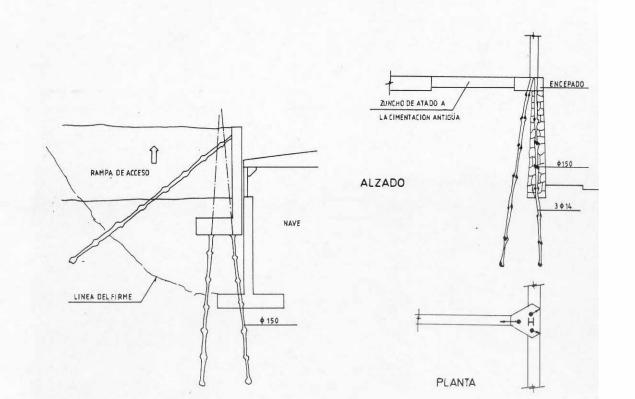
PLANTA SOTANO E=1:500

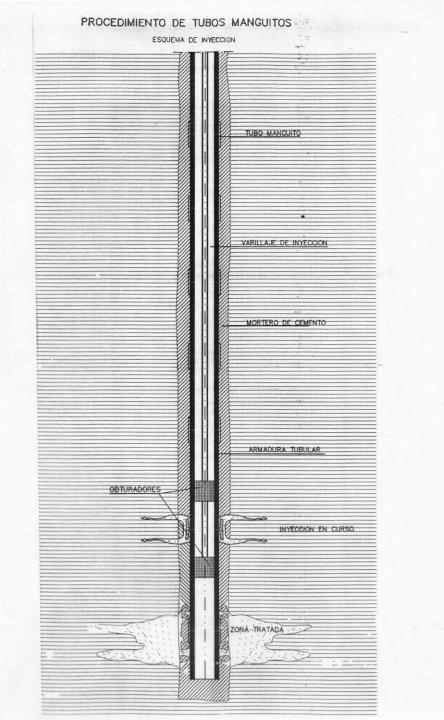

DETALLE ZAPATA

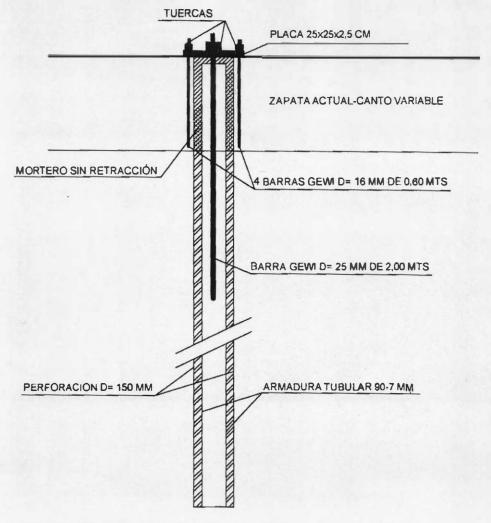

DETALLE ZAPATA MEDIANERA (NO SE ANCLA Ø A PILAR)



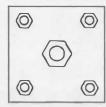
DETALLE DE MURETE DE RIGIDIZACION DE BORDE DE LOSA




DETALLE DE MICROPILOTES



SECCION



UNIÓN MICROPILOTE-ZAPATA

DETALLE PLACA DE ANCLAJE DE 25x25x2,5 CM

1. EVALUACION DE LAS CARGAS

Procedemos a ordenar las zapatas en dos grupos en función del estado de carga que soportan.

El primero de los grupos comprende a aquellas zapatas que presentan un estado de carga más desfavorable, sobre las que gravitan superficies de estructura comprendidas entre 11,00 y 14,70 m².

El segundo grupo comprende las restantes zapatas, sobre las que gravitan superficies de estructura iguales o inferiores a 8,20 m².

Dado que el edificio a recalzar posee 5 niveles de forjado, obtenemos unas superficies totales de 73,5 m² y de 41 m², respectivamente, para el caso más desfavorable correspondiente a cada uno de los grupos anteriores.

Suponiendo una carga por m² de 700 Kg/m², resulta una carga total de 51,45 y 28,7 T por zapata, respectivamente para cada uno de los casos.

Hemos considerado dicha carga por entender cubierto un suficiente margen de seguridad en las acciones, a través de la capacidad que ofrece actualmente la cimentación del edificio.

Grupo	Zapatas Nº	Superf. máx. de carga/nivel	Niveles de forjado	Superf. máx. de carga total	Carea / m²	Carga tetal
1	7-8-9-12-13 16-17-20-21	14,70 m²	5	73,50 m²	700 Kg/m ²	51,5 T (52 T)
2	1-2-3-4-5-6-10 11-14-15-18-19-22 23-24-25-26-27-28	8,20 m²	5	41,00 m²	700 Kg/m ²	28,7 T (29 T)

Si adoptamos como solución la disposición de 3 micropilotes por zapata, a efectos de estabilidad del grupo de pilotes resultante sin condicionarse a la efectividad del sistema de arriostramiento existente, resultará un total de 94 micros para el conjunto del edificio, correspondiendo 84 de ellos a las 28 zapatas recalzadas con 3 micros y los 10 restantes a la zapata corrida del núcleo de escaleras.

Dada la carga máxima de 52 T a soportar en zapatas del grupo 1 y la disposición de 3 micropilotes por zapata determinada, se precisarán micropilotes de 20 T de capacidad portante.

No obstante, dicha capacidad (20 T) de cada micropilote no resulta completamente efectiva, al quedar limitada por el cálculo de adherencia para la necesaria transmisión de la carga a las zapatas, estando ello condicionado por el canto que éstas poseen. Este efecto será, más adelante, evaluado.

2. CALCULO ESTRUCTURAL

Los micropibtes están formados por una armadura de forma cilíndrica, soldada longitudinalmente por resistencia eléctrica y de las siguientes características:

* Diámetro exterior: ø 73 mm

* Espesor de pared: 5 mm

* Sección de Acero: 10,68 cm²

* Tipo de Acero: ST-52

* Límite elástico: 5000 kg/cm²

La perforación es de un diámetro de 120 mm y se inyecta con una pasta de cemento C/A>1.5, cuya resistencia a compresión no será inferior a 300 Kg/cm².

La perforación de paso de zapatas se efectuará con un diámetro de 160 mm y se inyectará con una pasta de cemento expansivo o sin retracción, que cumplirá la condición resistente del párrafo anterior.

Con estos datos, despreciando la resistencia que proporciona el hormigón y considerando un coeficiente de seguridad igual a 2 para el acero, tendremos:

 $N < A_x \times 5.000 \times 1/2 = 10,68 \times 5.000 \times 1/2 = 26.700 \text{ Kg} / \text{micropilote}$

que resulta superior a la capacidad de 20 T exigida a cada micropilote y, por consiguiente, válido.

3. CALCULO GEOTECNICO

Para el cálculo geotécnico de los micropibtes se ha seguido el método del Profesor Michel Bustamante, considerándose un terreno tipo consistente en un primer nivel de limo arenoso o arcilloso de baja densidad, que apoya sobre un substrato de gravas y arenas de elevada densidad de SPT 60.

El espesor medio de la capa de limos en la zona en que se encuentra el bloque objeto de reparación se estima inferior a los 4 m.

Considerando:

* Coeficiente de seguridad igual a 2

* Diámetro de perforación 120 mm

* Resistencia unitaria por fuste en Kg/cm²:

TERRENO	MICROS NO
Limo arenoso o arcilloso flojo	0,0
Gravas y arenas densas	3,0

Con estas premisas, podemos calcular la longitud de sellado de cada micropilote.

La formula para el cálculo del bulbo es la siguiente:

$$T_1 = \pi \times D_s \times L_s \times Q_s$$

siendo:

 T_1 = Capacidad portante del micropilote

 D_s = Diámetro medio del bulbo de sellado

 L_s = Longitud de fuste

 Q_s = Resistencia unitaria por el fuste

(minorada por coeficiente de seguridad = 2)

 D_{s} depende del diámetro del taladro D y del modo de sellado. Su valor se toma igual a:

$$D_s = \alpha \times D$$

 α es un coeficiente de mayoración cuyo valor para micropilotes no inyectados es igual a 1.

Atendiendo a todo lo anterior, se obtienen el siguiente resultado para la resistencia unitaria por fuste de un metro de micropilote ($L_s = 100$ cm):

$$T_1 = \pi \times \alpha \times D \times L_s \times Q_s$$

$$T_1 = \pi \times 1 \times 12 \times 100 \times 3 \times \frac{1}{2} = 5.655 \text{ Kg/ml}$$

Luego:

$$L_s \ge N/T_I = 20.000 \text{ Kg} / 5.655 \text{ Kg/mI} = 3,53 \text{ ml}$$

Para garantizar el funcionamiento correcto, se introducirán como mínimo 4 metros de bulbo de sellado, siguiendo las recomendaciones del método, aun que no sean necesarios por el cálculo estricto.

Por consiguiente, la longitud total de cada micropilote será 8 ml, resultantes de la suma de la anterior longitud de bulbo de sellado (4 ml) y el espesor del estrato superficial de limos (4 ml).

4. CALCULO DE LA UNION MICROPILOTE - ZAPATA

La unión entre el micropilote y las zapatas se realiza por adherencia entre la superficie lisa del tubo de armadura y el hormigón.

La adherencia entre mortero y hormigón viejo será, suponiendo en ambos casos un hormigón de 175 Kg/cm² :

$$f_{vd} = 0.5 \sqrt{f_{cd}}$$

siendo:
$$f_{cd} = f_{ck}/\gamma_c = 175/1,6 = 109$$

$$f_{vd} = 0.5 \sqrt{109} = 5.22$$

por aproximación: $f_{vd} = 5 \text{ Kg/cm}^2$

Por tanto, para un diámetro de perforación de las zapatas de 160 mm, obtendremos:

$$T_{adh} = \pi \times 16 \times 5 = 251 \text{ Kg/cm}$$

Para alcanzar las 20 T de carga de los micropilotes serían necesarios:

$$L = 20.000 \text{ Kg} / 251 \text{ Kg/cm} \approx 80 \text{ cm}$$

Ahora bien, como la carga real de los micropilotes, según hemos visto en el apartado 3.1, es:

Zapatas grupo 1:
$$52 \text{ T / 3} = 17,34 \text{ T}$$

Zapatas grupo 2: $29 \text{ T / 3} = 9,67 \text{ T}$

La longitud necesaria para alcanzar la correcta transmisión por adherencia de dichas cargas, sería:

Zapatas grupo 1:
$$L = 17.340 \text{ Kg} / 251 \text{ Kg/cm} \approx 70 \text{ cm}$$
 Zapatas grupo 2:
$$L = 9.670 \text{ Kg} / 251 \text{ Kg/cm} \approx 40 \text{ cm}$$

Por consiguiente, las zapatas deben tener al menos 70 y 40 cm de canto, respectivamente, para poder transmitir la carga correctamente desde los micropilotes a la citada cimentación de las viviendas.

Efectivamente, según la documentación correspondiente al proyecto del edificio de que se dispone, todas las zapatas superan dichos cantos, dado que las correspondientes al grupo 1 disponen de cantos comprendidos entre 0,70 y 0,80 cm y las zapatas correspondientes al grupo 2 disponen de cantos comprendidos entre 0,60 y 0,75 cm.

Por otra parte, la adherencia entre mortero y armadura lisa será:

$$T_{bd} = 1.2 / \gamma_c \sqrt{f_{ck}} = 1.2 / 1.6 \sqrt{175} = 9.92 \text{ Kg/cm}^2 \approx 10 \text{ Kg/cm}^2$$

La superficie de contacto será:

Zapatas grupo 1:
$$S_I = \pi \times D \times L = \pi \times 7.3 \times 70 = 1.605 \text{ cm}^2$$

Zapatas grupo 2: $S_I = \pi \times D \times L = \pi \times 7.3 \times 60 = 1.376 \text{ cm}^2$

Por tanto la adherencia total hormigón-tubo será:

Zapatas grupo 1:
$$S_{l} \times T_{bd} = 1.605 \text{ cm}^2 \times 10 \text{ Kg/cm}^2 = 16.050 \text{ Kg} < 17,34 \text{ T}$$
 Zapatas grupo 2: $S_{l} \times T_{bd} = 1.376 \text{ cm}^2 \times 10 \text{ Kg/cm}^2 = 15.760 \text{ Kg} > 9,67 \text{ T}$

Para el cálculo último se han utilizado los valores de cantos y cargas más desfavorables posibles de las zapatas de cada uno de los grupos.

De los valores resultantes, es superior a las cargas a transmitir el correspondiente a las zapatas del grupo 2, luego es válido. Pero es inferior a la carga necesaria el correspondiente a las zapatas del grupo 1, luego no es válido por sí solo.

En consecuencia, para mejorar la adherencia tubo-micropilote con mortero en este caso, se soldarán al tubo 2 ø 16 de 30 cm de longitud en su parte superior (dentro de la zapata), resultando:

Adherencia barra corrugada:

Tensión de rotura de adherencia:
$$T_{bu} \ge 130 - 1,90 = 99 \text{ Kg/cm}^2$$
 para 0.16 corrugado

Resistencia de cálculo de adherencia: $T_{hd} = T_{hu} \{f_{ck}/225\}^{2/3} / 1,6 = 53 \text{ Kg/cm}^2$

Suponiendo que el contacto barra-mortero es la mitad de la barra, la superficie de contacto por barra será:

$$S_1 = \frac{1}{2} \times \pi \times D \times L = \frac{1}{2} \times \pi \times 1,6 \times 30 = 75 \text{ cm}^2$$

 $S_1 \times T_{bd} = 75 \text{ cm}^2 \times 53 \text{ Kg/cm}^2 \approx 4.000 \text{ Kg}$

Como se disponen dos barras, obtenemos: 8.000 Kg

Luego, en total se tiene:

Tubo liso Barras corrugadas	16.050 Kg 8.000 Kg	
En total	24.050 Kg	

que resulta válido.