En este anexo se presentan:
A. Los textos completos con las oraciones numeradas.
B. Matriz de cada texto analizado con las unidades léxicas que han establecido repetición, indicando el tipo de repetición.
C. Matriz de cada texto con la contabilización de unidades léxicas.
D. Tabla de cada texto analizado con el número de conexiones que las oraciones presentan.
E. Los textos resultantes después de eliminar las oraciones marginales.
F. Listado de las unidades léxicas que han establecido repetición en los dos tipos de texto analizados.
G. Los textos originales del corpus analizado.
H. Listado de abreviaciones utilizadas.

1. TEXTOS PERTENECIENTES A LAS INTRODUCCIONES DEL ARTÍCULO DE INVESTIGACIÓN.

1. 1. Texto 1: Bioconversion of solid food wastes to ethanol.

1. Energy and environmental issues take turns driving the development and use of alternative fuels for motor vehicles. 2. As the availability of petroleum-derived fuels and industrial feedstocks decreases owing to depletion and also economic and political developments, renewable sources of organic compounds are tested for their suitability as alternatives to petroleum-based substances. 3. Recent environmental concerns such as ozone non-attainment, solid waste management and control of toxic air pollutants have been other reasons for finding clean-burning alternative fuels.
2. Ethanol production from agricultural products has been in practice for the past 80 years. 5. Ethanol can be produced from many kinds of raw material that contains starch, sugar or cellulose. 6. Wastes from food processing industries represent a severe pollution problem and need better waste management techniques. 7. Utilization of food processing wastes to produce fuel alcohol with an increased efficiency has been under investigation in our laboratory for the past few years. 8. We were able to develop a novel and highly efficient cofermentation system for food wastes containing starch and lactose.
3. Fermentation is an anaerobic, energy-releasing transformation of carbohydrates by living organisms. 10. Yeast can ferment a wide variety of sugars and oligosaccharides other than glucose. 11. The D-hexoses and oligosaccharides fermented most often by yeast are glucose, mannose, fructose, galactose, maltose, lactose, melibiose, trehalose and raffinose. 12. The yeast in most widespread use for alcoholic fermentation is Saccharomyces cerevisiae. 13. Several studies on ethanol production via fermentation and the effects of different factors on the fermentation have been published in the past decade. 14. Utilization of cheese whey as the liquid portion of a fermenting corn mash has been investigated by Whalen et al. 15. Their work involved the fermentation of lactose/corn mash by the use of a dual yeast inoculum (Kluyveromyces marxianus and distillerís yeast). 16. This lactose/glucose cofermentation process took $60-72 \mathrm{~h}$ for completion. 17. We investigated the use of whey with bakery products and other starchy waste products by the application of lactose hydrolysis in conjunction with a single yeast inoculum to reduce the fermentation time and an increase in alcohol yield.
4. The objectives of this work were to study the effect of low- and hightemperature enzymes on hydrolysis of food wastes, to compare the fermentation of bakery products with mixed waste products and to study the cofermentation of cheese whey and starchy food wastes.

1. 1. 1. Matriz de repetición de unidades léxicas.

2	rs. alternative alternatives rs. fuels - fuels	2			
3	rs. environmental environmental rs. alternative alternative rs. fuels - fuels	rs. fuels - fuels rs. alternatives alternative	3		
4				4	
5				rs. ethanol - ethanol rc. production - produced psm. products - material	5
6			rs. waste - waste rs. management management rc. pollutants pollution		
7	rs. fuels - fuel	rs. fuels - fuel	rs. fuels - fuel	hip. ethanol - alcohol rc. production - produce rs. past - past rs. years - years	hip. ethanol alcohol rs. produced produce
8			rs. waste - wastes		rs. containing containing rs. starch - starch
9					
10					rs. sugar - sugars
11					
12					
13				rs. ethanol - ethanol rs. production production rs. past - past	rs. ethanol - ethanol rc. produced production
14					
15					
16					

17			rs. waste - waste	hip. ethanol - alcohol psp. production - yield rs. products - products	hip. ethanol - alcohol rc. produced - products
18			rs. waste - wastes	rs. products - products	rc. produced - products rc. starch - starchy

7	rs. wastes wastes rs. food - food rs. processing processing	7			
8	rs. wastes wastes rs. food - food	rs. food - food rs. wastes wastes rc. efficiency efficient rs. our - we+	8		
9			rc. cofermentation fermentation	9	
10			rc. cofermentation ferment	rc. fermentation ferment	10
11			rc. cofermentation fermented rs. lactose - lactose	rc. fermentation fermented	rs. yeast - yeast rs. ferment - fermented rs. oligosaccharides oligosaccharides rs. glucose - glucose
12		psm. utilization use rc. alcohol alcoholic	rc. cofermentation fermentation	rs. fermentation fermentation	rs. yeast - yeast rc. ferment fermentation
13		tr. alcohol ethanol rc. produce production psm. investigation studies rs. past - past	rc. cofermentation fermentation	rs. fermentation fermentation	rc. ferment fermentation
14		rs. utilization utilization rc. investigation - investigated	rc. cofermentation fermenting	rc. fermentation fermenting	rs. ferment - fermenting
15			rc. cofermentation fermentation rs. lactose - lactose	rs. fermentation fermentation	rs. yeast - yeast rc. ferment fermentation
16			rs. cofermentation cofermentation rs. lactose - lactose	rc. fermentation cofermentation	rc. ferment cofermentation rs. glucose - glucose

Anexo

17		psm. utilization use rs. wastes waste rc. investigation - investigated rs. our - we+	rs. we - we + rc. cofermentation - fermentation hip. food - products rs. wastes - waste rc. starch - starchy rs. lactose - lactose	rs. fermentation fermentation	rs. yeast - yeast rc. ferment fermentation
18	rs. wastes - wastes rs. food - food	rs. food - food rs. wastes wastes pc. investigation - study (study)	rc. cofermentation fermentation rs. food - food rs. wastes - wastes rc. starch - starchy	rs. fermentation fermentation	rc. ferment fermentation

16		
17	rs. lactose - lactose rc. cofermentation - fermentation	rc. cofermentation - fermentation
18	psm. investigated - study rs. whey - whey rs. bakery - bakery rs. products - products rs. starchy - starchy r. waste - wastes rs. fermentation - fermentation	

1. 1. 2 . Matriz con el número de unidades léxicas.

1. 1. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 1)[1]$	2. $(0,0)[0]$	3. $(1,1)[2]$
4. $(0,4)[4]$	5. $(1,0)[1]$	6. $(1,1)[2]$
7. $(2,4)[6]$	8. $(1,2)[3]$	9. $(0,0)[0]$
10. $(0,1)[1]$	11. $(1,3)[4]$	12. $(0,1)[1]$
13. $(2,2)[4]$	14. $(0,3)[3]$	15. $(2,1)[3]$
16. $(1,0)[1]$	17. $(8,1)[9]$	18. $(5,-)[5]$

1. 1. 4. Texto resultante tras eliminar las oraciones marginales.

1. Energy and environmental issues take turns driving the development and use of alternative fuels for motor vehicles. 3. Recent environmental concerns such as ozone non-attainment, solid waste management and control of toxic air pollutants have been other reasons for finding clean-burning alternative fuels.
2. Ethanol production from agricultural products has been in practice for the past 80 years. 5. Ethanol can be produced from many kinds of raw material that contains starch, sugar or cellulose. 6. Wastes from food processing industries represent a severe pollution problem and need better waste management techniques. 7. Utilization of food processing wastes to produce fuel alcohol with an increased efficiency has been under investigation in our laboratory for the past few years. 8. We were able to develop a novel and highly efficient cofermentation system for food wastes containing starch and lactose.
3. Yeast can ferment a wide variety of sugars and oligosaccharides other than glucose. 11. The D-hexoses and oligosaccharides fermented most often by yeast are glucose, mannose, fructose, galactose, maltose, lactose, melibiose, trehalose and raffinose. 12. The yeast in most widespread use for alcoholic fermentation is Saccharomyces cerevisiae. 13. Several studies on ethanol production via fermentation and the effects of different factors on the fermentation have been published in the past decade. 14. Utilization of cheese whey as the liquid portion of a fermenting corn mash has been investigated by Whalen et al. 15. Their work involved the fermentation of lactose/corn mash by the use of a dual yeast inoculum (Kluyveromyces marxianus and distillerís yeast). 16. This lactose/glucose cofermentation process took $60-72 \mathrm{~h}$ for completion. 17. We investigated the use of whey with bakery products and other starchy waste products by the application of lactose hydrolysis in conjunction with a single yeast inoculum to reduce the fermentation time and an increase in alcohol yield.
4. The objectives of this work were to study the effect of low- and hightemperature enzymes on hydrolysis of food wastes, to compare the fermentation of bakery products with mixed waste products and to study the cofermentation of cheese whey and starchy food wastes.

1. 2. Texto 2: Speciation as an analytical aid in trace element research in infant nutrition.

1. During the prenatal period, the fetus is supplied with minerals and trace elements via maternal circulation and controlled placental transfer. 2. After separation from the mother, the newborn has to develop its own functions and regulatory systems, including respiration, digestion and immune defenses. 3. Trace elements are involved in the form of metalloproteins and enzymes at all stages in the development of these processes. 4. Infancy is further characterized by an extremely high rate of synthesis of tissue cells, which leads to the infant's doubling its birth mass in a period of only 4 months. 5. The infant's trace element requirement is supplied not only by amounts transferred via the mother's milk in specific binding forms or by formula, but also from prenatal stores. 6. Special attention must be paid to very low birth mass, premature infants because they are born with lower stores of essential micronutrients. 7. Trace elements must be added to pre-term infants' formulas to satisfy their higher dietary requirements.
2. In early infancy, breast milk or cow's-milk-based and soy- based formulas are the only dietary source of essential trace elements. 9. The mother's milk provides an adequate supply of all micronutrients for the full-term infant. 10. The concentrations and the fairly well defined binding pattern of the essential trace elements in human milk are therefore used as a reference. 11. On the other hand, the trace elements chromium, copper, zinc, iron, manganese, molybdenum, iodine and, recently, selenium have been added to the formulas as compounds and at concentration levels that are different from those found in breast milk. 12. With the sole exception of selenium, the trace element intake of infants via formula is significantly higher than via breast milk. 13. The iron supply was found to be up to 20 times higher despite the fact that the high hemoglobin of newborns forms a reservoir. 14. In the case of manganese, the supply of the formulafed infant can be as much as 1000 times higher than that of the breast-fed infant. 15. During the first months of life such high values are critical with respect to known Fe $\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$ interactions. 16. As negative effects of high iron supplementation ($>4 \mathrm{mg} 1-^{1}$) significantly lower levels of glutathione peroxidase in serum and superoxide dismutase in erythrocytes have been observed in formula-fed infants. 17. In addition given the prooxidant effects of excessive amounts of iron in the iron(II) form,
the balance between the formation and inactivation of free radicals generated by the rapid growth rate of premature newborns during the first months of life might be disturbed.
3. In spite of the significantly lower trace element intake of breast-fed infants, their serum concentrations of the essential elements Cu, Fe and Zn are comparable to those of formula-fed infants. 19. Further, mass and length gains, as developmental parameters, were comparable for the two groups over a period of 4 months. 20 Because no signs of deficiency were observed in breast-fed infants, the bio availibility of copper, iron and zinc of the special binding proteins in human milk must be considerably higher than that in cow's milk or soy-based formula.
4. In the light of these facts, we considered it of importance to investigate the concentration, chemical form and nutritive value of trace elements in both human milk and infant formulas, with our ultimate goal being to obtain as much information as possible about adequate infant nutrition. 22. We therefore carried out speciation studies to determine the binding form of trace elements in these nutritive fluids, combining methods for protein separation with methods for trace element determination in the eluted fractions.

1. 2. 1. Matriz de repetición de unidades léxicas.

2	pc. maternal mother (motherly)	2			
3	rs. trace - trace rs. elements elements	rc. develop development d. own functions defenses - these	3		
4		psm. newborn infant		4	
5	rs. prenatal prenatal rs. supplied supplied rs. trace - trace rs. elements element rs. via - via pc. maternal mother (motherly) rc. transfer transferred	rs. mother mother psm. newborn infant	rs. trace trace rs. elements element	rs. infant infant	5
6	psm. trace elements micronutrients	psm. newborn infants	psm. trace elements micronutrients	rs. infant infants rs. birth birth rs. mass mass	rs. infant - infants psm. trace element micronutrients rs. stores - stores
7	rs. trace - trace rs. elements elements	psm. newborn infants	rs. trace trace rs. elements elements	rs. infant infants	rs. infant - infants rs. trace - trace rs. element - elements rs. requirement - requirements rs. formula - formulas
8	rs. trace - trace rs. elements elements tr. maternal breast	tr. mother - breast pc. newborn infancy (infant)	rs. trace trace rs. elements elements	rs. infancy - infancy	rc. infant - infancy rs. trace - trace rs. element - elements psm. mother - breast rs. milk - milk rs. formula - formulas
9	rc. supplied supply psm. trace elements micronutrients pc. maternal mother (motherly)	rs. mother mother psm. newborn infant	psm. trace elements micronutrients	rs. infant infant	rs. infant - infant psm. trace elements micronutrients rc. supplied - supply rs. mother - mother rs. milk - milk
10	rs. trace - trace rs. elements elements tr. maternal human	tr. mother - human	rs. trace trace rs. elements elements		rs. trace - trace rs. element - elements hip. mother - human rs. milk - milk psm. specific - defined rs. binding - binding psm. forms - pattern

\qquad

11	rs. trace - trace rs. elements elements tr. maternal breast	tr. mother breast	rs. trace - trace rs. elements elements		rs. trace - trace rs. element - elements psm. mother - breast rs. milk - milk rs. formula - formulas
12	rs. trace - trace rs. elements element rs. via - via tr. maternal breast	tr. mother breast psm. newborn - infants	rs. trace - trace rs. elements element	rs. infant - infants	rs. infant - infants rs. trace - trace rs. element - element rs. via - via psm. mother - breast rs. milk - milk rs. formula - formula
13	rc. supplied supply tr. trace elements - iron	rs. newborn newborns	tr. trace elements iron	psm. infant newborns	psm. infant - newborns tr. trace element - iron rc. supplied - supply psm. stores - reservoir
14	rc. supplied supply tr. trace elements manganese tr. maternal breast	tr. mother breast psm. newborn - infant	tr. trace elements manganese	rs. infant - infant	rs. infant - infant tr. trace element manganese rc. supplied - supply psm. mother - breast rs. formula - formula
15	tr. trace elements - Fe $\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$		tr. trace elements -$\mathrm{Fe}-\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$		tr. trace elements $-\mathrm{Fe}-$ $\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$
16	tr. trace elements - iron	psm. newborn - infants	tr. trace elements iron	rs. infant - infants	rs. infant - infants tr. trace element - iron rs. formula - formula
17	tr. trace elements - iron	rs. newborn newborns	tr. trace elements iron	psm. infant newborns rs. months months	psm. infant - newborns tr. trace element - iron rs. amounts - amounts
18	rs. trace - trace rs. elements element tr. maternal breast	tr. mother breast psm. newborn - infants	rs. trace - trace rs. elements element	rs. infant - infants	rs. infant - infants rs. trace - trace rs. element - element psm. mother - breast rs. formula - formula
19				rs. mass - mass rs. period - period rs. 4-4 rs. months months	
20	tr. trace elements copper, iron and zinc tr. maternal breast	tr. mother breast psm. newborn - infants	tr. trace elements copper, iron and zinc rc. metalloproteins - proteins	rs. infant - infants	rs. infant - infants tr. trace element copper, iron and zinc hip. mother - human rs. milk - milk psm. specific - special* rs. binding - binding* rs. formula - formula

Anexo

21	rs. trace - trace rs. elements elements tr. maternal human	tr. mother human psm. newborn - infant	rs. trace - trace rs. elements elements	rs. infant - infant	rs. infant - infant rs. trace - trace rs. element - elements hip. mother - human rs. milk - milk rs. forms - form* rs. formula - formulas
22	rs. trace - trace rs. elements elements		rs. trace - trace rs. elements elements rc. metalloproteins - protein		rs. trace - trace rs. element - elements hip. milk - fluids rs. binding - binding rs. forms - form

6

7	psm. premature - pre-term rs. infants infants psm. micronutrients trace elements	7			
8	rc. infants infancy rs. essential essential psm. micronutrients trace elements	rs. trace trace rs. elements elements rc. infants infancy rs. formulas formulas rs. dietary dietary	8		
9	a. premature -full-term rs. infants infant rs. micronutrients micronutrients	psm. trace elements micronutrients a. pre-term -full-term rs. infants infant	rc. infancy infant psm. breast mother rs. milk - milk psm. trace elements micronutrients	9	
10	rs. essential essential psm. micronutrients trace elements	rs. trace trace rs. elements elements	tr. breast - human rs. milk - milk rs. essential essential rs. trace - trace rs. elements elements	hip. mother - human rs. milk - milk psm. micronutrients trace elements	10
11	psm. micronutrients - trace elements	rs. trace trace rs. elements elements rs. added added rs. formulas formulas	rs. breast - breast rs. milk - milk rs. formulas formulas rs. trace - trace rs. elements elements	psm. mother - breast rs. milk - milk psm. micronutrients trace elements	rs. concentrations concentration rs. trace - trace rs. elements elements tr. human - breast rs. milk - milk
12	rs. infants infants psm. micronutrients - trace element	rs. trace trace rs. elements element rs. infants infants rs. formulas formula	rc. infancy infants rs. breast - breast rs. milk - milk rs. formulas formula rs. trace - trace rs. elements element	psm. mother - breast rs. milk - milk psm. micronutrients trace elements rs. infant - infants	rs. trace - trace rs. elements - element tr. human - breast rs. milk - milk
13	psm. infants newborns tr. micronutrients iron	tr. trace elements iron psm. infants newborns	pc. infancy newborns (infant) tr. trace elements - iron	rs. supply - supply tr. micronutrients iron psm. infant newborns	tr. trace elements iron

Anexo

	6	7	8	9	10
14	rs. infants - infant tr. micronutrients manganese	tr. trace elements manganese rs. infants infant rs. formulas formula	rc. infancy - infant rs. breast - breast rs. formulas formula tr. trace elements manganese	psm. mother breast rs. supply - supply tr. micronutrients manganese rs. infant - infant	tr. trace elements - manganese tr. human - breast
15	tr. micronutrients - $\mathrm{Fe}-\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$	tr. trace elements - Fe $\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$	tr. trace elements -$\mathrm{Fe}-\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$	tr. micronutrients -$\mathrm{Fe}-\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$	tr. trace elements - $\mathrm{Fe}-\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$
16	rs. infants - infants tr. micronutrients - iron	tr. trace elements - iron rs. infants infants rs. formulas formula	rc. infancy infants rs. formulas formula tr. trace elements iron	tr. micronutrients iron rs. infant - infants	tr. trace elements - iron
17	rs. premature premature psm. infants newborns tr. micronutrients - iron	tr. trace elements - iron psm. pre-term premature psm. infants newborns	pc. infancy newborns (infant) tr. trace elements iron	tr. micronutrients iron psm. infant newborns	tr. trace elements - iron
18	rs. infants - infants rs. essential - essential psm. micronutrients - trace element	rs. trace - trace rs. elements element rs. infants infants rs. formulas formula	rc. infancy infants rs. breast - breast rs. formulas formula rs. essential essential rs. trace - trace rs. elements element	psm. mother - breast psm. micronutrients - trace elements rs. infant - infants	rs. concentrations - concentrations rs. essential essential rs. trace - trace rs. elements element tr. human - breast
19	rs. mass - mass*				
20	rs. infants - infants tr. micronutrients copper, iron and zinc	tr. trace elements copper, iron and zinc rs. infants infants rs. formulas formula	rc. infancy infants rs. breast - breast rs. milk - milk rs. cow - cow rs. soy - soy rs. based - based rs. formulas - formula tr. trace elements copper, iron and zinc	psm. mother breast rs. milk - milk tr. micronutrients copper, iron and zinc rs. infant - infants	psm defined special* rs. binding binding* tr. trace elements - copper, iron and zinc rs. human human rs. milk - milk

| 6 | | 7 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Anexo

12	rs. trace - trace rs. elements element rs. selenium selenium rs. formulas formula rs. breast - breast rs. milk - milk	12			
13	rs. iron iron rs. found - found	tr. trace element - iron psm. infants - newborns rs. higher higher e. than via breast milk - 0	13		
14	rs. manganese manganese rs. formulas formula rs. breast - breast	tr. trace element - manganese rs. infants infant rs. formula formula rs. higher higher rs. breast breast	tr. iron manganese rs. supply supply tr. 20-1000 rs. times - times rs. higher higher psm. newborns infant	14	
15	psm. copper -Cu psm. zinc - Zn psm. iron -Fe psm. manganese Mn	tr. trace element $-\mathrm{Fe}-\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$ rs. higher - high	psm. iron -Fe hip. 20 - values rs. higher - high	psm. manganese - Mn hip. 1000 - values rs. higher - high	15
16	rs. iron - iron rs. formulas formula rs. levels - levels*	tr. trace element - iron rs. infants infants rs. formula formula rs. higher - high	rs. iron - iron rs. higher - high psm. newborns infants	tr. manganese iron rs. formula formula rs. fed - fed rs. infant - infants	rs. high - high psm. Fe - iron
17	rs. iron - iron	tr. trace element - iron psm. infants newborns	rs. iron - iron rs. newborns newborns	tr. manganese iron psm. infant newborns	rs. first - first rs. months - months rs. life - life psm. Fe - iron

| 11 | | 12 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Anexo

1. 2. 2. Matriz con el número de unidades.

1. 2. 3. Tabla representativa del número de conexiones entre oraciones.
1. $(-, 2)[2]$
2. $(0,0)$ [0]
3. $(0,0)[0]$
4. $(0,1)[1]$
5. $(1,12)[13]$
6. $(0,0)[0]$
7. $(1,5)[6]$
8. $(2,8)[10]$
9. $(2,4)[6]$
10. $(4,5)[9]$
11. $(7,6)[13]$
12. $(2,5)(2,6)[7][8]$
13. $(5,4)[9]$
14. $(1,2)[3]$
15. $(2,1)[3]$
16. $(1,0)[1]$
17. $(9,2)$ [11]
18. $(1,0)[1]$
19. $(8,2)(9,2)[10][11]$
20. $(10,1)[11]$
21. (4,-) [4]

1. 2. 4. Texto resultante tras eliminar las oraciones marginales.

1. During the prenatal period, the fetus is supplied with minerals and trace elements via maternal circulation and controlled placental transfer. 4. Infancy is further characterized by an extremely high rate of synthesis of tissue cells, which leads to the infant's doubling its birth mass in a period of only 4 months. 5. The infant's trace element requirement is supplied not only by amounts transferred via the mother's milk in specific binding forms or by formula, but also from prenatal stores. 7. Trace elements must be added to pre-term infants' formulas to satisfy their higher dietary requirements.
2. In early infancy, breast milk or cow's-milk-based and soy- based formulas are the only dietary source of essential trace elements. 9. The mother's milk provides an adequate supply of all micronutrients for the full-term infant. 10. The concentrations and the fairly well defined binding pattern of the essential trace elements in human milk are therefore used as a reference. 11. On the other hand, the trace elements chromium, copper, zinc, iron, manganese, molybdenum, iodine and, recently, selenium have been added to the formulas as compounds and at concentration levels that are
different from those found in breast milk. 12. With the sole exception of selenium, the trace element intake of infants via formula is significantly higher than via breast milk. 13. The iron supply was found to be up to 20 times higher despite the fact that the high hemoglobin of newborns forms a reservoir. 14. In the case of manganese, the supply of the formula- fed infant can be as much as 1000 times higher than that of the breast-fed infant. 15. During the first months of life such high values are critical with respect to known $\mathrm{Fe}-\mathrm{Zn}, \mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Mn}-\mathrm{Fe}$ interactions. 16. As negative effects of high iron supplementation ($>4 \mathrm{mg} \mathrm{T}^{-1}$) significantly lower levels of glutathione peroxidase in serum and superoxide dismutase in erythrocytes have been observed in formula-fed infants. 17. In addition given the prooxidant effects of excessive amounts of iron in the iron(II) form, the balance between the formation and inactivation of free radicals generated by the rapid growth rate of premature newborns during the first months of life might be disturbed.
3. In spite of the significantly lower trace element intake of breast-fed infants, their serum concentrations of the essential elements Cu, Fe and Zn are comparable to those of formula-fed infants. 19. Further, mass and length gains, as developmental parameters, were comparable for the two groups over a period of 4 months. 20. Because no signs of deficiency were observed in breast-fed infants, the bio availibility of copper, iron and zinc of the special binding proteins in human milk must be considerably higher than that in cow's milk or soy-based formula.
4. In the light of these facts, we considered it of importance to investigate the concentration, chemical form and nutritive value of trace elements in both human milk and infant formulas, with our ultimate goal being to obtain as much information as possible about adequate infant nutrition. 22. We therefore carried out speciation studies to determine the binding form of trace elements in these nutritive fluids, combining methods for protein separation with methods for trace element determination in the eluted fractions.

1. 3. Texto 3: Analysis of carbonaceous aerosols: interlaboratory comparison.

1. Many workplace and environmental settings contain aerosols composed primarily of carbon. 2. Cabonaceous aerosols encountered in these settings include asphalt fumes, oil mists, cigarette and wood smokes, carbon black, and diesel exhaust. 3. Some of these aerosols are known or suspect human carcinogens (e,g., cigarette smoke and diesel exhaust, respectively) and have been linked to other adverse health effects (e.g., asthma, heart disease) 4. Exposure to diesel exhaust is of particular concern because it has been classified a probable human carcinogen and diesel equipment use is widespread in (e,g., trucking, transit, mining, railroads, agriculture). 5. An estimated 1.35 million workers are routinely exposed to diesel engine exhaust and exposures in some industries are relatively high (e.g., $>0.5 \mathrm{mg} \mathrm{m}^{-3}$). 6. Unfortunately, health-based exposure criteria for diesel particulate have not yet been established. 7. A Threshold Limit Value (TLV) of $150 \mu / \mathrm{m}^{-3}$ has been proposed but has not yet been adopted.
2. Particulate diesel exhaust, like fine particulate air pollution in general, also is of concern with respect to noncancer health effects. 9. The US Environmental Protection Agency (EAP) has proposed an inhalation Reference Concentration (RfC) of $5 \mu / \mathrm{m}^{-3}$ for the noncancer health effects of diesel exhaust and the State of California Office of Environmental Health Hazard Assessment (OEHHA) has proposed adoption of this value for the chronic inhalation reference exposure level in California. 10. The RfC for a substance is an estimate of a daily exposure of humans, including sensitive subgroups, that is 'likely to be without appreciable risk of deleterious effects during a lifetime of exposure'. 11. Comprehensive reviews of the potential health effects of exposure to diesel exhaust exposure have been recently published.
3. Because diesel exhaust is a chemically complex mixture containing thousands of compounds, some measure of exposure must be selected. 13. Given the high carbon content of diesel particulate, a carbon-based method was investigated. 14. The method, recently published as National Institute for safety and Health (NIOSH) Method 5040, is based on an evolved gas analysis technique called the 'thermal-optical method'. 15. With this technique, speciation of organic and elemental carbon (OC and EC, respectively) is accomplished through temperature and atmosphere control and by an optical feature that corrects for pyrolytically generated carbon, or 'char', formed during the analysis of some materials. 16. Although both organic and elemental carbon are determined in the analysis, EC is the superior marker of diesel particulate because it constitutes a large fraction of the particulate mass, it can be quantified at background (i.e., environmental) levels, and its only significant source in most workplaces is the diesel engine. 17. Different approaches can be applied for OC-EC analysis, but a thermal-optical method was selected because the instrumentation has desirable design features not present in other carbon analyzers. 18. An in-depth discussion on Method 5040, including both technical and exposure-related issues, has been published elsewhere.
4. In a previous study, different methods gave widely varying results in the speciation of organic and elemental carbon. 20. For this reason, OC-EC methods are considered operational in the sense that the method itself defines the analyte. 21. Given its operational nature, it is important to examine interlaboratory variability of the method; however, when the thermal-optical method was initially evaluated, only one
instrument was available, so interlaboratory variability could not be examined. 22. More recently, additional instruments were constructed by a commercial laboratory and an interlaboratory comparison was conducted. 23. Seven laboratories that perform thermaloptical analysis participated in the comparison. 24. Six of them used NIOSH Method 5040 (i.e., they used identical instrumentation and thermal program), while the seventh used a variation on the method. 25. Another thermal technique based on coulometric detection of CO_{2} is being used in Europe for occupational monitoring of diesel particulate. 26. Four laboratories employing the coulometric method also participated in the interlaboratory comparison, giving a total of eleven laboratories (seven thermaloptical and four coulometric). 27. Discussion of the methods and a summary of the results of the intercomparison are reported in this paper.

1. 3. 1. Matriz de repetición de unidades léxicas.

1		3		4	5
10			rs. human - humans psm. adverse deleterious rs. effects - effects	rs. exposure exposure rs. human humans	hip. workers humans rs. exposures exposure
11		rs. diesel - diesel rs. exhaust exhaust	rs. diesel - diesel rs. exhaust exhaust rs. health - health rs. effects - effects	rs. exposure exposure rs. diesel - diesel rs. exhaust exhaust	rs. diesel - diesel rs. exhaust - exhaust rs. exposures exposure
12	rs. contain containing*	rs. diesel - diesel rs. exhaust exhaust	rs. diesel - diesel rs. exhaust exhaust	rs. exposure exposure rs. diesel diesel rs. exhaust exhaust	rs. diesel - diesel rs. exhaust - exhaust rs. exposures exposure
13	rc. contain content rs. carbon carbon	rc. carbonaceous - carbon rs. diesel - diesel	rs. diesel - diesel	rs. diesel - diesel	rs. diesel - diesel
14					
15	rs. carbon carbon	rc. carbonaceous - carbon			
16	rs. workplace workplaces rs. environmental - environmental hip. aerosols mass rs. carbon carbon	rc. carbonaceous - carbon hip. aerosols - mass rs. diesel - diesel	hip. aerosols - mass rs. diesel - diesel	rs. diesel - diesel	rs. diesel - diesel rs. engine - engine
17	rs. carbon carbon	rc. carbonaceous - carbon			
18				rs. exposure exposure	rs. exposures exposure
19	rs. carbon carbon	rc. carbonaceous - carbon			
20	psm. carbon - C	pc. carbonaceous - C (carbon)			
21					
22					
23					
24					
25		rs. diesel - diesel			
26					
27					

Anexo

6		7	8		
7					
8	rs. health health rs. diesel - diesel rs. particulate particulate				
9	rs. health health rs. exposure exposure rs. diesel - diesel	rs. value value* rs. proposed - proposed rc. adopted adoption	rs. diesel - diesel rs. exhaust - exhaust rs. noncancer noncancer rs. health - health rs. effects - effects	9	
10	rs. exposure exposure		rs. effects - effects	rs. $\mathrm{RfC}-\mathrm{RfC}$ rs. effects - effects rs. exposure exposure	10
11	rs. health health rs. exposure exposure r. diesel - diesel		rs. diesel - diesel rs. exhaust - exhaust rs. health - health rs. effects - effects	rs. health - health rs. effects - effects rs. diesel - diesel rs. exhaust - exhaust rs. exposure exposure	rs. effects - effects rs. exposure exposure
12	rs. exposure exposure psm. criteria measure rs. diesel - diesel		rs. diesel - diesel rs. exhaust - exhaust	rs. diesel - diesel rs. exhaust exhaust rs. exposure exposure	psm. substance compounds rs. exposure exposure
13	rs. diesel - diesel rs. particulate particulate		rs. diesel - diesel rs. particulate particulate	rs. diesel - diesel	
14	rs. health health*		rs. health - health*	rs. health - health*	
15					
16	rs. diesel - diesel rs. particulate particulate		rs. diesel - diesel rs. particulate particulate	rs. diesel - diesel rs. level-levels	
17					
18	rs. exposure exposure			rs. exposure exposure	rs. exposure exposure
19					
20					
21					
22					

6		7		8	

Anexo

11		12	13	14	15
21			rs. method method psm. investigated examined	rs. thermal thermal rs. optical - optical rs. method method	rs. optical optical
22					
23				rs. analysis analysis rs. thermal thermal rs. optical - optical	psp. is accomplished perform rs. optical optical rs. analysis analysis
24			rs. method method	rs. NIOSH NIOSH rs. method method rs. $5040-5040$ rs. thermal thermal	
25	rs. diesel - diesel	rs. diesel - diesel	rs. diesel - diesel rs. particulate particulate rs. based based*	rs. based - based rs. technique technique rs. thermal thermal	rs. technique technique
26			rs. method method*	tr. technique method rs. thermal thermal rs. optical - optical	rs. opticaloptical
27	psm. published reported*		rs. method methods	rs. method method psm. published reported	

Anexo

17	psp. organic carbon - OC rs. $\mathrm{EC}-\mathrm{EC}$ rs. analysis analysis	17			
18		rs. method - method	18		
19	rs. organic organic rs. elemental elemental rs. carbon - carbon	psp. OC - organic carbon psp. EC - elemental carbon rs. method - methods	psm. discussion - study rs. method methods	19	
20	psp. organic carbon $-\mathrm{OC}$ rs. $\mathrm{EC}-\mathrm{EC}$	rs. $\mathrm{OC}-\mathrm{OC}$ rs. $\mathrm{EC}-\mathrm{EC}$ rs. method - methods	rs. method methods	d. oración 19 - this rs. methods - methods psp. organic carbon OC psp. elemental carbon - EC	20
21		rs. thermal - thermal rs. optical - optical rs. method - method rc. instrumentation - instrument	rs. method method	rs. methods - method	rs. operational operational rs. method method
22		rc. instrumentation instruments			
23	rs. analysis analysis	rs. analysis - analysis rs. thermal - thermal rs. optical - optical			
24		rs. thermal - thermal rs. method - method rs. instrumentation instrumentation	rs. method method rs. $5040-5040$	rs. methods - method	rs. method method
25	rs. diesel - diesel rs. particulate particulate	rs. thermal - thermal			
26		rs. thermal - thermal rs. optical - optical rs. method - method	rs. method method*	rs. methods - method	rs. method method
27		rs. method - methods	rs. discussion discussion rs. method methods psm. published reported	psm. study - discussion rs. methods - methods rs. results - results	rs. method methods

22	rs. interlaboratory interlaboratory rs. instrument instruments	22				
23	rc. interlaboratory laboratories rs. thermal thermal rs. optical optical	rs. laboratory laboratories rs. comparison comparison psm. conducted - perform*	23			
24	rc. variability variation rs. method method rs. thermal thermal rc. instrument instrumentation	rc. instruments instrumentation	s. laboratories them rs. thermal thermal	24		
25	rs. thermal thermal		rs. thermal thermal	rs. used used rs. thermal thermal	25	
26	rs. interlaboratory interlaboratory rs. method method rs. thermal thermal rs. optical optical	rs. laboratory laboratories rs. interlaboratory interlaboratory rs. comparison comparison	rs. seven - seven rs. laboratories - laboratories rs. thermal thermal rs. optical optical rs. participated participated rs. comparison comparison	psm. used employing rs. method method rs. thermal thermal	rs. thermal thermal psp. technique method rs. coulometric coulometric psm. used employing	26
27	rs. method methods	rc. comparison intercomparison	rc. comparison intercomparison	rs. method methods		rs. method methods rc. comparison inetercomparison

1. 3. 2. Matriz con el número de unidades léxicas.

1. 3. 3. Tabla representativa del número de conexiones entre oraciones

1. $(-, 2)[2]$
2. $(1,2)[3]$
3. $(1,6)[7]$
4. $(1,5)[6]$
5. $(2,3)[5]$
6. $(0,4)[4]$
7. $(0,0)(0,1)[0][1]$
8. $(3,2)$ [5]
9. $(5,3)(6,3)[8][9]$
10. $(2,0)[2]$
11. $(6,1)(6,2)[7][8]$
12. $(5,0)[5]$
13. $(0,2)(0,3)[2][3]$
14. $(0,8)(1,8)[8][9]$
15. $(1,5)[6]$
16. $(4,2)[6]$
17. $(3,6)[9]$
18. $(1,1)$ [2]
19. $(4,2)[6]$
20. $(3,0)$ [3]
21. $(2,3)[5]$
22. $(0,1)(0,2)[1][2]$
23. $(4,1)(5,1)[5][6]$
24. $(3,1)[4]$
25. $(1,1)(2,1)[2][3]$
26. $(7,0)[7]$
27. (2,-) [2]

1. 3. 4. Texto resultante tras eliminar las oraciones marginales.

1. Many workplace and environmental settings contain aerosols composed primarily of carbon. 2. Cabonaceous aerosols encountered in these settings include asphalt fumes, oil mists, cigarette and wood smokes, carbon black, and diesel exhaust. 3. Some of these aerosols are known or suspect human carcinogens (e,g., cigarette smoke and diesel exhaust, respectively) and have been linked to other adverse health effects (e.g., asthma, heart disease) 4. Exposure to diesel exhaust is of particular concern because it has been classified a probable human carcinogen and diesel equipment use is widespread in (e,g., trucking, transit, mining, railroads, agriculture). 5. An estimated 1.35 million workers are routinely exposed to diesel engine exhaust and exposures in some industries are relatively high (e.g., $>0.5 \mathrm{mg} \mathrm{m}^{-3}$). 6. Unfortunately, health-based exposure criteria for diesel particulate have not yet been established. ${ }^{1} 8$. Particulate diesel exhaust, like fine particulate air pollution in general, also is of concern with respect to noncancer health effects. 9. The US Environmental Protection Agency (EAP) has proposed an inhalation Reference Concentration (RfC) of $5 \mu / \mathrm{m}^{-3}$ for the noncancer health effects of diesel exhaust and the State of California Office of Environmental Health Hazard Assessment (OEHHA) has proposed adoption of this value for the chronic inhalation reference exposure level in California. 10. The RfC for a substance is an estimate of a daily exposure of humans, including sensitive subgroups, that is 'likely to be without appreciable risk of deleterious effects during a lifetime of exposure'. 11. Comprehensive reviews of the potential health effects of exposure to diesel exhaust exposure have been recently published.
2. Because diesel exhaust is a chemically complex mixture containing thousands of compounds, some measure of exposure must be selected. 13. Given the high carbon content of diesel particulate, a carbon-based method was investigated. 14. The method, recently published as National Institute for safety and Health (NIOSH) Method 5040, is based on an evolved gas analysis technique called the 'thermal-optical method'. 15. With this technique, speciation of organic and elemental carbon (OC and EC, respectively) is accomplished through temperature and atmosphere control and by an optical feature that corrects for pyrolytically generated carbon, or 'char', formed during the analysis of some materials. 16. Although both organic and elemental carbon are determined in the analysis, EC is the superior marker of diesel particulate because it constitutes a large fraction of the particulate mass, it can be quantified at background (i.e., environmental) levels, and its only significant source in most workplaces is the diesel engine. 17. Different approaches can be applied for OC-EC analysis, but a thermal-optical method was selected because the instrumentation has desirable design features not present in other carbon analyzers. 18. An in-depth discussion on Method 5040, including both technical and exposure-related issues, has been published elsewhere.
3. In a previous study, different methods gave widely varying results in the speciation of organic and elemental carbon. 20. For this reason, OC-EC methods are considered operational in the sense that the method itself defines the analyte. 21. Given its operational nature, it is important to examine interlaboratory variability of the method; however, when the thermal-optical method was initially evaluated, only one instrument was available, so interlaboratory variability could not be examined. 22. More recently, additional instruments were constructed by a commercial laboratory and an interlaboratory comparison was conducted. 23. Seven laboratories that perform thermal-optical analysis participated in the comparison. 24. Six of them used NIOSH
[^0]Method 5040 (i.e., they used identical instrumentation and thermal program), while the seventh used a variation on the method. 25. Another thermal technique based on coulometric detection of CO_{2} is being used in Europe for occupational monitoring of diesel particulate. 26. Four laboratories employing the coulometric method also participated in the interlaboratory comparison, giving a total of eleven laboratories (seven thermal-optical and four coulometric). 27. Discussion of the methods and a summary of the results of the intercomparison are reported in this paper.

1. 4. Texto 4: High-precision conductometric detector for the measurement of atmospheric carbon dioxide.

1. The recent increase in atmospheric C_{2} mixing ratio is one of the most significant changes in the trace gas composition of the atmosphere. 2. The observed 30% rise, from 280 to 360 ppmv since the beginning of the industrial revolution, accounts for only $\sim 50 \%$ of the C_{2} released into the atmosphere from anthropogenic sources. 3 . The remainder of the C_{2} released from fossil fuel burning and deforestation is assumed to have been absorbed by the oceans and terrestrial biosphere. 4. Direct measurements of C_{2} fluxes are needed in order to determine the strengths of these sinks and to close regional and global carbon budgets. 5. In addition, flux measurements are necessary to improve the global circulation models that predict future C_{2} concentrations and climate change.
2. Currently, CO_{2} concentrations are determined either by collecting air in flasks for analysis offsite or by continuous monitoring in the field. 7. Offsite analysis is usually performed by GC/TCD, GC/FID with a methanizer, or nondispersive infrared absorption (NDIR). 8. The disadvantages of batch analysis include sample storage and transport problems, limitation of the number of measurements by the number of available flasks, and a significant time lag between flask sample collection and analysis. 9. For example, in a recent field campaign aimed at measuring the fluxes of greenhouse gases in the Amazon rain forest of Peru, we were limited to six flask samples to characterize each vertical profile through the convective boundary layer. 10. Continuous monitoring is almost exclusively performed by NDIR 11. The limitations and errors associated with open- and closed-path NDIR analyzers have been extensively discussed by Leuning and Judd. 12. Disadvantages of in situ analysis by NDIR include instrument
expense (and therefore limited sampling sites) and the inability to use NDIR from kite or small balloon platforms because of excessive weight and power requirements.
3. The new technique described here for measurement of C_{2} mixing ratios is based on the increase in conductivity that occurs when deionized water makes contact with air by use of microporous hollow fiber membranes. 14. The detector is sufficiently small and lightweight to be operated from kite and balloon platforms for continuous vertical profiling of the atmosphere and has adequate precision and accuracy to determine landscape-scale fluxes of C_{2} from vertical profile measurements.
4. There are previous reports of conductometric techniques for measuring gasphase C_{2}. 16. Initial designs were cumbersome and slow because they incorporated large amounts of air and water and required time for degassing. 17. Van Kempen and Kreuzer and Himpler et al. used microsensors and semipermeable membranes but did not study atmospheric levels of C_{2}. 18. Symanski et al. designed microsensors for atmospheric C_{2} and were successful at measuring concentrations that would be found in highly polluted air. 19. The instruments measured C_{2} mixing ratios in the range 0 3% and were not tested extensively at concentrations characteristic of "clean" air ($\sim 350-$ 370 ppmv). 20. Furthermore, the continuous microsensor developed by Symanski et al exhibited a RSD of $\sim 2 \%$. 21. This precision is adequate for polluted air measurements but does not meet the precision required $(\sim 0.1 \%)$ for monitoring the small concentration variations that are found in relatively unpolluted air, e.g., in the atmosphere above a forest canopy.

1. 4. 1. Matriz de repetición de unidades léxicas.

2	psm. increase - rise rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. atmosphere - atmosphere				
		2			
3	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. released released e. into the atmosphere - 0 hip. antr. sources fossil ...deforestat.	3		
4	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ hip. fuel carbon hip. oceans ... biosphere sinks	4	
5	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ psm. mixing ratio concentrations rs. changes change*	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. measurements measurements rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. fluxes - flux psm. needed - necessary	5
6	psm. mixing ratio - concentrations rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. determine determined	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. concentrations concentrations
7					
8				rs. measurements measurements	rs. measurements measurements
9	hip. $\mathrm{CO}_{2}-$ grennhouse gases	hip. $\mathrm{CO}_{2}-$ greenhouse gases	hip. $\mathrm{CO}_{2}-$ greenhouse gases	rc. measurements measuring hip. $\mathrm{CO}_{2}-$ greenhouse gases rs. fluxes - fluxes	rs. flux - fluxes rc. measurements measuring hip. $\mathrm{CO}_{2}-$ greenhouse gases
10					
11					
12					
13	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. mixing mixing rs. ratio ratios	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. measurements measurement rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	psm. concentrations mixing ratios rs. measurements measurement rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$

Anexo

1		2	3		5
14	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. atmosphere atmosphere	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. atmosphere - atmosphere	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. measurements measurements rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. fluxes - fluxes rs. determine determine	rs. flux - fluxes rs. measurements measurements rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$
15	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rc. measurements measuring rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rc. measurements measuring rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$
16					
17	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ psm. mixing ratio - levels rc. atmosphere atmospheric	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rc. atmosphere - atmospheric	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ psm. concentrations - levels
18	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ psm. mixing ratio concentrations rc. atmosphere atmospheric	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rc. atmosphere - atmospheric	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rc. measurements measuring rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rc. measurements measuring rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. concentrations concentrations
19	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. mixing mixing rs. ratio - ratios	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rc. measurements measured rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rc. measurements measured rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. concentrations concentrations
20					
21	rs. psm. mixing ratio concentrations psm. changes variations rs. atmosphere atmosphere	rs. atmosphere - atmosphere		rs. measurements measurements	rs. measurements measurements rs. concentrations concentration psm. change - variations*

7	rs. analysis - analysis rs. offsite - offsite				

Anexo

	6	7	8	9	10
14	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. determined determine rs. continuous continuous		rs. measurements measurements	rc. measuring measurements rs. fluxes - fluxes tr. greenhouse gases CO_{2} rs. vertical - vertical rs. profile - profile	
15	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$		rc. measurements measuring	rs. measuring measuring tr. greenhouse gases CO_{2}	
16					
17	psm. concentrations - levels rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$			tr. greenhouse gases CO_{2}	
18	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. concentrations concentrations rs. air - air		rc. measurements measuring	rs. measuring - measuring tr. greenhouse gases CO_{2}	
19	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. concentrations concentrations rs. air - air		rc. measurements measured	rs. measuring - measured tr. greenhouse gases CO_{2}	
20	rs. continuous continuous				rs. continuous continuous
21	rs. concentrations concentration rs. air - air rs. monitoring monitoring		rs. measurements measurements	rc. measuring measurements	rs. monitoring monitoring

12	rc. limitations - limited rs. NDIR - NDIR rc. analyzers analysis	12			
13		13			
14		psm. use operated rs. kite - kite rs. balloon balloon rs. platforms platforms a. excessive weight lightweight	rs. measurement - measurements rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	14	
15			rs. technique - techniques pc. described - reports (description) rc. measurement - measuring rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rc. conductivity - conductometric	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rc. measurements measuring	15
16			rs. water - water rs. air - air		
17			rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ psm. mixing ratios - levels rc. use - used rs. membranes - membranes	rc. atmosphere atmospheric rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$
18			rc. measurement - measuring rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ psm. mixing ratios concentrations rs. air - air	rc. atmosphere atmospheric rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rc. measurements measuring	rs. measuring - measuring rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$
19			rc. measurement - measured rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. mixing - mixing rs. ratios - ratios rs. air - air	rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rc. measurements measured	rs. measuring - measured rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$
20					
21			rs. measurement - measurements psm. mixing ratios - concentration rs. air - air	rs. atmosphere atmosphere rs. precision precision rs. measurements measurements	rc. measuringmeasurements

Anexo

17		17			
			18		
18	rc. designs designed	rs. microsensors microsensors rs. atmospheric atmospheric psm. levels concentrations rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$			
				19	
19		hip. microsensors instruments psm. levels mixing ratios rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$	hip. microsensors - instruments rs. $\mathrm{CO}_{2}-\mathrm{CO}_{2}$ rs. measuring - measured rs. concentrations concentrations a. polluted - clean rs. air - air		
20	pc. designs developed (designed)	rs. microsensors microsensor	rs. Symanski - Symanski psm. designed - developed rs. microsensors - microsensor	tr. instruments microsensor	20
21		psm. levels concentrations	rc. atmospheric - atmosphere rc. measuring - measurements rs. concentrations - concentration rs. found - found rs. polluted - polluted rs. air - air	rc. measured measurements rs. concentrations concentration psm. clean unpolluted rs. air - air	hip. RSD - precision

1. 4. 2. Matriz con el número de unidades léxicas.

1. 4. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 6)[6](-, 7)[7]$	2. $(1,1)[2]$	3. $(1,1)[2]$
4. $(1,3)[4]$	5. $(1,5)[6](2,6)[8]$	6. $(0,8)[8]$
7. $(0,2)[2]$	8. $(1,2)[3]$	9. $(4,2)[6]$
10. $(2,0)[2]$	11. $(0,1)[1]$	$12 \cdot(4,1)[5]$
13. $(3,5)[8]$	$14 \cdot(5,2)[7]$	$15 \cdot(1,0)[1]$
16. $(0,0)[0]$	$17 \cdot(2,2)[4]$	$18 \cdot(6,3)[9]$
19. $(6,1)[7]$	20. $(1,0)[1]$	21. $(6,-)[6](7,-)[7]$

1. 4. 4. Texto resultante tras eliminar las oraciones marginales.

1. The recent increase in atmospheric CO_{2} mixing ratio is one of the most significant changes in the trace gas composition of the atmosphere. 2. The observed 30% rise, from 280 to 360 ppmv since the beginning of the industrial revolution, accounts for only $\sim 50 \%$ of the CO_{2} released into the atmosphere from anthropogenic sources. 3. The remainder of the CO_{2} released from fossil fuel burning and deforestation is assumed to have been absorbed by the oceans and terrestrial biosphere. 4. Direct measurements of CO_{2} fluxes are needed in order to determine the strengths of these sinks and to close regional and global carbon budgets. 5. In addition, flux measurements are necessary to improve the global circulation models that predict future CO_{2} concentrations and climate change.
2. Currently, CO_{2} concentrations are determined either by collecting air in flasks for analysis offsite or by continuous monitoring in the field. 7. Offsite analysis is usually performed by GC/TCD, GC/FID with a methanizer, or nondispersive infrared absorption (NDIR). 8. The disadvantages of batch analysis include sample storage and transport problems, limitation of the number of measurements by the number of available flasks, and a significant time lag between flask sample collection and analysis. 9. For example, in a recent field campaign aimed at measuring the fluxes of greenhouse gases in the Amazon rain forest of Peru, we were limited to six flask samples to characterize each vertical profile through the convective boundary layer. 10. Continuous monitoring is almost exclusively performed by NDIR 11. The limitations and errors associated with open- and closed-path NDIR analyzers have been extensively discussed by Leuning and Judd. 12. Disadvantages of in situ analysis by NDIR include instrument expense (and therefore limited sampling sites) and the inability to use NDIR from kite or small balloon platforms because of excessive weight and power requirements.
3. The new technique described here for measurement of CO_{2} mixing ratios is based on the increase in conductivity that occurs when deionized water makes contact with air by use of microporous hollow fiber membranes. 14. The detector is sufficiently small and lightweight to be operated from kite and balloon platforms for continuous vertical profiling of the atmosphere and has adequate precision and accuracy to determine landscape-scale fluxes of CO_{2} from vertical profile measurements.
4. There are previous reports of conductometric techniques for measuring gasphase CO_{2}. 17. Van Kempen and Kreuzer and Himpler et al. used microsensors and semipermeable membranes but did not study atmospheric levels of CO_{2}. 18. Symanski et al. designed microsensors for atmospheric CO_{2} and were successful at measuring concentrations that would be found in highly polluted air. 19. The instruments measured CO_{2} mixing ratios in the range $0-3 \%$ and were not tested extensively at concentrations characteristic of "clean" air ($\sim 350-370 \mathrm{ppmv}$). 20. Furthermore, the
continuous microsensor developed by Symanski et al exhibited a RSD of $\sim 2 \%$. 21. This precision is adequate for polluted air measurements but does not meet the precision required ($\sim 0.1 \%$) for monitoring the small concentration variations that are found in relatively unpolluted air, e.g., in the atmosphere above a forest canopy.

1. 5. Texto 5: Refinement of the borohydride reduction method for trace analysis of dissolved and particulate dimethyl sulfoxide in marine water samples.

1. Recent interest in dimethyl sulfoxide (DMSO) in the marine environment stems from its widespread occurrence in nature and its potential role in the biogeochemical cycle of dimethyl sulfide (DMS), a key species in the global sulfur cycle and the precursor of climatically active sulfur aerosols in the atmosphere. 2. However, relatively few measurements of DMSO levels in natural waters have been made to date, essentially because of the scarcity of sufficiently sensitive and selective analytical procedures. 3. During the past few years, five methods for trace analysis of aqueous DMSO have been reported. 4. All involve gas chromatography, either via direct injection of the water aliquot or via reduction and subsequent determination of the evolved DMS. 5. Simó et al. developed a borohydride reduction method which is relatively simple and performs well at nanomolar concentration levels. 6. When used as part of a sequential protocol, this technique allows analysis of a suite of methylated sulfur compounds, eg., DMS, methanethiol, dimethylsufonipropionate, DMSP), and DMSO, in the same water sample. 7. The method has been applied successfully in a number of field studies (rfs 10 and 11 and Simó, unpublished work).
2. In this paper, we report on refinements to the borohydride reduction method for DMSO analysis which resulted from adapting the technique for a different sample preparation and GC analytical system to that described by Simó et al. 9. New insight into the method has been gained, including the need to adjust the proportion of reductant specificity, blank troubleshooting, sample storage, and the first-ever application of the method to analysis of particular DMSO $\left(\mathrm{DMSO}_{\mathrm{p}}\right)$. 10. This information should be useful for those intending to analyze aqueous DMSO by reduction methods.

1. 5. 1. Matriz de repetición de unidades léxicas.

7	psm.. technique method			
		7	8	
8	rs. technique technique rs. analysis - analysis rs. DMSO - DMSO a. same - different rs. sample - sample	rs. method - method rs. Simó - Simó psp work - paper		
9	psm.. technique - method rs. analysis - analysis rs. DMSO - DMSO rs. sample - sample	rs. method - method rc. applied - application	rc. reduction - reductant rs. method - method rs. DMSO - DMSO rs. analysis - analysis rs. sample - sample	9
10	rc. used - useful psm.. technique methods rc. analysis - analyze rs. DMSO - DMSO	rs. method - methods	rs. reduction - reduction rs. method - methods rs. DMSO - DMSO rc. analysis - analyze	rs. method - methods rc. reductant - reduction rc. analysis - analyze rs. DMSO - DMSO

1. 5. 2. Matriz con el número de unidades léxicas.

1. 5. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 0)[0]$
2. $(0,0)[0]$
3. $(0,3)[3]$
4. $(0,0)[0]$
5. $(0,1)[1]$
6. $(1,3)[4]$
7. $(0,0)[0]$
8. $(3,2)[5]$
9. $(2,1)[3]$
10. (4-) [4]

1. 5. 4. Texto resultante tras eliminar las oraciones marginales.

3. During the past few years, five methods for trace analysis of aqueous DMSO have been reported. 5. Simó et al. developed a borohydride reduction method which is relatively simple and performs well at nanomolar concentration levels. 6. When used as part of a sequential protocol, this technique allows analysis of a suite of methylated sulfur compounds, eg., DMS, methanethiol, dimethylsufonipropionate, DMSP), and DMSO, in the same water sample.
4. In this paper, we report on refinements to the borohydride reduction method for DMSO analysis which resulted from adapting the technique for a different sample preparation and GC analytical system to that described by Simó et al. 9. New insight into the method has been gained, including the need to adjust the proportion of reductant specificity, blank troubleshooting, sample storage, and the first-ever application of the method to analysis of particular DMSO (DMSO_{p}). 10. This information should be useful for those intending to analyze aqueous DMSO by reduction methods.

1. 6. Texto 6: Determination of cyanide in whole blood by capillary gas chromatography with cryogenic oven trapping.

1. Cyanide is known as one of the most rapidly acting and powerful poisons; it inhibits cytochrome oxidase of the mitochondrial respiratory chain. 2. Suicidal, accidental, or homicidal death by cyanide salts is frequently experienced in forensic toxicological practice. 3. Several researchers reported that cyanide occasionally played a significant role in the cause of death of fire cases.
2. For analysis of cyanide, the most classical is a colorimetric method with microdiffusion, fluorometric methods were also reported. 5. Methods using gas chromatography (GC) with electron capture detection (ECD) and with nitrogenphosphorus detection (NPD) and mass spectrometry (MS), after suitable derivatizations, were reported. 6. GC measurements of cyanide with NPD without derivatization were usually made using the headspace (HS) method. 7. In most of these reports, conventional packed columns, which give relatively low sensitivity and poor separation, were used. 8. With wide-bore capillary columns, only a $0.5-\mathrm{mL}$ volume of the HS vapor can be injected; with medium-bore capillary columns, split injection giving less than 5% of efficiency has to be used. 9. Solid-phase microextraction has been applied to analysis of cyanide in human whole blood.
3. Recently, a microcomputer-controlled device for cooling oven temperatures below $0^{\circ} \mathrm{C}$ has become available for new types of GC instruments. 11. It was originally
designed for rapid cooling of the oven to reduce time for analysis. 12. This new device has been applied for determining chloroform and methylene chloride in blood.
4. In this paper, we have established a new GC technique using cryogenic oven for measuring cyanide in whole blood without any complicated pre-treatment; as much as 5 mL of the HS vapor for cyanide can be introduced without any loss into a mediumbore capillary column by use of a low oven temperature. 14. This means that 10-100 times higher sensitivity can be obtained by this method as compared with that of the previous methods.

1. 6. 1 . Matriz de repetición de unidades léxicas.

2	rs. cyanide cyanide	2			
3	rs. cyanide cyanide	rs. death - death rs. cyanide cyanide	3		
4	rs. cyanide cyanide	rs. cyanide cyanide	rs. reported reported rs. cyanide cyanide	4	
5			rs. reported reported	rs. reported - reported rs. method - methods	5
6	rs. cyanide cyanide	rs. cyanide cyanide		psm. analysis - measurements rs. cyanide - cyanide rs. method - method	rs. methods - method rs. using - using rs. GC - GC rs. NPD - NPD rs. derivatizations derivatization
7			rc. reported reports	rc. reported - reports psm. classical conventional	rs. using - used rc reported - reports
8					rs. using - used
9	rs. cyanide cyanide	rs. cyanide cyanide	rs. cyanide cyanide	rs. analysis - analysis rs. cyanide - cyanide	
10					rs. $\mathrm{GC}-\mathrm{GC}$
11				rs. analysis - analysis	
12				pc. analysis determining (analize)	
13	rs. cyanide cyanide	rs. cyanide cyanide	pc. reported paper (report) rs. cyanide cyanide	pc. analysis measuring (measurement) rs. cyanide - cyanide psm. method technique pc. reported - paper (report)	psm. methods technique rs. using - using rs. GC - GC pc. reported - paper (report)
14				rs. method - methods	rs. methods - methods

7	rs. using - used	7			
8	rs. using - used rs. HS - HS	rs. columns columns rs. give giving psm. sensitivity efficiency rs. used used	8		
9	psm. measurements - analysis rs. cyanide cyanide			9	
10	rs. GC-GC				10
11	psm. measurements - analysis			rs analysis analysis	s. microcomputer controlled device - it rs. cooling - cooling rs. oven - oven
12	pc. measurements determining (measuring)			rs. applied - applied pc. analysis - determining (analize) rs. blood - blood	rs. device - device
13	rs. $\mathrm{GC}-\mathrm{GC}$ rc. measurements measuring rs. cyanide cyanide rs. using - using rs. HS - HS	psp. reports paper rs. columns column rs. used using	rs. $\mathrm{mL}-\mathrm{mL}$ rs. HS - HS rs. vapor - vapor psm. injected - introduced rs. medium - medium rs. bore - bore rs. capillary - capillary rs. columns - column rs. used - using	pc. analysis measuring (analize) rs. cyanide cyanide rs. whole - whole rs. blood - blood	rs. oven - oven rs. temperatures temperature rs. $\mathrm{GC}-\mathrm{GC}$
14	rs. method methods	psm. give obtained rs. sensitivity - sensitivity pc. low higher (high)	psm. efficiency sensitivity		

12	pc. analysis - determining (analize)	112	
13	rs. oven - oven pc. analysis - measuring (analize)	psm. determining - measuring rs. blood - blood	
14			d. oración 13 - this

1. 6. 2. Matriz con el número de unidades léxicas.

1. 6. 3. Tabla representativa del número de conexiones entre oraciones.
1. $(-, 0)[0]$
2. $(0,0)[0]$
3. $(0,0)[0]$
4. $(0,2)[2]$
5. $(0,2)[2]$
6. $(2,1)[3]$
7. $(0,3)[3]$
8. $(1,1)$ [2]
9. $(0,2)[2]$
10. $(0,2)[2]$
11. $(1,0)[1]$
12. $(1,0)[1]$
13. $(7,0)[7]$
14. $(1,-)[1]$

1. 6. 4. Texto resultante tras eliminar las oraciones marginales.

4. For analysis of cyanide, the most classical is a colorimetric method with microdiffusion, fluorometric methods were also reported. 5. Methods using gas chromatography (GC) with electron capture detection (ECD) and with nitrogenphosphorus detection (NPD) and mass spectrometry (MS), after suitable derivatizations, were reported. 6. GC measurements of cyanide with NPD without derivatization were usually made using the headspace (HS) method. 7. In most of these reports, conventional packed columns, which give relatively low sensitivity and poor separation, were used. 8. With wide-bore capillary columns, only a $0.5-\mathrm{mL}$ volume of the HS vapor can be injected; with medium-bore capillary columns, split injection giving less than 5% of efficiency has to be used. 9. Solid-phase microextraction has been applied to analysis of cyanide in human whole blood.
5. Recently, a microcomputer-controlled device for cooling oven temperatures below $0^{\circ} \mathrm{C}$ has become available for new types of GC instruments. 11. It was originally designed for rapid cooling of the oven to reduce time for analysis. 12. This new device has been applied for determining chloroform and methylene chloride in blood.
6. In this paper, we have established a new GC technique using cryogenic oven for measuring cyanide in whole blood without any complicated pre-treatment; as much as 5 mL of the HS vapor for cyanide can be introduced without any loss into a medium-bore capillary column by use of a low oven temperature. 14. This means that 10-100 times higher sensitivity can be obtained by this method as compared with that of the previous methods.

1. 7. Texto 7: RP-HPLC binding domains of proteins.

1. Reversed-phase high-performance liquid chromatography (RP- HPLC) is now a central technique for the analysis and purification of biological molecules as a result of the high level of reproducibility, selectivity, and sensitivity that can be achieved. 2. Due to its ability to monitor subtle changes in molecular conformation, RP-HPLC is also now emerging as a powerful technique for studying the role of lipidlike surfaces in several biorecognition phenomena, such as the action of antimicrobial peptides and the role of hydrophobicity in protein folding. 3. However, further significant progress in the development of RP-HPLC is impeded by the lack of theoretical models which accurately describe the molecular details of peptide and protein interactions in RP-HPLC. 4. The slow development of detailed physicochemical models is largely due to the complex structural equilibria that peptides, and particularly proteins, can undergo in RP-HPLC systems.
2. A full understanding of the chromatographic process requires detailed knowledge of the chemical and physical nature of both the mobile phase and the stationary phase and also information on the types of interactions which occur between
the solute and the ligand or the solvent. 6. While little is known about the detailed molecular structure of proteins at the chromatographic surface, experimental data with species variants of proteins, as well recombinant mutants, indicate that proteins interact with the chromatographic surface in an orientation-specific manner. 7. The retention behavior of proteins, which can be described in terms of the affinity and kinetics of the interaction, is therefore determined by the molecular composition of a specific contact region. 8. Although the contact region for small peptides may involve contributions from the total or a large proportion of the molecular surface of the solute, for larger polypeptides or proteins, retention data suggest that the contact region represents a relatively small portion of the total solute surface. 9. The retention properties of larger polypeptides and proteins are therefore determined by the specific contact amino acid residues rather than by the entire amino acid sequence. 10. However, the location and identity of these chromatographic contact regions of proteins cannot be readily established. 11. Without this information, it is not possible to predict the molecular basis of the retention behavior of a protein, and this limitation constrains the further development of RP-HPLC as a technique to study protein- surface interactions.
3. To address this problem, procedures have been developed in this study to identify the chromatographic contact regions of proteins when adsorbed to reversedphase sorbents. 13. In particular, proteolytic techniques have been used to probe the surface region of horse heart cytochrome c (Cyt c) and bovine growth hormone (bGH) while adsorbed to an n-butyl (C-4) and n-octadecylsilica (C-18) reversed-phase sorbent. 14. Following proteolytic digestion and characterization of the derived fragments, the results were correlated with the known three-dimensional structure of these two proteins and provide insight into the location of the possible contact regions as well as the orientation of these two proteins at the surface of reversed-phase sorbents.

1. 7. 1. Matriz de repetición de unidades léxicas.

2	rs. RP-HPLC -RP-HPLC rs. technique technique rc. molecules molecular	2			
3	rs. RP-HPLC -RP-HPLC rc. molecules molecular	rs. molecular molecular rs. RP-HPLC - RP-HPLC rs. peptides peptide rs. protein protein	3		
4	rs. RP-HPLC -RP-HPLC	pc. conformation structural (structure) rs. RP-HPLC - RP-HPLC rs. peptides peptides rs. protein proteins	rs. development development rs. RP-HPLC - RPHPLC rs. models - models rc. details - detailed rs. peptide - peptides rs. protein proteins	4	
5	rc. chromatography chromatographic	hip. peptides/ protein solute	rc. details - detailed hip. peptide/protein - solute rs. interactions interactions	rs. detailed - detailed psm. physicochemical - chemical and physical hip. peptides/proteins - solute	5
6	rc. chromatography chromatographic rc. molecules molecular	rs. molecular molecular psm. conformation structure rs. surfaces surface rs. protein proteins	rs. molecular molecular rc. details - detailed rs. protein proteins rc. interactions interact	rs. detailed - detailed rc. structural - structure rs. proteins - proteins	rs. chromatographicchromatographic rs. detailed detailed rc. knowledge known rc. interactions interact tr. solute - proteins
7	rc. molecules molecular	rs. molecular molecular psm. conformation composition rs. protein proteins	rs. describe described rs. molecular molecular rs. protein proteins rs. interactions interaction	pc. structural composition (structure) rs. proteins - proteins	rs. interactions interaction tr. solute - proteins
8	rc. molecules molecular	rs. molecular molecular rs. surfaces surface rs. peptides peptides rs. protein proteins	rs. molecular molecular rs. peptide peptides rs. protein proteins	rs. peptides - peptides rs. proteins - proteins	rs. solute - solute

Anexo

	1	2	3	4	5
9		rc. peptides polypeptides rs. protein - proteins	rc. peptide polypeptides rs. protein proteins	rc. peptides polypeptides rs. proteins proteins	tr. solute proteins
10	rc. chromatography chromatographic	rs. protein - proteins	rs. protein proteins	rs. proteins proteins	rs. chromatographicchromatographic tr. solute proteins
11	rs. RP-HPLC -RP-HPLC rs. technique technique rc. molecules molecular	rs. molecular molecular rs. RP-HPLC - RPHPLC rs. technique technique rs. studying - study rs. surfaces - surface rs. protein - protein	rs. development - development rs. RP-HPLC -RP-HPLC psm. impeded constrains rs. molecular molecular rs. protein protein rs. interactions interactions	rs. development development rs. proteins protein rs. RP-HPLC -RP-HPLC	rs. interactions interactions tr. solute - protein
12	rs. reversed reversed rs. phase - phase rc. chromatography chromatographic	rs. protein - proteins	rc. development - developed rs. protein proteins	rc. development developed rs. proteinsproteins	rs. chromatographicchromatographic tr. solute proteins
13	rs. reversed reversed rs. phase - phase	rs. surfaces - surface tr. protein - Cyt c /bGH	tr. protein - Cyt c/bGH	$\begin{aligned} & \text { tr. proteins - Cyt c } \\ & \text { /bGH } \end{aligned}$	
14	rs. reversed reversed rs. phase - phase	psm. conformation structure rs. surfaces - surface rs. protein - proteins	rs. protein proteins	rc. structural structure rs. proteinsproteins	tr. solute proteins

Anexo

1. 7. 2. Matriz con el número de unidades léxicas.

1. 7. 3. Tabla representativa del número de conexiones entre oraciones

1. $(-, 0)[0]$	2. $(0,5)[5]$	3. $(1,4)[5]$
4. $(2,0)[2]$	5. $(0,1)[1]$	6. $(3,4)[7]$
7. $(2,6)[8]$	8. $(3,3)[6]$	9. $(2,0)[2]$
10. $(1,2)[3]$	11. $(5,1)[6]$	12. $(3,2)[5]$
13. $(1,1)[2]$	14. $(6,-)[6]$	

1. 7. 4. Texto resultante tras eliminar las oraciones marginales.

2. Due to its ability to monitor subtle changes in molecular conformation, RPHPLC is also now emerging as a powerful technique for studying the role of lipid-like surfaces in several biorecognition phenomena, such as the action of antimicrobial peptides and the role of hydrophobicity in protein folding. 3. However, further significant progress in the development of RP-HPLC is impeded by the lack of theoretical models which accurately describe the molecular details of peptide and protein interactions in RP-HPLC. 4. The slow development of detailed physicochemical models is largely due to the complex structural equilibria that peptides, and particularly proteins, can undergo in RP-HPLC systems.
3. A full understanding of the chromatographic process requires detailed knowledge of the chemical and physical nature of both the mobile phase and the
stationary phase and also information on the types of interactions which occur between the solute and the ligand or the solvent. 6. While little is known about the detailed molecular structure of proteins at the chromatographic surface, experimental data with species variants of proteins, as well recombinant mutants, indicate that proteins interact with the chromatographic surface in an orientation-specific manner. 7. The retention behavior of proteins, which can be described in terms of the affinity and kinetics of the interaction, is therefore determined by the molecular composition of a specific contact region. 8. Although the contact region for small peptides may involve contributions from the total or a large proportion of the molecular surface of the solute, for larger polypeptides or proteins, retention data suggest that the contact region represents a relatively small portion of the total solute surface. 9. The retention properties of larger polypeptides and proteins are therefore determined by the specific contact amino acid residues rather than by the entire amino acid sequence. 10. However, the location and identity of these chromatographic contact regions of proteins cannot be readily established. 11. Without this information, it is not possible to predict the molecular basis of the retention behavior of a protein, and this limitation constrains the further development of RP-HPLC as a technique to study proteinsurface interactions.
4. To address this problem, procedures have been developed in this study to identify the chromatographic contact regions of proteins when adsorbed to reversedphase sorbents. 13. In particular, proteolytic techniques have been used to probe the surface region of horse heart cytochrome c (Cyt c) and bovine growth hormone (bGH) while adsorbed to an n-butyl (C-4) and n-octadecylsilica (C-18) reversed-phase sorbent. 14. Following proteolytic digestion and characterization of the derived fragments, the results were correlated with the known three-dimensional structure of these two proteins and provide insight into the location of the possible contact regions as well as the orientation of these two proteins at the surface of reversed-phase sorbents.

1. 8. Texto 8: Nanoliter chemistry combined with mass.

1. At the early development stage of a disease such as cancer, only a small population of normal cells undergoes transformation and a change of the proteome is expected to occur in these tumor cells. 2. In cell research, a number of cell lines derived from tumors in in vitro cell culture systems have been used as sources of large numbers of cells of a uniform type and they play an essential role in the process of investigating cell functions. 3. However, because of the difference in the environment of cell growth in the intact organism and the culture, great care must be taken in extrapolating the results of in vitro experiments to the reality in vivo. 4. This is particularly true for proteins, whose identity and abundance can vary greatly at different stages of cell development or expressing conditions. 5. Thus, analyzing the primary cells isolated from a tissue, instead of a cultured cell line, is the only way to provide a direct correlation of the change in protein contents and identities with a
biological event, such as the progression of a disease, without running into a risk of potential artifacts of cell culture. 6. This requires very sensitive analytical methods, because the number of tumor or other disease cells available for investigation from a tissue is often limited.
2. At present, several tracer techniques involving radiolabeling, immunoassay, and fluorescence tagging have been used to provide information on the distribution of usually known proteins in a small number of cells or a single cell. 8. Miniaturized detection schemes based on electrochemical, laser-induced fluorescence detection and, more recently, mass spectrometry have shown great promise in analyzing cellular components including peptides and proteins in single cells. 9. However, unequivocal identification and characterization of trace amounts of unknown or modified proteins in very small volumes associated with tissues, single cells, subcellular compartments, and exocytosis still remain a formidable task. 10. In this report, we describe an analytical approach that combines three rapidly developing techniques, namely, nanoliter or subnanoliter chemistry, matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS), and protein database searching, to characterize attomole quantities of proteins from small-volume samples including single cells.

1. 8. 1. Matriz de repetición de unidades léxicas.

2	rs. tumor - tumors rs. cells - cell	2			
3	psm. development - growth* rs. cells - cell	rs. cell - cell rs. in vitro - in vitro rs. culture culture	3		
4	rs. development development* rs. stage - stages* pc. change - vary (change) rc. proteome proteins rs. cells - cell	rs. cell - cell	d. great care... in vivo - this rs. cell cell psm. growth development	4	
5	psm. development - progression rs. disease disease rs. change change rc. proteome proteins rs. cells - cells	rs. lines - line rs. cell - cell rs. culture culture	rs. cell cells rs. culture culture	rs. proteins protein rs. identity identities pc. vary change (change) rs. cell - cells psm. development progression*	5
6	rs. disease disease rs. tumor - tumor rs. cells - cells	rs. number number rs. tumors tumor rs. cells - cells rc. investigating - investigation	rs. cell cells	rs. cell - cells	d. oración 5 - this rc. analyzing analytical rs. cells - cells rs. tissue - tissue rs. disease - disease
7	rc. proteome proteins rs. cells - cells	rs. used - used a. large - small rs. numbers - number rs. cells - cells	rs. cell cell	rs. proteins proteins rs. cell - cells	rs. cells - cells rs. provide - provide rs. protein - proteins
8	rc. proteome proteins rs. cells - cells	rs. cells - cells	rs. cell cells	rs. proteins proteins rs. cell - cells	rs. analyzing - analyzing rs. cells - cells rs. protein - proteins
9	rs. cells - cells pc. change modified (modification) rc. proteome proteins	rs. cells - cells	rs. cell cells	rs. proteins proteins psm. vary modified rs. cell - cells	rs. cells - cells rs. tissue - tissues pc. change - modified (modification) rs. protein - proteins
10	rs. cells - cells rc. proteome proteins	rs. cells - cells	rs. cell cells	rs. proteins protein rs. cell - cells	rc. analyzing analytical rs. cells - cells rs. protein - proteins

1. 8. 2. Matriz con el número de unidades léxicas.

1. 8. 3. Tabla representativa del número de conexiones entre oraciones

1. $(-, 1)(-, 2)[1][2]$
2. $(0,2)[2]$
3. $(0,0)(1,0)[0][1]$
4. $(0,1)(1,1)[1][2]$
5. $(2,2)[4]$
6. $(2,0)[2]$
7. $(1,3)$ [4]
8. $(1,1)$ [2]
9. $(2,1)[3]$
10. (3,-) [3]

1. 8. 4. Texto resultante tras eliminar las oraciones marginales.

1. At the early development stage of a disease such as cancer, only a small population of normal cells undergoes transformation and a change of the proteome is expected to occur in these tumor cells. 2. In cell research, a number of cell lines derived from tumors in in vitro cell culture systems have been used as sources of large numbers of cells of a uniform type and they play an essential role in the process of investigating cell functions. ${ }^{2} 4$. This [that great care must be taken in extrapolating the results of in vitro experiments to the reality in vivo, because of the difference in the environment of cell growth in the intact organism and the culture] is particularly true for proteins, whose identity and abundance can vary greatly at different stages of cell development or expressing conditions. 5. Thus, analyzing the primary cells isolated from a tissue, instead of a cultured cell line, is the only way to provide a direct correlation of the change in protein contents and identities with a biological event, such as the progression of a disease, without running into a risk of potential artifacts of cell culture. 6 . This requires very sensitive analytical methods, because the number of tumor or other disease cells available for investigation from a tissue is often limited.
2. At present, several tracer techniques involving radiolabeling, immunoassay, and fluorescence tagging have been used to provide information on the distribution of usually known proteins in a small number of cells or a single cell. 8. Miniaturized detection schemes based on electrochemical, laser-induced fluorescence detection and, more recently, mass spectrometry have shown great promise in analyzing cellular components including peptides and proteins in single cells. 9. However, unequivocal identification and characterization of trace amounts of unknown or modified proteins in very small volumes associated with tissues, single cells, subcellular compartments, and exocytosis still remain a formidable task. 10. In this report, we describe an analytical approach that combines three rapidly developing techniques, namely, nanoliter or subnanoliter chemistry, matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS), and protein database searching, to characterize attomole quantities of proteins from small-volume samples including single cells.

1. 9. Texto 9: The determination of food colours by HPLC with on-line dialysis for

sample preparation.

1. Synthetic colours, mainly azo dyes, have been used in a wide range of food products for many years. 2. The sensory perception of colour is an important quality

[^1]attribute and many processed products have been coloured either to replace natural colours destroyed during processing or to provide colour in goods which would otherwise be colourless, as, for example, soft drinks. 3. The current trend is, however, away from the use of such synthetic dyes despite the extensive toxicological screening which they have undergone. 4. The lists of permitted synthetic dyes are progressively being reduced and a number of food processors are relying on the use of natural colours to impart the desired colour to their products. 5. Unfortunately, many of the natural colours (e.g. anthocyanins, carotenoids and betalaines) do not have the same stability under processing conditions as their synthetic counterparts. 6. There will always, therefore, be a tendency (or at least a temptation) for some food processors to include synthetic dyes in their products without the correct label designation.
7. There is, therefore, a well-defined need for precise and accurate methods for the determination of synthetic dyes in foods, particularly for the following reasons:
(i) to determine whether there are synthetic dyes present in foods and if so, whether they are correctly permitted;
(ii) to determine the levels of such dyes;
(iii) to confirm the absence of added dyes in foods where they are not declared;
(iv) to check on the stability of dyes during processing and storage (Damant et al.,, 1989).
8. There are well-documented methods for the chromatographic separation of synthetic dyes (Saag, 1988). 9. These are either based on ion-exchange methods or now more commonly on ion-pair chromatography under reversed phase conditions. 10. A detailed study of the factors affecting retention under these conditions has recently been published (Damant, 1990). 11. The simplest mobile phase conditions are those based on ammonium acetate buffers. 12. The problem in methods for the quantitative determination of synthetic dyes in foods does not, therefore, lie in their separation, but rather in the means for their quantitative isolation from the food matrix. 13. Traditional methods, such as adsorption on to wool or polyamide powder (Lehmann, 1970) tend not to be quantitative and can lead to dye degradation. 14. A milder means of extraction, either from the food itself (e.g. soft drinks) or from an aqueous extract of the food, would offer considerable advantages and this is the situation encountered with dialysis. 15. This technique has been used as a means of sample preparation for vitamin analysis
by HPLC (Nicholson et al.. 1984). 16. However, only recently has a fully automated system been made commercially available, which allows considerable flexibility in terms of dialysis conditions, coupled with automated injection of the sample into the HPLC column (Green et al., 1989). 17. The power of the technique is further extended by allowing enrichment of the determinand in the dialysate on small trace enrichment cartridge prior to elution to the analytical HPLC column. 18. The combination of dialysis and trace enrichment then leads to a complete sample preparation systems for microconstituents of foods, which is marketed under the acronym ASTED (automated sample treatment through enrichment of dialysates).

1. 9. 1. Matriz de repetición de unidades léxicas.

2	a. synthetic natural rs. colours colours e. food - 0 rs. products products	2			
3	rs. synthetic synthetic rs. dyes - dyes rc. used - use	a. natural - synthetic psm. colours - dyes	3		
4	rs. synthetic synthetic rs. colours colours rs. dyes - dyes rc. used - use rs. food - food rs. products products	rc. processed processors rs. natural - natural rs colours - colours psm. provide impart rs. products products	rs. use - use rs. synthetic synthetic rs. dyes dyes	4	
5	rs. synthetic synthetic rs. colours colours	rs. natural - natural rs colours - colours rs. processing processing	rs. synthetic synthetic psm. dyes colours	rs. synthetic synthetic rc. processors processing rs. natural - natural rs colours - colours	5
6	rs. synthetic synthetic rs. dyes - dyes rs. food - food rs. products products	rc. processed processors a. natural - synthetic psm. colours - dyes rs. products products	psm. trend tendency rs. synthetic synthetic rs. dyes dyes	rs. synthetic synthetic rs. dyes - dyes rs. food - food rs. processors processors rs. products - products	psm. colours - dyes rc. processing processors rs. synthetic synthetic
7	rs. synthetic synthetic rs. dyes - dyes rs. food - foods	a. natural - synthetic psm. colours - dyes rs. processing processing hip. products - foods	rs. synthetic synthetic rs. dyes dyes	rs. permitted permitted rs. synthetic synthetic rs. dyes - dyes rs. food - foods rc. processors processing	psm. colours - dyes rs. stability stability rs. processing processing rs. synthetic synthetic
8	rs. synthetic synthetic rs. dyes - dyes	a. natural - synthetic psm. colours - dyes	rs. synthetic synthetic rs. dyes dyes	rs. synthetic synthetic rs. dyes - dyes	psm. colours - dyes rs. synthetic synthetic
9					

Anexo

1
2
3
4
5

10					
11					
12	rs. synthetic - synthetic rs. dyes - dyes rs. food - foods	hip. products - foods a. natural - synthetic psm. colours - dyes	rs. synthetic - synthetic rs. dyes - dyes	rs. synthetic - synthetic rs. dyes - dyes rs. food - foods	psm. colours - dyes rs. synthetic - synthetic
13	rs. dyes - dye	psm. colours - dye	rs. dyes - dye	rs. dyes - dye	psm. colours - dye
14	rs. food - food	hip. products - food rs. soft - soft rs. drinks - drinks		rs. food - food	
15					
16					
17	hip. synthetic dyes - determinand		hip. synthetic dyes - determinand	hip. synthetic dyes - determinand	hip. synthetic - determinand
18	hip. synthetic dyes - microconstituents rs. food - foods	hip. products - foods	hip. synthetic dyes - microconstituents	hip. synthetic dyes rs. mood - foods roconstituents	hip. synthetic - microconstituents

7	rs. food - foods rc. processors processing rs. synthetic synthetic rs. dyes - dyes	7			
8	rs. synthetic synthetic rs. dyes - dyes	rs. methods methods rs. synthetic synthetic rs. dyes - dyes	8		
9		rs. methods methods	rs. methods - methods rc. chromatographic chromatography	9	
10				rs. conditions conditions	10
11				rs. based - based rs. phase - phase rs. conditions conditions	rs. conditions conditions
12	rs. food - foods rs. synthetic synthetic rs. dyes - dyes	rs. methods methods rs. determination determination rs. synthetic synthetic rs. dyes - dyes rs. foods - foods	rs. methods - methods rs. separation - separation rs. synthetic - synthetic rs. dyes - dyes	rs. methods methods	
13	rs. dyes - dye	rs. methods methods rs. dyes - dye	rs. methods - methods rs. dyes - dye	rs. methods methods	
14	rs. food - food	rs. food - food			
15					
16					
17	hip. synthetic dyes - determinand	hip. synthetic dyes - determinand	hip. synthetic dyes determinand		
18	hip. synthetic dyes - microconstituents rs. food - foods	psp. methods treatment hip. synthetic dyes - microconstituents rs. foods - foods	hip. synthetic dyes microconstituents		

Anexo

1. 9. 2. Matriz con el número de unidades léxicas.

1. 9. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 6)[6]$
2. $(1,6)[7]$
3. $(1,2)[3]$
4. $(3,4)[7]$
5. $(2,2)[4]$
6. $(5,2)[7]$
7. $(5,3)[8]$
8. $(1,1)$ [2]
9. $(0,1)[1]$
10. $(0,0)[0]$
11. $(1,0)[1]$
12. $(6,3)[9]$
13. $(1,0)[1]$
14. $(2,2)[4]$
15. $(0,2)$ [2]
16. $(2,2)[4]$
17. $(1,1)[2]$
18. (6-) [6]

1. 9. 4. Texto resultante tras eliminar las oraciones marginales.

1. Synthetic colours, mainly azo dyes, have been used in a wide range of food products for many years. 2. The sensory perception of colour is an important quality attribute and many processed products have been coloured either to replace natural colours destroyed during processing or to provide colour in goods which would otherwise be colourless, as, for example, soft drinks. 3. The current trend is, however, away from the use of such synthetic dyes despite the extensive toxicological screening which they have undergone. 4. The lists of permitted synthetic dyes are progressively being reduced and a number of food processors are relying on the use of natural colours to impart the desired colour to their products. 5. Unfortunately, many of the natural colours (e.g. anthocyanins, carotenoids and betalaines) do not have the same stability under processing conditions as their synthetic counterparts. 6. There will always, therefore, be a tendency (or at least a temptation) for some food processors to include synthetic dyes in their products without the correct label designation.
2. There is, therefore, a well-defined need for precise and accurate methods for the determination of synthetic dyes in foods, particularly for the following reasons:
(i) to determine whether there are synthetic dyes present in foods and if so, whether they are correctly permitted;
(ii) to determine the levels of such dyes;
(iii) to confirm the absence of added dyes in foods where they are not declared;
(iv) to check on the stability of dyes during processing and storage (Damant et al.., 1989).
3. There are well-documented methods for the chromatographic separation of synthetic dyes (Saag, 1988). 9. These are either based on ion-exchange methods or now more commonly on ion-pair chromatography under reversed phase conditions. 11. The simplest mobile phase conditions are those based on ammonium acetate buffers. 12. The problem in methods for the quantitative determination of synthetic dyes in foods does not, therefore, lie in their separation, but rather in the means for their quantitative isolation from the food matrix. 13. Traditional methods, such as adsorption on to wool or polyamide powder (Lehmann, 1970) tend not to be quantitative and can lead to dye degradation. 14. A milder means of extraction, either from the food itself (e.g. soft drinks) or from an aqueous extract of the food, would offer considerable advantages and this is the situation encountered with dialysis. 15. This technique has been used as a means of sample preparation for vitamin analysis by HPLC (Nicholson et al.. 1984). 16. However, only recently has a fully automated system been made commercially available, which allows considerable flexibility in terms of dialysis conditions, coupled with automated injection of the sample into the HPLC column (Green et al., 1989). 17. The power of the technique is further extended by allowing
enrichment of the determinand in the dialysate on small trace enrichment cartridge prior to elution to the analytical HPLC column. 18. The combination of dialysis and trace enrichment then leads to a complete sample preparation systems for microconstituents of foods, which is marketed under the acronym ASTED (automated sample treatment through enrichment of dialysates).

1. 10. Texto 10: Analysis of serotonin in whole-blood samples - A novel fully automated method.

1. For many years, serotonin (5-hydroxytryptamine) has been known as a pharmacological substance. 2. As early as 1948, Rapport, (1) described the structure of the compound. 3. Today, serotonin is known generally as a neurotransmitter and neuroregulating compound. 4. Serotonin participates in the regulation of important functions, including, circadian rhythm, temperature regulation, aggression control, and sexual function. 5. Researchers have observed changes in serotonin metabolism accompanying psychiatric diseases, including forms of depression. 6. In cases of migraine attacks, the concentration of serotonin in plasma with high platelet concentrations can increase as much as three times. 7. Furthermore, a correlation exists between the severity of the attack and the serotonin level.
2. The analysis of serotonin in whole blood is interesting because the compound is deposited in thrombocytes, which resemble some nerve cells. 9. Disturbances in the central nervous system, where serotonin acts, can in some cases be measured indirectly by monitoring the serotonin metabolism in blood. 10. Using thrombocytes as a model system, we can examine the influence of psychotropic agents. 11. The normal level of serotonin in blood varies from 70 to $160 \mathrm{ng} / \mathrm{mL}$ (10).
3. The current method for measuring serotonin in whole blood or in plateletenriched plasma requires three steps: adding perchloric acid to the sample, centrifuging it, and injecting some of the supernatant into a high performance liquid chromatography (HPLC) system. 13. If we were able to perform an equally reliable, but less tedious and time- consuming, solid-phase extraction (SPE) method, it would be a step forward. 14. Common off-line SPE does not seem to be the proper choice for analysing serotonin in whole blood. 15. In the past, analysts have reported that SPE cartridges become clogged with whole blood samples, which caused disturbed flow patterns and provided irreproducible results.
4. On-line, high-pressure SPE is better suited to viscous and complex matrices such as whole blood. 17. In this article, we will describe a method that uses on-line, high pressure SPE for the automated analysis of serotonin in whole-blood samples.

1. 10. 1. Matriz de repetición de unidades léxicas.

2	hip. serotonin - compound	2				
3	rs. serotonin serotonin rs. known known	rs. compound compound	3			
4	rs. serotonin serotonin	hip. compound serotonin	rs. serotonin serotonin rc. neuroregulating regulation	4		
5	rs. serotonin serotonin	hip. compound serotonin	rs. serotonin serotonin	rs. serotonin serotonin	5	
6	rs. serotonin serotonin	hip. compound serotonin	rs. serotonin serotonin	rs. serotonin serotonin	rs. serotonin serotonin	6
7	rs. serotonin serotonin	hip. compound serotonin	rs. serotonin serotonin	rs. serotonin serotonin	rs. serotonin serotonin	rs. attacks attack psm. concentration - level rs. serotonin serotonin
8	rs. serotonin serotonin	rs. compound compound	rs. serotonin serotonin rs. compound compound	rs. serotonin serotonin	rs. serotonin serotonin	rs. serotonin serotonin
9	rs. serotonin serotonin	hip. compound serotonin	rs. serotonin serotonin	rs. serotonin serotonin	rs. serotonin serotonin rs. metabolism metabolism	rs. serotonin serotonin
10						
11	rs. serotonin serotonin	hip. compound serotonin	rs. serotonin serotonin	rs. serotonin serotonin	pc. changes varies* (variation) rs. serotonin serotonin	psm. concentration - level rs. serotonin serotonin
12	rs. serotonin serotonin	hip. compound serotonin	rs. serotonin serotonin	rs. serotonin serotonin	rs. serotonin serotonin	rs. serotonin serotonin rs. plasma plasma rs. platelet platelet
13						

Anexo

1	2	3	4	6		
14	rs. serotonin - serotonin	hip. compound - serotonin	rs. serotonin - serotonin			
15						
16						
17	rs. serotonin - serotonin	hip. compound serotonin	rs. serotonin - serotonin	rs. serotonin - serotonin	rs. serotonin - serotonin	rs. serotonin serotonin

Anexo

13	rs. method method	13			
14	rs. serotonin serotonin rs. whole whole rs. blood - blood	rs. SPE - SPE e. method -0	14		
15	rs. whole - whole rs. blood - blood rs. sample samples	rs. SPE - SPE	rs. SPE - SPE rc. analysing analysts rs. whole - whole rs. blood - blood	15	
16	rs. whole whole rs. blood - blood	rs. SPE - SPE	a. off-line - on-line rs. SPE - SPE rs. whole - whole rs. blood - blood	rs. SPE - SPE rs. whole - whole rs. blood - blood	16
17	rs. method method rs. serotonin serotonin rs. whole whole rs. blood - blood rs. sample samples	rs. we - we+ rs. SPE - SPE rs. method method	a. off-line - on-line rs. SPE - SPE rc. analysing analysis rs. serotonin serotonin rs. whole - whole rs. blood - blood	rc. analysts analysis psm. reported describe rs. SPE - SPE rs. whole - whole rs. blood - blood rs. samples - samples	rs. on-line - on-line rs. high - high rs. pressure - pressure rs. SPE-SPE rs. whole - whole rs. blood - blood

1. 10. 2. Matriz con el número de unidades léxicas.

1. 10. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 0)[0]$	2. $(0,0)[0]$	3. $(0,0)[0]$
4. $(0,0)[0]$	5. $(0,0)[0]$	6. $(0,2)[2]$
7. $(1,0)[1]$	8. $(0,5)[5]$	9. $(1,1)[2]$
10. $(0,0)[0]$	11. $(0,0)[0]$	12. $(3,3)[6]$
13. $(0,0)(0,1)[0][1]$	14. $(2,3)[5]$	15. $(3,2)[5]$
16. $(2,1)[3]$	17. $(5,-)(6,-)[5][6]$	

1. 10. 4. Texto resultante tras eliminar las oraciones marginales.

6. In cases of migraine attacks, the concentration of serotonin in plasma with high platelet concentrations can increase as much as three times. 7. Furthermore, a correlation exists between the severity of the attack and the serotonin level.
7. The analysis of serotonin in whole blood is interesting because the compound is deposited in thrombocytes, which resemble some nerve cells. 9. Disturbances in the central nervous system, where serotonin acts, can in some cases be measured indirectly by monitoring the serotonin metabolism in blood.
8. The current method for measuring serotonin in whole blood or in plateletenriched plasma requires three steps: adding perchloric acid to the sample, centrifuging it, and injecting some of the supernatant into a high performance liquid chromatography (HPLC) system. ${ }^{3}$ 14. Common off-line SPE does not seem to be the proper choice for analysing serotonin in whole blood. 15. In the past, analysts have reported that SPE cartridges become clogged with whole blood samples, which caused disturbed flow patterns and provided irreproducible results.
9. On-line, high-pressure SPE is better suited to viscous and complex matrices such as whole blood. 17. In this article, we will describe a method that uses on-line, high pressure SPE for the automated analysis of serotonin in whole-blood samples.
[^2]
2. TEXTOS PERTENECIENTES A LOS ARTÍCULOS ‘ACADÉMICOS INFORMALES.

2. 1. Texto 1: Is it Real Gold?

1. On March 12, 1997, Ann Landers advised a writer to believe her boyfriend, who claimed the necklace he had given her for Christmas was "real gold", despite the fact that it kept turning her neck green. 2. She went on to say that, "Some people have an element in their system that does this." 3. What should a chemist make of this exchange?
2. First of all, what is "real" gold? 5. To a chemist, "real" gold might imply "pure" gold. 6. The gift necklace was surely not "pure" in a chemical sense, because 100%, or 24 carat gold (also spelled "karat", and always marked as "K") is too soft to be practical for use in jewelry. 7. Jewelry is usually made of 18 or 14 carat gold, whose weight fraction of gold is $18 / 24$ or $14 / 24$, respectively. 8. The "carat" system was invented by the British in about the year 1300 to facilitate the use of gold in commerce. 9. In the United States, the lowest allowed carat designation for gold is 10 , but a $1 / 2-$ carat error is allowed, so that " 10 K " can be marketed that is only 9.5 K , or 39.6% by weight gold. 10. In Britain, items that are only 9 K can be sold, but there is no margin for error on the low side; France's lowest carat designation is 18 K . 11. The rest of the material in the alloy can be a variety of other metals; those most often used are copper, nickel, or silver. 12. The composition of the alloy is not disclosed in the "carat" marking, and different alloying metals are used to make different colors. 13. For example, notice the three colors of gold in the 19th-century English verge pocket watch illustrated in Figure 1.
3. The metals used to make different colors are usually:
```
Yellow: \(\mathrm{Au}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Zn}\)
White: Au, Cu, Ni, Zn
Red: Au, Cu
Green: Au, Ag
```

15. The alloy called "green gold" (which is only slightly greenish) is rarely used, so the boyfriend of Ann Landers' correspondent was most likely claiming that the gift
necklace was one of the recognized alloys whose minimum gold content has been designated in Britain by Hallmarks and there and elsewhere by the carat system.
16. The common phrase "acid text" comes from the practice of testing gold alloys with nitric acid. 17. An alloy of less than about 9 or 10 carat is quickly turned green. 18. Compositions up to 18 carat gold alloy can be tested with aqua regia (a mixture of nitric and hydrochloric acid, in roughly equal proportions); the small spot subjected to the acid will immediately become pale yellow, as the base metals that provide some of the color are dissolved. 19. Instead of risking damage to the piece of yewelry, tests were often done using a "touchstone", a hard, black, slightly abrasive stone on which the object was rubbed fairly firmly, wiping a small amount of metal onto the stone surface. 20. The tests were done on the stone and the jewelry could easily be repolished to its original condition. 21. It is interesting that so many of the words involved in this testing process have survived to the present time: "Hallmark", "acid test", and "touchstone".
17. A perceptive chemist will recognize that the carat marking specifies the minimum weight percentage of gold (only), but neither the identity nor the concentration of the other parts of the alloy. 23. This means that an 18 carat gold item could have from zero to 25 weight percent copper, which corresponds to zero to 51 mole percent copper. 24. Mixtures involving nickel and zinc result in about the same mole fraction of the base metals because of the similarity of their average atomic masses to that of copper.
18. The question of whether it is possible to oxidize a metal, and therefore to produce the possibility of a colored salt, is largely reflected in the standard potential. 26. For the principal elements of the gold alloys, the pertinent numbers are:

$$
\begin{array}{ll}
\mathrm{Au}^{3+}+3 \mathrm{e} \rightarrow \mathrm{Au} & \mathrm{E}^{0}=1.42 \mathrm{~V} \\
\mathrm{Ag}^{+}+\mathrm{e} \rightarrow \mathrm{Ag} & \mathrm{E}^{0}=0.80 \mathrm{~V} \\
\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu} & \mathrm{E}^{0}=0.34 \mathrm{~V} \\
\mathrm{Ni}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Ni} & \mathrm{E}^{0}=0.23 \mathrm{~V} \\
\mathrm{Zn}^{2+} 2 \mathrm{e} \rightarrow \mathrm{Zn} & \mathrm{E}^{0}=0.76 \mathrm{~V}
\end{array}
$$

27. These data suggest why gold is a "noble" metal: the potential required to oxidize it is near the maximum available in aqueous solutions. 28. Consider, for example, combining the half-cells

$$
\mathrm{Au}(\mathrm{~s})=\mathrm{Au}^{3+}+3 \mathrm{e} \quad \mathrm{E}^{0}=-1.42 \mathrm{~V}
$$

or

$$
\mathrm{Cu}(\mathrm{~s})=\mathrm{Cu}^{2+}+2 \mathrm{e} \quad \mathrm{E}^{0}=-0.34 \mathrm{~V}
$$

with the half-cell for a good oxidizer, such as:

$$
\mathrm{NO}_{3}^{-}+4 \mathrm{H}_{3} \mathrm{O}^{+}+3 \text { é }=\mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{0}=0.96 \mathrm{~V}
$$

29. It is obvious that nitric acid will not oxidize gold but will easily oxidize copper. $\mathbf{3 0}$. However, the prediction of the conditions under which a metal might be oxidized depends upon more than just the potential for producing the "bare" (or hydrated) metal ion. 31. One must also consider that the metal ion may be stabilized in solution by formation of a complex ion, which is the reason why both the nitric acid oxidant and the hydrochloric acid complexing agent are required when aqua regia (literally, royal water - a phrase coined by alchemists to designate a solvent for "noble" metals) dissolves gold. 32. When gold is dissolved in aqua regia, the reaction is:

$$
\mathrm{Au}(\mathrm{~s})+4 \mathrm{Cl}^{-}+\mathrm{NO}_{3}^{-}+4 \mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{AuCl}_{4}^{-}+\mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}
$$

33. Since the potential for

$$
\mathrm{AuCl}_{4}^{-}+3 \mathrm{e} \rightarrow \mathrm{Au}+4 \mathrm{Cl}^{-}
$$

is 1.00 vol , the dissolution of gold in aqua regia becomes thermodynamically favorable.
34. Oxidation by ordinary air (or air contaminated by sulfides) can tarnish silver, copper, and nickel, but pure gold is impervious to attack, even by concentrated nitric or hydrochloric acid acting independently. 35. The chloride ion in a person's perspiration can facilitate the oxidation of the base metals in a gold jewelry alloy. 36. But another factor impacting on whether these metals are leached out of necklaces, earrings, or dental work is the fact that mixtures of gold, silver, and copper with other metals are less reactive than one would predict if their alloys were ideal solutions. 37. Greenwood and Earnshaw say that these materials "can be thought of as nonstoichiometric intermetallic compounds of definite structural types...."
38. When people experience an allergic reaction to "real gold" jewelry, it is almost always one of the base metals that is the culprit, and nickel is by far the most notorious in this respect. 39. It seems that some people develop an amazingly acute sensitivity to this metal, and this most often occurs after ears are pierced and gold-plated
earrings are inserted. 40. Since the gold plating is usually quite thin and it is often applied on top of a layer of nickel plating, it is not too surprising that the wearer is often exposed to significant amounts of nickel as the gold wears, cracks, and is scratched. 41. What is surprising is that the body "learns" to react to these ions only after it has been sensitized by previous exposure. 42. The precise mechanism of this sensitization is not well understood.
43. Consider the original question, "was the necklace gold, or not". 44. If it were "real" 14 K or 18 K , it is unlikely that a person who does not sweat aqua regia would develop a green neck. 45. It is much more likely that the boyfriend had passed off a gold-plated necklace as more expensive jewelry. 46. If some misrepresentation occurred in this case, Georgius Agricola reminds us that it was not the fault of the element: "if by means of gold and silver and gems men can overcome the chastity of women, corrupt the honour of many people, bribe the course of justice and commit innumerable wickednesses, it is not the metals which are to be blamed, but the evil passions of men which become inflamed and ignited"

2. 1. 1. Matriz de repetición de unidades léxicas.

2	s. Ana Landers - she d. turning her neck green - this	2			
3	d. turning her neck green - this	rs. this this			
			3		
4	rs. real - real rs. gold - gold			4	
5	rs. real - real rs. gold - gold		rs. chemist - chemist	rs. real - real rs. gold - gold	
					5
6	rs. necklace - necklace rs. gold - gold		rc. chemist - chemical	rs. gold - gold	rc. chemist - chemical rs. pure - pure rs. gold - gold
7	hip. necklace - jewelry rs. gold - gold			rs. gold - gold	rs. gold - gold
8	rs. gold - gold			rs. gold - gold	rs. gold - gold
9	rs. gold - gold			rs. gold - gold	rs. gold - gold
10	hip. necklace - items			rs. gold - gold	
11	hip. necklace - alloy tr. gold - metals			tr. gold - metals	tr. gold - metals
12	hip. necklace - alloy tr. gold - metals hip. green - colors			tr. gold - metals	tr. gold - metals
13	rs. gold - gold hip. green - colors			rs. gold - gold	rs. gold - gold
14	rs. $\mathrm{Au}-\mathrm{AU}$ rs. green - green			psm. gold - Au	psm. gold - Au
15	rs. Ann Landers - Ann Landers rs. boyfriend boyfriend rs. claimed - claiming rs. necklace - necklace rs. gold - gold rs. green - green			rs. gold - gold	rs. gold - gold

Anexo

	1	2	3	4	5
16	hip. necklace - alloy rs. gold - gold			rs. gold - gold	rs. gold - gold
17	hip. necklace - alloy rs. turning - turned rs. green - green				
18	hip. necklace - alloy rs. gold - gold hip. green - color			rs. gold - gold	rs. gold - gold
19	hip. necklace - piece of jewelry tr. gold - metal			tr. gold - metal	rs. gold - gold
20	hip. necklace - jewelry				
21					
22	hip. necklace - alloy rs. gold - gold		rs. chemist - chemist	rs. gold - gold	rs. chemist - chemist rs. gold - gold
23	hip. necklace - item rs. gold - gold			rs. gold - gold	rs. gold - gold
24	hip. necklace mixtures tr. gold - metals			tr. gold - metals	tr. gold - metals
25	hip. gold - metal tr. green - colored			hip. gold - metal	hip. gold - metal
26	hip. necklace - alloys rs. gold - gold			rs. gold - gold	rs. gold - gold
27	rs. gold - gold			rs. gold - gold	rs. gold - gold
28	psm. gold - Au			psm. gold - Au	psm. gold - Au
29	rs. gold - gold			rs. gold - gold	rs. gold - gold
30	hip. gold - metal			hip. gold - metal	hip. gold - metal
31	rs. gold - gold			rs. gold - gold	rs. gold - gold
32	rs. gold - gold			rs. gold - gold	rs. gold - gold

1		2	3	4	5
33	rs. gold - gold			rs. gold - gold	rs. gold - gold
34	rs. gold - gold			rs. gold - gold	rs. pure - pure rs. gold - gold
35	hip. Ann Landers - person hip. necklace - jewelry rs. gold - gold	psp. people - person		rs. gold - gold	rs. gold - gold
36	rs. necklace - necklaces rs. gold - gold			rs. gold - gold	rs. gold - gold
37					
38	hip. Ann Landers - people hip. necklace - jewelry rs. real - real rs. gold - gold	rs. people - people		rs. real - real rs. gold - gold	rs. real - real rs. gold - gold
39	hip. Ann Landers - people rs. gold - gold	rs. people - people		rs. gold - gold	rs. gold - gold
40	hip. Ann Landers - wearer rs. gold - gold	tr. people - wearer		rs. gold - gold	rs. gold - gold
41		psp. system - body			
42					
43	rs. necklace - necklace rs. gold - gold			rs. gold - gold	rs. gold - gold
44	hip. Ann Landers - person s. necklace - it rs. real - real e. gold -0 rs. green - green rs. neck - neck	psp. people - person		rs. real - real e. gold -0	rs. real - real e. gold -0
45	rs. boyfriend - boyfriend rs. necklace - necklace rs. gold - gold			rs. gold - gold	rs. gold - gold
46	rs. gold - gold			rs. gold - gold	rs. gold - gold

Anexo

7	rs. carat - carat rs. gold - gold rs. jewelry jewelry	7			
8	rs. carat - carat rs. use - use rs. gold - gold	rs. carat - carat rs. gold - gold	8		
9	rs. carat - carat rs. gold - gold rs. $K-K$	rs. carat - carat rs. weight - weight rs. gold - gold	rs. carat - carat rs. gold - gold	9	
10	hip. necklace items rs. carat - carat rs. $\mathrm{K}-\mathrm{K}$	tr. jewelry - items rs. $18-18$ rs. carat - carat	rs. carat - carat rc. British Britain	rs. lowest - lowest rs. carat - carat rs. designation designation rs. error - error rs. $\mathrm{K}-\mathrm{K}$ psm. marketed sold	10
11	hip. necklace alloy tr. gold - metals rc. use - used	tr. jewelry - items tr. gold - metals	rc. use - used tr. gold - metals	tr. gold - metals	tr. items - alloy
12	hip. necklace alloy rs. carat - carat tr. gold - metals rs. marked marking rc. use - used	tr. jewelry - alloy rs. made - make rs. carat - carat tr. gold - metals	rs. carat - carat rc. use - used tr. gold - metals	rs. carat - carat tr. gold - metals	tr. items - alloy rs. carat - carat
13	rs. gold - gold				
14	psm. gold - Au rc. use - used	rs. made - make psm. gold - Au	rc. use - used psm. gold - Au	psm. gold - Au	
15	rs. gift - gift rs. necklace necklace rs. carat - carat rs. gold - gold rc. use - used	tr. jewelry necklace rs. carat - carat rs. gold - gold	rs. carat - carat rs. system system rc. British Britain rc. use - used rs. gold - gold	psm. lowest minimum rs. carat - carat rc. designation - designated rs. gold - gold	rs. Britain - Britain tr. items - necklace psm. lowest - minimum rs. carat - carat rc. designation - designated
16	hip. necklace alloys rs. gold - gold	tr. jewelry - alloys rs. gold - gold	rs. gold - gold	rs. gold - gold	tr. items - alloys

6		7	8	9	10
17	hip. necklace - alloy rs. carat - carat	tr. jewelry - alloy rs. carat - carat	rs. carat carat	rs. carat - carat	tr. items - alloy rs. 9-9 rs. carat - carat
18	hip. necklace compositiuons rs. carat - carat rs. gold - gold tr. jewelry - alloy	tr. jewelry - alloy rs. 18-18 rs. carat - carat rs. gold - gold	rs. carat carat rs. gold gold	rs. carat - carat rs. gold - gold	tr. items - alloy rs. carat - carat rs. $18-18$
19	hip. necklace - object tr. gold - metal rs. jewelry - jewelry	rs. jewelry jewelry tr. gold - metal	tr. gold metal	tr. gold - metal	tr. items - piece of jewelry
20	rs. jewelry - jewelry	rs. jewelry jewelry			tr. items - jewelry
21					
22	hip. necklace - alloy rc. chemical - chemist rs. carat - carat rs. gold - gold rc. marked - marking	tr. jewelry - alloy rs. carat - carat rs. weight - weight psm. fraction percentage rs. gold - gold	rs. carat carat rs. gold gold	psm. lowest minimum rs. carat - carat pc. designation specifies (specification) rs. weight - weight rs. gold - gold	tr. items - alloy psm. lowest minimum rs. carat - carat pc. designation specifies (specification)
23	hip. necklace - item rs. carat - carat rs. gold - gold	tr. jewelry - item rs. 18-18 rs. carat - carat rs. weight - weight pc. fraction percent (percentage) rs. gold - gold	rs. carat carat rs. gold gold	rs. carat - carat rs. weight - weight rs. gold - gold	rs. items - item rs. carat - carat rs. $18-18$
24	hip. necklace mixtures tr. gold - metals	tr. jewelry mixtures rs. fraction fraction tr. gold - metals	tr. gold metals	tr. gold - metals	tr. items - mixtures
25	hip. gold - metal	hip. gold - metal	hip. gold metal	hip. gold - metal	
26	hip. necklace - alloys rs. gold - gold	tr. jewelry - alloys rs. gold - gold	rs. gold gold	rs. gold - gold	tr. items - alloys
27	rs. gold - gold	rs. gold - gold	rs. gold gold	rs. gold - gold	
28	psm. gold - Au	psm. gold - Au	$\begin{aligned} & \text { psm. gold - } \\ & \mathrm{Au} \end{aligned}$	psm. gold - Au	

Anexo

	6	7	8	9	10
29	rs. gold - gold				
30	hip. gold - metal				
31	rs. gold - gold				
32	rs. gold - gold				
33	rs. gold - gold				
34	rs. pure - pure rs. gold - gold				
35	hip. necklace - alloy rs. gold - gold rs. jewelry - jewelry	rs. jewelry - jewelry rs. gold - gold	rs. gold - gold	rs. gold - gold	tr. items alloy
36	rs. necklace - necklaces rs. gold - gold tr. jewelry - alloys	tr. jewelry - necklaces rs. gold - gold	rs. gold - gold	rs. gold - gold	tr. items necklaces
37					
38	rs. gold - gold rs. jewelry - jewelry	rs. jewelry - jewelry rs. gold - gold	rs. gold - gold	rs. gold - gold	tr. items jewelry
39	tr. jewelry - earrings rs. gold - gold	tr. jewelry - earrings rs. gold - gold	rs. gold - gold	rs. gold - gold	
40	rs. gold - gold				
41					
42					
43	rs. necklace - necklace rs. gold - gold	tr. jewelry - neclace rs. gold - gold	rs. gold - gold	rs. gold - gold	tr. items necklace
44	s. necklace - it rs. K - K	rs. 18-18 rs. $14-14$ psm. carat - K		rs. $\mathrm{K}-\mathrm{K}$	rs. $18-18$ rs. $K-K$
45	rs. necklace - necklace rs. gold - gold rs. jewelry - jewelry	rs. jewelry - jewelry rs. gold - gold	rs. gold - gold	rs. gold - gold	tr. items necklace
46	rs. gold - gold				

Anexo

	11	12	13	14	15
23	tr. alloy - item tr. metals - gold rs. copper - copper	tr. alloy - item rs. carat - carat tr. metals - gold	rs. gold - gold	psm. Au - gold psm. Cu - copper	hip. necklace - item rs. gold - gold rs. carat - carat
24	tr. alloy - mixtures rs. metals - metals rs. copper - copper rs. nickel - nickel	tr. alloy mixtures rs. metals metals	tr. gold - metals	rs. metals - metals psm. Cu - copper psm. Zn - zinc psm. Ni - nickel	hip. necklace mixtures tr. gold - metals
25	rs. metals - metal	rs. metals metal rc. colors colored	rc. colors colored hip. gold - metal	rs. metals - metal rc. colors - colored	tr. green - colored hip. gold - metal
26	rs. alloy - alloys tr. metals - gold psm. copper -Cu psm. nickel - Ni psm. silver - Ag	rs. alloy - alloys tr. metals - gold	rs. gold - gold	hip. metals - elements rs. $\mathrm{Au}-\mathrm{Au}$ rs. $\mathrm{Cu}-\mathrm{Cu}$ rs. $\mathrm{Ag}-\mathrm{Ag}$ rs. $\mathrm{Zn}-\mathrm{Zn}$ rs. $\mathrm{Ni}-\mathrm{Ni}$	rs. alloy - alloys rs. gold - gold
27	rs. metals - metal	rs. metals metal	psm. gold - Au	rs. metals - metal psm. Au - gold	rs. gold - gold
28	psm. copper -Cu	tr. metals - Au	psm. gold - Au	rs. $\mathrm{Au}-\mathrm{Au}$ rs. $\mathrm{Cu}-\mathrm{Cu}$	psm. gold - Au
29	tr. metals - gold rs. copper - copper	tr. metals - gold	rs. gold - gold	psm. Au - gold psm. Cu - copper	rs. gold - gold
30	rs. metals - metal	rs. metals metal	hip. gold - metal	rs. metals - metal	hip. gold - metal
31	rs. metals - metal	rs. metals metal	rs. gold - gold	rs. metals - metals psm. Au - gold	rs. gold - gold
32	tr. metals - gold	tr. metals - gold	rs. gold - gold	psm. Au - gold	rs. gold - gold
33	tr. metals - gold	tr. metals - gold	rs. gold - gold	psm. Au-gold	rs. gold - gold
34	tr. metals - gold rs. copper - copper rs. nickel - nickel rs. silver - silver	tr. metals - gold	rs. gold - gold	psm. Au - gold psm. Cu - copper psm. Ag - silver psm. Ni - nickel	rs. gold - gold
35	rs. metals - metals rs. alloy - alloy	rs. alloy - alloy rs. metals metals	rs. gold - gold	rs. metals - metals psm. Au - gold	rs. alloy - alloy hip. necklace jewelry rs. alloy - alloy
36	rs. alloy - alloys rs. metals - metals rs. copper - copper rs. silver - silver	rs. alloy - alloys rs. metals metals	rs. gold - gold	rs. metals - metals psm. Au - gold psm. Cu - copper psm. Ag - silver	rs. alloy - alloys rs. necklace necklaces rs. gold - gold

11		12	13	14	15
37					
38	tr. alloy - jewelry rs. metals - metals rs. nickel - nickel	tr. alloy jewelry rs. metals metals	rs. gold - gold	rs. metals - metals psm. Au - gold psm. Ni - nickel	hip. Ann Landers people hip. necklace jewelry rs. gold - gold
39	rs. metals - metal	rs. metals metal	rs. gold - gold	rs. metals - metal psm. Au - gold	hip. Ann Landers people rs. gold - gold
40	tr. metals - gold rs. nickel - nickel	tr. metals - gold	rs. gold - gold	psm. Au - gold psm. Ni - nickel	hip. Ann Landers wearer rs. gold - gold
41					
42					
43	tr. alloy - necklace tr. metals - gold	tr. alloy necklace tr. metals - gold	rs. gold - gold	rs. gold - gold	rs. necklace necklace rs. gold - gold
44			tr. colors - green	rs. green - green	rs. green - green hip. Ann Landers person
45	tr. alloy - necklace tr. metals - gold	tr. alloy necklace tr. metals - gold	rs. gold - gold	rs. gold - gold	tr. alloy - jewelry rs. boyfriend boyfriend rs. necklace necklace rs. gold - gold
46	rs. metals - metals rs. silver - silver	rs. metals metals	rs. gold - gold	rs. metals - metals psm. Au - gold psm. Ag - silver	rs. gold - gold

Anexo

16		17	18	19	20
30	hip. gold - metal		rs. metals - metal	rs. metal - metal	
31	rs. gold - gold rs. nitric - nitric rs. acid - acid		rs. gold - gold rs. aqua - aqua rs. regia - regia rs. nitric - nitric rs. hydrochloric - hydrochloric rs. acid - acid rs. metals - metals rs. dissolved - dissolves	rs. metal - metal	
32	rs. gold - gold		rs. gold - gold rs. aqua - aqua rs. regia - regia rs. dissolved - dissolved	tr. metal - gold	
33	rs. gold - gold		rs. gold - gold rs. aqua - aqua rs. regia - regia	tr. metal - gold	
34	rs. gold - gold rs. nitric - nitric rs. acid - acid		rs. gold - gold rs. nitric - nitric rs. hydrochloric - hydrochloric rs. acid - acid tr. metals - copper	tr. metal - gold	
35	rs. gold - gold rs. alloys - alloy	rs. alloy alloy	tr. compositions jewelry rs. gold - gold rs. alloy - alloy rs. base - base rs. metals - metals	rs. jewelry jewelry tr. object - alloy rs. metal - metals	rs. jewelry jewelry
36	rs. gold - gold rs. alloys - alloys	rs. alloy alloys	tr. compositions necklaces rs. gold - gold rs. alloy - alloys rs. metals - metals	tr. piece of jewelry - necklaces tr. object - alloys rs. metal - metals	tr. jewelry necklaces
37					
38	rs. gold - gold tr. alloys - jewelry	tr. alloys jewelry	rs. gold - gold tr. alloy - jewelry rs. base - base rs. metals - metals	rs. jewelry jewelry rs. metal - metals	rs. jewelry jewelry
39	rs. gold - gold		rs. gold - gold rs. metals - metal	tr. jewelry earrings rs. metal - metal	tr. jewelry earrings

Anexo

16		17	18	19	20
40	rs. gold - gold		rs. gold - gold	tr. metal - gold	
41					
42					
43	rs. gold - gold tr. alloys - necklace	tr. alloy necklace	tr. compositions necklace rs. gold - gold	tr. piece of jewelry - necklace tr. metal - gold	tr. jewelry necklace
44		psm. carat - K rs. green green	rs. $18-18$ psm. carat $-K$ rs. aqua - aqua rs. regia - regia tr. color - green		
45	rs. gold - gold tr. alloys - necklace	tr. alloy necklace	tr. compositions necklace rs. gold - gold tr. alloy - jewelry	rs. jewelry jewelry tr. object - necklace tr. metal - gold	rs. jewelry jewelry
46	rs. gold - gold		rs. gold - gold	rs. metal - metals	

22		22			
23		d. oración 22 - this rs. carat - carat rs. weight - weight rc. percentage - percent rs. gold - gold tr. alloy - item	23		
24		psm. percentage - fraction tr. gold - metals tr. alloy - mixtures	tr. gold - metals tr. item - mixtures rs. copper - copper rs. mole - mole pc. percent - fraction (percentage)	24	
25		hip. gold - metal	hip. gold - metal	rs. metals - metal	25
26		rs. gold - gold rs. alloy - alloys	rs. gold - gold tr. item - alloys psm. copper - Cu	tr. mixtures - alloys tr. metals - gold psm. copper -Cu	tr. metal - gold
27		rs. gold - gold	rs. gold - gold	rs. metals - metal	rs. oxidize - oxidize rs. metal - metal rs. potential potential
28		psm. gold - Au	psm. gold - Au psm. copper -Cu	tr. metals - Au psm. copper - Cu	rc. oxidize oxidizer tr. metal - Au
29		rs. gold - gold	rs. gold - gold rs. copper - copper	tr. metals - gold rs. copper - copper	rs. oxidize - oxidize tr. metal - gold
30		hip. gold - metal	hip. gold - metal	rs. metals - metal	rs. oxidize oxidized rs. metal - metal rs. produce producing rs. potntial potential
31	rs. acid - acid	rs. gold - gold	rs. gold - gold tr. copper - metals	rs. metals - metal	rc. oxidize oxidant rs. metal - metal
32		rs. gold - gold	rs. gold - gold	tr. metals - gold	tr. metal - gold
33		rs. gold - gold	rs. gold - gold	tr. metals - gold	tr. metal - gold rs. potential potential
34	rs. acid - acid	rs. gold - gold	rs. gold - gold rs. copper - copper	rs. nickel - nickel tr. metals - gold rs. copper - copper	rc. oxidize oxidation tr. metal - gold

Anexo

35	rs. gold - gold rs. alloy - alloy	rs. gold - gold tr. item - alloy tr. copper - metals	tr. mixtures - alloy rs. base - base rs. metals - metals	rc. oxidize - oxidation rs. metal - metals
36	rs. gold - gold rs. alloy - alloys	rs. gold - gold tr. item - necklaces rs. copper - copper	rs. mixtures - mixtures rs. metals - metals rs. copper - copper	rs. metal - metals
37				
38	rs. gold - gold tr. alloy - jewelry	rs. gold - gold tr. item - jewelry tr. copper - metals	tr. mixtures - jewelry rs. nickel - nickel rs. base - base rs. metals - metals	rs. metal - metals
39	rs. gold - gold	rs. gold - gold tr. copper - metal	rs. metals - metal	rs. metal - metal
40	rs. gold - gold	rs. gold - gold	rs. nickel - nickel tr. metals - gold	tr. metal - gold
41				
42				
43	rs. gold - gold tr. alloy - necklace	rs. gold - gold tr. item - necklace	tr. mixtures - necklace tr. metals - gold	tr. metal - gold
44				tr. colored - green
45	rs. gold - gold tr. alloy - necklace	rs. gold - gold tr. item - necklace	tr. mixtures - necklace tr. metals - gold	tr. metal - gold
46	rs. gold - gold	rs. gold - gold hip. copper - metals	rs. metals - metals	rs. metal - metals

Anexo

	26	27	28	29	30
36	tr. elements metals rs. gold - gold rs. alloys - alloys psm. Ag - silver psm. Cu - copper	rs. gold - gold rs. metal metals rs. solutions solutions	psm. Au - gold psm. Cu - copper	rs. gold - gold rs. copper - copper	rc. prediction predict rs. metal - metals
37					
38	tr. elements metals rs. gold - gold tr. alloys - jewelry psm. Ni - nickel	rs. gold - gold rs. metal metals	psm. Au - gold hip. Cu - metals	rs. gold - gold hip. copper - metals	rs. metal - metals
39	tr. elements metal rs. gold - gold	rs. gold - gold rs. metal - metal	psm. Au - gold tr. $\mathrm{Cu}-$ metal	rs. gold - gold tr. copper - metal	rs. metal - metal
40	rs. gold - gold psm. Ni - nickel	rs. gold - gold	psm. Au - gold	rs. gold - gold	tr. metal - gold
41					rs. ion - ions
42					
43	rs. gold - gold tr. alloys necklace	rs. gold - gold	psm. Au - gold	rs. gold - gold	tr. metal - gold
44					
45	rs. gold - gold tr. alloys necklace	rs. gold - gold	psm. Au - gold	rs. gold - gold	tr. metal - gold
46	rs. gold - gold tr. elements metals	rs. gold - gold rs. metal metals	psm. Au - gold hip. Cu - metals	rs. gold - gold hip. copper - metals	rs. metal - metals

31		32			
32	rs. aqua - aqua rs. regia - regia rs. dissoves - dissolved rs. gold - gold				
33	rc. solution dissolution rs. aqua - aqua rs. regia - regia rs. gold - gold	rs. gold - gold rc. dissolved dissolution rs. aqua - aqua rs. regia - regia	33		
34	rs. nitric - nitric rc. oxidant oxidation rs. hydrochloric - hydrochloric rs. acid - acid tr. metals - copper rs. gold - gold	rs. gold - gold	rs. gold - gold	34	
35	rs. ion - ion rc. oxidant oxidation rs. metals metals rs. gold - gold	rs. gold - gold	rs. gold - gold	rs. oxidation oxidation hip. copper metals rs. gold - gold	35
36	rs. one - one + rs. solution solutions rs. metals metals rs. gold - gold	rs. gold - gold tr. dissolved solutions rc. reaction reactive	rs. gold - gold psm. dissolution solutions	rs. silver - silver rs. copper - copper rs. gold - gold	rs. metals - metals rs. gold - gold tr. jewelry necklaces rs. alloy - alloys
37					
38	rs. metals metals rs. gold - gold	rc. reaction reaction rs. gold - gold	rs. gold - gold	hip. copper metals rs. nickel - nickel rs. gold - gold	psp. person people rs. base - base rs. metals - metals rs. gold - gold rs. jewelry jewelry
39	rs. metal - metal rs. gold - gold	rs. gold - gold	rs. gold - gold	hip. nickel - metal rs. gold - gold	psp. person people rs. metals - metal rs. gold - gold tr. jewelry earrings
40	rs. gold - gold	rs. gold - gold	rs. gold - gold	rs. nickel - nickel rs. gold - gold	tr. person - wearer tr. metals - nickel rs. gold - gold

Anexo

41	rs. ion - ions	rc. reaction - react			
42					
43	rs. gold - gold tr. alloy - necklace				
44	rs. aqua - aqua rs. regia - regia	rs. aqua - aqua rs. regia - regia	rs. aqua - aqua rs. regia - regia		rs. person - person
45	rs. gold - gold rs. jewelry - jewelry tr. alloy - necklace				
46	rs. metals - metals rs. gold - gold	rs. gold - gold	rs. gold - gold	rs. silver - silver tr. copper - metals rs. gold - gold	rs. metals - metals rs. gold - gold

42	rs. sensitized - sensitization				
		42			
43					
			43		
44			s. necklace - it	44	
45			rs. necklace necklace rs. gold - gold	rc. unlikely - likely	
					45
46			rs. gold - gold		rs. gold - gold

2. 3. 2. Matriz con el número de unidades léxicas.

Anexo

Anexo

Anexo

46 | 45 |
| :---: |

2. 1. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 8)[8]$
2. $(0,0)[0]$
3. $(0,0)[0]$
4. $(0,0)[0]$
5. $(0,1)[1]$
6. $(1,14)[15]$
7. $(1,9)[10]$
8. $(1,2)$ [3]
9. $(2,4)[6]$
10. $(3,5)[8]$
11. $(1,9)$ [10]
12. $(5,6)[11]$
13. $(0,0)[0]$
14. $(2,8)$ [10]
15. $(9,9)[18]$
16. $(0,6)[6]$
17. $(4,1)[5]$
18. $(9,14)[23]$
19. $(4,4)[8]$
20. $(1,0)[1]$
21. $(1,0)$ [1]
22. $(7,2)[9]$
23. $(9,5)[14]$
24. $(6,5)$ [11]
25. $(0,2)[2]$
26. $(4,6)[10]$
27. $(2,8)$ [10]
28. $(2,4)[6]$
29. $(4,3)[7]$
30. $(2,2)[4]$
31. $(2,1)[3]$
32. $(6,5)$ [11]
33. $(13,5)[18]$
34. $(4,0)[4]$
35. $(10,4)[14]$
36. $(11,2)[13]$
37. $(14,4)[18]$
38. $(0,0)[0]$
39. $(0,0)[0]$
40. $(3,2)[5]$
41. $(3,0)[3]$
42. $(3,0)[3]$
43. $(0,0)[0]$
44. $(0,0)[0]$
45. (3,-) [3]

2. 1. 4. Texto resultante tras eliminar las oraciones marginales.

1. On March 12, 1997, Ann Landers advised a writer to believe her boyfriend, who claimed the necklace he had given her for Christmas was "real gold", despite the fact that it kept turning her neck green.
2. To a chemist, "real" gold might imply "pure" gold. 6. The gift necklace was surely not "pure" in a chemical sense, because 100%, or 24 carat gold (also spelled "karat", and always marked as " K ") is too soft to be practical for use in jewelry. 7. Jewelry is usually made of 18 or 14 carat gold, whose weight fraction of gold is 18/24 or $14 / 24$, respectively. 8 . The "carat" system was invented by the British in about the year 1300 to facilitate the use of gold in commerce. 9. In the United States, the lowest allowed carat designation for gold is 10 , but a $1 / 2$-carat error is allowed, so that " 10 K " can be marketed that is only 9.5 K , or 39.6% by weight gold. 10. In Britain, items that are only 9 K can be sold, but there is no margin for error on the low side; France's lowest carat designation is 18 K . 11. The rest of the material in the alloy can be a variety of other metals; those most often used are copper, nickel, or silver. 12. The composition of the alloy is not disclosed in the "carat" marking, and different alloying metals are used to make different colors.
3. The metals used to make different colors are usually:

Yellow: Au, Cu, Ag, Zn
White: Au, Cu, Ni, Zn
Red: Au, Cu
Green: Au, Ag
15. The alloy called "green gold" (which is only slightly greenish) is rarely used, so the boyfriend of Ann Landers' correspondent was most likely claiming that the gift necklace was one of the recognized alloys whose minimum gold content has been designated in Britain by Hallmarks and there and elsewhere by the carat system.
16. The common phrase "acid text" comes from the practice of testing gold alloys with nitric acid. 17. An alloy of less than about 9 or 10 carat is quickly turned
green. 18. Compositions up to 18 carat gold alloy can be tested with aqua regia (a mixture of nitric and hydrochloric acid, in roughly equal proportions); the small spot subjected to the acid will immediately become pale yellow, as the base metals that provide some of the color are dissolved. 19. Instead of risking damage to the piece of yewelry, tests were often done using a "touchstone", a hard, black, slightly abrasive stone on which the object was rubbed fairly firmly, wiping a small amount of metal onto the stone surface. 20. The tests were done on the stone and the jewelry could easily be repolished to its original condition. 21. It is interesting that so many of the words involved in this testing process have survived to the present time: "Hallmark", "acid test", and "touchstone".
22. A perceptive chemist will recognize that the carat marking specifies the minimum weight percentage of gold (only), but neither the identity nor the concentration of the other parts of the alloy. 23. This means that an 18 carat gold item could have from zero to 25 weight percent copper, which corresponds to zero to 51 mole percent copper. 24. Mixtures involving nickel and zinc result in about the same mole fraction of the base metals because of the similarity of their average atomic masses to that of copper.
25. The question of whether it is possible to oxidize a metal, and therefore to produce the possibility of a colored salt, is largely reflected in the standard potential. 26. For the principal elements of the gold alloys, the pertinent numbers are:

$$
\begin{array}{ll}
\mathrm{Au}^{3+}+3 \dot{e} \rightarrow \mathrm{Au} & \mathrm{E}^{0}=1.42 \mathrm{~V} \\
\mathrm{Ag}^{+}+\mathrm{e} \rightarrow \mathrm{Ag} & \mathrm{E}^{0}=0.80 \mathrm{~V} \\
\mathrm{Cu}^{2+}+2 \dot{e} \rightarrow \mathrm{Cu} & \mathrm{E}^{0}=0.34 \mathrm{~V} \\
\mathrm{Ni}^{2+}+2 \dot{e} \rightarrow \mathrm{Ni} & \mathrm{E}^{0}=0.23 \mathrm{~V} \\
\mathrm{Zn}^{2+} 2 \mathrm{e} \rightarrow \mathrm{Zn} & \mathrm{E}^{0}=0.76 \mathrm{~V}
\end{array}
$$

27. These data suggest why gold is a "noble" metal: the potential required to oxidize it is near the maximum available in aqueous solutions. 28. Consider, for example, combining the half-cells

$$
\mathrm{Au}(\mathrm{~s})=\mathrm{Au}^{3+}+3 \mathrm{e} \quad \mathrm{E}^{0}=-1.42 \mathrm{~V}
$$

or

$$
\mathrm{Cu}(\mathrm{~s})=\mathrm{Cu}^{2+}+2 \dot{e} \quad \mathrm{E}^{0}=-0.34 \mathrm{~V}
$$

with the half-cell for a good oxidizer, such as:

$$
\mathrm{NO}_{3}^{-}+4 \mathrm{H}_{3} \mathrm{O}^{+}+3 \text { é }=\mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{0}=0.96 \mathrm{~V}
$$

29. It is obvious that nitric acid will not oxidize gold but will easily oxidize copper. 30. However, the prediction of the conditions under which a metal might be oxidized depends upon more than just the potential for producing the "bare" (or hydrated) metal ion. 31. One must also consider that the metal ion may be stabilized in solution by formation of a complex ion, which is the reason why both the nitric acid oxidant and the hydrochloric acid complexing agent are required when aqua regia (literally, royal water - a phrase coined by alchemists to designate a solvent for "noble" metals) dissolves gold. 32. When gold is dissolved in aqua regia, the reaction is:

$$
\mathrm{Au}(\mathrm{~s})+4 \mathrm{Cl}^{-}+\mathrm{NO}_{3}^{-}+4 \mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{AuCl}_{4}^{-}+\mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}
$$

33. Since the potential for

$$
\mathrm{AuCl}_{4}^{-}+3 \mathrm{é}^{-} \mathrm{Au}+4 \mathrm{Cl}^{-}
$$

is 1.00 vol, the dissolution of gold in aqua regia becomes thermodynamically favorable. 34. Oxidation by ordinary air (or air contaminated by sulfides) can tarnish silver, copper, and nickel, but pure gold is impervious to attack, even by concentrated nitric or hydrochloric acid acting independently. 35. The chloride ion in a person's perspiration can facilitate the oxidation of the base metals in a gold jewelry alloy. 36. But another factor impacting on whether these metals are leached out of necklaces, earrings, or
dental work is the fact that mixtures of gold, silver, and copper with other metals are less reactive than one would predict if their alloys were ideal solutions.
38. When people experience an allergic reaction to "real gold" jewelry, it is almost always one of the base metals that is the culprit, and nickel is by far the most notorious in this respect. 39. It seems that some people develop an amazingly acute sensitivity to this metal, and this most often occurs after ears are pierced and goldplated earrings are inserted. 40. Since the gold plating is usually quite thin and it is often applied on top of a layer of nickel plating, it is not too surprising that the wearer is often exposed to significant amounts of nickel as the gold wears, cracks, and is scratched.
44. If eits [the necklace] were "real" 14 K or 18 K , it is unlikely that a person who does not sweat aqua regia would develop a green neck. 45. It is much more likely that the boyfriend had passed off a gold-plated necklace as more expensive jewelry. 46. If some misrepresentation occurred in this case, Georgius Agricola reminds us that it was not the fault of the element: "if by means of gold and silver and gems men can overcome the chastity of women, corrupt the honour of many people, bribe the course of justice and commit innumerable wickednesses, it is not the metals which are to be blamed, but the evil passions of men which become inflamed and ignited"

2. 2. Texto 2: Why gold and copper are colored but silver is not.

1. It s well known that 80% of chemical elements are metals. 2 . When polished, all metals shine owing to reflection of photons by external valence electrons dynamically forming metallic bonds. 3. White light reflects on most metals without color absorption or change to the naked eye; but copper and gold are yellow because they absorb "blue" and "red" photons by electron transitions between spectromeric configurations $n s^{1}(n-1) \mathrm{d}^{10} \quad n s^{2}(n-1) \mathrm{d}^{9}$ of external sublevels.
2. The next question is why silver, with the same external electronic configuration as copper and gold (group 11, IB), is not yellow. 5. The answer is simple, considering atomic radii, ionization potentials and nuclear charge:

	Cu	Ag	Au
Atomic radius/ pm	117.3	133.9	133.6
$1^{\text {st }}$ ionization energy $/ \mathrm{eV}$	7.725	7.576	9.22
$2^{\text {nd }}$ ionization energy $/ \mathrm{eV}$	20.29	21.48	20.52
Nuclear charge	25	35	59

6. The atomic radius of silver is 16.6 pm larger than that of copper, allowing a bigger difference between sublevels s and d, which is sufficient to restrict the transition $s^{1} d^{10}$
$\leftrightarrow \mathrm{s}^{2} \mathrm{~d}^{9}$ to a lower probability. 7. This is equally supported by the first ionization energry: since it is lower in silver, the fact that one external electron is ejected more easily than in copper atoms is justified.
7. With their higher nuclear charge (35 vs 25) silver atoms also have larger radii ($\leftrightarrow=16.6 \mathrm{pm}$), and the distance between external sublevels-both spatial and energetic-is too large to freely allow $\mathrm{s} \leftrightarrow \mathrm{d}$ transitions. 9. However, the distance is not large enough to prevent the transitions completely, and after several reflections on two parallel silver mirrors, white light becomes pale yellow.
8. Now we must face an unexpected problem: why is gold yellow? 11. According to the same line of reasoning, gold would be colorless if it had bigger atoms. 12. But gold atoms are not larger than silver; the radii of silver and gold are practically identical owing to lanthanide contraction. 13. Comparing ionization energies, the value 9.22 eV for gold is about 20% higher than 7.576 eV for silver because gold has a larger nuclear charge (59 vs 35) while its radius is practically the same. 14. Thus, external s and d sublevels are close enough to allow the necessary transition. 15. As a result, the probability of transition between sublevels is similar to that of copper, and gold is again yellow.
9. We can now perceive the necessary conditions for a metal to be yellow, like copper and gold:
10. Adequate external electronic configuration $s^{1} d^{10} \leftrightarrow s^{2} d^{9}$ (group 11, IB).
11. Sublevels s and d close enough to allow transitions $s^{1} d^{10} \leftrightarrow s^{2} d^{9}$ to occur significantly $(\mathrm{Cu}, \mathrm{Au})$.
12. In contrast, all other metals shine silvery, colorless to the naked eye because they do not possess the necessary electronic external configuration and transition probability to appear colored.
13. Much work has been undertaken in connection with relativistic effects on metal properties (6); however a final question remains: are metals (except for Cu and Au) really colorless? 19. Various tinges are reported, such as yellow for silver and blue for osmium. 20. How many more will be detected when a complete survey is made? 21. What number of atomic layers must be crossed (twice) in metals to produce a definite color? 22. What about the effect of atomic packing, holes, and impurities? 23. But this
is another story and we would be very happy if research is aroused and enhanced by our questions.

2. 2. 1. Matriz de repetición de unidades léxicas.

2	rs. metals metals	2			
3	rs. metals metals	rs. metals - metals rc. reflectionreflects rs. photons photons rs. external external rs. electronselectron	3		
4	tr. metals silver	tr. metals - silver rs. external external rc. electrons electronic	tr. metals - silver rs. copper - copper rs. gold - gold rs. yellow - yellow rc. electron - electronic rs. configurations configuration rs. external external	4	
5	tr. metal $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$	$\begin{aligned} & \text { tr. metal }-\mathrm{Cu}, \mathrm{Ag}, \\ & \mathrm{Au} \end{aligned}$	psm. copper -Cu psm. gold -Au	e. question -0 psm. silver -Ag psm. copper -Cu psm. gold -Au	5
6	tr. metals silver	tr. metals - silver	tr. metals - silver rs. copper - copper e. electron -0 rs. transitions transition rs. $\mathrm{ns}^{1}(\mathrm{n}-1) \mathrm{d}^{10}$ $n s^{2}(n-1) d^{9}-s^{1} d^{10}$ $\mathrm{s}^{2} \mathrm{~d}^{9}$ e. external - 0 rs. sublevels sublevels	rs. silver - silver rs. copper - copper	rs. atomic - atomic rs. radii - radius psm. Cu - copper psm. Ag - silver
7	tr. metals silver	tr. metals - silver rs. external external rs. electrons electron	tr. metals - silver rs. copper - copper rs. electron electron rs. external external	rs. silver - silver rs. external external rc. electronic electron rs. copper - copper	rc. atomic - atoms psm. 1st - first rs. ionization ionization rs. energy - energy psm. Cu - copper psm. Ag - silver
8	tr. metals silver	tr. metals - silver rs. external external	tr. metals - silver e. electron -0 rs. transitions - transitions hip. $\mathrm{ns}^{1}(\mathrm{n}-1) \mathrm{d}^{10}$ $\mathrm{ns}^{2}(\mathrm{n}-1) \mathrm{d}^{9}-\mathrm{s} \quad \mathrm{d}$ rs. external - external rs. sublevels - sublevels	rs. silver - silver rs. external external	rc. atomic - atoms rs. radii - radii pc. potentials - energetic (energy) rs. nuclear - nuclear rs. charge - charge rs. $25-25$ rs. $35-35$ psm. Ag - silver

Anexo

	1	2	3	4	5
9	tr. metals - silver	tr. metals silver rs. reflection reflections e. photons - 0	rs. white - white rs. light - light rc. reflects - reflections tr. metals - silver rs. yellow - yellow e. electron -0 rs. transitions - transitions	rs. silver - silver rs. yellow - yellow	psm. Ag - silver
10	tr. metals - gold	tr. metals gold	rs. gold - gold rs. yellow - yellow	rs. gold - gold rs. yellow - yellow	psm. Au - gold
11	tr. metals - gold	tr. metals gold	rc. color - colorless rs. gold - gold	rs. gold - gold tr. yellow colorless	rc. atomic - atoms psm. Au - gold
12	tr. metals - silver	tr. metals silver	tr. metals - silver rs. gold - gold	rs. silver - silver rs. gold - gold	rc. atomic - atoms rs. radii - radii psm. Au - gold psm. Ag - silver
13	tr. metals - silver	tr. metals silver	tr. metals - silver rs. gold - gold	rs. silver - silver rs. gold - gold	rs. radii - radius rs. ionization ionization psm. potentials energies rs. nuclear - nuclear rs. charge - charge psm. Au - gold psm. Ag - silver rs. $9.22-9.22$ rs. $7.76-7.576$
14		rs. external external	e. electron -0 rs. transitions - transition hip. $n s^{1}(n-1) d^{10} \quad n s^{2}(n-$ 1) $d^{9}-s$ and d rs. external - external rs. sublevels - sublevels	rs. external external	
15	tr. metals - gold	tr. metals gold	rs. copper - copper rs. gold - gold rs. yellow - yellow e. electron -0 rs. transitions - transition e. external-0 rs. sublevels - sublevels	rs. copper - copper rs. gold - gold rs. yellow - yellow	psm. Cu - copper psm. Au - gold
16	rs. metals - metal	rs. metals metal rs. external external rc. electrons -. electronic	rs. metals - metal rs. copper - copper rs. gold - gold rs. yellow - yellow rc. electron - electronic rs. transitions - transitions rs. configurations - configuration rs. $n s^{1}(n-1) d^{10} \quad n s^{2}(n-1) d^{9}$ $-s^{1} d^{10} \quad s^{2} d^{9}$ rs. external - external rs. sublevels - sublevels	hip. silver - metal rs. external - external rs. electronic electronic rs. configuration configuration rs. copper - copper rs. gold - gold rs. yellow - yellow	rs. $\mathrm{Cu}-\mathrm{Cu}$ rs. $A u-A u$

1		2	3		5
17	rs. metals metals	rs. metals - metals rs. shine - shine rs. external external rc. electrons electronic	rs. metals - metals rc. color - colorless rs. naked - naked rs. eye - eye rc. electron - electronic rs. transitions - transition rs. configurations - configuration rs. external - external	rc. silver - silvery rs. external - external rs. electronic - electronic rs. configuration - configuration tr. yellow - colorless	pc. $\mathrm{Ag}-$ sivery (silver)
18	rs. metals metals	rs. metals - metals	rs. metals - metals rc. color - colorless psm. copper - Cu psm. gold - Au	rs. question - question hip. silver - metals psm. copper - Cu psm. gold - Au tr. yellow - colorless	rs. $\mathrm{Cu}-\mathrm{Cu}$ rs. $\mathrm{Au}-\mathrm{Au}$
19	tr. metals silver	tr. metals - silver	tr. metals - silver rs. yellow - yellow	rs. silver - silver rs. yellow - yellow	psm. Ag- silver
20					
21	rs. metals metals	rs. metals - metals	rs. metals - metals rs. color - color	hip. silver - metals hip. yellow - color	rs. atomic atomic hip. Cu , $\mathrm{Ag}, \mathrm{Au}-$ metals
22					rs. atomic atomic
23				rs. question - questions	

Anexo

	6	7	8	9	10
14	rs. sublevels - sublevels rs. $\mathrm{s}-\mathrm{s}$ rs. d-d psp. sufficient - enough a. restrict - allow rs. transition - transition		rs. external external rs. sublevels sublevels rs. allow - allow e. $s \quad d-0$ rs. transitions transition	rs. enough enough a. prevent allow rs. transitionstransition	
15	tr. silver - gold rs. copper - copper rs. sublevels - sublevels rs. transition - transition rs. probability - probability	tr. silver - gold rs. copper copper	tr. silver - gold e. external - 0 rs. sublevels sublevels e. $s \quad d-0$ rs. transitions transition	rs. transitions transition tr. silver - gold rs. yellow yellow	rs. gold - gold rs. yellow yellow
16	tr. silver - metal rs. copper - copper rs. sublevels - sublevels rs. s - s rs. $\mathrm{d}-\mathrm{d}$ psp. sufficient - enough a. restrict - allow rs. transition - transitions rs. $s^{1} d^{10} \quad s^{2} d^{9}-s^{1} d^{10} \quad s^{2} d^{9}$	hip. silver metal rs. external external rc. electron electronic rs. copper copper	hip. silver - metal rs. external external rs. sublevels sublevels rs. allow - allow tr. s d- $\mathrm{s}^{1} \mathrm{~d}^{10}$ $\mathrm{s}^{2} \mathrm{~d}^{9}$ rs. transitions transitions	rs. enough enough a. prevent allow rs. transitions transitions hip. silver metal rs. yellow yellow	rs. we - we+ rs. gold - gold rs. yellow yellow
17	rc. silver - silvery rs. transition - transition rs. probability - probability	rc. silver silvery rs. external external rc. electron electronic	rc. silver - silvery rs. external external e. $s \mathrm{~d}-0$ rs. transitions transition	rs. transitions transition rc. silver silvery tr. yellow colorless	hip. gold metals tr. yellow colorless
18	hip. silver - metals psm. copper - Cu	hip. silver metals psm. copper Cu	hip. silver - metals	hip. silver metals tr. yellow colorless	psm. gold Au tr. yellow colorless
19	rs. silver - silver	rs. silver silver	rs. silver - silver	rs. silver - silver rs. yellow yellow	tr. gold silver rs. yellow yellow
20					
21	rs. atomic - atomic hip. silver - metals	hip. silver metals rc. atoms atomic	hip. silver - metals rc. atoms - atomic	hip. silver metals hip. yellow color	hip. gold metals hip. yellow color
22	rs. atomic - atomic	rc. atoms atomic	rc. atoms - atomic		
23					rs. we - we+

Anexo

12	rs. gold - gold psm. bigger larger rs. atoms atoms	12			
13	rs. gold - gold	rs. gold - gold rs. silver - silver rs. radii - radius rs. practically practically psm. identical same	13		
14			14		15
15	rs. gold - gold tr. colorless yellow	rs. gold - gold	rs. gold gold	e. external s and d-0 rs. sublevels - sublevels rs. transition - transition	
16	rs. gold - gold tr. colorless yellow	rs. gold - gold hip. silver metal	rs. gold gold	rs. external - external rs. s-s rs. d-d rs. sublevels - sublevels rs. close - close rs. enough - enough rs. allow - allow rs. transition - transitions	rs. transition - transitions rs. sublevels - sublevels rs. copper - copper rs. gold - gold rs. yellow - yellow
17	hip. gold - metals rs. colorless colorless	rc. silver silvery	hip. silver - metals	rs. external - external rs. necessary - necessary rs. transition - transition	rs. probability probability rs. transition - transition hip. gold - metals tr. yellow - colorless
18	psm. gold - Au rs. colorless colorless	psm. gold - Au hip. silver metal	$\begin{aligned} & \text { psm. gold } \\ & -\mathrm{Au} \end{aligned}$		psm. copper -Cu psm. gold - Au tr. yellow - colorless
19	tr. gold - silver tr. colorless yellow	rs. silver - silver	rs. silver silver		tr. gold - silver rs. yellow - yellow
20					
21	hip. gold metals rc. colorless color rc. atoms atomic	rc. atoms atomic hip. silver metals	hip. gold - metals		hip. gold - metals hip. yellow - color
22	rc. atoms atomic	rc. atoms atomic			
23					

16					
17	rs. metal metals tr. yellow colorless psm. adequate necessary rs. external external rs. electronic electronic rs. configuration - configuration rs. transitions transition				
18	rs. metal metals tr. yellow colorless psm. copper Cu psm. gold - Au	rs. metals metals rs. colorless colorless	18		
19	rs. yellow yellow	rc. silvery silver tr. colorless yellow	tr. metals silver tr. colorless yellow	19	
20			psm. work - survey psm. undertaken - made	e. tinges - 0	
21	rs. metal metals hip. yellow color	rs. metals metals rc. colorless color	rs. metals metals rc. colorless color	hip. yellow - color hip. silver - metals	
22					
23			psm. work research rs. question questions		d. oración 20 - this psm. survey research

22	rs. atomic - atomic e. in metals to produce a definite color -0	
23		d. oración 21, 22 - this

2. 2. 2. Matriz con el número de unidades léxicas.

	1														
2	1	2													
3	1	5	3												
4	1	3	7	4											
5	1	1	2	4	5										
6	1	1	7	2	4	6									
7	1	3	4	4	6	4	7								
8	1	2	6	2	8	12	3	8							
9	1	3	7	2	1	8	1	7	9						
10	1	1	2	2	1	1	1	1	2	10					
11	1	1	2	2	2	3	2	4	2	2	11				
12	1	1	2	2	4	4	2	4	1	1	3	12			
13	1	1	2	2	9	2	4	6	1	1	1	5	13		
14	0	1	5	1	0	6	0	5	3	0	0	0	0	14	
15	1	1	7	3	2	5	2	5	3	2	2	1	1	3	15
16	1	3	10	7	2	9	4	6	5	2(3)	2	2	1	8	5
17	1	4	8	5	1	3	3	4	3	2	2	1	1	3	4
18	1	1	4	5	2	2	2	1	2	2	2	2	1	0	3
19	1	1	2	2	1	1	1	1	2	2	2	1	1	0	2
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	1	1	2	2	2	2	2	2	2	2	3	2	1	0	2
22	0	0	0	0	1	1	1	1	0	0	1	1	0	0	0
23	0	0	0	1	0	0	0	0	0	0 (1)	0	0	0	0	0

2. 2. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 0)[0]$	2. $(0,6)[6]$	3. $(1,10)[11]$
4. $(2,6)[8]$	5. $(1,5)[6]$	6. $(2,9)[11]$
7. $(5,4)[9]$	8. $(4,8)[12]$	9. $(4,4)[8]$
10. $(0,0)[0](0,1)[1]$	11. $(2,2)[4]$	12. $(4,1)[5]$
13. $(4,0)[4]$	14. $(4,3)[7]$	15. $(6,3)[9]$
16. $(9,2)[11](10,2)[12]$	17. $(10,0)[10]$	18. $(4,0)[4]$
19. $(0,0)[0]$	20. $(0,0)[0]$	21. $(1,0)[1]$
22. $(0,0)[0]$	23. $(0,-)[0]$	

2. 2. 4. Texto resultante tras eliminar las oraciones marginales.

2. When polished, all metals shine owing to reflection of photons by external valence electrons dynamically forming metallic bonds. 3. White light reflects on most metals without color absorption or change to the naked eye; but copper and gold are yellow because they absorb "blue" and "red" photons by electron transitions between spectromeric configurations $n s^{1}(n-1) \mathrm{d}^{10} \quad n s^{2}(n-1) \mathrm{d}^{9}$ of external sublevels.
3. The next question is why silver, with the same external electronic configuration as copper and gold (group 11, IB), is not yellow. 5. The answer is simple, considering atomic radii, ionization potentials and nuclear charge:

	Cu	Ag	Au
Atomic radius/ pm	117.3	133.9	133.6
$1^{\text {st }}$ ionization energy $/ \mathrm{eV}$	7.725	7.576	9.22
$2^{\text {nd }}$ ionization energy $/ \mathrm{eV}$	20.29	21.48	20.52
Nuclear charge	25	35	59

6. The atomic radius of silver is 16.6 pm larger than that of copper, allowing a bigger difference between sublevels s and d, which is sufficient to restrict the transition $s^{1} d^{10} \quad s^{2} d^{9}$ to a lower probability. 7. This is equally supported by the first ionization energry: since it is lower in silver, the fact that one external electron is ejected more easily than in copper atoms is justified.
7. With their higher nuclear charge (35 vs 25) silver atoms also have larger radii ($=16.6 \mathrm{pm}$), and the distance between external sublevels-both spatial and energeticis too large to freely allow s d transitions. 9. However, the distance is not large enough to prevent the transitions completely, and after several reflections on two parallel silver mirrors, white light becomes pale yellow.
${ }^{4} 11$. According to the same line of reasoning, gold would be colorless if it had bigger atoms. 12. But gold atoms are not larger than silver; the radii of silver and gold are practically identical owing to lanthanide contraction. 13. Comparing ionization energies, the value 9.22 eV for gold is about 20% higher than 7.576 eV for silver because gold has a larger nuclear charge (59 vs 35) while its radius is practically the same. 14. Thus, external s and d sublevels are close enough to allow the necessary

[^3]transition. 15. As a result, the probability of transition between sublevels is similar to that of copper, and gold is again yellow.
16. We can now perceive the necessary conditions for a metal to be yellow, like copper and gold:

1. Adequate external electronic configuration $s^{1} d^{10} \quad s^{2} d^{9}$ (group 11, IB).
2. Sublevels s and d close enough to allow transitions $s^{1} d^{10} \quad s^{2} d^{9}$ to occur significantly (Cu, Au).
3. In contrast, all other metals shine silvery, colorless to the naked eye because they do not possess the necessary electronic external configuration and transition probability to appear colored.
4. Much work has been undertaken in connection with relativistic effects on metal properties (6); however a final question remains: are metals (except for Cu and Au) really colorless? 21. What number of atomic layers must be crossed (twice) in metals to produce a definite color?

2. 3. Texto 3: Both nylon and PET fibers burn continuously under atmospheric conditions.

1. We would like to present two series of photographs showing the characteristic burning behaviors of a nylon fiber and a polyethyleneterephthalate (PET) fiber, in order to help people safely handle these fibers in their everyday lives.
2. In many textbooks, especially on textiles, nylon and PET fibers are classified as flammable but self-extinguishing. 3. In other references, we have read that nylon and PET give off combustible gases when they are heated above their decomposition temperatures. 4. According to references, nylon gives propylene (8.8% in volume of total detected gases evolved), cyclopentanone (32.2%), hexamethylenediamine and other methylene amines (22.5\%), and others (3), and PET gives ethylene $(8.3 \%$ in volume of total detected gases evolved), acetaldehyde (10.9%), benzoic acid (37.5%), and other phenyl compounds.
3. On the basis of these pyrolysis data, we were doubtful about the flammable but self-extinguishing classification for nylon and PET. 6. So we very carefully performed experiments to see what would happen when fibers caught fire. 7. We selected typical sewing threads for sewing machine (supplied by Teijin Co., Ltd., and Asahi Chemicals Co., Ltd.) for testing.
4. Thread samples about 50 cm long were hung up just in front of a focused camera and then ignited at the bottom end with a tiny flame from a cigarette lighter. 9. A tiny flame was used because hot air ascended from a big flame and perturbed the thread. 10. Once a part of the terminal end was ignited, it burned continuously, as
shown in the series of photographs in this paper, in contrast to the descriptions in textbooks stating that it "burns slowly but if the sample is removed from the flame it self-extinguishes".
5. In nylon thread, as seen in Figure 1, the flame propagates slowly. 12. In PET thread, shown in Figure 2, the flame propagates more quickly and is accompanied by black smoke. 13. Unlike natural fibers such as cellulose, these materials first melt, then give off combustible gases when the temperature exceeds the decomposition temperature of the polymers in the presence of about 21% of oxygen (i.e., under atmospheric conditions).14. When the ignition flame was removed, the threads continued to burn. 15. During the course of the burning, pictures were taken of the small spherical fire balls composed of a molten polymer. 16. A shutter speed of one onethousandth of a second and a highly sensitive film (ASA 800) were used. 17. Because the fire ball is changing rapidly, the photographs show scenes that cannot be seen by the naked eye.
6. Caution: We urge you to remember that these small fire balls are composed of viscous molten polymer. 19. They have specific heats that are not only high enough to burn skin but also high enough to cause a big fire. 20. If you want to do this type of experiment, you should wear a glove made of non- flammable fibers so your hand will not be burned.

2. 3. 1. Matriz de repetición de unidades léxicas.

1		2	3	4	-
11	psp. photographs - figure rs. nylon - nylon	rs. nylon nylon	rs. nylon - nylon	rs. nylon - nylon	rs. nylon - nylon
12	psp. photographs - figure rs. showing shown rs. PET - PET	rs. PET - PET			
13	hip. nylon/PET polymers rs. fibers - fibers	hip. nylon/PET - polymers rs. fibers - fibers psm. flammable - combustible	hip. nylon/PET polymers rs. give off - give off rs. combustible combustible rs. gases - gases rs. decomposition - decomposition rs. temperatures temperature	hip. nylon/PET polymers psm. gives - give off rs. gases - gases	psm. flammable combustible hip. nylon/PET polymers
14	rc. burning burn				
15	psm. photographs pictures rc. burning burning hip. nylon/PET polymer	hip. nylon/PET - polymer	hip. nylon/PET polymer	hip. nylon/PET polymer	hip. nylon/PET polymer
16					
17	rs. photographs - photographs rs. showing show				
18	rs. we - we+ hip. nylon/PET polymer	hip. nylon/PET polymer	rs. we - we + hip. nylon/PET polymer	hip. nylon/PET polymer	rs. we - we+ hip. nylon/PET polymer
19	rc. burning burn		rc. heated - heats		
20	rc. burning burned rc. handle hand rs. fibers - fibers	rs. fibers - fibers rc. flammable - non- flammable	hip. nylon/PET fibers pc. combustible -non-flammable (flammable)	hip. nylon/PET fibers	rc. flammable - nonflammable hip. nylon/PET - fibers

Anexo

7	rs. we - we+				
		7	8	9	
8	psm. caught fire - ignited	rs. threads thread			
9		rs. threads thread	rs. threadthread e. samples - 0 rs. tiny - tiny rs. flame - flame		
10	psm. caught fire - ignited		e. thread - 0 rs. samples sample rs. ignited ignited psm. bottom terminal rs. end - end	rs. flame - flame e. thread - 0	10
11	tr. fibers - nylon rs. see - seen	rs. threads thread	rs. thread - thread rs. flame - flame	rs. thread - thread rs. flame - flame	psp. photographs figure rs. slowly - slowly rs. flame - flame
12	tr. fibers - PET	rs. threads thread	rs. thread thread rs. flame - flame	rs. thread - thread rs. flame - flame	rs. shown - shown psp. photographs figure a. slowly - quickly rs. flame - flame
13	rs. fibers - fibers	hip. threads materials	hip. threads materials	hip. threads materials	
14	pc. caught fire ignition (ignited)	rs. threads threads	rs. thread treads e. samples - 0 rc. ignited - ignition rs. flame - flame	rs. flame - flame rs. tread - threads	rc. ignited - ignition psm. burned continuously - continued to burn rs. removed - removed rs. flame - flame
15	tr. fibers polymer				psp. photographs pictures rc. burns - burning

6				7	
16			rs. used - used		
17	rs. see - seen			rs. shown - show rs. photographs - photographs	
18	rs. we - we+ tr. fibers - polymer	rs. we - we+			
19	rs. fire - fire			rs. burns - burn	
20	rs. experiments - experiment rs. fibers - fibers		d. oración 8-this		rs. burns - burned

Anexo

12	tr. nylon - PET rs. thread thread rs. figure - figure rs. flame - flame rs. propagates propagates a. slowly quickly	12			
13	hip. nylon polymers hip. thread materials	hip. PET polymers hip. thread materials	13		
14	rs. thread threads rs. flame - flame	rs. thread threads rs. flame - flame	tr. materials threads	14	
15	psp. figure pictures hip. nylon polymer	psp. figure pictures hip. PET polymer	pc. melt - molten (melted) rs. polymers polymer	rc. burn - burning	15
16					
17	psp. figure photographs rs. seen - seen	rs. shown - show psm. figure photographs			psm. pictures - photographs rs. fire - fire rs. balls - ball
18	hip. nylon polymer	hip. PET polymer	pc. melt - molten (melted) rs. polymers polymer		rs. small - small rs. fire - fire rs. balls - balls rs. composed composed rs. molten - molten rs. polymer polymer
19				rs. burn - burn	rc. burning - burn s. smallballs they rs. fire - fire
20	hip. nylon fibers	hip. PET - fibers	rs. fibers - fibers pc. combustible -non-flammable (flammable)	rs. burn - burned	psm. composed - made* rc. burning - burned tr. polymer - fibers

2. 3. 2. Matriz con el número de unidades léxicas.

2. 3. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 8)[8]$
2. $(1,5)[6]$
3. $(2,3)[5]$
4. $(3,2)[5]$
5. $(4,1)[5]$
6. $(0,0)[0]$
7. $(0,0)$ [0]
8. $(0,3)[3]$
9. $(1,0)[1]$
10. $(4,3)[7]$
11. $(1,1)[2]$
12. $(3,0)[3]$
13. $(3,0)[3]$
14. $(2,0)[2]$
15. $(1,3)[4](1,4)[5]$
16. $(0,0)[0]$
17. $(1,0)[1]$
18. $(1,0)[1](1,1)[2]$
19. (1,-) [1] (3,-) [3]

2. 3. 4. Texto resultante tras eliminar las oraciones marginales.

1. We would like to present two series of photographs showing the characteristic burning behaviors of a nylon fiber and a polyethyleneterephthalate (PET) fiber, in order to help people safely handle these fibers in their everyday lives.
2. In many textbooks, especially on textiles, nylon and PET fibers are classified as flammable but self-extinguishing. 3. In other references, we have read that nylon and PET give off combustible gases when they are heated above their decomposition temperatures. 4. According to references, nylon gives propylene (8.8% in volume of total detected gases evolved), cyclopentanone (32.2\%), hexamethylenediamine and other methylene amines (22.5\%), and others (3), and PET gives ethylene (8.3% in volume of total detected gases evolved), acetaldehyde (10.9\%), benzoic acid (37.5\%), and other phenyl compounds.
3. On the basis of these pyrolysis data, we were doubtful about the flammable but self-extinguishing classification for nylon and PET.
4. Thread samples about 50 cm long were hung up just in front of a focused camera and then ignited at the bottom end with a tiny flame from a cigarette lighter. 9. A tiny flame was used because hot air ascended from a big flame and perturbed the thread. 10. Once a part of the terminal end was ignited, it burned continuously, as shown in the series of photographs in this paper, in contrast to the descriptions in textbooks stating that it "burns slowly but if the sample is removed from the flame it self-extinguishes".
5. In nylon thread, as seen in Figure 1, the flame propagates slowly. 12. In PET thread, shown in Figure 2, the flame propagates more quickly and is accompanied by black smoke. 13. Unlike natural fibers such as cellulose, these materials first melt, then give off combustible gases when the temperature exceeds the decomposition temperature of the polymers in the presence of about 21% of oxygen (i.e., under atmospheric conditions).14. When the ignition flame was removed, the threads continued to burn. 15. During the course of the burning, pictures were taken of the small spherical fire balls composed of a molten polymer. 17. Because the fire ball is changing rapidly, the photographs show scenes that cannot be seen by the naked eye.
6. Caution: We urge you to remember that these small fire balls are composed of viscous molten polymer. 19. They have specific heats that are not only high enough to burn skin but also high enough to cause a big fire. 20. If you want to do this type of experiment, you should wear a glove made of non- flammable fibers so your hand will not be burned.

2. 4. Texto 4: A chromatographic parable.

1. In thirty years of teaching separations courses, I have often searched for an apt allegory to illustrate the fundamentals of chromatographic processes. 2. The following is one version of such a tale that students seem to find interesting and perhaps even informative.
2. In a small Southern town (it must be a Southern town or the story doesn't work), the people are planning a Fourth of July race from one end of town to the other. 4. The townsfolk have the commonly observed characteristics that most of them are either Saints or Sinners; however, some of the folks are neither Saints nor Sinners (The Agnostic-Teetotalers) and others are both Saints and Sinners (we'11 call this group the Hypocrites). 5. The race will be conducted along the main street of town, and, as in most Southern towns, the street is lined with a suitable collection of churches and bars.
3. During the race the town folks all run at the same speed, but the Saints cannot pass a church without entering to pray for a while, and the Sinners cannot possibly pass by a bar without pausing for a refreshing beer. 7. The immediate question then is who will win the 4th of July race? 8. Most people want the Saints to win the race, but this is not probable because, while they are in church, the Agnostic-Teetotalers are still running. 9. It is fairly obvious, even to college students, that the Agnostic-Teetotalers will win the race, and, quite deservedly, the Hypocrites will come in last. 10. But what about the Saints and Sinners? 11. Who will come in second or third? 12. And finally, what can be done by the City Fathers to alter the outcome of the race next year?
4. So, what will determine the results of the Saints-Sinners race? 14. Let's say there are ten churches, but only three bars, along the main street. 15. Under these conditions, the Sinners will win the race. 16. Right? 17. Watch out! 18. What if it takes longer to drink a beer than it does to say a prayer?
5. The point of the exercise is to illustrate the concept that the results of this particular race are determined by the amount of time the participants spend not racing, that is, drinking or praying as the case may be. 20. The analogy to chromatographic retention times is obvious if somewhat colloquial. 21. Unfortunately, the analogy between the chromatographic stationary phase and a church or bar is perhaps less exemplary.
6. A secondary effect is possible if not all the racers run at exactly the same speed, if some Saints pray longer than others, or if some Sinners have more than one beer. 23. In this case, not all the Sinners will reach the finish line at the same time. 24. It is even possible that some very fast Saints could reach the finish line (elute) before some of the more tipsy Sinners or vice versa. 25. Thus, there would be a distribution of individuals within a group of townsfolk and possible overlap of Saints and Sinners at the finish line. 26. In chromatographic terms, the distribution is known as dispersion (described by the universally dreaded van Deemter equation) and overlap results in poor resolution. 27. Both effects lead to diminished results for a chromatographic separation. 28. In the 4th of July race analogy, it is possible that all the townsfolk (Saints, Sinners, Agnostics, and Hypocrites alike) would finish the race at the same time. 29. In my experience, this is the most probable outcome for most Southern towns, as well as most chromatographic experiments.

2. 4. 1. Matriz de repetición de unidades léxicas.

	1	2	3	4	5
16					
17					
18					
19	psp. allegory exercise rs. illustrate illustrate	psp. tale exercise	psp. people participants rs. race - race	psp. towsfolk - participants	rs. race - race
20	rs. chromatographic - chromatographic				
21	pc. illustrate exemplary (illustrative) rs. chromatographic - chromatographic				rs. churches church rs. bars - bar
22			tr. people - Saints / Sinners rc. race - racers	psp. towsfolk - racers rs. Saints - Saints rs. Sinners - Sinners	rc. race - racers
23			tr. people Sinners	rs. Sinners - Sinners	
24			tr. people Saints / Sinners	rs. Saints - Saints rs. Sinners - Sinners	
25			psm. people townsfolk	rs. towsfolk - towsfolk rs. Saints - Saints rs. Sinners - Sinners	pc. race - townsfolk (racers)
26	rs. chromatographic - chromatographic				
27	rs. chromatographic - chromatographic				
28			psm. people townsfolk psm. Fourth $4^{\text {th }}$ rs. July - July rs. race - race	rs. towsfolk - towsfolk rs. Saints - Saints rs. Sinners - Sinners rs. Agnostic - Agnostics rs. Hypocrites - Hypocrites	rs. race - race
29	rs. I - my+ rs. chromatographic - chromatographic		rs. Southern - Southern rs. town towns		rs. Southern Southern rs. towns - towns

Anexo

6		7	8	9	10
20					
21	rs. church - church rs. bar - bar		rs. church - church		
22	rc. race - racers rs. run - run rs. same - same rs. speed - speed rs. Saints - Saints rs. pray - pray rs. Sinners - Sinners rs. beer - beer	rc. race racers	rs. Saints - Saints rc. race - racers psm. are in church - pray tr. Agnostic-Teetotalers - Sinners rs. running - run	tr. Agnostic- Teetotalers / Hypocrites - Saints / Sinners rc. race - racers	rs. Saints - Saints rs. Sinners - Sinners
23	rs. Sinners - Sinners		tr. Saints / AgnosticTeetotalers - Sinners	tr. AgnosticTeetotalers /Hypocrites Sinners	rs. Sinners - Sinners
24	rs. Saints - Saints rs. Sinners - Sinners		rs. Saints - Saints tr. Agnostic-Teetotalers - Sinners	tr. Agnostic- Teetotalers / Hypocrites - Saints / Sinners	rs. Saints - Saints rs. Sinners - Sinners
25	psm. town folks townfolk rs. Saints - Saints rs. Sinners - Sinners	pc. race townsfolk (racers)	rs. Saints - Saints pc. race - townsfolk (racers) tr. Agnostic-Teetotalers Sinners	tr. Agnostic- Teetotalers / Hypocrites - Saints Sinners pc. race - townsfolk (racers)	rs. Saints Saints rs. Sinners Sinners
26					
27					
28	rs. race - race psm. town folks townfolk rs. Saints - Saints rs. Sinners - Sinners	rs. 4th 4th rs. July July rs. race race	rs. Saints - Saints rs. race - race rs. Agnostic - Agnostics	rs. Agnostic Agnostics rs. race - race rs. Hypocrites Hypocrites	rs. Saints - Saints rs. Sinners - Sinners
29	rs. town - towns				

Anexo

Anexo

26	rs. distribution - distribution rs. overlap - overlap	26				
27		rs. chromatographic - chromatographic	27			
28	rs. townsfolk - townsfolk rs. Saints - Saints rs. Sinners - Sinners rc. finish - finish	rs. chromatographic - chromatographic	rs. chromatographic - chromatographic	d. oración 28 - this psm. possible - probable		
29						

2. 4. 2. Matriz con el número de unidades léxicas.

1. 4. 3. Tabla representativa del número de conexiones entre oraciones.
1. $(-, 0)[0]$
2. $(0,0)[0]$
3. $(0,3)[3]$
4. $(0,7)[7]$
5. $(1,2)[3]$
6. $(2,6)[8]$
7. (1,1) [2]
8. $(2,7)$ [9]
9. $(2,2)[4]$
10. $(0,0)[0]$
11. $(0,0)[0]$
12. $(0,0)[0]$
13. $(3,4)[7]$
14. $(1,0)[1]$
15. $(2,0)[2]$
16. $(0,0)[0]$
17. $(0,0)[0]$
18. $(0,1)[1]$
19. $(3,1)[4]$
20. $(0,0)[0]$
21. $(0,0)[0]$
22. $(6,2)[8]$
23. $(0,3)[3]$
24. $(1,2)[3]$
25. $(7,1)[8]$
26. $(0,0)[0]$
27. $(0,0)$ [0]
28. $(11,0)[11]$
29. (0,-) [0]

2. 4. 4. Texto resultante tras eliminar las oraciones marginales.

3. In a small Southern town (it must be a Southern town or the story doesn't work), the people are planning a Fourth of July race from one end of town to the other.4. The townsfolk have the commonly observed characteristics that most of them are either Saints or Sinners; however, some of the folks are neither Saints nor Sinners (The Agnostic-Teetotalers) and others are both Saints and Sinners (we'11 call this group the Hypocrites). 5. The race will be conducted along the main street of town,
and, as in most Southern towns, the street is lined with a suitable collection of churches and bars.
4. During the race the town folks all run at the same speed, but the Saints cannot pass a church without entering to pray for a while, and the Sinners cannot possibly pass by a bar without pausing for a refreshing beer. 7. The immediate question then is who will win the 4th of July race? 8. Most people want the Saints to win the race, but this is not probable because, while they are in church, the AgnosticTeetotalers are still running. 9. It is fairly obvious, even to college students, that the Agnostic-Teetotalers will win the race, and, quite deservedly, the Hypocrites will come in last.
5. So, what will determine the results of the Saints-Sinners race? 14. Let's say there are ten churches, but only three bars, along the main street. 15. Under these conditions, the Sinners will win the race. 18. What if it takes longer to drink a beer than it does to say a prayer?
6. The point of the exercise is to illustrate the concept that the results of this particular race are determined by the amount of time the participants spend not racing, that is, drinking or praying as the case may be.
7. A secondary effect is possible if not all the racers run at exactly the same speed, if some Saints pray longer than others, or if some Sinners have more than one beer. 23. In this case, not all the Sinners will reach the finish line at the same time. 24. It is even possible that some very fast Saints could reach the finish line (elute) before some of the more tipsy Sinners or vice versa. 25. Thus, there would be a distribution of individuals within a group of townsfolk and possible overlap of Saints and Sinners at the finish line. 28. In the 4th of July race analogy, it is possible that all the townsfolk (Saints, Sinners, Agnostics, and Hypocrites alike) would finish the race at the same time.

2. 5. Texto 5: High flying polymer.

1. A new type of fire-resistant polymer could improve your chances of survival in a plane crash, according to Phillip Westmoreland, professor of chemical engineering at the University of Massachusetts Amherst in the US.
2. Much of today's aircraft interiors are made of polymers because they are lightweight and versatile - they can be dyed different colours and formed into many shapes. 3. They are used in seats, windows, wall panels, floor carpets, wiring, insulation, 'just about everything except the metal chair supports', says Westmoreland.
3. When a plane crashes and catches fire, polymers decompose from the heat, releasing combustible gases, which in turn also catch fire. 5. According to Westmoreland's co-researcher Richard Lyon, Federal Aviation Authority (FAA), programme manager for fire research and fire safety, 40 per cent of the fatalities that occur in impact survivable air accidents are a result of fire. 6. Fire-resistant polymers are therefore an important target.
4. Westmoreland and his team focused on polyhydroxyamide (PHA) as a potential candidate for a fire - resistant polymer. 8. The backbone structure of PHA meant that it could be a useful thermoplastic (softens on heating) for forming into films and fibres. 9. Also at temperatures of ca $180-200^{\circ} \mathrm{C}$, PHA converts with very little mass loss to water and a different polymer, ie the rigid high - strength polybenzoxazole (PBO, 2), which decomposes only at very high temperatures ($\mathrm{ca} 600^{\circ} \mathrm{C}$). 10. 'PBO has the best non-flammability of any material we know of, but you just can't use the stuff', commented Westmoreland. 11. PBO is too hard to form into useful products, such as fabrics or panels.
5. Researchers at the University of Massachusetts synthesised several structural variants of PHA, from the simplest form $(\mathrm{R}=\mathrm{H})$, to phosphate-containing R.-groups, to see which had the lowest flammability. 13. At the same time, a team at the FAA developed a new microcalorimeter that could evaluate the polymers' ability to burn in milligram quantities, a method with advantages over conventional tests which involve much larger samples - eg 'taking an aircraft seat and setting fire to it'. 14. The results revealed that all forms of PHA had low flammability, but the best polymer was the simplest - ie when $\mathrm{R}=\mathrm{H}$. 15. In tests, this form of PHA gave passengers ca 10 times longer to get out of an aircraft than the best existing polymer.

2. 5. 1. Matriz de repetición de unidades léxicas.

2	rs. polymer polymers psm. plane aircraft	2			
3	rs. Westmoreland - Westmoreland	s. polymers they	3		
4	rs. fire - fire rs. polymer polymers rs. plane - plane rc. crash - crashes	psm. aircraft plane rs. polymers polymers		4	
5	rs. fire - fire rc. survival survivable psm. crash impact rs. Westmoreland - Westmoreland		rs. Westmoreland - Westmoreland	rs. fire - fire	5
6	rs. fire - fire rs. resistant resistant rs. polymer polymers	rs. polymers polymers		rs. fire - fire rs. polymers - polymers	rs. fire - fire
7	rs. fire - fire rs. resistant resistant rs. polymer polymer rs. Westmoreland - Westmoreland	rs. polymers polymer	rs. Westmoreland - Westmoreland	rs. fire - fire rs. polymers - polymer	rs. Westmoreland Westmoreland rs. fire - fire
8	tr. polymer PHA	tr. polymer PHA rs. formed forming	rc. used - useful	tr. polymers PHA rc. heat - heating	
9	rs. polymer polymer	rs. polymers polymer		rs. polymers - polymer rs. decompose decomposes	
10	tr. polymer PBO rs. Westmoreland - Westmoreland	tr. polymers PBO	$\begin{aligned} & \text { rs. used - use } \\ & \text { psm. says - } \\ & \text { commented } \\ & \text { rs. } \\ & \text { Westmoreland - } \\ & \text { Westmoreland } \end{aligned}$	tr. polymers PBO pc. combustible flammability (flammable)	rs. Westmoreland Westmoreland

Anexo

1				2	
11	tr. polymer - PBO	tr. polymers- PBO rs. formed - form	rc. used - useful rs. panels - panels	tr. polymers - PBO	
12	tr. polymer - PHA rs. University - University rs. Massachusetts - Massachusetts	tr. polymers - PHA		tr. polymers - PHA pc. combustible - flammability (flammable)	
13	rs. fire - fire rs. polymer - polymers psm. plane - aircraft	rs. aircraft - aircraft rs. polymers - polymers	rs. seats - seat	psm. plane - aircraft rs. fire - fire rs. polymers- polymers	
14	rs. polymer - polymer	rs. polymers - polymer	rs. FAA - FAA rs. fire - fire		
15	psm. type - form rs. polymer - polymer psm. plane - aircraft	rs. aircraft - aircraft rs. polymers - polymer	rs. polymers - polymer pc. combustible - flammability (flammable)		

Anexo

12	tr. PBO - PHA			
13	hip. PBO - polymers	hip. PHA - polymers		
14	hip. PBO - polymer	rs. PHA - PHA rs. simplest - simplest rs. form - forms rs. R=H - R=H rs. had - had rc. lowest - low rs. flammability - flammability	rs. polymers - polymer	
15	hip. PBO - polymer	rs. PHA - PHA rs. form - form pc. see - tests (test)	rs. polymers - polymer rs. tests - tests rs. aircraft - aircraft	rs. forms - form rs. PHA - PHA rs. polymer - polymer

2. 5. 2. Matriz con el número de unidades léxicas.

2. 5. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 7)[7]$
2. $(0,0)[0]$
3. $(0,1)[1]$
4. $(1,1)[2]$
5. $(1,0)[1]$
6. $(1,1)[2]$
7. $(2,1)[3]$
8. $(0,0)[0]$
9. $(0,0)[0]$
10. $(1,2)[3]$
11. $(0,0)[0]$
12. $(2,2)[4]$
13. $(3,1)[4]$
14. $(2,1)[3]$
15. $(4,-)[4]$

2. 5. 4. Texto resultante tras eliminar las oraciones marginales.

1. A new type of fire-resistant polymer could improve your chances of survival in a plane crash, according to Phillip Westmoreland, professor of chemical engineering at the University of Massachusetts Amherst in the US.
2. <They> [polymers] are used in seats, windows, wall panels, floor carpets, wiring, insulation, 'just about everything except the metal chair supports', says Westmoreland.
3. When a plane crashes and catches fire, polymers decompose from the heat, releasing combustible gases, which in turn also catch fire. 5. According to Westmoreland's co-researcher Richard Lyon, Federal Aviation Authority (FAA), programme manager for fire research and fire safety, 40 per cent of the fatalities that
occur in impact survivable air accidents are a result of fire. 6. Fire-resistant polymers are therefore an important target.
4. Westmoreland and his team focused on polyhydroxyamide (PHA) as a potential candidate for a fire - resistant polymer. 10. 'PBO has the best nonflammability of any material we know of, but you just can't use the stuff', commented Westmoreland.
5. Researchers at the University of Massachusetts synthesised several structural variants of PHA, from the simplest form ($\mathrm{R}=\mathrm{H}$), to phosphate-containing R.groups, to see which had the lowest flammability. 13. At the same time, a team at the FAA developed a new microcalorimeter that could evaluate the polymers' ability to burn in milligram quantities, a method with advantages over conventional tests which involve much larger samples - eg 'taking an aircraft seat and setting fire to it'. 14. The results revealed that all forms of PHA had low flammability, but the best polymer was the simplest - ie when $\mathrm{R}=\mathrm{H}$. 15. In tests, this form of PHA gave passengers ca 10 times longer to get out of an aircraft than the best existing polymer.

2. 6. Texto 6: Flash of inspiration wins Nobel prize for chemistry.

1. Chemist Ahmed Zewail of the California Institute of Technology (Caltech) (pictured top right) was the recipient of the 1999 Nobel prize for chemistry for a flash of inspiration that is revolutionising our understanding of chemical reactions. 2. Using brief bursts of light from lasers, he developed a way to take 'snapshots of individual molecules as they change during a chemical reaction.
2. Modern lasers can produce a very short burst of light, lasting a few femtoseconds ie a million-billionth of a second. 4. Like a fast camera that freezes a dancer in motion, the laser beam can illuminate a molecule as it is transformed from one shape and structure to another during a chemical reaction - its transition state. 5. This transition state, which exists between the reactant and the product, lasts for only femtoseconds, so observing it before it disappears was, until Zewail's experiments, almost impossible. 6. Being able to observe this state is helping chemists to find out exactly how particular reactions work and allowing them to predict the outcome of other related reactions as well as the complex interactions of, for example, a drug molecule with a biological receptor.
3. The earliest attempt to look at reactions as they happen was by H. Hartridge and EJ. Roughton in the 1920s. 8. They used a spectrophotometer to observe what happens when two compounds are mixed and saw chemical reactions taking place in a thousandth of a second. 9. In the 1960s, Ronald Norrish and George Porter came up with the idea of using a flash-lamp to freeze the reactions - the shorter the flash, the
more transient the reactions they could see. 10. They observed chemistry on the millisecond and microsecond timescales - a thousand times shorter than that possible in the 1920s. 11. Poter and Norrish shared the 1967 Nobel prize with the German chemist Manfred Eigen, who used heat and pressure shock methods to trigger a reaction and observe 'almost' the instant at which it was happening (Eigen was also working at the milli-to micro-second timescale).
4. During the early 1980s, Dudley Herschbach, Yuan Lee and John Polanyi had improved the ability to observe chemical reactions down to the picosecond scale using a vacuum collision experiments - for this work they received the 1986 Nobel prize for chemistry. 13. With shorter and shorter timescales, chemists began to reveal the intermediate chemical species in reactions - not, the transition states, they were still too fleeting, but the structures either side that lasted just long enough for them to record. 14. Once chemists had reached the picoscale, they only needed to take one step further to reach the femto timescale. 15. The femtosecond $-10^{-15} \mathrm{~s}$ - represents the frequency at which molecules vibrate, without which there would be no interaction and no chemical change. 16. If chemists could watch molecular vibrations they would have reached the limit of observation.
5. Zewail realised that to observe molecules at this level his flashlamp would have to be very fast, a pulsing laser that flashes once every femtosecond, he reasoned, would do the job. 18. For their simplest experiment, Zewail and his colleagues chose a unimolecular reaction, ie where a single substance changes into another without the involvement of a second chemical, and formed a molecular beam in a vacuum chamber. 19. By blasting this beam with a 'pump pulse' of laser light they excited the molecules and triggered a change. 20. Then, by applying a weaker, 'probe pulse' from a laser lasting a few femtoseconds - at a frequency to coincide with the absorption frequency of the suspected transition state of the substance - Zewail and his team obtained a characteristic spectrum from the light emitted by the transition state. $\mathbf{2 1}$. They had frozen the reaction.
6. The chemists compared the characteristic spectrum with the theoretical pattern obtained by using the methods of last year's Nobel chemists John Pople and Walter Kohn (Educ. Chem., 1999, 36(1), 7) who provided them with the means to predict molecular structure and so their characteristic spectra. 23. Zewail's first
unimolecular reaction - the one that started the whole femtochemistry field - was the dissociation of iodine cyanide (ICN), which takes just 200 femtoseconds. 24. His results were published in 1987 in the journal of physical chemistry and showed the transition state just as the carbon-iodine bond in the molecule is about to break to form the cyano radical and an iodine atom.
7. Zewail and his colleagues then moved on to bimolecular reactions, which involve two interacting chemical species. 26. They studied the reaction of hydrogen with carbon dioxide, which produces carbon monoxide and hydroxy radicals. 27. Zewail's flash revealed that the reaction passes through a transitionary HOCO molecule, which exists fleetingly for a mere picosecond (1000fs). 28. His team also began to look at a puzzle that had occupied chemical minds for some time - ie would two seemingly identical bonds in a molecule break simultaneously in, for instance, a dissociation reaction. 29. For the dissociation of tetrafluorodiiodoethane it turns out that the 'equivalent' $\mathrm{C}-1$ bonds do not break at the same time - there is a delay of 200 fs following the splitting of the first.
8. Since Zewail's pioneering studies in the 1980s and 1990s, many other research teams have begun to use femtochemistry to look at diverse reactions watching them happen in real-time.

2. 6. 1. Matriz de repetición de unidades léxicas.

1

2	s. Ahmed Zewail he rs. chemical chemical rs. reactions reaction	2			
3		psm. brief - short rs. bursts - burst rs. light - light rs. lasers - lasers	3		
4	rs. chemical chemical rs. reactions reaction	```psp. bursts - flash rs. lasers - laser rs. molecules - molecule psm. change - transformed rs. chemical - chemical rs. reaction - reaction```	rs. lasers - laser psp. burst - flash	4	
5	rs. Zewail - Zewail rc. reactions reactant	psm. take 'snapshots' observing rc. reaction - reactant	rs. lasting lasts* rs. femtoseconds - femtoseconds	rc. reaction reactant rs. transition transition rs. state - state	5
6	rs. chemist chemists rs. reactions reactions	psm. take 'snapshots' observe rs. molecules - molecule rc. chemical - chemists rs. reaction - reactions		rs. molecule molecule rc. chemical chemists rs. reaction reactions rs. state - state	rs. state - state rc. reactant - reactions rs. observing observe
7	rs. reactions reactions	psm. take 'snapshots' look at rs. reaction - reactions		rs. reaction reactions	rc. reactant - reactions psm. observing - look at
8	rs. chemical chemical rs. reactions reactions	rs. using - used psm. take 'snapshots' observe rs. chemical - chemical rs. reaction - reactions	rs. second second*	rs. chemical chemical rs. reaction reactions	rc. reactant - reactions rc. femtoseconds second rs. observing observe
9	psp. inspiration idea rs. reactions reactions	```rs. using - using pc. brief - shorter (short) psm. bursts - flah psm. take 'snapshots' - see rs. reaction - reactions```	rc. short - shorter psm. burst - flash	rs. flash - flash rs. freezes freeze rs. reaction reactions rc. transition transient	rc. transition transient rc. reactant - reactions psm. observing - see
10	rs. chemistry chemistry	psm. take 'snaoshots' observed rc. chemical - chemistry	rc. second millisecond*	rc. chemical chemistry	tr. femtoseconds millisecond rs. observing observed

	1	2	3	4	5
11	rs. chemist - chemist rs. Nobel - Nobel rs. prize - prize rs. reactions - reaction	rs. using - used psm. way - methods psm. take 'snaoshots' observe rc. chemical - chemist rs. reaction - reaction	rc. second microsecond*	rc. chemical chemist rs. reaction reaction	rc. reactant reaction tr. femtoseconds microsecond rs. observing observe
12	pc. recipient received (receiver) rs. Nobel - Nobel rs. prize - prize rs. chemistry chemistry rs. chemical chemical rs. reactions reactions	rs. using - using psm. take 'snapshots - observe rs. chemical - chemical rs reaction - reactions	rc. second picosecond*	rs. chemical chemical rs. reaction reactions	rc. reactant reactions tr. femtoseconds picosecond rs. observing observe rs. experiments experiments
13	rs. chemist - chemists rs. chemical chemical rs. reactions reactions	rs. chemical chemical rs. reaction - reactions	rs. lasting lasted*	rs. structure structures rs. chemical chemical rs. reaction reactions rs. transition transition rs. state states	rs. transition transition rs. state - states rc. reactant reactions rs. lasts - lasted
14	rs. chemist - chemists	rc. chemical - chemists		rc. chemical chemists	
15	rs. chemical chemical psm. reactions change	rs. molecules molecules rs. chemical chemical rc. change - change	rs. femtoseconds - femtosecond	rs. molecule molecules rs. chemical chemical psm. reaction - change	rs. femtoseconds femtosecond pc. reactant change (reaction)
16	rs. chemist - chemists	psm. take 'snapshots' watch rc. molecules molecular rc. chemical - chemists		rc. molecule molecular rc. chemical chemists	rc. observing observation
17	rs. Zewail - Zewail	pc. bursts - flashes (flash) rs. lasers - laser rs. he - he psm. take 'snapshots' - observe rs. molecules molecules	rs. lasers - laser pc. burst flashes (flash) rs. light - light	rs. fast - fast rc. flash flashes rs. laser laser rs. molecule molecules	rs. femtoseconds femtosecond rs. observing observe rs. Zewail - Zewail

	1	2	3	4	5
18	rs. Zewail - Zewail rc. chemical chemical rs. reactions reaction	rs. he - his rc. molecules molecular rs. change - changes rc. chemical - chemical rs. reaction - reaction		rs. beam - beam rc. molecule - molecular psm. transformed - changes rc. chemical - chemical rs. reaction reaction	rc. reactant reaction rs. Zewail - Zewail rs. experiments experiment
19	psm. reactions change	pc. bursts - blasting (blast) rs. light - light rs. lasers - laser rs. molecules - molecules rc. change - change	rs. lasers - laser pc. burst blasting (blast) rs. light - light	tr. flash - blasting rs. laser - laser rs. beam - beam rs. molecule molecules psm. reaction change	pc. reactant change (reaction)
20	rs. Zewail - Zewail	rs. light - light* rs. lasers - laser rs. he - his	rs. lasers - laser rs. light - light* rs. lasting lasting rs. few - few rs. femtoseconds - femtoseconds	rs. laser - laser rs. transition transition rs. state - state	rs. transition transition rs. state - state rs. lasts lasting* rs. femtoseconds - femtoseconds rs. Zewail Zewail
21	rs. reactions reaction	rs. reaction - reaction		rs. freezes - frozen rs. reaction reaction	rc. reactant reaction
22	rs. chemist chemists rs. Nobel - Nobel psm. chemistry chem.*	rs. using - using psm. way - methods rc. molecules molecular rc. chemical chemists		rc. molecule molecular rs. structure structure rc. chemical chemists	
23	rs. Zewail - Zewail rc. chemistry femtochemistry rs. reactions reaction	rc. molecules unimolecular rc. chemical femtochemistry rs. reaction - reaction	rs. femtoseconds - femtoseconds	rc. molecule unimolecular rs. reaction reaction	rc. reactant reaction psm. lasts takes rs. femtoseconds - femtoseconds rs. Zewail Zewail
24	s. Zewail - his rs. chemistry chemistry*	rs. he - his rs. molecules molecule rc. chemical chemistry*		rs. molecule molecule rc. chemical chemistry* rs. transition transition rs. state - state	rs. transition transition rs. state - state s. Zewail - his

Anexo

1		2		4	5
25	rs. Zewail - Zewail rs. chemical chemical rs. reactions reactions	rs. he - his rc. molecules bimolecular rs. chemical chemical rs. reaction - reactions		rc. molecule bimolecular rs. chemical chemical rs. reaction reactions	rc. reactant reactions rs. Zewail - Zewail
26	rs. reactions - reaction	psp. take 'snapshots' studied rs. reaction - reaction		rs. reaction reaction	rc. reactant reaction psm. observing studied
27	rs. Zewail - Zewail rs. reactions - reaction	psp. bursts - flash rs. molecules molecule rs. reaction - reaction	psp. bursts - flash psm. femtoseconds - fs	rs. flash - flash rs. molecule molecule rs. reaction reaction rc. transition transitionary	rc. transition transitionary rs. exists - exists rc. reactant reaction tr. femtoseconds picosecond rs. Zewail - Zewail
28	rc. chemist - chemical s. Zewail - his rs. reactions - reaction	rs. he - his psm. take 'snapshots' look at rs. molecules molecule rs. chemical chemical rs. reaction - reaction		rs. molecule molecule rs. chemical chemical rs. reaction reaction	rc. reactant reaction psm. observing look at s. Zewail - his
29			psm. femtoseconds - fs		psm. femtoseconds $-\mathrm{fs}$
30	rs. Zewail - Zewail rc. chemistry femtochemistry rs. reactions reactions	rs. using - use psm. take 'snapshots' - look at rc. chemical - femtochemistry rs. reaction - reactions		rc. chemical femtochemistry rs. reaction reactions	rc. reactant reaction psm. observing watching rs. Zewail - Zewail psm. experiments studies

Anexo

	6	7	8	9	10
15	rc. chemists chemical psm. reactions change rs. interactions interaction rs. molecule molecules	psm. reactions change	rs. chemical chemical psm. reactions change rc. second femtosecond	psm. reactions change	rc. chemistry chemical tr. microsecond femtosecond
16	psp. being able could rc. observe observation rs. chemists - chemists rc. molecules molecular	psm. look at watch	rc. observe observation rc. chemical chemists	psm. see - watch	rc. observed observation rc. chemistry chemists
17	rs. observe - observe rs. molecule molecules	psm. look at observe	rs. observe observe rc. second femtosecond	psm. see observe rs. flashlamp flashlamp rc. flash flashes	rs. observed - observe tr. microsecond femtosecond
18	rc. chemists chemical rs. reactions - reaction rc. molecule molecular	rs. reactions reaction	rc. chemical chemical rs. reactions reaction	rs. reactions reaction	rc. chemistry chemical
19	psm. reactions change rs. molecule molecules	psm. reactions change	psm. reactions change	psm. reactions - change tr. flash - blasting	
20	rs. state - state		rc. second femtoseconds	rc. trasient transition	tr. microsecond femtoseconds
21	rs. reactions - reaction	rs. reactions reaction	rs. reactions reaction	rs. freeze frozen rs. reactions reaction	
22	rs. chemists - chemists rs. predict - predict rc. molecule molecular		rs. used - using rc. chemical chemists	rs. using - using	rc. chemistry chemists
23	rc. chemists femtochemistry rs. reactions - reaction rc. molecule unimolecular	rs. reactions reaction	rs. reactions reaction rc. second femtoseconds	rs. reactions reaction	tr. microsecond femtoseconds

6		7	8	9	10
24	rs. state - state rc. chemists chemistry* rs. molecule molecule		rc. chemical chemistry*	rc. transient transition	rs. chemistrychemistry*
25	rc. chemists chemical rs. reactions reactions rc. molecule bimolecular	rs. reactions reactions	rs. chemical chemical rs. reactions reactions	rs. reactions reactions	rc. chemistry chemical
26	psp. observe - studied rs. reactions - reaction	psp. look at studied rs. reactions reaction	psp. observe studied rs. reactions reaction	rs. reactions reaction psp. see studied	psp. observed studied
27	rs. reactions - reaction rs. molecule molecule	rs. reactions reaction	rs. reactions reaction rc. second picosecond	rs. reactions reaction rs. flash - flash rc. transient trasitionary	tr. microsecond picosecond
28	psm. observe - look at rc. chemists chemical rs. reactions - reaction rs. molecule molecule	rs. look at - look at rs. reactions reaction	psm. observe look at tr. chemical chemical rs. reactions reaction	rs. reactions reaction psm. see - look at	psm. observed - look at rc. chemistry chemical
29			pc. second -fs (femtosecond)		pc. second -fs (femtosecond)
30	psm. observe watching rc. chemists femtochemistry rs. reactions reactions	rs. look at - look at rs. reactions reactions rs. happen happen	psm. observe look at rs. happen happen rc. chemical femtochemistry rs. reactions reactions	rs. using - use rs. reactions reactions psm. see - look at	psm. observed - look at rc. chemistry femtochemistry

Anexo

12	rs. Nobel - Nobel rs. prize - prize rc. chemist chemistry rs. used - using rs. reaction - reactions rs. observe - observe rc. working - work tr. micro-second - picosecond rc. timescale - scale	12			
13	rs. chemist - chemists rs. reaction - reactions pc. instant - fleeting (instantaneous) rs. timescale timescales	rs. chemical chemical rs. reactions reactions rc. scale timescales rc. chemistry chemists	13		
14	rs. chemist - chemists rs. timescale timescale	rc. scale picoscale rc. chemistry chemists	rs. timescales timescale rs. chemists chemists	14	
15	rc. chemist - chemical psm. reaction - change tr. microsecond femtosecond	rs. chemical chemical psm. reactions change tr. picosecond femtosecond	rs. chemical chemical psm. reactions change	rc. chemists chemical	15
16	rs. chemist - chemists rc. observe - observation	rc. observe observation rc. chemistry chemists	rs. chemists chemists	rs. chemists chemists rs. reach reached	rc. molecules molecular rc. vibrate - vibrations rc. chemical - chemists
17	rs. observe - observe tr. microsecond femtosecond	rs. observe observe tr. picosecond femtosecond			rs. femtosecond femtosecond rs. molecules molecules
18	rc. chemist - chemical rs. reaction - reaction	rc. chemical chemical rs. reactions reaction rs. vacuum vacuum rs. experiments experiment	rc. chemical chemical rs. reactions reaction	rc. chemists chemical	rc. molecules unimolecular rc. chemical chemical psm. change - reaction
19	rs. trigger - triggered psm. reaction - change	psm. reaction change	psm. reactions change		rs. molecules molecules rs. change - change

| 11 | | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- |

11		12	13	14	15
28	rc. chemist - chemical rs. reaction - reaction psm. observe - look at	psm. observe look at rs. reactions reaction rc. chemistry chemical	rc. chemists chemical rs. began began rs. reactions reaction	rc chemists chemical	rs. molecules molecule tr. chemical chemical psm. change - reaction
29	tr. microsecond - fs (femtosecond)	tr. picosecond fs (femtosecond)			psm. femtosecond - fs
30	rc. chemist femtochemistry rs. used - use rs. reaction - reactions psm. observe - look at rs. happening happen	psm. observe look at rs. reactions reactions rs. using - use rc. chemistry femtochemistry	rc. chemists femtochemistry rs. began begun rs. reactions reactions	rc. chemists femtochemistry	rc. chemical femtochemistry psm. change reactions

16		17			
17	rc. molecular molecules d. watch molecular vibrations - this rc. observation observe				
			18		
18	rc. chemists chemical rc. molecular unimolecular	rs. Zewail - Zewail rc. molecules unimolecular			
19	rc. molecular molecules	rs. molecules molecules rc. pulsing - pulse rs. laser - laser tr. flashes - blasting	s. Zewail and his colleages - they rc. changes change rc. molecular molecules rs. beam - beam	19	
20		rs. Zewail - Zewail rc. pulsing - pulse rs. laser - laser rs. femtosecond femtoseconds	rs. Zewail - Zewail rs. his - his psm. colleagues team rs. substance substance	rs. pulse - pulse rs. laser - laser rs. light - light*	20
21			s. Zewail and his colleagues - they rs. reaction reaction	rs. they - they psm. change reaction	
22	rs. chemists chemists rs. molecular molecular	rc. molecules molecular	co-ref. Zewail and his colleagues chemists rc. chemical chemists rs. molecular molecular	rs. they - them rc. molecules molecular	co-ref. Zewail and his colleagues - chemists rs. obtained - obtained rs. characteristic characteristic rs. spectrum spectrum
23	rc. chemists femtochemistry rc. molecular unimolecular	rs. Zewail - Zewail rc. molecules unimolecular rs. femtosecond femtoseconds	rs. Zewail - Zewail rs. unimolecular unimolecular rs. reaction reaction rc. chemical femtochemistry	rc. molecules unimolecular psm. change reaction	psm. lasting - takes* rs. femtoseconds femtoseconds rs. Zewail - Zewail
24	rc. chemists chemistry* rc. molecular molecule	s. Zewail - his rs. molecules molecule	s. Zewail - his rc. chemical chemistry* rc. molecular molecule	rs. molecules molecule	s. Zewaqil - his rs. transition transition rs. state - state

	16	17	18	19	20
25	rc. chemists chemical rc. molecular bimolecular	rs. Zewail Zewail rc. molecules bimolecular	rs. Zewail - Zewail rs. his - his rs. colleagues colleagues rc. unimolecular bimolecular rs. reaction - reactions rc. involvement - involve rc. chemical - chemical	rc. molecules bimolecular psm. change reactions	rs. Zewail - Zewail rs. his - his psm. team colleagues
26	psp. watch studied	psp. observe studied	s. Zewail and his colleagues - they rs. reaction - reaction	rs. they - they psm. change reaction	s. Zewail and his team - they
27	rc. molecular molecule	rs. Zewail Zewail rs. molecules molecule rc. flashes flash	rs. Zewail - Zewail rs. reaction - reaction rc. unimolecular molecule	tr. blasting flash rs. molecules molecule psm. change reaction	psm. lasting - exits* psm. femtoseconds - fs rs. Zewail - Zewail rc. transition - transitionary
28	rc. chemists chemical psm. watch look at rc. molecular molecule	s. Zewail - his psm. observe look at rs. molecules molecule	s. Zewail - his psm. colleagues - team rc. unimolecular molecule rs. reaction - reaction tr. chemical - chemical	rs. molecules molecule psm. change reaction	tr. substance molecule rs. his - his rs. team - team
29		psm. femtosecond - fs			psm. femtoseconds $-\mathrm{fs}$
30	rc. chemists femtochemistry rs. watch watching pc. observation look at (observe)	rs. Zewail - Zewail psm. observe - look at	rs. Zewail - Zewail psm. colleagues - teams rs. reaction - reactions rc. chemical femtochemistry	psm. change reactions	rs. Zewail - Zewail rs. team - teams

Anexo

27	rs. reaction - reaction			
		27	28	
28	psp. studied - look at rs. reaction - reaction	s. Zewail's - his rs. reaction - reaction rs. molecule - molecule		
29		rs. fs - fs	rs. bonds - bonds rs. break - break psm. simultaneously - at the same time rs. dissociation - dissociation	29
30	rc. studied - studies rs. reaction reactions	rs. Zewial - Zewail rs. reaction - reactions	rs. team - teams rs. began - begun rs. look at - look at rc. chemical - femtochemistry rs. reaction - reactions	

2. 6. 2. Matriz con el número de unidades léxicas.

	1													
2	3	2												
3	0	4	3											
4	2	6	2	4										
5	2	2	1(2)	3	5									
6	2	4	0	4	3	6								
7	1	2	0	1	2	2	7							
8	2	4	0 (1)	2	3	3	4	8						
9	2	5	2	4	3	3	2	3						
10	1	2	0 (1)	1	2	2	2	3	2	10				
11	4	5	$0(1)$	2	3	3	3	6	5	5	11			
12	6	4	0 (1)	2	4	4	2	5	3	4	9	12		
13	3	2	0 (1)	5	4	3	1	2	2	3	4	4	13	
14	1	1	0	1	0	1	0	1	0	2	2	2	2	14
15	2	3	1	3	2	4	1	3	1	2	3	3	2	1
16	1	3	0	2	1	4	1	2	1	2	2	2	1	2
	1	5	3	4	3	2	1	2	3	2	2	2	0	0
18	3	5	0	5	3	3	1	2	1	1	2	4	2	1
19	1	5	3	5	1	2	1	1	2	0	2	1	1	0
20	1	$2(3)$	4(5)	3	4(5)	1	0	1	1	1	1	1	2	0
21	1	1	0	2	1	1	1	1	2	0	1	1	1	0
22	$2(3)$	4	0	3	0	3	0	2	1	1	4	3	1	1
	3	3	1	2	4	3	1	2	1	1	3	3	3	1
24	1(2)	$2(3)$	0	3(4)	3	$2(3)$	0	0 (1)	1	0 (1)	0 (1)	0 (1)	3(4)	$0(1)$
25	3	4	0	3	2	3	1	2	1	1	2	2	3	1
26	1	2	0	1	2	2	2	2	2	1	2	2	1	0
27	2	3	2	4	5	2	1	2	3	1	3	2	5	0
28	3	5	0	3	3	4	2	3	2	2	3	3	3	1
29	0	0	1	0	1	0	0	1	0	1	1	1	0	0

c
30
2. 6. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 9)(-, 10)$	$[9][10]$	2. $(1,18)(1,20)[19][21]$
4. $(1,14)[15]$	S. $(1,14)[15]$	3. $(3,3)[4]$
7. $(0,3)[3]$	8. $(4,7)[11]$	9. $(5,5)[10]$
10. $(1,3)[4]$	11. $(8,8)[16]$	12. $(8,7)[15]$
13. $(7,6)[13]$	14. $(0,0)[0]$	15. $(6,6)[12]$
16. $(3,3)[6]$	17. $(6,5)[11]$	18. $(7,8)(7,9)[15][16]$
19. $(5,1)(5,2)[6][7]$	20. $(5,5)(7,6)[10][13]$	21. $(0,0)[0]$
22. $(7,0)(8,0)[7][8]$	23. $(10,6)(11,6)[16][17]$	24. $(5,2)(8,2)[7][10]$
25. $(9,3)[12]$	26. $(0,0)[0]$	27. $(14,1)[15]$
28. $(18,2)[20]$	29. $(2,0)[2]$	30. $(15,-)[15]$

2. 6. 4. Texto resultante tras eliminar las oraciones marginales.

1. Chemist Ahmed Zewail of the California Institute of Technology (Caltech) (pictured top right) was the recipient of the 1999 Nobel prize for chemistry for a flash of inspiration that is revolutionising our understanding of chemical reactions. 2. Using brief bursts of light from lasers, he developed a way to take 'snapshots of individual molecules as they change during a chemical reaction.
2. Modern lasers can produce a very short burst of light, lasting a few femtoseconds ie a million-billionth of a second. 4. Like a fast camera that freezes a dancer in motion, the laser beam can illuminate a molecule as it is transformed from one shape and structure to another during a chemical reaction - its transition state. 5. This transition state, which exists between the reactant and the product, lasts for only femtoseconds, so observing it before it disappears was, until Zewail's experiments, almost impossible. 6. Being able to observe this state is helping chemists to find out exactly how particular reactions work and allowing them to predict the outcome of other related reactions as well as the complex interactions of, for example, a drug molecule with a biological receptor.
3. The earliest attempt to look at reactions as they happen was by H. Hartridge and EJ. Roughton in the 1920s. 8. They used a spectrophotometer to observe what happens when two compounds are mixed and saw chemical reactions taking place in a thousandth of a second. 9. In the 1960s, Ronald Norrish and George Porter came up with the idea of using a flash-lamp to freeze the reactions - the shorter the flash, the more transient the reactions they could see. 10. They observed chemistry on the millisecond and microsecond timescales - a thousand times shorter than that possible in the 1920s. 11. Poter and Norrish shared the 1967 Nobel prize with the German chemist Manfred Eigen, who used heat and pressure shock methods to trigger a reaction and observe 'almost' the instant at which it was happening (Eigen was also working at the milli-to micro-second timescale).
4. During the early 1980s, Dudley Herschbach, Yuan Lee and John Polanyi had improved the ability to observe chemical reactions down to the picosecond scale using a vacuum collision experiments - for this work they received the 1986 Nobel prize for chemistry. 13. With shorter and shorter timescales, chemists began to reveal the intermediate chemical species in reactions - not, the transition states, they were still too fleeting, but the structures either side that lasted just long enough for them to record. 15. The femtosecond $-10^{-15} \mathrm{~s}$ - represents the frequency at which molecules vibrate, without which there would be no interaction and no chemical change. 16. If
chemists could watch molecular vibrations they would have reached the limit of observation.
5. Zewail realised that to observe molecules at this level his flashlamp would have to be very fast, a pulsing laser that flashes once every femtosecond, he reasoned, would do the job. 18. For their simplest experiment, Zewail and his colleagues chose a unimolecular reaction, ie where a single substance changes into another without the involvement of a second chemical, and formed a molecular beam in a vacuum chamber. 19. By blasting this beam with a 'pump pulse' of laser light they excited the molecules and triggered a change. 20. Then, by applying a weaker, 'probe pulse' from a laser lasting a few femtoseconds - at a frequency to coincide with the absorption frequency of the suspected transition state of the substance - Zewail and his team obtained a characteristic spectrum from the light emitted by the transition state.
6. The chemists compared the characteristic spectrum with the theoretical pattern obtained by using the methods of last year's Nobel chemists John Pople and Walter Kohn (Educ. Chem., 1999, 36(1), 7) who provided them with the means to predict molecular structure and so their characteristic spectra. 23. Zewail's first unimolecular reaction - the one that started the whole femtochemistry field - was the dissociation of iodine cyanide (ICN), which takes just 200 femtoseconds. 24. His results were published in 1987 in the journal of physical chemistry and showed the transition state just as the carbon-iodine bond in the molecule is about to break to form the cyano radical and an iodine atom.
7. Zewail and his colleagues then moved on to bimolecular reactions, which involve two interacting chemical species. 27. Zewail's flash revealed that the reaction [of hydrogen with carbon dioxide, which produces carbon monoxide and hydroxy radicals] passes through a transitionary HOCO molecule, which exists fleetingly for a mere picosecond (1000fs). 28. His team also began to look at a puzzle that had occupied chemical minds for some time - ie would two seemingly identical bonds in a molecule break simultaneously in, for instance, a dissociation reaction. 29. For the dissociation of tetrafluorodiiodoethane it turns out that the 'equivalent' $\mathrm{C}-1$ bonds do not break at the same time - there is a delay of 200 fs following the splitting of the first.
8. Since Zewail's pioneering studies in the 1980s and 1990s, many other research teams have begun to use femtochemistry to look at diverse reactions watching them happen in real-time.

2. 7. Texto 7: Pressure to change solvents.

1. Decent decaffeinated coffee has been around since 1960s, when chemist Kurt Zosel found an alternative to using the toxic and unpleasant tasting benzene to extract the caffeine. 2. He discovered that a 19th century chemical curiosity, known as a supercritical fluid (SCF), could dissolve out the caffeine but leave no solvent residue. $\mathbf{3}$. Supercritical fluids while still curious are now being used to destroy toxic waste, make industrial chemicals without toxic and highly flammable volatile organic compounds (VOCs) and are even making it easier to take your medicine. 4. So what are these strange materials and why are they so supercritical?
2. If you apply enough pressure to some gases while heating them they liquefy but keep their gaseous energy. 6. Conversely, heating some liquids while you apply pressure gives them gaseous energy but without losing their density. 7. These fluids are caught between the liquid and gas phase above a certain critical temperature and pressure - they are supercritical fluids, see Fig 1. 8. Many common chemicals can become supercritical, from carbon dioxide and water to the noble gas xenon.
3. Water, for instance, becomes a supercritical fluid when it is heated above $374^{\circ} \mathrm{C}$ and put under a pressure of 218 atmos. 10. The fluid looks like a liquid but strangely, on the one hand can be mixed with oil but on the other will no longer dissolve ordinary table salt. 11. These effects can be explained by the changes in the bonds between water molecules which, in the supercritical state, become weaker than normal. 12. So, oily molecules can squeeze in between them but they are too weak to hold the sodium and chloride ions from salt. 13. Amazingly, oxygen dissolved in supercritical water supports 'flameless' combustion. 14. Scientists at Sandia National Laboratories in New Mexico are using this property to destroy industrial and domestic waste without the need for conventional incineration. 15. Dissolved salts and metals come out of the solution and can be recycled or disposed of safely, while the organic content is broken down into carbon dioxide and water by the oxidation process. 16. The process works at lower temperatures than incineration, so there are no nitrogen oxide pollutants produced.
4. Organic chemists from the University of Leeds have also been quick to latch on to Zosel's early discovery and have been using SCFs to extract natural products from plants and other organic materials for years. 18. Natural flavour molecules, such as vanilla, for instance, can be cleanly extracted from the pod using an SCF. 19. More recently, though, chemists have turned to SCFs to dissolve reactants that usually need a toxic and flammable VOC or do not dissolve at all.
5. Synthetic chemists are using SCFs in the manufacture of new types of polymer and other molecules that could function as industrial catalysts, thus avoiding the use of harmful solvents. 21. Joseph DeSimone's group at the University of North Carolina in Chapel Hill, for example, is using supercritical carbon dioxide to make new types of fluorine-containing polymer. 22. Adding fluorine atoms to a polymer chain is used to make some tough, smooth and chemically inert materials. 23.

Polytetrafluoroethene (PTFE or Teflon) was one of the earliest fluoropolymers, and is still used to coat non-stick frying pans! 24. Modern fluoropolymers have more high-tech applications, such as acting as 'dry' lubricating layers for the moving parts in computers, eg hard drives, where a drop of oil would wreck the electronics. 25 . The problem with making these new fluoropolymers, however, is that fluorine atoms have a residual negative charge, which makes them polar so they dissolve best in water. 26. This makes it difficult to process them further because any other chemicals added will usually be soluble only in organic solvents.
27. DeSimone's team has got around this problem by using supercritical carbon dioxide instead. 28. The chemists can now control the length of the polymer chains and their precise chemical structure. 29. This leads to consistent materials for high-tech. aerospace and electronic applications.
30. Martyn Poliakoff and his team at the University of Nottingham, meanwhile, are exploring how SCFs can help them make new industrial catalysts. 31. They have discovered that they can make organometallic compounds such as metal carbonyls, many of which are too unstable to prepare by conventional methods. 32. Metal carbonyls are used in various industrial reactions as catalysts for speeding up the production of simple materials such as formic acid and formaldehyde and more complex compounds, like pharmaceuticals and polymers. 33. Carbonyl compounds in which nitrogen or hydrogen molecules have been substituted for a carbonyl group can catalyse more complex reactions still. 34. For example, novel piano-stool shaped manganese carbonyls with an attached dihydrogen might be a useful polymerisation catalyst. 35. The problem in making them is that hydrogen and nitrogen gases do not dissolve well in conventional organic solvents at room temperature so it is hard to add the atoms to the starting molecule. 36. The Nottingham team, however, has found that hydrogen mixes very well with supercritical carbon dioxide at $80-100$ atmos, allowing the reaction to add hydrogen or nitrogen atoms as needed to the carbonyl compound.
37. Once the reaction is over, the SCF can be quickly recycled by releasing the pressure and trapping the carbon dioxide gas that escapes. 38. This is one of the major advantages of SCFs over other solvents. 39. VOCs, for instance, become contaminated during a reaction and it is expensive and wasteful to purify them. 40. SCFs avoid this problem because once they become a gas again they leave behind any impurities,
41. SCFs are also much less viscous than liquid solvents, so they flow more easily through a reaction system. 42. They can also get into the smallest of crevices and pits inside the reactor system. 43. By flushing the system with an SCF once a reaction is complete any impurities can be washed out, leaving the system pristine and ready to be used again.
44. But, what about SCFs making it easier to take medicines? 45. Scientists are now using SCFs to help them make drugs that normally have to be injected work when taken by mouth instead. 46. A collaborative team from the US, Canada and Norway has found they can make sub-microscopic particles of the immunosuppressant drug cyclosporin, which is used to prevent transplanted organ rejection, by preparing it in supercritical carbon dioxide and then blasting it into normal water by releasing the pressure. 47. The blast makes billions upon billions of tiny drug particles just fractions of a micrometre in size. 48. These particles are so small that the researchers hope they will be absorbable by the gut so that patients avoid getting the needle.
49. Amazing what a little warmth and a squeeze will do.

2. 7. 1. Matriz de repetición de unidades léxicas.

2	rc. chemist chemical s. Zosel - he hip. benzene solvent rs. caffeine caffeine	2			
3	rc. chemist chemicals rs. using used rs. toxic toxic hip. benzene VOCs	rc. chemical chemicals rc. curiosity - curious rs- supercritical supercritical rs. fluid - fluids tr. solvent - VOCs	3		
4		pc. curiosity - strange (curious) rs- supercritical supercritical hip. fluid - materials	rs- supercritical - supercritical hip. fluid materials psm. curious strange	4	
5				5	
6					rs. you - you + rs. apply - apply rs. pressure - pressure rs. heating - heating rc. liquefy - liquids pc. keep - losing rs. gaseous - gaseous rs. energy - energy
7		rs- supercritical supercritical rs. fluid - fluids	rs- supercritical - supercritical rs. fluids - fluids	tr. materials - fluids rs- supercritical supercritical	rs. pressure - pressure rs. gases - gas rc. liquefy - liquid
8	rc. chemist chemicals	rc. chemical chemicals rs- supercritical supercritical	rs- supercritical - supercritical rs. chemicals chemicals	rs- supercritical supercritical	rs. gases - gas
9		rs- supercritical supercritical rs. fluid - fluid	rs- supercritical - supercritical rs. fluids - fluid	tr. materials - fluid rs- supercritical supercritical	psm. apply - put under rs. pressure - pressure rs. heating - heated
10		pc. curiosity strangely (curiously) rs. fluid - fluid rs. dissolve dissolve*	rs. fluids - fluid pc. curious strangely (strange)	rc. strange strangely tr. materials - fluid	rc. liquefy - liquid
11		rs- supercritical supercritical	rs- supercritical - supercritical	rs- supercritical supercritical	

	1	2	3	4	5
12					
13		rs. supercritical supercritical rs. dissolve dissolved	rs. supercritical supercritical	rs. supercritical supercritical	
14	hip. chemist scientists rs. using - using*	tr. chemicalscientists	rs. used - using* rs. destroy -destroy rs. waste - waste tr. chemicals - scientists		
15		rs. dissolve dissolved*	psm. destroy - disposed of		
16					
17	rs. chemist chemists rs. Zosel - Zosel pc. found discovery (discover) rs. using - using rs. extract - extract hip. caffeine - products	rc. discovered discovery rc. chemical chemists rs. SCF - SCFs hip. caffeine products	psm. supercritical fluids - SCFs rs. used - using rc. chemicals - chemists		
18	rs. using - using rs. extract extracted hip. caffeine molecules	rs. SCF - SCF hip. caffeine molecules	psm. supercritical fluids SCF rs. used - using		
19	rs. chemist chemists rs. toxic - toxic hip. benzene VOC	rc. chemical chemists rs. SCF - SCFs rs. dissolve dissolve tr. solvent VOC	psm. supercritical fluids SCFs rc. chemicals - chemists rs. toxic - toxic rs. flammable - flammable rs. VOCs - VOC		
20	rs. chemist chemists rs. using - using hip. benzene solvents	rc. chemical chemists rs. SCF - SCFs rs. solvent solvents	psm. supercritical fluids SCFs rs. used - using pc. make - manufacture (making) rs. industrial - industrial rc. chemicals - chemists hip. VOC - solvents		

Anexo

	1	2	3	4	5
21	rs. using - using	rs. supercritical supercritical	rs. supercritical supercritical rs. used - using rs. make - make	rs. supercritical supercritical	
22	rc. chemist chemically rs. using - used*	rc. chemical - chemically	rs. used - used* rs. make - make rc. chemicals chemically		
23	rs. using - used*		rs. used - used*		
24	pc. using applications* (use)		$\begin{aligned} & \text { pc. used - applications* } \\ & \text { (use) } \end{aligned}$		
25		rs. dissolve - dissolve rc. residue - residual	rs. make - making		
26	rc. chemist chemicals hip. benzene solvents	rc. chemical - chemicals rs. solvent - solvents	rs. chemicals - chemicals rs. organic - organic hip. VOCs - solvents		
27	rs. using - using	rs. supercritical supercritical	rs. supercritical supercritical rs. used - using	rs. supercritical supercritical	
28	rs. chemist chemists	rc. chemical - chemists	rc. chemicals - chemists		
29	pc. using applications* (use)		$\begin{aligned} & \text { pc. used - applications* } \\ & \text { (use) } \end{aligned}$		
30		rs. $\mathrm{SCF}-\mathrm{SCFs}$	psm. supercritical fluids - SCFs rs. make - make rs. industrial - industrial		
31	psm. found discovered	rs. discovered discovered	rs. make - make		
32	rs. using - used*		rs. used - used* pc. make - production* (making) rs. industrial - industrial		

	1	2	3	4	5
33					
34	rc. using - useful*		rc. used - useful*		
35	hip. benzene solvents	rs. dissolve - dissolve rs. solvent - solvents	rs. make - making rs. organic - organic hip. VOCs - solvents		
36	rs. found - found	psm. discovered - found rs. supercritical supercritical	rs. supercritical supercritical	rs. supercritical supercritical	
37		rs. $\mathrm{SCF}-\mathrm{SCF}$	psm. supercritical - fluids - SCF		rs. pressure - pressure rs. gases - gas
38	hip. benzene solvents	rs. SCF - SCFs rs. solvent - solvents	psm. supercritical fluids - SCFs hip. VOCs - solvents		
39	hip. benzene VOCs	tr. solvent - VOCs	rs. VOCs - VOCs		
40		rs. $\mathrm{SCF}-\mathrm{SCFs}$ rs. leave - leave	psm. supercritical fluids - SCFs		rs. gases gas
41	hip. benzene solvents	rs. SCF - SCFs rs. solvent - solvents	psm. supercritical fluids - SCFs hip. VOCs - solvents		
42		s. SCF - they	s. supercritical fluids they		
43		rs. SCF - SCF rs. leave - leaving*	psm. supercritical - fluids - SCF		
44		rs. $\mathrm{SCF}-\mathrm{SCFs}$	psm. supercritical - fluids - SCFs rs. making - making rs. easier - easier rs. take - take rs. medicine - medicines		

Anexo

	1	2	3	4	5
45	hip. chemist scientists rs. using - using	tr. chemical - scientists rs. SCF - SCFs	psm. supercritical - fluids - SCFs rs. used - using rs. make - make tr. chemicals - scientists psm. medicine - drugs		
46	rs. found - found rs. using - used*	psm. discovered - found rs. supercritical supercritical	rs. supercritical supercritical rs. used - used* rs. make - make psm. medicine - drug	rs. supercritical supercritical	rs. pressure - pressure
47			psm. medicine - drug		
48	hip. chemist researchers	tr. chemical - researchers	tr. chemicals researchers		
49					

7	rs. liquids - liquid rs. pressure pressure rc gaseous - gas				
		7	8		
8	rc gaseous - gas	rs. supercritical supercritical			
9	rs. heating - heated psm. apply - put under rs. pressure pressure	rs. pressure pressure rs. supercritical supercritical rs. fluids - fluid	rs. become becomes rs. supercritical supercritical rs. water - water	9	
10	rs. liquids - liquid	rs. liquid - liquid rs. fluids - fluid		rs. fluid - fluid	10
11		rs. supercritical supercritical	rs. become become rs. supercritical supercritical rs. water - water	rs. water - water rs. becomes become* rs. supercritical supercritical	d. oración 10 these
12					rc. oil - oily rs. salt - salt
13		rs. supercritical supercritical	rs. supercritical supercritical rs. water - water	rs. water - water rs. supercritical supercritical	
14			tr. chemicals scientists		
15					
16					
17		psm. supercritical fluids - SCFs	rc. chemicals chemists hip. carbon dioxide gas xenon SCFs	psm. supercritical fluids - SCFs	
18		psm. supercritical fluids - SCF	hip. carbon dioxide gas xenon SCF	psm. supercritical fluids - SCF	

Anexo

	6	7	8	9	10
34					
35	rc. gaseous gases	rs. temperature temperature			
36		rs. supercritical supercritical	rs. supercritical supercritical rs. carbon - carbon rs. dioxide - dioxide	rs. supercritical supercritical	
37	rs. pressure pressure rc. gaseous gas	rs. pressure - pressure psm. supercritical fluids - SCF	hip. carbon dioxide gas xenon - SCF	psm. supercritical fluid - SCF rs. pressure pressure	
38		psm. supercritical fluids - SCFs	hip. carbon dioxide gas xenon-SCFs	psm. supercritical fluid - SCFs	
39					
40	rc. gaseous gas	rs. gas - gas psm. supercritical fluids - SCFs	hip. carbon dioxide gas xenon-SCFs	psm. supercritical fluid - SCFs	
41		psm. supercritical fluids - SCFs	hip. carbon dioxide gas xenon - SCFs	psm. supercritical fluid - SCFs	
42					
43		psm. supercritical fluids - SCF	hip. carbon dioxide gas xenon - SCF	psm. supercritical fluid - SCF	
44		psm. supercritical fluids - SCFs	hip. carbon dioxide gas xenon-SCFs	psm. supercritical fluid - SCFs	
45		psm. supercritical fluids - SCFs	tr. chemicals - scientists hip. carbon dioxide gas xenon-SCFs	psm. supercritical fluid - SCFs	
46	rs. pressure pressure	rs. pressure - pressure rs. supercritical supercritical	rs. supercritical supercritical rs. carbon - carbon rs. dioxide - dioxide	rs. supercritical supercritical rs. pressure pressure	

6		7		8	9
47					
48					
49			tr. chemicals - researchers		

12	s. bonds - them rs. molecules molecules rc. weaker - weak				
		12	13	14	
13	rs. water - water rs. supercritical supercritical				
14			d. oración 13 - this		
					15
15			rs. dissolved dissolved*	$\begin{aligned} & \text { psm. destroy - disposed } \\ & \text { of } \end{aligned}$	
16				rs. incineration incineration	rc. dioxide - oxide rs. process - process
17			hip. supercritical water - SCFs	tr. scientists - chemists rs. using - using*	
18			hip. supercritical water - SCF	rs. using - using*	
19			rs. dissolved dissolve hip. supercritical water - SCFs rc. flameless flammable	tr. scientists - chemists	rs. dissolved dissolve*
20			hip. supercritical water - SCFs	tr. scientists - chemists rs. using - using*	
21	rs. supercritical supercritical		tr. supercritical water - supercritical carbon dioxide	rs. using - using*	
22					
23					
24					
25	rs. water - water		rs. dissolved dissolve rs. water - water		rs. dissolved dissolve*

Anexo

	11	12	13	14	15
26					
27	rs. supercritical supercritical		tr. supercritical water supercritical carbon dioxide	rs. using - using*	
28				tr. scientists - chemists	
29					
30			hip. supercritical water SCFs		
31					
32					
33					
34					
35			rs. dissolved - dissolve		
36	rs. supercritical supercritical		tr. supercritical water supercritical carbon dioxide		
37			hip. supercritical water SCF		
38			hip. supercritical water SCFs		
39					
40			hip. supercritical water SCFs		
41			hip. supercritical water SCFs		

11					13			
43			hip. supercritical water - SCF					
44			hip. supercritical water - SCFs					
45			hip. supercritical water - SCFs	rs. scientists - scientists rs. using - using*				
46								
47				tr. supercritical water - supercritical carbon dioxide				

Anexo

	16	17	18	19	20
27		rs. using - using tr. SCFs - supercritical carbon dioxide	rs. using - using tr. SCF - supercritical carbon dioxide	tr. SCFs supercritical carbon dioxide	rs. using - using tr. SCFs - supercritical carbon dioxide
28		rs. chemists - chemists		rs. chemists chemists	rs. chemists - chemists rs. polymer - polymer
29		pc. using applications* (use)	pc. using applications* (use)		$\begin{aligned} & \text { pc. using - applications* } \\ & \text { (use) } \end{aligned}$
30		rs. SCFs - SCFs	rs. $\mathrm{SCF}-\mathrm{SCFs}$	rs. SCFs - SCFs	rs. SCFs - SCFs pc. manufacture - make (making) rs. new - new rs. industrial - industrial rs. catalysts - catalysts
31		rc. discovery discovered			pc. manufacture - make (making)
32		rs. using - used*	rs. using - used*	rc. reactants reactions	rs. using - used* psm. manufacture production rs. polymer - polymers rs. industrial - industrial rs. catalysts - catalysts
33				rc. reactants reactions	rc. catalysts - catalyse
34		rc. using - useful*	rc. using - useful*		rc. using - useful* rc. polymer polymerisation rs. catalysts - catalyst
35				rs. dissolve dissolve hip. VOC solvents	psm. manufacture making rs. solvents - solvents
36		pc. discovery - found (discover) tr. SCFs - supercritical carbon dioxide	tr. SCF - supercritical carbon dioxide	tr. SCF supercritical carbon dioxide rc. reactants reactions	tr. SCFs - supercritical carbon dioxide
37		rs. $\mathrm{SCFs}-\mathrm{SCF}$	rs. SCF - SCF	rs. SCFs - SCF rc. reactants reaction	rs. $\mathrm{SCFs}-\mathrm{SCF}$

Anexo

	16	17	18	19	20
38		rs. SCFs - SCFs	rs. $\mathrm{SCF}-\mathrm{SCFs}$	rs. SCFs - SCFs hip. VOC solvents	rs. SCFs - SCFs rs. solvents - solvents
39				rc. reactants reaction rs. VOC - VOCs	tr. solvents - VOCs
40		rs. SCFs - SCFs	rs. SCF - SCFs	rs. SCFs - SCFs	rs. SCFs - SCFs
41		rs. SCFs - SCFs	rs. $\mathrm{SCF}-\mathrm{SCFs}$	rs. SCFs - SCFs rc. reactants reaction hip. VOC - solvents	rs. SCFs - SCFs rs. solvents - solvents
42		s. SCFs - they		rc. reactants reactor	s. SCFs - they
43		rs. $\mathrm{SCFs}-\mathrm{SCF}$	rs. SCF - SCF	rs. SCFs - SCF rc. reactants reaction	rs. $\mathrm{SCFs}-\mathrm{SCF}$
44		rs. SCFs - SCFs	rs. $\mathrm{SCF}-\mathrm{SCFs}$	rs. SCFs - SCFs	rs. SCFs - SCFs
45		hip. chemists scientists rs. using - using rs. SCFs - SCFs	rs. using - using rs. $\mathrm{SCF}-\mathrm{SCFs}$	hip. chemists scientists rs. SCFs - SCFs	hip. chemists - scientists rs. using - using rs. SCFs - SCFs pc. manufacture - make (making)
46		pc. discovery - found (discover) rs. using - used tr. SCFs - supercritical carbon dioxide	rs. using - used* tr. SCF - supercritical carbon dioxide	tr. SCFs supercritical carbon dioxide	rs. using - used* tr. SCFs - supercritical carbon dioxide pc. manufacture - make (making)
47					
48		hip. chemists researchers		hip. chemists researchers	hip. chemists researchers
49					

Anexo

	21	22	23	24	25
31	rs. make - make	rs. make - make			
32	rs. using - used* pc. make - production (produce) rs. polymer polymers	rs. polymer polymers rs. used - used pc. make - production (produce) rs. materials materials	rs. used - used rc. fluoropolymers polymers	rc. fluoropolymers polymers	rc. fluoropolymers polymers
33					
34	rc. using - useful* rc. polymer polymerisation	rc. used - useful rc. polymer polymerisation	rc. used - useful tr. fluoropolymers polymerisation	tr. fluoropolymers polymerisation	tr. fluoropolymers polymerisation
35	rs. make - making	rs. adding - add rs. atoms - atoms rs. make - making			rs. problem problem rs. making making rs. atoms atoms rs. dissolve dissolve
36	psm. group - team rs. supercritical supercritical rs. carbon - carbon rs. dioxide - dioxide	rs. adding - add rs. atoms - atoms			rs. atoms atoms
37	hip. supercritical carbon dioxide - SCF				
38	hip. supercritical carbon dioxide - SCFs				
39					
40	hip. supercritical carbon dioxide - SCFs				
41	hip. supercritical carbon dioxide - SCFs				
42					

43	hip. supercritical carbon dioxide - SCF			24	25
44	hip. supercritical carbon dioxide - SCFs				
45	rs. using - using hip. supercritical carbon dioxide - SCFs rs. make - make	rs. used - using*	rs. used - using*	pc. applications - using* (use)	
46	psm. group - team rs. using - used* rs. supercrititical - rs. carbon - carbon s. dioxide - ioxide s. make - make				
47					
48					
49					

Anexo

27	rs. this - this				
		27	28	29	
28	rc. chemicals chemists				
29			d. oración 28 - this		
30		rs. team - team hip. supercritical carbon dioxide SCFs		30	
31					rs. can - can rs. them - they rs. make - make
32		rs. using - used*	rs. polymer polymers		pc. make - production (produce) rs. industrial industrial rs. catalysts - catalysts
33					rc. catalysts - catalyse
34		rc. using - useful*	rc. polymer polymerisation		rs. catalysts - catalyst
35	rs. added - add rs. organic - organic rs. solvents - solvents				rs. make - making
36		rs. team - team rs. supercritical - supercritical rs. carbon - carbon rs. dioxide - dioxide			rs. team - team rs. Nottingham - Nottingham tr. SCFs - supercritical carbon dioxide
37		hip. supercritical carbon dioxide - SCF			rs. $\mathrm{SCFs}-\mathrm{SCF}$
38	rs. solvents - solvents	hip. supercritical carbon dioxide SCFs			rs. SCFs - SCFs

	26	27	28	29	30
39	tr. solvents - VOCs				
40		rs. problem - problem hip. supercritical carbon dioxide - SCFs			rs. SCFs - SCFs
41	rs. solvents solvents	hip. supercritical carbon dioxide - SCFs			rs. SCFs - SCFs
42					s. SCFs - they
43		hip. supercritical carbon dioxide - SCF			rs. $\mathrm{SCFs}-\mathrm{SCF}$
44		hip. supercritical carbon dioxide - SCFs			rs. SCFs - SCFs
45		rs. using - using hip. supercritical carbon dioxide-SCFs	hip. chemists scientists		rs. SCFs - SCFs rs. help - help rs. make - make
46		rs. team - team rs. using - used* rs. supercritical supercritical rs. carbon - carbon rs. dioxide - dioxide			rs. team - team tr. SCFs - supercritical carbon dioxide rs. make - make
47					
48			hip. chemists researchers		
49					

Anexo

31			32		33
42		rc. reactions - reactor	rc. reactions - reactor		
43					
44					
45	rs. make - make				
46	psm. discovered - found rs. make - make rs. prepare - preparing				
47					
48					
49					

Anexo

37	hip. supercritical carbon dioxide - SCF rs. reaction - reaction	37			
			38		
38	hip. supercritical carbon dioxide - SCFs	d. oración 37 - this rs. SCF - SCFs			
				39	
39	rs. reaction - reaction	rs. reaction - reaction	tr. solvents VOCs		
40	hip. supercritical carbon dioxide - SCFs	rs. SCF - SCFs	rs. SCFs SCFs	d. oración 39 - this rc. purify impurities	40
41	hip. supercritical carbon dioxide - SCFs rs. reaction - reaction	rs. reaction - reaction rs. SCF - SCFs	rs. SCFs SCFs	hip. VOCs - solvents rs. reaction reaction	rs. SCFs - SCFs
42	rc. reaction - reactor	rc. reaction - reactor	s. SCFs - they	rc. reaction reactor	s. SCFs - they
43	hip. supercritical carbon dioxide - SCF rs. reaction - reaction	rs. reaction - reaction psm. is over - is complete rs. SCF - SCF	rs. SCFs SCF	rs. reaction reaction rc. purify impurities	rs. SCFs - SCF rs. leave - leaving rs. impurities impurities
44	hip. supercritical carbon dioxide - SCFs	rs. SCF - SCFs	rs. SCFs SCFs		rs. SCFs - SCFs
45	hip. supercritical carbon dioxide - SCFs	rs. SCF - SCFs	rs. SCFs SCFs		rs. SCFs - SCFs
46	rs. team - team rs. found - found rs. supercritical supercritical rs. carbon - carbon rs. dioxide - dioxide	tr. SCF - supercritical carbon dioxide rs. releasing releasing rs. pressure - pressure	tr. SCFs supercritical carbon dioxide		tr. SCFs supercritical carbon dioxide
47					
48					
49					

42	s. SCFs they rc. reaction - reactor rs. system - system	42						
43	rs. SCFs_{-} SCF rs. reaction - reaction rs. system - system	rc. reactor - reaction rs. system - system	43					
44	rs. SCFs_{-} SCFs		rs. SCF - SCFs	44				
45	rs. SCFs - SCFs		rs. SCF - SCFs	rs. SCFs SCFs rs. take taken psm. medicines drugs	45			
46	tr. SCFs_{-} supercrit. carbon dioxide		tr. SCF - supercrit. carbon dioxide	tr. SCFs - supercrit. carbon dioxide psm. medicines - drug	rs. using used* tr. SCFs - supercrit. carbon dioxide rs. make - make rs. drugs drug	46		
47				psm. medicines - drug	rs. drugs drug	rs. drugs drug rc. blasting - blast	47	
48					psm. scientists researchers		rs. particles particles	
								48
49								

2. 7. 2. Matriz con el número de unidades léxicas.

	1	2	3			6	7	8		1	
23	0 (1)	0	$0(1)$	0	0	0	0	0	0	0	0
	0 (1)	0	$0(1)$	0	0	0	0	0	0	0	0
25	0	2	1	0	0	0	0	1	1	0	1
	2	2	3	0	0	0	0	1	0	0	0
26											
27	1	1	2	1	0	0	1	3	1	0	1
28	1	1	1	0	0	0	0	1	0	0	0
	0 (1)	0	0 (1)	0	0	0	0	0	0	0	0
29											
30	0	1	3	0	0	0	1	1	1	0	0
31	1	1	1	0	0	0	0	0	0	0	0
32	0 (1)	0	$1(3)$	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0	0
34	0 (1)	0	0 (1)	0	0	0	0	0	0	0	0
	1	2	3	0	0	1	1	0	0	0	0
35											
36	1	2	1	1	0	0	1	3	1	0	1
37	0	1	1	0	2	2	2	1	2	0	0
	1	2	2	0	0	0	1	1	1	0	0
39	1	1	1	0	0	0	0	0	0	0	0
40	0	2	1	0	1	1	2	1	1	0	0
41	1	2	2	0	0	0	1	1	1	0	0
42	0	1	1	0	0	0	0	0	0	0	0
43	0	1(2)	1	0	0	0	1	1	1	0	0
44	0	1	5	0	0	0	1	1	1	0	0

	1	2	3							$10 \quad 11$	
	2	2	5	0	0	0	1	2	1	0	0
	1(2)	2	3(4)	1	1	1	2	3	2	0	1
47	0	0	1	0	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	1	0	0	0
49	0	0	0	0	0	0	0	0	0	0	0

Anexo

					27			3				33
	0	0	0	0	4(5)	0	0	3	3	0	0	
	0	0	0	0	0	0	0	0	0	0	0	
48	0	0	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	
49												

2. 7. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 6)[6]$	2. $(1,5)[6](1,6)[7]$	3. $(2,12)[14](2,14)[16]$
4. $(2,0)[2]$	5. $(0,3)[3]$	6. $(1,2)[3]$
7. $(2,1)[3]$	8. $(0,6)[6]$	9. $(4,0)[4](4,1)[5]$
10. $(0,0)[0](0,1)[1]$	11. $(1,1)[2](2,1)[3]$	12. $(1,0)[1]$
13. $(0,1)[1]$	14. $(1,0)[1]$	15. $(0,0)[0]$
16. $(0,0)[0]$	17. $(3,5)[8]$	18. $(2,0)[2]$
19. $(4,2)[6]$	20. $(5,6)[11](5,8)[13]$	21. $(4,7)[11](4,8)[12]$
22. $(2,4)[6](3,4)[7]$	23. $(0,0)[0]$	24. $(0,1)[1]$
25. $(3,2)[5]$	26. $(2,1)[3]$	27. $(2,2)[4]$
28. $(1,0)[1]$	29. $(1,0)[1]$	30. $(3,5)[8]$
31. $(1,4)[5]$	32. $(4,2)[6](6,3)[9]$	33. $(1,3)[4]$
34. $(2,2)[4](3,2)[5]$	35. $(7,1)[8]$	36. $(8,1)[9](9,1)[10]$
37. $(0,2)[2]$	38. $(0,0)[0]$	39. $(0,0)[0]$
4. $(0,1)[1]$	41. $(1,2)[3]$	42. $(1,0)[1]$
43. $(3,0)[3]$	44. $(1,1)[2]$	45. $(6,1)[7]$
46. $(10,0)[10](11,0)[11]$	47. $(0,0)[0]$	48. $(0,0)[0]$
49. $(0,-)[0]$		

2. 7. 4. Texto resultante tras eliminar las oraciones marginales.

1. Decent decaffeinated coffee has been around since 1960s, when chemist Kurt Zosel found an alternative to using the toxic and unpleasant tasting benzene to extract the caffeine. 2. He discovered that a 19th century chemical curiosity, known as a supercritical fluid (SCF), could dissolve out the caffeine but leave no solvent residue. 3. Supercritical fluids while still curious are now being used to destroy toxic waste, make industrial chemicals without toxic and highly flammable volatile organic compounds (VOCs) and are even making it easier to take your medicine. 4. So what are these strange materials and why are they so supercritical?
2. If you apply enough pressure to some gases while heating them they liquefy but keep their gaseous energy. 6. Conversely, heating some liquids while you apply pressure gives them gaseous energy but without losing their density. 7. These fluids are caught between the liquid and gas phase above a certain critical temperature and pressure - they are supercritical fluids, see Fig 1. 8. Many common chemicals can become supercritical, from carbon dioxide and water to the noble gas xenon.
3. Water, for instance, becomes a supercritical fluid when it is heated above $374^{\circ} \mathrm{C}$ and put under a pressure of 218 atmos. ${ }^{5} 11$. [That the fluid looks like a liquid but strangely, on the one hand can be mixed with oil but on the other will no longer dissolve ordinary table salt] <The effects> can be explained by the changes in the bonds between water molecules which, in the supercritical state, become weaker than normal. 12. So, oily molecules can squeeze in between them but they are too weak to hold the sodium and chloride ions from salt. 13. Amazingly, oxygen dissolved in supercritical water supports 'flameless' combustion. 14. Scientists at Sandia National Laboratories in New Mexico are using this property to destroy industrial and domestic waste without the need for conventional incineration.

[^4]17. Organic chemists from the University of Leeds have also been quick to latch on to Zosel's early discovery and have been using SCFs to extract natural products from plants and other organic materials for years. 18. Natural flavour molecules, such as vanilla, for instance, can be cleanly extracted from the pod using an SCF. 19. More recently, though, chemists have turned to SCFs to dissolve reactants that usually need a toxic and flammable VOC or do not dissolve at all.
20. Synthetic chemists are using SCFs in the manufacture of new types of polymer and other molecules that could function as industrial catalysts, thus avoiding the use of harmful solvents. 21. Joseph DeSimone's group at the University of North Carolina in Chapel Hill, for example, is using supercritical carbon dioxide to make new types of fluorine-containing polymer. 22. Adding fluorine atoms to a polymer chain is used to make some tough, smooth and chemically inert materials. 24. Modern fluoropolymers have more high-tech applications, such as acting as 'dry' lubricating layers for the moving parts in computers, eg hard drives, where a drop of oil would wreck the electronics. 25. The problem with making these new fluoropolymers, however, is that fluorine atoms have a residual negative charge, which makes them polar so they dissolve best in water. 26. This makes it difficult to process them further because any other chemicals added will usually be soluble only in organic solvents.
27. DeSimone's team has got around this problem by using supercritical carbon dioxide instead. 28. The chemists can now control the length of the polymer chains and their precise chemical structure. 29. This leads to consistent materials for high-tech. aerospace and electronic applications.
30. Martyn Poliakoff and his team at the University of Nottingham, meanwhile, are exploring how SCFs can help them make new industrial catalysts. 31. They have discovered that they can make organometallic compounds such as metal carbonyls, many of which are too unstable to prepare by conventional methods. 32. Metal carbonyls are used in various industrial reactions as catalysts for speeding up the production of simple materials such as formic acid and formaldehyde and more complex compounds, like pharmaceuticals and polymers. 33. Carbonyl compounds in which nitrogen or hydrogen molecules have been substituted for a carbonyl group can catalyse more complex reactions still. 34. For example, novel piano-stool shaped manganese carbonyls with an attached dihydrogen might be a useful polymerisation catalyst. 35. The problem in making them is that hydrogen and nitrogen gases do not dissolve well in conventional organic solvents at room temperature so it is hard to add the atoms to the starting molecule. 36. The Nottingham team, however, has found that hydrogen mixes very well with supercritical carbon dioxide at 80-100atmos, allowing the reaction to add hydrogen or nitrogen atoms as needed to the carbonyl compound.
37. Once the reaction is over, the SCF can be quickly recycled by releasing the pressure and trapping the carbon dioxide gas that escapes. 40. SCFs avoid this problem [to become contaminated] because once they become a gas again they leave behind any impurities,
41. SCFs are also much less viscous than liquid solvents, so they flow more easily through a reaction system. 42. They can also get into the smallest of crevices and pits inside the reactor system. 43. By flushing the system with an SCF once a reaction is complete any impurities can be washed out, leaving the system pristine and ready to be used again.
44. But, what about SCFs making it easier to take medicines? 45. Scientists are now using SCFs to help them make drugs that normally have to be injected work when taken by mouth instead. 46. A collaborative team from the US, Canada and Norway has found they can make sub-microscopic particles of the immunosuppressant drug cyclosporin, which is used to prevent transplanted organ rejection, by preparing it in
supercritical carbon dioxide and then blasting it into normal water by releasing the pressure.

2. 8. Texto 8: A healthy spread.

1. Cholesterol, an essential constituent of all cell membranes, forms part of the casing that protects nerve fibres and is a precursor in the production of vitamin D , steroid hormones and bile salts. 2. However, too much cholesterol in the blood is associated with heart disease. 3. While reducing elevated cholesterol levels cannot guarantee a healthy heart, scientists and doctors agree that it can reduce the risk of problems. 4. Here we consider how this can be done through dietary considerations, by reducing the use of food components that raise cholesterol and by adding cholesterollowering ingredients - ie functional foods or 'nutraceuticals'.
2. Most of the cholesterol we need is manufactured in our liver, ca 600 mg day. 6. Research suggests that if a healthy adult absorbs ca 80 mg day of cholesterol from foods such as animal products and eggs, the liver synthesises ca nine times as much (ca 720 mg day). 7. Reducing cholesterol in our diet therefore has only a modest effect on lowering blood cholesterol levels. 8. Scientists therefore considered which other components in food have a significant effect on cholesterol levels.
3. Cholesterol is insoluble in water and has to be carried around the blood stream as lipoproteins (ie all the insoluble lipid molecules in the body, attached to proteins). $\mathbf{1 0}$. Different combinations of lipids and proteins produce complexes of different densities. 11. Low density lipoproteins (LDLs), for example, supply cholesterol to cells, increased levels of which are associated with atherosclerosis - ie an accumulation of lipids in plaques on artery walls, which narrows the arteries and restricts the blood flow to the heart (ischaemia) and brain (stroke). 12. In contrast, high density lipoproteins (HDLs) transport cholesterol away from artery walls and therefore act as cardio-protectors. 13. To reduce the risk of heart disease, people therefore need to lower both their total cholesterol levels and their LDL-cholesterol levels in the plasma.
4. Dietary fats, both animal and vegetable, are made up of a mixture of triglycerides. 15. They are the major food constituents known to have a significant effect on cholesterol levels. 16. Animal fats, in butter for example, consist of a relatively high proportion of saturated fatty acids, some of which according to Judy Donnelly, nutritional biochemist at Trinity and All Saints University College Leeds,
'increase the proportion of LDL-cholesterol in the blood, compared with HDLcholesterol. 17. Cutting down on the amount of saturated fatty acids we eat could therefore lower our risk of heart disease. 18. In contrast, vegetable oils, such as those found in margarines, consist of long - chain polyunsaturated and monounsaturated fatty acids, which are associated with lowering LDL-cholesterol levels.
5. As people become more conscious of the benefits of cutting down excess intake of fats, especially saturated fats, spreads that contain <80 per cent fat are gaining in popularity. 20. It is the saturated fatty acid content that makes butters and margarines solid so we can spread them. 21. In lower fat spreads, fat substitutes are sometimes added to achieve the desired consistency and attributes. 22. Sometimes the substitute is water (in butter-milk and skimmed milk with added salts and preservatives), but it may be that starch molecules or whey proteins, which have been processed to give the particles a uniform size and thus a smooth feel in the mouth, are added. 23. Many of the resulting spreads, however, are not as popular with consumers because, for example, they lack the saturated fatty acids that give butter its distinctive flavour. 24. To improve the acceptability of low fat spreads, researchers are investigating synthetic replacements to animal fats, or 'structural fatitutes'. 25. Such compounds provide many similar properties, such as taste and texture, but they are not digested or absorbed from the gut into the blood and therefore cannot raise LDL-cholesterol levels. 26. They are used in the US in crisps and savoury products, but have not yet been added to fat spreads.
6. In the past few years the focus of research has shifted to adding ingredients (nutraceuticals) to food to reduce LDL-cholesterol levels. 28. Since the early 1950s scientists have known that plant sterols, and their hydrogenated counterparts, stanols, have cholesterol-lowering properties. 29. Unfortunately, these compounds are not naturally abundant in the food we eat. 30. Over the years scientists have come to realise that these compounds are very effective at lowering LDL-cholesterol levels when sufficient is eaten, for example in rich fat spreads. 31. Such products have recently been developed by esterifying the compounds with fatty acids to increase their fat solubility.
7. Two fat spreads - Benecol and Flora Proactive - are currently on the market for reducing LDL-cholesterol levels. 33. Benecol contains plant stanol esters (sitostanol esters), and Flora Proactive contains sterol esters. 34. Clinical trials, on people with
elevated cholesterol levels, have shown that these products reduce total plama cholesterol levels and LDL-cholesterol levels by 8-13 per cent, without effecting HDL levels. 35. Both products appear to have no adverse health effects and are non-toxic even in high doses, though a few people with the rare condition, phytosterolaemia cannot metabolise sterols and should avoid them.
8. According to Donnelly, there are two mechanisms by which these compounds are thought to lower cholesterol levels. 37. 'Choresterol is not very soluble in the gut and its absorption is slow. 38. Since you have other fats also being absorbed from the gut, cholesterol is one of the last to go through' she explained. 39. 'Plant sterols and stanols have similar structures to cholesterol so they also get left behind. $\mathbf{4 0}$. As the concentration of sterols/stanols increases, a threshold level is reached when the cholesterol molecules and the sterols/stanols coprecipitate into a solid crystalline form which cannot be absorbed by the gut' 41. According to Donnelly, another possibility focuses on micelles, which are clusters of molecules that transport fats across the gut membrane. 42. There is limited capacity for carrying cholesterol, and the plant sterols and stanols compete with cholesterol to get into the micelles, which limits the amount of cholesterol that can be absorbed. 43. 'These mechanisms do not just reduce the absorption of dietary cholesterol', said Donnelly, 'but they also hinder reabsorption of some of the cholesterol produced by the body, which has been used in producing bile salts’ 44. Bile salts are used in the intestine to breakdown the fatty acids that we eat. 45. Normally, the cholesterol in the bile salts would be recycled by re-absorption in the gut, but in this case they are excreted. 46. Essentially more of the cholesterol produced has to go in to producing more bile salts, reducing the amounts in the blood plasma.
9. Cholesterol-lowering spreads are some of the first functional foods on the market, but scientists are continually identifying ingredients that have potential health benefits. 48. As new advances in food technology allow their incorporation into products, we will see a lot more on the supermarket shelves. 49. Although these products can be beneficial, Donnelly says that she hopes 'people do not begin to rely on them because they are not miracle cures and there are many other factors involved in heart disease, which these products do not address.

2. 8. 1. Matriz de repetición de unidades léxicas.

1		2		4	5
12	rs. cholesterol cholesterol rc. protects protectors	rs. cholesterol cholesterol psm. heart cardio	rs. cholesterol - cholesterol psm. heart - cardio	rs. cholesterol cholesterol	rs. cholesterol - cholesterol
13	rs. cholesterol cholesterol	rs. cholesterol cholesterol rs. heart - heart rs. disease disease	psm. reducing - lower rs. cholesterol - cholesterol rs. levels - levels pc. healthy - disease (health) rs. heart - heart rs. reduce - reduce rs. risk - risk	rs. reducing reducing* a. raise - lower* rs. cholesterol cholesterol	rs. cholesterol - cholesterol
14				rs. dietary dietary	
15	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol rs. levels - levels	rs. food - food psm. components constituents rs. cholesterol cholesterol	rs. cholesterol - cholesterol
16	rs. cholesterol cholesterol	rs. cholesterol cholesterol rs. blood - blood	a. reducing - increase rs. cholesterol - cholesterol	psm. raise increase rs. cholesterol cholesterol	rs. cholesterol - cholesterol
17	rs. cholesterol cholesterol	rs. heart - heart rs. disease disease	```psm. reducing - cutting down* pc. healthy - disease (health) rs. heart - heart psm. reduce - lower rs. risk - risk```	rs. we - we+ psm. reducing cutting down rs. lowering lower*	rs. we - we +
18	rs. cholesterol cholesterol	rs. cholesterol cholesterol rs. associated associated*	$\begin{aligned} & \text { psm. reducing - lowering } \\ & \text { rs. cholesterol - cholesterol } \\ & \text { rs. levels - levels } \end{aligned}$	rs. cholesterol cholesterol rs. lowering lowering	rs. cholesterol - cholesterol
19			psm. reducing - cutting down* a. risk - benefits	psm. reducing cutting down	
20				rs. we - we + psm. components content	rs. we - we+
21				rs. adding added	

1		2	3	4	5
22				rs. adding added	
23					
24			psm. scientists researchers		
25		rs. cholesterol cholesterol rs. blood - blood	a. reducing - raise rs. cholesterol cholesterol rs. levels - levels	rs. raise - raise rs. cholesterol cholesterol	rs. cholesterol - cholesterol
26				rs. adding added	
27	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. reducing - reduce rs. cholesterol cholesterol rs. levels - levels pc. scientists - research (researcher)	rs. food - food rs. cholesterol cholesterol rs. adding adding psm. lowering reduce rs. ingredients ingredients rs. nutraceuticals - nutraceuticals	rs. cholesterol - cholesterol
28	rs. cholesterol cholesterol	rs. cholesterol cholesterol	```psm. reducing - lowering rs. cholesterol - cholesterol rs. scientists - scientists```	rs. cholesterol cholesterol rs. lowering lowering	rs. cholesterol - cholesterol
29				rs. we - we+ rs. food - food	rs. we - we+
30	rs. cholesterol cholesterol	rs. cholesterol cholesterol	psm. reducing - lowering rs. cholesterol - cholesterol rs. levels - levels rs. scientists - scientists	rs. cholesterol cholesterol rs. lowering lowering	rs. cholesterol - cholesterol
31					
32	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. reducing - reducing rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol cholesterol psm. lowering reducing	rs. cholesterol - cholesterol
33					

Anexo

1		2	3	4	5
34	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. reducing - reduce rs. elevated - elevated rs. cholesterol - cholesterol rs. levels - levels	rs. cholesterol cholesterol psm. lowering reduce	rs. cholesterol - cholesterol
35		a. disease health	rc. healthy - health tr. risk - adverse		
36	rs. cholesterol cholesterol	rs. cholesterol cholesterol	psm. reducing - lower rs. cholesterol - cholesterol rs. levels - levels	rs. cholesterol cholesterol rs. lowering lower	rs. cholesterol - cholesterol
37	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol
38	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol
39	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol
40	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol
41					
42	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol
43	rs. cholesterol cholesterol rc. production producing rs. bile - bile rs. salts - salts	rs. cholesterol cholesterol	rs. reducing - reduce* rs. cholesterol - cholesterol	rs. dietary dietary rs. cholesterol cholesterol psm. lowering reduce	rs. cholesterol - cholesterol
44	rs. bile - bile rs. salts - salts				rs. we - we+
45	rs. cholesterol cholesterol rs. bile - bile rs. salts - salts	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol
46	rs. cholesterol cholesterol rc. production producing rs. bile - bile rs. salts - salts	rs. cholesterol cholesterol rs. blood - blood	rs. reducing - reducing rs. cholesterol - cholesterol	rs. reducing reducing* rs. cholesterol cholesterol	rs. cholesterol - cholesterol psm. manufactured - produced

1		2		4	5
47	rs. cholesterol - cholesterol	rs. cholesterol cholesterol a. disease - health	psm. reducing - lowering rs. cholesterol - cholesterol rc. healthy - health rs. scientists - scientists a. risk - benefits	rs. cholesterol cholesterol rs. lowering lowering rs. ingredients ingredients rs. functional functional rs. foods - foods	rs. cholesterol - cholesterol
48				rs. we - we + pc. adding incorporation (addition) rs. foods - food	rs. we - we+
49		psm. associated - involved rs. heart - heart rs. disease - disease	pc. healthy - disease (health) rs. heart - heart pc. risk - beneficial (benefit)		

Anexo

7	rs. cholesterol cholesterol	7			
			8		
8	pc. research scientists (researcher) rs. cholesterol cholesterol rs. foods - food	a. modest - significant rs. effect - effect rs. cholesterol - cholesterol rs. levels - levels			
9	rs. cholesterol cholesterol	rs. blood - blood rs. cholesterol cholesterol	rs. cholesterol - cholesterol	9	
10				rs. lipid - lipids rs. proteins proteins	10
11	tr. healthy ischaemia rs. cholesterol cholesterol	a. lowering increased rs. blood - blood rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol - cholesterol rs. levels - levels	rs. cholesterol cholesterol rs. blood - blood rs. lipoproteins lipoproteins rs. lipid - lipids	rs. lipids lipids rc. proteins lipoproteins rs. densities density
12	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol psm. carried transport rs. lipoproteins lipoproteins	rc. proteins lipoproteins rs. densities density
13	pc. healthy disease (health) hip. adult people rs. cholesterol cholesterol	rs. reducing reduce* rs. lowering lower rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol - cholesterol rs. levels - levels	rs. cholesterol cholesterol	
14	rs. animal animal	rc. diet - dietary			
15	rs. cholesterol cholesterol rs. foods - food	a. modest - significant rs. effect - effect rs. cholesterol - cholesterol rs. levels - levels	psm. components - constituents rs. food - food rs. have - have rs. significant - significant rs. effect - effect rs. cholesterol - cholesterol rs. levels - levels	rs. cholesterol cholesterol	
16	rs. cholesterol cholesterol rs. animal animal	a. lowering increase rs. blood - blood rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol cholesterol rs. blood - blood	

Anexo

6		7	8	9	10
30	pc. research scientists (researcher) rs. cholesterol - cholesterol rs. cholesterol - cholesterol	rc. effect - effective rs. lowering - lowering rs. cholesterol - cholesterol rs. levels - levels	rs. scientists - scientists rc. effect - effective rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol cholesterol	
31					
32	rs. cholesterol - cholesterol	psm. lowering - reducing rs. cholesterol - cholesterol rs. levels - levels	rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol cholesterol	
33					
34	hip. adult - people rs. cholesterol - cholesterol	psm. lowering - reduce rs. cholesterol - cholesterol rs. levels - levels	rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol cholesterol	
35	hip. adult people	rs. effect - effects*	rs. effect - effects*		
36	rs. cholesterol - cholesterol	rs. lowering - lower rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol cholesterol	
37	rc. absorbs absorption rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol rc. insoluble soluble	
38	rs. absorbs absorbed rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	
39	rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	
40	rs. absorbs absorbed rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	
41					
42	rs. absorbs absorbed rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol rs. carried carrying	
43	rc. absorbs absorption rs. cholesterol - cholesterol	rs. reducing - reduce rc. diet - dietary rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	

6		7		9	10
44		rs. our - we+			
45	rc. absorbs - re-absorption rs. cholesterol - cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	rs. cholesterol cholesterol	
46	rs. cholesterol - cholesterol	rs. cholesterol cholesterol psm. lowering reducing rs. blood - blood	rs. cholesterol cholesterol	rs. cholesterol cholesterol rs. blood - blood	
47	pc. research - scientists (researcher) rc. healthy - health rs. cholesterol - cholesterol rs. foods - foods	rs. lowering lowering rs. cholesterol cholesterol	rs. scientists scientists rs. food - foods rs. cholesterol cholesterol	rs. cholesterol cholesterol	
48	rs. foods - food rs. products - products	rs. our - we+	rs. food - food		
49	pc. healthy - disease (health) hip. adult - people rs. products - products				

Anexo

12	a. low - high rs. density - density rs. lipoproteins lipoproteins rs. cholesterol cholesterol rs. artery - artery rs. walls - walls psm. heart - cardio	12			
13	rs. LDLs - LDL rs. cholesterol cholesterol a. increased - lower rs. levels - levels rs. heart - heart hip. ischaemia - disease	rs. cholesterol - cholesterol psm. cardio heart	13		
14				14	
15	rs. cholesterol cholesterol rs. levels - levels	rs. cholesterol - cholesterol	rs. cholesterol cholesterol rs. levels - levels	s. triglycerides they	15
16	rs. LDLs - LDL rs. cholesterol cholesterol rs. increased - increase rs. blood - blood	rs. HDLs HDL rs. cholesterol - cholesterol	a. lower - increase rs. LDL - LDL rs. cholesterol cholesterol	rs. fats - fats rs. animal - animal psm. made up of consist of	rs. cholesterol - cholesterol
17	a. increased - lower* rs. heart - heart hip. ischaemia - disease	psm. cardio heart	psm. reduce - lower rs. risk - risk rs. heart - heart rs. disease - disease psm. lower - cutting down*	rc. fats - fatty	
18	rs. LDLs - LDL rs. cholesterol cholesterol a. increased - lowering rs. levels - levels rs. associated associated*	rs. cholesterol - cholesterol	rs. lower - lowering rs. LDL - LDL rs. cholesterol cholesterol rs. levels - levels	rc. fats - fatty rs. vegetable vegetable psm. made up of consist of	rs. cholesterol - cholesterol rs. levels levels
19	$\begin{aligned} & \text { a. increased - cutting } \\ & \text { down* } \end{aligned}$		a. risk - benefits rs. people - people psm. lower - cutting down*	rs. fats - fats	
20				rc. fats - fatty	psm. constituents content
21				rs. fats - fat	
22					

11		12	13	14	15
23			tr. people - consumers	rc. fats - fatty	
24				rs. fats - fats rs.- animal animal	
25	rs. LDLs - LDL rs. cholesterol cholesterol psm. increased - raise rs. levels - levels rs. blood - blood	rs. cholesterol cholesterol	a. lower - raise rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels		rs. cholesterol - cholesterol rs. levels levels
26				rs. fats - fat	
27	rs. LDLs - LDL rs. cholesterol cholesterol a. increased - reduce rs. levels - levels	rs. cholesterol cholesterol	psm. lower - reduce rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels		rs. cholesterol - cholesterol rs. levels levels
28	rs. cholesterol cholesterol a. increased - lowering	rs. cholesterol cholesterol	rs. lower - lowering rs. cholesterol - cholesterol		rs. cholesterol - cholesterol
29					rs. food - food
30	rs. LDLs - LDL rs. cholesterol cholesterol a. increased - lowering rs. levels - levels	rs. cholesterol cholesterol	rs. lower - lowering rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels	rs. fats - fat	rc. effect effective rs. cholesterol - cholesterol rs. levels levels
31				rs. fats - fat	
32	rs. LDLs - LDL rs. cholesterol cholesterol a. increased - reducing rs. levels - levels	rs. cholesterol cholesterol	psm. lower - reducing rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels	rs. fats - fat	rs. cholesterol - cholesterol rs. levels levels
33					
34	rs. LDLs - LDL rs. cholesterol cholesterol psm. increased elevated rs. levels - levels	rs. HDLs HDL rs. cholesterol cholesterol	rs. people - people psm. lower - reduce rs. total - total rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels rs. plasma - plasma		rs. cholesterol - cholesterol rs. levels levels
35	tr. ischaemia - health		tr. risk - adverse a. disease - health rs. people - people		rs. effect effects*

Anexo

11		12	13	14	15
36	rs. cholesterol cholesterol a. increased - lower rs. levels - levels	rs. cholesterol - cholesterol	rs. lower - lower rs. cholesterol - cholesterol rs. levels - levels		rs. cholesterol - cholesterol rs. levels levels
37	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol - cholesterol		rs. cholesterol - cholesterol
38	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol - cholesterol	rs. fats - fats	rs. cholesterol - cholesterol
39	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol - cholesterol		rs. cholesterol - cholesterol
40	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol - cholesterol		rs. cholesterol - cholesterol
41				rs. fats - fats	
42	rs. cholesterol cholesterol	psm. transport - carrying rs. cholesterol -cholesterol	rs. cholesterol - cholesterol		rs. cholesterol - cholesterol
43	rs. cholesterol cholesterol a. increased - reduce*	rs. cholesterol - cholesterol	psm. lower - reduce rs. cholesterol - cholesterol	rs. dietary dietary	rs. cholesterol - cholesterol
44				rc. fats fatty	
45	rs. cholesterol cholesterol	rs. cholesterol - cholesterol	rs. cholesterol - cholesterol		rs. cholesterol - cholesterol
46	rs. cholesterol cholesterol a. increased - reducing* rs. blood - blood	rs. cholesterol - cholesterol	psm. lower - reducing rs. cholesterol - cholesterol rs. plasma - plasma		rs. cholesterol - cholesterol
47	rs. cholesterol cholesterol a. increased lowering*	rs. cholesterol - cholesterol	a. risk - benefits a. disease - health rs. lower - lowering rs. cholesterol - cholesterol		rs. food - foods rs. cholesterol - cholesterol
48					rs. food - food
49	rs. heart - heart hip. ischaemia - disease	psm. cardio heart	pc. risk - beneficial (benefit) rs. heart - heart rs. disease - disease rs. people - people		

16		17			
17	rs. saturated saturated rs. fatty - fatty rs. acids - acids a. increase lower*				
18	rs. consist consist rc. saturated polyunsaturated rs. fatty - fatty rs. acids - acids a. increase lowering rs. LDL - LDL rs. cholesterol cholesterol	rc. saturated polyunsaturated rs. fatty - fatty rs. acids - acids rs. lower lowering*	18		
19	rs. saturated saturated rs. fats - fats a. increase cutting down*	rs. cutting down - cutting down rs. saturated saturated rc. fatty - fats a. risk - benefits	rc. polyunsaturated - saturated rc. fatty - fats psm. lowering - cutting down*	19	
20	rs. butter butters rs. saturated saturated rs. fatty - fatty rs. acids - acid	rs. saturated saturated rs. fatty - fatty rs. acids - acid rs. we - we+	rs. margarines margarines rc. polyunsaturated - saturated rs. fatty - fatty rs. acids - acid	rs. saturated - saturated rc. fats - fatty rc. spreads - spread	20
21	rs. fats - fat	rc. fatty - fat	rc. fatty - fat	rs. fats - fat rs. spreads - spreads	rc. fatty - fat
22	rs. butter - butter				rs. butters - butter
23	rs. butter - butter rs. saturated saturated rs. fatty - fatty rs. acids - acids	rs. saturated saturated rs. fatty - fatty rs. acids - acids	rc. polyunsaturated - saturated rs. fatty - fatty rs. acids - acids	tr. people - consumers rs. saturated saturated rc. fats - fatty rs. spreads - spreads rc. popularity popular	rs. saturated saturated rs. fatty - fatty rs. acid - acids rs. butters - butter
24	rs. animal animal rs. fats - fats	rc. fatty - fat	rc. fatty - fat	rs. fats - fat rs. spreads - spreads psm. popularity acceptability	rc. fatty - fat
25	$\begin{aligned} & \text { psm. increase - } \\ & \text { raise } \\ & \text { rs. LDL - LDL } \\ & \text { rs. cholesterol - } \\ & \text { cholesterol } \\ & \text { rs. blood - blood } \end{aligned}$	a. lower - raise*	a. lowering - raise rs. LDL - LDL rs. cholesterol cholesterol rs. levels - levels	a. cutting down raise*	

Anexo

	16	17	18	19	20
26	rs. fats - fat	rc. fatty - fat	rc. fatty - fat	rs. fats - fat rs. spreads spreads	rc. fatty - fat
27	a. increase reduce rs. LDL - LDL rs. cholesterol cholesterol	psm. lower reduce*	psm. lowering - reduce rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels	psm. cutting down - reduce*	
28	a. increase lowering rs. cholesterol cholesterol	rs. lower lowering*	rs. lowering - lowering rs. cholesterol cholesterol	psm. cutting down - lowering*	
29		rs. we - we + rs. eat - eat			rs. we - we+
30	rs. fats - fat a. increase lowering rs. LDL - LDL rs. cholesterol cholesterol	rc. fatty - fat rs. eat - eaten rs. lower lowering*	rc. fatty - fat rs. lowering - lowering rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels	psm. cutting down - lowering* rs. fats - fat rs. spreads spreads	rc. fatty - fat
31	rs. fatty - fatty rs. acids - acids	rs. fatty - fatty rs. acids - acids	rs. fatty - fatty rs. acids - acids	rs. fats - fat hip. spreads products	rs. fatty - fatty rs. acid - acids
32	rs. fats - fat a. increase reducing rs. LDL - LDL rs. cholesterol cholesterol	rc. fatty - fat psm. lower reducing*	rc. fatty - fat psm. lowering - reducing rs. LDL - LDL rs. cholesterol cholesterol rs. levels - levels	psm. cutting down - reducing* rs. fats - fat rs. spreads spreads	rc. fatty - fat
33				rs. contain contains	
34	a. increase reduce rs. LDL - LDL rs. cholesterol cholesterol	psm. lower reduce*	psm. lowering - reduce rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels	rs. people - people psm. cutting down - reduce*	
35		tr. risk - adverse a. disease health		rs. people - people	
36	rs. Donnelly Donnelly a. increase lower rs. cholesterol cholesterol	rs. lower lower*	rs. lowering - lower rs. cholesterol cholesterol rs. levels - levels	psm. cutting down - lower*	

	16	17	18	19	20
37	rs. cholesterol - cholesterol		rs. cholesterol cholesterol		
38	rs. fats - fats s. Donnelly - she rs. cholesterol - cholesterol	rc. fatty - fats	rc. fatty - fats rs. cholesterol cholesterol	rs. fats - fats	rc. fatty - fats
39	rs. cholesterol - cholesterol		rs. cholesterol cholesterol		
40	rs. cholesterol - cholesterol		rs. cholesterol cholesterol		
41	rs. fats - fats rs. Donnelly - Donnelly	rc. fatty - fats	rc. fatty - fats	rs. fats - fats	rc. fatty - fats
42	rs. cholesterol - cholesterol		rs. cholesterol cholesterol		
43	rs. Donnelly - Donnelly a. increase - reduce rs. cholesterol - cholesterol	psm. lower - reduce*	psm. loweringreduce rs. cholesterol cholesterol	psm. cutting down reduce*	
44	rs. fatty - fatty rs. acids - acids	rs. fatty - fatty rs. acids - acids rs. we - we+ rs. eat - eat	rs. fatty - fatty rs. acids - acids	rc. fats - fatty	rs. fatty fatty rs. acid acids rs. we - we+
45	rs. cholesterol - cholesterol		rs. cholesterol cholesterol		
46	a. increase - reducing rs. cholesterol - cholesterol rs. blood - blood	psm. lower reducing*	psm. lowering reducing rs. cholesterol cholesterol	psm. cutting down reducing*	
47	hip. butter - foods a. increase - lowering rs. cholesterol - cholesterol	rs. lower - lowering* a. risk - benefits a. disease - health	hip. margarines foods rs. lowering lowering rs. cholesterol cholesterol	psm. cutting downlowering* rs. spreads spreads	
48		rs. we - we+			rs. we - we+
49	rs. Donnelly - Donnelly	pc. risk - beneficial (benefit) rs. heart - heart rs. disease - disease		rs. people people	

Anexo

21		22	23	24	25
34			hip. consumers people		a. raise - reduce rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels
35			hip. consumers people		
36					a. raise - lower rs. cholesterol - cholesterol rs. levels - levels
37					rc. absorbed - absorption rs. gut - gut rs. cholesterol - cholesterol
38	rs. fat - fats		rc. fatty - fats	rs. fat - fats	rs. absorbed - absorbed rs. gut - gut rs. cholesterol - cholesterol
39					rs. cholesterol - cholesterol
40					rs. absorbed - absorbed rs. gut - gut rs. cholesterol - cholesterol
41	rs. fat - fats		rc. fatty - fats	rs. fat - fats	rs. gut - gut
42					rs. absorbed - absorbed rs. cholesterol - cholesterol
43					rc. absorbed - absorption a. raise - reduce rs. cholesterol - cholesterol
44	rc. fat - fatty		rs. fatty - fatty rs. acids - acids	rc. fat - fatty	psm. gut - intestine
45					rc. absorbed - re-absorption rs. gut - gut rs. cholesterol - cholesterol
46					a. raise - reducing rs. cholesterol - cholesterol
47	rs. spreads spreads psm. substitutes ingredients	psm. substitutesingredients	rs. spreads spreads	rs. spreads - spreads psm. researchers - scientists psm. replacements - ingredients	hip. compounds ingredients a. raise - lowering rs. cholesterol - cholesterol
48	pc. added incorporation (addition)	pc. added incorporation (addition)			
49			hip. consumers people		

Anexo

26		27			
27	rs. added adding				
28		pc. research - scientists (researcher) psm. reduce - lowering rs. cholesterol cholesterol	28		
29		rs. food - food	hip. sterols/stanols - compounds	29	
30	rs. fat - fat rs. spreads - spreads	pc. research - scientists (researcher) psm. reduce - lowering rs. LDL - LDL rs. cholesterol cholesterol rs. level-levels	rs. scientists scientists hip. sterols/stanols - compounds rs. cholesterol cholesterol rs. lowering lowering	rs. compounds - compounds rs. eat - eaten	30
31	rs. fat - fat hip. spreads products		hip. sterols/stanols - compounds	rs. compounds - compounds	rs. compounds compounds rs. fat - fat hip. spreads - products
32	rs. fat - fat rs. spreads - spreads	rs. reduce - reducing rs. LDL - LDL rs. cholesterol cholesterol rs. level-levels	rs. cholesterol cholesterol psm. lowering reducing		psm. lowering - reducing rs. LDL - LDL rs. cholesterol cholesterol rs. levels - levels rs. fat - fat rs. spreads - spreads
33			rs. plant - plant rs. sterols - sterol rs. stanols - stanol	hip. compounds - stanol/sterol	hip. compounds stanol/sterol
34		rs. reduce - reduce rs. LDL - LDL rs. cholesterol cholesterol rs. level-levels	rs. cholesterol cholesterol psm. lowering reduce		psm. lowering - reduce rs. LDL - LDL rs. cholesterol - cholesterol rs. levels - levels
35			rs. sterols - sterols	tr. compounds - sterols	tr. compounds - sterols
36		psm. reduce - lower rs. cholesterol cholesterol rs. level-levels	hip. sterols/stanols - compounds rs. cholesterol - cholesterol rs. lowering - lower	rs. compounds - compounds	rs. compounds compounds rs. lowering - lower rs. cholesterol cholesterol rs. levels - levels
37		rs. cholesterol cholesterol	rs. cholesterol cholesterol		rs. cholesterol cholesterol

26

38	rs. fat - fats	rs. cholesterol cholesterol	rs. cholesterol - cholesterol		rs. cholesterol cholesterol rs. fat - fats
39		rs. cholesterol cholesterol	rs. plant - plant rs. sterols - sterols rs. stanols - stanols rs. cholesterol - cholesterol	hip. compounds - sterols/stanols	hip. compounds - sterols/stanols rs. cholesterol cholesterol
40		rs. cholesterol cholesterol	rs. sterols - sterols rs. stanols - stanols rs. cholesterol - cholesterol	hip. compounds - sterols/stanols	hip. compounds - sterols/stanols rs. cholesterol cholesterol
41	rs. fat - fats				rs. fat - fats
42		rs. cholesterol cholesterol	rs. plant - plant rs. sterols - sterols rs. stanols - stanols rs. cholesterol - cholesterol	hip. compounds - sterols/stanols	hip. compounds - sterols/stanols rs. cholesterol cholesterol
43		rs. reduce reduce rs. cholesterol cholesterol	rs. cholesterol - cholesterol rs. lowering - reduce		psm. lowering reduce rs. cholesterol cholesterol
44	rc. fat - fatty			rs. we - we + rs. eat - eat	rs. eaten - eat rc. fat - fatty
45			rs. cholesterol - cholesterol		rs. cholesterol cholesterol
46		rs. reduce reducing rs. cholesterol cholesterol	rs. cholesterol - cholesterol psm. lowering - reducing		psm. lowering reducing rs. cholesterol cholesterol
47		pc. research scientists (researcher) rs. ingredients ingredients rs. food - foods psm. reduce lowering rs. cholesterol cholesterol	rs. scientists - scientists rs. cholesterol - cholesterol rs. lowering - lowering	rs. food - foods	rs. scientists scientists rs. lowering lowering rs. cholesterol cholesterol rs. spreads spreads
48	rs. products products pc. added incorporation (addition)	pc. adding incorporation (addition) s. ingredients their rs. food - food		rs. food - food rs. we - we+	
49	rs. products products				

Anexo

	31	32	33	34	35
44	rs. fatty - fatty rs. acids - acids	rc. fat - fatty			
45		rs. cholesterol cholesterol		rs. cholesterol cholesterol	
46		rs. reducing - reducing rs. cholesterol cholesterol		rs. cholesterol - cholesterol rs. reduce - reducing rs. plasma - plasma	
47	tr. products spreads	rs. spreads - spreads rs. market - market psm. reducing - lowering rs. cholesterol - cholesterol		rs. cholesterol cholesterol tr. products - spreads psm. reduce lowering	tr. products spreads rs. have - have pc. adverse benefits (adversity) rs. health - health
48		rc. market - supermarket			
49				rs. people - people	tr. adverse beneficial rs. people - people

Anexo

36	37	38	40		
47	rs. lower - lowering rs. cholesterol - cholesterol	rs. cholesterol - cholesterol	rs. cholesterol - cholesterol	rs. cholesterol - cholesterol	rs. cholesterol- cholesterol
48			rs. she - she psm. explained - says		
49	rs. Donnelly - Donnelly				

Anexo

2. 8. 2. Matriz con el número de unidades léxicas.

Anexo

		2	3	4	5	6	7	8		1	11
23	0	0	0	0	0	1	0	0	0	0	0
	0	0	1	0	0	2	0	1	0	0	0
25	0	2	3	2	1	2	4	2	2	0	5
	0	0	0	1	0	1	0	0	0	0	0
26											
27	1	1	4	6	1	3	3	4	1	0	4
28	1	1	3	2	1	2	2	2	1	0	2
	0	0	0	1(2)	0 (1)	1	$0(1)$	1	0	0	0
29											
30	1	1	4	2	1	3	4	4	1	0	4
31	0	0	0	0	0	0	0	0	0	0	0
	1	1	3	2	1	1	3	2	1	0	4
32											
33	0	0	0	0	0	0	0	0	0	0	0
34	1	1	4	2	1	2	3	2	1	0	4
	0	1	2	0	0	1	$0(1)$	0 (1)	0	0	1
35											
36	1	1	3	2	1	1	3	2	1	0	3
37	1	1	1	1	1	2	1	1	2	0	1
	1	1	1	1	1	2	1	1	1	0	1
39	1	1	1	1	1	1	1	1	1	0	1
40	1	1	1	1	1	2	1	1	1	0	1
41	0	0	0	0	0	0	0	0	0	0	0
42	1	1	1	1	1	2	1	1	2	0	1
43	4	1	1(2)	3	1	2	3	1	1	0	1(2)
44	2	0	0	0	$0(1)$	0	$0(1)$	0	0	0	0

	1			4	5		7				11
	3	1	1	1	1	2	1	1	1	0	1
	4	2	2	1(2)	2	1	3	1	2	0	2 (3)
47	1	2	5	5	1	4	2	3	1	0	1(2)
	0	0	0	2(3)	0 (1)	2	0 (1)	1	0	0	0
	0	3	3	0	0	3	0	0	0	0	2

Anexo

	12			15		17		19	20		22
35	0	3	0	0 (1)	0	2	0	1	0	0	0
	1	3	0	2	3	0 (1)	3	0 (1)	0	0	0
37	1	1	0	1	1	0	1	0	0	0	0
	1	1	1	1	3	1	2	1	1	1	0
38											
39	1	1	0	1	1	0	1	0	0	0	0
40	1	1	0	1	1	0	1	0	0	0	0
	0	0	1	0	2	1	1	1	1	1	0
42	2	1	0	1	1	0	1	0	0	0	0
43	1	2	1	1	3	0 (1)	2	0 (1)	0	0	0
44	0	0	1	0	2	3(4)	2	1	$2(3)$	1	0
45	1	1	0	1	1	0	1	0	0	0	0
46	1	3	0	1	3	O(1)	2	0 (1)	0	0	0
47	1	4	0	2	3		3	1(2)	0	2	1
48	0	0	0	1	0	O(1)	0	0	0 (1)	1	1
49	1	4	0	0	1	3	0	1	0	0	0

Anexo

Anexo

2. 8. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 3)[3]$	2. $(0,4)[4]$	3. $(1,17)[18]$
4. $(1,6)[7](1,9)[10]$	5. $(0,1)[1]$	6. $(2,6)[8]$
7. $(2,14)[16](2,15)[17]$	8. $(4,4)[8]$	9. $(0,2)[2]$
10. $(0,1)[1]$	11. $(5,10)[15](5,12)[17]$	12. $(2,0)[2]$
13. $(5,13)[18](6,14)[20]$	14. $(0,2)[2]$	15. $(3,1)[4]$
16. $(4,14)[18](4,15)[19]$	17. $(3,6)[9](6,8)[14]$	18. $(7,9)[16](7,10)[17]$
19. $(1,3)[4](4,5)[9]$	20. $(4,1)[5](4,2)[6]$	21. $(0,2)[2]$
22. $(0,0)[0]$	23. $(5,3)[8]$	24. $(3,3)[6]$
25. $(6,11)[17]$	26. $(3,0)[3]$	27. $(10,7)[17]$
28. $(2,7)[9]$	29. $(0,0)[0]$	30. $(13,5)[18](15,5)[20]$
31. $(2,0)[2]$	32. $(9,4)[13](10,4)[14]$	33. $(2,2)[4]$
34. $(10,3)[13]$	35. $(1,1)[2]$	36. $(12,1)[13]$
37. $(1,3)[4]$	38. $(3,3)[6]$	39. $(2,2)[4]$
40. $(5,2)[7]$	41. $(0,0)[0]$	42. $(4,1)[5]$
43. $(5,2)[7](8,2)[10]$	44. $(1,1)[2](2,1)[3]$	45. $(7,1)[8]$
46. $(7,0)[7](8,0)[8]$	47. $(15,1)[16](16,1)[17]$	48. $(2,0)[2](3,0)[3]$
49. $(5,-)[5]$		

2. 8. 4. Texto resultante tras eliminar las oraciones marginales.

1. Cholesterol, an essential constituent of all cell membranes, forms part of the casing that protects nerve fibres and is a precursor in the production of vitamin D, steroid hormones and bile salts. 2. However, too much cholesterol in the blood is associated with heart disease. 3. While reducing elevated cholesterol levels cannot guarantee a healthy heart, scientists and doctors agree that it can reduce the risk of problems. 4. Here we consider how this can be done through dietary considerations, by reducing the use of food components that raise cholesterol and by adding cholesterollowering ingredients - ie functional foods or 'nutraceuticals'.
2. Most of the cholesterol we need is manufactured in our liver, ca 600 mg day. 6. Research suggests that if a healthy adult absorbs ca 80 mg day of cholesterol from foods such as animal products and eggs, the liver synthesises ca nine times as much (ca 720 mg day). 7. Reducing cholesterol in our diet therefore has only a modest effect on lowering blood cholesterol levels. 8. Scientists therefore considered which other components in food have a significant effect on cholesterol levels.
3. Cholesterol is insoluble in water and has to be carried around the blood stream as lipoproteins (ie all the insoluble lipid molecules in the body, attached to proteins). 10. Different combinations of lipids and proteins produce complexes of different densities. 11. Low density lipoproteins (LDLs), for example, supply cholesterol to cells, increased levels of which are associated with atherosclerosis - ie an accumulation of lipids in plaques on artery walls, which narrows the arteries and restricts the blood flow to the heart (ischaemia) and brain (stroke). 12. In contrast, high density lipoproteins (HDLs) transport cholesterol away from artery walls and therefore act as cardio-protectors. 13. To reduce the risk of heart disease, people therefore need to lower both their total cholesterol levels and their LDL-cholesterol levels in the plasma.
4. Dietary fats, both animal and vegetable, are made up of a mixture of triglycerides. 15. They are the major food constituents known to have a significant
effect on cholesterol levels. 16. Animal fats, in butter for example, consist of a relatively high proportion of saturated fatty acids, some of which according to Judy Donnelly, nutritional biochemist at Trinity and All Saints University College Leeds, 'increase the proportion of LDL-cholesterol in the blood, compared with HDL-cholesterol. 17. Cutting down on the amount of saturated fatty acids we eat could therefore lower our risk of heart disease. 18. In contrast, vegetable oils, such as those found in margarines, consist of long - chain polyunsaturated and monounsaturated fatty acids, which are associated with lowering LDL-cholesterol levels.
5. As people become more conscious of the benefits of cutting down excess intake of fats, especially saturated fats, spreads that contain <80 per cent fat are gaining in popularity. $\mathbf{2 0}$. It is the saturated fatty acid content that makes butters and margarines solid so we can spread them. 21. In lower fat spreads, fat substitutes are sometimes added to achieve the desired consistency and attributes. 23. Many of the resulting spreads, however, are not as popular with consumers because, for example, they lack the saturated fatty acids that give butter its distinctive flavour. 24. To improve the acceptability of low fat spreads, researchers are investigating synthetic replacements to animal fats, or 'structural fatitutes'. 25. Such compounds provide many similar properties, such as taste and texture, but they are not digested or absorbed from the gut into the blood and therefore cannot raise LDL-cholesterol levels. 26. They are used in the US in crisps and savoury products, but have not yet been added to fat spreads.
6. In the past few years the focus of research has shifted to adding ingredients (nutraceuticals) to food to reduce LDL-cholesterol levels. 28. Since the early 1950s scientists have known that plant sterols, and their hydrogenated counterparts, stanols, have cholesterol-lowering properties. 30. Over the years scientists have come to realise that these compounds are very effective at lowering LDL-cholesterol levels when sufficient is eaten, for example in rich fat spreads. 31. Such products have recently been developed by esterifying the compounds with fatty acids to increase their fat solubility.
7. Two fat spreads - Benecol and Flora Proactive - are currently on the market for reducing LDL-cholesterol levels. 33. Benecol contains plant stanol esters (sitostanol esters), and Flora Proactive contains sterol esters. 34. Clinical trials, on people with elevated cholesterol levels, have shown that these products reduce total plama cholesterol levels and LDL-cholesterol levels by 8-13 per cent, without effecting HDL levels. 35. Both products appear to have no adverse health effects and are nontoxic even in high doses, though a few people with the rare condition, phytosterolaemia cannot metabolise sterols and should avoid them.
8. According to Donnelly, there are two mechanisms by which these compounds are thought to lower cholesterol levels. 37. 'Choresterol is not very soluble in the gut and its absorption is slow. 38. Since you have other fats also being absorbed from the gut, cholesterol is one of the last to go through' she explained. 39. 'Plant sterols and stanols have similar structures to cholesterol so they also get left behind. 40. As the concentration of sterols/stanols increases, a threshold level is reached when the cholesterol molecules and the sterols/stanols coprecipitate into a solid crystalline form which cannot be absorbed by the gut' 42. There is limited capacity for carrying cholesterol, and the plant sterols and stanols compete with cholesterol to get into the micelles, which limits the amount of cholesterol that can be absorbed. 43. 'These mechanisms do not just reduce the absorption of dietary cholesterol', said Donnelly, 'but they also hinder reabsorption of some of the cholesterol produced by the body, which has been used in producing bile salts' 44 . Bile salts are used in the intestine to breakdown the fatty acids that we eat. 45. Normally, the cholesterol in the bile salts would be recycled by re-absorption in the gut, but in this case they are excreted. 46.

Essentially more of the cholesterol produced has to go in to producing more bile salts, reducing the amounts in the blood plasma.
47. Cholesterol-lowering spreads are some of the first functional foods on the market, but scientists are continually identifying ingredients that have potential health benefits. 48. As new advances in food technology allow their incorporation into products, we will see a lot more on the supermarket shelves. 49. Although these products can be beneficial, Donnelly says that she hopes 'people do not begin to rely on them because they are not miracle cures and there are many other factors involved in heart disease, which these products do not address.

2. 9. Texto 9: Apatite for destruction.

1. The industrial revolution of the 18th and 19th centuries brought great prosperity to the UK, but not without a price. 2. The environment Agency estimates that 300000 hectares of the UK is contaminated as a result of industrial pollution, for example cadmium and lead contamination associated with the iron, steel and paint industries. 3. Now with the increasing demand for housing, which places pressure on the countryside, the Government requires that 60 per cent of all new housing should be built on reclaimed sites. 4. Using current techniques of remediation - 'dig and dump’ and 'soil washing' - the cost of reclaiming this land is estimated at $£ 20$ billion. 5. However, scientists at the Natural History Museum believe they have found a costeffective solution to treating heavy metal pollution by using bone-meal. 6. Their method, presented by Dr Eugenia Valsami-Jones, at the BA festival of science, in London in September, involves 'immobilising' polluting metals as insoluble phosphates. 7.The work is sponsored by the BOC Foundation and the Environment Agency.
2. Bone-meal, widely used as a garden fertiliser, is sterilised, crushed animal bone comprising two main components. 9. There is an organic component, ie a fibrous protein (collagen) and an inorganic component, ie the crystalline mineral hydroxyapatite $\left(\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{OH}_{2}\right) . \mathbf{1 0}$. It is the hydroxyapatite, with phosphate ions locked in its crystal structure, that allows bone-meal to trap heavy metals. 11. The treatment of contaminated land with bone-meal is based on two reactions. 12. First, on mixing with soil, bone-meal dissolves in the pore/rain water, releasing phosphate ions from the crystal structure, along with calcium ions and some hydroxide ions. 13. Secondly, free phosphate ions react with the metal pollutant, forming insoluble metal phosphates. 14.

This reaction locks the polluting metal into a rigid mineral structure, thus acting as a 'micro barrier' between the pollutant and the environment. 15. Lab trials of bone-meal as a treatment for heavy metal pollution at the Natural History Museum using Scanning Electron Microscopy (SEM) confirm the formation of metal phosphate minerals with aluminium, copper, zinc, cadmium, nickel, lead and uranium.
16. In the short-term future the team hopes to demonstrate that the method will work at a variety of contaminated sites, thus establishing the long-term stability of the remediated metals. 17. 'In the future, we hope to see the method being used and contributing to the improvement of the lives of people affected by heavy metal pollution', said Dr Valsami-Jones

2. 9. 1. Matriz de repetición de unidades léxicas.

Anexo

	1	2	3	4	5
15		rs. pollution - pollution rs. cadmium - cadmium rs. lead - lead		rs. using - using	rs. Natural - Natural rs. History - History rs. Museum - Museum rc. treating - treatment rs. heavy - heavy rs. metal - metal rs. pollution - pollution rs. using - using rs. bone - bone rs. meal - meal
16	hip. UK - sites	hip. UK - sites rs. contaminated - contaminated hip. cadmium and lead - metals	rs. sites sites	rc. remediation remediated psm. land - sites	hip. scientists - team rs. metal - metals pc. pollution contaminated (pollute)
17		rs. pollution - pollution hip. cadmium and lead - metal		rs. using - used	rs. heavy - heavy rs. metal - metal rs. pollution - pollution rs. using - used

6

Anexo

6
7
8
9
10
11

16	tr. their - team rs. method - method psm. polluting - contaminated* rs. metals - metals			rs. metals - metals	rs. contaminated - contaminated psm. land - sites
17	rs. method - method rs. Valsami-Jones - Valsami-Jones rc. polluting - pollution rs. metals - metal			rs. heavy - heavy rs. metals - metal	pc. contaminated - pollution* (pollute)

13	pc. releasing - free (freeing) rs. phosphate - phosphate rs. ions ions	13			
14	rs. structure structure	rs. react reaction rs. metal - metal rs. pollutant pollutant	14		
15	rs. bone bone rs. meal meal rs. phosphate - phosphate	rs. metal - metal rc. pollutant pollution rc. forming formation rs. metal - metal rs. phosphates phosphate	rc. polluting pollution rs. metal - metal rs. mineral minerals	15	
16		rs. metal metals	psm. polluting contaminated* rs. metal metals	rs. metal - metals pc. pollution contaminated* (pollute) hip. SEM - method	16
17		rs. metal - metal rc. pollutant pollution	rc. polluting pollution rs. metal - metal	rs. heavy - heavy rs. metal - metal rs. pollution - pollution rs. using - used hip. SEM - method	rs. future - future rs. hopes - hope rs. method - method pc. contaminated - pollution* (pollute) rs. metals - metal

2. 9. 2. Matriz con el número de unidades léxicas.

1. 9. 3. Tabla representativa del número de conexiones entre oraciones.
1. $(-, 0)[0]$
2. $(0,3)[3]$
3. $(0,0)[0]$
4. $(0,0)[0]$
5. $(0,6)[6]$
6. $(1,4)[5]$
7. $(0,0)$ [0]
8. $(0,0)[0]$
9. $(0,0)$ [0]
10. $(1,4)[5]$
11. $(1,1)[2]$
12. $(1,2)[3]$
13. $(3,2)[5]$
14. $(3,1)[4]$
15. $(8,2)$ [10]
16. $(3,1)[4](4,1)[5]$
17. (4,-) [4]

2. 9. 4. Texto resultante tras eliminar las oraciones marginales.

2. The environment Agency estimates that 300000 hectares of the UK is contaminated as a result of industrial pollution, for example cadmium and lead contamination associated with the iron, steel and paint industries. 5. However, scientists at the Natural History Museum believe they have found a cost-effective solution to treating heavy metal pollution by using bone-meal. 6. Their method, presented by Dr Eugenia Valsami-Jones, at the BA festival of science, in London in September, involves 'immobilising' polluting metals as insoluble phosphates.
3. It is the hydroxyapatite [($\left.\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{OH}_{2}\right)$], with phosphate ions locked in its crystal structure, that allows bone-meal to trap heavy metals. 11. The treatment of contaminated land with bone-meal is based on two reactions. 12. First, on mixing with soil, bone-meal dissolves in the pore/rain water, releasing phosphate ions from the crystal structure, along with calcium ions and some hydroxide ions. 13. Secondly, free phosphate ions react with the metal pollutant, forming insoluble metal phosphates. 14. This reaction locks the polluting metal into a rigid mineral structure, thus acting as a 'micro barrier' between the pollutant and the environment. 15. Lab trials of bone-meal as a treatment for heavy metal pollution at the Natural History Museum using Scanning Electron Microscopy (SEM) confirm the formation of metal phosphate minerals with aluminium, copper, zinc, cadmium, nickel, lead and uranium.
4. In the short-term future the team hopes to demonstrate that the method will work at a variety of contaminated sites, thus establishing the long-term stability of the remediated metals. 17. 'In the future, we hope to see the method being used and contributing to the improvement of the lives of people affected by heavy metal pollution', said Dr Valsami-Jones

2. 10. Texto 10: Hair-raising ideas.

1. Hair could tell other people a lot more about you than you might want them to know. 2. Two new methods of hair analyses presented at the American Chemical Society meeting in Washington in August both use supercritical fluid technologies to identify the perpetrators of crime. 3. Typically, hair samples collected at crime scenes are inspected under microscope to determine colour, thickness and morphology (straightness). 4. But, without resorting to DNA analysis, this frequently gives a profile that is far from unique.
2. At the US National Institute for Standards and Technology, Bruce Benner has come up with an analytical technique based on supercritical fluid (SF) extraction combined with GC-MS that can provide a more reliable chemical hair profile. 6. By exploiting the powerful solubilising ability of SFCO_{2}, Benner is able to strip away from the hair a much greater proportion of the surrounding lipids and other ingredients, including several hormones and other proteins. 7. Recent analyses of a variety of hair samples using the approach have revealed that the technique is highly reproducible, so
criminals won't simply be able to disguise themselves by changing the shampoo or conditioner they use.
3. The external composition of hair also depends on a variety of other factors, Benner says, including what you eat, your gender and ethnic type, as well as your general health and well-being. 9. In fact, looking at the general lipid composition of hair may even be a good way of detecting different illness, he adds.
4. Getting deeper inside the hair shaft can be even more revealing, according to Janet Morrison and Alison Rada at Trinity College, Conneticut. 11. Here, researchers are interested in looking for signs of drug abuse by sample provider - in particular to detect illicit use of amphetamines, which includes increasingly common drugs such as MDMA (Ecstacy). 12. Conventional procedures for detecting these drugs in blood and urine samples are notoriously time-consuming and involve a two step process that involves liquid-liquid or solid-phase extraction followed by lengthy derivatisation of the drugs to make analogues suitable for GC-MS analysis.13. Although even the SFCO_{2} used for this new extraction process is not powerful enough to dissolve the amphetamines directly, the researchers are able to speed up this process enormously by incorporating the derivatising reagents in this extraction solvent.
5. By performing both extraction and derivatisation in one step, the researchers are able to reduce the time needed to carry out this detective work from several days to just over an hour. 15. Morrison has already applied a similar technique for cocaine analyses in hair, but both methods will need to be validated by the courts before they can become routinely adopted by toxicologists. 16. Not only do they promise to catch culprits more quickly, but hair greatly expands the time window for drug detection compared with urine and blood. 17. Knowing that hair grows by 1 cm per month, it is possible to obtain an accurate date for when the abuse took place.

Anexo

2. 10. 1. Matriz de repetición de unidades léxicas.

1		2		4	
2	rs. hair - hair				
3	rs. hair - hair	rs. hair - hair psm. identify determine rs. crime - crime	3		
4		rs. analyses - analysis	d. oración 3 this		
5	rs. hair - hair	psm. methods - technique rs. hair - hair rc. analyses - analytical rs. supercritical - supercritical rs. fluid - fluid	rs. hair - hair	rc. analysis - analytical psm. gives - provide rs. profile - profile	5
6	rs. hair - hair	rs. hair - hair	rs. hair - hair		rs. Benner - Benner pc. extraction - strip away (extract) rs. hair - hair
7	rs. hair - hair	psm. methods - technique rs. hair - hair rs. analyses - analyses rs. use - using rc. crime - criminals	rs. hair - hair rs. samples - samples rc. crime - criminals	rs. analysis analyses	rc. analytical - analyses rs. technique - technique rs. hair - hair
8	rs. hair - hair rs. you - you +	rs. hair - hair	rs. hair - hair		rs. Benner - Benner rs. hair - hair
9	rs. hair - hair	rs. hair - hair	rs. hair - hair psm. inspected - looking at		s. Benner - he rs. hair - hair
10	rs. hair - hair pc. tell revealing (telling)	rs. hair - hair	rs. hair - hair		rs. hair - hair
11			rs. samples sample		
12		a. new - conventional psm. methods procedures rs. analyses - analysis	rs. samples samples*	rs. analysis analysis	rc. analytical - analysis rs. extraction extraction rs. GC-MS - GC-MS
13					rs. extraction extraction
14					rs. extraction extraction

1		2	3	4	5
15	rs. hair - hair	rs. methods - methods rs. hair - hair rs. analyses - analyses rc. technologies - technique	rs. hair - hair	rs. analysis - analyses	rc. analytical - analyses rs. technique - technique rs. hair - hair
16	rs. hair - hair	s. methods - they rs. hair - hair tr. crime - culprits	rs. hair - hair		rs. hair - hair
17	rs. hair - hair	rs. hair - hair	rs. hair - hair		rs. hair - hair

Anexo

6		7	8			
7	hip. $\mathrm{SFCO}_{2}-$ technique rs. hair - hair					
8	rs. Benner Benner rs. hair - hair	rs. hair - hair				
9	s. Benner - he rs. hair - hair rs. lipids lipid	rs. hair - hair	rs. composition composition rs. hair - hair s. Benner - he psm. says adds	9		
10	rs. hair - hair	rs. hair - hair rc. revealed revealing	rs. hair - hair	rs. hair hair	10	
11		rs. samples sample		rs. detecting - detect	co-ref. Morrison and Rada - researchers	11
12	pc strip away - extraction (extract)			rs. detecting - detecting		rs. sample sample rs. detect detecting rs. drugs - drugs
13	rs. powerful powerful rs. $\mathrm{SFCO}_{2}-$ SFCO_{2} psm. strip away dissolve				co-ref. Morrison and Rada - researchers	rs. researchers researchers rs. amphetamines amphetamines
14	pc strip away - extraction (extract)			rc. detecting - detective	co-ref. Morrison and Rada - researchers	rs. researchers researchers rc. detect detective
15	hip. $\mathrm{SFCO}_{2}-$ technique rs. hair - hair	rs. analyses analyses rs. hair - hair rs. technique technique	rs. hair - hair	rs. hair hair	rs. Morrison Morrison rs. hair - hair	tr. drugs cocaine
16	rs. hair - hair	rs. hair - hair hip. criminals - culprits	rs. hair - hair	rs. hair hair rc. detecting - detection	rs. hair - hair	rs. drug - drug rs. detect detection
17	rs. hair - hair	rs. hair - hair	rs. hair - hair	rs. hair hair	rs. hair - hair	e. drug -0 rs. abuse - abuse

12

2. 10. 2. Matriz con el número de unidades léxicas.

2	1	2									
3	1	3	3								
4	0	1	1	4							
5	1	5	1	3	5						
6	1	1	1	0	3						
7	1	5	3	1	3	2	7				
8	1(2)	1	1	0	2	2	1	8			
9	1	1	2	0	2	3	1	4			
10	2	1	1	0	1	1	2	1	1	10	
11	0	0	1	0	0	0	1	0	1	1	11
12	0	3	$0(1)$	1	3	1	0	0	1	0	3
13	0	0	0	0	1	3	0	0	0	1	2
14	0	0	0	0	1	1	0	0	1	1	2
15	1	4	1	1	3	2	3	1	1	2	1
16	1	3	1	0	1	1	2	1	2	1	2
17	1	1	1	0	1	1	1	1	1	1	2

2. 10. 3. Tabla representativa del número de conexiones entre oraciones.

1. $(-, 0)[0]$	2. $(0,6)[6]$	3. $(1,1)[2]$
4. $(0,1)[1]$	5. $(2,4)[6]$	6. $(1,2)[3]$
7. $(3,1)[4]$	8. $(0,1)[1]$	9. $(2,0)[2]$
10. $(0,0)[0]$	11. $(0,1)[1]$	12. $(3,3)[6]$
13. $(2,1)[3]$	14. $(2,0)[2]$	15. $(3,1)[4]$
16. $(3,0)[3]$	17. $(0,-)[0]$	

2. 10. 4. Texto resultante tras eliminar las oraciones marginales.

2. Two new methods of hair analyses presented at the American Chemical Society meeting in Washington in August both use supercritical fluid technologies to identify the perpetrators of crime. 3. Typically, hair samples collected at crime scenes are inspected under microscope to determine colour, thickness and morphology (straightness). 4. But, without resorting to DNA analysis, this frequently gives a profile that is far from unique.
3. At the US National Institute for Standards and Technology, Bruce Benner has come up with an analytical technique based on supercritical fluid (SF) extraction combined with GC-MS that can provide a more reliable chemical hair profile. 6. By exploiting the powerful solubilising ability of SFCO_{2}, Benner is able to strip away from the hair a much greater proportion of the surrounding lipids and other ingredients, including several hormones and other proteins. 7. Recent analyses of a variety of hair samples using the approach have revealed that the technique is highly reproducible, so criminals won't simply be able to disguise themselves by changing the shampoo or conditioner they use.
4. The external composition of hair also depends on a variety of other factors, Benner says, including what you eat, your gender and ethnic type, as well as your general health and well-being. 9. In fact, looking at the general lipid composition of hair may even be a good way of detecting different illness, he adds.
5. Here, researchers are interested in looking for signs of drug abuse by sample provider - in particular to detect illicit use of amphetamines, which includes increasingly common drugs such as MDMA (Ecstacy). 12. Conventional procedures for detecting these drugs in blood and urine samples are notoriously time-consuming and involve a two step process that involves liquid-liquid or solid-phase extraction followed by lengthy derivatisation of the drugs to make analogues suitable for GC-MS analysis.13. Although even the SFCO_{2} used for this new extraction process is not powerful enough to dissolve the amphetamines directly, the researchers are able to speed up this process enormously by incorporating the derivatising reagents in this extraction solvent.
6. By performing both extraction and derivatisation in one step, the researchers are able to reduce the time needed to carry out this detective work from several days to just over an hour. 15. Morrison has already applied a similar technique for cocaine analyses in hair, but both methods will need to be validated by the courts before they can become routinely adopted by toxicologists. 16. Not only do they promise to catch culprits more quickly, but hair greatly expands the time window for drug detection compared with urine and blood.
7. LISTADO DE UNIDADES LÉXICAS QUE HAN ESTABLECIDO REPETICIÓN.

UNIDAD LÉXICA	IAI	AAI	UNIDAD LÉXICA	IAI	AAI
$4^{\text {TH }}$		\bullet	ANALYZE	\bullet	
ABILITY		\bullet	ANALYZERS	\bullet	
ABLE		\bullet	ANALYZING	\bullet	
ABSORBED		\bullet	ANIMAL		\bullet
ABSORBS		\bullet	APPLICATIONS		\bullet
ABSORPTION		\bullet	APPLIED	\bullet	
ABUSE		\bullet	APPLY		\bullet
ACCEPTABILITY		\bullet	AQUA		\bullet
ACID		\bullet	AQUEOUS	\bullet	
ACIDS		\bullet	ARTERY		\bullet
ADD		\bullet	ASSOCIATED		\bullet
ADDED	\bullet	\bullet	AT THE SAME TIME		\bullet
ADDING		\bullet	ATMOSPHERE	\bullet	
ADDS		\bullet	ATMOSPHERIC	\bullet	
ADEQUATE	\bullet	\bullet	ATOMIC		\bullet
ADOPTED	\bullet		ATOMS		\bullet
ADOPTION	\bullet		ATTACHED		-
ADSORBED	\bullet		ATTACK	\bullet	
ADULT		\bullet	ATTACKS	\bullet	
ADVERSE	\bullet	\bullet	ATTRIBUTES		\bullet
AEROSOLS	\bullet		AU		\bullet
AFFECT		\bullet	AUTOMATED	\bullet	
AG		\bullet	BAKERY	\bullet	
AGENCY		\bullet	BALL		\bullet
AGNOSTIC		\bullet	BALLOON	-	
AGNOSTICS		\bullet	BALLS		\bullet
AIR	\bullet	\bullet	BAR		\bullet
AIRCRAFT		\bullet	BARS		\bullet
ALCOHOL	\bullet		BASE		\bullet
ALCOHOLIC	\bullet		BASED	\bullet	
ALL	\bullet		BATCH	\bullet	
ALLEGORY		\bullet	BEAM		\bullet
ALLOW		\bullet	BECOME		\bullet
ALLOWING		\bullet	BECOMES		\bullet
ALLOY		\bullet	BEER		\bullet
ALLOYS		\bullet	BEGAN		\bullet
ALTERNATIVE	\bullet		BEGUN		\bullet
ALTERNATIVES	\bullet		BEHAVIOR	\bullet	
AMAZING		\bullet	BENECOL		\bullet
AMAZINGLY		\bullet	BENEFICIAL		\bullet
AMOUNT		\bullet	BENEFITS		\bullet
AMOUNTS	-	\bullet	BENZENE		\bullet
AMPHETAMINES		\bullet	BIGGER		\bullet
ANALOGY		\bullet	BILE		\bullet
ANALYSERS	-		BIMOLECULAR		\bullet
ANALYSES		\bullet	BINDING	\bullet	
ANALYSING	\bullet		BIOSPHERE	\bullet	
ANALYSIS	\bullet	-	BIRTH	\bullet	
ANALYSTS	\bullet		BLAST		\bullet
ANALYTICAL	\bullet	\bullet	BLASTING		\bullet

BLOOD	\bullet	-	CHEMICALLY		\bullet
BODY		\bullet	CHEMICALS		\bullet
BOND		\bullet	CHEMIST		\bullet
BONDS		\bullet	CHEMISTRY		\bullet
BONE		\bullet	CHEMISTS		\bullet
BORE	\bullet		CHOLESTEROL		\bullet
BOROHYDRIDE	\bullet		CHROMATOGRAPHIC	\bullet	\bullet
BOTTOM		-	CHROMATOGRAPHY	\bullet	
BOYFRIEND		\bullet	CHURCH		\bullet
BREAK		\bullet	CHURCHES		\bullet
BREAST	\bullet		CIGARETTE	\bullet	
BRIEF		\bullet	CITY		\bullet
BRITAIN		\bullet	CLAIMED		\bullet
BRITISH		\bullet	CLAIMING		\bullet
BURN		\bullet	CLASSICAL	\bullet	
BURNED		\bullet	CLASSIFICATION		\bullet
BURNING		\bullet	CLASSIFIED		\bullet
BURNS		\bullet	CLEAN	\bullet	
BURST		\bullet	CLOSE		\bullet
BURSTS		\bullet	CO_{2}	\bullet	
BUTTER		\bullet	COCAINE		\bullet
BUTTERS		-	COFERMENTATION	\bullet	
C	\bullet		COLLEAGUES		\bullet
CA		-	COLLECTING	\bullet	
CADMIUM		\bullet	COLLECTION	\bullet	
CAFFEINE		\bullet	COLOR		\bullet
CAN		\bullet	COLORED		\bullet
CANNOT		-	COLORLESS		\bullet
CAPILLARY	\bullet		COLORS		\bullet
CARAT		\bullet	COLOURS	\bullet	
CARBON	\bullet	\bullet	COLUMN	\bullet	
CARBONACEOUS	\bullet		COLUMNS	\bullet	
CARBONYL		\bullet	COMBUSTIBLE		\bullet
CARBONYLS		\bullet	COME		\bullet
CARCINOGEN	\bullet		COMMENTED		\bullet
CARCINOGENS	\bullet		COMPARISON	\bullet	
CARDIO		\bullet	COMPLETE		\bullet
CARRIED		\bullet	COMPONENT		\bullet
CARRYING		\bullet	COMPONENTS		\bullet
CATALYSE		\bullet	COMPOSED		\bullet
CATALYST		\bullet	COMPOSITION	\bullet	\bullet
CAUGHT		-	COMPOSITIONS		\bullet
CELL	\bullet	\bullet	COMPOUND	\bullet	\bullet
CELLS	\bullet	\bullet	COMPOUNDS	\bullet	\bullet
CHAIN		\bullet	CONCENTRATION	\bullet	
CHANGE	\bullet	\bullet	CONCENTRATIONS	\bullet	
CHANGES	\bullet	\bullet	CONCERN	\bullet	
CHARACTERISTIC		\bullet	CONDITIONS	\bullet	
CHARACTERIZATION	\bullet		CONDUCTED	\bullet	
CHARACTERIZE	\bullet		CONDUCTIVITY	\bullet	
CHARGE		-	CONDUCTOMETRIC	\bullet	
CHEESE	\bullet		CONFIGURATION		\bullet
CHEM.		\bullet	CONFIGURATIONS		\bullet
CHEMICAL	\bullet	\bullet	CONFORMATION	\bullet	

CONSIDERABLY	-		DESCRIBE	-	
CONSIDERED		\bullet	DESCRIBED	\bullet	
CONSIST		-	DESIGNATED		-
CONSTITUENTS		-	DESIGNATION		-
CONSTRAINS	-		DESIGNED	\bullet	
CONSUMERS		\bullet	DESIGNS	-	
CONTACT	-		DESTROY		-
CONTAIN	-	-	DETAILED	-	
CONTAINING	\bullet		DETAILS	-	
CONTAMINATED		\bullet	DETECT		-
CONTENT	-	\bullet	DETECTING		\bullet
CONTINUED		-	DETECTION		-
CONTINUOUS	-		DETECTIVE		-
CONTINUOUSLY		-	DETERMINAND	-	
CONVENTIONAL	-	-	DETERMINATION	-	
COOLING	-		DETERMINE	-	-
COPPER	\bullet	-	DETERMINED	-	-
CORN	-		DETERMINING	-	
COST		\bullet	DEVELOP	\bullet	-
COULD		\bullet	DEVELOPED	\bullet	
COULOMETRIC	\bullet		DEVELOPMENT	-	
COW	\bullet		DEVICE	\bullet	
CRASH		-	DIALYSATE	-	
CRASHES		\bullet	DIALYSATES	-	
CRIME		\bullet	DIALYSIS	-	
CRIMINALS		\bullet	DIESEL	\bullet	
CRITERIA	-		DIET		\bullet
CRYSTAL		-	DIETARY	-	-
CRYSTALLINE		\bullet	DIFFERENCE		\bullet
CU		\bullet	DIFFERENT	-	\bullet
CULPRITS		-	DIHYDROGEN		-
CULTURE	-		DIOXIDE		-
CURIOSITY		\bullet	DISADVANTAGES	-	
CURIOUS		-	DISCOVERED		\bullet
CUTTING DOWN		\bullet	DISCOVERY		\bullet
CYANIDE	-	\bullet	DISCUSSION	-	
CYANO		\bullet	DISEASE	-	-
CYT C/BGH	\bullet		DISPOSED OF		\bullet
D		-	DISSOCIATION		\bullet
DATA	-		DISSOLUTION		\bullet
DAY		-	DISSOLVE		\bullet
DEATH	-		DISSOLVED		-
DECOMPOSE		\bullet	DISSOLVES		\bullet
DECOMPOSES		\bullet	DISTANCE		-
DECOMPOSITION		\bullet	DISTRIBUTION		-
DECREASE		-	DMS	-	
DEFINED	\bullet		DONE		-
DEFORESTAT	\bullet		DRINK		\bullet
DELETERIOUS	\bullet		DRINKING		\bullet
DENSITIES		\bullet	DRUG		-
DENSITY		-	DRUGS		-
DERIVATISING		\bullet	DUAL	-	
DERIVATIZATION	-	\bullet	DYE	-	
DERIVATIZATIONS	-		DYES	-	

EARRINGS		\bullet	FED	\bullet	
EASIER		\bullet	FEMTOCHEMISTRY		\bullet
EAT		\bullet	FEMTOSECOND		\bullet
EATEN		\bullet	FEMTOSECONDS		\bullet
EC	\bullet		FERMENT	\bullet	
EFFECT		-	FERMENTATING	\bullet	
EFFECTIVE		\bullet	FERMENTATION	\bullet	
EFFECTS	\bullet	-	FERMENTED	-	
EFFICIENCY	\bullet		FERMENTING	\bullet	
EFFICIENT	\bullet		FEW		\bullet
ELECTRON		\bullet	FIBERS		\bullet
ELECTRONIC		\bullet	FIELD	\bullet	
ELECTRONS		\bullet	FIGURE		\bullet
ELEMENTAL	\bullet		FINISH		\bullet
ELEMENTS	-	\bullet	FIRE		\bullet
ELEVATED		\bullet	FIRST	\bullet	\bullet
EMPLOYING	\bullet		FLAME		\bullet
END		-	FLAMELESS		\bullet
ENERGETIC		\bullet	FLAMMABILITY		\bullet
ENERGIES		\bullet	FLAMMABLE		\bullet
ENERGY		\bullet	FLASH		\bullet
ENGINE	\bullet		FLASHES		\bullet
ENOUGH		-	FLASHLAMP		\bullet
ENRICHMENT	\bullet		FLASK	\bullet	
ENVIRONMENT		-	FLASKS	\bullet	
ENVIRONMENTAL	\bullet		FLAVOUR		\bullet
ERROR		-	FLEETING		\bullet
ESTABLISHED	\bullet		FLEETINGLY		\bullet
ESTIMATED		\bullet	FLORA		\bullet
ESTIMATES		\bullet	FLUID		\bullet
ETHANOL	\bullet		FLUIDS	\bullet	\bullet
EXAMINE	\bullet		FLUORESCENCE	\bullet	
EXAMINED	\bullet		FLUORINE		\bullet
EXCESSIVE	\bullet		FLUOROPOLYMER		\bullet
EXEMPLARY		-	FLUX	\bullet	
EXERCISE		\bullet	FLUXES	\bullet	
EXHAUST	\bullet		FOLKS		\bullet
EXISTS		\bullet	FOOD	\bullet	\bullet
EXPERIMENT		\bullet	FOODS	\bullet	\bullet
EXPERIMENTS		\bullet	FORM		\bullet
EXPLAINED		\bullet	FORMATION		\bullet
EXPOSED		-	FORMED		\bullet
EXPOSURE	\bullet	\bullet	FORMING		\bullet
EXTERNAL		\bullet	FORMS	\bullet	\bullet
EXTRACT		\bullet	FORMULA	\bullet	
EXTRACTED		\bullet	FOSSIL	\bullet	
EXTRACTION	\bullet	\bullet	FOUND	\bullet	\bullet
EYE		\bullet	FOURTH		\bullet
FAA		\bullet	FRACTION		\bullet
FAST		\bullet	FRECUENCY		\bullet
FAT		\bullet	FREE		\bullet
FATITUTES		\bullet	FREEZE		\bullet
FATS		\bullet	FREEZES		\bullet
FATTY		\bullet	FROZEN		\bullet

FS		\bullet	HUMAN	\bullet	
FUEL	\bullet		HUMANS	\bullet	
FUELS	\bullet		HYDROCHLORIC		\bullet
FULL-TERM	\bullet		HYDROGEN		\bullet
FUNCTIONAL		\bullet	HYDROXYAPATITE		\bullet
FUTURE		\bullet	IDEA		\bullet
GAS		\bullet	IDENTICAL		\bullet
GASEOUS		\bullet	IDENTIFY	\bullet	\bullet
GASES		\bullet	IDENTITIES	\bullet	
GC-GC	\bullet		IDENTITY	\bullet	
GC-MS		\bullet	IGNITED		\bullet
GIFT		\bullet	ILLUSTRATE		\bullet
GIVE	-	\bullet	IMPACT		\bullet
GIVE OFF		\bullet	IMPART	\bullet	
GIVES		\bullet	IMPEDED	\bullet	
GIVING	\bullet		IMPURITIES		\bullet
GLUCOSE	\bullet		IN SITU	\bullet	
GOLD		\bullet	IN VITRO	\bullet	
GREEN		\bullet	INCINERATION		\bullet
GREENHOUSE GASES	-		INCLUDE	\bullet	
GROUP		\bullet	INCLUDING	\bullet	
GROUPS	\bullet		INCORPORATION		\bullet
GROWTH	\bullet		INCREASE	\bullet	\bullet
GUT		\bullet	INCREASED		\bullet
HAD		\bullet	INDUSTRIAL		\bullet
HAIR		\bullet	INDUSTRIES	\bullet	
HALLMARKS		\bullet	INDUSTRY	\bullet	
HAND		\bullet	INETERCOMPARISON	\bullet	
HANDLE		\bullet	INFANCY	\bullet	
HAPPEN		\bullet	INFANT	\bullet	
HAPPENING		\bullet	INGREDIENTS		\bullet
HAPPENS		\bullet	INJECTED	\bullet	
HAS		\bullet	INOCULUM	\bullet	
HAVE		\bullet	INSOLUBLE		\bullet
HDL		\bullet	INSPECTED		\bullet
HDLS		\bullet	INSPIRATION		\bullet
HEALTH	\bullet	\bullet	INSTANT		\bullet
HEALTHY		\bullet	INSTRUMENT	\bullet	
HEART		\bullet	INSTRUMENTATION	\bullet	
HEAT		\bullet	INSTRUMENTS	\bullet	
HEATED		\bullet	INTERACT	\bullet	
HEATING		\bullet	INTERACTING		\bullet
HEATS		\bullet	INTERACTION	\bullet	\bullet
HEAVY		\bullet	INTERACTIONS	\bullet	\bullet
HELP		\bullet	INTERCOMPARISON	\bullet	
HIGH	\bullet	\bullet	INTERLABORATORY	\bullet	
HIGHER	\bullet	\bullet	INTESTINE		\bullet
HINDER		\bullet	INTRODUCED	\bullet	
HIPOCRITES		\bullet	INVESTIGATE	\bullet	
HISTORY		\bullet	INVESTIGATED	\bullet	
HOPE		\bullet	INVESTIGATING	\bullet	
HOPES		\bullet	INVESTIGATION	\bullet	
HPLC	\bullet		INVOLVE		\bullet
HS	\bullet		INVOLVED		\bullet

INVOLVEMENT		\bullet	LOCKS		\bullet
IODINE		\bullet	LOOK AT		\bullet
ION		\bullet	LOOKING AT		\bullet
IONIZATION		\bullet	LOSING		\bullet
IONS		\bullet	LOW	\bullet	\bullet
IRON	\bullet		LOWER	\bullet	\bullet
IS OVER		\bullet	LOWERING		\bullet
ISCHAEMIA		\bullet	LOWEST		\bullet
ISOLATION	\bullet		MADE		\bullet
ITEM		\bullet	MADE UP OF		\bullet
ITEMS		\bullet	MAIN		\bullet
JEWELRY		\bullet	MAKE		\bullet
JULY		\bullet	MAKING		\bullet
K		\bullet	MANAGEMENT	\bullet	
KEEP		\bullet	MANGANESE	\bullet	
KITE	\bullet		MANUFACTURE		\bullet
KNOWLEDGE	\bullet		MANUFACTURED		\bullet
KNOWN	\bullet		MARGARINES		\bullet
LABORATORIES	\bullet		MARKED		\bullet
LACTOSE	\bullet		MARKET		\bullet
LAND		\bullet	MARKETED		\bullet
LARGE	\bullet	\bullet	MARKING		\bullet
LARGER	\bullet	\bullet	MASH	\bullet	
LASER		\bullet	MASS	\bullet	
LASERS		\bullet	MASSACHUSETTS		\bullet
LASTED		\bullet	MATERIAL	\bullet	
LASTING		\bullet	MATERIALS		\bullet
LASTS		\bullet	MATERNAL	-	
LDLS		\bullet	MEAL		\bullet
LEAD		\bullet	MEAN	\bullet	\bullet
LEAVE		\bullet	MEASURE	\bullet	
LEAVING		\bullet	MEASURED	\bullet	
LENGTHY		\bullet	MEASUREMENT	\bullet	
LEVEL	\bullet	\bullet	MEASUREMENTS	\bullet	
LEVELS	\bullet	\bullet	MEASURING	\bullet	
LIFE	\bullet		MECHANISMS		\bullet
LIGHT		\bullet	MEDICINE		\bullet
LIGHTWEIGHT	\bullet		MEDICINES		\bullet
LIKELY		\bullet	MEDIUM	\bullet	
LIMITATION	\bullet		MELT		\bullet
LIMITATIONS	\bullet		MEMBRANES	\bullet	
LIMITED	\bullet		METABOLISM	\bullet	
LIMITS		\bullet	METAL		\bullet
LINE	\bullet	\bullet	METALLOPROTEINS	\bullet	
LINES	\bullet		METALS		\bullet
LIPID		\bullet	METHOD	\bullet	\bullet
LIPIDS		\bullet	METHODS	\bullet	\bullet
LIPOPROTEINS		\bullet	MG		\bullet
LIQUEFY		\bullet	MICELLES		\bullet
LIQUID		\bullet	MICROCONSTITUENTS	\bullet	
LIQUIDS		\bullet	MICRONUTRIENTS	\bullet	
LIVER		\bullet	MICROSECOND		\bullet
LOCATION	\bullet		MICROSENSOR	\bullet	
LOCKED		\bullet	MICROSENSORS	\bullet	

MILK	\bullet		OBSERVATION		\bullet
MILLI		\bullet	OBSERVE		\bullet
MILLISECOND		\bullet	OBSERVED	\bullet	\bullet
MINERAL		\bullet	OBSERVING		\bullet
MINERALS		\bullet	OBTAINED	\bullet	\bullet
MINIMUM		\bullet	OC	\bullet	
MIXING	\bullet		OCEANS	\bullet	
MIXTURES		-	OFF-LINE	\bullet	
ML	\bullet		OFFSITE	\bullet	
MODELS	\bullet		OIL		\bullet
MODEST		-	OILY		\bullet
MODIFIED	\bullet		OLIGOSACCHARIDES	\bullet	
MOLE		-	ON-LINE	\bullet	
MOLECULAR	\bullet	\bullet	OPERATED	\bullet	
MOLECULE		\bullet	OPERATIONAL	\bullet	
MOLECULES	\bullet	\bullet	OPTICAL	\bullet	
MOLTEN		\bullet	ORGANIC	\bullet	\bullet
MONITORING	\bullet		ORIENTATION	\bullet	
MONTHS	\bullet		OUTCOME		\bullet
MOTHER	\bullet		OVEN	\bullet	
MUSEUM		-	OVERLAP		\bullet
NAKED		-	OXIDANT		\bullet
NATURAL	\bullet	-	OXIDATION		\bullet
NATURE	\bullet		OXIDE		\bullet
NDIR	\bullet		OXIDIZE		\bullet
NECESSARY	\bullet	\bullet	OXIDIZED		\bullet
NECK		\bullet	OXIDIZER		\bullet
NECKLACE		\bullet	PANELS		\bullet
NECKLACES		\bullet	PAPER	\bullet	
NEEDED	\bullet		PARTICIPANTS		\bullet
NERVE	\bullet		PARTICIPATED	\bullet	
NERVOUS	\bullet		PARTICLES		\bullet
NEUROREGULATING	\bullet		PARTICULATE	\bullet	
NEW		-	PAST	\bullet	
NEWBORN	\bullet		PATTERN	\bullet	
NI		\bullet	PBO		\bullet
NICKEL		-	PEOPLE		\bullet
NIOSH	\bullet		PEPTIDE	\bullet	
NITRIC		\bullet	PEPTIDES	\bullet	
NITROGEN		\bullet	PERCENT		\bullet
NOBEL		\bullet	PERCENTAGE		\bullet
NOBLE		\bullet	PERFORM	\bullet	
NONCANCER	\bullet		PERFORMED	\bullet	
NON-FLAMMABILITY		\bullet	PERIOD	\bullet	
NON-FLAMMABLE		\bullet	PERMITTED	\bullet	
NOTTINGHAM		\bullet	PERSON		\bullet
NPD	\bullet		PET		\bullet
NUCLEAR		-	PHA		\bullet
NUMBER	\bullet		PHASE	\bullet	
NUMBERS	\bullet		PHOSPHATE		\bullet
NUTRACEUTICALS		-	PHOSPHATES		\bullet
NUTRITIVE	\bullet		PHOTOGRAPHS		\bullet
NYLON		\bullet	PHOTONS		\bullet
OBJECT		\bullet	PHYSICAL	\bullet	

PHYSICOCHEMICAL	-		PRODUCED	-	\bullet
PICOSCALE		\bullet	PRODUCING		\bullet
PICOSECOND		-	PRODUCTION	\bullet	\bullet
PICTURES		\bullet	PRODUCTS	\bullet	\bullet
PIECE		\bullet	PROFILE	\bullet	\bullet
PLANE		\bullet	PROGRESSION	\bullet	
PLANT		\bullet	PROPAGATES		\bullet
PLANTED		\bullet	PROPERTIES		\bullet
PLANTING		\bullet	PROPOSED	\bullet	
PLASMA	-	\bullet	PROTECTORS		\bullet
PLATELET	\bullet		PROTECTS		\bullet
PLATFORMS	\bullet		PROTEIN	\bullet	
POLLUTANT		-	PROTEINS	\bullet	\bullet
POLLUTANTS	\bullet		PROTEOLYTIC	\bullet	
POLLUTED	\bullet		PROTEOME	\bullet	
POLLUTING		\bullet	PROVIDE	\bullet	
POLLUTION	\bullet	\bullet	PROVIDE		\bullet
POLYMER		\bullet	PUBLISHED	-	
POLYMERISATION		\bullet	PULSE		\bullet
POLYMERS		\bullet	PULSING		\bullet
POLYPEPTIDES	-		PURE		\bullet
POLYUNSATURATED		\bullet	PURIFY		\bullet
POPULAR		\bullet	PUT		\bullet
POPULARITY		\bullet	QUANTITATIVE	\bullet	
POSSIBLE		\bullet	QUANTITIES	\bullet	
POTENTIAL		\bullet	QUESTION		\bullet
POTENTIALS		\bullet	QUESTIONS		\bullet
POWERFUL		\bullet	QUICKLY		\bullet
PRACTICALLY		\bullet	RACE		\bullet
PRAY		\bullet	RACERS		\bullet
PRAYER		\bullet	RACING		\bullet
PRAYING		\bullet	RADICAL		\bullet
PRECISION	\bullet		RADICALS		\bullet
PREDICT		\bullet	RADII		\bullet
PREDICTION		\bullet	RADIUS		\bullet
PREMATURE	\bullet		RAISE		\bullet
PRENATAL	\bullet		RATIO	\bullet	
PREPARATION	\bullet		RATIOS	\bullet	
PREPARE		\bullet	RE-ABSORPTION		\bullet
PREPARING		\bullet	REACH		\bullet
PRESSURE	\bullet	\bullet	REACHED		\bullet
PRE-TERM	-		REACT		\bullet
PREVENT		\bullet	REACTANT		\bullet
PRIZE		\bullet	REACTANTS		\bullet
PROACTIVE		\bullet	REACTION		\bullet
PROBABILITY		\bullet	REACTIONS		\bullet
PROBABLE		\bullet	REACTIVE		\bullet
PROBLEM		\bullet	REACTOR		\bullet
PROCEDURES	\bullet		REAL		\bullet
PROCESS		\bullet	RECEIVED		\bullet
PROCESSED	\bullet		RECENTLY	\bullet	
PROCESSING	\bullet		RECIPIENT		\bullet
PROCESSORS	\bullet		RECLAIMED		\bullet
PRODUCE	-	\bullet	RECLAIMING		\bullet

REDUCE		\bullet	SAVOURY		\bullet
REDUCING		\bullet	SAW		\bullet
REDUCTANT	\bullet		SAYS		\bullet
REDUCTION	\bullet		SCALE		\bullet
REFERENCES		\bullet	SCF		\bullet
REFLECTION		\bullet	SCFS		\bullet
REFLECTIONS		\bullet	SCIENTISTS		\bullet
REFLECTS		\bullet	SEAT		\bullet
REGIA		\bullet	SEATS		\bullet
REGION	\bullet		SECOND		\bullet
REGIONS	\bullet		SEE		\bullet
REGULATION	\bullet		SEEN		-
RELATED	\bullet	\bullet	SELECTED	\bullet	
RELEASED	\bullet		SELENIUM	\bullet	
RELEASING		\bullet	SELF- EXTINGUISHES		\bullet
REMEDIATED		\bullet	SELF-EXTINGUISHING		\bullet
REMEDIATION		\bullet	SEM		\bullet
REMOVED		\bullet	SENSITIVITY	-	\bullet
REPLACEMENTS		\bullet	SENSITIZATION		\bullet
REPORT	\bullet		SENSITIZED		\bullet
REPORTED	\bullet		SEPARATION	\bullet	
REPORTS	-		SERIES		\bullet
REQIRED		\bullet	SEROTONIN	\bullet	
REQUIREMENT	\bullet		SERUM	\bullet	
RESEARCH	\bullet	\bullet	SETTINGS	\bullet	
RESEARCHERS		\bullet	SEVEN	\bullet	
RESERVOIR			SFCO_{2}		\bullet
RESIDUAL		\bullet	SHINE		\bullet
RESIDUE		\bullet	SHORT		\bullet
RESISTANT		\bullet	SHORTER		\bullet
RESTRICT		\bullet	SHOW		\bullet
RESULTS	\bullet	\bullet	SHOWED		\bullet
RETENTION	\bullet		SHOWING		\bullet
REVEAL		\bullet	SHOWN		\bullet
REVEALED		\bullet	SIGNIFICANT		\bullet
REVEALING		\bullet	SIGNIFICANTLY	\bullet	
REVERSED	\bullet		SILVER		\bullet
RFC	\bullet		SILVERY		\bullet
RICH		\bullet	SIMPLEST		\bullet
RISE	-		SIMULTANEOUSLY		\bullet
RISK		\bullet	SINGLE	\bullet	
RP-HPLC	\bullet		SINKS	\bullet	
RSD	\bullet		SINNERS		\bullet
RUN		\bullet	SITES		\bullet
RUNNING		\bullet	SLOWLY		\bullet
SAID		\bullet	SMALL	\bullet	\bullet
SAINTS		\bullet	SMOKE	\bullet	
SALT		\bullet	SMOKES	\bullet	
SALTS		\bullet	SNAPSHOTS		\bullet
SAME	\bullet	\bullet	SOLD		\bullet
SAMPLE	\bullet	\bullet	SOLUBLE		\bullet
SAMPLES	\bullet	\bullet	SOLUTE	\bullet	
SAMPLING	\bullet		SOLUTION		\bullet
SATURATED		\bullet	SOLUTIONS		\bullet

SOLVENT		\bullet	SUPERCRITICAL		\bullet
SOLVENTS		\bullet	SUPERMARKET		\bullet
SORBENT	\bullet		SUPPLIED	\bullet	
SORBENTS	\bullet		SUPPLY	\bullet	
SOURCES	\bullet		SURFACE	\bullet	
SOUTHERN		\bullet	SURPRISING		\bullet
SOY	\bullet		SURVEY		\bullet
SPE	\bullet		SURVIVABLE		\bullet
SPECIAL	\bullet		SURVIVAL		\bullet
SPECIATION	\bullet		SYNTHETIC	\bullet	
SPECIES		\bullet	SYSTEM	\bullet	\bullet
SPECIFIC	\bullet		TAKE		\bullet
SPECIFIES		\bullet	TAKEN		\bullet
SPECTROMETRY	\bullet		TAKES		\bullet
SPECTRUM		\bullet	TALE		\bullet
SPEED		\bullet	TASTE		\bullet
SPEED UP		\bullet	TEAM		\bullet
SPREAD		\bullet	TEAMS		\bullet
SPREADS		\bullet	TECH		\bullet
STABILITY	-		TECHNICAL	\bullet	
STAGE	\bullet		TECHNIQUE	\bullet	\bullet
STANOL		\bullet	TECHNIQUES	\bullet	
STANOLS		\bullet	TECHNOLOGIES		\bullet
STARCH	\bullet		TEETOTALERS		\bullet
STARCHY	\bullet		TELL		\bullet
STATE		\bullet	TEMPERATURE	\bullet	\bullet
STATES		\bullet	TEMPERATURES	\bullet	\bullet
STEP		\bullet	TENDENCY	\bullet	
STEROL		\bullet	TERMINAL		\bullet
STEROLS		\bullet	TEST		\bullet
STONE		\bullet	TESTED		\bullet
STORES	\bullet		TESTING		\bullet
STORY		\bullet	TESTS		\bullet
STRANGE		\bullet	TEXTBOOKS		\bullet
STRANGELY		\bullet	THERMAL	\bullet	
STREET		\bullet	THREAD		\bullet
STRIP AWAY		\bullet	THREADS		\bullet
STRUCTURAL	\bullet	\bullet	THROMBOCYTES	\bullet	
STRUCTURE	\bullet	\bullet	TIME		\bullet
STRUCTURES		\bullet	TIMES	\bullet	
STUDENTS		\bullet	TIMESCALE		\bullet
STUDIED		\bullet	TIMESCALES		\bullet
STUDIES	\bullet	\bullet	TISSUE	\bullet	
STUDY	\bullet		TISSUES	\bullet	
STUDYING	\bullet		TOTAL		\bullet
SUBLEVELS		\bullet	TOUCHSTONE		\bullet
SUBSTANCE	\bullet	\bullet	TOWN		\bullet
SUBSTITUTE		\bullet	TOWNS		\bullet
SUBSTITUTES		\bullet	TOWSFOLK		\bullet
SUCCESSFULLY	\bullet		TOXIC		\bullet
SUFFICIENT		\bullet	TRACE	\bullet	
SUGAR	\bullet		TRANSFER	\bullet	
SUGARS	\bullet		TRANSFERRED	\bullet	
SULFUR	\bullet		TRANSFORMED		\bullet

TRANSIENT		\bullet	VARY	\bullet	
TRANSITION		\bullet	VEGETABLE		\bullet
TRANSITIONS		\bullet	VERTICAL	\bullet	
TRANSPORT		\bullet	VIA	\bullet	
TRAP		\bullet	VIBRATE		\bullet
TRASITIONARY		\bullet	VIBRATIONS		\bullet
TREATING		\bullet	VOC		\bullet
TREATMENT		\bullet	VOCS		\bullet
TREND	\bullet		VOLUMES	\bullet	
TRIGGER		\bullet	WALLS		\bullet
TRIGGERED		\bullet	WASTE	\bullet	\bullet
TUMOR	\bullet		WASTES	\bullet	
TUMORS	\bullet		WATCH		\bullet
TURNING		\bullet	WATCHING		\bullet
TYPE		\bullet	WATER	\bullet	\bullet
TYPES		\bullet	WATERS	\bullet	
UK		\bullet	WAY		\bullet
UNDERTAKEN		\bullet	WEAK		\bullet
UNIMOLECULAR		\bullet	WEAKER		\bullet
UNIVERSITY		\bullet	WEARER		\bullet
UNKNOWN	\bullet		WEIGHT	\bullet	\bullet
UNLIKELY		\bullet	WELL	\bullet	
UNPOLLUTED	\bullet		WHEY	\bullet	
URINE		\bullet	WHITE		\bullet
USE	\bullet	\bullet	WHOLE	\bullet	
USED	\bullet	\bullet	WIN		\bullet
USEFUL	\bullet	\bullet	WORK	\bullet	\bullet
USES	\bullet		WORKERS	\bullet	
USING	\bullet	\bullet	WORKING		
UTILIZATION	\bullet		WORKPLACE	\bullet	
VACUUM		\bullet	WORKPLACES	\bullet	
VALUE	\bullet		YEARS	\bullet	
VALUES	\bullet		YEAST	\bullet	
VAPOR	\bullet		YELLOW		\bullet
VARIABILITY	\bullet		YIELD	\bullet	
VARIATION	\bullet		ZINC	\bullet	\bullet
VARIATIONS	\bullet		ZN		\bullet
VARIES	\bullet				

[^0]: 1 La oración 7 establece un una conexión mediante un enlace dudoso. Puede eliminarse y el texto presenta la misma coherencia que el texto original.

[^1]: ${ }^{2}$ La oración 3, que establece una conexión mediante un enlace dudoso, puede eliminarse, ya que su información está contenida en la 4, mediante la utilización de this. Presenta la misma coherencia que el texto original.

[^2]: 3 La oración 13 establece una conexión mediante un enlace dodoso. Como puede observarse puede eliminarse sin que la coherencia del texto original se vea afectada.

[^3]: 4 La oración 10 establece una conexión mediante un enlace dudoso. Puede eliminarse sin afectar a la coherencia del texto original.

[^4]: 5 La oración 10, que establece conexiones mediante enlaces dudosos, se puede eliminar sin que la coherencia del texto original se vea afectada.

