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Design considerations for line-scan multi-spectral imaging
systems

Timo Eckhard

Abstract

Spectral imaging systems have been used for spectral measurements for several decades,
mainly for scientific purposes, and were usually linked to costly applications. Thanks to
research in imaging science and machine learning and the technological advancement in
recent years, spectral imaging became feasible for various industrial and even consumer
applications.

This dissertation deals with line-scan multi-spectral imaging systems for spectral re-
flectance and color measurements. The most important aspects under consideration are
optimization of spectral properties of the optical components, image registration and esti-
mation of surface spectral reflectances. We focus on a particular system design, in which
multiple color filtered RGB images with distinct spectral content are acquired at the same
time. These images correspond to different viewpoints of the scanning scene due to the
mechanical arrangement of camera sensor and optics.

By optimizing the system’s optical component spectral properties, the amount of spec-
tral information acquired can be increased and the spectral reflectance estimation can be
improved. We propose a filter selection framework and demonstrate that optimization for
various line-scan system configurations results in an improvement of spectral and color
measurement performance. Multi-channel image registration is required to account for
viewpoint differences and other sources of image channel misalignment. We develop a
calibration scheme for planar scanning objects and propose scene-adaptive registration
for non-planar scanning objects. For our 12-channel laboratory imaging system, sub-
pixel accuracy is achieved. Based on the registered multi-channel image data, spectral
reflectance estimation can be performed. Physical and empirical estimation methods are
considered, and we propose a logarithmic kernel function for kernel ridge regression. We
experimentally compare performance of various estimation methods for simulated and
measured camera response data and consider different noise levels and number of spectral
channels. Empirical estimation performance is influenced by model training. We com-
pare various training sample selection approaches and propose an application dependent
selection scheme. Further, adaptive training methods from related literature are unified
conceptually and evaluated systematically.

We show that the aforementioned aspects of line-scan multi-spectral imaging system
design are critical for spectral and color measurement, and that application specific design
is often beneficial to improve system performance.
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Consideraciones para el diseño de sistemas de imagen
multiespectral de escáner en ĺınea.

Resumen

Los sistemas de imagen espectral se han utilizado para medidas espectrales desde
hace varias décadas, en especial con propósitos cient́ıficos, ligados habitualmente a aplica-
ciones de alto coste. Gracias a los recientes avances de la investigación en los campos del
tratamiento de imágenes y el aprendizaje automático, la captura de imágenes espectrales
ha podido popularizarse y extenderse para su uso en varias aplicaciones industriales e
incluso de consumo.

Esta tesis trata sobre sistemas de imagen multiespectral de tipo escáner en ĺınea para
medidas de reflectancia espectral y del color. Los aspectos más relevantes que se con-
sideran son la optimización de las propiedades espectrales de los componentes ópticos, el
registro de imágenes y la estimación espectral de las reflectancias de los objetos escanea-
dos. Nos centramos en el diseño de un sistema en particular, en el cual se adquieren
simultáneamente múltiples imágenes con diferente contenido espectral, correspondientes
a diferentes filtros situados delante de varias lentes que forman imagen sobre un sensor
RGB en ĺınea. Estas imágenes se corresponden con diferentes perspectivas de la escena
escaneada, que se originan debido a la disposición de las diferentes lentes a lo largo del
sensor de imagen.

Mediante la optimización de las propiedades espectrales de los componentes ópticos
del sistema, puede incrementarse la cantidad de información espectral que se adquiere, y
también mejorarse la calidad de la estimación espectral de las reflectancias. Proponemos
un sistema espećıfico de selección de filtros de color, y demostramos que el proceso de
optimización para varias configuraciones del escáner en ĺınea resulta en una mejora de las
prestaciones de medida espectral y del color. El registro de las imágenes multi-canal es
necesario para descontar las diferencias producidas por las distintas perspectivas de las
lentes, y también otras fuentes de desalineación presentes en nuestro sistema. Hemos de-
sarrollado un método de calibrado para objetos planos, y proponemos también un método
de registro adaptativo para objetos con volumen. Para nuestro sistema, hemos conseguido
un registro con precisión por debajo de un pixel, en condiciones de laboratorio. Utilizando
las imágenes multi-canal ya registradas, podemos realizar la estimación espectral. Con-
sideramos dos categoŕıas principales de algoritmos de estimación: los basados en modelos
f́ısicos de adquisición de imágenes, y los puramente emṕıricos. Proponemos además una
función logaŕıtmica de kernel para la estimación espectral basada en métodos de ker-
nel con regularización. Comparamos mediante varios experimentos las prestaciones de
los diferentes algoritmos de estimación espectral para respuestas de sensores simuladas y
reales, considerando diferentes niveles de ruido en las simulaciones, y diferente número de
canales en nuestro sistema de captura. Las prestaciones de los algoritmos de estimación
emṕıricos dependen del conjunto de muestras que se utilice como entrenamiento. Com-
paramos varios sistemas de selección de muestras de entrenamiento, y proponemos un
sistema propio de selección dependiente de la aplicación espećıfica para la que vaya a uti-
lizarse la estimación. Además, se propone una unificación conceptual de los algoritmos de
entrenamiento adaptativos encontrados en la literatura, que se evalúan también de forma
sistemática.

En este estudio, demostramos que los aspectros mencionados anteriormente resultan
cŕıticos para la medida espectral y del color en sistemas multiespectrales de escáner en
ĺınea, y que diseñar el sistema teniendo en cuentala aplicación espećıfica para la cual se
utilizará es a menudo beneficioso para mejorar las prestaciones del mismo.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Conventional visual imaging systems quantify the spatial distribution of radiances reflected
from an image scene. The radiance sensed by an image sensor is typically in the visible
range of the electromagnetic spectrum of light. In the acquisition process, image formation
can be seen as the projection of a 3-dimensional image scene on a 2-dimensional image
sensor. Historically, the interest in imaging was motivated by the desire to preserve what we
see. Acquisition of the first permanent photograph on pewter coated with bitumen in 1826
by Joseph Nicéphore Niépce and subsequent development of photographic film pioneered
by George Eastman in the late 19th century [1], the invention of the CCD sensor at AT&T
Bell Labs by Willard Boyle and George E. Smith in 1969 and the invention of the first
digital still camera by Steven Sasson in 1975 are just some milestones on this quest. In
parallel and often in conjunction with each other were contributions by researchers from
various disciplines that helped developing models of the physical processes involved in
imaging. Further, research on the human visual system helped us understand that what
we see is more than a spatially and spectrally quantized version of scene radiance sensed
by our eyes.

At this point in time, we know the physical relations that govern light-matter inter-
action very well. We have a clear understanding that the spectral radiance reflected from
an image scene is a multi-dimensional function of the spectral power distribution of the
incident light, the illumination and observation angles and physical properties of scene
objects. So this function actually contains more information than what we see. Obviously
there exists a great interest in its measurement, as knowing this function would provide
information required to solve many tasks that are done visually (by human observer or
machine vision). However, accurate measurement is tedious and time consuming. For-
tunately, many visual tasks only require a fraction of that information, corresponding to
specific material properties. From a technological point of view it is already feasible to
sense some of them, for instance spectral reflectance factor, which describes the relative
amount of light reflected from the surface for a certain illumination and observation ge-
ometry. It can be measured point-wise with a spectroradiometer. With optical imaging
technologies, spectral reflectance factor can be measured spatially, but there exist limita-
tions with respect to sampling and measurement time.

Research in imaging science has led to the development of various approaches for so-
called spectral imaging, which also can be used to obtain reflectance factor measurements.
This work is related to multi-spectral imaging systems, which sense multiple distinct por-
tions of the spectrum of reflected scene radiance instead of the entire spectrum of reflected
light. By incorporating prior knowledge of the physical process of image acquisition or by
using machine learning techniques, it is under certain conditions possible to recover the
spectral reflectance factor data from such multi-spectral images.

We focus on line-scan multi-spectral imaging, which means that an image of the scene
is acquired line by line while translating either camera or scene object with respect to
the other. The scanning principle applies especially well (but not exclusively) to appli-
cations with moving objects, for instance web-based industrial inspection. The specific
imaging principle considered involves simultaneous acquisition of multiple color filtered
RGB images with distinct spectral content.

In the design phase of a multi-spectral imaging system, a successful system implemen-
tation requires the consideration of various aspects related to system component design
and data processing. Fundamental for the development of a specific imaging application
is a sound understanding of the physical processes involved in the image formation. Based



1.2. STRUCTURE OF THE WORK 3

on this, mathematical models can be build, system optimality quantified and optimiza-
tion performed accordingly. In this dissertation, we focus on these aspects specifically for
line-scan multi-spectral imaging systems.

1.2 Structure of the work

This dissertation is divided into seven chapters that envelope the four modules of multi-
spectral image system design considered in this work. These modules are optimization
of spectral properties of the optical components, line-scan image registration, spectral re-
flectance recovery and estimation and model training in empirical estimation. We illustrate
these modules in Figure 1.1.

Figure 1.1: Modules of the dissertation.

Acquisition system 
design: Filter selection

Module 1

Image registration

Module 2

Spectral reflectance 
recovery / estimation

Module 3

Empirical estimation 
model training

Module 4

● Measures of system optimality
● Heuristic filter selection framework

● Geometrical calibration for planar scanning objects
● Color invariant feature mapping and correspondence based 

image registration for non-planar scanning objects

● Physical model based spectral reflectance recovery
● Empirical model based spectral reflectance estimation

● Global training sample selection
● Adaptive estimation using continuous or binary weighting

In Chapter 2, we provide necessary background information for the following chapters.
We start by introducing physical models for light reflection and color perception, which
are the basis of color and spectral measurements. After that, we introduce different
spectral imaging technologies, the digital camera working principle and finally the line-
scan multi-spectral imaging principle considered in this work. This chapter also contains
a description of the experimental framework considered for system evaluation, including
definitions of error functions to measure performance and model validation techniques. At
last, we introduce several system configurations considered in this dissertation, as well as
the datasets that are used in experiments.

Chapter 3 is related to the first module of this dissertation, namely acquisition system
design. We consider system design as a multivariate optimization problem and focus on
spectral properties of optical system components and system optimality criteria. After
that, we direct our focus to filter selection for line-scan multi-spectral camera (LSMSC)
systems, for which we propose a specific framework incorporating heuristics to reduce
the computational burden of the selection process. Theoretical considerations of filter
selection are verified in a set of experimental case studies, in which we exemplify LSMSC
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filter selection for various system configurations and application cases. For the case of a 12-
channel LSMSC, we had our optimal filters manufactured and evaluated the performance
in practice with our laboratory prototype LSMSC system.

Chapter 4 is devoted to line-scan multi-spectral image registration, which is a neces-
sary data processing step of LSMSC systems and the second module of this dissertation.
We distinguish two types of registration procedures. The first applies to planar scanning
objects and can be considered as a geometrical calibration of the system. We analyze
type and extend of image misalignment for our 12-channel laboratory LSMSC empirically
and propose a polynomial and a B-spline based model to correct channel mis-alignment.
We embed these models in a general framework for geometrical calibration. A calibration
target is designed and semi-automatic displacement model fitting and image registration
performance are evaluated. We confirm the validity of the models and the practical ap-
plicability of our geometrical calibration framework by experiment.

The second registration procedure can be considered as an extension to the first, and
is required when non-planar scanning objects are considered. For this type of scanning
objects, geometrical calibration can not ensure that a physical object location of the
scanning scene maps to the same location in all image channels. Hence, a scene dependent
registration is required. In essence, our proposed solution to this problem contains a color
invariant feature mapping and pixel-wise correspondence estimation via block-matching.
We evaluate each process individually by experiments and illustrate the functionality of
our approach.

Chapter 5 deals with the recovery/estimation of spectral reflectance factor from multi-
spectral image data. This is the third module of the dissertation. We introduce various
approaches based on a physical model of the acquisition process or machine learning based
techniques that use empirical data. We discuss their properties and demonstrate some
specifically important features experimentally. The experimental section also contains the
comparison of estimation performance for systems with different number of spectral image
channels and various levels of simulated camera response noise.

Chapter 6 is related to the training process in empirical estimation models, which is the
last module of this dissertation. We consider two aspects, namely training sample selection
and adaptive estimation. We present a general framework for adaptive estimation schemes
and show that most approaches found in related literature can be conceptually unified. We
perform several case studies to evaluate training sample selection and adaptive estimation
for various system configurations.

The last chapter of this dissertation contains an overall summary and conclusions of
this dissertation. In this chapter, we also highlight the contributions corresponding to
each module of this work.
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2.1 Preface

In this chapter we introduce the concepts and information that form the theoretical foun-
dation for later parts of this work. At first, a physical model of the reflection of light from
a surface is presented and its measurement is discussed. These radiometric concepts are
related to colorimetry and the measurement of color, which is considered afterwards. We
then introduce spectral imaging, the digital camera working principle and the line-scan
multi-spectral principle related to the imaging system considered in this work. At last,
we define a framework for system performance evaluation and introduce the datasets and
camera system configurations used in experimental parts of this dissertation.

Notation
Vectors are denoted lowercase bold letters and defined as x = [x1, x2, ...xn]T ∈ Rn×1

for an n-dimensional vector. Matrices are denoted uppercase letters, for instance X =
[x1,x2, ...xm] ∈ Rn×m is a matrix composed of m column vectors of dimension n. Further,
let X = C(X) be the column space of matrix X ∈ Rn×m, which is the set of all possible
linear combinations of its column vectors, ie. the linear span of the column vectors.
Consequently, X is a subspace of Rm. More conventions for notation, variable naming and
graphical illustrations are listed in Appendix A.1.

2.2 Light reflection and color perception

2.2.1 Physical model of light reflection

The optical part of electromagnetic radiation from a source covers the length of electro-
magnetic waves from 10 nm to 1000µm, or corresponding frequencies of wave oscillation
of 3 × 1011 Hertz (Hz) to 3 × 1016 Hz. This portion includes the ultraviolet, visible and
infrared region. Frequency and wavelength of light propagating through a medium are re-
lated by the constant speed of light in vacuum c and the index of refraction of the medium
n, such that c = λfn. The frequency of light is denoted f and has the unit Hz, and λ
denotes wavelength in unit nm. The index of refraction is the ratio of the speed of light in
vacuum to the speed of light in the medium denoted v, ie. n = c

v . For air, n = 1.0003 and
in general, n must be greater than or equal to 1 [2]. In the field of spectral science and
colorimetry, electromagnetic radiation is usually described by wavelength and we therefore
adapt to this convention.

In this work, we are specifically interested in the visible portion of the optical part of
electromagnetic radiation. This portion is confined in a rather narrow spectral range from
approximately 360−400 nm to 760−830 nm [3]. While there is no unique definition for this
range, we consider 380 nm to 780 nm as the visible. This is the range of electromagnetic
radiation in which the average human observer is sensitive.

Fundamental units that describe light are radiant energy Q with unit Joule (J) and
radiant flux Φ, which is energy per unit time (dQdt ) and is measured in Watts (W). The
quantity Φ(λ, θ, φ) describes the directional spectral radiant flux at wavelength λ in di-
rection (θ, φ). Variables θ and φ are polar and azimuth angle in a spherical coordinate
system and defined with respect to the surface normal (see Figure 2.1a). A light source
can be described radiometrically by the directional quantity spectral radiance, denoted as
L(λ, θ, φ) with units W/m2sr, which is power per unit of projected area and unit of solid
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angle [4]:

L(λ, θ, φ) =
d3Φ(λ, θ, φ)

cos(θ, φ) dA dω dλ
, (2.1)

The term cos(θ, φ) in the denominator accounts for the apparent size change of the radi-
ating source in direction (θ, φ). This effect is illustrated in Figure 2.1b. When considering
the acquisition of digital images with a camera, we are interested in the radiant flux arriv-
ing at a certain pixel location of the camera sensor. Therefore, radiant flux and spectral
radiance are also functions of the position in space. For this work, we remain neglecting
the position vector from the equations for simplicity.

(a) (b)

Figure 2.1: Illustration of the spherical coordinate system used to describe directional
radiometric quantities (a) and apparent size change of surface A as a function of the cosine
of the viewing angle with respect to the surface normal (b). Illustrations adopted from [4,
p.57] and [4, p.53] respectively.

For radiant flux that is incident on a surface, reflection, transmission and absorption
can occur. Other effect of light-matter interactions are refraction and scattering. Fig-
ure 2.2 illustrates three light rays incident on an inhomogeneous material, for instance
paper. The first reflection at the interface is called interface reflection (indicated in or-
ange). If a ray is reflected on the rough surface material several times, multiple reflection
occurs (indicated in green). This type of reflection is also called interface reflection. The
refracted rays indicated in red, magenta and blue illustrate subsurface scattering by mate-
rial particles, which can either lead to absorption of the ray (red ray) or re-emission of the
ray (blue ray). The rays re-emitted from sub-surface scattering through the same interface
from where they penetrated the material are termed body reflection. Rays penetrating
through the material are called transmitted (magenta ray).

In this work, we are specifically interested in the reflection of light from a surface
and therefore do not consider the part of light absorbed by, or transmitted through, the
surface. There exist several models that describe this process geometrically in terms
of radiometric quantities. We consider the bidirectional spectral reflectance distribution
function (BSRDF), which is defined as

fr(θi, φi, θr, φr, λ) =
dLr(θi, φi, θr, φr, λ)

Li(θi, φi, λ) cos(θi, φi)dωi
. (2.2)
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Figure 2.2: Different components of light matter interaction.

The numerator denotes the differential spectral radiance at wavelength λ reflected in
direction (θr, φr). The denominator denotes the irradiance on the surface, which is the part
of the incident spectral radiance at wavelength λ projected onto the surface in direction
of travel (θi, φi) with differential solid angle dωi.

A geometric interpretation of the distribution function is given in Figure 2.1a. Lee et
al. [5, pp.148] discuss several limitations to this model, for instance that light polarization
or fluorescence are not included. In this work neither of these effects are considered.

2.2.2 Spectral reflectance measurement

In the previous subsection, the BSRDF model of spectral light distribution as a function
of geometrical variables was introduced. Once this function is obtained, we can predict
the light reflected off a surface at any location on the hemisphere, given the distribution
of incident light. Measuring the BSRDF of a surface requires measuring the reflected
radiance at any combination of observation angle (θr, φr) and incident light angle (θi, φi)
over the surface hemisphere. This is tedious work and is seldom done in practice. Instead,
we can fix some parameters of the BSRDF to obtain a defined measurement for a light
reflection measure that is much more simple to obtain.

One such measurement condition is to sum up the light reflected in all directions
over the hemisphere, and the quantity we obtain by that is referred to as directional-
hemispherical reflectance (or often only reflectance) rdh(λ), which is a function of the
wavelength of incident light. The values of rdh(λ) are constrained to values between 0 and
1. Due to the conservation law of energy, no more light than all incident light at a given
wavelength can be reflected (unless fluorescence is considered). We define the directional-
hemispherical reflectance for a target surface as the integral of the reflected radiance dLr,T
over the whole hemisphere leaving the surface (ie. 2π steradiant solid angle observation),
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(b) Reflectance factor

Figure 2.3: Illustration of directional-hemispherical reflectance and reflectance factor
measurement principle. Illustration adopted from [3].

divided by the incident flux per unit area:

rdh,T (λ) =

∫
ωr
dLr,T (θi, φi, θr, φr, λ) cos(θr, φr)dωr

Li(θi, φi, λ) cos(θi, φi)dωi
. (2.3)

The integral quantity in the numerator can be obtained by measuring the exitant radi-
ance over the hemisphere with an integrating sphere. Obtaining the incident radiant flux is
usually achieved by indirect measurement. Let rdh,W (λ) be the directional-hemispherical
reflectance of a white reference surface, such that

rdh,W (λ) =

∫
ωr
dLr,W (θi, φi, θr, φr, λ) cos(θr, φr)dωr

Li(θi, φi, λ) cos(θi, φi)dωi
. (2.4)

Solving Equation 2.4 for Li(θi, φi, λ) cos(θi, φi)dωi and substitution in Equation 2.3
results in

rdh,T (λ) =

∫
ωr
dLr,T (θi, φi, θr, φr, λ) cos(θr, φr)dωr∫

ωr
dLr,W (θi, φi, θr, φr, λ) cos(θr, φr)dωr

rdh,W (λ), (2.5)

which now contains two integral quantities (
∫
ωr
dLr,T (·)dωr and

∫
ωr
dLr,W (·)dωr) that can

be obtained by measurement with an integrating sphere and a reference white surface with
known directional-hemispherical reflectance.

The measurement of the directional-hemispherical reflectance does not consider the
angularity of the light distribution. Another measurement condition is using a finite but
limited solid angle of observation corresponding to the measurement cone of a detector
with fixed aperture. This quantity is called reflectance factor [5, 6] and the relation of
directional-hemispherical reflectance and reflectance factor is illustrated in Figure 2.3.
From a technological point of view, devices measuring reflectance factor are more simple
because they do not require an integrating sphere.

The angle of incident flux, solid angle as well as angle of observation of reflected radiant
flux from a surface with respect to its normal are not explicitly defined for the term re-
flectance factor. For the same sample surface, its measurement under different geometrical
settings will therefore lead to different results. The need for standardization is apparent
and has motivated the work of several international standardization organizations. In this
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dissertation, we follow the geometrical settings for reflectance factor and colorimetric mea-
surements defined in ISO 13655:2009(E)1. The norm defines four measurement conditions
for reflectance factor:

M0 requires the spectral power distribution (SPD) of the illumination source to closely
match CIE2 illuminant A (see Figure 2.4a).

M1 requires the SPD of the illumination source to closely match CIE illuminant D50
(see Figure 2.4a). The UV-content for this illuminant is well defined and because of
this, it can be ensured that target surfaces that exhibit fluorescent effects undergo
a defined excitation of the latter.

M2 requires the SPD of the illumination source to be provided at least in the range from
420 nm to 700 nm, and additionally that there exists no substantial radiation power
in the spectral range below 400 nm. This illumination condition approximates that
of museums and is often referred to as UV-cut.

M3 requires the same SPD as M2 but with additional restrictions on light polarization
to reduce for instance gloss effects.

The M1 norm is a widely used standard in the graphics art and printing domain.
Considering a daylight-like illumination condition in color measurements of for instance
printed products is a realistic setting approximating a likely observer viewing condition
at the consumer side. The defined UV content of CIE illuminant D50 is important es-
pecially when printing on paper substrate is considered, because many paper substrates
contain optical brightening agents. These are chemical compounds that absorb light in the
ultraviolet region (typically 300-400 nm) that is re-emitted in the blue region (typically
400-500 nm) [7]. The visual effect on the substrate is the reduction of yellowish appearance
because of the additional power in the blue part of the spectrum, resulting in an overall
whiter appearance.

The M2 norm on the other hand requires low UV content of the illumination, resulting
in little or no fluorescent effect. We will see later in this work that the light source used
with our laboratory LSMSC system is tuned such that this condition is fulfilled, allowing
us to adopt the M2 norm for spectral and color measurements.

Spectral reflectance functions can be measured with a spectroradiometer, using an
external illumination source and defined observation and scene illumination geometry. A
device called spectrophotometer typically includes an illumination source and implements
a defined geometry. Both types are point measurement devices that incorporate an optical
component to disperse light (eg. a grating or a prism), typically a photodetector array
that responds to light in a quantitative manner producing an analog electrical signal, and
electronics to convert the analog signal to a digital signal.

In this work, ground-truth measurements of reflectance factor data are mostly obtained
from a Konica Minolta FD7 spectrodensitometer (which in fact is a spectrophotometer).
For this device, measurement is ISO 13655 conform under condition M2.

We explicitly note that in later parts of this work, we will refer to reflectance factor
only when it is important to distinguish between other kinds of reflectance functions and
the reflectance factor function. Otherwise, we only refer to reflectance for the sake of
simplicity.

1ISO 13655:2009(E): Graphic Technology - Spectral measurement and colorimetric computation for
graphic arts images.

2CIE is the abbreviation for Commission Internationale de l’éclairage, which stands for the Interna-
tional Commission on Illumination.



2.2. LIGHT REFLECTION AND COLOR PERCEPTION 13

2.2.3 Discrete representation of reflectance and other spectral data

Considering a surface reflectance as a function of wavelength, this function can be decom-
posed into its frequency components by Fourier transformation. If the function’s Fourier
transform is zero outside a certain range of frequencies, it is band limited [8]. According
to Nyquist-Shannon sampling theorem, the sampling rate of a function should then be at
least twice the maximum frequency component of the function to allow full reconstruction.
In the field of color science, spectral signals are usually sampled in a 10 nm interval, which
has been found to be sufficiently precise assuming the spectra are smooth [9]. Unless
specified otherwise, we consider 10 nm sampling for spectral signals and adapt a discrete
representation. The spectral measurements of the Konica Minolta FD7 are in accordance
with this sampling and a measured spectral reflectance function is therefore represented
as a vector r = [r1, r2, ...rm]T ∈ Rm×1, where m = 36 and the vector elements are corre-
sponding to wavelengths from 380 nm to 730 nm. Other spectral signals are defined in a
similar manner.

2.2.4 Spectral reflectance orthogonalization

The span of a set of surface reflectance vectors is a subspace in Rm. Various researchers
have statistically analyzed large sets of reflectance data and shown that this subspace is
much smaller than Rm [8, 10, 11, 12].

Using statistical procedures based on orthogonal transformations, a more compact rep-
resentation of the reflectance data can be obtained. By that, the correlated wavelength
components of reflectances in Rm can be converted to a set of linearly uncorrelated vari-
ables. The orthonormal basis vectors of the orthogonalized spectral reflectance space are
denoted ui, where i = 1, 2, ...m. Having these vectors ordered according to the variance
of reflectances in Rm allows a ranking of the importance of the orthogonal vectors with
respect to the amount of information each vector carries. The ordered orthogonal basis
vectors stacked in columns of matrix U = [u1,u2, ...um] ∈ Rm×m define a transformation
to the orthogonalized space

c = UT r, (2.6)

where c ∈ Rm×1 is a coefficient vector containing coordinates in the orthogonal space
corresponding to reflectance vector r ∈ Rm×1. This process is referred to as the decompo-
sition of r into a weighted sum of linearly uncorrelated basis vectors (where the weights
are given by the coefficient vector c).

As UUT = I Reflectance r can be reconstructed from U and the coefficient vector c
by evaluating

r = Uc. (2.7)

The reconstruction of r is exact, up to rounding errors in numerical computation. Hence,
representing r in terms of U and c is also not more compact.

However, because the reflectance subspace is smaller than Rm, it can be approximated
quite accurately with less than m basis vectors. The corresponding subspace is truncated
and in practice, only the b most significant basis vectors are retained. Scalar b takes values
from 1 to m. As basis vectors in columns of U are in decreasing order of significance, we
define Û = [u1,u2, ...ub]. The corresponding transformation matrix to the truncated
orthogonal space is

ĉ = ÛT r, (2.8)

and reflectance r can be reconstructed from Û and the coefficient vector ĉ by evaluating

r̂ = Û ĉ. (2.9)
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where r̂−r is a reconstruction error due to dimensionality reduction of the orthogonalized
spectral reflectance space by truncation. For large values of b, this error is low, as the
information corresponding to the least significant basis vectors is often mostly noise.

There are various ways to obtain orthogonal vectors that span the subspace in which
a set of observations (ie. known reflectances) are contained. In linear algebra this pro-
cess is called orthogonalization and the most popular approaches are based on principal
component analysis (PCA) or singular value decomposition (SVD). Both methods are in-
timately related and their names are often used interchangeable [13]. It follows a brief
introduction to the computation of SVD and PCA. Unless mentioned differently, we use
SVD for spectral reflectance orthogonalization in this dissertation.

A Singular value decomposition (SVD)

Let M ∈ Rm×l be a real matrix of rank k. The rows of M are components of the multi-
dimensional data variables and the columns are observations such thatM = [m1,m2, ...ml],
where mi = [m1,i,m2,i,mm,i]

T ∈ Rm×1, i = 1, 2, ...l. The SVD of M is a matrix factoriza-
tion of form

M = UΣV T , (2.10)

where U ∈ Rm×m is the orthogonal matrix of left singular vectors {ui ∈ Rm×1|i =
1, 2, ...m} in columns, matrix Σ ∈ Rm×l is the singular value matrix containing decreas-
ingly ordered singular values {σi ∈ R|i = 1, 2, ...min(m, l)} on the diagonal and zero
elsewhere. All entries of Σ are nonnegative and exactly k of them are strictly positive.
The orthogonal matrix V ∈ Rl×l contains right singular vectors {vi ∈ Rl×1|i = 1, 2, ...l}
in columns. [14, pp. 18-22]

B Principal component analysis (PCA)

SVD is performed directly on the data matrix M . PCA is performed on the mean-
corrected covariance matrix of M , which is the m×m matrix K = cov(M − A). Matrix
A = [a,a, ...a] ∈ Rm×l contains the mean values of each component over all observations,
ie. a = [a1, a2, ...am]T and aj = 1

l

∑l
i=1mj,i, where j = 1, 2, ...m. Assuming observations

in M are from a multivariate random variable, we can use the unbiased estimate of the
covariance matrix described in Appendix A.4. Performing Eigenvector decomposition, we
obtain

U−1KU = D, (2.11)

where U = [u1,u2, ...um] ∈ Rm×m is the matrix of m Eigenvectors {uj ∈ Rm×1|j =
1, 2, ...m} of K in columns. Matrix D ∈ Rm×m contains the Eigenvalues d1, d2, ...dm of
K along the diagonal and is zero elsewhere. Eigenvectors and Eigenvalues are paired and
matrices U and D usually ordered according to decreasing Eigenvalues. The columns in
U are the principal components of M . The diagonal elements in D are the variances
corresponding to the principal components.

C Applications

Orthogonalization allows dimensionality reduction for transmission and storage of spectral
data with little or no loss in information [15, 16]. Linear models of spectral data were also
used in spectral estimation [17, 18] (we come back to this in Chapter 5). Apart from that,
an orthogonalized spectral reflectance space is of use in multi-spectral imaging system
design to quantify the information loss in the acquisition process (we come back to this in
Chapter 3).
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2.2.5 Physical model of color perception

We revise briefly the well-known link between radiometric quantities describing electro-
magnetic signals in the visible range of the spectrum of light and the physiologically
perceived color in the human visual system. According to the tri-chromatic nature of
photoreceptors in the human eye, the range of perceivable colors for an average human
observers can be described by coordinates in a three dimensional color space. The spec-
tral functions that define the mapping from spectral space to the color space are specific
primaries associated with a color space and all colors can be expressed by mixtures of
the three primaries. One particular important set of primaries is defined by the CIE and
called CIE-XYZ. It is the space of chromatic responses of the so-called standard observer.
These responses are referred to as tristimulus values. A numerical descriptor of tristimulus
values (X, Y and Z) to a color signal resulting from a surface with spectral reflectance
function r(λ), illuminated by a source with SPD l(λ) is computed with the CIE standard
observer color matching functions (x(λ), y(λ) and z(λ)) [19, p.156]:

X =

∫ 780

380
r(λ)l(λ)x(λ)dλ

Y =

∫ 780

380
r(λ)l(λ)y(λ)dλ

Z =

∫ 780

380
r(λ)l(λ)z(λ)dλ.

(2.12)

By using a particular normalization, the Y -tristimulus value can be related to Luminance
of a color stimuli. We note that we do not include this normalization factor in the previous
equation because we mainly consider ratios of tristimulus values and the normalization is
hence without effect.

Considering discrete sampling, we can rewrite this expression in matrix notation and
obtain

xXY Z = Y T
CMF diag(l) r, (2.13)

where xXY Z = [x, y, z]T ∈ R3×1 is a vector of tristimulus values, diag(l) ∈ Rm×m a matrix
with values of the SPD l ∈ Rm×1 on the diagonal. Vector r ∈ Rm×1 denotes a spectral
reflectance and matrix YCMF ∈ Rm×3 the discrete CIE Standard Observer color matching
functions (CMFs).

Lack of perceptual uniformity when considering geometric distances between pairs of
colors at different locations in CIE XYZ space led to the development of the CIE 1976
L*a*b* color space (CIE-Lab) among several others. The non-linear transformation of a
vector of tristimulus values xXY Z ∈ R3×1 from XYZ to vector xLab = [L∗, a∗, b∗]T ∈ R3×1

in CIE-Lab space is defined as3

L∗ = 116 f

(
y

yn

)
− 16
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[
f

(
x

xn

)
− f

(
y

yn

)]

b∗ = 200

[
f

(
y

yn

)
− f

(
z

zn

)]
.

(2.14)

3Definition from ISO 13655:2009(E): Graphic Technology - Spectral measurement and colorimetric
computation for graphic arts images.
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The scalars xn, yn and zn are the CIE XYZ tristimulus values of the reference white point
and

f(t) =

{
t
1
3 if t > ( 6

29)3

841
108 t+ 4

29 otherwise.
(2.15)

The components of the color vector xLab are the lightness L∗ of the corresponding
reflectance assuming a given scene illumination and chromaticity coordinates a∗ and b∗.
Whenever CIE-Lab coordinates are computed in this work, we use the CIE 1964 10◦ Stan-
dard Observer as CMFs, which was derived from works of Styles and Burch [20] and
Speranskaya [21]. By selecting the 10◦ Standard Observer, we consider a viewing condi-
tion assuming the objects to be viewed are close to the observer. Color coordinates are
computed using CIE-D65 Standard Illuminant. Both are shown in Figure 2.4.

The above definitions of the CIE-Lab color space and corresponding color coordinates
act as quantitative descriptors for color based on the CIE standard observer. Color sci-
entists have derived transformations to compute hue and chroma from CIE-Lab color
coordinates, which allow quantifying color in perceptual terms.
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Figure 2.4: Illustration of CIE Standard Illuminant A, D50 and D65 (a) and CIE 1964
10◦ Standard Observer (b).

2.2.6 Color measurement

The color stimuli of a surface for a given standard illuminant can be obtained by direct
or indirect measurement. With direct measurement we refer to the measurement of tris-
timulus values by means of a photosensitive detector and color filters that implement a
form of the CMFs. These kind of devices are usually called Colorimeters or Tristimulus
colorimeters. A device is said to be colorimetric if it satisfies the so-called Luther condition
or Maxwell-Yves criterion, requiring the product of spectral responsivity of the sensor and
the spectral transmittance of the filters to be a linear combination of the CMFs.

An indirect approach to obtain tristimulus values for a color stimuli is to measure
spectral reflectance of the surface for a known scene illumination and to calculate xXY Z
according to Equation 2.13. This approach is much more flexible than the direct mea-
surement, as it allows to change the measurement condition (ie. standard observer and
standard illuminant) a posteriori. Indirect color measurement can be considered as the
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state of the art in tristimulus value measurement. The spectral imaging based measure-
ment considered in this work is one kind of indirect color measurement that is estimation
based.

2.3 Spectral image acquisition

Subsequently, we are interested in using a digital camera system for spectral measurements,
specifically spectral reflectance factor measurements. A spectral image can be represented
in form of a 3-dimensional matrix C ∈ Rr×c×n, where r and c denote the spatial image
dimensions and n the spectral image dimension (ie. the number of discrete spectral image
channels).

There exist various technological approaches for spectral imaging and we are interested
in those acquiring information of the visible part of the spectrum of light. They are all
based on image sensors with a 2-dimensional array of photosensitive cells and follow one
of the following four basic principles (illustrated schematically in Figure 2.5):

Spatial scanning: The acquisition of multiple images is synchronized with a translation
movement (spatial scanning) of either camera system or image scene with respect
to the other. Each acquired image contains spatial information of the scene in
one image dimension, and spectral information in the other image dimension. The
spectral separation of electromagnetic radiation can for instance be achieved with
an optical diffraction grating (eg. [22]).

Spectral scanning: Each of multiple, typically sequentially acquired images contains
spatial scene information with distinct spectral content. The spectral separation
can for instance be achieved using multiple optical filters (eg. [23, 24]), a liquid-
cristal tunable filter (LCTF ) (eg. [25]) or an acousto-optic tunable filter (eg. [26]).

Spatio-spectral scanning: There exists no separation of spectral and spatial content
in a single acquired image. Typically, the intensity in one spatial dimension of the
image is also a function of the wavelength of the electromagnetic radiation sensed,
and not only of the spatial coordinate. For instance, spatio-spectral image filtering
can be achieved with holographic Bragg-gratings (eg. [27, 28]). Multiple images
with different spectral content are acquired sequentially and resampled in a post-
processing step to achieve the final spectral image cube.

Snapshot (non-scanning): Snapshot imaging refers to techniques that do not require
moving parts and acquire multiple spectral image channels typically at the same
moment in time.

One type of snapshot system is a multi-sensor camera that divides the optical path
using one or several beam-splitters. Distinct optical filters can be attached to each
sensor to achieve the spectral filtering of the spatial images and the acquisition of a
spectral image cube from multiple sensors can be performed time-synchronized (eg.
[29]).

A conventional RGB camera can be considered as a 3-channel snapshot system.
The spectral separation is achieved by a Bayer-pattern filter array in front of the
sensor. It is also possible to achieve spectral separation without a filter array using
specific image sensors that make use of the wavelength-dependent penetration depth
of photons in photosensitive material [30]. The same physical principle can be used to
create image sensors with responsivities that are tunable at runtime. This has been
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Figure 2.5: Schematic illustration of the four basic principles of spectral imaging, adopted
from our previous work [28].

shown for a sensor with few pixels [31], but not yet for a sensor with sufficient spatial
resolution to perform spectral imaging. Because acquisition of multiple spectral
images is performed sequentially, this approach could also be classified as spectral
scanning.

Until now, we have not specified what we refer to exactly when stating that a spectral
image cube contains spatial information of an image scene and spectral information corre-
sponding to discrete spectral image channels. In fact, depending on the spectral imaging
technique in focus, the meaning of a spectral channel can be quite different. Usually,
spectral image channels are characterized by their spectral responsivity function, which
describes how the channel responds to electromagnetic radiation as a function of wave-
length. Without being any more specific, this can mean a spectrally narrow Gaussian
shaped filter function as well as a spectrally wide filter function that has any other shape.

As stated earlier, we are interested in pixel-wise measurement of spectral reflectance
factor functions from multi-spectral image data. Our requirement on the spectral sam-
pling of these functions is a 10 nm step size. For instance, spectral responsivities of image
channels of a well characterized LCTF based spectral imaging system can fulfill this re-
quirement, because the filter functions are spectrally narrow Gaussian-shaped and can be
tuned to sample the spectral curve in a 10 nm interval.

In this work, we are interested in an alternative approach to obtain the spectral re-
flectance function that is distinct from the aforementioned sampling scheme. We want to
use camera response data from a multi-channel imaging system in combination with math-
ematical models to either recover the spectral reflectance factor function based on a model
of the image acquisition process, or to estimate it using machine learning techniques. We
will come back to this problem in Chapter 5.

In the following subsection, we will illustrate the working principle of digital cameras
in general and then introduce the LSMSC system that is considered in this work. After
that, we will formally define a model of the general image transfer function, describing the
relation of scene radiance sensed by the camera and the corresponding camera response
in digital counts.

2.3.1 Digital camera working principle

Digital cameras, with their basic functionality to sense light, belong to the class of radio-
metric measurement devices. The general working principle and corresponding information
processing chain of a digital camera are illustrated in Figure 2.6. Accordingly, a scene is
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Figure 2.6: Illustration of the digital camera working principle (a) and information
processing chain (b).

illuminated by a light source and a portion of the light irradiating the scene is reflected
from the surface. A certain amount of this (reflected) light falls within a solid angle of
observation with respect to the camera and the sensor responds to it. To get a sharp
image of the scene at the sensor plane, the distances between image scene, camera optics
and sensor plane have to be adjusted according to the focal length of the camera lens or
vice versa. We refer to the distance between camera sensor and image scene as working
distance of a camera system.

Most conventional cameras contain an area sensor with a rectangular array of photo-
sensitive cells. The cells receive the reflected spectral radiance of the scene and by that
spatially sample the scene in a single exposure. The magnitude of the response of the
sensor to light as a function of wavelength is described by the sensor responsivity4.

The imaging principle considered in this dissertation is based on a line sensor. Such
a sensor has pixels arranged in a line and therefore only samples one line of the scene
in a single exposure. A spatial image is obtained by translating either camera or scene
with respect to the other such that the movement is perpendicular to the line sensor.
The acquisition is performed synchronous to the movement and multiple image lines are
concatenated to form the final image5.

A CCD sensor technology

The most common types of camera sensor architectures are CCD and CMOS. CCD is the
abbreviation for charge coupled device and refers to the type of movement of electrical
charges, as we will see below. CMOS is the abbreviation for complementary metal-oxide-
semiconductor, which is a technology for constructing integrated circuits. Even though

4In related literature this function is also called sensitivity. We use the term responsivity to avoid
confusion with another common meaning for sensitivity, which is the minimum stimulus level required for
a detector to respond.

5Note that this principle is described in more detail in Section 2.3.2 and also illustrated in Figure 2.9a.
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Figure 2.7: Schematic illustration of a CCD sensor cell (a) and an imaging array (b).

both technologies are based on metal-oxide semiconductor circuits, there exists a great
difference in the sense that a CMOS sensor converts electronic charge to voltage at a pixel
level, while charge-voltage conversion in a CCD is typically performed after shifting the
charges to the sides of the sensor. A detailed comparison of the characteristics of these
types of sensors can be found elsewhere, for instance in [32, 33]. In what follows, we
concentrate on CCD technology, which is the sensor type used in the laboratory LSMSC
system considered in this work.

The conversion from scene radiance to digital counts in a CCD sensor consists of 4
steps: charge generation, charge collection, charge transfer and charge measurement. The
following basic introduction to these processes is based on [34].

The sensor cell contains a positive doped semiconductor substrate (p-layer), usually
silicon, and above a thin negative doped silicon layer (n-layer) and a layer of isolating
silicon-dioxide (SiO2-layer). The SiO2-layer is transparent for light photons. On top of
this compound follow optically transparent electronic conductors, usually made of poly-
crystalline silicon. Considering the sensor cell in the sensor array compound, conductors
form a regular structure on the top layer of the sensor. The layer composition is illustrated
in Figure 2.7a.

The thin doped n-layer is often referred to as the buried-channel. Without applying
voltage to the sensor cell, free electrons from the n-layer recombine with holes from the
p-layer and a small depletion region is created at the junction of the p- and n-layer. By
applying a reverse bias (ie. connecting the p-layer to the negative source pole and the
n-layer to the positive source pole), the depletion region is increased and remains virtually
free of charge. A small current that crosses the pn-junction regardless of the reverse bias
is called dark current and depends on the ambient temperature.

If the sensor cell is exposed to light, photons that impinge on the sensor surface par-
tially penetrate into the silicon. If the photon energy is larger than the band-gap of the
sensor material, the interaction causes electron-hole pair generation based on the photo-
electric effect. The charge generated in this process is linearly related to the light intensity
impinging on the cell and to the time in which the cell is exposed to light (ie. the integra-
tion time).

The maximum amount of charge that can be generated is an important sensor property
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called full-well capacity. This parameter describes the amount of electrons a sensor cell
can hold (usually between 50 000 and 1 000 000). A larger full-well capacity means a larger
dynamic range (ie. the ratio between the most and the least bright object in a scene that
can be simultaneously discriminated).

The efficiency of electron-hole pair generation in the silicon semiconductor, and conse-
quently the efficiency of the sensor in light sensing, is depending on the energy they carry,
ie. their wavelength. The energy of a photon is

Eλ =
hc0

λ
, (2.16)

where h is Plank’s constant, c0 the speed of light in vacuum and λ the photon’s wavelength.
This quantity is usually denoted in unit Electronvolt (eV) and 1 eV = 1.602× 10−19 J.

Assuming c0 ≈ 2.99 × 108 m
s and h ≈ 6.626 × 10−34 Js, we see that E380 nm = 3.25 eV

and E780 nm = 1.59 eV. The band-gap of a mono-crystalline silicon lattice is ESi = 1, 1 eV,
and because E380 nm > E780 nm > ESi, we can conclude that this material is sensitive in
the spectral range from 380 nm to 780 nm considered in this work. Obviously, the sensor is
also sensitive in the near-infrared, but the responsivity is bounded by the silicon band-gap
towards higher wavelengths.

Another limitation of responsivity is related to the photon penetration depth in the
semiconductor material, which is larger for more energetic photons (ie. shorter wavelength
photons)6. The relation of photon energy and penetration depth can be approximated by
Lambert-Beer law. Accordingly, the further away from the pn-junction a photon pen-
etrates, the less likely electron hole pair generation occurs and the more likely is the
recombination of free charges after electron-hole pair generation. The only region where
recombination can not occur is the charge-free depletion region. The sensor responsivity
is therefore the largest in the depletion region and decreases for wavelengths beyond this
range.

Until now, charge generation and collection were discussed on a sensor cell level.
Charge transfer is the process of moving accumulated charge packages from a single sensor
cell to the amplifier that measures the charge. This is achieved by changing electromag-
netic fields induced by clocked gate voltage, thermal diffusion and self-induced drift.

We explain the read-out process based on a schematic illustration of a sensor with r×c
sensor cells (pixels) in Figure 2.7b. The transfer of charge packages is performed by shifting
them sequentially in vertical direction through neighboring cells, synchronous for each of
the c parallel sensor cell arrays. The efficiency of the charge transfer process (measured in
percentage of preserved charge after shifting from one cell to another) is very high, usually
higher than 99.999% [34]. A serial shift register collects charge packages shifted out of the
sensor cells. Its charge transfer direction is orthogonal to the cell array charge transfer
direction and an output amplifier is located at the end of this register. The shift frequency
of the serial shift register has to be at least c times higher than the transfer rate through
sensor cells, or several output amplifiers have to be used. Often, odd and even cell arrays
are processed with separate output amplifiers to increase the transfer rate.

The output amplifier electronic usually consists of a small capacitor that receives the
charge and a MOSFET amplifier. This amplifier creates a voltage that is proportional
to the transferred cell charge. The voltage can then be converted to digital counts by
analog-to-digital conversion.

6We note that this principle was already mentioned earlier in Section 2.3. To be more specific at this
point, the aforementioned sensor detects photons at various depths in the photosensitive material.
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B Sources of image noise

In a consumer camera, post-processing of the raw camera response is performed to make
the acquired images appear visually pleasant to the observer. Post-processing is often
non-linear with respect to the image intensities. Opposed to that, in a scientific camera,
the linear relation of scene radiance and raw camera response is highly desired and the
degree of linearity is usually considered as a quality factor. For this type of camera,
effects resulting in a deviation from linearity are undesired and usually referred to as
noise. Mechanisms that contribute noise to the measured camera response are photon
arrival statistics, noise from the CCD array (transfer noise, dark current, fixed pattern
noise and high energy radiation), amplifier noise (thermal noise, shot noise, flicker noise),
analog-to-digital converter noise, electrical interference and the noise generated in the
signal processing chain [5].

For this work, we consider noise types that are most relevant for the laboratory LSMSC
system considered in this dissertation, which are dark current noise, shot noise and quan-
tization noise. We describe them briefly as follows [34, 5]:

Dark current noise is a CCD array type noise resulting from thermal agitation of elec-
trons accumulating in the potential well during the exposure time. This current
source is termed dark current. It is almost proportional to the exposure time and it
is a sensitive function of the sensor temperature. Dark current noise can be reduced
drastically by cooling the CCD sensor. In most imaging applications, dark noise
correction is performed by subtracting an average dark frame from the image data.

Shot noise refers to the random photon arrival statistics at the sensor. The arrival
follows Poisson distribution and the variance is equal to the mean number of photons
reaching the sensor per unit time. For low signals (ie. few photons arriving at
the sensor), the signal fluctuation is correspondingly higher. Shot noise can not be
accounted for by system design other than increasing the amount of photons reaching
the sensor.

Quantization noise is a type of noise from the analog-to-digital converter and effectively
a rounding error between the analog input voltage and the digitized output value.
This type of noise is non-linear and signal dependent.

2.3.2 Line-scan multi-spectral camera system

The multi-spectral camera system in focus of this work is a line-scan system. Conventional
area cameras acquire a 2D image in one exposure, while a line-scan camera acquires a 1D
image line per exposure. As mentioned earlier, successive acquisition of such image lines
with respect to a movement perpendicular to the sensor line samples the other dimension
spatially to obtain a 2D image. This so-called scanning principle has many applications
in consumer electronics, manufacturing industry and science. Examples of devices or
applications using line-scan cameras are office scanners, quality control machine vision
systems in assembly lines and air-borne or satellite imaging.

The length of a line-scan image in scanning direction is only limited by the available
memory or computational constraints. Further, line sensors typically have larger photo-
sensitive cells than area sensors and therefore allow for shorter exposure times. This is an
advantage over area sensors in applications when fast continuous moving objects are to be
measured or inspected.
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There exist various possible mechanical configurations for line-scan multi-spectral
imaging. We illustrate two cases schematically in Figure 2.8. System A consists of multi-
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Figure 2.8: Schematic illustration of line-scan multi-spectral imaging principles for the
case of two camera modules.

ple camera modules that are sequentially arranged along the direction of movement of the
scanning object (ie. transport direction). System B consists of multiple camera modules
that are arranged in parallel at one position along the transport direction. The optical
components of all cameras are designed such that each one acquires an image of the entire
scan line. Further, camera modules can either contain multichannel line-scan cameras, or
monochrome line-scan cameras with additional color filter. In either case, light sources
are required to illuminate each scan line uniformly. Obviously, system A requires multiple
light sources, whereas System B requires only one.

The imaging principle that is considered in this dissertation is similar to System B.
Specifically, we focus on a particular system design recently invented by Chromasens
GmbH: instead of using multiple camera modules, a single RGB line-scan camera module
is used. Multiple lenses with additional color filters are attached to the line sensor such
that corresponding image regions of the entire scan line are projected on individual parts
of the line sensor. From now on, we refer to this as LSMSC system.

A System components and scene geometry

The acquisition set-up of the LSMSC is depicted schematically in Figure 2.9a. It consists
of a motorized scanning table (linear stage), a line-scan camera at an angle of 0 ◦ with
respect to the scan surface normal and a line light source at an angle of 45 ◦. On the right
side in the same figure, a photo of the corresponding laboratory set-up is shown.

The linear stage is a motorized spindel drive actuator by Isel AG, which is used to
translate the scanning object under the camera. In our setup, the stage is controlled via
native movement commands sent from a serial communication controller implemented in
the numerical computing environment Matlab by MathWorks, Inc., or a software user
interface provided by Chromasens GmbH.

The line-scan camera module in our setup is a prototype by Chromasens GmbH called
truePIXA. It consists of a 7k-pixel RGB CCD line sensor which allows line-scanning rates
of up to 22.1 kHz. Attached to the camera housing are 4 lenses that project identical spatial
image scene content onto 4 distinct parts along the sensor line as depicted in Figure 2.10a.
Each lens has a distinct color glass filter attached. The 4 RGB sub-images therefore contain
different spectral information of the image scene. A 12-channel image is formed by splitting
the raw 3-channel RGB image into 4 parts and consecutive alignment of corresponding
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Figure 2.9: Non-proportional schematic illustration of the line-scan principle (a) and
photo of the corresponding laboratory set-up (b).

spatial areas in each sub-image. The final scan resolution of our laboratory LSMSC is
100 dots per inch (dpi). Figure 2.10b illustrates the combined effect of camera spectral
responsivity, spectral filter transmittances and scene illumination spectrum (which we call
from now on effective responsivity of the camera system). The responsivity measurements
were obtained using a Bentham M300 monochromator7 and filter transmittances measured
with a Konica Minolta CS2000 spectroradiometer8.

Data acquired with the truePIXA camera is transferred via a camera link interface
to a PC frame-grabber. Camera link is a serial communication protocol standard which
allows a raw data transfer speed of up to 680 MB/s.

Image lines are acquired synchronously with the constant movement of the linear stage
and concatenated to a 2D image. Constant movement is not required if a position encoder
connected to the linear stage is used to trigger the line acquisition at constant steps of
movement.

The object scene (ie. the scanning line of the camera) is illuminated by a line light
source of type Corona 2e, developed by Chromansens GmbH9. This light source is com-
posed of 4 different types of LEDs which are spatially alternated on a electronic circuit
board and which can be controlled individually. The LED currents are operated to ap-
proximate CIE-D50 (see Figure 2.4a), but are tunable to other configurations as well. We
illustrate the SPDs of individual LED types at two current levels in Figure 2.11. High
illuminance of the source of up to 3 000 000 lux is achieved by high-power LEDs and a
focusing back reflector design. This allows operating the camera with low gain and short
exposure times while maintaining high scanning rates.

B Sensor architecture

The sensor in the truePIXA camera is a CCD RGB line sensor10. The general electronic
working principle of the CCD sensor was described before but the sensor architecture of

7Reading from the web: http://www.bentham.co.uk/m300.htm; retrieved: 23.03.2015
8Reading from the web: http://sensing.konicaminolta.asia/products/cs-2000-

spectroradiometer/; retrieved: 23.03.2015
9Reading from the web: http://www.chromasens.de/sites/default/files/chromasens-corona2-

en-2014-f.pdf; retrieved: 23.03.2015
10Note that most of the content of this subsection is summarized from allPIXA camera manual CD40067

Version 3.4.

http://www.bentham.co.uk/m300.htm
http://sensing.konicaminolta.asia/products/cs-2000-spectroradiometer/
http://sensing.konicaminolta.asia/products/cs-2000-spectroradiometer/
http://www.chromasens.de/sites/default/files/chromasens-corona2-en-2014-f.pdf
http://www.chromasens.de/sites/default/files/chromasens-corona2-en-2014-f.pdf
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Figure 2.10: Optical principle of the truePIXA camera: generation of 12 channels with
RGB line sensor and 4 serial lenses with additional color filters (a). The corresponding
effective responsivity of the camera and filter spectral transmittances are shown in (b).

line sensors differ from area sensors markedly. Most obvious, sensor cells are arranged in
serial fashion rather than the rectangular array architecture of the area CCD illustrated
in Figure 2.7b. Except for that, the sensor implements full RGB at a pixel level by using
parallel lines of R, G and B sensor cells. This is distinct from conventional color CCD
sensors in which color filter arrays (eg. a Bayer filter mosaic) and demosaicing are used,
which results in a lower true image resolution.

The parallel R, G, and B sensor lines are separated by lines of cells which are masked
off to be protected from incident light. These cells act as shift registers to transfer the
generated charge in the photosensitive cells to charge amplifiers at the end of the sensor
line. This kind out read-out process is referred to as interline transfer and allows using
an electronic shutter. As compared with charge transfer through the photosensitive cells
and mechanical shutter, interline transfer features much shorter exposure times [5, p.496].

To speed up data processing, the read-out path of each sensor line of the truePIXA
is split half in so-called rear and front tabs, and odd and even pixels use separate shift
registers. The masked cells neighboring the photosensitive cells on both sides are used for
that. Accordingly, 12 charge amplifiers are required to process the charges. We illustrate
the line sensor architecture schematically in Figure 2.12.

C Data processing

We focus our discussion on the process performed after analog-to-digital conversion, i.e.
once the acquired image is transferred to a PC. Raw image data is available in 8-bit and 16-
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Figure 2.11: Spectral power distribution of the 4 LED types of the Corona 2e line light.
The figure contains spectroradiometric measurements corresponding to 45 ◦ illumination-
and 0 ◦ observation angle with respect to the measurement surface normal and 0.2 ◦ aper-
ture at 52 cm distance. The radiances were measured over a Sphere Optics Zenith Polymer
calibrated diffuse reflectance target, using a Photo Research PR75 spectroradiometer. The
reflectance target was discounted from the measurement.

bit precision. Preliminary experiments by us have shown that there is no clear advantage
of using 16-bit over 8-bit precision when the entire data processing pipeline for spectral
reflectance measurement is taken into consideration, hence we consider raw data in 8-bit
range. The main steps in sequence of processing are dark image subtraction, white-level
correction, signal averaging and geometrical calibration.

Dark image subtraction is also called dark frame subtraction and its purpose is to
account for dark current noise. As mentioned before, this type of noise is signal
independent and is due to random generation of electrons and holes in the depletion
region of photosensitive cells in a sensor. By acquiring an image in dark environment,
this noise pattern can be quantified and subtracted later from any scene image. As
dark current depends on the camera gain, exposure time and sensor temperature,
the dark image has to be captured with the same settings as the scene image, and
renewed in case ambient temperature changes severely.

White-level correction is also called shading correction or flat-field correction and
mainly accounts for two effects. The first effect is pixel response non-uniformity
(PRNU), an effect related to the image sensor due to which identical radiances
reaching two sensor cells at different locations can produce distinctive amount of
charges. PRNU can be caused by non-uniformly doped semiconductor material,
variation of absolute pixel area in the manufacturing process, pixel-to-pixel varia-
tion of dark current or non-uniformity of sensor substrate thickness [5, p.498]. The
PRNU can be corrected for by camera response scaling.

The second effect is not related to the sensor architecture, but to non-uniformity of
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Figure 2.12: Schematic illustration of the line sensor architecture.

the scene illumination. If we assume this non-uniformity to be independent of the
wavelength of light, it can also be corrected for by camera response scaling.

The camera response scaling can be achieved by applying a pixel-wise scaling factor
to every line of the scanned image. Our laboratory setup includes a uniform white
reference surface in form of a stripe that extends over the whole length of the scan
line and is attached to the scanning table. Hence, every scanned image contains
an area corresponding to the white reference surface. This area is extracted and
averaged in scanning direction. Pixel-wise scaling factors correspond to reciprocal
values of the averaged white response. After the white-level correction, the image
intensity range is from 0 to 1 and precision is limited by the data type used (in our
case floating numbers with 64-bit precision).

Oversampling/signal averaging is a process used to increase the image signal-to-noise
ratio (SNR). Assuming signal and noise are uncorrelated, the signal level is constant
over multiple acquisitions and that noise is a random variable with zero mean and
constant variance, the SNR increases with the square root of the number of mea-
surements that are averaged [35, p.60].

The assumption of constant signal level in multiple acquisitions generally does not
hold for line-scan systems due to the continuous scanning movement of the sam-
ple with respect to the camera. However, if the exposure time is relatively short
compared with the scan velocity, constant signal level can be assumed.

As an example we consider our laboratory LSMSC: let v = 0.075 m/s be the scan
velocity and t = 50µs be the exposure time. The distance that the measurement
surface travels under the camera in one exposure is s = vt = 3.75µm. The spatial
resolution r of the system in scan direction is 100 dpi, or r = 254µm/pixel, according
to which b rsc = 67 measurements can be averaged.

Geometrical calibration is the process of converting the raw 3-channel RGB image
data to a 12-channel multi-spectral image cube. As mentioned before, a raw sensor
RGB image contains 4 filtered sub-images. Each RGB sub-image contains an image
of the scanned surface, projected over one of the lenses attached to the camera
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housing. The sub-images have to be registered spatially and corrected for several
misalignment effects:

• a line shift (perpendicular to the scan direction) due to the displacement of the
R, G and B sensor lines. For our LSMSC system, the resulting displacement is
4 pixels between consecutive channels.

• a fixed displacement of RGB sub-images from each lens due to the sequential
arrangement of the lenses along the sensor line.

• observation angle deviation in perpendicular direction to the sensor due to
precision limitations in the assembly of the 4 lenses in front of the camera. See
Figure 2.13b for an exaggerated illustration of this effect.

• a non-linear image distortion along the sensor line which is distinct for each
of the 12 channels due to lens aberrations and off-optical-axis magnification
change (barrel distortion).

• a scene-adaptive pixel displacement if non-planar scanning objects are consid-
ered.

The 1st and 2nd item are global effects and can be corrected by a fixed translation.
The last three items are more complicated to correct. We devote Chapter 3 to an
extensive discussion about image registration of multi-channel line sensor data and
present a registration framework for planar and non-planar scanning objects.

D Limitations of the LSMSC system with respect to color measurement

The specific interest in measuring reflectance factor with the LSMSC system motivates fur-
ther discussion. We introduced in Section 2.2.2 a set of 4 different measurement conditions
that conform with the norm ISO 13655 for reflectance factor and color measurement. The
LSMSC imaging principle imposes some limitations in the realization of these conditions,
which we will discuss next:

Illumination SPD: As mentioned before, we restrict our work to measurements conform
with the M2 condition. Hence, it is crucial to ensure that the light source must not
exhibit substantial power in the spectral range below 400nm. This is achieved by
switching the current of the UV type LED off (LED 3 in Figure 2.11).

Measurement geometry: The ISO 13655 and related norms define geometrical require-
ments for color and spectral measurement. With the detector centered at zero degree
with respect to the measurement surface normal, the light source has to illuminate
the sample at 45 ◦ circumferentially or annularly. The LSMSC system uses the
Corona 2e line light which features directional illumination from multiple angles.
Accordingly, radiance at a certain location on the scan line is an integrated quantity
over each angle of illumination as seen from that location. We indicate this effect
in Figure 2.13a by depicting several rays of light in blue color for a location on the
scan line corresponding to observation angle β and the most right lens.

Another limitation is a deviation of observation angle from 0 ◦ that depends on the
raw sensor pixel location. If we consider the projected sub-image corresponding
to one lens, a maximum observation angle deviation for distinct image points can
be up to α ≈ 17 ◦ (see Figure 2.13a). The final 12-channel image is composed by
concatenating 4 sub images and hence, image intensities in the final image that result
from different sub-images correspond to distinct observation angles.



2.3. SPECTRAL IMAGE ACQUISITION 29

Transport direction

Linear stage

Line-light   

Line-sensor
 

W
or

ki
n

g 
d

is
ta

nc
e

45º

(a) perspective view

        

Transport 
direction

Line-sensor

Lens viewpoint 
variation

Linear stage

(b) side view

Figure 2.13: Limitations for spectral and color measurements with respect to illumina-
tion and observation geometry. We illustrate in (a) the deviations of the observation angle
from 0 ◦ (in red and green) and the deviations of the illumination angle from 45 ◦ (in blue)
and lens viewpoint variations in (b).

2.3.3 General image transfer function

A The camera response model

We consider the products of spectral responsivity of the 3-channel RGB line sensor and
each of the four filter transmittances of the lenses attached to the camera housing as
12 individual camera channel responsivities. The acquisition system captures the physical
stimuli (ie. the spectrum of light incident on each camera sensor cell) and creates responses
corresponding to the spectral responsivities of the 12 channels. We model the response of
one line of a n-channel11 line-scan camera system as

xi(v) = γi

∫

Λ
si(λ, v)yi(λ, v)dλ+ ηi(v), i = 1, 2, ...n, (2.17)

where xi(v) denotes the camera response of channel i at sensor pixel location v ∈ {1, 2, ..., c},
and c is the image width12. Further, Λ = [380, 390, ...730]nm is the wavelength range of
light considered in this study and yi(λ, v) is the i-th function of camera spectral respon-
sivity at wavelength λ13. Function si(λ, v) describes the scene radiance received at sensor
pixel location v (which is also referred to as the color signal) and the scalar ηi(v) is a
camera response noise term. The scaling factor γi is related to camera channel gain and
exposure time.

The functional dependence of si, yi, ηi and consequently xi on the sensor location v
can be modeled as a non-linear function Γi. Further, when considering discrete sampling
of continuous functions, we can rewrite Equation 2.17 and obtain

xi = Γi

(
γi

m∑

λ=1

si(λ)yi(λ) + ηi

)
, i = 1, 2, ...n. (2.18)

11Accordingly, for our LSMSC, n = 12.
12The location referred to is that of the final 12-channel image and not the raw 3-channel image
13The spectral responsivity yi is modeled as a function of v to account for the color glass filter trans-

mittance variation with observation angle for each sensor pixel location.
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Assuming Γi is the identity function and adapting vector notation, we obtain

x = Y T s + η, (2.19)

where x = [x1, x2, ...xn]T ∈ Rn×1 is a vector of camera responses and vector s = [s1, s2, ...sm]T ∈
Rm×1 is the color signal, ie. radiance reflected from the object, illuminated by the light
source. Further, Y ∈ Rm×n is a matrix with n-channel responsivities in columns, each
scaled by γi. The vector η ∈ Rn×1 denotes camera response noise.

Because we assume Γi to be the identity function, we consider every pixel as a de-
tector at 0 ◦ with respect to the surface normal, capturing the radiance of the sample
illuminated at 45 ◦. This means that we ignore the effect of channel-dependent deviation
of the observation angle and scene illumination.

If the sample surface is characterized by reflectance factor r = [r1, r2, ...rm]T ∈ Rm×1,
we can express the color signal as the product of reflectance factor and illumination SPD
l = [l1, l2, ...lm]T ∈ Rm×1, hence s = [x1l1, x2l2, ...xmlm]T ∈ Rm×1. For convenience, we
define a matrix W = diag(l)Y ∈ Rm×n that combines the effect of camera responsivity
and scene illumination, and was introduced earlier as effective responsivity of the camera
system. These conventions allow us to rewrite Equation 2.19 such that

x = W T r + η. (2.20)

B Camera response simulations

The general framework for camera response simulations is in accordance with Equa-
tion 2.20. The SPD of the scene illumination, filter transmittances and the responsivity
of the raw RGB sensor were obtained by measurement and W is computed based on these
measurements. The channel gain factors γi are generally adjusted such that an expected
maximum color signal does not result in a camera response that exceeds 80% of the dy-
namic range of the camera system. This operation condition is considered optimal with
respect to SNR and utilization of the camera dynamic range.

We shall see that for the LSMSC system, channel gain factors can not be adjusted
independently for each of the 12 channels. In fact, in later parts of this work we will
also consider a 3- and a 6-channel system configurations and each system configuration
constrains the selection of channel gains in a unique manner. To clarify we consider
Figure 2.14, which illustrates the relation of physical location of projected sub-images on
the camera line sensor and image channels for the three system configurations. From this
figure it can be seen that for the 3- and 6-channel system configurations, each channel
gain can be tuned to its optimal operation point because there exist independent signal
amplifiers for each corresponding channel (ie. amplifiers for front and rear tab, R, G
and B line sensor channels, as well as odd or even pixels14. For the 12-channel system
configuration, two channels are influenced by the same gain factor (C1 and C4, C2 and
C5, C3 and C6, C7 and C10, C8 and C11, C9 and C12). We model this dependence when
simulating camera responses.

When it comes to simulating the noise term in Equation 2.20, we use a parametric
noise model defined as

η = diag(a) ηd(Wr) + ηi, (2.21)

where W ∈ Rn×m and r ∈ Rm×1 are as before and elements in vector a = [a1, a2, ...an]T ∈
Rn×1 scale the influence of signal dependent noise (first term on the right in Equation 2.21)

14See Section 2.3.2.B and Figure 2.12
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Figure 2.14: Relation of physical location of projected sub-images on the camera line
sensor and image channels for various LSMSC system configurations considers in this work.

with respect to signal independent noise (second term on the right in Equation 2.21) for
each channel.

The signal dependency is mainly due to shot noise, which is a Poisson type noise
and proportional to the square root of the signal (

√
Wr). We use a normal distribution

to approximate the shot noise distribution. We also assume the signal independent noise
term to be normally distributed and model both terms as statistically independent random
variables with zero mean, so

ηd(Wr) ∼
√
Wr N (0, σ2

d)

ηi ∼ N (0, σ2
i ),

(2.22)

where σ2
d and σ2

i are the variances of the normally distributed variables and “∼” means
proportional15. We distinguish two scenarios for noise simulations:

Noise Scenario 1: simulating a LSMSC at various levels of noise
This scenario allows us to study the influence of various levels of noise on the system
performance explicitly. We make use of this in Section 5.5.1, when comparing noise
properties of several spectral estimation approaches. For this scenario, parameter
a in Equation 2.19 is adjusted such that equivalent amounts of ηd and ηi have an
approximately similar influence on the average SNR of a particular simulated set of
data.

15To avoid confusion, we explicitly note that σ2
d is the variance of a normal distribution and not the

variance of the signal dependent noise term. This variance would be var(
√
Wr N (0, σ2

d)), where var(·)
denoted variance.
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Noise Scenario 2: simulating a LSMSC at a realistic fixed noise level
The camera manufacturer has characterized the noise properties of the LSMSC RGB
sensor in great detail and provided parameters for ηd. Noise variances of the signal
dependent noise term were extracted from a raw RGB image of a white reference
surface using the camera sensor without additional filters, and a variance of approx-
imately 1 in 8-bit operation mode was found16. The channel-wise scale factors in a
of Equation 2.19 are then adjusted such that the noise variances for the maximum
signal (ie. the white reference surface) are scaled with the fraction of the signal that
is left after introducing the additional color filters.

As signal independent noise (ie. dark current noise) is corrected for by dark im-
age subtraction in practice, we assume ηi = 0. Analog-to-digital converter related
quantization noise is included in the model by a flooring operation on the real-valued
simulated noisy camera responses. The effect of temporal averaging by over-sampling
and spatial averaging homogeneous image regions is accounted for in the model as
well, as it also reflects a realistic application scenario.

We consider this particularly realistic operation point of the system for instance in
Chapter 3.4, where simulated camera response data is required for filter selection.

2.4 Framework for system evaluation

In the design and development of multi-spectral imaging systems, performance evaluation
is a key aspect for a successful system implementation. Performance is a general expres-
sion, indicating how well some task is performed. Measurable performance parameters
with respect to multi-spectral imaging systems are for instance image quality (spatial and
spectral), color accuracy, computational complexity of computations or acquisition and/or
data processing speed.

In this work, we barely consider computational complexity or speed related parameters,
but mainly focus on design parameters related to spectral and color measurement accuracy.
The next subsections introduce corresponding measures, the model validation technique
used and the framework for model parameter selection.

2.4.1 Spectral estimation error

In spectral reflectance estimation, the estimation error is defined as the residual be-
tween an estimated reflectance r̃ = [r̃1, r̃2, ...r̃m]T ∈ Rm×1 and its true17 counterpart
r = [r1, r2, ...rm]T ∈ Rm×1. This residual is a multi-dimensional quantity and not easy
to assess individually when large sets of data are considered. It is a common practice to
map this multi-dimensional vector to a single number and there are various ways to do
this mapping. When considering a metric that operates on the spectral data, we refer to
spectral error.

For color measurement, the spectral data is transformed to colorimetric data (for
instance tristimulus values or color coordinates in CIE-Lab color space). We can express
the aforementioned spectral residual vector as well in terms of a residual vector in the
colorimetric space. Again, a mapping function can be employed to compute a single

16We note that for our experiments, we individual noise variance terms for each of the R, G and B
channel.

17“True” in the sense of a ground-truth measurement. In our work we use the Konica Minolta FD7
spectrophotometer for that.
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number, which is usually referred to as color difference. Hence, when considering a metric
that operates on colorimetric data, we refer to colorimetric error.

Some authors have found it useful to combine spectral and color metrics for specific
applications. An example is the work by López-Álvarez et al. [36] on multi-spectral imag-
ing system design, in which a multivariate optimization problem is treated as univariate
using a combined metric. There are no limitations in designing a function combining sev-
eral metrics, but it can be difficult in practice to define a meaningful way of combining
individual metrics. This is specifically the case when typical value ranges of individual
metrics are different from each other.

In general, the selection of an appropriate error metric is application dependent. Be-
cause the focus of this work is reflectance and color measurement, we consider metrics
from both categories.

A Quantifying spectral signal difference

The square root of the average of squared residuals between components in r ∈ Rm×1 and
r̃ ∈ Rm×1 is called root-mean-square error and defined as

RMSE(r, r̃) =

√√√√ 1

m

m∑

i=1

(ri − r̃i)2. (2.23)

In this metric, each wavelength element is considered equally important.
Modified versions have been proposed to introduce a spectral weighting, which allows

emphasizing spectral bands that are more important in a specific application than others.
For color measurement, Imai et al. [37] proposed a weighting function that emphasizes
those bands that contribute more to the tristimulus values of the signal.

Closely related to RMSE is a logarithmic version called RMSLE, defined as

RMSLE(r, r̃) =

√√√√ 1

m

m∑

i=1

(ln(ri + 1)− ln(r̃i + 1))2, (2.24)

where ln(·) denotes the natural logarithm. The RMSLE weights spectral residuals with
low reflectance value higher than corresponding residuals of the same magnitude with
high reflectance value. We find this specifically useful in applications for color measure-
ment from estimated reflectance data. In such applications, residuals from low magnitude
spectral reflectances often contribute to large colorimetric errors and therefore should not
result in a similar error value as corresponding residuals from high magnitude reflectances,
as is the case for the RMSE metric. An illustrative example of this effect is given in Fig-
ure 2.15, in which we also compare other metrics defined below.

Another way of mapping the residual vector to a single number is the Pearson distance,
defined as

dp(r, r̃) = 1− rT r̃

‖r‖‖r̃‖ , (2.25)

which is one minus the normalized scalar product of the two vectors r and r̃. This measure
can also be interpreted geometrically as the sine of the angle between the two vectors. If the
vectors are parallel, the angle between them is zero and dp = 0. The maximum Pearson
distance is dp = 1 and corresponds to vectors that are orthogonal. The geometrical
interpretation helps understanding that this measure is invariant to scale changes of the
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vectors. However, large values of Pearson distance do not have a practical meaning when
considering this metric to quantify spectral errors because the angular differences are
usually very low. The measure is still highly informative because it is sensitive to changes
in the vectorial shape and invariant to a signal offset.

The Pearson distance is also known as the complemented GFC (goodness of fit mea-
sure). To our knowledge, the GFC metric was first used by Romero et al. [38] to quantify
spectral differences and is now commonly used for spectral measurements.
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Figure 2.15: Comparison of RMSE, RMSLE, dp and ∆E00 of sample reflectances.

B Quantifying color difference

The formulation of color differences aims at predicting the magnitude of the perceived
difference between two color stimuli. Historically, the study of difference of color stimuli
is nearly as old as the study of color itself and yet, remains a very active field of research
until this date. The complexity of the task relates to the fact that the observer’s judgment
varies greatly with the conditions of the observation and the kind of stimuli (e.g. size,
shape and texture of the stimuli and the display situation, as well as the spectral power
distribution of the scene illumination). Apart from that, intra-observer variations occur
[19].

The probably most commonly used color difference metric is the Euclidean distance of
the residual vector of color coordinates in CIE-Lab space, denoted ∆E76 and computed as

∆E76(xLab, x̃Lab) = ‖xLab − x̃Lab‖ (2.26)

where xLab ∈ R3×1 and x̃Lab ∈ R3×1 are CIE-Lab coordinates corresponding to reflectances
r ∈ Rm×1 and r̃ ∈ Rm×1 and ‖·‖ denotes Euclidean norm.

Deficiencies with respect to perceptual uniformity of the CIE-Lab color space resulted
in the development of various improved color difference equations. For the case of the ∆E94

metric, modifications were introduced to account for the effect of a perceived decrease in
chroma- and hue-difference with increasing chroma [39]. For the case of the ∆E00 metric,
an additional hue rotation term was developed to correct the problematic blue region
for hue angles in the neighborhood of 275 ◦. Apart from that, compensation for neutral
colors, lightness, chroma and hue were introduced [40]. The ∆E00 metric is described by
the CIEDE2000 color-difference formula, which is the latest recommendation of the CIE.

For this work, if not noted differently, the formulation of color difference is based on
the ∆E00 metric. The computation for two color samples with known CIE-Lab color
coordinates is described in Appendix A.3.
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2.4.2 Model validation

In later sections, we will use learning-based models to estimate reflectance data. One cri-
terion to validate the performance of these methods is generalization, ie. how well do the
results generalize to an independent dataset. Because we sometimes do not consider an in-
dependent dataset for testing, we can use a cross-validation scheme to evaluate estimation
performance and by that reduce the risk of over-fitting the model.

Cross-validation is a technique in which for consecutive rounds of evaluation, portions
of the dataset are used for model training and the rest for testing. By that, all available
data is used for training and testing (but never at the same time). The overall performance
is typically computed as the average performance over all evaluation rounds.

The type of cross-validation technique used is k-fold cross-validation [41]: in each of
k rounds of evaluation, a subset of b lkc of the initially shuffled l samples of the validation
dataset are used for testing, and the rest for training the model. The process is illustrated
schematically for k = 4 in Figure 2.16. In this dissertation, k = 10 is used, ie. 10-fold
cross-validation.
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Figure 2.16: Schematic illustration of k = 4-fold cross-validation process for a validation
dataset with l samples.

2.4.3 Parameter selection

Various spectral estimation models contain parameters. The most common way to set
these parameters is grid search, which in its simplest form is a process that consists
of empirically evaluating performance of the model at predefined values in a parameter
grid, and subsequent selection of the parameter combination that minimizes a certain loss
function. We note that the computational demand for grid search increases exponentially
with the number of model parameters. However, parameter combinations are independent
from each other and the grid search can therefore be parallelized to speed up computations.

Simple grid search is prone to under-sampling the associated loss as a function of
the parameter grid values. The risk of under-sampling is specifically high if the parameter
search space is continuous and the relation of parameter range and step size with respect to
model performance is not clear a priori. Hence, we use simple grid search followed by grid
refinement to reduce the risk of under-sampling. Accordingly, after simple grid search, the
parameter search range is replaced by a refined grid and the grid search is repeated. The
refined grid is bounded by neighboring parameter values around the selected parameters,
and we use a linear grid refinement with 10 refined parameter steps per parameter.

Accordingly, assuming vector ph ∈ Rn×1 contains n monotonically increasing values
for parameter h, scalar o is the index of the parameter found in simple grid search that
minimizes the loss, and ∆p = ph(o+1)−ph(o−1)

10 is the parameter spacing for 10 step grid
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refinement, then

pr,h = [ph(o−1),ph(o− 1) + ∆p,ph(o− 1) + 2∆p, ...,ph(o−1)+10∆p]T ∈ R11×1 (2.27)

denotes the refined parameter grid vector if 1 < o < n. If o = 1, the parameter spacing is
∆p = ph(o+1)−ph(o)

10 and the grid vector

pr,h = [ph(o),ph(o)+1∆p,ph(o)+2∆p, ...,ph(o)+10∆p]T ∈ R11×1. (2.28)

Otherwise o = n, the parameter spacing is ∆p = ph(o)−ph(o−1)
10 and the grid vector is as in

Equation 2.27. We illustrate the parameter selection process schematically for the case of
2-parameter grid search and 5-step parameter grid refinement in Figure 2.17.

The loss function considered in this work is the average RMSE associated to re-
flectance estimation and the data considered is the training data in the cross-validation
process. To minimize risk of over-fitting parameters to the training data, we use again a
10-fold cross-validation scheme for parameter selection.
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Figure 2.17: Schematic illustration of 2-parameter grid search with 5-step parameter
grid refinement in a 4-fold cross-validation scheme. Parameter combinations are denoted
(p1(i),p2(j)), where p1 ∈ Rn×1 and p2 ∈ Rm×1 are vectors containing values of predefined
parameter ranges and i = 1, 2, ...n, j = 1, 2, ...m.

2.5 System configurations and datasets considered in this
work

Many design parameters of a multi-spectral imaging system for reflectance measurements
are application specific. For instance, the selection of an algorithm for recovery/estimation
of the spectral signal depends on the availability of certain data. Another example is that
the required measurement performance for a certain application will influence the system
design because performance is closely linked to the number of imaging channels. In fact,
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the type and number of spectral channels available is also considered in the selection of a
suitable algorithm.

We take these aspects as motivation for considering various LSMSC system configura-
tions in this dissertation. The following list describes the systems used18:

System configuration 1 (SC112C): 12-channel LSMSC manufactured by Chromasens
GmbH (see Section 2.3.2).

System configuration 2 (SC212C): 12-channel LSMSC with 4 filters selected as part
of this work (see Chapter 3.4.4).

System configuration 3 (SC36C): 6-channel LSMSC with 2 filters selected as part of
this work (see Chapter 3.4.3). The effective scan resolution is a factor of 2 higher
than that of the 12-channel system.

System configuration 4 (SC43C): 3-channel LSMSC with 1 filter selected as part of
this work (see Chapter 3.4.2). The effective scan resolution is a factor of 4 higher
than that of the 12-channel system.

The data considered in experimental evaluations consists of several sets of measured
spectral reflectance factor data and corresponding camera responses. Whenever simulated
camera responses are considered, we refer to noise scenario 1 or 2 of the model described
in Section 2.3.3. Whenever measured camera responses are considered, we refer to data
extracted from multi-channel images of color charts acquired with our laboratory LSMSC
system (SC212C), or explicitly describe something else. These charts contain color patches
of size 11 mm× 11 mm, arranged in a rectangular array on A3 size cardboard. The color
patches are manually punched from color swatches of Pantone, HKS and RAL paints.
Camera responses for each patch were extracted from the charts by averaging pixels in an
area that corresponds approximately to the size of the measurement aperture of the FD7
spectrophotometer, which is a circle with 3.5 mm diameter.

A summary of relevant properties of the datasets is given in Table 2.1. Spectral
reflectance factor data was obtained with the Konica Minolta FD7 spectrophotometer.
The data was measured with 3 repetitions and the average taken. We illustrate this
spectral data in Figure 2.18 and the corresponding CIE-Lab coordinates in Figure 2.19.

18Refer to Figure 2.14 for an illustration of the physical relation of projected sub-images on the camera
line sensor and image channels.
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Table 2.1: Datasets considered in experimental evaluations of this dissertation.

Name Material / Production # Surface

Pantone solid
chips (DS1)

Offset printed using 39 Pantone basic color inks
on uncoated 118 g/m2 premium grade paper in-
cluding optical brighteners

1761 matt

HKS-N (DS2) Offset printed on 100 g/m2 wood-free uncoated
paper, using 11 HKS basic inks + metallic and
gold single component colors

90 matt

HKS-K (DS3) Offset printed on 115 g/m2 wood-free premium
grade paper, using 11 HKS basic inks + metallic
and gold single component colors

88 glossy

RAL classic 840-
HR (DS4)

Paper substrate and hidrosoluble varnish 213 semi matt
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Figure 2.18: Color coordinates of measured reflectance data DS1-DS4, converted to
CIE-Lab using CIE-10◦standard observer and CIE-D65 standard illuminant.
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(b) DS2: HKS-N (solid line) and DS3: HKS-K (dashed line)
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Figure 2.19: Measured reflectance data DS1-DS4.
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3.1 Preface

The development of multi-spectral imaging systems involves the design of various system
components, such as the camera module, light source and in line-scan applications a
translation stage for the scanning movement of camera or scan object. It is obvious that
a successful system implementation requires expertise in the fields of mechanical, opto-
mechanical and electrical engineering and beyond. In this dissertation, we constrain our
discussion to optical components of a LSMSC system, namely camera system responsivity
(including filter transmittances) and scene illumination. Assuming the camera response
model presented in Section 2.3.3, modification of the camera system spectral responsivities
can have a similar influence on the generation of camera responses as modification of the
scene illumination. Hence, LSMSC system design should involve both components with
equal importance.

In this dissertation, we regard the system design task as an optimization problem
and hence need to define a measure of system optimality, subject to which a solution
is developed. The following section addresses system optimality in detail. Until this
point, we do not make any assumption whether optimization of scene illumination or the
camera module’s spectral responsivity (for instance by modifying filter transmittances) is
considered.

In Section 3.3, we continue more specifically by considering only the filter selection
problem for a system with fixed illumination SPD. This is the problem of optimizing the
system by selection of a set of filters that, in combination with the spectral responsivity
of the camera system and the fixed scene illumination, minimize one or multiple objective
functions of system optimality. An exhaustive evaluation of all possible filter combinations
from a set of available filters can be very time consuming and hence heuristic techniques
are motivated to simplify the task. A heuristic approach is a problem solving strategy
that is not guaranteed to be optimal, but sufficient for a predefined goal. In Section 3.4,
we first introduce the application specific heuristics used in this dissertation and then
exemplify filter selection for various LSMSC system configurations in form of three case
studies (ie. filter selection for a 3-, 6- and 12-channel LSMSC). This chapter is concluded
with a summary and a discussion about potential future research.

3.2 System optimality criteria

As mentioned earlier, the system design optimization problem requires us to define sys-
tem optimality in form of an objective function, subject to which an optimal solution is
developed. The selection of an objective function is problem specific. In brief, if for in-
stance the measurement of device-independent color is considered as an application of the
multi-spectral imaging system, it is desirable to optimize the system for a low prediction
error of color coordinates. If the spectral estimation of surface reflectances is considered,
the objective function has to reflect prediction error of spectral reflectance functions. This
trivial view of the problem can be described mathematically in a more general form using
linear algebraic concepts of subspace matching and vector projection. Trussel, Vora and
Sharma [42, 43, 44] conducted extensive research related to imaging system design. In
[45], Ng et al. summarized the aforementioned and other related works and presented a
methodology for imaging system filter design. The following subsection is therefore closely
related to these works.
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Remarks on the notation
We recall from Section 2.1 that X = C(X) denotes the column space of a matrix X ∈
Rm×n, which is the linear span of the column vectors of X, and that X is a subspace of
Rm. Further, let PX ∈ Rm×m be a projection matrix that projects a vector x ∈ Rm×1 onto
subspace X . We can denoteOX as the orthonormal basis of X , accordingly C(OX) = C(X)
and OTXOX = I, where I denotes the identity matrix. Such a basis can be obtained by
Gram-Schmitt orthogonalization [46, p. 307].

3.2.1 Subspace projection error

The effective responsivity of the multi-spectal acquisition system is a matrix W ∈ Rm×n.
It spans a subspace of the spectral space R ⊂ Rm, which we denote as W = C(OW ) =
C(W ) ⊂ R and refer to as sensor subspace. It can be shown that R = W‖ +W⊥, where
W‖ = W and W⊥ is the nullspace of W . Further, each surface reflectance vector r ∈ R
can be written uniquely as r = r‖+ r⊥, where r‖ ∈ W‖ and r⊥ ∈ W⊥. The decomposition
of r into r‖ and r⊥ holds an important interpretation: r‖ is the fundamental part of r
with respect to W , which contributes to the formation of the camera response. Vector r‖
is called the orthogonal projection of r onto W. The vector r⊥ is the the part of r that
lies in the nullspace of the system, ie. which is not seen by the camera. We call r⊥ the
metameric black part 1.

The orthogonal projection matrix [46, p. 429] PW ∈ Rm×m that projects onto W is
defined as

PW = W (W TW )−1W T , (3.1)

where the columns of W ∈ Rm×n are a set of effective responsivity vectors of the multi-
spectal image acquisition system, which are usually linearly independent. This projection
matrix can also be expressed in terms of the orthonormal basis OW ∈ Rm×n of the effective
responsivity as

PW = OWO
T
W . (3.2)

The projection matrix PW is the unique linear operator such that PWr = r‖. It follows as
well that r⊥ = r − PW r. We could now decompose a reflectance into fundamental and
metameric black part.

For conceptual reasons, we define another subspace of R, which we call application
subspace and denote as A. The motivation for its definition will become clear later and
the meaning of the application subspace is explained by two examples: For a multi-
spectral system specifically designed for color measurement applications, subspace A is
spanned by the vectors of the CMFs in YCMF ∈ Rm×3 weighted by the standard illuminant
l ∈ Rm×1 considered for color measurement (ie. A is the set of all linear combinations
of weighted CMF vectors). For a multi-spectral system specifically designed for spectral
reflectance measurements of a certain application domain, this space is the set of all linear
combinations of reflectance vectors related to the application.

From a general perspective, we can distinguish three important cases that describe the
relation of W‖, W⊥ and A with respect to image acquisition. These cases are graphically
depicted in Figure 3.1 and described in the following:

1The notion of metameric black was introduced by Wyszecki in the 1950s. He considered the CMFs
weighted by a particular standard illuminant as the system and referred to r⊥ as metameric black because
the response of this system (the tristimulus values) are equal to zero [19].
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Case 1: the application subspace A intersects with the sensor subspace W‖ and is not
a subspace of W‖. The acquisition system therefore captures partial information of
reflectances in A and this particular information can be recovered2.

Case 2: the application subspace A is a subset or equal to the sensor subspace W‖. All
information of reflectances in A is retained in the acquisition process and hence, all
information can be recovered.

Case 3: the application subspace A does not intersect the sensor subspace W‖. Image
acquisition does not capture any information related to reflectances in A and hence,
no information can be recovered.

Reflectance subspace

Sensor subspace

Null space of sensor

Application subspace

Case 1: Case 2: Case 3:

Recovery partially 
possible

Full recovery 
possible

No recovery 
possible

Figure 3.1: Graphical illustration of the relation ofW‖,W⊥ and A with respect to image
acquisition.

The orthogonal projection matrix PA ∈ Rm×m that projects onto A ⊂ R is defined as

PA = A(ATA)−1AT , (3.3)

where the columns of A are a set of linearly independent vectors that define a basis for
the application subspace3. As before, we can define

PA = OAO
T
A, (3.4)

where OA ∈ Rm×m is an orthonormal basis of A.

Given previous definitions, we can establish a measure of projection error for reflectance
r ∈ A, projected via W onto A as

εr = (PA − PAPW) r, (3.5)

which is the difference between direct projection of r on the application subspace and
the projection via the effective responsivity space. The projection error εr ∈ Rm×1 is a
vector in R space that quantifies the spectral information that is lost from r in the image
acquisition process.

Obviously, if the application subspace A is the spectral space R, this residual is the
part of r that lies in the nullspace of the effective responsivity, ie. W⊥. If A ⊆ W, full
recovery of r is possible and εr = 0 (Case 2 in Figure 3.1).

According to equation 3.5, a measure of system optimality can be defined as

E =
l∑

i=1

‖(PA − PAPW) ri‖2

= Tr
(
[(PA − PAPW)R]T [(PA − PAPW)R]

)
.

(3.6)

2With recovery we refer to mathematically inverting the image acquisition model. This description
is vague and shall only illustrate the process conceptually. We will come back to recovery of spectral
information from camera responses by a physical model in Section 5.2.

3See Section 2.2.4
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This is the general expression for the sum of squared projection error E for an ensem-
ble of l reflectances R = [r1, r2, ...rl] ∈ Rm×l, under projection to a certain application
subspace.

A Application scenarios and related literature

The general framework of quantifying subspace projection errors as a criterion for system
optimality can be defined more specifically for particular applications. In the following,
we present some application scenarios and derive expressions for subspace projection error
from Equation 3.6:

• If the multi-spectral imaging system is considered for colorimetric measurement (ie.
measurement of the device independent XY Z color coordinates), the application
subspace is A = WCMF = diag(l) YCMF ∈ Rm×3. The expression for the subspace
projection error becomes:

E =
l∑

i=1

‖(OWCMF
OTWCMF

−OWCMF
OTWCMF

OWO
T
W ) ri‖2, (3.7)

This error measure was proposed by Vora et al. [42, Eqn. 14] and applied as a
measure of goodness of a set of color scanning filters.

It is obvious that this subspace projection error is data dependent, as it quantifies the
part of the reflectances in R in the application subspace A that lies in the nullspace
of sensor sub-space W. A potential danger in considering the data structure in
the system optimality measure is that the data available for system design varies
structurally from the data later on used in the application. Based on the previous
expression of projection error, Vora et al. derived a measure that is data independent.
They take the assumption that any spectrum r can be expressed as a sequence
of independent, identically distributed random variables and by that obtain the
normalized measure

υ =

∑n
i=1 λi

2

n
, (3.8)

where λi is the i-th singular value of the matrix OWO
T
WXY Z

[42, Eqn. 23]. Matrix
OW ∈ Rm×n is the orthonormal basis of the effective responsivity of the acquisition
system matrix W ∈ Rm×n, the orthonormal basis of the CMFs is OWXY Z

∈ Rm×3

and n is the number of sensor spectral channels. This measure is 1 if the projection
error is zero. Contrary to the aforementioned, including no information on the sta-
tistical distribution of the reflectance data in spectral space might be misleading, as
a sensor corresponding to a low υ-value might be a good spectral subspace match,
but not necessarily a good match for a particular set of reflectances of a certain
application. In most practical cases, statistical information of the application re-
flectances are actually known and can therefore be included in the computation of
subspace projection error.

• If the system is considered for estimation of reflectances and we assume that spectral
reflectance vectors can be expressed as a sequence of independent and identically
distributed (i.i.d) random variables, the application subspace is Rm and PA = Im ∈
Rm×m the identity matrix. Substituting PA in equation 3.6, we obtain

E =
l∑

i=1

‖(I − PW) ri‖2. (3.9)
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Ng et al. [45, Eqn. 15] follow a similar approach to define a measure that sums
the projection error for an available set of reflectances. The i.i.d. assumption is not
true for natural surface reflectances4. So instead of considering Rm as application
subspace, one can use

PA = ORO
T
R, (3.10)

where OR is an orthonormal basis of the subspace spanned by a set of l spectral
reflectances R = [r1, r2, ...rl] that are representative for the application in consid-
eration. Following this approach, statistical information about the nature of the
reflectance data is taken into account when defining the projection onto application
subspace. Accordingly, Equation 3.6 becomes

E =
l∑

i=1

‖(OROTR −OROTROWOTW ) ri‖2, (3.11)

which equals to

E =
l∑

i=1

‖OROTR(I −OWOTW ) ri‖2, (3.12)

which, in turn, is similar to the mean-square error expression derived by Vora et
al. [42, Eqn. 12]. This time, we do not consider the subspace spanned by the
color matching functions as application subspace, but the subspace spanned by the
application surface reflectance data.

3.2.2 Spectral estimation error

If the application of the multi-spectral imaging system under consideration is based on
spectral reflectance estimation, system optimality can also be defined in terms of an esti-
mation error for a particular set of data. The link of such a measure to system optimality
is indirect, because the estimation error depends not only on system properties, but also
on the estimation algorithm considered. The spectral estimation problem was mentioned
in Chapter 2, but not defined any further. We will come back to this later and for now
consider the process of spectral estimation as a black box.

From a practical point of view, there exists a particular advantage of using estimation
error as optimality criterion, namely that it allows to take into account specific application
constraints. Examples of constraints are camera parameters such as the range of feasible
exposure times, camera gain levels and the camera system noise model. Each of those
influences the generation of camera responses and consequently the estimation error, while
none of them has an influence on the basic subspace projection based error criteria defined
before.

Several measures for quantifying spectral signal differences as well as differences be-
tween color stimuli were introduced in Section 2.4.1. The selection of a suitable metric,
or a combination of several metrics, is application dependent. A general expression of the
average error for a given dataset of surface reflectances is

E =
1

l

l∑

i=1

ε(ri, r̃i), (3.13)

4In [47], it was found that reflectances for a range of real-world environments are well described by a
beta or mixture of Gaussian distribution.
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where ri ∈ Rm×1 and r̃i ∈ Rm×1 are the i-th measured and estimated surface reflectance
respectively, l is the number of reflectance samples in the application dataset and ε is one
of the error metrics from section 2.4.1.

Related literature
Using estimation error as a system optimality criterion was considered by various re-
searchers. Ng et al. [45, Eqn. 30] used a colorimetric error term among others in least
squares estimation with linear feature mapping for filter selection. Shen et al. [48, Eqn.
12] minimized a RMSE cost function in a binary differential evolution based filter selec-
tion of a multi-spectral imaging system. Their reflectance estimation is based on Wiener
estimation (which will be introduced in Section 5.2.2). Also Haneishi et al. [49] used a
Wiener model and evaluated their filter selection by spectral and colorimetric measures.

3.2.3 Subspace projection and estimation error comparison

Subspace projection error as well as estimation error based system optimality evaluations
have certain advantages but also come with drawbacks. To illustrate some important
properties of the two categories of optimality measures, we consider the following toy
examples:

System 1 and System 2 are 3-channel imaging systems for device independent color
measurements. Their effective spectral responsivities are depicted in color in Figure 3.2.
The observation condition considered for color measurement relates to the CIE 10◦ Stan-
dard Observer and CIE Standard Illuminant D65. We illustrate the corresponding CMFs
alongside System 1 and 2 in gray. We note that these spectral curves span the application
subspace, which means A = WCMF = diag(l) YCMF ∈ Rm×3. System 1 is characterized by
spectral channels that are narrow-band and whose peaks are located approximately at the
peaks of the CMFs. System 2 is characterized by two spectral channels that are identical
with the CMFs and a third narrow-band channel with peak wavelength at 400 nm.
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Figure 3.2: Effective spectral responsivities of System 1 and 2 (in color) considered in a
toy example for comparing subspace projection error and estimation error. Illustrated in
gray are the CMFs corresponding to observation condition considered for color measure-
ment.

An intuitive interpretation when comparing System 1 and 2 is that System 2 can not
perform well in color measurement because of missing information in the red part of the
spectrum of visible light, even though the other two channels are identical with the CMFs.
System 1 is clearly not ideal either, as the narrow-band channels are quite distinct from
the CMFs.
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We proceed by comparing the two systems with respect to previously defined system
optimality criteria. We denote E1 as the data dependent subspace projection error measure
defined in Equation 3.7. Matrix R = [r1, r2, ...rl] ∈ Rm×l contains reflectance factor data
from dataset DS1. Further, let E2 = 1 − υ be a data independent measure for system
optimality, which is related to Equation 3.8. We also consider an estimation error based
metric E3, which is the average ∆E76 color difference computed from estimated reflectances
of System 1 and 2 with respect to the measured reflectances5. Camera response data
was simulated according to Noise Scenario 1 in Section 2.3.3.B, with noise variances
σd = σi = 0, ie. noise free. The corresponding numerical values of the three error measures
for System 1 and 2 are listed in Table 3.1.

Table 3.1: Comparison of subspace projection and estimation based error metrics in a
toy experiment.

System E1 E2 E3

System 1 29669 0.68 7.54

System 2 7441 0.33 15.20

Like expected, the color measurement performance of System 1 is better than for
System 2. This is manifested by a lower colorimetric error E3 for System 1. Not so obvious
is why System 2 has a lower subspace projection error E1, even though the application
subspace is based on the color measurement task. This result can be understood when
recalling that this error measures the summed spectral residual that lies in the sensor
nullspace with respect to the application subspace for a given set of reflectance data. By
design of the two systems, this spectral residual is zero for two channels of System 2, but
not for System 1. Hence, the optimal system determined by E1 does not coincide with the
optimal system for the given task. Even though E2 is data independent, we see the same
effect. As noted by Vora et al. [42], this measure can be related to the principal angles
between the sensor subspace W and application subspace A. So from the point of view of
subspace projection error, there is a greater loss in information for System 1 as compared
with System 2.

Another drawback of subspace projection based optimality is related to the previously
mentioned property that corresponding measures can not account for specific application
constraints. We illustrate this with a second toy example. Let’s consider the effective
responsivities of two 2-channel camera systems illustrated in Figure 3.3. The two camera
response components of System 3 to an achromatic reflectance are of the same value, as
both channels are equally responsive (even though in different spectral ranges). In System
4, the channel illustrated in red is a factor of 10 less responsive than the channel illustrated
in blue. The subspace projection error (Equation 3.6) for the achromatic reflectance is
identical for System 3 and 4. This is because the responsivity scale factor is only a linear
operator on the responsivities that does not affect the subspace projection. However,
the influence of noise in the less responsive channel might result in a larger spectral
estimation error. Hence, if a model for simulating camera responses is available and
spectral estimation error is used as a measure of system optimality, candidate systems
whose camera responses are heavily corrupted by noise should not be favored.

Even though considering spectral estimation error as a system optimality criterion
seems to be the preferable choice for its practical reasons, care has to be taken. This

5The evaluation scheme was based on 10-fold cross-validation as described in Section 2.4.2.
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Figure 3.3: Illustration of channel scale invariance property of subspace projection error
for two acquisition systems: the channel illustrated in red for System 4 is scaled to 10%
of the channel illustrated in red in System 3. Projection errors of an achromatic sample
reflectance are equal in both systems.

discussion did not consider potential risks introduced by wrongly using the estimation
algorithm (eg. wrong model parameter selection or data over-fitting), which might bias
estimation based optimality measures. Further, for a large number of candidate effective
responsivities to be evaluated, the computational overhead of camera response simulation,
spectral estimation and potential cross-validation might make this approach not feasible
in practice.

3.3 A framework for filter selection

We elaborate on the filter selection task, which is the problem of finding a set of filters
that, in combination with the spectral responsivity of the camera system and a fixed
scene illumination, minimize one or multiple objective functions that quantify the system
performance.

Filter selection is a specific form of filter design, which is the more general task of
finding (and subsequently manufacturing) filters for multi-spectral systems. Considering
a selection from existing filters (or combinations of filters) is, from an economical point
of view, more interesting than filter design. A considerable large amount of work has
been devoted specifically to filter design [43, 44, 50, 51, 45, 52], as well as filter selection
[53, 45, 49, 54, 43, 55, 56, 53, 48] of optical imaging systems.

3.3.1 Brute force selection - an exhaustive approach

Let T = {t1, t2, ...tq} be the set of q filters with transmittances ti ∈ Rm×1, i = 1, 2, ...q.
The number of elements contained in T is its cardinality, denoted by |T |. We consider
the problem of selecting k filters from T . So for a LSMSC system, k depends on the
system configuration. For SC212C, k = 4; for SC36C, k = 2, and for SC43C, k = 1 (see
Section 2.5). Further, let Fk be the set of possible combinations of k filters and |Fk| = p.
The cardinality of Fk is given by the binomial coefficient:

p =

(
q

k

)
=

q!

k!(q − k)!
. (3.14)
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For SC212C (4 additional filters), we might also consider the case of adding only 3
additional filters. Further, for this system the order of placing the filters in front of the
sensor matters because combinations of two channels share the same gain controller6.
Taking this into account, the number of distinct combinations for SC212C is

p = 3

(
q

k + 1

)
. (3.15)

We illustrate in Figure 3.4a the only three possible ways of placing 4 filters in front of the
sensor, resulting in different systems. Any other sequence of ordering 4 filters is identical
to one of the previous three sequences with respect to the optimal gain setting.
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Figure 3.4: Possible sequences of ordering 4 filters in front of SC212C (a). Number of
filter combinations p that are possible for selecting from a pool of q filters for systems with
varying number of additional filters (b).

The relation of p, q and k is shown in Figure 3.4b. As an example, to select 2 filters
from q = 100 for SC36C, we need to evaluate p > 4000 filter combinations. For SC212C

and q = 100, more than 200 million combinations are possible.

3.3.2 Trading of completeness for speed - a heuristic approach

Depending on the system configuration, exhaustive search for filter selection might be
time consuming or even unfeasible. Heuristic techniques trade off either optimality of the
optimization problem solution with respect to the error function, or completeness with
respect to evaluating all candidate solutions for speed. The heuristic scheme followed in
this work trades off completeness for speed and is a two-step process.

We note that the heuristic rules presented in the following are specific for the appli-
cation, the cardinality of the initial filter set and the type of system considered. While
the principle of the heuristic scheme can be considered general, the actual implementation
might differ for other cases from the ones considered in this dissertation.

A Filter pre-selection

The first step is a filter pre-selection to reduce the cardinality of the initial set T0 containing
q0 filters to a smaller set T1 containing q1 filters. Set T0 can be reduced by imposing

6The gain is tuned such that the dynamic range of the system is used in an optimal way and hence,
the order of placing the filters is important. See Section 2.3.3.B.
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constraints on spectral properties of the filter transmittance functions. Accordingly, we
remove filters for which any of the following statements is true:

• the average transmittance of the filter is less than 40% and includes no value larger
than 60%.

• the filter transmittance is mostly flat (having a standard deviation of transmittance
values smaller than 0.05) and average transmittance larger than 90%.

The first constraint removes filter functions with an overall low transmittance while
retaining those with low average transmittance but some spectral band with high trans-
mittance. The second constraint removes spectrally flat filters with an overall high trans-
mittance. Such filters are not useful, as they mainly scale the effective responsivity of the
system. A similar effect as using such a filter can be achieved by adjusting channel gains
or the exposure time of LSMSC.

If these pre-selection criteria do not reduce the number of filters enough with respect to
the resulting number of filter combinations that have to be evaluated, an additional filter
reduction scheme can be employed. This reduction is achieved by performing k-means
clustering [57, p.424] with q1 clusters on the filter transmittance data. A reduced set of
filters is then the q1 filters with minimum Euclidean distance to the cluster centers.

B System plausibility check

The constraints on spectral properties of filter transmittances can be extended to the phys-
ical properties of the resulting responsivity of the camera system. This is a reasonable step
because some filters might alter the effective responsivity of the camera system such that
the information loss in image acquisition is too great to consider the system further. An
example is given in Figure 3.5 on the left, where a bandpass filter with cut-off wavelength
530 nm (indicated by a solid red line) is applied to a 3-channel system (indicated by blue
lines). It can be seen that the resulting system (illustrated on the right) is almost not
sensitive below 500 nm. If color measurement is considered without taking assumptions
about the type of colors to be measured, the missing information in the suppressed spectral
range inevitably leads to large colorimetric error.
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Figure 3.5: System plausibility check for heuristic filter selection: combining a filter
transmittance (red line) with an RGB sensor responsivity (blue lines) results in the system
on the right with low responsivity below 500 nm.

The system plausibility constraints are imposed on the effective responsivities of the
system after applying the filters that passed the pre-selection in set T1. For each channel
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of a candidate system, we compute the centroid wavelength. If a spectral curve of the
effective system responsivity is considered as an area, the centroid wavelength is defined
as the wavelength that corresponds to the centroid of that area. Filters that correspond
to effective responsivities for which any of the following statements is true are removed:

• the responsivity is less than 40% at all wavelengths and all channels.

• the integrated effective responsivity divided by the integrated raw sensor responsivity
is less than 20% for all channels.

• the centroid wavelengths of all channels withing each RGB sub-image are less than
25 nm apart from each other.

• the centroid wavelengths of all R, G or B channels from all sub-images are less than
10 nm apart from each other.

The first two conditions are trivial. The third condition can be understood as rejecting
those candidate systems for which the information within any RGB sub-image is redundant
(ie. the R, G and B channel responsivities corresponding to a particular sub-image are
rather similar). The last condition only affects systems with more than one lens (k > 1),
for instance the 6- or 12-channel system configurations. Again, candidate systems that
acquire redundant information are removed. This time, redundancy between all channels
of RGB sub-images is considered.

Resulting from this step is the final set of q2 filters, which we denote as T2. Following
the heuristics, we obtain a reduced set Fk,H of filter combinations that are subsequently
evaluated for optimality.

3.3.3 Selection of Pareto optimal filters

We consider the filter selection task as a multi-objective optimization problem [58]

arg min
fi

(E1(fi), E2(fi), ...Ed(fi)) , (3.16)

where Ej(fi) denotes the j-th objective function measuring system optimality of filter
combination fi ∈ Fk,H , i = 1, 2, ...p. Let FP denote a set of so called Pareto optimal filter
combinations, for which there is no other filter combination f ∈ F\FP that satisfies

Ej(f) ≤ Ej(f̂), for all j = 1, 2, ...d and any f̂ ∈ FP . (3.17)

Accordingly, a Pareto optimal solution is a solution for which minimizing any of the
objective functions further would lead to an increase in at least one of the other objective
functions. We illustrate this concept in Figure 3.6 for the case of a bivariate optimization
problem with objective functions E1 and E2. Gray points are from Fk,H and red points
from FP .

The solution of the multi-objective filter optimization considered shall be understood
as computing the Pareto set FP from Fk,H . The final selection of a preferred filter com-
bination from FP can be achieved by a decision maker, which is either a human expert,
or a function composed of a set of rules defining optimality, described by a human expert.
As we will see later, the Pareto set is in practice often much smaller as compared with
the initial set of candidate solutions, which makes it feasible for a human expert to be a
decision maker for this task.
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Figure 3.6: Illustration of Pareto optimality principle: A dominates B when E1 is con-
sidered (E1(A) < E1(B)), but is dominated by B for E2 (E2(A) > E2(B)). C is dominated
by A and B (E1(A) < E1(C) & E1(B) < E1(C) & E2(A) < E2(C) & E2(B) < E2(C)). Point
C is therefore not Pareto optimal.

3.4 Experimental case studies

Because there exist various possible application cases for LSMSC systems, we demonstrate
filter selection for different application scenarios:

Case 1: 3-channel system for colorimetric measurements

Case 2: 6-channel system for spectral reflectance factor measurements

Case 3: 12-channel system for spectral reflectance factor measurements

For all three cases, we used spectral reflectance estimation error based metrics as a
measure of system optimality in order to account for application constraints in the filter
selection. The filter selection for case 3 was considered for practical implementation and
the corresponding experiment is therefore closest to a real application scenario.

As mentioned before, we considered linear least squares regression with linear feature
mapping as spectral estimation method, which will be discussed in a later chapter (Sec-
tion 5.3.1.A). Compared with more advanced estimation methods, this algorithm does not
have parameters and performs considerably well in practice, as will be shown in Chap-
ter 5. Whenever colorimetric error measures are considered in this chapter, ∆E76 is used
instead of the CIE recommended ∆E00, because of its faster computation. Preliminary
experiments on smaller sets of filter combinations have shown that this compromise did
not affect the final filter selection.

The spectral reflectance dataset used for computing system optimality consists of 2000
samples from a Pantone chart, an Inkjet printed IT8 chart and an HKS offset print color
chart7. Because it is not feasible to fabricate all filter combinations and acquire corre-
sponding camera response data, responses required for the computations were simulated
in accordance with the camera response model in Section 2.3.3.B, Noise Scenario 2 (ie.
a realistic level of simulated camera response noise). The filters used for the selection
are off-the-shelf Schott color glass filters. The transmittance of glass filters is affected by
additive compounds that absorb light of some wavelengths while transmitting the other

7We note that this dataset is different from the datasets defined in Section 2.5, because the filter
selection was performed at an earlier stage of the work than the collection of data for the other datasets.
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part of the light. Glass filters can be manufactured with different thickness, which also
influences the spectral transmittance of the filter8.

We retrieved two sets of 60 filters from the manufacturer’s web-page9 corresponding
to 0.5 mm and 1 mm glass thickness respectively. The filter transmittances are illustrated
in Figure 3.7. Filter stack transmittances were computed by the dot product of any
combination of two out of the 120 initial filters. We also considered the unstacked filters
and hence, 7260 filter transmittances are contained in the initial filter set T0 in total.
Unlike in other places of this work, we considered 5 nm sampling of the spectral data
instead of 10 nm sampling. While 10 nm sampling is adequate for color calculus or most
applications that consider spectral reflectance data (which are generally rather smooth),
it is not adequate for filter selection because the responsivities of the camera sensor in
combination with additional filters might be rather steep curves. We did not evaluate the
optimal sampling rate for spectral data in the filter selection task, but merely consider 5 nm
as a trade-off between accuracy and computational cost when considering finer sampling.
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Figure 3.7: Illustration of two sets of color glass filter transmittances: the solid lines
correspond to 1 mm glass thickness and the dashed lines correspond to 0.5 mm glass thick-
ness.

For each of the three application cases, we show the selection of a filter combination
that is optimal in Pareto sense with respect to a set of predefined system optimality
criteria. In order to illustrate that the filter selections were not influenced by the dataset
considered in the selection process, we perform an independent evaluation on dataset
DS1. This subsequent analysis is based on 10-fold cross-validation and we measured
system performance in terms of logarithmic root-mean-square error RMSLE10 and ∆E76

8In fact, the deviation of viewing angle when imaging an object through a color filter also influences the
filter transmittance. This is because the distance that light travels through the filter increases with larger
deviation angles with respect to the filter surface normal. The effect is not modeled in camera response
simulations, as we assume a viewing angle of 0 ◦ (see Section 2.3.3).

9Reading from the web: http://www.schott.com/advanced_optics/english/filter/index.html; re-
trieved: 01.03.2014.

10As mentioned in Section 2.4.1.A, RMSLE weights spectral residuals with low reflectance value higher
than corresponding residuals of the same magnitude with higher value. When color measurement is based
on spectral measurement, this metric is useful because low spectral residuals often contribute to large
colorimetric errors and should therefore be weighted higher.

http://www.schott.com/advanced_optics/english/filter/index.html
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between estimated and measured reflectance data.

From a computational point of view, filter selection in accordance with our framework
can be parallelized to a high degree and hence be solved more rapidly using parallel
computing. In fact, we will see in the next subsection that for the 6- and 12-channel system
configurations, the number of filter combinations to evaluate is in the scale of several
millions. Because of this, we implemented the filter selection framework in GNU Octave11

programming language, using the Message Passing Interface (MPI) extension12 to allow
distributing the workload in parallel processes. The computations were then performed
on the high performance computing system Alhambra UGR, which comprises 1808 cores
and has a computational power of approximately 40 Terra FLOPS13. Accordingly, filter
selection for the 12-channel system SC212C was performed in less than 24 hours. On
a conventional personal computer, it was approximated that months would have been
required for the same task.

3.4.1 Heuristic reduction of filter combinations to evaluate

Filter pre-selection performed on the aforementioned set of 7260 filters in T0 resulted in a
reduced set T1 with q1 = 4658 elements. For the 12-channel configuration, the correspond-
ing number of possible filter combinations is p1 = 5.4702197 × 1016 (see Equation 3.15),
which is clearly still too large to be considered in practice. We therefore employed the
k-means based filter reduction scheme and set q1 = 150, which resulted in a reasonable
low p1.

We illustrate a summary of the heuristic filter combination reduction achieved for the
case of the 3-, 6- and 12-channel system configurations considered in case studies in Table
3.2.

Table 3.2: Heuristic reduction of the number of possible filter combinations for the case
of 3-, 6- and 12-channel system configurations: q0 = |T0| is the cardinality of the initial
filter set, q1 = |T1| is the number of filters after pre-selection, p1 denotes the number of
filter combinations to evaluate before system plausibility check and p2 is the final number
of combinations to evaluate for system optimality.

System q0 q1 p1 p2

3-channel 7260 4658 4658 3526

6-channel 7260 4658 10846153 5893577

12-channel 7260 150 20823198 7049365

3.4.2 Filter selection for a 3-channel color measurement system

The system design considered in this experiment is for a 3-channel system corresponding
to SC43C. Accordingly, we considered the problem of selecting an additional filter that
is placed in front of the RGB sensor and optimizing the system performance with respect
to the selected optimality criterion.

11Reading from the web: https://www.gnu.org/software/octave/; retrieved: 14.04.2015
12Reading from the web: http://octave.sourceforge.net/mpi/; retrieved: 14.04.2015
13Reading from the web: https://alhambra.ugr.es; retrieved 14.04.2015. The author thanks the

Centro de Servicios de Informática y Redes de Comunicaciones (CSIRC), Universidad de Granada, for
providing the computing time.

https://www.gnu.org/software/octave/
http://octave.sourceforge.net/mpi/
https://alhambra.ugr.es
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One measure for system optimality for a color measurement system is colorimetric
estimation error and as mentioned before, we used ∆E76 as such. We selected median error
(Mdn. ∆E76) and maximum error (Max. ∆E76) as optimality criteria and considered filter
selection as a bivariate optimization. We therefore computed the Pareto optimal subset
of filters from the p2 = 3526 possible filter combinations that remained after heuristic
pre-selection. For illustration purposes, median as well as maximum errors for all p2 filter
combinations as well as the Pareto optimal subset are shown in Figure 3.8.

Figure 3.8: Median and maximum ∆E76 error of the q2 filter combinations evaluated for
the design of SC43C. Illustrated in red are the Pareto optimal filter combinations. The
plot in the middle is a zoomed version of the plot on the left. In the right plot, Pareto
optimal combinations are shown in order of increasing median ∆E76 error.

We have selected filter combination 3387 from the Pareto set, which is a trade-off
between reasonably low median and maximum colorimetric error (Mdn. ∆E76 = 0.55,
Max. ∆E76 = 14.08). This filter combination is a stack of a 1 mm thick BG63 and a 1 mm
thick GG420 filter glass. The transmittances of these filters and the corresponding filter
stack as well as the resulting effective responsivity of the 3-channel camera system in this
configuration are shown in Figure 3.9.

Wavelength [nm]

T
ra
n
sm

it
ta
n
ce

[%
]

400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

BG61-1
GG395-1
Stack

Wavelength [nm]

W
[A

U
]

400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Figure 3.9: Left: Filter stack of combination 3387. Right: Effective system responsivity
of SC43C.

A Performance evaluation via simulations

We have compared the performance of the 3-channel system with the additional filter with
the same 3-channel system without the additional filter. We use boxplots14 to summarize

14See Appendix A.1 for boxplot conventions.
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the numerical results of the system performance evaluation. Boxplots are used rather than
tabulated data because they are convenient tools for comparing the systems visually. The
corresponding illustrations are shown in Figure 3.10 and we summarize the findings as
follows: Considering the colorimetric error (∆E76), it can be observed that the system
with additional filter results in a lower median, mean, maximum and minimum error.
Further, the non-overlapping notches of the boxes offer evidence of a statistical significant
difference (on the 5% significance level) between the medians. The evaluated spectral
error (RMSLE) shows an overall decrease in performance. This does not come to much
surprise, as spectral error was not considered as optimality criterion in the filter selection
of this system.

We extended our analysis: according to [3], a system is said to be colorimetric, if the
effective system spectral responsivity is a linear combination of the CMFs for a particular
observation condition. We show normalized responsivity plots of the two systems in Fig-
ure 3.11, in addition to the spectral properties of the standard observer weighted by the
standard illuminant. Neither of the two systems shows a perfect resemblance. However,
the red channel of the system with additional filter is less sensitive from 600 nm to 800 nm
and hence seems more similar to the corresponding color matching function. We con-
firmed this observation by expressing system optimality in terms of subspace projection
error and considered the data independent measure proposed by Vora et al. [42], denoted
in Equation 3.8. Accordingly, we found υ = 0.9353 for the system without additional filter
and υ = 0.9386 for the system with additional filter. Values closer to 1 indicate higher
resemblance with the weighted CMFs.

In summary, we can conclude that within the scope of limitations due to considering
only simulations in the experiment, the system with additional filter offers a clear improve-
ment in color measurement applications as compared with the system without additional
filter.
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Figure 3.10: Box plot diagram of numerical results from spectral estimation experiment
for the 3-channel configuration SC43C (left: ∆E76, right: RMSLE).
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Figure 3.11: Normalized effective system responsivity of SC43C without additional filter
(left) and with filter stack combination 3387 (right). The additional dashed black lines
correspond to the normalized standard observer weighted by the standard illuminant used
for color measurements.

3.4.3 Filter selection for a 6-channel system

We also considered the design of a 6-channel system corresponding to SC36C. One aim of
this experiment was to illustrate the big influence of the selection of optimality criterion
on the overall system performance. We therefore considered two design options:

Option 1: system for spectral reflectance measurements using median RMSE (Mdn.
RMSE), maximum RMSE (Max. RMSE) and median Pearson distance (Mdn.
dp) as optimality criteria. The filter selection problem can hence be considered as a
trivariate optimization.

Option 2: system for colorimetric measurements using median colorimetric error (Mdn.
∆E76) and maximum colorimetric error (Max. ∆E76) as optimality criteria. The
filter selection problem can be considered as a bivariate optimization15.

Even though the number of filter combinations that were evaluated for this system is
large (p2 = 5893577), the set of Pareto optimal filters is quite small (8 filter combinations
for Option 1 and 39 filter combinations for Option 2). It is often true in practice that
the cardinality of the Pareto set decreases with increasing number of objective functions
considered in the optimization.

Like in the previous example, we illustrate the Pareto sets for Option 1 and 2 in form
of figures (Figure 3.12 and Figure 3.13). Our choice of optimal filter combinations were
the ones with number 3209253 for Option 1 and number 6476237 for Option 2. The
transmittances of these filter stacks as well as the resulting effective responsivities of the
two systems are shown in Figure 3.14 and Figure 3.15.

A Performance evaluation via simulations

The corresponding boxplots for Option 1 and Option 2 are shown in Figure 3.16. We
can see that Option 1 results in a significantly higher spectral estimation performance as
compared with Option 2, and the opposite for colorimetric error (∆E76). These results
were expected but there is another important conclusion that can be drawn from this:
To consider either only color or only spectral metrics as optimality criteria in filter selec-
tion is critical, because high performance as measured by one metric might result in low
performance by the other.

15Note that the filters selected for Option 2 are considered for SC36C in later parts of this dissertation.
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Figure 3.12: Median and maximum RMSE and median dp of the p2 filter combina-
tions evaluated for the design of SC36C. Illustrated in red are the Pareto optimal filter
combinations. The plot on the right is a zoomed version of the plot on the left.
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Figure 3.13: Median and maximum ∆E76 error of the p2 filter combinations evaluated
for the design of SC36C. Illustrated in red are the Pareto optimal filter combinations.
The plot in the middle is a zoomed version of the plot on the left. In the right plot, Pareto
optimal combinations are shown in order of increasing median ∆E76 error.

3.4.4 Filter selection for a 12-channel system for spectral reflectance
measurements

This subsection relates to the design of a 12-channel system corresponding to SC212C.
For the design of a spectral reflectance measurement system, optimality criteria should of
course relate to spectral measurement performance. Because we want to use estimated
spectral data from this system for color measurement as well, it is advisable to consider
a color metric as was shown in the previous subsection. So we chose RMSLE and ∆E76

as optimality criteria. The 95-percentiles (p95 RMSLE and p95 ∆E76) were chosen as a
descriptive measure for performance to reduce the strong influence of outliers on median
or mean error. For this system, we are rather interested in good performance over the
vast majority of data considered.

The number of possible filter combinations that had to be evaluated was approximately
7 million, which is considerably larger than in the 3- and 6-channel case. The corresponding
Pareto set is illustrated in Figure 3.17. From the set of 12 Pareto optimal filter stack
combinations, number 2358396 was selected. This combination is a trade-off between
reasonably low colorimetric and spectral error. The resulting spectral responsivity of the
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Figure 3.14: Left: Filter stack of combination 3209253. Right: Effective system respon-
sivity of SC36C Option 1.
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Figure 3.15: Left: Filter stack of combination 6476237. Right: Effective system respon-
sivity of SC36C Option 2.

system is shown in Figure 3.18.

A Comparison between manufactured and manufacturer specified filter trans-
mittances

The aforementioned filter stack combination for SC212C has been considered for practical
implementation. The selected combinations of four filters (each is a stack of two filters)
were produced according to our specifications by filter manufacturer bk Interferenzoptik
Elektroik GmbH. Each filter stack was additionally coated with an anti-reflection layer on
both sides. We evaluated the accordance of the simulated filter stack transmittances16

and measured filter transmittances.

The transmittance measurement was performed as follows: we used a Konica Minolta
CS200017 spectroradiometer to measure the spectrum of visible light from an incandescent
light source transmitted through each filter stack at 0◦ with respect to the surface normal
and divided this measurement by the SPD of this source measured with the same device.
Instead of aiming at the source directly, we used an integrating sphere between source and
detector. Each measurement was repeated 3 times and the resulting data was averaged.

The spectral data measured by the CS2000 is in the range from 380 nm to 780 nm in
steps of 5 nm, and we illustrate the transmittances provided by Schott GmbH in the same
range. The corresponding transmittance plots are shown in the first row in Figure 3.19.
Illustrated in red are the simulated filter stack transmittances and in blue the measured
filter transmittances. Residuals between the two are shown in the 2nd row of the same

16Recall that filter stack transmittances were simulated computationally by computing the dot product
of two filter transmittances specified by the manufacturer.

17Reading from the web: http://sensing.konicaminolta.asia/products/cs-2000-

spectroradiometer/; retrieved: 11.04.2015.

http://sensing.konicaminolta.asia/products/cs-2000-spectroradiometer/
http://sensing.konicaminolta.asia/products/cs-2000-spectroradiometer/
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Figure 3.16: Box plot diagram of numerical results from spectral estimation experiment
for the 6-channel configuration SC36C (left: ∆E76, right: RMSLE).

Figure 3.17: 95-percentile for ∆E76 and RMSLE error of filter combinations evaluated
for the design of SC212C. Illustrated in red are the Pareto optimal filter combinations.
The plot on the right illustrates the Pareto optimal combinations in order of increasing
p95 ∆E76 error.

figure. These residuals are due to fabrication error and to some extend measurement error
of the transmittance measurements.

The plots motivate some discussions: the overall shape of the measured and simulated
transmittance curves are quite similar for the four filter stacks. The largest deviations are
found for the stack of filters GG435 (0.5mm) and BG25 (1mm) and large deviations are
mostly at the lower and higher end of the spectral range evaluated. The spikes in residual
plots indicate a wavelength shift between filter transmittances. It has to be noted that
the height of the spike does not reflect the wavelength shift directly, but the slope of the
transmittance curve around the location of the peak. The implications of these findings
are discussed within the next subsection.

B Performance evaluation via simulations

We compared the 12-channel system design SC212C with SC112C, which is the reference
configuration of our laboratory LSMSC for which filter selection was initially performed
by the camera manufacturer. We found that the aforementioned differences between sim-
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Figure 3.18: Left: Four filter stacks of combination 2358396. Right: Effective system
responsivity for SC212C.

ulated and measured filter transmittances do not impose a significant influence on the
overall estimation performance. Therefore, we only considered simulations with filter
transmittances derived from manufacturer specification.

A summary of the numerical results is shown in Figure 3.20. The average performance
of both 12-channel systems is in general much higher than that of the 3- or 6-channel system
evaluated in the previous subsections. The comparison of the two 12-channel systems also
reveals a significant improvement of SC212C over SC112C. Colorimetrically, SC212C

results in a lower median and mean ∆E76 error and the minimum color difference is equal
for both systems. The maximum color difference is by a factor of more than 2 lower
for SC212C. Considering RMSLE, there is only a slight improvement for SC212C over
SC112C. Yet, the median RMSLE of SC212C is significantly lower than that of SC112C.

C Performance evaluation via measurements

The conditions of this experiment were similar to the previous one, except that measured
camera responses were considered instead of simulations. We therefore installed the filter
stacks in front of the LSMSC and adjusted the channel gains such that the system is
operated optimally with respect to SNR and utilization of the camera dynamic range18.

The results of this experiment are again illustrated in form of boxplots (see Figure 3.21).
We additionally report estimation performance numerically in Table 3.3. This table in-
cludes first order statistics for various metrics ( ∆E76, ∆E00, RMSE, RMSLE, dp) and
also corresponding results for the previous experiment with simulated camera response
data for reference.

When comparing the boxplots in Figure 3.21 with the ones corresponding to simulated
camera response data, we immediately see that the difference in estimation performance
between SC112C and SC212C is smaller when measured camera response data is con-
sidered. This is a strong indication that the camera response model considered does not
generalize well to the real acquisition systems. We will come back to this issue in Sec-
tion 5.5.3 when analyzing experimental results related to the spectral estimation problem,
and then also discuss potential sources for the performance discrepancy when considering
simulated as compared with measured camera response data. We explicitly note that this
aspect illustrates a system limitation and not a limitation of the filter selection framework.

18See Section 2.3.3.B
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Figure 3.19: Comparison of SC212C filter stack transmittances: illustrated in red are
the simulated filter stack transmittances and in blue the measured filter transmittances
(upper row). The lower row illustrates residuals between the two.

Regardless of the aforementioned, SC212C is still found to generally outperform SC112C

with respect to all colorimetric and spectral metrics evaluated. When considering average
estimation error, the performance increase is little. However, with respect to maximum
errors, a clear improvement can be seen. As a reference, we illustrate in Figure 3.22 the
estimated and measured spectral reflectances corresponding to the maximum RMSE and
∆E00.

The system evaluation based on measured camera response data allows us to draw
first conclusions about the applicability of the system for color and spectral reflectance
measurements. In terms of colorimetric error (∆E76 and ∆E00), average results are below
1, which indicates remarkable performance. The low average spectral estimation errors
confirm the high performance of the LSMSC.
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Figure 3.20: Box plot diagram of numerical results from spectral estimation experiment
with simulated camera response data for SC112C as compared with SC212C (left: ∆E76,
right: RMSLE).
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Figure 3.21: Box plot diagram of numerical results from spectral estimation experiment
with measured camera response data for SC112C as compared with SC212C (left: ∆E76,
right: RMSLE).
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Table 3.3: First order statistics of numerical performance evaluation of SC112C and
SC212C, corresponding to the experiment in Section 3.4.4.

(a) Simulated camera response data.

SC112C SC212C

Avg. Std. Min. Max. Avg. Std. Min. Max.

∆E76 0.18 0.12 0.01 1.14 0.11 0.07 0.01 0.48

∆E00 0.12 0.08 0.01 0.68 0.08 0.06 0.01 0.37

RMSE 0.007 0.004 0.001 0.036 0.007 0.004 0.001 0.038

RMSLE 0.006 0.003 0.001 0.027 0.005 0.003 0.001 0.028

dp 0.0003 0.0003 0.0001 0.0027 0.0003 0.0003 0.0001 0.0032

(b) Measured camera response data.

SC112C SC212C

Avg. Std. Min. Max. Avg. Std. Min. Max.

∆E76 0.60 0.37 0.04 3.46 0.59 0.36 0.02 2.45

∆E00 0.42 0.26 0.03 1.81 0.41 0.25 0.01 1.72

RMSE 0.010 0.004 0.002 0.041 0.009 0.005 0.002 0.036

RMSLE 0.007 0.003 0.002 0.031 0.007 0.003 0.002 0.025

dp 0.0006 0.0007 0.0001 0.0068 0.0005 0.0008 0.0001 0.0062
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3.5 Summary, conclusions and future work

In this dissertation, the design of LSMSC optical component’s spectral properties is re-
garded as an optimization problem. We defined various system optimality criteria, subject
to which this optimization problem can be approached. This view of the problem is not
new as such. However, the conceptual unification of various methods in related literature
within the same mathematical framework and the direct comparison between them by
means of illustrative examples can be considered as a novel contributions.

We then narrowed down the scope of LSMSC system design to the filter selection
problem. Within this context, we proposed a general framework for solving the task based
on a systematic evaluation of possible filter combinations from a set of existing filters.
We illustrated that the computational demand for this exhaustive evaluation is increasing
drastically for LSMSC system configurations with more than one lens (ie. more than 3
camera channels). This motivated the development of a two-stage heuristic scheme that
can be used to reduce the number of filter combinations that have to be evaluated. The
heuristics trade off completeness of the evaluation for speed. The heuristic rules that we
defined in the experimental part of this chapter were designed such that filter combinations
are removed if a low spectral and color measurement performance of a system with these
filters is foreseeable.

To systematically evaluate filter combinations, we need to choose adequate system
optimality criteria. In practice, it is often desirable to consider various criteria and the
strategy followed by other researchers often involves a specific weighting scheme to combine
corresponding error metrics to one measure. Defining such a scheme in a meaningful way is
not trivial. We proposed a different approach to overcome this limitation by regarding the
filter selection task as a multi-objective optimization problem using the Pareto optimality
principle. This requires us to evaluate all objective functions that are to be considered
individually for every filter combination. The solution to the multi-objective optimization
is then considered to be among the set of Pareto optimal filter combinations. This set
includes all filter combinations that are optimal in the sense that minimizing any of the
individual objective functions further would decrease at least one of the others. The Pareto
set often contains only few elements and the selection of an adequate filter combination
from this reduced set is much simpler than considering all filter combinations.

We have exemplified filter selection according to our framework for three system config-
urations, namely SC43C, SC36C and SC212C. One intention for performing case studies
for various systems was to demonstrate the selection of distinct system optimality criteria,
which is in practice always application specific.

Filter selection of SC43C and SC36C, and consecutive evaluation of the system per-
formance were solely based on simulated camera response data. For SC43C, the filter se-
lection is performed to optimize device independent color measurement. We demonstrated
that for the particular 3-channel system considered, the color measurement performance
could be improved markedly by placing an additional color filter in front of the camera.
However, spectral reflectance measurement performance is compromised in consequence.

Filter selection for SC36C was performed for both, optimizing spectral and color mea-
surement. The corresponding criteria for system optimality were selected accordingly.
By analyzing the performance of the resulting systems, we showed a potential risk in-
volved when considering metrics from a single application domain. For the systems con-
sidered, performance was either high for color measurement and specifically low for spectral
measurement, or vice versa. In most practical applications of multi-spectral imaging, a
trade-off between these conditions is desirable, which is another argument supporting our
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intention to consider the filter selection task as a multi-objective optimization problem.
Unlike for the other system configurations, we considered practical implementation

of the optimal filters for SC212C, which included an opto-mechanical changeover of our
laboratory LSMSC to the new filter configuration. This procedure allowed the analysis of
system performance based on measured camera response data and the comparison with the
initial filter configuration by the camera manufacturer, which we referred to as SC112C.

Our findings show a moderate improvement of average spectral and colorimetric mea-
surement performance for SC212C over SC112C, and a significant improvement in terms
of a reduction of the maximum errors. We found average colorimetric measurement
performance below ∆E00 = 0.6 and average spectral measurement performance below
RMSE = 0.01. The high measurement performance is a strong indication of the effi-
ciency of our filter selection framework. However, we also found a considerable discrep-
ancy between performance when simulated camera response data is used and performance
for measured camera responses19. This indicates a shortcoming of the image acquisition
model, which in turn imposes a severe bias to the filter selection.

An adequate image acquisition model is the basis of filter selection, and we take the
aforementioned shortcoming as a motivation for future work. Besides, we have mentioned
earlier that illumination optimization is an equally important task in LSMSC design as
compared with filter selection. For instance, our laboratory LSMSC system contains a
light source that incorporates various types of LEDs. Tuning currents for each LED type
individually results in a modulation of the scene illumination SPD. If we consider the
spectral mixing of LED SPDs as a function of LED currents, it should be possible to
approximate an optimal current setting for an existing LSMSC system. Alternatively,
spectrally tuning the light source can be considered as an additional degree of freedom in
the filter selection process.

19An extended discussion of potential reasons for this discrepancy follows in Section 5.5.3.
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4.1 Preface

When discussing data processing of the LSMSC system in Section 2.3.2.C, we referred to
the registration process required to spatially align image channels. Proper image registra-
tion means that pixels with the same spatial image coordinates in all channels correspond
to the same physical location in the scanning scene. It is a vitally important data process-
ing step because the quality of image alignment is often directly linked to the performance
of the acquisition system. Specifically in multi-spectral imaging systems, channel misalign-
ment can reduce the spectral estimation performance at image regions with inhomogeneous
spatial content. Besides: RGB images rendered from this channel misaligned data contain
color fringes at image locations with sharp edges [28, 59]. For the LSMSC considered in
this work, the number of channels to register depends on the system configuration. We
focus on SC212C, so we deal with registration of 12 image channels from filtered RGB
sub-images corresponding to the four lenses of the LSMSC. Registration of other LSMSC
system configurations can be achieved by following a similar procedure as proposed below.

4.1.1 Planar and non-planar scanning objects

When a planar scanning object is considered, LSMSC image registration can be achieved
by geometrical calibration. This is the process of establishing a registration model in a
fitting procedure that is based on data extracted from a calibration target image cube.
Once established, the registration model can be applied to any other image to correct
channel misalignment. The geometrical calibration has to be redone only in case the
mechanical setup of the system is modified, or if scanning objects with a different height
geometry are considered.

For the case of a non-planar scanning object and a LSMSC with more than one lens,
geometrical calibration alone is insufficient to register images. Non-planar scanning ob-
jects have a three-dimensional surface structure. Hence, the distance with respect to the
camera sensor is variable, resulting in additional scene-dependent image channel misalign-
ment. This problem is illustrated in Figure 4.1. However, because any physical location
in the image scene projects to a unique pair of image locations in sub-image pairs of dif-
ferent lenses, this limitation can be overcome by an additional registration step based on
correspondence estimation. The method we use to find pixel correspondence consists of a
novel color invariant feature mapping and subsequent block matching.

The block diagram in Figure 4.2 illustrates the general framework for image registration
of LSMSC image data of planar and non-planar scanning objects. The gray deposited
boxes with dashed lines indicate the additional processing steps for non-planar scanning
objects.
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Figure 4.1: Cause of channel misalignment for non-planar scanning objects with SC212C:
in a geometrically calibrated system, scanning object point A which is void of height with
respect to the scanning plane maps to the same pixel location in all 12 channels of the
image cube. For object point C as observed through lens 4, the virtual point where pixel
locations match in all image channels is D, but what we actually observe in image channels
corresponding to lens 1 is point B.
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Figure 4.2: Schematic illustration of LSMSC image registration.
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4.1.2 Formal definition of multi-channel image registration

Let C be an unregistered image cube that contains a sequence of image data matrices
{Iλ ∈ Rr×c|λ = 1, 2, ...n} of an image scene captured by a multi-spectral imaging device.
Scalar r is the number of rows, c the number of columns and n is the number of image
channels. The domain of image coordinates is Ω = {(x, y) ∈ Z2|1 ≤ x ≤ c, 1 ≤ y ≤ r}.
Further, let C0 be a virtual reference cube {Iλ,0 ∈ Rr×c|λ = 1, 2, ...n} for which the image
planes are spatially aligned and

Iλ (x+ zλ,u(x, y), y + zλ,v(x, y)) = Iλ,0(x, y), (4.1)

where functions zλ,u(x, y) and zλ,v(x, y) describe the horizontal and vertical misalignment
at any pixel location (x, y) ∈ Ω for image channel λ. In that sense, multi-channel image
registration is the process of aligning each image Iλ in the multi-spectral image cube C
spatially to its corresponding image Iλ,0 in the reference cube [60]. We note that in the
general case, misalignments in horizontal and vertical direction in an image are functions
of two variables, namely the image pixel location x and y respectively.

The remainder of this chapter is structured as follows: In Section 4.2, we introduce the
geometrical calibration process and describe the two displacement curve fitting models
that were considered. After that, we introduce two methods of color invariant feature
mapping, followed by a detailed description of the pixel correspondence estimation for non-
planar scanning objects in Section 4.3. We evaluate each of the aforementioned processes
experimentally in Section 4.4 and summarize this chapter in Section 4.5.

4.2 Geometrical calibration

In the specific case of line-sensor image data and planar scanning surfaces, image mis-
alignment only depends on the pixel location along the sensor line (horizontal image
direction), while being constant in scanning direction. This simplifies the registration
process because consequently, horizontal and vertical misalignment are only functions of
one variable, namely the sensor pixel location. We note that this does not imply that
there exists no misalignment in the vertical direction of the image.

We denote Π = {x ∈ Z|1 ≤ x ≤ c} as the domain of sensor pixel locations. The image
registration model is then

Iλ (x+ zλ,u(x), y + zλ,v(x)) = Iλ,0(x, y), (4.2)

where functions zλ,u(x) and zλ,v(x) describe the misalignment at any sensor pixel location
x ∈ Π along the sensor line for image channel λ.

Because the displacement functions can be considered independently for each image
channel, we omit subscript λ until Section 4.3, unless otherwise specified. Accordingly, we
denote reference image I0 as the one to which all other channels are to be aligned spatially,
and arbitrarily select I0 = I1. This definition implies that potential image distortion in I1

is not corrected1.

We consider geometrical calibration as the problem of finding the horizontal and ver-
tical displacement functions required for image registration of planar scanning surfaces
(ie. zu(x) and zv(x)). In practice, a calibration target is used to obtain corresponding

1We note that in practice, the distortion along the sensor line direction is much smaller than other
misalignment errors.
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locations of a set of discrete points (key-points) in a calibration image from all image
channels. These points are then used to compute the channel-wise displacement functions
in a fitting process.

4.2.1 Design of a geometrical calibration target

The calibration target used in this work contains a regularly spaced checkerboard pattern.
Key-points are defined as the locations where black checker patterns intersect. There are
various aspects to consider in the development of a geometrical calibration target. We
discuss the most important ones in the following list and define the target that we use
later on:

Key-point correspondence over all spectral image channels:
Because each image channel of the multi-spectral camera has distinct spectral re-
sponse characteristics, it has to be ensured that the target is visible in each image
channel to allow extracting corresponding key-points. For the spectral sensitive
range of the camera sensor considered in this work (380 nm to 730 nm), black toner
from a laser printer printed on white paper substrate is suitable to produce a black
and white checkerboard pattern that is visible in all image channels.

Key-point coverage over spatial image domain:
The non-rigid registration approaches discussed in this work are based on curve
fitting. A dense set of key-points spread over the entire sensor domain is required to
capture potential local displacement variations. A dense sampling can be achieved
by using a checkerboard pattern that is rotated. Not rotating the pattern would
lead to a large amount of key-point locations with similar x coordinate that are
redundant for displacement correction of a line sensor.

We determine the rotation angle such that the initial spacing between black checker
patches with side length d is divided equally by the number of key-points extracted
from each column of the checker pattern. It follows that for a checkerboard with g
rows, the rotation angle α can be computed as

α = sin−1

(
1

g − 1

)
. (4.3)

In practice, the checkerboard width is selected such that it spans the entire sensor
domain after rotation. For our system, this can be achieved by constructing a
checkerboard with h = 30 columns, g = 11 rows and patches of side length d = 1 cm.
In this configuration, α = 5.74 ◦ and the resulting key-point spacing in horizontal
direction is s = d sin(α) = 0.1 cm. These geometrical relations are illustrated in
Figure 4.3.

As mentioned before, the rotated target can be printed on white paper using a laser
printer. A corresponding image cube can be acquired by aligning the printed sheet with
the scan line.

4.2.2 Key-point extraction

Let K be a set of k key-points with correspondence over n images in cube C. The locations
of the key-points are {(xi, yi) ∈ R2|1 ≤ xi ≤ c, 1 ≤ yi ≤ r, i = 1, 2, ...k}. The key-point
locations in the reference image are denoted as (x0,i, y0,i). Key-point extraction is the
process of obtaining K. Note that pixel locations in an image are integer values over the
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1 3 75 9 1 3 75 9

Key-point locations
of to two columns

Figure 4.3: Geometrical relation of number of rows g and rotation angle α for the design
of a calibration and test target using a checkerboard pattern. The red box illustrates the
resulting horizontal key-point spacing s for a checkerboard pattern with g rows.

image domain Ω. Key-point coordinates on the other hand can be extracted in sub-pixel
accuracy from image data and therefore can be real numbers.

There are many approaches to obtain key-points from multi-channel image data and
automatic detection schemes exist in several application domains. The problem is generally
well-studied and has application for instance in stereo image matching, motion tracking
and fusion of multi-modal image data. A great overview of local invariant feature detection
is given in [61]. The aforementioned applications are distinct from our problem, because
key-points are extracted from image data with unknown image content. In geometrical
calibration, we consider extracting key-points from the geometrical calibration target,
which was designed to allow robust and automated key-point extraction. This can be
achieved by using a two-step corner detection scheme:

Step 1: locate the minimum size quadrangular region enclosing all checker patches. Span
a regular grid to estimate initial locations where the corners of intersecting black
squares would be located if the imaging system would obey rectilinear projection.
To do this, the number of patches in horizontal and vertical direction have to be
known.

Step 2: detect the real location of the corners in a search window of size 2
3d× 2

3d around
the initial estimate. The scalar d is the side-length in pixel units of one square
checker pattern.

In practice, the imaging system does not obey rectilinear projection. Hence, the initial
estimated locations are not accurate. Finding the exact locations of the corners is achieved
with an algorithm based on Harris-corner finder. We use an implementation by Jean-Yves
Bouguet, included in the Camera Calibration Toolbox for Matlab [62].

4.2.3 Numerical analysis of image channel misalignment

Multi-channel image data of the calibration target obtained with our laboratory LSMSC
system in combination with the key-point extraction framework allow us to perform a
numerical analysis of the channel misalignment inherent to the image data. Specifically,
we can analyze the channel-wise horizontal and vertical displacement vectors zu and zv,
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computed from k key-point locations in K as

zu = [xi − x0,i]k×1, i = 1, 2, ...k

zv = [yi − y0,i]k×1, i = 1, 2, ...k. (4.4)

We performed this analysis to get a better understanding about the nature of image
displacement of our system and illustrate the corresponding vectors in Figure 4.4. Note
that we use subscripts to denote the image channel for each displacement function, so
zu,λ and zv,λ are horizontal and vertical displacement vectors for image channel λ and
λ = 1, 2, ...n. Several observations can be made:

• Channels with scene content projected over the same lens (ie. channels from the
same sub-image) show a similar displacement pattern with respect to the reference
channel. The displacement pattern is distinct for each lens, which can be explained
by lens distortion and viewpoint differences for individual lenses2.

• The displacement between the R, G and B channel from the same lens show a similar
pattern. However, some deviation can be observed. This can also be explained by
lens distortion and the fact that the R, G and B channels are projected over different
locations on the lens, and therefore undergo distinct distortions.

The most common form of lens distortion, barrel distortion, results in an approximate
polynomial distortion pattern when only a line image is considered, as is the case for the
LSMSC. Barrel distortion is caused by a decrease in image magnification at points off
the optical axis [63]. If the image line is projected over the optical axis, only horizontal
distortion occurs. If the projection is shifted vertically, the distortion consists of a vertical
and horizontal component. These two types of distortion are illustrated in Figure 4.5.

It is important to note that the illustration of key-point displacement in Figure 4.4
does not directly reflect the displacement caused by lens distortion, as the displacement is
computed with respect to a reference channel, which is also distorted. In a previous work
related to hyper-spectral image registration, we have computed theoretical key-point coor-
dinates in the reference image that would result from (undistorted) rectilinear projection
and therefore allow image registration and distortion correction at once [60]. Obtaining
theoretical locations of key-points in sub-pixel accuracy from image data of the LSMSC
is much more difficult and not considered in this work.

4.2.4 Polynomial curve model

The numerical analysis of displacement vectors performed in the previous subsection marks
a good moment to return our focus to the initial geometrical calibration task. We noted
that this task contains a curve fitting problem, specifically the problem of fitting image
displacement functions to observation data extracted from an image cube of the geomet-
rical calibration target. The observation data are the displacement vectors defined in
Equation 4.4. Based on the analysis of image displacement, a polynomial model seems to
be a good choice to fit the displacement vectors3 zu and zv.

2See Figure 2.10a to recall the optical principle of the LSMSC system.
3We remind the reader that subscript λ, which refers to the channel dependence of this function, is

omitted in this context.
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(a) Horizontal displacement vectors zu,λ for the 12 image channels of SC212C.
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(b) Vertical displacement vectors zv,λ for the 12 image channels of SC212C.

Figure 4.4: Illustration of displacement vectors and corresponding key-point x coordi-
nates for image channel λ = 1, 2, ...12 of our laboratory LSMSC.
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Figure 4.5: Polynomial-type distortion pattern of line-sensor caused by barrel-like lens
distortion. The on-axis projection line is distorted only in the x-component, the off-axis
projection line has x and y distortion components.

The corresponding model is of form

z̃u(x) = [1, x, x2, ...xd−1] au

z̃v(x) = [1, x, x2, ...xd−1] av, (4.5)

where x ∈ Π , scalar d denotes the number of polynomial terms (accordingly, d−1 is the de-
gree of the polynomial), au = [au,0, au,1, ...au,d−1]T ∈ Rd×1 and av = [av,0, av,1, ...av,d−1]T ∈
Rd×1 are the vectors of polynomial coefficients and z̃u ∈ Rd×1 and z̃v ∈ Rd×1 the corre-
sponding horizontal and vertical estimated displacements at sensor location x.

A Model fitting

To find coefficient vectors au and av from known key-point displacement vectors zu and
zv, as well as corresponding sensor locations x = [x1, x2, ...xk]

T ∈ K, we have to solve the
following minimization problems

arg min
au

‖V au − zu‖

arg min
av

‖V av − zv‖, (4.6)

where V ∈ Rk×d is the Vandermonde matrix [46, p. 185] which contains polynomial terms
of the elements in x and is defined as

V =




1 x1 x2
1 . . . xd−1

1

1 x2 x2
2 . . . xd−1

2
...

...
...

. . .
...

1 xk x2
k ... xd−1

k


 . (4.7)

The solution to this problem in least square sense [46, p. 230] is unique if d < k and
rank(V ) = d. It is given by

au = (V TV )−1V T zu

av = (V TV )−1V T zv. (4.8)

To find displacement values z̃u(x) and z̃v(x) at arbitrary pixel location x ∈ Π, we
evaluate Equation 4.5 at x using the fitted polynomial coefficient vectors au and av.
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Figure 4.6: An example displacement curve segment (blue), controlled by a set of 4
control points. Note that the domain of control point x-coordinates exceeds the range of
the curve segment and resulting from that is that these values can be negative.

4.2.5 Cubic B-spline curve model

If a polynomial function of high degree is used to fit a complex displacement pattern
with low fitting error according to the previous model, a problem might occur due to the
tendency of such models to oscillate at the extremes of the data domain. In the literature,
this effect is referred to as Runge’s phenomenon [64]. Piecewise polynomial models of
low degree avoid this instability while yielding similar fitting results. In the following, we
present a piecewise polynomial model based on cubic B-splines.

A Uniform cubic B-splines curves

The pixel displacement can be described by a parametric curve model of form Q(s) =
(x(s), z(s)), where s is a curve parameter in the range [0, 1] and z the displacement at
pixel position x. Displacement in horizontal and vertical direction are modeled in a similar
fashion. Hence, we present only the case of horizontal displacement without the loss of
generality.

The sensor domain Π is divided into q segments, which are denoted {Qµ|µ = 0, 1, ...q−
1}. Each curve segment is controlled by four so-called control points, and correspondingly,
the entire curve is controlled by q + 3 control points {pi = (xi, zi)|xi = (i − 1)δ, i =
0, 1, ...q + 2}. In uniform cubic B-splines, the control points are spaced uniformly with
distance δ and it shall be noted that their x-coordinates exceed the sensor domain. An
example curve segment and corresponding control points are illustrated in Figure 4.6.

Each B-spline curve segment Qµ can be represented as

Qµ(s) =
3∑

i=0

pµ+iBi(s)

=




3∑

i=0

xµ+iBi(s)

3∑

i=0

zµ+iBi(s)



,

(4.9)

where {pµ+i = (xµ+i, zµ+i)|µ = bxδ c, i = 0, 1, 2, 3} are the 4 control points which control
the shape of Qµ, and Bi(s) is the i-th uniform cubic B-spline basis function evaluated at
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s. The basis functions are defined as [65, 66, 67]:

B0(s) = (1− s)3/6,
B1(s) = (3s3 − 6s2 + 4)/6,
B2(s) = (−3s3 + 3s2 + 3s+ 1)/6,
B3(s) = s3/6. (4.10)

The modeling of the displacement vector as a parametric curve allows to predict dis-
placement at arbitrary pixel location x ∈ Π along the sensor. We can compute this
predicted displacement z̃ as

z̃ =
3∑

i=0

zµ+iBi(s), (4.11)

where zµ+i is the second component of control point pµ+i = (xµ+i, zµ+i) and s = x
δ −

⌊
x
δ

⌋
,

where µ = bxδ c.
A more compact representation for Equation 4.9 using matrix notation according to

Catmull and Clark [68] is:

Qµ = sMPµ

=

(
sMXµ

sMZµ

)
,

(4.12)

where s = [1, s, s2, s3], Pµ = [pµ+i]4×1, Xµ = [xµ+i]4×1, Zµ = [zµ+i]4×1, i = 0, 1, 2, 3 and

M =
1

6




1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1


 . (4.13)

It can be understood that the predicted displacement z̃ at location x is a weighted
combination of the 4 control points in the local neighborhood of x.

An interesting property of cubic B-splines is local control, which means that changing
one control point does not affect the whole curve but only a local curve segment [66, 69].
This is interesting from a computational point of view, as it allows efficient implementation
of multi-level curve refinement with arbitrary spacing. We introduce equidistant multi-
level curve refinement below, and arbitrary spacing was not considered in this work.

B Model fitting

The control point spacing determines the ability of the B-spline model to adjust to a
complex displacement pattern. The smaller the spacing, the finer the oscillations that can
be resolved by the model. This means that this parameter is specific to the complexity
of the displacement pattern. By using an iterative multi-level refinement of the grid
spacing in the fitting process, the B-spline curve is gradually fitted to the key-points until
a termination condition is reached. This refinement process follows the steps depicted in
Figure 4.7, which are described below. Note that for consistency reasons, this part of the
process description is written in close accordance with our previous work [60].

• Initialization
The initial curve contains one segment Q0 and is controlled by 4 control points
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Figure 4.7: Flow-chart of the multi-level curve refinement of the uniform cubic B-spline
fitting process, adopted from [60].

with zero displacement component z and spacing δ(0) = 2dlog2 ce. Its size is at least
equivalent to the size of the sensor domain and by definition, we let the domain of
the displacement vector be aligned with the left side of Q0.

• Termination
Curve fitting ends under two conditions: Either a desired fitting accuracy is reached,
which means that the residual displacement calculated from Equation 4.4 at any key-
point location is smaller than a pre-defined threshold, or the maximum number of
refinement steps log2(δ(0)) is reached.

• Curve fitting
The objective of curve fitting is to find the z components of the 4 control points
of each curve segment Qµ. Each control point pi (i = 1, 2, 3, 4) is influenced by
key-points in a local 4δ neighborhood. At iteration l (l = 1, 2, ...), the set of these

key-points is defined as the proximity set K
(l)
i = {(xc, zc) ∈ K|i− 3 ≤ xc

δ(l)
< i+ 1}.

The residual displacements of key-points in K
(l)
i are used to update the z component

of the control point [67]:

z
(l)
i = z̃

(l−1)
i +

∑
cW

2
c ∆z′c∑

cW
2
c

, (4.14)

where Wc = Ba(s), a = i + 1 −
⌊
xc
δ(l)

⌋
and s = xc

δ(l)
−
⌊
xc
δ(l)

⌋
, (xc, zc) ∈ Ki. Further,

∆z′c is defined as

∆z′c =
Wc∆zc∑3
l=0Bk(s)

2
, (4.15)

and ∆zc = z̃c − zc is the residual displacement.

• Curve refinement
In curve refinement we increase the number of control points, without altering the
shape of the initial curve. This is achieved by dividing the parametric range s at its
mid-point and inserting a new control point between each pair of adjacent control
points. Accordingly, each curve segment is split into 2 curve segments and the control
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point spacing halved in every iteration. The maximum number of refinement steps
is therefore equal to log2(δ(0)) [70, 68, 71].

The splitting process of Qµ with control points Pµ results in new curve segments

{Q(1)
µ ,Q

(2)
µ }. The corresponding parametric cubic B-spline curve functions are

Q
(1)
µ = sMP

(1)
µ

Q
(2)
µ = sMP

(2)
µ . (4.16)

The new control points P
(1)
µ and P

(2)
µ are computed by evaluating

P
(1)
µ = A(1)Pµ

P
(2)
µ = A(2)Pµ, (4.17)

given

A(1) =




1
2

1
2 0 0

1
8

3
4

1
8 0

0 1
2

1
2 0

0 1
8

3
4

1
8



, A(2) =




1
8

3
4

1
8 0

0 1
2

1
2 0

0 1
8

3
4

1
8

0 0 1
2

1
2



. (4.18)

We illustrate the curve refinement process for curve Q0 in Figure 4.8. The curve,
initially controlled by 4 control points, is split into 2 curve segments, each controlled by 4
control points (3 of which both curve segments have in common). Accordingly, after curve
refinement, the curve is controlled by 5 control points.
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Figure 4.8: Curve refinement of example curve (in blue). The initial control points are
illustrated in red, the refined control points in black. Note that the range of control point
x-coordinates is decreased in the refinement.

4.2.6 Image Registration A

Channel-wise displacement for pixel locations x ∈ Π is predicted by horizontal and vertical
displacement functions z̃λ,u(x) and z̃λ,v(x) (obtained by the previous curve models) and
same for each image row. The corresponding registration process was introduced as Image
registration A in the block diagram of Figure 4.2 and is defined as follows:
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Let z̃λ,u and z̃λ,v be the predicted displacement vectors for pixel locations x = [1, 2, ...c]T ∈
Rc×1. By rewriting Equation 4.2, we obtain

Iλ (x+ z̃λ,u(x), y + z̃λ,v(x)) = Iλ,0(x, y), (4.19)

which describes the image transformation process that registers images in cube C to the
reference C0.

Recall that the elements of image displacement vectors are real numbers, while image
coordinates (ie. the discrete locations where pixel intensities can be displaced to) are
integers. To overcome this problem and allow sub-pixel accurate image registration, image
resampling has to be performed. Image resampling can then be described as the process
of interpolating the image intensity profile values at discrete image locations [72]. We
illustrate resampling Figure 4.9 for the one dimensional case with linear interpolation,
which is used in this work.

Image intensity displacement

Resampled image intensities

Figure 4.9: Illustration of image resampling: the blue circles indicate the initial image
intensities I at integer image locations x. Red arrows indicate the real-valued displacement
(in this example in horizontal direction). The displaced image intensities Ĩ at non-integer
locations (gray circles) are used as basis for linear interpolation (red lines between corre-
sponding points) of image intensities I?0 corresponding to the integer image locations (red
circles).

4.3 Pixel correspondence based registration

As mentioned in the preface, simple geometrical calibration based image registration is
insufficient when non-planar objects with three-dimensional surface structure are scanned.
The registration fails because the displacement model fitted in the geometrical calibration
process is only valid for registering image data with a similar geometrical structure as
compared with the calibration target considered. The problem is more complex than ge-
ometrical calibration, because the three-dimensional surface structure is often unknown
in practice. Without taking assumptions about the geometrical relations of camera and
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scanning object in three dimensional space, obtaining pixel displacement between indi-
vidual image channels can be considered as a general correspondence problem. The task
to be solved is then to find the pixel correspondence at every image location and image
channel with respect to the reference image. Fortunately, for the case of LSMSC systems,
we can make some assumptions and simplify the process:

• The displacements of image channels corresponding to the same sub-image (ie. ac-
quired through the same lens) are constant, unlike the displacements with respect
to channels of other sub-images. We therefore only need to establish correspon-
dence between sub-images, and by that know the correspondence between all image
channels.

• The geometrical calibration and subsequent image registration transform the image
content in such a way that corresponding projected scene object points in each
image channel are located in the same image row. The correspondence problem is
then reduced from a search in two spatial image dimensions to a search only along
the image dimension corresponding to the scanning line.

• The displacement between a pair of sub-images only occurs in one direction: either
left, or right.

The second assumption is only valid to a certain degree. Because of the lens viewpoint
variations illustrated in Figure 2.13b, there is an additional displacement in direction
perpendicular to the scanning line that depends on the three-dimensional structure of the
scanning object. We come back to this aspect in the experimental section (Section 4.4.3),
where we quantify the corresponding displacement and also show that a violation of this
assumption does not necessarily result in a failure of the image registration.

To solve the correspondence problem, we can adapt well-established methods from
computational stereo, which is the problem of determining 3-dimensional structure of a
scene from two or more images acquired by cameras with distinct viewpoints of the scene.
In fact, following the problem classification scheme by Brown et al. [73], there are three
major problems associated to computational stereo: calibration, correspondence and re-
construction.

In computational stereo, calibration is the process of determining the camera system’s
internal and external geometrical parameters (ie. the relative positions and orientations
of each camera, optical centers, focal length and lens distortions), which allow relating the
image coordinate system (with pixel units) to an external world coordinate system. Stated
more generally as before, the correspondence problem consists of finding the locations in
each camera image that are projections of the same physical location in space (ie. the
world coordinate system). The displacement between a projected point in one image with
respect to another image is called disparity and the set of all image disparities of a so-
called stereo pair of images is called disparity map. The reconstruction problem consists
of estimating three-dimensional scene object structure from a disparity map, based on
known camera geometry.

For image registration of non-planar scanning objects using a LSMSC system, we do not
need to solve all three computational stereo related problems. Calibration requirements
are satisfied by the geometrical calibration process described in Section 4.2, which is a pre-
processing step for pixel correspondence based registration. Accordingly, it is now assumed
that corresponding object points are located in the same image row of each image channel.
In most other stereo imaging applications, a transformation based on a calibration converts
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image pairs so that this is true as well (this process is then called image rectification).
Further, we are only interested in the extraction of disparity maps for pairs of filtered
RGB sub-images and not all image channels. For the case of SC212C, there exist filtered
RGB sub-images from 4 lenses and hence, 3 disparity maps are required to register all
12 channels with respect to a reference channel. Even though there are 6 possible stereo
pairs, and correspondingly 20 disparity map combinations of three stereo pairs, we only
consider the 4 combinations that share one RGB sub-image in common. This is because
we want to reduce the risk of propagating errors from estimating pixel correspondence
of one sub-image pair to another in the registration process. For convenience, we define
this common sub-image as reference L0 ∈ Rr×c×3 and denote the other sub-images as
L1 ∈ Rr×c×3, L2 ∈ Rr×c×3 and L3 ∈ Rr×c×3, where r and c are the image height and
width respectively. Because the three disparity maps describe the pixel displacement of
all 12 channels, we can stop after solving the correspondence problem and do not need to
consider the reconstruction of the 3D scene4.

There exists no general solution to the correspondence problem because pixel loca-
tion matching can be ambiguous. For instance, the three-dimensional object structure
might result in occlusion of object locations in one image view but not others. Brown
et al. [73] summarize different approaches to cope with occlusion and distinguish cor-
respondence algorithms that detect occlusion, algorithms that reduce the sensitivity to
occlusion and algorithms that model occlusion geometrically. Because the viewpoint vari-
ations corresponding to sub-images of the LSMSC and the height variation of scanning
objects considered in this dissertation are rather small, occlusion is not a problem and was
therefore not considered particularly. Other examples where pixel location matching can
be ambiguous are image specularities, image saturation, dark areas or regions that lack
texture and therefore do not allow matching. For the case of the LSMSC, image pairs of
sub-images are optically filtered differently, increasing the complexity of the matching. In
fact, system optimality criteria used in filter selection often implicitly maximize the dif-
ference of the spectral information contained in individual sub-images, which is obviously
contrary to the optimal condition for solving the correspondence problem5.

To overcome the aforementioned problem, a color invariant feature matching for LSMSC
systems was designed. Accordingly, filtered RGB sub-images of the 3 stereo pairs are
transformed to so-called feature images that contain similar intensities for corresponding
physical locations in the scanning scene (even though the image locations do not corre-
spond). We denote the feature image corresponding to RGB sub-image Li ∈ Rr×c×3 as
Fi ∈ Rr×c, where i = 0, 1, 2, 3. Note that Fi is an intensity image and hence, the feature
mapping is from R3 to R.

Again, following the structure of Brown et al. [73], approaches to solve the correspon-
dence problem can be categorized in local and global constraint based methods. Local
methods constrain the matching based on a small number of pixels surrounding a pixel
of interest, while global method constraints are related to the entire scanning line or the
entire image.

We use a local constrained method that is based on block matching. Hence, we find
disparity at a point in one image by comparing a local region around this point with
regions in the other image. The comparison is based on the similarity of image intensities
and we have found experimentally that feature mapping to a one-dimensional space is

4Note that the reconstruction problem can be considered as future work. We discuss this aspect further
in Section 4.5

5The reader may refer to Section 3.2 to recall system optimality criteria in LSMSC system design.
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adequate for correspondence estimation and reduces the computational burden.
For the LSMSC, we extract three disparity maps, denoted {Di ∈ Rr×c|i = 1, 2, 3},

from three pairs of feature images {(F0, Fi)|i = 1, 2, 3}. The block matching results in
an estimate of pixel disparity in units of pixels. Sub-pixel accuracy can be achieved by
incorporating an interpolation step in the block matching. This approach is described in
Section 4.3.3.

For an illustration of the naming convention of variables in this section, the reader
may refer to Figure 4.10.
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Figure 4.10: Example images of a scanning scene corresponding to a color chart on a
ramp: The illustration contains RGB sub-images (L0 to L3), feature images (F0 to F3)
and disparity maps (D1 to D3).

4.3.1 Color invariant feature mapping

The aim of color invariant feature mapping is to transform pairs of 3-channel RGB sub-
images into 1-channel feature images that contain similar image intensities for correspond-
ing physical locations in the scanning scene. The four filtered RGB sub-images of the
LSMSC can be considered as images acquired by independent virtual camera systems.
Without loss of generality, we consider only one pair of RGB sub-images, namely (L0, L1).

Suppose x0 and x1 are two vectors in R3, denoting camera responses of corresponding
pixels in L0 and L1. Let f0 : R3 7→ R and f1 : R3 7→ R be functions that map RGB
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vectors x0 and x1 to scalar quantities x0 and x1. In mathematical terms, finding a color
invariant feature mapping is the problem of minimizing ‖f0(x0)−f1(x1)‖. This expression
is satisfied by a mapping to zero, regardless the values of x0 and x1. Obviously, this is
not a favorable solution as all image information is lost and hence, the problem has to be
constrained further. In that sense, we seek for a solution that also retains as much image
information of the RGB images as possible.

We propose two strategies for color invariant feature mapping. The first is based on
a physical model of the acquisition process and the second is an empirically determined
mapping function. In this dissertation, we only consider linear transformations as mapping
functions. Preliminary results of experiments with other types of transformations are
promising, but beyond the scope of this dissertation and hence motivate future research.

A Physical model based feature mapping

Let x0 ∈ R3×1 and x1 ∈ R3×1 be camera responses from sub-images L0 and L1 corre-
sponding to the same physical location, captured by virtual camera systems with effective
spectral responsivities W0 ∈ Rm×3 and W1 ∈ Rm×3 respectively. We note that the ef-
fective responsivities W0 = Y diag(t0) diag(l) and W1 = Y diag(t1) diag(l) combine the
effect of spectral responsivity of the RGB sensor Y ∈ Rm×3, scene illumination l ∈ Rm×1

and distinct spectral filter transmittances t0 ∈ Rm×1 and t1 ∈ Rm×1 for each sub-image
respectively.

We start by defining the transformation f0 : R3 7→ R for camera responses of the
reference image L0. Let ap,0 ∈ R3×1 be the first principal component of matrix W0

containing m effective sensor responsivities in rows. This component defines a linear
transformation that maps camera response x0 to a one-dimensional feature space, such
that the greatest variance of camera responses for W0 is retained, assuming spectral signals
acquired are uniformly distributed random variables. The problem is now to find an
adequate transformation function for x1 with respect to W1 to perform a mapping to the
same feature space. The corresponding minimization problem is

arg min
ap,1

‖W1ap,1 −W0 ap,0‖, (4.20)

where ap,1 ∈ R3×1. In most practical cases, there exists no solution such that W1ap,1 =
W0 ap,0. The solution in least squares sense is

ap,1 = (W T
1 W1)−1W T

1 W0 ap,0. (4.21)

Feature mappings of camera responses x0 and x1 are:

f0(x0) = aTp,0 x0

f1(x1) = aTp,1 x1.
(4.22)

B Empirically model based feature mapping

The physical model based method proposed in the previous section does not take assump-
tions about the statistical nature of the image scene. Instead of considering the acquisition
process, the empirical model is based on observation data, ie. matrix X0 ∈ R3×rc and
X1 ∈ R3×rc with camera response vectors from L0 ∈ Rr×c×3 and L1 ∈ Rr×c×3 in columns.
We again start by defining the transformation f0 : R3 7→ R for camera responses of the



4.3. PIXEL CORRESPONDENCE BASED REGISTRATION 87

reference image L0. Let ae,0 ∈ R3×1 be the first principal component of the data matrix
X0. Likewise, the first principal component defines a linear transformation that trans-
forms camera responses in X0 to a one-dimensional feature space such that the greatest
variance of the data is retained.

The transformation f1 is found by solving the following least squares problem

arg min
ae,1

‖aTe,1X1 − aTe,0X0‖, (4.23)

where ae,1 ∈ R3×1. The solution in least squares sense is

ae,1 = (X1X
T
1 )−1X1X

T
0 ae,0. (4.24)

Feature mappings of camera responses x0 and x0 are

f0(x0) = aTe,0 x0

f1(x1) = aTe,1 x1.
(4.25)

4.3.2 Block matching

We use exhaustive search block matching to extract pixel-wise disparities from feature
images corresponding to stereo pairs of RGB sub-images. Like before, we only consider
disparity extraction for one stereo image pair, namely (F0, F1). We remind the reader that
we regard geometrical calibration as a preprocessing step to block matching and because of
this, sub-images of the LSMSC are assumed to be rectified (ie. points in F0 are located in
the same image row as corresponding points in F1). Hence, the result of block matching is
the disparity map D1 ∈ Zr×c, containing horizontal pixel displacements of F1 with respect
to F0.

To find disparity D1(x, y) at pixel location (x, y), a macro block in F0 is defined in
the neighborhood of (x, y) and a matching block with similar image intensities is sought
in the same row of F1. The value of D1(x, y) is then the pixel displacement between
pixel location (x, y) and the matching location in horizontal direction. To reduce the
computational burden, we further define a relatively small search range (ie. the search
window) rather than the entire image line. The block matching process is illustrated in
Figure 4.11. Because F0 and F1 do not contain exactly the same intensities for pixels
of the same physical location in the scanning scene, we consider block matching as a
minimization problem and use the sum of squared difference (SSD) as similarity measure:

arg min
D1(x,y)∈Ψ

r∑

i=l

t∑

j=e

(F0(i, j)− F1(i+D(x, y), j))2, (4.26)

where l = x− (b− 1)/2, r = x+ (b− 1)/2, e = y− (b− 1)/2 and t = y+ (b− 1)/2 are the
indexes of the left column, right column, bottom row and top row of the block centered
at position (x, y) and b × b is the block size. The search window is defined in the range
Ψ = {0, 1, ...w− 1} for D1(x, y) in case F0 is the left image of the stereo pair. If F0 is the
right image, Ψ = {−w+1,−w+2, ...0}. Scalar w denotes the width of the search window,
and hence defines the number of times the reference block has to be compared in order to
find a match. The scalars b and w are user defined block matching parameters and have
to be odd integers. The optimal choice for b is related to the texture of image objects and
the size of repetitive patterns in the images and w is usually selected slightly larger than
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Figure 4.11: Block matching process in the case that F0 is the left image and F1 is the
right image of a stereo pair.

the maximum absolute disparity expected to occur between F0 and F1. We implemented
SSD based block matching using a fast Fourier transformation based approach that is
computationally less expensive than computing SSD in the spatial domain [74].

There exists a severe limitation of SSD based block matching, namely edge-fattening,
an effect that causes the center of a block to inherit disparity of the most contrasted pixels
in this block [75]. We recognize that a solution to this problem has been proposed in the
literature [75], but have not included it in our work because of time constraints.

4.3.3 Sub-pixel displacement estimation

The disparity map D1 ∈ Zr×c obtained from the feature image pair (F0, F1) ∈ Rr×c via
SSD based block matching contains disparities in pixel units. Various extensions for sub-
pixel accurate disparity extraction have been proposed (eg. [76, 77, 78]). We follow an
approach that consists of fitting a quadratic curve to the correlation window of discrete
disparities in block-matching, and evaluating this curve at its maximum [76]. Accordingly,
let d ∈ Z be the integer displacement obtained by block matching corresponding to mini-
mum SSD value s ∈ R. A quadratic estimator (ie. 2nd order polynomial function) of the
interpolated minimum location is:

d̃ = d+
1

2

(
sr − sl

2s− sl − sr

)
, (4.27)

where sub-pixel displacement d̃ takes values 0 ≤ d̃ ≤ w−1 ∈ R. Scalars sl ∈ R and sr ∈ R
are the SSD values of discrete locations on the right and left of d respectively. The sub-
pixel disparities are computed at every block-matching step and assigned to D̃ ∈ Rr×c.
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The approach was chosen because it adds little additional cost to the block-matching.
As noted by various researchers, computing disparities using a quadratic estimator can
introduce a systematic bias called pixel-locking, which is a tendency of the estimated sub-
pixel displacements to concentrate towards integer values. Various methods have been
proposed to overcome this problem [79, 80, 77], which were not considered in this work
and therefore motivate future work.

4.3.4 Image registration B

The registration of non-planar scanning objects (Image registration B in Figure 4.2) is
based on geometrically calibrated images that are assumed to be void of vertical displace-
ment. The horizontal channel-wise displacement for pixel location (x, y) ∈ Ω is derived
from scene content of stereo pairs {(L0, Li) ∈ Rr×c×3 × Rr×c×3|i = 1, 2, 3} of RGB sub-
images and contained in disparity maps {D̃i ∈ Rr×c|i = 1, 2, 3}. Accordingly, displace-
ments for image channels of the same sub-image are similar and image registration B only
consists of registering sub-images. The respective image transformation is then

L̃i(x, y) = Li(x+ D̃i(x+ y), y), (4.28)

where L̃i is the registered RGB sub-image and Li(x, y) is the pixel value at location
(x, y) ∈ Ω in the unregistered image. Disparity Di(x + y) is the horizontal displacement
of Li(x, y) with respect to L0(x, y), and i = 1, 2, 3. As before, image resampling has
to be performed to allow sub-pixel accurate image registration and we again use linear
interpolation for the resampling.

4.3.5 Limitations with respect to reflectance measurement

We have mentioned several potential limitations that might reduce the registration per-
formance of non-planar scanning objects. Edge-fattening, pixel-locking, occlusion or spec-
ularities are some examples. These potential limitations are specific to correspondence
estimation, but there exist other restrictions in LSMSC image acquisition of non-planar
scanning objects with respect to reflectance measurements.

The first is related to the scene illumination considered for LSMSC systems, which
is a directional line light source6. For this type of light source, the light is focused to a
rather narrow region around the scanning line. If scanning objects with three dimensional
structure are considered, the scene radiance sensed by the image sensor depends on the
object height. This effect is usually undesired but preliminary experiments have shown
that it can be corrected effectively with an additional calibration step if the object height
is estimated correctly from pixel disparities and is not too large.

Apart from that, height dependence of scene illumination also influences spectral re-
flectance and color measurement. We mostly regard flat scanning objects in this dis-
sertation, so the effect on spectral or color measurement performance was not evaluated
numerically yet.

4.4 Evaluation

This section is devoted to the evaluation of the image registration framework proposed
before. We have introduced scenarios of LSMSC image registration for planar and non-
planar scanning objects. In the case of planar scanning objects, registration is based on

6See Section 2.3.2.A.
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geometrical calibration. For non-planar scanning objects, color invariant feature mapping
and block matching based correspondence estimation are required additionally.

The evaluation in this section is divided into subsections that individually assess these
modules. All experiments are performed with image data acquired by our laboratory
LSMSC corresponding to SC212C.

4.4.1 Geometrical calibration

We compared registration performance of the polynomial and B-spline based models of
the geometrical calibration scheme. Based on Zitová et al. [81], registration performance
can be quantified in terms of localization error, matching error and alignment error. We
additionally assessed fitting error and explain each measure as follows:

Localization error refers to the displacement of key-point coordinates due to inaccurate
detection. This type of error is intrinsic to the key-point detection and therefore can
not be measured directly from the image data.

Matching error is measured by counting false matches when establishing correspon-
dence between key-points for all image channels. The key-point extraction scheme
used in this work seems robust, as matching error was always found to be zero.

Alignment error refers to the residual displacement with respect to a reference image
after image registration. This error is often quantified by computing the mean-
square error over available key-point locations after registration. We add measures
of first order statistics to our evaluation. We refer to the alignment error when
evaluating registered image cubes other than the one used to extract key-points for
model fitting. By that, we separate model fitting and model evaluation data, which
allows us to identify whether or not a registration model is prone to over-fitting.

Fitting error is similar to alignment error and defined as the residual displacement of
the cube used for model fitting after registration.

Because horizontal and vertical displacement are independent quantities, we proceed
by evaluating each component separately. Obviously, fitting error was computed from
a registered image cube of the geometrical calibration target. The alignment error was
computed from another image cube that contains image data of a test target. For conve-
nience, we designed the test target in a similar fashion as the calibration target, containing
a printed checkerboard pattern (see Section 4.2.1). The rotation angle was modified, so
instead of using α = 5.47 ◦, we used α = −5.47 ◦.

We denote errors in vector notation. Hence, for every image channel λ, we computed
eλ,u and eλ,v. These vectors contain the horizontal and vertical residual displacement of
k key-point locations in K with respect to reference image channel Iλ,0 and are defined as

eλ,u = [xλ,i − x0,i]k×1, i = 1, 2, ...k

eλ,v = [yλ,i − y0,i]k×1, i = 1, 2, ...k. (4.29)

The polynomial and B-spline based model were fitted using key-points extracted from
an image cube of the scanned calibration scene. For the B-spline model, a refinement
threshold of 0.1 pixel average residual displacement was selected. Fitting error was com-
puted for the calibration scene cube for both methods and is illustrated in Table 4.1, Table
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4.2 and Figure 4.12. The alignment error was computed from the image cube of the test
scene and is illustrated in Table 4.3, Table 4.4 and Figure 4.13. Note that channel 1 is
generally void of displacement because it was used as reference. We therefore omit the
corresponding numbers in tabulated data.

The following observation can be drawn from the results:

Displacement of unregistered calibration scene cube: Table 4.1 (a), 4.2 (a)
Horizontal displacement is on average larger than vertical displacement. The maxi-
mum displacement in horizontal direction is approximately 1.9 pixels and in vertical
direction approximately 0.9 pixels.

The maximum displacement of key-points from channels belonging to the same sub-
image is less than 0.2 pixels for both horizontal and vertical direction.

Displacement of unregistered test scene cube: Table 4.3 (a), 4.4 (a)
1st oder statistics of horizontal and vertical displacement are in good agreement with
the data from the unregistered calibration scene cube.

Fitting error: Table 4.1 (b,c), 4.2 (b,c)
Polynomial as well as B-spline model result in a residual displacement of less than
0.1 pixel on average for any channel, for both horizontal and vertical direction.

Judging from the maximum displacement, a larger residual remains in horizontal
direction as compared with vertical direction. Generally, a smaller maximum dis-
placement in both directions is achieved by the B-spline model.

Comparing the residual displacement graph in Figure 4.12, it can be observed that
the data scatter appears smaller in some channels for B-spline as compared with the
polynomial model. This finding also manifests in low corresponding channel-wise
standard deviation of the residuals.

Alignment error: Table 4.3 (b,c), 4.4 (b,c)
Again, polynomial as well as B-spline model result in a residual displacement less
than 0.1 pixel on average for any channel, for both horizontal and vertical direction,
confirming that both models generalize well from calibration scene cube to test
scene cube. The vertical displacement seems to be corrected slightly better than the
horizontal displacement for both models, if average residuals are considered.

Contrary to the fitting error, the maximum error in horizontal and vertical direction
is slightly larger for B-spline than the polynomial model. This can be an indicator
for a slight over-fitting of the calibration scene data (because the maximum fitting
error is very low for the B-spline model) which in turn leads to an over-compensation
of the residuals in the test scene data. This effect can also be confirmed by observing
the fitting and alignment error graphs in Figure 4.12(b) and 4.13(b). For instance
in channel 4, residual displacement pattern of fitting and alignment error for the
polynomial model are similar, whereas a clear difference can be observed for the
B-spline model.
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Table 4.1: Calibration cube: First order statistics of channel-wise and overall absolute
horizontal key-point displacement and fitting error |eu,λ| in pixel units.

(a) Unregistered

λ Avg. Std. Max.
2 0.04 0.03 0.11
3 0.06 0.04 0.16
4 0.90 0.41 1.77
5 0.88 0.40 1.82
6 0.90 0.42 1.92
7 0.22 0.13 0.63
8 0.21 0.12 0.60
9 0.26 0.15 0.55
10 0.57 0.30 1.18
11 0.55 0.29 1.16
12 0.57 0.30 1.07

2-12 0.47 0.42 1.92

(b) Polynomial model

λ Avg. Std. Max.
2 0.01 0.01 0.05
3 0.02 0.01 0.07
4 0.02 0.02 0.14
5 0.02 0.02 0.14
6 0.03 0.03 0.16
7 0.05 0.04 0.17
8 0.05 0.04 0.15
9 0.05 0.04 0.18
10 0.04 0.04 0.17
11 0.04 0.03 0.16
12 0.04 0.03 0.16

2-12 0.03 0.03 0.18

(c) B-spline model

λ Avg. Std. Max.
2 0.01 0.01 0.04
3 0.01 0.01 0.03
4 0.02 0.01 0.05
5 0.01 0.01 0.06
6 0.02 0.01 0.05
7 0.02 0.01 0.04
8 0.02 0.01 0.05
9 0.02 0.01 0.05
10 0.02 0.01 0.07
11 0.02 0.01 0.07
12 0.02 0.01 0.07

2-12 0.02 0.01 0.07

Table 4.2: Calibration cube: First order statistics of channel-wise and overall absolute
vertical key-point displacement and fitting error |ev,λ| in pixel units.

(a) Unregistered

λ Avg. Std. Max.
2 0.03 0.02 0.10
3 0.04 0.03 0.12
4 0.19 0.16 0.60
5 0.18 0.15 0.57
6 0.18 0.14 0.55
7 0.47 0.16 0.77
8 0.51 0.16 0.81
9 0.56 0.16 0.85
10 0.22 0.17 0.74
11 0.21 0.19 0.76
12 0.21 0.19 0.77

2-12 0.25 0.23 0.85

(b) Polynomial model

λ Avg. Std. Max.
2 0.02 0.01 0.08
3 0.02 0.02 0.11
4 0.02 0.01 0.05
5 0.02 0.02 0.08
6 0.03 0.02 0.11
7 0.02 0.02 0.10
8 0.03 0.02 0.11
9 0.03 0.02 0.12
10 0.02 0.02 0.13
11 0.02 0.01 0.05
12 0.02 0.02 0.09

2-12 0.02 0.02 0.13

(c) B-spline model

λ Avg. Std. Max.
2 0.01 0.01 0.05
3 0.02 0.02 0.09
4 0.02 0.01 0.08
5 0.02 0.02 0.08
6 0.03 0.02 0.11
7 0.03 0.02 0.09
8 0.03 0.02 0.12
9 0.03 0.03 0.12
10 0.03 0.02 0.10
11 0.02 0.02 0.09
12 0.02 0.02 0.09

2-12 0.02 0.02 0.12

Table 4.3: Test cube: First order statistics of channel-wise and overall absolute hori-
zontal key-point displacement and alignment error |eu,λ| in pixel units.

(a) Unregistered

λ Avg. Std. Max.
2 0.04 0.02 0.12
3 0.06 0.04 0.18
4 0.91 0.43 1.86
5 0.89 0.42 1.94
6 0.92 0.44 2.07
7 0.25 0.15 0.61
8 0.24 0.14 0.58
9 0.31 0.15 0.61
10 0.60 0.32 1.18
11 0.59 0.31 1.19
12 0.61 0.33 1.20

2-12 0.49 0.43 2.07

(b) Polynomial model

λ Avg. Std. Max.
2 0.01 0.01 0.05
3 0.02 0.01 0.06
4 0.05 0.03 0.15
5 0.04 0.03 0.15
6 0.05 0.03 0.15
7 0.08 0.05 0.21
8 0.08 0.05 0.20
9 0.08 0.05 0.20
10 0.10 0.05 0.28
11 0.10 0.05 0.28
12 0.10 0.05 0.28

2-12 0.06 0.05 0.28

(c) B-spline model

λ Avg. Std. Max.
2 0.03 0.02 0.10
3 0.04 0.03 0.16
4 0.06 0.04 0.27
5 0.05 0.04 0.30
6 0.06 0.04 0.32
7 0.07 0.05 0.21
8 0.08 0.05 0.20
9 0.08 0.05 0.21
10 0.10 0.05 0.27
11 0.10 0.05 0.27
12 0.10 0.05 0.27

2-12 0.07 0.05 0.32

Table 4.4: Test cube: First order statistics of channel-wise and overall absolute vertical
key-point displacement and alignment error |ev,λ| in pixel units.

(a) Unregistered

λ Avg. Std. Max.
2 0.02 0.01 0.07
3 0.03 0.02 0.12
4 0.19 0.16 0.60
5 0.18 0.15 0.58
6 0.18 0.14 0.58
7 0.46 0.16 0.75
8 0.50 0.16 0.81
9 0.55 0.17 0.85
10 0.21 0.18 0.76
11 0.21 0.20 0.78
12 0.20 0.21 0.79

2-12 0.25 0.23 0.85

(b) Polynomial model

λ Avg. Std. Max.
2 0.01 0.01 0.04
3 0.02 0.01 0.08
4 0.01 0.01 0.05
5 0.02 0.01 0.06
6 0.02 0.01 0.08
7 0.02 0.01 0.07
8 0.02 0.02 0.08
9 0.02 0.02 0.08
10 0.02 0.02 0.08
11 0.02 0.02 0.07
12 0.02 0.02 0.08

2-12 0.02 0.02 0.08

(c) B-spline model

λ Avg. Std. Max.
2 0.01 0.01 0.05
3 0.02 0.02 0.08
4 0.04 0.03 0.17
5 0.04 0.03 0.18
6 0.04 0.04 0.19
7 0.02 0.02 0.07
8 0.03 0.02 0.11
9 0.03 0.03 0.13
10 0.03 0.03 0.15
11 0.02 0.03 0.14
12 0.03 0.03 0.15

2-12 0.03 0.03 0.19
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(a) Horizontal fitting error eu,λ.
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(b) Vertical fitting error ev,λ

Figure 4.12: Fitting error and corresponding key-point x coordinates for image channel
λ = {1, 2, ...12}. Illustrated in blue are the residuals for the polynomial model, in red for
the B-spline model.
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(a) Horizontal alignment error eu,λ.

e
v
,1

x
200 600 1000

−0.2

0

0.2

e
v
,2

x
200 600 1000

−0.2

0

0.2

e
v
,3

x
200 600 1000

−0.2

0

0.2

e
v
,4

x
200 600 1000

−0.2

0

0.2

e
v
,5

x
200 600 1000

−0.2

0

0.2

e
v
,6

x
200 600 1000

−0.2

0

0.2

e
v
,7

x
200 600 1000

−0.2

0

0.2

e
v
,8

x
200 600 1000

−0.2

0

0.2

e
v
,9

x
200 600 1000

−0.2

0

0.2

e
v
,1
0

x
200 600 1000

−0.2

0

0.2

e
v
,1
1

x
200 600 1000

−0.2

0

0.2

e
v
,1
2

x
200 600 1000

−0.2

0

0.2

(b) Vertical alignment error ev,λ

Figure 4.13: Alignment error and corresponding key-point x coordinates for image chan-
nel λ = {1, 2, ...12}. Illustrated in blue are the residuals for the polynomial model, in red
for the B-spline model.
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4.4.2 Color invariant feature mapping

Feature mapping is required to transform pairs of RGB sub-images to feature images that
contain similar image intensities for corresponding physical locations in the scanning scene.
We quantified feature mapping performance by evaluating the RMSE between feature
images in normalized feature space7. In this experiment, we considered data from DS1
and DS4 and compared SC112C and SC212C. The physical model based feature mapping
functions corresponding to Equation 4.21 were obtained from the system’s effective spectral
responsivities. The empirical model based mapping functions were extracted from acquired
camera response data of DS1 and respective mapping functions are in accordance with
Equation 4.24.

To select a reference lens for the two systems, we empirically evaluated all four options
and selected the one with highest average feature mapping performance for the empirical
model. Accordingly, for SC112C, lens 2 was selected as reference. We denote the corre-
sponding RGB sub-image as L0. The other sub-images are then L1, L2 and L3 for lens 1,
3 and 4 respectively. For SC212C, lens 1 was selected as reference, so the corresponding
sub-image is denoted L0. The other sub-images L1, L2 and L3 correspond to lens 2, 3 and
4 respectively.

We show the numerical results of the experiment in Table 4.5. Further, we illustrate
the mappings for SC112C in Figure 4.14 and 4.15, and for SC212C in Figure 4.16 and
4.17. We conclude the following from the experiment:

Comparing SC112C and SC212C: for the physical model, the average RMSE is con-
siderably higher for SC212C than for SC112C. As channels of SC212C were spe-
cially optimized to capture distinct information (see Section 3.4.4), mapping from
different RGB sub-images to a common feature space is more difficult. This can ex-
plain the lower feature mapping performance for SC212C. For the empirical model
we do not see this effect.

Comparing DS1 and DS4: for the physical model, performance of DS4 is generally
higher than for DS1. The physical modeling process is data independent, so the rea-
son for the higher overall performance might be that DS1 contains a larger amount
of color patches for which the performance is low, as compared with DS4 which con-
tains approximately eight times less samples. For the empirical model, performance
is in most cases and on average higher for DS1. This does not come as a surprise,
as this dataset was used for model fitting.

Comparing physical and empirical model: for both system configurations, the per-
formance of the empirical model is significantly higher than that of the physical
model. For the physical model, we made an assumption about the statistical distri-
bution of camera responses, namely that any physically possible camera response is
equally likely to occur. The empirical model takes the distribution of a set of camera
responses from a color chart into account and the higher performance indicates that
this is useful in practice.

Another possible explanation for the lower performance is the potential shortcoming
in the acquisition model that was mentioned in the last chapter (Section 3.4.4)8.

7Intensity values over all feature maps were scaled to be in the range [0, 1].
8We note that a direct comparison of feature mapping based on simulated and measured camera

response data could clarify this aspect. This was not done yet because of time constraints.



96 CHAPTER 4. MULTI-CHANNEL LINE-SCAN IMAGE REGISTRATION

Table 4.5: Empirical evaluation of the performance of physical and empirical feature
mapping for SC112C and SC212C. Dataset DS1 was considered for fitting the empirical
model, DS4 is an independent dataset for testing. Numerical values correspond to the
RMSE between pairs of feature images. The last column shows the average RMSE over
all sub-image pairs.

SC112C (F0, F1) (F0, F2) (F0, F3) Avg.

Phys. model DS1 0.077 0.040 0.085 0.068

Phys. model DS4 0.091 0.039 0.071 0.067

Emp. model DS1 0.050 0.010 0.022 0.027

Emp. model DS4 0.071 0.013 0.024 0.036

SC212C (F0, F1) (F0, F2) (F0, F3) Avg.

Phys. model DS1 0.215 0.153 0.083 0.150

Phys. model DS4 0.206 0.142 0.077 0.142

Emp. model DS1 0.023 0.042 0.026 0.030

Emp. model DS4 0.014 0.060 0.040 0.038
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Figure 4.14: Color invariant feature mapping for camera responses from LSMSC SC112C

- DS1: color patches from RGB sub-images L0 to L3 (row 1); physical model based feature
images F0 to F3 (row 2); corresponding residuals with respect to F0 (row 3); empirical
model based feature images (row 4); corresponding residuals with respect to F0 (row 5).
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Figure 4.15: Color invariant feature mapping for camera responses from LSMSC SC112C

- DS4: color patches from RGB sub-images L0 to L3 (row 1); physical model based feature
images F0 to F3 (row 2); corresponding residuals with respect to F0 (row 3); empirical
model based feature images (row 4); corresponding residuals with respect to F0 (row 5).
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Figure 4.16: Color invariant feature mapping for camera responses from LSMSC SC212C

- DS1: color patches from RGB sub-images L0 to L3 (row 1); physical model based feature
images F0 to F3 (row 2); corresponding residuals with respect to F0 (row 3); empirical
model based feature images (row 4); corresponding residuals with respect to F0 (row 5).
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Figure 4.17: Color invariant feature mapping for camera responses from LSMSC SC212C

- DS4: color patches from RGB sub-images L0 to L3 (row 1); physical model based feature
images F0 to F3 (row 2); corresponding residuals with respect to L0 (row 3); empirical
model based feature images (row 4); corresponding residuals with respect to L0 (row 5).



4.4. EVALUATION 101

4.4.3 Block matching and sub-pixel displacement estimation

To experimentally evaluate the performance of block matching and sub-pixel displacement
estimation, we have designed two checkerboard test scenes that were used as non-flat
scanning surfaces. Photographic illustrations of the test scenes are given in Figure 4.18.
The matching process used feature images obtained with the empirical model based color
invariant feature mapping described in Section 4.3.1.B. We considered LSMSC SC212C,
so feature mapping model parameters were taken from the corresponding experiment in
Section 4.4.2. Because the checkerboard contains only black and white patches and feature
mapping for these colors generally performs well, we assumed that feature-mapping did
not bias the experimental evaluation of block matching in this subsection.

The parameters for block-matching were empirically selected as w = 20, b = 81.

(a) Test scene 1 (b) Test scene 2

Figure 4.18: Illustration of the irregularly bended and the buckled checkerboard image
scenes used to evaluate pixel correspondence estimation.

The result of block-matching and sub-pixel displacement estimation are disparity maps
D̃1 to D̃3, computed from three feature image pairs (ie. (F0, F1), (F0, F2) and (F0, F3)).
By reusing the automatic key-point extraction scheme described in Section 4.2.2, we can
determine the sub-pixel accurate locations where black checker patterns intersect in the
feature images F0 to F3. We define K0 to K3 as the sets of k key-points with locations
{(xi, yi) ∈ R2|1 ≤ xi ≤ c, 1 ≤ yi ≤ r, i = 1, 2, ...k}, where r and c are the image height and
width respectively. The checkerboard used in the test scenes spans a regular grid of 8×11
black patches before bending or buckling, from which we extracted k = 280 key-points.
So we computed vectors of key-point displacement for feature image pairs from elements
in K0 to K3. For instance, dr,u(F0, F1) ∈ Rk×1 contains horizontal displacement values of
key-point in K0 with respect to K1, and dr,v(F0, F1) ∈ Rk×1 the corresponding vertical
displacement.

We further resampled the disparity maps D̃1 to D̃3 at key-point pixel locations in
K0 to obtain similar displacement vectors for the horizontal direction of the three pairs
of feature images. We denote these vectors as db,u and note that an implication of the
assumption that geometrically calibrated images are void of vertical displacement is db,v =
0. We assume that key-point extraction is exact and hence consider the residual between
the displacement obtained by correspondence estimation and the reference displacement
obtained with the corner finder as a performance measure for block matching and sub-
pixel displacement estimation. This error is eu = dr,u − db,u for horizontal direction and
ev = dr,v−db,v = dr,v for vertical direction. For reference, we summarize the displacement
and error terms used in Table 4.6.

The first order statistics of eu and ev for the two test scenes are given in Table 4.7.
For the horizontal case, we illustrate in Figure 4.19 surface plots of spatially arranged
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Table 4.6: Displacement and error terms used in the experimental evaluation of block-
matching and sub-pixel displacement estimation.

Term Description

dr,u Key-point displacement in horizontal direction (computed
with corner-finder).

dr,v Same as dr,u, but for vertical direction.

db,u Key-point displacement in horizontal direction (computed
from correspondence estimation / block matching).

db,v Same as db,u, but for vertical direction.

eu = dr,u − db,u Difference between key-point displacement computed from
block matching and corner finder in horizontal direction.

ev = dr,v − db,v Same as eu, but for vertical direction.

displacement dr,u, db,u and residuals eu according to corresponding locations in K0 for
Test scene 1. For Test scene 2, corresponding plots are shown in Figure 4.20.

We summarize the findings from this experiment as follows:

Overall performance: On average, sub-pixel accuracy is reached in correspondence es-
timation for all feature image pairs and both test scenes. The maximum errors are
at most slightly larger than 1.1 pixels. The corresponding surface plots confirm that
the low residual error is approximately randomly distributed over the image scene.

Comparison of image pairs: From surface plot of dr,u and db,u, we can see bigger dis-
placement for image pairs for which the physical distance between sub-images is
larger. The average errors seem to follow the same trend, so for (F0, F1) correspond-
ing to lens 1 and lens 2, the average errors are always smaller as compared with
(F0, F3) corresponding to lens 1 and lens 4.

Comparison of Test scene 1 and 2: The correspondence estimation performance is
systematically lower for image pairs of Test scene 2 than for Test scene 1. The
block size in our experiment was selected rather large as compared with the local
height variation of the buckled paper, which might have reduced the block matching
accuracy. Using a smaller block size was not an option, as the block size must be
bigger than individual checker pattern to allow block matching for this type of image
scene. Obviously, this is a limitation related to our test scene design rather than the
block matching procedure.

Comparison of horizontal and vertical displacement: The existence of error for ver-
tical displacement is a strong indicator that the previous assumption that geomet-
rically calibrated images are void of vertical displacement does not hold entirely.
As discussed previously, one possible explanation for this residual is the lens view-
point variation mentioned and illustrated in Figure 2.13b. For our particular system,
we are not much concerned about that, as the overall displacement error is still in
sub-pixel range.
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Figure 4.19: Surface plots of displacements dr,u extracted via corner finder, and displace-
ments db,u extracted via block-matching from Test scene 1. The last column corresponds
to residuals eu, and the rows correspond to individual feature image pairs. The data points
are spatially arranged according to their relative key-point locations in K and the surfaces
are interpolated based on that.

Table 4.7: First order statistics of displacement error eu and ev for Test scenes 1 and 2.

(a) Test scene 1

eu Avg. Min. Max. Std.

(F0, F1) 0.037 0.000 0.127 0.030

(F0, F2) 0.075 0.000 0.245 0.052

(F0, F3) 0.094 0.001 0.270 0.048

ev Avg. Min. Max. Std.

(F0, F1) 0.074 0.024 0.153 0.025

(F0, F2) 0.136 0.000 0.391 0.112

(F0, F3) 0.137 0.034 0.309 0.061

(b) Test scene 2

eu Avg. Min. Max. Std.

(F0, F1) 0.131 0.001 0.673 0.137

(F0, F2) 0.150 0.001 0.682 0.129

(F0, F3) 0.204 0.001 0.982 0.183

ev Avg. Min. Max. Std.

(F0, F1) 0.055 0.001 0.940 0.071

(F0, F2) 0.117 0.001 1.107 0.107

(F0, F3) 0.105 0.001 0.630 0.063
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Figure 4.20: Surface plots of displacements dr,u extracted via corner finder, and displace-
ments db,u extracted via block-matching from Test scene 2. The last column corresponds
to residuals eu, and the rows correspond to individual feature image pairs. The data points
are spatially arranged according to their relative key-point locations in K and the surfaces
are interpolated based on that.
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4.4.4 Illustration of image registration for non-planar scanning objects

In the following, we consider examples of non-planar scanning scenes to demonstrate the
proposed registration framework. RGB images were rendered from estimated reflectance
data9 (assuming the CIE-10◦standard observer and CIE-D65 standard illuminant) and
we compare geometrically calibrated images before and after scene-adaptive registration
(Image registration B in the block diagram of Figure 4.2).

The first scanning scene is illustrated in Figure 4.21a. The zoomed region of the uncor-
rected image (marked in blue) shows severe color fringes at image locations where colors
change abruptly, while this defect is not visible in the corrected image. The reflectance
data corresponding to the area marked by the blue and red circles are plotted in Fig-
ure 4.21b. Even though these areas appear homogeneous in the rendered RGB images, we
can see from the spectral data that reflectances estimated from uncorrected multi-channel
image data (illustrated in blue) are oscillating much more than those estimated from cor-
rected data (illustrated in red). We show in Figure 4.21c that our framework also allows
reconstructing the three dimensional object structure from LSMSC image data. This il-
lustration is obtained by mapping the rendered RGB image on a three-dimensional plot
of the disparity map.

The second example refers to the color chart on a ramp that was used in Figure 4.10.
For this example, the color fringe effect is very apparent.
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Figure 4.21: Test image scene salmon: RGB images rendered from estimated spectral
data (a), spectral reflectances corresponding to the red and blue circles (b) and illustration
of the three dimensional object surface structure recovered from LSMSC image data.

9Spectral estimation was performed using a linear least squares regression model with linear feature
mapping. We note that spectral estimation will be considered in Chapter 5.
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(a) Photography of image scene (b) Uncorrected image (c) Corrected image

Figure 4.22: Test image scene color chart on a ramp: the images in the middle and right
are RGB images rendered from estimated spectral image data.

4.5 Summary, conclusions and future work

Image registration is a vitally important processing step in LSMSC image acquisition and
is required to bring pixels corresponding to the same physical locations of the scanning
scene in all image channels into alignment. We have distinguished registration procedures
for two application cases, namely planar and non-planar scanning objects.

Registering images of planar scanning objects requires a geometrical calibration, which
involves modeling horizontal and vertical pixel displacement with respect to a reference
image channel, using image data from a predefined calibration scene target. Once obtained,
the model can be used to determine the displacement required to align any other scanned
images with sub-pixel accuracy.

We have developed a geometrical calibration target that is specifically useful for line-
scan imaging systems, and proposed a semi-automatic scheme for dense key-point extrac-
tion over the entire sensor domain. This scheme was used to empirically analyze channel
displacement for our laboratory LSMSC system (SC212C), and allowed us to identify
specific characteristics. It was found that the displacement can be up to 2 pixels and it is
approximately polynomial shaped and distinct for each image channel. Based on these ob-
servations, we developed a registration framework for LSMSC systems and implemented
two distinct models for displacement fitting: a polynomial model and a uniform cubic
B-spline model. Sub-pixel accuracy was achieved by incorporating image resampling.

We evaluated the image registration performance of the two curve models with respect
to alignment and fitting error and found that the residuals after registration are on av-
erage below 0.1 pixel for any channel in both horizontal and vertical directions. For the
case of B-spline model based registration, we identified slightly larger maximum residual
displacements when evaluating an independent test scene. We suspect that this model has
a slight tendency to over-fit. Because the overall performance of both models is high, we
did not analyze this aspect further.

When non-planar scanning objects are considered, geometrical calibration alone is not
adequate when LSMSC systems with more than one lens are considered. The three-
dimensional structure of non-planar surfaces results in scene dependent channel misalign-
ment between RGB sub-images. This can be corrected in an adaptive registration process
based on pixel correspondence estimation. We have discussed specific aspects and con-
ditions of the correspondence problem with respect to LSMSC systems, which allowed
predefining a search range for pixel correspondence among all image channels. A partic-
ularly challenging problem in finding pixel correspondence between RGB sub-images is
that the image intensities relate to different spectral content due to the RGB sub-image
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filtering. We address this problem by transforming each RGB sub-image into a so-called
color invariant feature image. Desired transformations produce feature images in which
corresponding image object pixels share similar image intensities, and which retain most
information of the RGB sub-images. We have proposed two approaches: the first is based
on a physical model of the acquisition process, and the second is based on empirical data
from a color chart. In experiments with two color test charts, it was found that the phys-
ical model based feature mapping is outperformed by the empirical model, which takes
the distribution of camera responses into account.

After feature mapping, pixel-wise correspondence estimation is performed on feature
images by block-matching with sub-pixel accuracy. In experiments with two test targets,
we found average errors below 0.3 pixels and a maximum error only slightly larger than
1.1 pixel. The last step of LSMSC image registration for non-planar scanning objects is the
pixel correspondence based image registration with linear interpolation image resampling.

We consider research related to LSMSC image registration of planar scanning objects
to be adequately addressed. However, there exist various opportunities for future research
with respect to non-planar scanning objects.

One aspect is related to the empirical method for color invariant feature mapping pro-
posed in Section 4.3.1. This model takes the distribution of a set of camera responses
from a color chart into account and we saw that this is useful in practice. If the actual
image content of a scanning scene for a particular application is constrained to objects
with certain colors, it might be possible to find a better transformation model than the
one obtained from the color chart with many colors. We have conducted a preliminary
study that involves unsupervised correspondence estimation of few image regions in RGB
sub-images based on the so-called Speeded-up robust features (SURF) [82]. The camera
responses of these image regions can be used to compute a color invariant feature trans-
formation that is scene-adaptive and therefore likely to achieve better mapping than the
non-adaptive transformation. Experimental results support this assumption, however, a
systematic evaluation with different scene types is pending.

Further, we also experimented with non-linear feature mapping algorithms based on
ridge regression in reproducing kernel Hilbert space [83, pp.232-234]. We used a Gaussian
kernel and achieved results which indicate that the non-linear mapping performance is
higher than linear feature mapping.

Another aspect that was not considered in this dissertation is 3D scene reconstruction
from LSMSC image data. We used the disparity maps of RGB sub-images for registra-
tion, but as mentioned earlier, an additional geometrical calibration step would allow
transforming pixel disparities in the image coordinate system to a height profile in the
object coordinate system and hence allow spatial measurements on 3D objects.

The last aspect to mention is that image registration of non-planar scanning objects
is also a fundamental requirement for spectral reflectance measurements on 3D objects.
For complex object surface structure, measurement conditions will deviate from what is
required for norm conform spectral reflectance factor and device independent color mea-
surements. The influence on measurement performance has to be evaluated systematically.





“We have to remember that what we observe is not nature
herself, but nature exposed to our method of questioning.”

Werner Heisenberg (1901 – 1976)
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5.1 Preface

The spectral reflectance estimation problem can be stated as follows: Given a camera
response vector x = [x1, ...xn]T ∈ Rn×1, and corresponding spectral reflectance vector
r = [r1, ...rm]T ∈ Rm×1, find a mapping f : Rn×1 7→ Rm×1 that minimizes L(f(x), r),
where L is a loss function that quantifies the difference between f(x) and r, and typically
n < m.

The task of finding the mapping function f can be solved by several fundamentally
different strategies. One strategy is based on the physical process that relates spectral
reflectances with camera responses, which is the image acquisition. If the forward mapping
from reflectance space to camera response space is known, we can attempt to invert this
mapping to find a f that relates camera responses with spectral reflectances. As this
forward model maps from a typically higher dimensional space to a lower dimensional
space, the inverse function is not unique, which is a major limitation in practice. Methods
that follow this strategy are often referred to as direct recovery or physical model based
estimation approaches.

Another strategy to find f does not make any assumptions on the image acquisition
model used, but rather aims at modeling the relation of camera response and reflectance
data empirically. Finding f is then considered as a pattern recognition or machine learning
problem. The mapping from camera response to reflectance space is still from a lower
dimensional to a higher dimensional space. But the learning process allows to include
certain prior knowledge in the model, which is typically inferred from a known set of
training data and/or physical constraints. Methods that follow this strategy are often
referred to as indirect recovery or empirical model based estimation approaches. The two
strategies are schematically illustrated in Figure 5.1.
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Figure 5.1: Block diagram of physical model and empirical model based estimation
principles.

The active research in the spectral estimation domain in the past 20 years has led
to the development of many approaches that follow either of the two strategies depicted
above, or a mixture of both. We note that there exists many works related to theoretical
aspects of spectral estimation and even more studies that apply spectral estimation to
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practical problems. Summarizing all of them is beyond the scope of this thesis and we
therefore focus our attention to a general introduction of the underlying mathematical
models in Sections 5.2 to 5.4. In Section 5.5, we compare the most prominent spectral
estimation methods experimentally based on simulated and measured camera responses
for various system configurations and various levels of simulated camera response noise.
We conclude this chapter with a summary in Section 5.6.

Before we continue, we clarify that the terms spectral reconstruction, spectral recovery
and spectral estimation refer to the same procedure, which is to obtain spectral reflectances
from camera responses. To our knowledge, there exists no consensus in the scientific com-
munity about which term to use preferably. In this dissertation, we use the term spec-
tral reconstruction exclusively when referring to the process of reconstructing reflectances
from corresponding coordinates of an orthogonalized spectral reflectance subspace (see
Section 2.2.4). The usage of the other terms is not specified.

5.2 Physical model based spectral estimation

We have introduced the general image transfer function in Section 2.3.3, which describes
the integral process involved in image acquisition. We recall Equation 2.20:

x = W T r + ε, (5.1)

where x = [x1, ...xn]T ∈ Rn×1 is a vector of camera responses, corresponding to surface
reflectance ratio vector r = [r1, ...rm]T ∈ Rm×1 and W = diag(l)Y ∈ Rm×n is the effective
camera responsivity, describing the combined effect of scene illumination l ∈ Rm×1 and
camera responsivity Y ∈ Rm×n. Vector ε ∈ Rn×1 denotes an additive noise term.

We define physical model based spectral estimation as the problem of finding a recon-
structed reflectance r̃ ∈ Rm×1 corresponding to camera response x ∈ Rn×1 that satisfy
Equation 5.1. If W is known and we assume the absence of noise (ie. ε = 0 ∈ Rn×1), r̃
can be reconstructed directly from x by inverting W . The corresponding system equation
is

x = W T r. (5.2)

Because W is seldom a square matrix with full rank, the direct inverse usually does
not exist. In fact, in most practical applications of multi-spectral imaging, the number
of camera spectral channels is smaller than the number of discrete wavelengths of the
spectral data, i.e. n < m. This means that the system x = W T r is underdetermined and
there exist infinite possible r̃ vectors that satisfy Equation 5.2 (ie. which are metamers
in camera response space). In the following, we discuss some particular solutions that are
often considered in practice.

5.2.1 Minimum norm solution

As mentioned before, there exist infinite solutions that satisfy Equation 5.2 and a specific
one is the one with minimum norm. Accordingly, the problem can be stated as:

arg min
r
‖r̃‖2

s.t. x = W T r̃

It can be solved by the method of Lagrange multipliers. If the column vectors of W
are linearly independent (ie. rank(W ) = n), the solution takes the form

r̃ = W (W TW )−1x = (W T )+x, (5.3)
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where (W T )+ is called the pseudoinverse of W T . This solution is based on the Moore-
Penrose pseudoinverse, which generalizes the notion of matrix inverse to non-square ma-
trices [84, p.142]. In the following, we refer to this method as P-MIN.

Related literature
Maloney and Wandell [17] have used the minimum norm solution of the physical model
based spectral estimation. Instead of estimating spectral reflectances, they estimated the
coordinates of reflectance data transformed in a truncated orthogonalized reflectance space
and subsequently reconstructed the reflectances from these coordinates. The orthogonal
basis of the reflectance space contained in matrix U ∈ Rm×m can be derived from a set of
known reflectances by SVD or PCA (Section 2.2.4), and the truncated orthogonal space is
spanned by the first b vectors in U , denoted by Û ∈ Rm×b, which carry the most variance of
the reflectance data. By replacing r ∈ Rm×1 in Equation 5.2 by the reconstructed spectral
reflectance, ie. the corresponding orthogonal subspace representation r̂ = Û ĉ ∈ Rm×1

(2.9), we obtain

x ≈ x̂ = W T Û ĉ, (5.4)

where x ∈ Rn×1 is the camera response corresponding to r, x̂ ∈ Rn×1 is the camera
response corresponding to the reconstructed spectral reflectance r̂, and ĉ ∈ Rb×1 is the
truncated coefficient vector corresponding to r̂. The scalar b is a parameter to be optimized
in the model and can take values from 1 to m. Note that if b = m, the approximation
sign becomes equality and the expression equivalent to Equation 5.2.

The solution for Equation 5.4 is given by the pseudoinverse

ˆ̃c = (W T Û)+x, (5.5)

where ˆ̃c ∈ Rb×1 is an estimated coefficient vector and the other terms are as before. Thus,
we can reconstruct an estimated spectral reflectance ˆ̃r ∈ Rm×1 from ˆ̃c as

ˆ̃r = Û ˆ̃c = Û(W T Û)+x. (5.6)

In this method, the reconstruction error is defined as RMSE(r, r̂), while the estimation

error is defined as RMSE(r, ˆ̃r). In the following, we refer to this method as P-MW.

5.2.2 Wiener estimation

The minimum norm solution to the physical model based estimation problem is not nec-
essarily the desired one. This solution results in zero residuals in camera response space,
ie. the estimated reflectance r̃ has the same camera response as its true counterpart r.
However, what we are really interested in is to minimize the error ‖r̃− r‖2. Further, the
solutions developed previously are based on the assumption of absence of noise, which is
generally not true in image acquisition.

In Wiener estimation, we consider a linear estimation model r̃ = Ax. The problem
can be defined as [85]

arg min
A

E[‖Ax− r‖2], (5.7)

where A ∈ Rm×n is the estimation matrix, x ∈ Rn×1 is a multivariate random variable
of camera response and r ∈ Rm×1 the corresponding spectral reflectance variable. E[·]
denotes the expectation. Obviously, r is unknown in practice.
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Assuming that reflectances and noise are normal distributed multivariate random vari-
ables that are statistical independent, the optimal linear estimation model is based on the
so-called Wiener filter [86]. The solution is then given by the matrix

AWN = KrW (W TKrW +Ke)−1, (5.8)

where AWN ∈ Rm×n, and W ∈ Rm×n is as before, Kr ∈ Rm×m is the covariance matrix
of reflectances, and Ke ∈ Rn×n the covariance matrix of the camera response noise.

A reflectance vector r̃ ∈ Rm×1 can now be estimated from x by evaluating

r̃ = AWNx. (5.9)

We refer to this method as P-WN.

For various reasons, this model is prevented from having optimal performance [87].
Firstly, natural reflectances do not follow a normal distribution [47] and covariance matrix
Kr is usually unknown. In practice, Kr can be estimated. The unbiased estimate of the
covariance matrix of a random variable is described in Appendix A.4.

Furthermore, camera response noise is not statistically independent from reflectances
(for instance due to signal dependent shot noise. See Section 2.3.1.B.), nor is it normally
distributed. In practice, second order statistics of camera response noise can either be
assumed or approximated from measurements. Assuming it is an uncorrelated random
variable, we have Ke = diag(σ), where σ = [σ1, σ2, ...σn]T ∈ Rn×1 is a vector of n channel
dependent noise variances.

Related literature
To our knowledge, Pratt et al. [86] were the first who used the Wiener estimation model
for spectral estimation in the imaging domain. Their work can be considered trailblazing
in this field, as it appeared already in 1976 and therefore much earlier than most other
works related to spectral estimation.

The aforementioned practical limitation of the Wiener model due to the signal depen-
dence of camera noise was recognized by Haneishi et al. [49]. They proposed to divide the
camera response space into sub-blocks for which they precomputed various Ke matrices.
The performance obtained with this approach was found to be higher than for assuming
signal independent noise.

Shimano [88] developed a model for estimating the noise variance of a multi-spectral
imaging system and showed that this model agrees fairly well with the optimal variance
with respect to the Wiener filter model.

5.3 Empirical model based spectral estimation

Empirical estimation is a form of supervised learning, which means that the mathemati-
cal relation between reflectances and the corresponding camera responses generated by a
multi-spectral acquisition system are obtained from a set of observation data. We refer to
this set as training set and denote it as Str = {(x1, r1), (x2, r2), ...(xl, rl)} ⊂ Rn×1×Rm×1,
where (xi, ri) is a corresponding pair of camera response vector and surface reflectance,
and i = 1, 2, ...l.

We can express empirical estimation in form of the following minimization problem:

arg min
f

(
1

2

l∑

i=1

L(f(xi)− ri)

)
, (5.10)
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which can be interpreted as the problem of finding a function f : Rn 7→ Rm that minimizes
the cumulative estimation loss L over all elements in Str. We note that the factor 1

2 is
inserted only for convenience of calculations.

The following solutions to this minimization problem are based on linear systems. Let’s
start by considering the scalar case

r̃λ = fλ(x,aλ) = aλx = aλ,0 + aλ,1x1 + ...+ aλ,nxn, (5.11)

where x = [x1, x2, ...xn]T ∈ Rn×1 is a vector of camera responses, aλ = [aλ,0, aλ,1, ...aλ,n] ∈
R1×(n+1) is a vector containing coefficients of the linear system, fλ(x,aλ) is the prediction
function for a single wavelength component r̃λ of the estimated reflectance vector r̃ =
[r̃1, r̃2, ...r̃m]T ∈ Rm×1, and λ = 1, 2, ...m.

This model is characterized by the property that the prediction is a linear function
of the input variables x1, ...xn, which in some cases might restrict the model severely.
However, we can extend it by introducing a potentially non-linear mapping φ that maps
camera response vector x to a p-dimensional feature space [84, p. 138]. Accordingly, the
prediction function is

r̃λ = fλ(x,aλ) = aλφ(x), (5.12)

where aλ ∈ R1×p. Feature mapping φ can be considered as an array of p basis functions
[φ0, φ1, ...φp−1], with each function mapping the camera response to a 1 dimensional space.
We define φ0 = 1 to allow for a fixed bias, like in Equation 5.11.

This prediction function is able to model a non-linear relation between rλ and x, while
the relation between rλ and φ(x) remains linear. This allows us to use linear techniques
to solve the problem.

So far, we have considered prediction of a single wavelength component r̃λ (scalar
case), but at last we want to estimate each wavelength component comprising reflectance
vector r̃. We can extend Equation 5.12 to the vectorial case

r̃ = f(x,A) = Aφ(x), (5.13)

where matrix A = [aT1 ,a
T
2 , ...a

T
m]T ∈ Rm×p contains m coefficient vectors for the linear

system.

5.3.1 Least-squares solution

Before we can develop a solution for the minimization problem in Equation 5.10, we need
to define the function L that quantifies the estimation loss. Recall the discussion in
Section 2.4.1 related to spectral estimation error. Let us assume that the estimation error
for each wavelength component in r̃ is equally important. A corresponding measure of
spectral residuals is RMSE and the related loss function can therefore be defined as the
Euclidean norm ‖r̃− r‖. Now we can rewrite Equation 5.10 and obtain

arg min
A

(
1

2

l∑

i=1

‖A φ(xi)− ri‖2
)
, (5.14)

which is equivalent to

arg min
A

(
1

2
Tr
{

(AΦ(X)−R)T (AΦ(X)−R)
})

, (5.15)
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where A ∈ Rm×p is as before and matrix Φ(X) ∈ Rp×l contains the evaluation of p basis
functions for l camera responses from Str. Further, matrix X ∈ Rn×l and R ∈ Rm×l con-
tain these camera responses and the corresponding reflectances in columns. Accordingly

Φ(X) =




φ0(x1) φ0(x2) · · · φ0(xl)
φ1(x1) φ1(x2) · · · φ1(xl)

...
...

. . .
...

φp−1(x1) φp−1(x2) · · · φp−1(xl)


 . (5.16)

In the following, we omit X from Φ(X) for the sake of simplicity. A closed form solution
for the minimization problem in Equation 5.15 can be obtained by setting the derivative
of the cost function with respect to A equal to zero and then solve for A to obtain1

A = RΦT (ΦΦT )−1 = RΦ+. (5.17)

The dimensions of Φ, namely p and l characterize the type of this linear system. An
inverse of ΦΦT exists, if and only if rank(Φ) = p and p ≤ l, which means that ΦΦT is
fully determined. In spectral estimation, typically l > p, which means that there are more
reflectance samples and corresponding camera response samples to describe the system,
than the number of dimensions of the feature space that embeds the camera responses.

At this point, we remind the reader that the quantity Φ+ = ΦT (ΦΦT )−1 is known as the
Moore-Penrose pseudoinverse of matrix Φ. This is why the linear least squares solution
to the minimization problem in Equation 5.15 is often referred to as the pseudoinverse
solution. We note that the pseudoinverse here has a different form from Equation 5.3
in the physical model based estimation problem. In that case, the pseudoinverse gives
a solution r̃ with minimum norm that satisfies Equation 5.2. In case of the empirical
estimation problem with l > p, the linear system AΦ = R is overdetermined, and the
pseudoinverse gives the solution A that minimizes the estimation loss (sum of squared
errors) over training samples in Str.

Instead of using the closed form solution in Equation 5.17 to compute the pseudoin-
verse, we use SVD [89]. Assuming that Φ = UΣV T is the singular value decomposition of
Φ ∈ Rp×l, then

Φ+
SV D = V Σ+UT , (5.18)

where Φ+
SV D ∈ Rl×p, the i-th column of U ∈ Rp×p and V ∈ Rl×l are the left and right

singular vectors of Φ, corresponding to the singular value σi in matrix Σ ∈ Rp×l, and

Σ+ = diag(σ+), σ+ = [σ+
1 , σ

+
2 , ...σ

+
p ]T ,where σ+

i =

{
1/σi if σi 6= 0
0 otherwise

, i = 1, 2, ...p.

(5.19)

A Linear feature mapping

In the simplest case, we assume the relation between camera responses and reflectance
components to be linear. Hence, let φ(x) = x ∈ Rn×1 and equivalently, Φ(X) = X ∈ Rn×l.
Equation 5.17 becomes

ALIN = RXT (XXT )−1 = RX+, (5.20)

where ALIN ∈ Rm×n, matrix X ∈ Rn×l contains camera responses of Str, matrix R ∈ Rm×l
contains the corresponding spectral reflectances and X+ ∈ Rl×n is the pseudoinverse of

1We derive this expression in Appendix A.2.
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X. We can estimate reflectance r̃ ∈ Rm×1 corresponding to camera response x ∈ Rn×1 by
computing

r̃ = ALINx. (5.21)

In the spectral estimation literature, this model is also referred to as Pseudoinverse, Linear
Regression or Linear Least-Square. We use the SVD approach to compute the pseudoin-
verse and therefore refer to this method as E-PINV-SVD.

Related literature
The least squares solution with linear feature mapping has been used for spectral re-
flectance estimation by various researchers, either as a solution to a specific application, or
to compare with other spectral estimation approaches (eg. in [85, 90, 91, 92, 23, 93, 94, 95]).
Sometimes it has been termed Wiener estimation [96, 97, 98].

A related approach to spectral reflectance estimation using least squares regression
with linear feature mapping is a modified approach that estimates coordinates in an or-
thogonalized spectral reflectance space (see Section 2.2.4). Instead of finding matrix ALIN
that minimizes the Euclidean distance between Ax and r, we find a matrix APCA such
that

arg min
APCA

(
1

2

l∑

i=1

‖APCAxi − ci‖2
)
, (5.22)

where APCA ∈ Rm×n is an estimation matrix, vector ci = Uri ∈ Rm×1 is the i-th coef-
ficient vector corresponding to reflectance ri ∈ Rm×1 and i = 1, 2, ...l. Vector ci and the
orthogonal matrix U ∈ Rm×m can be obtained by performing PCA or SVD on a matrix
of training reflectances from Str.

The solution to this minimization in least squares sense is

APCA = CX+, (5.23)

where matrix X+ ∈ Rl×n is the pseudoinverse of the matrix of training camera responses
X ∈ Rl×n, and C ∈ Rm×l is a matrix of coefficient vectors corresponding to reflectances
in matrix R ∈ Rm×l.

We can now use APCA to estimate a coefficient vector c̃ = APCA x ∈ Rm×1 corre-
sponding to camera response x ∈ Rn×1 in the orthogonal reflectance space. According
to Equation 2.7, reflectance r̃ ∈ Rm×1 can be reconstructed by evaluating U c̃, so the
estimated reflectance can be computed as

r̃ = UAPCA x. (5.24)

Estimation of coefficients in the orthogonal reflectance space and subsequent back-
projection to reflectance space is equivalent to the direct least squares estimation in re-
flectance space. However, instead of considering all basis components of the orthogonalized
reflectance space, a truncated version can be used, which was found by various researchers
to be more robust with respect to camera response noise [18, 99].

B Nonlinear feature mapping

Instead of considering a linear mapping of the input vector as in the previous case, re-
searchers in the color science field have also explored nonlinear feature mappings. A pop-
ular choice is a polynomial expansion of the input vectors using various basis functions.
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An example of a polynomial expansion for camera response vector x = [x1, x2]T ∈ R2×1 is

φ(x) = [φ0(x), φ1(x), φ2(x), φ3(x), φ4(x), φ5(x)]T

= [1, x1, x2, x1x2, x
2
1, x

2
2]T ,

(5.25)

where φ(x) ∈ R6×1 is a vector containing the evaluation of basis functions φ0(x) to φ5(x).
In related literature, this approach is often referred to as polynomial, or ordinary

polynomial regression [100, 101, 102]. The number of basis functions in a polynomial
expansion should be much smaller than the number of observations (ie. the elements
in the training set). In this case, the system is overdetermined and a solution given in
Equation 5.17. Using non-linear feature mapping with a polynomial expansion similar
to the example above can be computationally expensive for imaging systems with many
channels, because the expansion is modeled by many basis functions.

Related literature
Hong, Luo and Rhodes noted that the generalization of the linear model using polynomial
expansion improved with increasing number of training samples [100]. Heikkinen et al.
reported that for cases with few training data, the resulting polynomial model tended to
overfit and consequently could lead to physically unreasonable estimates and oscillation.
They motivated additional regularization of the solution to account for this limitation
[103].

5.3.2 Regularized solutions

The linear model based spectral estimation problem, ie. finding matrix A to satisfy the
overdetermined system defined by AΦ = R (see Equation 5.15), is an ill-posed problem.
Regularization is needed to reformulate the least squares problem in Equation 5.14 for
numerical treatment. Tikhonov regularization is one of the commonly used approaches. It
gives preference to solutions with smaller norms by modifying the minimization problem
to the following form

arg min
A

(
1

2

l∑

i=1

‖Aφ(xi)− ri‖2 +
1

2
λ‖A‖2F

)
, (5.26)

where matrix A ∈ Rm×p, function φ : Rn 7→ Rp defines the feature mapping, λ ∈ R+ is a
regularization parameter and ‖A‖F denotes the Frobenius norm. An explicit solution2 is
given by

AREG = RΦT (ΦΦT + λIp)
−1, (5.27)

where Φ = Φ(X) ∈ Rp×l is as before and Ip ∈ Rp×p is the identity matrix. This particular
case with quadratic regularizer is called ridge regression [84].

Another form of regularization is based on the SVD approach. According to Neumaier
[89], ill-conditioned matrices are characterized by tiny singular values, which can lead to
magnification of measurement errors. An improvement of the situation can be achieved
by replacing the matrix Σ+ in Equation 5.18 by a truncated version

Σh = diag(σ̃), σ̃ = [σ̃1, σ̃2, ...σ̃n]T ,where σ̃i =

{
1/σi for σi ≥ h
0 otherwise,

, i = 1, 2, ...p (5.28)

2Note that the solution can be derived in a similar manner as for Equation 5.17, see Appendix A.2.



118 CHAPTER 5. SPECTRAL REFLECTANCE RECOVERY AND ESTIMATION

where h is a threshold parameter. The corresponding regularized SVD solution to the
least squares problem is then

AtSV D = RV ΣhU
T , (5.29)

where AtSV D ∈ Rm×p, the i-th column of U ∈ Rp×p and V ∈ Rl×l are the left and right
singular vectors of Φ, corresponding to the singular value σi in matrix Σ ∈ Rp×l.

Note that this approach is similar with the aforementioned estimation of coordinates
in a truncated orthogonalized spectral reflectance space.

Remarks on the implementation
The truncated SVD solution for the pseudoinverse of a matrix X is readily available
in Matlab when using the pinv(X,h) function, where h refers to the threshold parameter
described in Equation 5.28. Matlab also provides a heuristic to determine h automatically,
which is used when calling pinv(X) without additional input arguments apart from the
matrix to be inverted. This heuristic excludes small singular values that are close to the
numerical accuracy of floating point computations for a given variable precision.

In the practical case of spectral estimation with noise contaminated camera response
data, we might be interested in regularizing the solution beyond the level required to
stabilize the numerical computation. Hence, h can be considered as a free model param-
eter that can be optimized with respect to actual application data to increase estimation
performance.

5.3.3 Reproducing kernel Hilbert space based solution

Recall that the solution to the regularized least squares regression problem in Equation 5.27
requires the explicit computation of the feature mapping φ(x) = [φ1(x), φ2(x), ...φp(x)]T ∈
Rp×1 of camera response x ∈ Rn×1. This feature mapping is often nonlinear and can be
infinite dimensional. The explicit mapping can be avoided by using the kernel trick, which
refers to modifying the regression algorithm such that only pairwise inner-products of the
observation data are required [83].

According to the works of Heikkinen et al. [91, 103, 104] and by assuming that the
feature mapping is induced by a positive definite kernel function k(·, ·), the minimization
problem in Equation 5.26 is equivalent to

arg min
A

(
l∑

i=1

‖Ak(xi)− ri‖2 + λTr(AKAT )

)
, (5.30)

where A ∈ Rm×l is a matrix of weight vectors and operator Tr(·) denotes matrix trace.
The vector k(xi) = [k(x1,xi), ...k(xl,xi)]

T ∈ Rl×1 contains kernel evaluations between
sample xi ∈ Rn×1 and the camera responses in the training set, and scalar λ ∈ R+ is a
regularization parameter. The kernel matrix of training data K ∈ Rl×l is defined as

K =




k(x1,x1) k(x1,x2) · · · k(x1,xl)
k(x2,x1) k(x2,x2) · · · k(x2,xl)

...
...

. . .
...

k(xl,x1) k(xl,x2) · · · k(xl,xl)


 . (5.31)

The minimization problem can be solved by setting the derivative of Equation 5.30
with respect to A equal to zero to obtain

AKER = R(K + λIl)
−1, (5.32)
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where AKER ∈ Rm×l, matrix Il ∈ Rl×l is the identity matrix and R = [r1, ...rl] ∈ Rm×l
the matrix of training reflectances. We can estimate reflectance r̃ ∈ Rm×1 corresponding
to camera response x by computing

r̃ = AKER k(x). (5.33)

In the following, we refer to the reproducing kernel Hilbert space (RKHS) ridge-
regression estimation as E-KER.

Positive definite kernels in ridge regression
The definition of a positive definite (PD) function is as follows [105, p.67]: LetX be a closed
and bounded subset of Rn×1. A function k is called positive definite if

∑l
i,j=1 αiαjk(xi,xj) ≥

0, for all l ∈ N, xi,xj ∈ X and αi, αj ∈ R.

The simplest kernel function is the linear kernel [106] defined as

k(xi,xj) = xTi xj , (5.34)

where xi,xj ∈ Rn×1. Using the linear kernel induces a linear feature mapping and the
resulting model is the same as the regularized least squares solution with a linear feature
map (see Equation 5.27).

The probably most widely used kernel function in spectral estimation is the Gaussian
kernel [103, 91, 104, 107, 108][P1], which is defined as

k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
, (5.35)

where xi,xj ∈ Rn×1 and σ ∈ R+.
The selection of parameter σ is data dependent. Heikkinen et al. discussed that too

small σ can lead to over-fitting of the training data and therefore a risk of poor general-
ization, whereas too large σ can lead to oversimplification [91]. In [P1], we have used the
Gaussian kernel and empirically found that for our data, the width of the Gaussian kernel
σ and the regularization parameter λ are dependent variables and that the parameter
selection has a great influence on the estimation performance (see Section 5.3.4).

Conditionally positive definite kernels in ridge regression
The previously defined framework for kernel ridge regression is valid for PD kernel func-
tions. By imposing certain constraints on the regression model, a larger class of kernel
functions can be used, namely conditionally positive definite (CPD) functions, which are
defined as [106, p.49]: Let X be a closed and bounded subset of Rn×1. A function k is
called conditionally positive definite if

∑l
i,j=1 αiαjk(xi,xj) ≥ 0, for all l ∈ N, xi,xj ∈ X

and αi, αj ∈ R with
∑l

i=1 αi = 0.

Following the works of Schöllkopf et al. [106] and Heikkinen et al. [104], a semi-
parametric model of ridge regression with CPD kernels and d-conditionally positive kernels
is formulated by introducing a polynomial expansion of feature vectors in Equation 5.30.
In [P1], we proposed a conditionally positive kernel function for spectral reflectance esti-
mation, which we refer to as the logarithmic kernel. It is defined as

k(xi,xj) = − log(1 + ‖xi − xj‖β),with 0 < β ≤ 2, (5.36)

where xi,xj ∈ Rn×1 and log(·) is the natural logarithm. The CPD-ness of the logarithmic
kernel was demonstrated in [P1]. The corresponding semi-parametric model for CPD
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kernel functions is formed by adding a constant term a ∈ Rm×1 to Equation 5.30. The
minimization problem becomes

arg min
{A,a}

(
l∑

i=1

‖ri −Ak(xi)− a‖2 + λTr(AKAT )

)

s.t. A 1 = 0

(5.37)

where A ∈ Rm×l, k(xi) ∈ Rl×1 and K ∈ Rl×l are the same as in the PD case, and 1 ∈ Rl×1

and 0 ∈ Rm×1 are the all-one and all-zero vectors respectively.
The block matrix notation corresponding to the solution of the minimization problem

in Equation 5.37 is
[
A a

] [K + λIl 1
1T 0

]
=
[
R 0

]
(5.38)

Using this model, a reflectance r̃ can be estimated from camera response x as

r̃ = Ak(x) + a. (5.39)

5.3.4 Summary of author publication [P1]

In [P1], we have compared the performance of the logarithmic kernel function with the
linear and Gaussian kernel function. We were specifically interested in factors such as
model parametrization, training set size and the number of camera spectral channels. The
experiments were performed using simulated as well as measured camera response data of
a LSMSC system similar to SC112C.

In this subsection, we focus on a summary of aspects related to the first two factors,
as the findings for the other aspects evaluated in [P1] are quite similar to those presented
in Section 5.5 below.

Selection of model parameters:
For the case of logarithmic and Gaussian kernel functions, we have evaluated param-
eter search grid with respect to spectral RMSE. The logarithmic kernel contains
parameter β (see Equation 5.36), and the Gaussian kernel contains the parame-
ter σ (see Equation 5.35). The corresponding estimation models with both kernel
functions further contain the regularization parameter λ.

For the Gaussian kernel, it was identified that the selection of λ influenced the
optimal choice of σ with respect to average RMSE and vice versa, while for the
logarithmic kernel the selection of the optimal β was independent of λ. This is a
particularly interesting observation, as it allows performing parameter selection for
the logarithmic kernel sequentially for each parameter, instead of using grid search.
For illustration purposes, we show in Figure 5.2 examples of RMSE surface plots
similar to those in [P1]. The RMSE values are average values over 10 folds of
parameter evaluation on training data.

We further evaluated parameter selection for the logarithmic kernel in a similar
manner for a varying number of training samples (ie. 200, 400, 600 and 800). It
was found that the shape of the RMSE surface was in a wide area invariant to the
number of training samples. Further, it was identified that β = 2 led to the lowest
estimation error in all experiments, regardless of the number of training samples,
number of camera channels, using simulated or measured camera response data. It
was pointed out that the logarithmic kernel with β = 2 is a special form, which
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directly incorporates the negative squared distance kernel. Fixing the β parameter
reduces the parameter selection in E-KER to an optimization problem in a one-
dimensional search space, which can simplify parameter selection in practice.

Influence of the number of training samples:
The last aspect of the previous item was concerned with the influence of the number
of training samples on parameter selection for the case of the logarithmic kernel.
What we summarize next is the influence of the number of randomly selected training
samples on the overall estimation performance. For this experiment, 18 training sets
with increasing number of samples from 50 to 1314 were considered.

For simulated camera response data, it was found that the estimation performance
increased with the size of training set for all the three kernel functions evaluated.
Particularly, the performance of logarithmic kernel showed the strongest dependence
on the number of training samples, manifesting in low performance as compared with
Gaussian and linear kernel when only few training samples were used. With large
number of training samples, the performance of the logarithmic kernel approached
that of the Gaussian kernel. The performance of linear kernel function was found to
be least dependent on the number of training samples, but it was also the one with
the lowest average performance.

For measured camera response data, the general trend of increasing performance with
the number of training samples was also identified. However, the relation between
average RMSE and number of training samples was rather similar for all kernel
functions. The average RMSE of linear kernel was higher than that of logarithmic
and Gaussian kernel for any number of training samples.

These results indicated a discrepancy between simulated and measured camera re-
sponse data with respect to spectral estimation performance, a finding that is sup-
ported by various experiments in this dissertation.
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Figure 5.2: Average RMSE (over 10 folds of parameter optimization) over the parameter
search space with measured camera responses of Pantone dataset. The optimal parameter
selection is illustrated by a green square. Illustration is adopted from [P1].

5.4 Constrained estimation

We mentioned earlier the fact that from a statistical point of view, most information of
natural reflectances is contained in a space that is of lower dimension than Rm. There
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are other general properties that further constrain the spectral reflectances, for instance
smoothness or physical realizability. The previously introduced spectral estimation ap-
proaches do not impose such constraints explicitly on the solution, and it was reported
by several researchers that some approaches result in spiky or not smooth estimates or in
estimates that exceed the range of values that are physically meaningful (eg. [103, 90]).
This limitation motivated the development of various constrained estimation approaches
and we present in the following some ideas that have been explored by others.

5.4.1 Physical realizability

Physical realizability refers to the fact that the numerical range of spectral reflectances is
bounded in the interval [0, 1] (Note that this is not the case for fluorescent samples, which
are not considered in this work). This means that no less than no light and no more than
all light can be reflected from a surface [109]. The numerical bound of reflectances can be
considered as a hard constraint of physical realizability. A relaxed constraint of physical
realizability is positivity, which might be easier to impose on a solution.

Li et al. [110] considered a physical model based spectral estimation of coordinates in
an orthogonalized reflectance space. They defined a minimization problem that constrains
the estimated reflectance to be in range [0, 1], but did not further elaborate on the method
used to solve it. Park et al. [111] used quadratic programming with a positivity constraint
to solve the problem. Both authors also introduced a smoothness constraint, which we
mention below.

Morovič and Finlayson [9] enforced the [0, 1] range in their constrained metamer set
solution to the spectral estimation problem by defining a set of inequality equations among
other constraints (a more detailed description can be found in [109]). They solved the re-
sulting minimization problem subject to linear inequalities using quadratic programming.

Heikkinen et al. [91, 104, 107] proposed various pairs of forward and backward trans-
formation functions that enforce physical realizability. These functions were referred to
as link functions, and they can be used in the RKHS based empirical estimation model
(see Section 5.3.3). Examples of these function pairs are the arctanh(·) and tanh(·) [91],
the logit(·) and logistic(·) [107] and the Gaussian copula and the corresponding inverse
function [107]. They bound the estimated reflectances to the range [0, 1]. Further, the
square root and square function pair [107] enforces positivity.

5.4.2 Smoothness constraint

Surface reflectances are typically smooth functions [8]. This condition can be used in
spectral estimation to constrain a solution.

Li et al. [110] introduced a smooth operator in form of a m × m matrix to their
definition of the minimization problem, where m is the number of discrete wavelengths
of spectral reflectance data. This matrix is a finite approximation for computing the
second derivative of the estimated reflectance vector and the desired solution minimizes
the squared Euclidean norm of this second derivative.

Park et al. [111] enforced smoothness of the estimated reflectances by an additional
additive weighted term in the minimization functional, which penalizes large values of the
second derivative of the estimated spectral reflectance.

There are other ways to enforce smoothness on the solution. Morovič and Finlayson
[9] defined a naturalness constraint, which states that an estimated reflectance is only
natural, if it can be written as a convex combination of a set of representative spectral
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reflectances. If this set contains smooth reflectances, a convex combination is smooth as
well and smoothness is therefore enforced indirectly.

5.4.3 Summary of author publication [P2]

In some applications, negativity of estimated reflectances is very problematic. One exam-
ple is density measurement from estimated reflectance data in print quality control.

Optical print density measurement is traditionally used in multicolor printing presses
as a measure of ink layer thickness to control the stability of the printing process. The
measurement principle to obtain so-called color density is similar to that of a spectropho-
tometer, in the sense that specific color filters and a photosensitive sensor are incorporated.
The color filters are typically narrow-band and specific to the ink to be measured. Accord-
ingly, the peak transmittance of the filter corresponds to a spectral region of minimum
reflectance (ie. the absorption maximum) of the ink on the printing substrate. In a certain
range of reflectance magnitude, the sensor response can then be related to the ink-layer
thickness.

Obviously, color density measurement can be obtained from spectral reflectance data
directly, if the spectral transmittance function of the specific color filters are known. In
fact, a less restrictive definition for print density measurements considers a filter whose
peak wavelength is located at the minimum reflectance region of any kind of reflectance.
This so-called spectral density Dmf (r) is computed as

Dmf (r) = − log10

(
rTaλmin∑m

i=1 ai

)
, (5.40)

where aλmin
= [a1, a1, ...am]T ∈ Rm×1 denotes a discretized narrow-band Gaussian shaped

filter function, with peak-wavelength λmin corresponding to the index of the minimum
value in reflectance vector r ∈ Rm×1. It becomes clear that spectral density measurement
fails when rTaλmin

is negative or can be considered erroneous when λmin corresponds to
a negative reflectance value.

In [P2], we showed that E-KER-Log with adequate constraints can be used to over-
come this limitation and hence, improve spectral density measurement performance. As
mentioned before, constrained estimation with E-KER can be achieved by incorporating a
pair of transformation functions in the estimation model. A forward transformation τ is
applied to the reflectances r in the model training phase, and a backward transformation
τ−1 is applied to the estimate in order to obtain the recovered reflectance r̃. We have
evaluated the transformation function pairs reported in Table 5.1, which were proposed
by Heikkinen et al. [107].

Table 5.1: Square root and logit transformation functions.

Link function τ (x) τ−1(y) Data range

Square root y =
√

x x = y2 y ∈ [0,+∞),x ∈ [0,+∞)

Logit y = ln
(

x
1−x

)
x = exp (y)

1+exp (y) y ∈ (−∞,+∞),x ∈ (0, 1)

The backward transformation τ−1 of the square root function pair is a quadratic
function, which restricts the range of estimated reflectances to positive values. As the
upper bound is not constrained, values of estimated reflectances can be larger than one.
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For spectral density measurements, this is not critical. The backward transformation τ−1

of the logit function pair imposes the numerical bound [0, 1] to the solution.

We have evaluated two LSMSC system configurations, one with 12 camera channels
similar to SC112C, and the other with 3 camera channels. A set of 2698 color patches
printed with a 7 ink wide gamut inkjet printer were considered as dataset. When using
estimation with a least squares regression with linear feature mapping (E-PINV-SVD),
101 estimated reflectances contained negative values for the 12-channel system, and 193
for the 3-channel system. When using E-KER estimation, only samples from the 3-channel
LSMSC resulted in estimated reflectances with negative values. However, it was concluded
that for spectral density measurements, non-negativity should be enforced to avoid the
risk of density measurement failure.

Experimental evaluation was divided into two parts: one related to spectral estimation,
and the other related to density measurement. For spectral estimation, RMSE and ∆E00

were considered as performance measures and the evaluation was based on 10-fold cross-
validation. For spectral density measurement, RMSE was computed between the spectral
densityDmf (r) computed from measured reflectance data, and the spectral densityDmf (r̃)
computed from estimated reflectance data.

The most important experimental results can be summarized as follows:

Spectral estimation performance
The use of link functions guarantees physical realizability of the solutions while
slightly increasing the estimation error. The performance of E-KER without link
function was roughly twice as high as that of E-PINV-SVD. Using the square root
link function reduced the average colorimetric performance, but the average spectral
estimation performance was only influenced a little (3-channel system) or not at all
(12-channel system). Using the logit link function reduced the average colorimetric
and spectral estimation performance. The average performance of the 3-channel
system when E-KER was used was approximately a factor of two lower than the
12-channel system. When using E-PINV-SVD, the performance was approximately
8 times lower than the 12-channel system.

Density measurement performance
For a reduced set of samples that do not result in negative estimates for any method,
it was found that E-KER outperformed E-PINV-SVD on average roughly by a factor
of 3 or more for both 3 and 12-channel system. When using link functions with E-
KER, only slight differences in spectral density RMSE were identified as compared
with not using a link function.

Overall, it was found that E-KER with link functions results in a significantly higher
spectral density measurement performance than E-PINV-SVD. Constraining estimates to
positivity via link functions in E-KER decreased the colorimetric and spectral estimation
performance slightly on average, as compared with using the same model without link
function. This decrease in performance when using link functions was not found in case of
spectral density measurement. Apart from that, the most important aspect to mention is
that the constrained estimation is a necessary requirement to guarantee spectral density
measurement to be meaningful.
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5.5 Experiments

We have classified spectral estimation algorithms into two main groups, namely physical
model based and empirical model based approaches. The methods presented form the basis
of most spectral reflectance estimation algorithms that can be found in related literature,
while various derivatives or hybrid methods exist. We compared P-MIN (Section 5.2.1),
P-MW (Section 5.2.1), P-WN (Section 5.2.2), E-PINV-SVD (Section 5.3.1.A) and E-KER
(Section 5.3.3)3, and focus specifically on three aspects:

• Robustness with respect to simulated camera response noise

• Number of camera channels of the acquisition system

• Estimation with simulated as compared with measured camera response data

The last item of this list relates exclusively to the experimental evaluation of our
laboratory LSMSC, ie. system configuration SC212C. Corresponding experiments were
performed by empirically quantifying spectral and colorimetric errors in reflectance esti-
mation for a specific dataset, and we considered RMSE and ∆E00 as error metrics. The
configurations of experiments in this section is summarized in Table 5.2.

For the case of E-KER, reflectance data was centered by subtracting the mean of the
training data prior to estimation. Consequently, the mean of the training data had to
be added to the recovered spectral data after estimation. Further, for E-PINV-SVD and
E-KER, camera response data was normalized to the range [0, 1] by dividing each camera
response channel-wise by 255, which is the maximum value corresponding to the 8-bit data
range.

Table 5.2: Conditions and parameter settings of the experiments.

Systems: Section 5.5.1: SC212C

Section 5.5.2: SC43C, SC36C and SC212C

Section 5.5.3: SC212C

Dataset: DS1: 1761 Pantone solid chips

Parameter grid for E-KER: λ = {10−14, 10−12, 10−10, 10−8, 10−6, 10−4, 0.01, 0.1, 1}
(before refinement) β = {0.001, 0.01, 0.1, 1, 1.5, 2}

σ = {0.01, 0.05, 0.1, 0.5, 1, 3, 5}
Camera response data: Section 5.5.1: simulated (Noise Scenario 1)

σi = σd = {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 3, 5}
Section 5.5.2: simulated (Noise Scenario 2)

SC43C: average SNR 64 dB

SC36C: average SNR 62 dB

SC212C: average SNR 58 dB

Section 5.5.3: measured

3We note that the first letter of each method’s abbreviation indicates whether the method belongs to
the class of physical models (P) or empirical models (E).
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5.5.1 Robustness with respect to simulated camera response noise

The aim of this experiment is to compare the estimation performances at various levels of
simulated camera noise. We considered system configuration SC212C, ie. the LSMSC sys-
tem for which optimal color filters were selected as part of this dissertation (Section 3.4.4).
The camera response simulations were performed under Noise Scenario 1 (which allows
simulating camera responses in accordance with Equation 2.21). The average SNR for
simulated camera response data ranged from approximately 30 dB to infinity (ie. noiseless
case).

This experiment is divided into three parts. At first, we compared direct recovery
methods, namely the minimum norm solution P-MIN and the regularized version P-MW.
After that, we compared P-MW with Wiener estimation P-WN. The last part contains the
comparison of empirical estimation methods and we focused on the least squares solution
with linear feature mapping E-PINV-SVD and compared it with the kernel based solution
E-KER with Gaussian kernel and the logarithmic kernel proposed by us in [P1].

A Physical model based estimation: Minimum norm vs. regularized solution
(P-PINV-SVD vs. P-MW)

It is widely known that the minimum norm solution to the direct recovery problem does
not perform well in the presence of noise, because the system to be inverted is heavily
underdetermined. In this experiment, we compared the minimum norm solution P-MIN
with the P-MW method, which estimates coefficient vectors of a truncated orthogonalized
spectral reflectance space and subsequently reconstructs reflectances from the coefficient
vectors (see Section. 5.2.1).

First we discuss the parametrization of P-MW, ie. the selection of dimensionality b of
the truncated orthogonal reflectance space. From Equation 5.4 we know that the system
equation of P-MW is x̂ = W T Û ĉ, and correspondingly the system matrix is W T Û . The
condition number of this matrix measures the stability of the linear system with respect
to the presence of noise, and gives a bound on how inaccurate the solution vector ˆ̃c will
be. Experiments with SC212C and DS1 were conducted to analyze the relation between
condition number, estimation error and reconstruction error. Results are illustrated in
Figure 5.3, where we plot the condition number against b (Figure 5.3a), the average
estimation error (RMSE) as a function of b for various levels of additive camera response
noise (Figure 5.3b), and the average reconstruction error (RMSE) as a function of b
(Figure 5.3c). The reconstruction error quantifies the information loss when using the
truncated orthogonalized spectral reflectance space. The plots motivate some discussions:

Condition number: (Figure 5.3a)
The condition number of W T Û reaches its maximum at b = n, with n being the
number of camera channels, and decreases towards both sides. We note that the
type of problem we solve in P-MW also depends on b. If b < n, the system is over
determined and there exists no exact solution. The one computed by the pseudoin-
verse minimizes the sum of squared errors. If b > n, the system is underdetermined
and the pseudoinverse gives the solution with minimum norm. For b = n, the sys-
tem is fully determined, but it is severely ill-posed judging from the high condition
number. Therefore even though a unique solution exists in this case, it is not a
preferable one.

Estimation error: (Figure 5.3b)
The average estimation error (RMSE) increases with σ (ie. the level of additive
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Figure 5.3: Analysis of the influence of parameter b on condition number, estimation
error and reconstruction error for P-MW. The b values corresponding to minimum average
estimation error (RMSE) are marked by circles.

noise). The performance plunges drastically with increasing noise when b = n,
which was expected from previous analysis of the condition number. In fact, the
shape of the condition number curve coincides with the average RMSE at different
noise levels except when b is small, which we explain below.

Reconstruction error: (Figure 5.3c)
When b < m, reconstruction error occurs. We can see that this error decreases
rapidly with increasing values of b. When comparing this curve with the average
RMSE plots in Figure 5.3b, we find that for low values of b, the reconstruction error
dominates the overall estimation error. This explains why the average estimation
error (RMSE) increases with decreasing condition number when b is small.

We can conclude that the selection of an optimal b for P-MW with respect to average
spectral estimation performance depends on the level of noise of camera response data,
the number of camera response channels n and the statistical structure of the data. In
Figure 5.3b, we have marked optimal values of b for our data and SC212C with circles. For
other system configurations, the optimal b for a particular level of noise will be different.
But the analysis of condition number, estimation and reconstruction error as a function
of b can be performed in a similar manner to select b adequately.

We now proceed to analyze the influence of camera response noise on estimation perfor-
mance for P-MIN and P-MW. Parameter b was selected heuristically to minimize average
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estimation error (RMSE). We evaluated average RMSE and ∆E00 as functions of signal
dependent and independent noise variances. The results of the experiment are illustrated
graphically in Figure 5.4. It can be seen that P-MW significantly outperforms P-MIN with
respect to average colorimetric and spectral error for all levels of noise evaluated. Both
models seem to be influenced in a similar way by signal dependent and signal independent
noise. We further note that the performance of P-MIN on data with a high level of noise
is so low that this method is unlikely to be usable in practical applications.
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Figure 5.4: Error surfaces for direct recovery methods: P-MIN (blue frame) and P-
MW (red frame). The plot on the right illustrates approximate average SNRs (in dB) for
corresponding regions in the surface plots on the left side.

B Physical model based estimation: Wiener vs. regularized solution
(P-WN vs. P-MW)

The Wiener model P-WN (see Section 5.2.2) takes into account statistical properties of
reflectances and camera noise and is probably the most widely used model for direct
recovery in reflectance estimation. To analyze model performance with respect to noise
stability, we performed a comparison with P-MW, which is the better performing physical
model based estimation method from the previous experiment. Noise variances evaluated
correspond again to those reported in Table 5.2.

For P-WN, we modeled the statistical properties of reflectances by matrix Kr =
cov(R) ∈ Rm×m, where R ∈ Rm×l is a matrix of l reflectance vectors from DS1 stacked
in columns, and cov(·) denotes the unbiased estimator of the covariance matrix (see Ap-
pendix A.4). Further, Ke = cov(Ξ) ∈ Rn×n, where Ξ ∈ Rn×l is a matrix of l noise vectors
in columns, which correspond to simulated camera responses from DS1. Note that for
this experiment, both matrices were assumed to be known.

The corresponding surface plots are shown in Figure 5.5.

We can see that the overall spectral and colorimetric performance of both methods is
quite similar, regardless of the level of signal dependent or signal independent noise. When
σi > 0 and σd > 0, P-MW outperforms P-WN slightly in terms of average RMSE, and
vice versa in terms of average ∆E00. When σi = σd = 0, the two methods have similar
performance.

As mentioned earlier, the Wiener model P-WN is the optimal linear estimator if re-
flectances and noise are statistically independent normally distributed random variables.
However, in this experiment this is not the case, as σd > 0 and camera response noise is
therefore signal dependent. It was found that there is no clear advantage of using P-WN
over P-MW under the conditions assumed in our experiment.
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Figure 5.5: Error surfaces for direct recovery: P-MW (red frame) and P-WN (blue
frame). The plot on the right illustrates approximate average SNRs (in dB) for corre-
sponding regions in the surface plots on the left side.

C Empirical estimation: least squares vs. kernel based solution
(E-PINV-SVD vs. E-KER)

We compared least squares regression E-PINV-SVD with linear feature mapping (see
Section 5.3.1.A) and kernel based regularized least squares regression E-KER (see Sec-
tion 5.3.3). For E-KER, we evaluated the logarithmic kernel function (E-KER-Log) and
the Gaussian kernel function (E-KER-Gauss). Because the corresponding models are
parametric, we used the refined grid search parameter selection scheme described in Sec-
tion 2.4.3. Cross-validation technique was used to minimize the risk of biasing the evalu-
ation by over-fitting.

The corresponding error surfaces for the three methods are shown in Figure 5.6. The
results of this experiment indicate that for all the noise conditions considered, E-KER
performs significantly better than E-PINV-SVD, and between the two kernel based meth-
ods, E-KER-Log outperforms E-KER-Gauss. For all models, performance drops with
increasing the level of signal dependent and signal independent noise.
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Figure 5.6: Error surfaces for empirical estimation methods: E-PINV-SVD (blue frame),
E-KER-Log (red frame), E-KER-Gauss (green frame). The plot on the right illustrates
approximate average SNRs (in dB) for corresponding regions in the surface plots on the
left side.
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D Physical model vs. empirical estimation: Minimum norm vs. least squares
solution (P-MW vs. E-PINV-SVD)

Physical and empirical model based estimation were considered individually before. To
compare approaches from both categories, we show the corresponding error surface graphs
for P-MW (one of the best physical model based methods) and E-PINV-SVD (the worst
empirical estimation method) in the same figure (see Figure 5.7).

It was found that the average spectral and colorimetric performance of P-MW is con-
sistently lower than that of E-PINV-SVD at any level of noise. The relative difference
increases with decreasing SNR.
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Figure 5.7: Error surfaces for P-MW (red frame) and E-PINV-SVD (blue frame). The
plot on the right illustrates approximate average SNRs (in dB) for corresponding regions
in the surface plots on the left side.

5.5.2 Number of spectral channels of the acquisition system

Beyond doubt, the number of camera spectral channels of the acquisition system influences
the estimation performance. In this experiment, we considered system configurations
SC43C, SC36C and SC212C. The corresponding effective responsivities are shown in
Figure 5.8.

SC2: 12 channel

Wavelength [nm]

W
[A

U
]

400 500 600 700

0.2

0.4

0.6

0.8

1

SC3: 6 channel

Wavelength [nm]

W
[A

U
]

400 500 600 700

0.2

0.4

0.6

0.8

1

SC4: 3 channel

Wavelength [nm]

W
[A

U
]

400 500 600 700

0.2

0.4

0.6

0.8

1

Figure 5.8: Spectral responsivity plots of 3 system configurations with different number
of camera spectral channels (in 10 nm sampling).

A conclusion of the previous experiment was that the performance of all estimation
algorithms is influenced by the level of camera response noise. A thorough analysis of
the influence of the number of camera spectral channels on the estimation performance of
different algorithms would require considerations of different camera response noise levels,
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as done in the previous experiment. However, such analysis is very time consuming, we
therefore focused on a practical case, namely the evaluation under realistic camera response
noise conditions, ie. Noise Scenario 24.

Numerical results of average RMSE and ∆E00 errors are given in Table 5.3 and we
summarize the most important findings as follows:

Number of channels:
For all methods compared, the three system configurations can be sorted in ascending
order with respect to colorimetric and spectral estimation performance: SC43C,
SC36C, SC212C.

This finding seems obvious, but we remind the reader that it is not directly the num-
ber of channels that influences estimation performance, but the amount of relevant
information captured by the system.

Physical model vs. empirical model based estimation:
The average performance of the best physical model based estimation algorithm is
lower than that of the worst empirical model based estimation algorithm.

P-MIN:
Despite for SC212C, the performance of this method is found to be so low that it is
of no use for most practical applications in which spectral or color measurement is
performed. For SC212C, we illustrate in Figure 5.9 a plot of 5 estimated reflectances
corresponding to the largest RMSEs. It can be seen that those reflectances do not
satisfy physical realizability constraints (ie. smoothness, boundedness or positivity).

P-MW and P-WN:
There exists no significant difference between the performance of the two approaches.
Estimated reflectance spectra are smooth, but in both cases, some reflectances do
not satisfy positivity and boundedness for SC43C and SC36C.

E-PINV-SVD and E-KER:
The performance of E-PINV-SVD is markedly lower than that of E-KER. Estimated
reflectances of all methods are rather smooth, but for E-PINV-SVD with SC43C and
SC36C, boundedness and positivity are not satisfied.

E-KER-Log and E-KER-Gauss:
The performance of both types of kernel functions is comparable, with E-KER-Gauss
having a slightly higher performance for SC36C.

4As mentioned in Section 2.3.3.B, this means that we assume signal independent noise to be correct, and
that signal dependent noise is modeled according to noise variances specified by the camera manufacturer.
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Table 5.3: Numerical results of the experiment in Section 5.5.2: comparison of estimation
performance for system configurations with different number of camera spectral channels.

Avg. RMSE Avg. ∆E00

SC43C SC36C SC212C SC43C SC36C SC212C

P-MIN 0.232 0.211 0.066 14.00 3.65 0.88

P-MW 0.040 0.033 0.010 2.21 0.96 0.14

P-WN 0.043 0.027 0.010 2.16 0.43 0.16

E-PINV-SVD 0.039 0.022 0.007 2.10 0.41 0.11

E-KER-Log 0.025 0.014 0.003 1.35 0.26 0.09

E-KER-Gauss 0.025 0.013 0.003 1.35 0.24 0.09
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Figure 5.9: Five estimated reflectances (solid lines) and the measured counterparts
(dashed lines) corresponding to the largest RMSE (a) and ∆E00 (b) error for SC212C

using P-MIN.
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5.5.3 Estimation with simulated as compared to estimation with mea-
sured camera response data

As mentioned earlier, SC212C corresponds to our laboratory LSMSC system, so we have
measured camera responses available. In this experiment, we compared the estimation
performance for the following three cases:

Case 1: Noiseless simulated camera responses (Noise Scenario 1, σi = σd = 0)

Case 2: Noisy simulated camera responses (Noise Scenario 2)

Case 3: Measured camera responses

We report average and maximum RMSE and ∆E00 error in Table 5.4. Further, first
order statistics corresponding to Case 3 are given in Table 5.5. The results are summarized
as follows:

General performance trend with respect to the three cases:
As expected, the performance when considering noiseless camera response data
(Case 1) is the highest. For noisy simulated camera response data (Case 2), the
performance is lower for all methods. The lowest performance is found for measured
camera response data (Case 3).

Physical model vs. empirical model based estimation:
The performance discrepancy between considering simulated and measured camera
response data is much larger for physical model based estimation methods than for
empirical models. We discuss various reasons that can explain this finding below.

Performance of physical model based estimation:
The performance with measured camera response data is very low for P-MIN and
P-MW. Low performance was already identified in previous experiments with noise
contaminated data for P-MIN, but not so much for P-MW. Among the physical
model based methods, P-WN is the only one whose performance is reasonable to be
considered in practice.

Performance of empirical model based estimation:
E-KER-Gauss has the highest spectral estimation performance with measured cam-
era response data, followed by E-KER-Log and E-PINV-SVD. The color measure-
ment performance is similar for E-PINV-SVD and E-KER-Log, and slightly higher
for E-KER-Gauss. When comparing maximum errors from Table 5.5, it can be seen
that E-KER-Log performs the worst among the empirical methods. Spectrally, the
lowest maximum error is found for E-KER-Gauss, and colorimetrically for E-PINV-
SVD. We note that the average colorimetric and spectral error values corresponding
to measured camera response data for empirical methods are in ranges that are
adequate for various color and spectral measurement applications.
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Table 5.4: Numerical results of the experiment in Section 5.5.3: average and maxi-
mum colorimetric and spectral estimation errors for noiseless (Case 1), noisy simulated
(Case 2), and measured camera response data (Case 3) corresponding to SC212C.

Avg. RMSE Avg. ∆E00

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

P-MIN 0.063 0.066 2.697 0.83 0.89 44.21

P-MW 0.004 0.010 0.110 0.05 0.14 14.90

P-WN 0.003 0.010 0.027 0.04 0.16 1.70

E-PINV-SVD 0.003 0.007 0.009 0.04 0.11 0.41

E-KER-Log 0.001 0.003 0.006 0.01 0.09 0.41

E-KER-Gauss 0.001 0.003 0.005 0.01 0.09 0.36

Table 5.5: Numerical results of the experiment in Section 5.5.3: first order statistics of
colorimetric and spectral estimation errors for measured camera response data (Case 3)
corresponding to SC212C.

RMSE ∆E00

95th Prctl. Std. Max. 95th Prctl. Std. Max.

P-MIN 5.297 1.416 6.395 76.15 19.89 103.83

P-MW 0.209 0.056 0.251 28.87 7.31 38.04

P-WN 0.051 0.014 0.123 4.26 1.38 10.48

E-PINV-SVD 0.019 0.005 0.034 0.89 0.25 1.76

E-KER-Log 0.013 0.004 0.050 0.93 0.29 2.96

E-KER-Gauss 0.011 0.003 0.028 0.87 0.25 1.96

There exists a large discrepancy between estimation with measured and simulated
camera response data. Specifically for physical model based estimation, this discrepancy
is larger than for empirical estimation. In an attempt to explain this disagreement, we
need to recall some of the assumptions that limit the camera response simulations for our
laboratory LSMSC system:

1. Observation angle
Camera response simulations are based on Equation 2.19, which is a specific case of
Equation 2.18, assuming that the observed scene radiance at any pixel location along
the sensor line is constant. As explained in Section 2.3.2.C when discussing general
limitations of the LSMSC system regarding color measurement, this assumption does
not hold in practice.

2. Illumination angle
The angle of the scene illumination with respect to the scanning surface normal is
approximately 45 ◦. Spatial non-uniformity is accounted for by white-level correction,
while spectral non-uniformity on the other hand is not addressed.

3. Range of spectral data
We consider the spectral range from 380 nm to 730 nm in steps of 10 nm. The choice
of this range was justified by the requirement for color and reflectance measurements.
As mentioned before in Section 3.5 when considering filter selection in system design,
the raw RGB sensor of the LSMSC is sensitive beyond 730 nm. Taking into account
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the spectral power distribution of the LED line-light, effective responsivity beyond
this range is low, but not zero. Hence, part of the measured camera response in
respective channels has a larger signal as compared with simulations for the limited
spectral range. A simple fix to this problem is to incorporate a cut-off filter in the
LSMSC for the spectral range beyond 730 nm.

4. Responsivity measurement errors
The physical model based estimation approaches considered in this thesis are based
on accurate knowledge of the spectral responsivity of the LSMSC and spectral prop-
erties of the scene illumination. While it is relatively easy to obtain and verify
scene illumination measurements, it is rather difficult to measure responsivities of a
LSMSC line-scan camera system. The data used in this dissertation was obtained
and verified by the camera manufacturer and corresponds to the raw RGB sen-
sor responsivity. The effect of sub-image filtering was computationally modeled on
the basis of spectral transmittance measurements of the corresponding color glass
filters. Hence, the validity of the effective spectral responsivity was not confirmed
other than by comparison of simulated and measured camera response data, which is
not adequate to narrow down the source of discrepancy beyond the aspects discussed
here.

The observed scene radiance deviation due to the first and second item of the list
influences empirical as well as physical model based estimation. For empirical estimation,
such effects can be accounted for by considering an independent estimation model for
each pixel location along the sensor line. Preliminary experiments with this kind of pixel-
wise estimation models have indeed shown that the overall estimation performance can be
improved by that, proving that such effects actually do influence the overall performance of
the system. However, having an independent estimation model for each pixel location can
result in spatial discontinuities of the estimated spectral data. To improve this situation,
spatial smoothness could be enforced in the estimation stage via additional constraints.

The third and fourth items do not influence empirical estimation, as corresponding
models are not based on assumptions about the acquisition process like physical estimation
models. We therefore believe those last two items to explain most of the discrepancy
between the results corresponding to simulated and measured camera response data. On
one hand, this motivates future work with respect to modeling the acquisition process
more accurately and potentially accounting for some of the aforementioned effects in the
estimation model. On the other hand, this particular aspect illustrates a general limitation
of physical model based estimation, namely the requirement of an accurate model of the
image acquisition process and availability of corresponding data. Empirical models do not
have this requirement, and as we have shown experimentally, can be used to achieve high
performance in color and spectral measurements. However, the requirement of observation
data for model training can also be a limiting factor in practical applications and should
not be disregarded.

5.6 Summary and conclusions

We have introduced the spectral reflectance estimation problem in the general context of
multi-spectral imaging. Two categories of approaches were distinguished, namely physical
model based spectral estimation and empirical model based spectral estimation. We have
presented the mathematical basis of the models that are most commonly used and linked
them to related literature. In [P1], we proposed the logarithmic kernel for the specific case
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of RKHS ridge regression in spectral reflectance estimation. For the data considered in that
study, we found that this kernel function results in comparable estimation performance
with the Gaussian kernel, but when few training samples are used, the performance is
considerably lower. With respect to model parametrization using the logarithmic kernel,
we identified circumstances that allow sequential model parameter selection instead of grid
search. Further, fixing the corresponding kernel parameter (β = 2) was found to be a good
choice in practice. Both aspects simplify parameter selection considerably.

Most reflectance estimation algorithms do not constrain the estimation result, even
though spectral reflectances are known to be smooth and bounded. In practical appli-
cations, such constraints are often desired and sometimes required. Various constrained
estimation schemes have been proposed and we have summarized related literature. In
[P2], we have applied constrained estimation to the specific application of spectral print
density measurement, for which positivity of estimated reflectances is a requirement.

The theoretical aspects of various spectral reflectance estimation schemes were sub-
stantiated by analyzing colorimetric and spectral measurement performance experimen-
tally with data corresponding to 1761 Pantone solid chips (ie. dataset DS1). Results
within the scope of our experimental configurations allow concluding the following:

(1) Overall performance of estimation algorithms:
We considered P-MIN, P-MW, P-WN, E-PINV-SVD and E-KER. For E-KER, the
Gaussian and the logarithmic kernel function were evaluated.

For the same number of channels and the same level of noise (except noiseless), the
following performance ranking holds: P-MIN < P-MW/P-WN < E-PINV-SVD <
E-KER.

(2) Robustness to noise: P-MIN < P-MW/P-WN/E-PINV-SVD/E-KER
We found that all methods compared are influenced by simulated camera response
noise, resulting in performance decrease, but not to the same degree. The camera
response simulations were performed with various levels of signal independent and
signal dependent noise. It was shown that regularized physical model based esti-
mation (P-MW), and the Wiener model (P-WN) that incorporates a noise term,
are substantially more robust with respect to noise than a non-regularized approach
(P-MIN). However, the performance of these models depends strongly on accurate
statistical knowledge about the reflectances to be estimated and the camera acqui-
sition process. For empirical models, we identified a generally higher performance
of E-KER than for a simple regression model with linear feature mapping (E-PINV-
SVD) and physical model based methods.

(3) Estimation performance regarding the number of camera spectral chan-
nels: 3-channel < 6-channel < 12-channel
We evaluated estimation performance for system configurations with different num-
ber of spectral channels (SC43C, SC36C and SC212C), and considered simulated
camera responses with a level of camera response noise that is realistic. As ex-
pected, the average estimation performance was found to increase with the number
of channels.

(4) Estimation performance with simulated as compared to measured camera
response data: measured < simulated noisy < simulated noiseless
This finding is exclusive for SC212C, for which we obtained camera response data
by measurement and simulation. This LSMSC system incorporates the optimal
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filters selected in Section 3.4.4. It was found that the estimation performance based
on measured camera response data is significantly lower than for simulated camera
response data. We have identified several potential reasons for this and also discussed
possible approaches to overcome these limitations.

In summary, it can be said that when empirical models are considered, the overall col-
orimetric and spectral estimation performance is satisfying and according to our appraisal
suitable for various color or spectral reflectance measurement applications. From our ex-
perimental results, we can not claim the same for physical model based estimation. We
believe that the main reasons explaining its low performance are an oversimplified view
of the acquisition process (ie. ignoring observation and illumination angle deviations),
measurement uncertainty for spectral components of the LSMSC (ie. scene illumination
SPD and camera responsivity) and missing spectral information in the near infrared where
the sensor is still responsive. As pointed out, we are aware that our system is sensitive
beyond 730 nm, but did not have corresponding spectral data available to use in physi-
cal models. We explicitly note that the low performance of physical based models found
experimentally shall not be understood as if these models are generally not suitable for
LSMSC systems. In fact, overcoming these limitations motivates future research. Despite
the difficulties in using a physical model based estimation correctly, an advantage of cor-
responding methods is that no observation data is required for training, like in the case of
empirical estimation models.
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6.1 Preface

In empirical spectral estimation methods (see Section 5.3), the model is obtained from
training data. Without doubt, model training influences the system performance, and in
practice one is interested in obtaining the estimation model under the premise of opti-
mizing performance. So far, we haven’t considered the construction of a training set in
particular. For instance in experiments where we compared different estimation algorithms
in Section 5.5, the training data was randomly selected, as we were only interested in a
fair comparison between different spectral estimation methods without particular consid-
eration of the model training process. In this chapter, we will take a closer look at model
training in empirical estimation. We concentrate on the following two aspects:

Training sample selection: refers to the process of selecting a subset of available sam-
ples for model training. The model is then used in the estimation process of new
observations. This model training scheme can be considered as global training.

Adaptive estimation: refers to the scheme where an estimation model is trained specif-
ically for every new observation. The corresponding training process can be consid-
ered as local training.

The remainder of this chapter is as follows: in the next section, we will consider the
training sample selection problem. After discussing various motivations for performing a
global training, we revise related literature and present a summary of [P3]. In Section
6.3, we introduce a generalized framework for adaptive estimation that conceptually uni-
fies most methods from related literature in the spectral reflectance estimation domain.
Section 6.4 contains an experimental evaluation of training sample selection and adaptive
estimation. We summarize and conclude this chapter with Section 6.5.

Notation
We denote S = {v1, v2, ...vl} = {(x1, r1), (x2, r2), ...(xl, rl)} ⊂ Rn×1 × Rm×1 as the set of
available measurement data, consisting of l camera responses {xi ∈ Rn×1|i = 1, 2, ...l} and
corresponding reflectances {ri ∈ Rm×1|i = 1, 2, ...l}. Further, let Str ⊂ S be a training set
with k elements, ie. with cardinality |Str| = k. Samples not included in the training set
are in Str = S \ Str.

6.2 Training sample selection schemes

A global training sample selection results in a subset Str with k elements from the set
of available data S. One reason for using a subset of the available data instead of the
full set is that it reduces the computational burden. For some estimation methods, the
computational load increases with |Str| only in the model training phase (eg. E-PINV-
SVD in Section 5.3.1), while for others methods, it increases with |Str| in both model
training and prediction (eg. E-KER in Section 5.3.3).

Another reason for considering training sample selection is that the model trained
from a subset might better adapt to a particular application. For example, when it is not
feasible to obtain training data (or sufficient amount of training data) directly related to
an application, we can construct a training set from data of another application or from
a general purpose data set.
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Whether or not a selection scheme considers application data is one criterion according
to which global training sample selection schemes can be categorized. We follow [P3] and
distinguish the following:

General purpose vs. application dependent selection refers to a general premise
of the selection: In general purpose selection, neither application data nor the esti-
mation model are considered in the selection process, whereas application dependent
selection takes these aspects into account.

Bottom-up vs. top-down refers to the way how the training set is constructed. In
bottom-up, we start with an empty set Str = ∅ and sequentially add samples from
S until |Str| = k. In top-down, we start with the full set Str = S and sequentially
remove samples until |Str| = k.

6.2.1 Related literature

We have compared various global training sample selection schemes in [P3]. Most items
in the following list are taken from this work.

• The simplest training set selection scheme is general purpose random selection (fur-
ther: RD) with the objective of reducing the size of the training set. On average,
RD is a rather bad choice. This was shown in several experiments related to machine
learning in different application domains [112, 113, 114].

• Wu et al. [112] proposed a bottom-up approach based on the Kennard-Stone algo-
rithm, which aims at sequentially selecting k samples that are uniformly spaced over
the sample space. The i-th sample (i = 1, 2, ...k) is selected as

arg max
v0

{D(v0)|v0 ∈ Str}, (6.1)

where D(v0) = min{d(v1, v0)|v1 ∈ Str} is the minimum distance between v0 and any
element in Str and d(v1, v0) is defined as the Euclidean distance between element v1

and v0. Because the application considered in [112] is classification of spectral data,
elements in S are spectral vectors.

• Hardeberg [102] (further: HD) proposed a bottom-up scheme of training sample se-
lection for spectral characterization of a multi-spectral imaging system. His iterative
method is based on a criterion of minimum condition number and can be regarded
as a general purpose selection scheme. The objective of the selection is to create a
set of k samples that are most distinct from each other. The first sample is selected
as the one with maximum variance in spectral reflectance space among reflectances
from S. The i-th sample (i = 2, 3, ...k) is selected as

arg max
v0

{cond(Sc(v0))|v0 ∈ Str}, (6.2)

where cond(Sc(v0)) denotes the condition number of the m × i matrix containing
i spectral reflectances of dimension m in columns, taken from the set Sc(v0) =
Str ∪ {v0}.

• Kang et al. [114] proposed a bottom-up selection scheme for active learning in text
classification. They used k-means to cluster elements from S into k clusters. Then,



142 CHAPTER 6. MODEL TRAINING IN EMPIRICAL ESTIMATION

from each cluster, the sample with the smallest Euclidean distance to the cluster
centroid is added to Str.
In [P3], we have proposed a modification of this approach for training a spectral
estimation model. The modification involves substituting the Euclidean distance
measure in k-means by the spectral similarity value (SSV) distance metric, which
takes into account magnitude as well as scale differences between spectral data.
Experimental performance evaluation of both approaches indicated an advantage
when using the SSV distance metric.

• Mohammadi et al. [115] grouped reflectances from S into n clusters using agglomera-
tive hierarchical clustering with average linkage and correlation distance to measure
dissimilarity of reflectances. For each cluster, the reflectance sample having the
minimum average vectorial angle to any other reflectances in the set is selected for
training. The approach follows a bottom-up scheme and belongs to the group of
general purpose selection schemes.

• Cheung and Westland [113] proposed several objective functions for a general pur-
pose iterative bottom-up approach. It is based on the assumption that represen-
tative reflectance samples to be selected for training should be most distinct from
each other. Shen et al. [116] tested the proposed objective functions and found that
MAXSUMS perform better than alternative proposals of Cheung and Westland. The
method works as follows: Like in HD, the first sample is selected as the one with
maximum variance in spectral space among S. The i-th sample (i = 2, 3, ...k) is
selected as

arg max
v0

{D(v0)|v0 ∈ Str}, (6.3)

where D(v0) =
∑

v1∈Str
√
d(v1, v0) and d(v1, v0) is defined as the Euclidean distance

between element v1 and v0. The square-root term is introduced in order to penalize
small spectral differences.

• Shen et al. [116] proposed two iterative bottom-up sample selection schemes for
spectral estimation with a multi-spectral imaging system. The first approach is
referred to as eigenvector-based method. It is based on the premise that the subspace
containing the training reflectances should be the one that is most similar to the
subspace of all reflectances in S1.

The other approach is referred to as a virtual-imaging-based method, whose aim is
to select samples iteratively that minimize the error between measured reflectances
in the training set and corresponding reflectances estimated from simulated camera
responses of a virtual imaging system. We propose an extension of this approach:
Instead of considering a virtual imaging system, we considered our LSMSC. The i-th
sample (i = 2, 3, ...k) is selected such as to minimize the average spectral estima-
tion error (RMSE) for samples from an application dataset with known spectral
reflectances (further: TE). Accordingly, this approach works in a bottom-up fashion
and is application-dependent.

• For the specific case when |Str| is very large, most iterative sample selection schemes
can not be used in practice because they are computationally too demanding. In
[P3], we proposed a method to overcome this limitation using a clustering based

1We note that our simplified representation of this algorithm in [P3] contains an error and the reader
should therefore refer to the original description in [116] for more details.
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application dependent selection scheme. The recursive algorithm processes Str in
top-down fashion such that elements in Str that do not reduce estimation quality
are removed from the training set. A summary of this article follows next.

6.2.2 Summary of author publication [P3]

In [P3], we considered in-line print inspection based on reflectance data from a 12-channel
LSMSC system, similar to SC112C. For this particular application, we proposed a flexible
and time-saving scheme for constructing a training set without the need of measuring
camera response or reflectance. A requirement for this scheme is that a spectral model
of the printing process is known2. Then, any printable reflectance can be predicted from
relative amounts of primary inks available in the printing process. Based on the Yule-
Nielson spectral Neugebauer model [117], we have predicted more than 14600 reflectances
that sample printable colors within the printer gamut. Corresponding camera responses
for the LSMSC system were then simulated based on an acquisition model similar to that
described in Section 2.3.3.B, assuming the acquisition process is noise free.

We further proposed a recursive rejection (RR) algorithm to construct an application
dependent training set from the estimated reflectances. The RR algorithm works in top-
down fashion (ie. starts with a full set of available data and successively rejects samples
from the training set). Accordingly, the available set of data is recursively processed by
division into clusters of varying size using the k-means algorithm. Clusters of samples are
rejected from the set if they do not enhance the performance of spectral estimation based
on the E-PINV-SVD model (See Section 5.3.1.A).

We evaluated this algorithm in comparison with various other global training sample
selection schemes for spectral estimation in terms of colorimetric and spectral performance
on several datasets. The most important findings and conclusions of this work can be
summarized as follows:

• In most training sample selection schemes, the number of training samples as a
parameter has to be defined a priori. For spectral estimation, this parameter de-
pends on the dataset considered. The optimization is not trivial and might be time
consuming. The RR algorithm determines an optimal number of training samples
automatically based on the premise of enhancing estimation performance.

• Several training sample selection schemes were found not to be applicable to very
large datasets. The RR method does not have this limitation.

• The performance of RR is comparable or even better than other training sample
selection schemes.

6.3 Adaptive estimation schemes

In spectral estimation using global training, a fixed prediction function is used for esti-
mating reflectances of new observations. On the contrary, in adaptive estimation, each
new observation has its own prediction function. Under the premise that an estimation
model performs better if it is trained by data in a local region of the new observation in-
stead of the entire training set, the similarity between training data and new observations
can be factored into the construction of the prediction functions. We can achieve this by

2We note that obtaining this model involves spectral reflectance measurements.
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employing a weighting scheme in the training process, with larger weights assigned to the
training samples that are more similar to the new observation.

A disadvantage of adaptive estimation as compared with conventional estimation with
global training is that it is computationally expensive, since the estimation process for each
new observation involves weight assignment, model training and prediction. However, this
might not be a limitation in practice.

To employ the weighting scheme in the training process, we can reformulate the initial
minimization problem in Equation 5.10 for empirical estimation. Instead of minimizing
the sum of estimation loss L over all training samples in Str, we minimize a weighted sum
in the adaptive estimation problem:

arg min
f

(
1

2

l∑

i=1

αiL(f(xi)− ri)

)
, (6.4)

where αi is a weighting factor for element i (i = 1, 2, ...l) in the training set. There are
various methods for selecting weights and we distinguish two categories:

Continuous weighting:
In continuous weighting, αi is expressed as a function F , which describes the sim-
ilarity between samples from the training set {vi ∈ Str|i = 1, 2, ...l} and the new
observation v:

αi = F(vi, v). (6.5)

Binary weighting:
In binary weighting, αi ∈ {0, 1}. The weight for training sample i (i = 1, 2, ...l) is
assigned according to the dissimilarity between vi and v, such that

αi =

{
1 if D(vi, v) ≤ t
0 if D(vi, v) > t

, (6.6)

where t is a dissimilarity threshold parameter and D can be considered as a distance
function.

An intuitive interpretation of this weighting scheme is that training samples similar
to the new observation are considered in the training process (ie. α = 1), and others
not (ie. α = 0). If the number of training samples k is fixed (ie. t is considered as a
dynamic parameter), binary weighting selects the k training samples that are most
similar to the new observation for training.

Continuous weighting is nonparametric, while binary weighting has one parameter to
be optimized (the dissimilarity threshold t or the number of training samples k to be
selected). But both methods require the specification of similarity or distance function,
which is critical for the performance of adaptive estimation. Note that we do not specify
whether the similarity or distance is computed in camera response space or in reflectance
space, as both cases are possible.

6.3.1 Example of continuous weighting in least squares estimation

If we incorporate continuous weighting scheme in the least squares estimation with linear
feature mapping (ie. model E-PINV-SVD, see Section 5.3.1.A), we can express the model
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training process for a new observation as the following minimization problem:

arg min
Â

(
1

2

l∑

i=1

‖αiÂT xi − αiri‖2
)
, (6.7)

where weighting factors {αi ∈ R|i = 1, 2, ...l} are included in the expression for estimation
loss for convenience. We denote X̂ = [α1x1, α2x2, ...αlxl] ∈ Rn×l as a matrix of weighted
training camera response vectors and R̂ = [α1r1, α2r2, ...αlrl] ∈ Rm×l as a matrix of
corresponding weighted reflectances from Str.

The weighting factors can be computed from camera response data for instance by
using the probability density function of a multi-variate Gaussian as similarity measure
[98], which is defined as

F(xi,x) = (2π)−
n
2 det(Σ)−

1
2 exp

(
−1

2
(xi − x)TΣ−1(xi − x)

)
, (6.8)

where n is the dimensionality of the camera response data, Σ = cov(xi) ∈ Rn×n is a
positive definite covariance matrix of the multivariate random variable xi and det(Σ) is
the determinant of Σ. Note that this function only exists if rank(Σ) = n (ie. Σ is full
rank). Covariance matrix Σ can be estimated from observations (ie. samples in Str)3.

The solution to the quadratic minimization problem in Equation 6.7 is found by setting
the derivative of the cost function with respect to Â equal to zero and we get

ÂLIN = R̂X̂+, (6.9)

where ÂLIN ∈ Rm×n is the estimation matrix obtained from weighted training data.
Reflectance r̃ ∈ Rm×1 can then be estimated from camera response x ∈ Rn×1 by evaluating
r̃ = ÂLIN x.

6.3.2 Example of binary weighting in least squares estimation

Suppose we have the same setting as before, but this time we want to incorporate binary
weighting. The minimization problem is identical to Equation 6.7 and the corresponding
solution was given in Equation 6.9. The dissimilarity function in the weighting scheme is
selected as Euclidean distance in camera response space, ie.

D(xi,x) = ‖xi − x‖. (6.10)

If we use a dynamic threshold t instead of a fixed value, the samples corresponding to the
k smallest distances are assigned α = 1 and all other samples α = 0. If k is small, X̂ and
R̂ are sparse. The zero-columns of X̂ and R̂ do not influence the model and can therefore
be removed, often resulting in a great reduction of the sizes of X̂ and R̂.

6.3.3 Related literature

• Shen and Xin [118] considered adaptive spectral reflectance estimation from camera
responses of a 3-channel color scanner using linear least squares regression. They
used a binary weighting scheme and selected the k most similar samples from Str for
training. The dissimilarity function is defined as

D(ri, r̃) = ‖ri − r̃‖, (6.11)

3See Appendix A.4.
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where ri is the reflectance of the i-th training sample (i = 1, 2, ...l) and r̃ is the
estimated reflectance of the new observation from camera response using a model
conventionally trained with all samples.

• In a later work, Shen and Xin [98] expanded their previous approach by using a
continuous weighting for the k most similar samples from Str. The weighting function
employed is the multivariate probability density function defined in Equation 6.8, and
they found that the performance of the approach is less influenced by the selection
of k than in their previous method.

• Agahian et al. [119] considered adaptive spectral reflectance estimation from tris-
timulus values using linear least squares regression in a truncated orthogonalized
reflectance space (see Section 5.3.1.A). They used a continuous weighting scheme,
and the similarity function is defined as

F(xi,x) =
1

∆Ei + c
, (6.12)

where ∆Ei refers to the ∆E76 color difference between the i-th training sample (i =
1, 2, ...l) and the new observation, and the scalar c is a positive constant introduced
to avoid division by zero.

• Eslahi et al. [120] considered adaptive spectral reflectance estimation from tristim-
ulus values using canonical correlation regression (with non-linear feature mapping
using polynomial terms). By means of this feature expansion, additional terms were
introduced such that the dimensionality of spectral data and the expanded tristimu-
lus values in feature space were matched. They used a continuous weighting scheme
and the similarity function defined in Equation 6.12. They compared this approach
with the method used by Agahian et al. [119] and found that the weighted canonical
correlation regression performed significantly better.

• Babaei et al. [121] considered adaptive spectral reflectance estimation from tristim-
ulus values using linear least squares regression. They used a continuous weighting
scheme with the similarity function defined in Equation 6.12.

• Zhang et al. [108] considered adaptive spectral reflectance estimation from camera
responses of a 3-channel camera system. Like Shen and Xin [118], they used a bi-
nary weighting scheme and fixed the number of training samples to be selected. They
compared non-adaptive and adaptive versions of linear least squares regression, reg-
ularized linear least squares regression and reproducing kernel Hilbert space based
regression (with the Gaussian kernel function). From experiments with simulated
camera response data, they found that, apart from the RKHS based regression, adap-
tive schemes outperformed non-adaptive schemes. They concluded that the small
training set size might have led to over-fitting which resulted in the low performance
of RKHS based regression. Another finding was a small performance improvement
for regularized linear least squares regression over the non-regularized version.

A tabulated summary of weighting schemes used in these works is given in Table 6.1.
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Table 6.1: Adaptive estimation: summary of related literature.

Authors Year Weighting scheme Weighting function

Shen et al. [98] 2006 Continuous F(xi,x) = (2π)−
n
2 det(Σ)−

1
2 ...

... exp
(
−1

2(xi − x)TΣ−1(xi − x)
)

Agahian et al. [119] 2008 Continuous F(xi,x) = 1
∆Ei+c

Eslahi et al. [120] 2009 Continuous F(xi,x) = 1
∆Ei+c

Babaei et al. [121] 2011 Continuous F(xi,x) = 1
∆Ei+c

Authors Year Weighting scheme Dissimilarity function

Shen et al. [118] 2004 Binary D(ri, r̃) = ‖ri − r̃‖
Zhang et al. [108] 2012 Binary D(ri, r̃) = ‖ri − r̃‖

6.4 Experimental case studies

We have evaluated various global training sample selection and adaptive estimation schemes
experimentally with respect to spectral estimation performance. The estimation model
used is E-PINV-SVD, ie. least squares regression with linear feature mapping (see Sec-
tion 5.3.1.A). We considered this model because it is simple and nonparametric4.

Performance of spectral estimation is measured in terms of average RMSE. Whenever
applicable, we compare various system configurations (ie. SC212C, SC36C, SC43C).
The datasets considered are DS1, DS2 and DS3. The experimental setting for each
experiment is summarized in Table 6.2.

Table 6.2: Conditions of the experiments in Section 6.4.

System SC212C, SC36C, SC43C

Dataset Section 6.4.1: DS2: HKS-N; DS3: HKS-K

Section 6.4.2: DS1: Pantone; DS2: HKS-N

Performance evaluation Spectral estimation error (Avg. RMSE)

Validation scheme Separate training and testing data

Parameter selection scheme -

Camera response data Simulated (Noise Scenario 2)

Measured (for SC212C)

6.4.1 Global training: general purpose vs. application dependent selec-
tion

The aim of this experiment is to compare general purpose training selection and applica-
tion dependent selection in global training schemes, and to analyze the influence of number

4The problem with parametric approaches is the potential risk of biasing estimation performance by a
bad parameter selection.
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of training samples on the estimation performance. The methods considered are RD (gen-
eral purpose selection), HD (general purpose selection) and TE (application dependent
selection), which were introduced in Section 6.2.1. Training samples were selected from
DS2, and samples in DS3 were used for testing5.

The results of the experiment are illustrated in Figure 6.1. Our findings are mostly
independent of the system configuration, as well as the type of camera response data
considered (ie. simulated or measured) and we therefore do not discuss them separately,
but at once:

• The performance increases with the number of training samples for all methods com-
pared. The relative increase is larger when |Str| is small. For |Str| > 30, performance
is almost constant for all methods.

• RD: random selection results in the lowest performance for all system configurations
evaluated. The random nature of the selection process results in varying performance
for various repetitions. The values shown in the figure correspond to the average over
10 repetitions. The standard deviation over repetitions decreases with increasing
|Str| (not illustrated), because fewer randomly selected samples in the training set
result in a larger variation of the estimation performance.

• HD: constructing a training set by iteratively selecting samples that are most distinct
from each other is a much better choice than random selection. Not only is the
selection stable (ie. not depending on a random number generator), but we also see
that the performance is considerably higher.

• TE: in most cases, iteratively selecting samples that minimize the estimation error
of training reflectances results in the lowest average RMSE when Str is small. To
some extend this is expected, as those samples are optimal with respect to minimizing
average RMSE of estimated samples from the training set. DS2 and DS3 might
be similar enough so that the model created from DS2 generalizes well on DS3.
However, this assumption is by no means general.

We can conclude from this experiment that application dependent training set selection
has certain advantages over a general purpose selection scheme. Whenever information
about the application data is available, it makes sense to consider it in the training set
selection.

We have also found that it is possible to reduce the number of training samples drasti-
cally without or with only little performance reduction. The minimum amount of training
data required to maintain high performance depends on the dataset and the estimation
model and has to be evaluated for each application case specifically. As a smaller training
set demands lower memory usage and often a lighter computational burden, it seems to
be worth considering this step in a practical application.

5Although training set and test set contain intrinsically different data (samples in DS3 are produced
on coated paper substrate, whereas samples in DS2 are produced on uncoated paper substrate), a fair
comparison is not prevented by that.
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Figure 6.1: Influence of the number of training samples on estimation performance.

6.4.2 Adaptive estimation: performance evaluation

In this experiment, we evaluated different adaptive estimation methods, including contin-
uous and binary weighting schemes, and compared them with conventional training.

A Continuous weighting

In continuous weighting, the estimation matrix is computed from weighted training sam-
ples as shown in Equation 6.9. In this experiment, we have considered the following
functions:

• F1(xi,x) = 1
‖xi−x‖ is the inverse of Euclidean distance between the i-th training

sample (i = 1, 2, ...l) and the new observation in camera response space.

• F2(ri, r̃) = 1
‖ri−r̃‖ is similar to the above, but the similarity is computed in re-

flectance space, with the reflectance of the new observation estimated using a model
conventionally trained with all samples.

• F3(xi,x) = (2π)−
n
2 det(Σ)−

1
2 exp

(
−1

2(xi − x)TΣ−1(xi − x)
)

is the multivariate Gaus-
sian weighting function which takes into account statistics of camera responses.

Dataset DS1 contains 1761 samples and DS2 90 samples. We used DS1 for training
and DS2 for testing in the first part of the experiment (Scenario 1), then switched the
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training and test sets for the second part of the experiment (Scenario 2). Numerical
results are reported in Table 6.3. Findings from results of Scenario 1 can be summarized
as follows:

Conventional vs. adaptive estimation:
Adaptive estimation outperforms training with the full set, regardless system con-
figuration, weighting function and whether simulated or measured camera response
data was considered. The decrease of average RMSE ranges from 21 % to 40 % as
compared with conventional estimation.

Number of channels:
There is no clear indication that the relative performance increase of adaptive over
conventional estimation is depending on the number of channels.

Weighting functions:
Adaptive estimation using the multivariate Gaussian weighting function F3 per-
forms better than F2 or F1 in all cases when simulated camera response data was
considered. A slightly lower performance was found for the case of measured camera
response data.

From results of Scenario 2, we discuss findings that are contrary to those of Sce-
nario 1. For adaptive estimation with F1 or F2 and simulated camera response data,
average performance is again higher as compared with conventional estimation. For mea-
sured camera response data, average performance is similar. When F3 is used, performance
is lower than for conventional estimation in all cases apart from when SC43C is used.

One major difference between the two scenarios is the number of training samples
and their data distribution in camera response space. If we look at the CIE-Lab color
coordinates of the two datasets (illustrated in Figure 2.18), we see that DS2 samples
are much more sparsely and unevenly distributed over the color space, as compared with
samples from DS1. It is reasonable to assume that the situation is similar in camera
response space.

To find out whether or not the data distribution can explain the low performance
with F3, we have analyzed weight distributions of adaptive training sets for various test
samples. For instance for the test sample that has the lowest similarity to any other
training sample (which can be considered isolated), we found that the assigned weighs
for the closest five samples are much larger for F3 than for F1. This means that even
though these few training samples are not similar to the test sample, they are assigned a
large weight because they are the most similar ones. And for this particular case, adaptive
estimation with F1 and conventional estimation using the full training set outperformed
adaptive estimation with F3. We illustrate this case in Figure 6.2.

The explanation above might be one reason for the low performance of this particular
test sample when F3 is used. Another important aspect to consider is that, as stated
before, the efficiency of these schemes are based on the premise that an estimation model
performs better if it is trained by data in a local region of the new observation instead
of the entire training set. While this being a reasonable assumption, in practice it may
happen that the training data far away from the test sample generalizes a better model
for predicting this sample (due to the specific property of the data structure), and vice
versa.



6.4. EXPERIMENTAL CASE STUDIES 151

Table 6.3: Numerical results of average RMSE for the continuous weighting experiment
in Section 6.4.2. The average RMSE for conventional estimation with the full training
set is added for reference and denoted “Conv.”.

Str from DS1 Str from DS2

Conv. F1 F2 F3 Conv. F1 F2 F3

SC43C simu. 0.061 0.042 0.050 0.039 0.057 0.047 0.048 0.044

SC36C simu. 0.027 0.019 0.020 0.016 0.029 0.026 0.027 0.030

SC212C simu. 0.010 0.007 0.006 0.005 0.010 0.009 0.009 0.013

SC212C meas. 0.014 0.011 0.011 0.012 0.013 0.013 0.013 0.038
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Figure 6.2: Training sample weights corresponding to the test sample with largest dis-
tance in camera response space to any sample of the training set. The plots show relative
weights F1 and F3 (normalized by the sum of all weights) of each training sample in
decreasing order.

B Binary weighting

In binary weighting, either the dissimilarity threshold parameter or the number of training
samples to be selected is fixed. In this experiment, we evaluated methods of the latter
case, ie. for each new observation we selected a fixed number of training samples for model
training. One aspect of our analysis is the influence of number of training samples k on
the model performance, and we considered values between 1 and |Str|. The dissimilarity
functions considered are the following:

• D1(xi,x) = ‖xi − x‖ quantifies the dissimilarity between the i-th training sample
(i = 1, 2, ...l) and the new observation in camera response space.

• D2(ri, r̃) = ‖ri − r̃‖ is similar to the above, but the dissimilarity is computed in
reflectance space, with the reflectance of the new observation estimated using a
model conventionally trained with all samples.

The results are shown in Figure 6.3 and Figure 6.4, and our findings can be summarized
as follows:

Interpretation of the curve shapes: (Figure 6.3a, 6.4a, 6.3b, 6.4b)
The shape of the estimation error curves of different system configurations using
different dissimilarity functions follows a similar pattern. For 1 ≤ k < n, the error
first decreases rapidly with increasing k, before increasing again drastically to reach
a point with large error when k = n. For n < k ≤ l the error first decreases again
rapidly, then stabilizes or starts some turbulences.
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As mentioned in Section 5.3.1, the system is underdetermined when the number of
training samples is smaller than the number of camera response channels, ie. k < n,
and E-PINV-SVD gives the minimum norm solution. As the main limiting factor
at this point is the small number of training samples, enlarging the training set can
effectively improve the performance. When k = n, the system is fully determined
and a unique solution exists. However the very large condition number of the system
matrix (not illustrated) suggests that this is a bad solution, which explains the
drastic error increase at this point. When k > n, the system is overdetermined,
and E-PINV-SVD gives the least squares solution. The error first decreases with
increasing training data, but after a certain point where training set size is no longer
a limiting factor for the performance, the estimation error stabilizes or starts to be
influenced by other factors, which are not straightforward to explain.

Number of camera channels: (Figure 6.3a, 6.3b)
Similar to the other experiments, estimation performance generally increases with
the number of camera channels.

Dissimilarity measure D1 vs. D2: (Figure 6.3a, 6.4a, 6.3b, 6.4b)
From corresponding figures, we can see that differences in performance exist between
using one or the other function. However, in most cases the differences are small and
it is not straightforward to explain them. For SC43C (Figure 6.3a and Figure 6.3b),
we see that the performance of D2 is lower than that of D1, but this is not so clear
for other system configurations. The estimation performance of SC43C is generally
rather low, hence measuring dissimilarity using estimated reflectances does not seem
to be favorable in that case. Because D1 does not perform particularly bad under
any condition evaluated, we conclude that this measure is the better choice.

Global training vs. adaptive estimation: (Figure 6.3a, 6.4a)
When DS1 is used for training and DS2 for testing, the optimal number of training
(kopt) is smaller than the total amount of available samples (ie. kopt < l). This
means that adaptive estimation outperforms conventional estimation. The situation
is different when DS2 is used for training, and DS1 for testing. We discuss this
aspect separately below.

Training with DS2, test with DS1: (Figure 6.3b, 6.4b)
For simulated and measured camera response data, the improvement of adaptive
over conventional estimation diminishes or even disappears as compared with using
DS1 for training.

As pointed out earlier, DS2 contains much less data than DS1. Hence, using DS2
for training means that for a fixed value k, the selected samples may be much less
similar to a new observation as compared with those selected from DS1. It also
means that for a fixed dissimilarity threshold t, there may be much less samples
selected from DS2 as compared with DS1. We illustrate an example by considering
a test sample with CIE-Lab color coordinate xLab = [60, 50, 60]T using D1 as dissim-
ilarity measure and a fixed threshold t = 34. From the results shown in Figure 6.5,
we can see that there are 20 samples selected from DS2, and they are more sparsely
and unevenly distributed as compared with the 95 samples selected from DS1.

Simulated vs. measured camera response data: (Figure 6.4a, 6.4b)
As before, performance is lower when measured camera response data is considered.
Apart form this, there is no significant difference from other findings reported earlier.
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Figure 6.3: Estimation performance of conventional estimation and adaptive estimation
with binary weighting plotted as a function of number of selected training samples, using
three system configurations and two dissimilarity measures. Note that for DS1, we only
show RMSE for 1 < k ≤ 100 for better illustration.
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Figure 6.4: Similar with the illustration in Figure 6.3, but considering only SC212C

with both simulated and measured camera response data.
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Figure 6.5: Dissimilarity between a test sample and each element in training set DS1
and DS2 (a). CIE-Lab color coordinates for the samples in DS1 (b) and DS1 (c). The
selected samples with dissimilarity D1 ≤ 34 are marked in colors.
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6.5 Summary and conclusions

We have considered two particular aspects in model training for empirical estimation:
training sample selection and adaptive estimation.

Training sample selection is the process of choosing a subset from available samples
for estimation model training. Once the model is constructed, it is used for estimation of
new observations.

We have discussed motivations behind training sample selection and proposed a cat-
egorization scheme for related literature. In [P3], we considered training sample selec-
tion in the context of in-line print inspection by spectral reflectance measurements from
multi-spectral image data. In that work, we proposed a recursive rejection algorithm (the
so-called RR method) to obtain an application specific training set. A useful property of
the RR method is that the algorithm determines an optimal number of training samples
automatically. We showed in various experiments that estimation performance with a
training set constructed by the RR method is comparable with methods that require an
additional optimization process to determine training set size.

We also performed experiments to specifically compare general purpose with appli-
cation dependent schemes. It can be concluded that application dependent training set
selection should be used whenever application data is available, because general purpose
selection schemes miss mechanisms that ensure generalization of the training set to appli-
cation specific data. Another experimental finding for our data was that the number of
training samples could be reduced drastically with only little or no estimation performance
decrease.

In adaptive estimation, each observation has its own prediction function. This function
takes into account the similarity between training samples and the new observation by
incorporating a weighting scheme. We have proposed a general framework for adaptive
estimation schemes and conceptually unified related works from the spectral estimation
domain. Further, we illustrated scenarios of adaptive estimation using continuous and
binary weighting and least squares regression estimation with linear feature mapping.

We performed various experiments that allowed drawing the following conclusions:
Adaptive estimation schemes were found to outperform conventional estimation with a
full training set, if the elements in the training set are distributed densely in the entire
application space. This is not the case when the training set is relatively sparse with
respect to the test set.



“Now this is not the end.
It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.”
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7.1 Summary and conclusions

This dissertation is related to the design of line-scan multi-spectral LSMSC imaging sys-
tems, though many aspects apply also to other types of multi-spectral imaging systems.
The design of such systems and the development of a specific imaging application require
the consideration of many aspects. We focus on optimizing spectral properties of the
optical components in such systems (Module 1), registration of LSMSC images (Module
2) and mathematical models for the recovery or estimation of surface spectral reflectance
data from multi-channel image data (Module 3 and 4).

As this work covers studies from various domains, we structured the dissertation in
chapters related to the modules, each containing problem statement, methods, experiments
and detailed conclusions. In what follows, we present the modules in a general context
and hence only give a summary of the most relevant findings and conclusions.

Module 1 is linked to acquisition system design. We focused on spectral properties
of optical system components and considered system design as an optimization problem.
Corresponding optimality criteria based on subspace projection and spectral estimation
error were studied and summarized. We demonstrated that spectral estimation error based
optimality criteria are often a better choice in practice.

For the specific task of LSMSC sub-image filter selection, we proposed a framework
that incorporates heuristics in order to make the evaluation of large amounts of filter
combinations feasible. Further, by using the Pareto optimality principle, we simplify the
selection of an optimal filter combination. We have demonstrated our framework for 3-, 6-
and 12-channel LSMSC systems based on a specific imaging principle, using a RGB line
sensor with multiple lenses and color filters. This imaging principle was recently invented
by company Chromasens GmbH. Our optimal filters for the 12-channel system configura-
tion were considered for practical implementation and assembled in our laboratory setup.
Experiments with measured data illustrated the high colorimetric and spectral estimation
performance of the system (average RMSE < 0.01 and average ∆E00 < 0.6), but also a
shortcoming of the acquisition model considered for simulations.

Module 2 deals with the registration of multi-channel line-scan image data. We
have demonstrated that image channel misalignment can degrade spectral image quality
severely. A general framework for LSMSC image registration of planar and non-planar
scanning objects was proposed.

For planar scanning objects, the registration process can be considered as geometrical
calibration. We have designed a specific calibration target for line-scan cameras and
a semi-automatic scheme to extract pixel displacement of key-points from image data.
Based on that, we identified polynomial shaped displacement curves for our laboratory
LSMSC system. Accordingly, a polynomial curve model and a uniform cubic B-spline
based model with grid refinement were developed. Both models were evaluated empirically
and it was confirmed that sub-pixel accurate image registration can be achieved (average
displacement error below 0.1 pixel).

For non-planar scanning objects, we demonstrated that geometrical calibration alone is
not adequate because of object viewpoint variations between geometrically calibrated RGB
sub-images. We proposed a solution to this problem that uses a scene-dependent pixel-wise
correspondence estimation scheme based on block-matching with sub-pixel estimation.
The block-matching is performed on feature images that result from a novel color-invariant
feature mapping that was developed specifically for LSMSC systems. Finally, RGB sub-
images can be registered using the estimated pixel-wise image correspondence.
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We compared physical and empirical model based feature mappings for our laboratory
LSMSC system and found that the empirical model performance is considerably higher
than the performance of the physical model. Evaluation of correspondence estimation
showed that sub-pixel accurate image registration can be achieved also for non-planar
scanning objects.

Module 3 is about the spectral reflectance recovery or estimation problem. This can
be considered as the task of finding a mapping from camera response space to spectral
reflectance space. Unlike camera responses, spectral reflectances are device independent
object surface properties. Hence, spectral estimation is the basis for spectral reflectance
factor measurements with LSMSC systems.

We first summarized mathematical concepts for physical and empirical model based
spectral estimation: for estimation based on a physical model of the acquisition process,
we considered a direct inverse approach based on the minimum norm solution (P-MIN),
a regularized approach that estimates coordinates in an orthogonalized reflectance space
(P-MW) and the Wiener estimation (P-WN). For empirical estimation, we considered a
linear model. We discussed the least-squares solution with linear feature mapping (E-
PINV-SVD), non-linear feature mapping, and regularized versions of the solution. We
also considered reproducing kernel Hilbert space ridge regression (E-KER) and proposed
the conditionally positive definite logarithmic kernel function for spectral reflectance esti-
mation [P1].

Then, approaches that impose constraints on the estimation were summarized (ie.
positivity or physical realizability of spectral reflectances). We showed in [P2] that con-
strained estimation is a necessary requirement for spectral density measurements based on
estimated reflectance data using a LSMSC systems. We used E-KER with link functions
to address the problem.

Performance of spectral estimation approaches was compared experimentally for simu-
lated and measured camera response data. We considered various levels of camera response
noise and LSMSC system configurations with different number of spectral channels.

We found that average color and spectral measurement errors decrease with the num-
ber of spectral channels and increases with noise level. Further, empirical estimation
outperformed physical model based recovery under all conditions evaluated. Performance
when using measured data was found to be lower than that of simulated data and the dis-
crepancy was specifically high for physical model based estimation. We discussed various
potential reasons for this.

The highest performance using measured camera response data was achieved by E-
KER (using Gaussian kernel) with average RMSE = 0.005 and average ∆E00 = 0.36.

Module 4 is related to the training process in empirical spectral estimation. We
concentrate on two main aspects, namely training sample selection and adaptive training.
Most training sample selection methods reduce the number of available samples based on
the premise of preserving relevant information. However, training with this data does not
necessarily result in a good estimation model. Application dependent selection schemes
account for this and we proposed the recursive rejection algorithm for application depen-
dent training set construction [P3]. An advantage of this method over others is that the
training set size is determined automatically.

In adaptive training, the estimation model is trained specifically for each individual
test sample. This increases the computation burden, but as compared with conventional
training, the estimation model often approximates better in a local region around the test
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sample. We conceptually unified methods from related literature and proposed a general
adaptive estimation framework. We experimentally compared some adaptive estimation
schemes and found that a densely sampled training set is required to outperform conven-
tional training.

In summary, we showed that the four modules of line-scan multi-spectral imaging
system design considered in this work are critical for spectral and color measurement. Both
theoretical and practical design aspects were contemplated and relevance of the proposed
methods was substantiated consequently by experiments based on image data acquired
with our laboratory LSMSC system. Therefore, this dissertation can be highly beneficial
for application specific design and development of multi-spectral camera systems.

7.2 Contributions

The author’s contributions can be summarized as follows:

Module 1: Acquisition system design

• Development of a computationally economic framework for LSMSC filter selection
based on a heuristic reduction of possible filter combinations that have to be evalu-
ated (Section 3.3).

• Usage of Pareto optimality criteria to ease selection of a single filter combinations
from a large set, based on multiple objectives (Section 3.3.3).

• Demonstration of experimental case studies for various application scenarios (Sec-
tion 3.4).

• Selection of an optimal set of color filters for a 12-channel LSMSC (Section 3.4.4).

Module 2: Image registration

• Development of a general image registration framework for LSMSC systems that
applies to planar and non-planar scanning objects (Section 4.1.1).

• Design of a geometrical calibration target with rotated checkerboard pattern that is
specifically useful for LSMSC systems and allows semi-automatic extraction of dense
key-points (Section 4.2.1).

• Development of a polynomial registration model and a uniform cubic B-spline based
registration model with grid refinement for LSMSC systems (Section 4.2).

• Development of scene-adaptive registration by means of the stereo imaging princi-
ple (Section 4.3)1. This contains the proposal of color invariant feature mapping
algorithms for pixel correspondence estimation (Section 4.3.1).

• Proof of principle for combined height profile and spectral measurements of non-
planar scanning objects by LSMSC imaging.

1We note that the idea to use the stereo imaging principle for imaging non-flat scanning objects with
a LSMSC system is not the author’s contribution, but was motivated by Chromasens GmbH.
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Module 3: Spectral reflectance estimation

• Systematic summary and conceptual unification of spectral estimation algorithms
from literature (Section 5.2 and Section 5.3).

• Implementation and experimental comparison of spectral estimation algorithms (Sec-
tion 5.5).

• Proposal of the logarithmic kernel function for reproducing kernel Hilbert space
based ridge regression in spectral reflectance estimation ([P1], Section 5.3.4).

• Evaluation of multi-spectral imaging based spectral density measurement for print
inspection using a constrained estimation scheme ([P2], Section 5.4.3).2

Module 4: Empirical estimation model training

• Systematic summary and conceptual unification of global training sample selection
and adaptive estimation schemes (Section 6.2, Section 6.3).

• Proposal of an application specific global training set selection method based on a
recursive rejection scheme ([P3], Section 6.2.2).

• Illustration of fundamental requirements on training data in adaptive estimation
(Section 6.4.2).

7.3 Future research prospects

In the following, we summarize potential future research topics that were identified within
scope of this dissertation:

Illumination SPD optimization:
We have considered the filter selection problem in Chapter 3 and mentioned that
optimizing spectral properties of the scene illumination is an equally important task.
For the specific case of a LSMSC system with LED line light containing individually
controllable types of distinct LEDs similar to the one used in our laboratory setup,
an open problem is the optimal adjustment of individual LED type currents. This
problem could be solved by modeling the physical light mixing process of the scene
illumination SPD as a function of LED currents and combining this model with the
model of the image acquisition process. Finding optimal LED currents can then be
expressed as a minimization problem with respect to a loss function on the basis of
system optimality measures presented in Section 3.2.

Image acquisition model characterization:
Experimental results with respect to filter selection (Section 3.4.4), physical model
based spectral estimation algorithms (Section 5.5.3) and training of empirical models
(Section 6.4) showed a discrepancy between simulated and measured camera response
data, which is an indication for a shortcoming in the image acquisition model. We
pointed out that for our model, a first improvement could be achieved by obtaining
spectral responsivities in a larger spectral range. Other aspects that could lead to an
improvement of the model involve for instance systematic experimental evaluation

2We acknowledge Chromasens GmbH for introducing the negativity problem of spectral estimation
based spectral density measurements to the author.
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and modeling of the influence of observation and illumination angle deviations on
the sensed camera response data, present in LSMSC type systems.

Scene-adaptive color invariant feature mapping:
We have proposed two schemes for color invariant feature mapping of RGB sub-
images from LSMSC systems with more than one lens (Section 4.3.1), and achieved
good results with a scheme based on a linear transformation derived from empirical
data. If corresponding RGB subspaces do not intersect, the empirical solution only
minimizes residuals in feature space, but the mapping is not uniquely defined for
all elements of the RGB subspace. We conducted a preliminary study that involves
a image feature based extraction of corresponding image regions from RGB sub-
images. The color invariant feature mapping can then be obtained from these image
regions in a scene-adaptive fashion. Results indicate an improvement as compared
with the empirical feature mapping described in Section 4.3.1. Further, prelimi-
nary experiments also indicate that non-linear transformations (reproducing kernel
Hilbert space based ridge regression with Gaussian kernel function) can improve the
results, but a systematic evaluation for different scene types is pending.

3D surface reconstruction:
Solving the correspondence problem between RGB sub-images of a LSMSC with
more than one lens (Section 4.3) and non-planar scanning objects make pixel-wise
disparity of sub-images available. So far, this information is only used for image
registration but we have already shown that it can also be used to reconstruct the
height profile of the scanning object scene (Section 4.4.4). Further, an additional
calibration step would allow transforming pixel height profiles in image coordinate
system in a height profile in the object coordinate system and hence allow image
based spatial measurements on 3D objects.

Spectral reflectance measurements of 3D objects:
The aforementioned work in Chapter 4 related to non-planar scanning objects is
also the basis for spectral reflectance measurements on non-flat scanning objects.
Depending on the complexity of the surface structure, measurement conditions will
deviate from what is required for norm conform spectral reflectance factor and device
independent color measurements, and the influence on measurement quality is yet
to be evaluated.
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7.4 Amplio Resumen

Esta tesis versa sobre el diseño de sistemas multiespectrales de escáner en ĺınea LSMSC,
aunque muchos de los aspectos tratados pueden aplicarse también a otros sistemas multi-
espectrales. El diseño de estos sistemas y el desarrollo de aplicaciones de imagen espećıficas
requiere considerar muchos aspectos. Nos centramos en la optimización de las propiedades
de los componentes ópticos del sistema (Módulo 1), el registro de imágenes en LSMSC
(Módulo 2) y los modelos matemáticos para la recuperación o estimación de la información
de la reflectancia espectral de superficies a partir de datos de respuestas de sensores en
dichos sistemas (Módulos 3 y 4).

Ya que en este trabajo se presentan estudios pertenecientes a varios campos o dominios
diferentes, hemos estructurado la tesis en caṕıtulos ligados al contenido de cada módulo,
cada uno de los cuales incluye motivación, método experimental, resultados y conclusiones
detalladas. A continuación, presentamos los distintos módulos con una perspectiva general,
y luego nos limitamos a ofrecer un resumen de las conclusiones y hallazgos más relevantes.

El Módulo 1 describe el diseño del sistema de captura. Nos hemos centrado en las
propiedades espectrales de los componentes ópticos del sistema, considerando el diseño
del mismo como un problema de optimización. Hemos estudiado y resumido criterios de
optimización basados en la proyección de subespacios vectoriales y en el error obtenido
en la estimación espectral. Hemos demostrado que los criterios basados en el error de
estimación espectral son en muchas ocasiones la mejor opción desde un punto de vista
práctico.

Para abordar la tarea espećıfica de la selección de filtros de color en sistemas LSMSC,
hemos propuesto un sistema de trabajo que incorpora relaciones heuŕısticas que hacen
factible llevar a cabo la selección en caso de tener un número muy elevado de combina-
ciones posibles de filtros como punto de partida. Además, usando el principio de Pareto-
optimización, simplificamos notablemente la selección de la combinación óptima de filtros.
Hemos demostrado nuestra propuesta de sistema de trabajo para los casos de 3, 6 y 12
canales en sistemas LSMSC basados en un principio espećıfico de formación de imagen,
que utiliza un sensor RGB en ĺınea con varias lentes que tienen filtros de color acoplados.
Este sistema fue una invención reciente de la empresa Chromasens GmbH.

La combinación óptima de filtros para el sistema de 12 canales se implementó en la
práctica en nuestro prototipo de laboratorio. Los resultados de nuestros experimentos con
este prototipo ilustran las magńıficas prestaciones para la estimación de datos espectrales
y colorimétricos (con un promedio de RMSE < 0.01 y una diferencia de color prome-
dio ∆E00 < 0.6), pero también pusieron de manifiesto claras limitaciones en el modelo
utilizado para la simulación del proceso de adquisición de imágenes.

Contribuciones:

• Desarrollo de un sistema económico computacionalmente para la selección de filtros
en sistemas LSMSC, basado en una reducción heuŕıstica de las posibles combina-
ciones de filtros que deben ser evaluadas (ver la sección 3.3)

• Uso de criterios de Pareto-optimización para facilitar la selección de una única com-
binación de filtros a partir de un conjunto amplio de combinaciones, basados en
múltiples objetivos de calidad (ver la sección 3.3.3).

• Demostración del estudio experimental de casos para varios escenarios de aplicación
(ver la sección 3.4).
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• Selección de un conjunto óptimo de filtros de color para un sistema LSMSC de 12
canales (ver la sección 3.4.4).

El Módulo 2 trata sobre el registro de imágenes multi-canal para el sistema de escáner
en ĺınea. Hemos demostrado que la desalineación de las imágenes degrada la calidad de
los datos espectrales estimados de forma severa. Hemos propuesto un sistema de trabajo
general para el registro de imágenes en sistemas LSMSC.

Para objetos planos, el proceso de registro se puede considerar como una calibración
de tipo geométrico. Hemos diseñado una carta de calibrado espećıfica para cámaras de
escáner en ĺınea, y un método semi-automático para extraer los datos de desplazamiento de
ṕıxeles en los puntos clave obtenidos de las imágenes. Basándonos en estos datos, hemos
identificado una forma funcional de tipo polinómica para las curvas de desplazamiento en
nuestro sistema LSMSC de laboratorio. Consecuentemente, se ha desarrollado un modelo
de ajuste polinómico y también un modelo basado en B-splines que incluye un sistema de
afinado progresivo de la malla de puntos. Hemos evaluado emṕıricamente ambos modelos,
y hemos confirmado que es posible registrar las imágenes con una precisión por debajo de
un ṕıxel (desplazamiento residual promedio menor de 0.1 pixel).

Para objetos con volumen (no planos), hemos demostrado que aplicar únicamente la
calibración geométrica no resulta adecuado, ya que se introducen cambios de perspectiva
que esta calibración no es capaz de descontar entre las imágenes multi-canal registradas.
Hemos propuesto una solución para este problema que utiliza un método de estimación
de correspondencia puntual espećıfico para la escena capturada. Este método se basa
en la igualación de bloques con una precisión por debajo del ṕıxel. La igualación de
bloques se lleva a cabo en imágenes en escala de gris que se obtienen tras aplicar una
transformación invariante a cambios de color que ha sido desarrollada espećıficamente para
sistemas LSMSC. Tras este proceso, pueden registrarse correctamente las sub-imágenes
RGB utilizando la correspondencia entre ṕıxeles estimada.

Hemos comparado transformaciones invariantes a los cambios de color basadas en
modelos f́ısicos y emṕıricos para nuestro sistema LSMSC de laboratorio, encontrando
que los modelos emṕıricos superan con mucho en prestaciones a los modelos f́ısicos. Los
resultados de la evaluación de la estimación de puntos correspondientes muestran que es
posible registrar de forma muy precisa (con errores residuales por debajo de un ṕıxel) las
sub-imágenes de objetos con volumen.

Contribuciones:

• Desarrollo de un sistema de trabajo para el registro de imágenes en sistemas LSMSC,
que puede aplicarse tanto a objetos planos como a objetos con volumen (ver la
sección 4.1.1).

• Desarrollo de una carta de calibrado geométrico con un patrón de tablero de ajedrez
rotado, que es útil espećıficamente para sistemas LSMSC, y que permite la extracción
semi-automática de una nube densa de puntos (ver la sección 4.2.1).

• Desarrollo de un modelo de registro polinómico y de un modelo basado en B-
splines con refinado de la malla de puntos, espećıficos para sistemas LSMSC (ver
la sección 4.2).

• Desarrollo de un método de registro adaptativo utilizando el principio de imagen



7.4. AMPLIO RESUMEN 165

estéreo (ver la sección 4.3)3. Este método contiene la propuesta de algoritmos basa-
dos en transformaciones invariantes a los cambios de color, para estimar la corre-
spondencia ṕıxel a ṕıxel (ver la sección 4.3.1).

• Presentación de un ejemplo caracteŕıstico del principio de operación para la ob-
tención combinada de imágenes de perfil de altura y datos espectrales en medidas
realizadas en objetos volumétricos con sistemas de imagen LSMSC.

El Módulo 3 trata el problema de la recuperación o estimación de reflectancias. Este
problema se puede describir como la tarea de encontrar un mapeado desde el espacio de
respuestas de sensores al espacio de reflectancia espectral. A diferencia de las respuestas de
sensores, la reflectancia espectral es una propiedad de la superficie objeto que es indepen-
diente del dispositivo utilizado para capturar su imagen. En consecuencia, la estimación
espectral es la base sobre la cual se fundamentan las medidas de factor de reflectancia
espectral realizadas con sistemas LSMSC.

En este módulo, primero hemos resumido los conceptos matemáticos necesarios para
comprender los algoritmos basados en modelos f́ısicos y también los algortimos puramente
emṕıricos de estimación espectral: en el caso de algoritmos basados en modelos f́ısicos,
hemos considerado un enfoque de cálculo de la matriz inversa del proceso de formación
de imagen, obteniendo aśı la solución con mı́nima norma (P-MIN) para el problema de
estimación espectral, aśı como un enfoque regularizado que estima las coordenadas en un
espacio de representación ortogonal de las reflectancias (P-MW), y finalmente el modelo
de estimación de Wiener (P-WN).

Para el caso de estimación puramente emṕırica, hemos considerado como base un
modelo lineal de relación entre respuestas de sensores y reflectancias. Hemos discutido
la solución por mı́nimos cuadrados con mapeado lineal (E-PINV-SVD) y también no lin-
eal, con regularización incluida. También hemos utilizado un enfoque regularizado de
regresión en espacios kernel de Hilbert reproducibles (E-KER), y hemos propuesto la
función de kernel logaŕıtmico, que es condicionalmente definida positiva, para el problema
de la estimación espectral [P1].

Además, hemos resumido algunos enfoques del prolema de estimación que imponen
condiciones sobre las soluciones obtenidas para las reflectancias espectrales (por ejemplo,
positividad o que sean realizables f́ısicamente). Como se muestra en [P2], la imposición
de estas condiciones se vuelve necesaria si se pretende utilizar los datos de reflectancia
obtenidos para medidas de densidad espectral en muestras de tinta impresa cuyo espectro
de reflectancia se ha estimado utilizando un sistema LSMSC. En nuestro caso, utilizamos
funciones de enlace y el algoritmo de estimación E-KER para abordar este problema.

Hemos comparado mediante varios experimentos la calidad de la estimación espectral
para varios enfoques diferentes, utilizando datos de respuestas de sensores tanto simulados
como reales. Para los datos simulados, hemos utilizado varios niveles de ruido en las
respuestas de los sensores y varias configuraciones del sistema LSMSC con diferente número
de canales.

Nuestros resultados indican que los errores promedio (tanto colorimétricos como es-
pectrales) disminuyen conforme aumenta el número de canales del sistema, y aumentan
conforme crece el nivel de ruido en las respuestas de sensores. Además, encontramos
que los enfoques emṕıricos ofrecen mejores resultados para la estimación espectral que los
enfoques basados en modelos f́ısicos, en todas las condiciones experimentales evaluadas.

3Debemos señalar aqúı que la idea de utilizar este principo de imagen estéreo para los objetos con
volumen no es una contribución del autor, sino que se basó en una sugerencia de Chromasens GmbH.
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La calidad de la estimación obtenida utilizando datos reales de respuestas de sensores
fue inferior a la encontrada con datos simulados, y la discrepancia era mucho más patente
para enfoques basados en modelos f́ısicos de adquisición de imágenes. Hemos discutido
varias razones que explican potencialmente este efecto. La mejor calidad en la estimación
utilizando datos reales de respuestas de sensores fue obtenida con el algoritmo E-KER
(utilizando una función de kernel Gaussiana), resultando en unos valores promedio de
RMSE = 0.005 y ∆E00 = 0.36.

Contribuciones:

• Resumen sistemático y unificación conceptual de los algoritmos de estimación espec-
tral a partir de referencias bibliográficas (ver la sección 5.2 y la sección5.3).

• Implementación y comparación experimental de algoritmos de estimación espectral
(ver la sección 5.5).

• Propuesta de la función de kernel logaŕıtmica para la regresión regularizada uti-
lizando espacios kernel de Hilbert reproducibles para la estimación espectral ([P1],ver
la sección 5.3.4).

• Evaluación de medidas de densidad espectral basadas en imágenes multiespectrales,
obtenidas utilizando un método con imposición de condiciones sobre las soluciones
([P2], ver la sección 5.4.3)4.

El Módulo 4 se relaciona con el proceso de entrenamiento para la estimación espectral
puramente emṕırica. Nos concentramos en dos aspectos primordiales, a saber, la selección
del conjunto de muestras de entrenamiento y el entrenamiento adaptativo. La mayoŕıa
de los métodos de selección de muestras de estrenamiento reduce el número de muestras
a partir de un conjunto inicial basándose en las premisas de preservar la información
relevante en el conjunto de datos. Sin embargo, entrenar con esta selección de datos
no resulta necesariamente en la obtención de un modelo adecuado para la estimación
espectral.

Los métodos de selección que son dependientes de la aplicación final son capaces de
solucionar este inconveniente, y nosotros hemos propuesto el algoritmo de rechazo recur-
sivo para la construcción de conjuntos de muestras de entrenamiento dependientes de la
aplicación final [P3]. Este algoritmo presenta la ventaja sobre otros enfoques de que el
tamaño final del conjunto de muestras seleccionadas se determina automáticamente.

En el entrenamiento adaptativo, el modelo de estimación se entrena espećıficamente
para cada una de las muestras que van a estimarse. Esto supone incrementar el coste com-
putacional, pero si se compara con el sistema de entrenamiento convencional, el modelo
de estimación obtenido a menudo es capaz de aproximar mejor el resultado en una región
local alrededor de la muestra que se intenta recuperar. Hemos unificado conceptual-
mente varios métodos extráıdos de la literatura, y hemos propuesto un sistema de trabajo
general para el entrenamiento adaptativo. También hemos comparado varios métodos
de estimación adaptativa y convencional, y hemos encontrado que para que los métodos
adaptativos obtengan mejores resultados que los convencionales, es necesario contar con
un muestreado lo suficientemente denso del espacio de datos de entrenamiento.

4El autor agradece a Chromasens el haber introducido el problema causado por la negatividad de
algunas soluciones obtenidas en el marco de las medidas de densidad espectral basadas en sistemas de
imagen multiespectrales
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Contribuciones:

• Resumen sistemático y unificación conceptual de métodos de entrenamiento globales
y adaptativos (ver la sección 6.2, y la sección 6.3).

• Propuesta de un algoritmo global de selección de muestras de entrenamiento depen-
diente de la aplicación final, basado en un esquema recursivo de rechazo ([P3], ver
la sección 6.2.2).

• Ilustración de los requisitos fundamentales para el conjunto inicial de muestras de
entrenamiento utilizado en algoritmos de selección adaptativos (ver la sección 6.4.2).

A modo de resumen final, hemos mostrado que los cuatro módulos del diseño del
sistema de imagen multiespectral de escáner en ĺınea que hemos considerado en el pre-
sente trabajo resultan cŕıticos para obtener medidas de calidad tanto espectrales como
colorimétricas. Hemos contemplado aspectos del diseño tanto teóricos como prácticos, y
la relevancia de los métodos propuestos se ha demostrado suficientemente mediante difer-
entes experimentos realizados a partir de datos de imágenes adquiridas por nuestro sistema
LSMSC de laboratorio. En consecuencia, esta disertación puede resultar altamente ben-
eficiosa para el diseño y el desarrollo de sistemas de captura multiespectrales.
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A.1 Conventions for notation and graphical illustrations

Boxplot

Boxplots are used to graphically depict statistical descriptors of numerical datasets. Some
items of a boxplot are not defined uniquely in the mathematical literature. Boxplots used
in this work obey the following conventions (see Figure A.1 for an example of a boxplot):

Blue top and bottom line of the box: indicate the first and third quartiles (p25 and
p75 respectively).

Red line inside the box: second quartile (p50), ie. the median of the dataset.

End of lower whisker: 5th percentile (p5).

End of upper whisker: 95th percentile (p95).

Notch in the box: In plots with multiple boxes, the notches offer a rough indication on
the significance of the difference of medians, ie. two medians are statistically different
at the 5% significance level, if their notch intervals do not overlap. The extremes of
the notches for a dataset with n data points correspond to p50− 1.57(p75− p25)/

√
n

and p50 + 1.57(p75 − p25)/
√
n.

Variable 1

Mean: 3.0

Min: -1.0

Max: 6.1

Variable 2

Mean: 4.0

Min: 1.2

Max: 7.8

2

3

4

5

Figure A.1: Example boxplots of a bi-variate dataset of n = 1000 normally distributed
samples per group with different data mean.
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List of symbols and operators

Table A.1: List of symbols and operators.

Symbol or operator Description

a ∈ R Scalar

a = [a1, a2, ...am]T ∈ Rm×1 Vector

1 = [1, ...1]T ∈ Rm×1 All-ones vector

0 = [0, ...0]T ∈ Rm×1 All-zeros vector

A =




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n



∈ Rm×n Matrix

diag(a) =




a1 0 0 0

0 a2 0 0

0 0
. . . 0

0 0 0 am



∈ Rm×m Operator that creates a square diago-

nal matrix with the element of vector
a on the main diagonal

Im = diag(1) ∈ Rm×m Identity matrix

S = {a1,a2, ...al} Set of l vectors

T = {A1, A2, ...Al} Set of l matrices

|S| Cardinality of set S
bac = max{m ∈ Z|m ≤ a} Operator that rounds a to the near-

est integer less than or equal to a

Tr(A) =
∑m

i=1 ai,i Trace of a square matrix A

‖a‖ =
√∑m

i=1 a
2
i Euclidean norm of vector a

‖A‖F =
√∑m

i=1

∑n
j=1 a

2
i,j Frobenius norm of matrix A
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List of variables

Table A.2: List of variables.

Variable Description

n ∈ N+ Number of channels

m ∈ N+ Number of discrete wavelength bands

x = [x1, x2, ...xn]T ∈ Rn×1 Camera response vector

r = [r1, r2, ...rm]T ∈ Rm×1 Spectral reflectance vector

r̃ = [r̃1, r̃2, ...r̃m]T ∈ Rm×1 Estimated spectral reflectance vector

X = [x1,x2, ...xl] ∈ Rn×l Matrix of l camera response vectors stacked in
columns

R = [r1, r2, ...rl] ∈ Rm×l Matrix of l reflectance vectors stacked in
columns

Y = [y1,y2, ...yn] ∈ Rm×n Spectral responsivity of n-channel mutlispec-
tral acquisition device

l = [l1, l2, ...lm]T ∈ Rm×1 Spectral power distribution of scene illumina-
tion

W = diag(l)Y ∈ Rm×n Effective responsivity matrix that combines
the effect of the spectral responsivity of the
acquisition system Y and scene illumination l

S = {(x1, r1), (x2, r2), ...(xl, rl)} ⊂
Rn×1 × Rm×1

Set of l camera responses x ∈ Rn×1 and corre-
sponding reflectances r ∈ Rm×1

Units of measurements

Table A.3: Units of measurement.

Symbol Unit Description

λ nm Wavelength

Y AU Camera responsivity

W AU Effective camera responsivity

f Hz Frequency of light

Q J Radiant energy

Φ W Radiant flux

L W/m2sr Spectral radiance
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A.2 Solution to vectorial least-squares regression problem

Recall the minimization problem for the vectorial case of the linear regression problem,
using sum of least squares cost function:

arg min
A

(
1

2

l∑

i=1

‖Aφ(xi)− ri‖2
)
, (A.1)

To find the solution, we set the derivate with respect to A zero and solve for A

1

2

(
d

dA

l∑

i=1

(Aφ(xi)− ri)
T (Aφ(xi)− ri)

)
= 0, (A.2)

which is
1

2

(
d

dA
Tr
{

(AΦ(X)−R)T (AΦ(X)−R)
})

= 0, (A.3)

where Φ(X) ∈M(p, l) and R ∈M(m, l). To simplify, let Φ = Φ(X). It follows that

1

2

(
d

dA
Tr
{

ΦTATAΦ− ΦTATR−RTAΦ +RTR
})

= 0

1

2

(
d

dA
Tr{ΦTATAΦ} − d

dA
Tr{ΦTATR} − d

dA
Tr{RTAΦ}+

d

dA
Tr{RTR}

)
= 0.

(A.4)

We recall from [122] the 2nd order derivate d
dA Tr(BTATAB) = 2ABBT . Further,

d
dA Tr{BTATC} = d

dA Tr{CTAB} = CBT , and d
dA Tr{RTR} = 0. Substituting Φ for B

and R for C it follows that

1

2

(
2AΦΦT − 2RΦT

)
= 0

AΦΦT −RΦT = 0

A = RΦT (ΦΦT )−1.

(A.5)
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A.3 Computation of the CIEDE2000 color difference

Let [L∗1, a
∗
1, b
∗
1] and [L∗2, a

∗
2, b
∗
2] be a pair of CIE-L*a*b* color coordinates, for which CIEDE2000

color difference ∆E00 is to be computed1. By definition, let subscript 1 denote the refer-
ence sample for which the color difference is computed with respect to the sample with
subscript 2. Conceptually following Sharma et al. [123], computation of the CIEDE2000
color difference [40] can be divided into three parts:

1. Calculate C ′i and h′i:

C∗i,ab =
√

(a∗i )
2 + (b∗i )

2, i = 1, 2 (A.6)

C
∗
ab =

C∗1,ab + C∗2,ab
2

(A.7)

G =
1

2

(
1−

√
(C
∗
ab)

7

(C
∗
ab)

7 + (25)7

)
(A.8)

a′i = (1 +G) a∗i , i = 1, 2 (A.9)

C ′i =
√

(a′i)
2 + (b∗i )

2, i = 1, 2 (A.10)

h′i =

{
0 b∗i = a′i = 0
tan−1(b∗i a

′
i) otherwise

(A.11)

2. Calculate ∆L′, ∆C ′ and ∆H ′

∆L′ = L∗2 − L∗1 (A.12)

∆C ′ = C∗2 − C∗1 (A.13)

∆h′ =





0 C ′1C
′
2 = 0

h′2 − h′1 C ′1C
′
2 6= 0; |h′2 − h′1| ≤ 180◦

(h′2 − h′1)− 360 C ′1C
′
2 6= 0; (h′2 − h′1) > 180◦

(h′2 − h′1) + 360 C ′1C
′
2 6= 0; (h′2 − h′1) < −180◦

(A.14)

∆H ′ = 2
√
C ′1C

′
2 sin

(
∆h′

2

)
(A.15)

1Note that in this section, some scalar quantities such as L∗1 or others are denoted in uppercase. This
notation is used to be consistent with existing literature.
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3. Calculate ∆E00 color difference

L
′
=

1

2
(L∗1 + L∗2) (A.16)

C
′
=

1

2
(C ′1 + C ′2) (A.17)

h′ =





h′1+h′2
2 C ′1C

′
2 6= 0; |h′1 − h2| ≤ 180◦

h′1+h′2+360◦

2 C ′1C
′
2 6= 0; |h′1 − h2| > 180◦; (h′1 + h′2) < 360◦

h′1+h′2−360◦

2 C ′1C
′
2 6= 0; |h′1 − h2| > 180◦; (h′1 + h′2) ≥ 360◦

(h′2 + h′1) C ′1C
′
2 = 0

(A.18)

T = 1− 0.17 cos(h
′ − 30◦) + 0.24 cos(2h

′
) + 0.32 cos(3h

′
+ 6◦)− 0.20 cos(4h

′ − 63◦)
(A.19)

∆θ = 30 exp



−

[
h
′ − 275◦

25

]2


 (A.20)

RC = 2

√
C
′7

C
′7

+ 257
(A.21)

SL = 1 +
0.015(L

′ − 50)2

√
20 + (L

′ − 50)2

(A.22)

SC = 1 + 0.045 C
′

(A.23)

SH = 1 + 0.015 C
′
T (A.24)

RT = −sin(2∆θ)RC (A.25)

∆E00 =

√(
∆L′

kLSL

)2

+

(
∆C ′

kCSC

)2

+

(
∆H ′

kHSH

)2

+RT

(
∆C ′

kCSC

)(
∆H ′

kHSH

)
, (A.26)

where kL, kC and kH are application dependent parametric weighting factors.

The definition of a reference color sample (indicated by subscript 1) is important when
differences in lightness (∆L′), hue (∆H ′) and chroma (∆C ′) are to be computed from a
sample pair. For the calculation of the CIEDE2000 color difference, the definition of a
reference color sample is insignificant because the color difference equation is a symmetric
function.

In this work, the weighting factors kL, kC and kH are set to unity, so kL = kC = kH = 1.
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A.4 Unbiased estimator of the covariance matrix of a ran-
dom variable

Consider a set of l independent observations x1,x2, ...xl of a n-dimensional vector de-
scribing a random variable. The unbiased estimator of the covariance matrix cov(x) =
E[(x− E[x])(x− E[x])T ] ∈ Rn×n of the random variable x is the matrix

Kx =
1

l − 1

l∑

k=1

(xi − x̄)(xi − x̄)T , (A.27)

where xi is the i-th observation of the random variable and

x̄i =
1

l

l∑

k=1

xi (A.28)

is the n-dimensional mean vector of the observations. We also use cov(X) to denote the
unbiased estimator of random variable x ∈ Rn×1 when the observations are stacked in
columns such that X = [x1,x2, ...xl] ∈ Rn×l.
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In this work, we evaluate the conditionally positive definite logarithmic kernel in kernel-based estimation of re-
flectance spectra. Reflectance spectra are estimated from responses of a 12-channel multispectral imaging system.
We demonstrate the performance of the logarithmic kernel in comparison with the linear and Gaussian kernel
using simulated and measured camera responses for the Pantone and HKS color charts. Especially, we focus
on the estimation model evaluations in case the selection of model parameters is optimized using a cross-
validation technique. In experiments, it was found that the Gaussian and logarithmic kernel outperformed the
linear kernel in almost all evaluation cases (training set size, response channel number) for both sets. Furthermore,
the spectral and color estimation accuracies of the Gaussian and logarithmic kernel were found to be similar in
several evaluation cases for real and simulated responses. However, results suggest that for a relatively small train-
ing set size, the accuracy of the logarithmic kernel can be markedly lower when compared to the Gaussian kernel.
Further it was found from our data that the parameter of the logarithmic kernel could be fixed, which simplified
the use of this kernel when compared with the Gaussian kernel. © 2014 Optical Society of America

OCIS codes: (150.0150) Machine vision; (100.3010) Image reconstruction techniques; (100.3190) Inverse
problems; (110.4234) Multispectral and hyperspectral imaging; (330.1710) Color, measurement.
http://dx.doi.org/10.1364/JOSAA.31.000541

1. INTRODUCTION
Kernel methods for pattern recognition or machine learning
tasks have proven to be powerful [1–3]. In this work, we
concentrate on the problem of spectral reflectance estimation
of image data, using kernel-based regression. The data varia-
bles are camera responses of an image scene, captured by a
multispectral imaging system and corresponding spectral
reflectance data. The aim of the regression is to determine
their relation, using a set of training data. Once the regression
model is constructed, spectral reflectances can be estimated
from camera responses.

It has been shown that regularized regression is useful for
reflectance estimation. Especially, a kernel-based (ridge)
regression has been demonstrated to provide improvement
in accuracy over traditional regularized regression models
[4–7]. Valid kernel functions are positive definite (further:
PD) or, with additional constraints imposed on the regression
model, kernel functions that are conditionally positive definite
(further: CPD). Some instances of PD functions are the linear
or the Gaussian kernel, and from the CPD class the thin plate
spline kernel [5,8].

In this paper, the so-called logarithmic kernel [9] (a member
of the CPD class) is to our knowledge for the first time intro-
duced for spectral reflectance estimation, and compared with
the linear and the Gaussian kernel functions. The logarithmic
kernel function has been used previously in SVM based image
recognition [9].

In our experiments, we use the Pantone and HKS reflec-
tance datasets and measured as well as simulated camera

response data. The performance of the three kernel functions
is demonstrated with a varying number of training samples
and sensor spectral channels. In addition, the performance
of the logarithmic kernel is also evaluated in case the kernel
is used via fixed parameter.

This article is structured as follows: after introducing the
notation in Section 2, Section 3 revises the spectral reflec-
tance estimation problem and the kernel-based regression.
Further, all kernel functions compared in this work are
summarized, and the CPD logarithmic kernel function is intro-
duced. The experiments are explained in Section 4. The re-
sults and discussion follow in Section 5, and finally the
most relevant conclusions are summarized in Section 6.

2. NOTATION
In what follows, a column vector is denoted by a boldface
letter such as x � �x1;…; xn�T ∈ Rn. Matrices are denoted
by capital letters, such as A.

3. THEORY
A. Image Acquisition Model
For image formation of the multispectral imaging system, we
assume the general discrete image transfer function:

x � Wr� b; (1)

where x ∈ Rn denotes a camera response sample, W is the
n ×mmatrix that combines the effect of spectral responsivities
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of the camera system and scene illumination, and r ∈ Rm is a
spectral reflectance vector. The vector b ∈ Rn accounts for
noise or nonlinearities present in the acquisition process. In
our work, we assume fixed-measurement geometry and that
the scene illumination is uniform over the field of view of
the camera.

B. Kernel Ridge Regression Applied To Spectral
Estimation
Spectral estimation can be considered as the problem of find-
ing a function that best approximates a set of training data
with respect to some loss function. In spectral reflectance
estimation, the training dataset S consists of l camera
responses X � fx1;…; xlg ⊂ Rn, acquired by an n channel
multispectral imaging system and corresponding known
spectral reflectance vectors R � fr1;…; rlg ⊂ Rm. Once this
function is found, spectral reflectance vectors of unknown
objects can be estimated from camera responses acquired
under the same viewing conditions.

Following [4,5,8], our optimization problem is to find the
N ×m matrix F such that we minimize

argmin
F

�Xl

i�1

‖ri − FTΦ�xi�‖2 � λ‖F‖2F

�
; �2�

where Φ∶Rn → F is a feature mapping from camera response
space to a feature space F of dimension N , ‖F‖F �
�Pm

i�1

PN
j�1 jFijj2�1∕2 denotes the Frobenius norm, and λ is

a regularization parameter. The regularization term is added
to avoid numerical instability and overfitting to training data.

The feature mapping Φ�x� � �ϕ1�x�;…;ϕN �x��T is often
nonlinear and can be infinite dimensional. Assuming that
the feature mapping Φ�x� is induced by a PD kernel [1] and
using the corresponding kernel representation (kernel trick),
the minimization problem above is equivalent to finding a
matrix A such that

argmin
A

�Xl

i�1

‖ri − ATk�xi�‖2 � λTr�ATKA�
�
; �3�

where A � �α1;…;αm�l×m is a matrix of weight vectors α ∈ Rl,
Tr�·� denotes matrix trace, K � �k�xi; xj��l×l is the kernel ma-
trix of training data, and k�xi� � �k�x1; xi�;…; k�xl; xi��T ∈ Rl

is a vector containing the kernel evaluations between the
camera response training set and sample xi.

By differentiating Eq. (3) with respect to A and setting the
resulting function equal to zero we obtain

�K � λIl�A � RT; (4)

where Il is the identity matrix of size l × l, and R �
�r1;…; rl�m×l contains training reflectances. The solution to
the minimization is A � �K � λIl�−1RT . Reflectance ~r can
now be estimated from camera response x as

~r � ATk�x� � R�K � λIl�−1k�x�: (5)

C. PD Kernels in Ridge Regression
Positive definiteness of a function is defined as [10] (p. 67): let
X be a closed and bounded subset of Rn. A function k is called

positive definite if
Pl

i;j�1 αiαjk�xi; xj� ≥ 0, for all l ∈ N, xi,
xj ∈ X , and αi, αj ∈ R.

Positive definite kernel functions considered in this work
are the linear and Gaussian kernels. These kernels are
probably the most widely used kernel functions in spectral
estimation [4,5,7]. The linear kernel function [1] is in fact a
homogeneous polynomial kernel of degree d � 1, defined as

k�xi; xj� � �xTi xj�d; with d � 1; (6)

where xi, xj ∈ Rn. The isotropic Gaussian kernel [1,3–5] is
defined as

k�xi; xj� � exp
�
−

‖xi − xj‖2

2σ2

�
; (7)

where xi, xj ∈ Rn and σ > 0.
Heikkinen et al. discussed that the selection of too small

values for σ (corresponding to a small effective area of the
kernel) can lead to over-fitting of the training data and there-
fore a risk of poor generalization. A too large selected value σ
can lead to oversimplification [5].

D. CPD Kernels in Ridge Regression
There exists a larger class of kernel functions that can be
used within the framework of kernel ridge regression, given
that certain constraints can be imposed on the regression
model. These functions are CPD kernel functions, and they
are defined as follows [1] (p. 49): let X be a closed and
bounded subset of Rn. A function k is called CPD ifP

l
i;j�1 αiαjk�xi; xj� ≥ 0, for all l ∈ N, xi, xj ∈ X , and αi, αj ∈

R with
Pl

i�1 αi � 0.
For CPD kernels and d-conditionally positive kernels, a

semi-parametric model of ridge regression is formulated intro-
ducing a polynomial expansion of feature vectors in Eq. (3)
[1,8]. In the case of the logarithmic kernel, the semi-
parametric model is formed by adding only a constant term
to the model. The related minimization problem is

arg min
fA;ag

�Xl

i�1

‖ri −ATk�xi�− a‖2� λTr�ATKA�
�

s:t: 1TA� 0T

(8)

where A � �α1;…;αm�l×m and k�xi� ∈ Rl are the same as in
the PD case (Eq. 3). The vector corresponding to the
additional constant term is a � �a1;…; am�T and 1 and 0

are the all-one and all-zero column vectors of length l and m,
respectively.

The block matrix notation corresponding to the minimiza-
tion problem in Eq. (8) is

�
K � λIl 1

1T 0

��
A
aT

�
�

�
RT

0T

�
; (9)

where matrix R and K are the same as in the PD case, R �
�r1;…; rl�m×l and K � �k�xi; xj��l×l. A reflectance, ~r, can now
be estimated from camera response x as
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~r � ATk�x� � a: (10)

In our experiments, we focused on evaluating the logarith-
mic kernel defined as

k�xi; xj� � − log�1� ‖xi − xj‖β�; with 0 < β ≤ 2; (11)

where xi, xj ∈ Rn.
The CPD-ness of the logarithmic kernel can be demon-

strated as follows: all kernels of form −‖xi − xj‖β are CPD,
if 0 ≤ β ≤ 2 [11] (p. 49). Further, − log�1 − k� is a CPD kernel,
if k∶ X × X↦�−∞; 0� is a CPD kernel [10], [11] (p. 50). It
follows that − log�1� ‖xi − xj‖β� is a CPD kernel
when 0 < β ≤ 2.

4. EXPERIMENTAL CONFIGURATION AND
EVALUATION
We designed a set of experiments to demonstrate the perfor-
mance of the logarithmic kernel in kernel ridge regression
spectral estimation. In this section, the acquisition system
and datasets used for our experiments are introduced. Fur-
ther, we illustrate the evaluation scheme that is the basis
for the experimental work.

A. Datasets and Acquisition System
The performance of kernel regression depends on the selec-
tion of the kernel function, training data, and the acquisition
system. We consider two spectral datasets, namely 1314 sam-
ples of a coated Pantone color chart and 91 full-tone samples
of a coated HKS color chart. The corresponding inks for these
spot colors are widely used in the offset printing industry. The
color gamut spanned by these datasets is illustrated in Fig. 1,
with CIE-L*a*b* coordinates calculated for the CIE-1964 10°
standard observer and CIE-D65 illumination. It can be ob-
served that both datasets span a similar area in the color
space, but some lighter samples of the HKS set are beyond
the gamut boundaries of the Pantone set. The spectral data
was measured with an X-Rite Spectro-Eye spectrophotometer
and is sampled from 380 to 730 nm in 10 nm steps.

The multispectral acquisition system considered here con-
sists of the prototype 12-channel line-scan camera truePIXA
and a prototype LED illumination system, both developed

by Chromasens GmbH [12]. The camera sensor used in the
truePIXA system is in fact a high-resolution RGB line-scan
sensor with four lenses that are mounted in series in front
of the camera. The four lenses have a common field-of-view
from which the final multichannel image is constructed. Each
lens has a distinct color filter attached, which, in combination
with the RGB filter in front of the sensor and the transmittance
of the lens, modulate the effective responsivity of the system.
The RGB channel of the sensor in combination with the four
filters allow acquisition of 12 camera responses at once. The
acquisition principle is illustrated schematically in Fig. 2, and
spectral curves of the camera system’s effective responsivity
are illustrated in Fig. 3. The measurement geometry of the sys-
tem is close to 45/0, with some deviation of the observation
angle due to the image projection of corresponding spatial
locations of the measurement surface over the four lenses
on different sensor locations.

The short exposure times required for acquisition with the
line-scan system allow an over-sampling of the target and cor-
responding temporal averaging. This temporal pixel-wise
averaging of replicated measurements increases the signal-
to-noise ratio of the measurement with the square root of
the number of averaged measurements, given the noise is a
random signal with zero mean [13]. Further, the temporal

Fig. 1. CIE-L*a*b* coordinates for the Pantone (blue circle markers) and HKS dataset (red diamond markers).

Fig. 2. Schematic illustration of the working principle of the
12-channel line-scan camera truePIXA. The RGB channel of the line
sensor in combination with the four filters allow acquisition of
12 camera responses per image pixel at once.
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averaged camera responses are spatially averaged over an
area that corresponds roughly to that of the aperture of the
spectrophotometer used for reflectance measurements.

In real capture systems, both noise and nonlinearities inher-
ent to the acquisition process influence the estimation quality.
In this work, we perform our analysis using measured data
and simulated data. The simulated case can be considered
to correspond to ideal noise-free conditions. Accordingly,
simulated camera responses were calculated using the linear
model in Eq. (1) with b � 0.

B. Evaluation Scheme and Implementation Details
We used tenfold cross validation [11] for optimizing and evalu-
ating the models. This means that in each of 10 rounds of
evaluation, a subset of 10% of the initially shuffled data is used
for testing, and the rest for training the system. This process
allows using the entire dataset for testing the spectral estima-
tion, while keeping training and test data separated. Further,
we implemented our evaluation scheme such that free param-
eters are selected based on average RMSE minimization and
tenfold cross-validation: in each evaluation fold, the available
training data is further partitioned and processed in a tenfold
manner to find the optimal parameter as the one minimizing
the average RMSE over all folds with the chosen parameter
grid. A proper selection of the model parameters in kernel
ridge regression is a key factor for obtaining a satisfactory
estimation performance.

In the case of kernel ridge regression estimation, parameters
are the regularization term λ and others depending on the type
of kernel function. For the Gaussian kernel [Eq. (7)], we have σ
controlling the width of the Gaussian and, for the logarithmic
kernel [Eq. (11)], the power term β in the logarithmic function.

So, in each fold, an optimal parameter has to be selected
from either a 1D or 2D parameter search space. We adjusted
the parameter grid such that throughout all experiments,
optimal parameters were never selected to be on the edge
of the parameter grid (unless the edge of the grid corresponds
to the parameter range limit, as is the case with β � 2 for the
logarithmic kernel). We used the Gaussian kernel parameter σ
in the range [10−4, 50], the logarithmic kernel parameter β in
the range [0.1,2], and the regularization parameter λ in the
range [10−13, 0.5]. We evaluated several sampling positions

for these parameters to get information about the differences
between the performance of the chosen optimization grids. It
was found that these differences were small. The experimen-
tal results are calculated using 34 sampling points for σ, 14
sampling points for β, and 13 sampling points for λ.

Camera responses are normalized to the range [0,1] by di-
viding each camera response channel-wise by the maximal
camera response value over the entire dataset. Training reflec-
tances are centered by subtracting the mean, prior to estima-
tion. Consequently, the mean of the training reflectances has
to be added to the recovered spectra after estimation. Our
implementation of kernel ridge regression with the logarith-
mic kernel function can be accessed through the web page
of the first author’s institution [14].

We evaluated estimation performance in terms of spectral
as well as color difference metrics. As discussed previously by
several authors, there is not any metric that is conclusively
superior to others for all purposes [15,16].

The RMSE is defined for an estimated spectrum, ~r, and its
measured counterpart, r, as

RMSE �
�����������������������
1
m

‖r − ~r‖2
r

: (12)

Further, dp is the Pearson distance, also known as the
complemented GFC (goodness of fit coefficient) [16,17],
and defined as

dp � 1 −
rT ~r

‖r‖‖~r‖
: (13)

The formulation of color differences aims at predicting the
magnitude of the perceived color difference between two
color stimuli [18]. In this study, we followed the latest recom-
mendations of the International Commission on Illumination
(CIE) and used ΔE00 color difference formula in CIE L*a*b*
color space [19]. We computed CIE L*a*b* coordinates of
reflectance spectra, assuming the CIE-1964 10° standard
observer and CIE-D65 standard illuminant. The white point
was set to the perfect reflecting diffuser {vector with values
equal to 1, [20] (p. 48)}.

5. RESULTS
The following subsections summarize results and findings
related to training set size, number of spectral sensor
channels, and kernel parametrization.

A. Selection of Model Parameters
We have analyzed the RMSE surfaces over the parameter
search grid for logarithmic and Gaussian kernel function
and our experimental data.

The selection of the regularization parameter λ depends on
the type of data as well as the number of sensor spectral chan-
nels in the acquisition system and has to be optimized for all
kernel functions compared in this work. For the Gaussian ker-
nel, we identified from our data that the selection of σ
influences the choice of λ and vice versa. Figure 4 illustrates
one typical instance of the RMSE surface over the parameter
grid, as can be found from one fold of cross-validation with
Pantone data and the 12 channel system for the Gaussian
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Fig. 3. Illustration of the system responsivities [sensor spectral
responsivity plus illumination in arbitrary units (AU)]. Blue corre-
sponds to the three-channel system, blue+green to the six-channel,
blue+green+red to the 12 channel system used for experiments in
Section 5.E.
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kernel function. As explained previously, one fold of evalu-
ation includes 10 folds of parameter optimization, so the
resulting RMSE is a mean value over these folds. From
the figure, the interdependence of the two parameters can be
observed.

Figure 5 illustrates the RMSE surface over parameter space
for the logarithmic kernel, corresponding to the same setting
as used for Fig. 4. The β parameter of the logarithmic kernel
behaves very differently from σ of the Gaussian kernel, as the
selection of β does not seem to influence the selection of λ for
our data. This is an interesting observation regarding the log-
arithmic kernel, as it allows us to perform parameter selection
sequentially for each parameter. For the Gaussian kernel func-
tion, this is not the case.

Further, we identified that β � 2 led to the lowest estima-
tion errors for both evaluated datasets, simulated or measured
data, a different number of sensor spectral channels as well as
a varying number of training samples. For example, we illus-
trate the RMSE surfaces over parameter space for a for vary-
ing number of training samples (200, 400, 600, 800) in Fig. 6.
The optimal parameters for this example were found to be
(β1…4 � 2, λ1…4 � 10−4). From these results, it seems that
the shape of the RMSE surface is in a wide area invariant
to the number of training samples. A range where this does

not apply is when β � 2, for which the selection of λ
influences the corresponding RMSE differently depending
on the number of training samples.

Using β � 2 is the special case of Eq. (11), which directly
incorporates the negative squared distance kernel. Fixing the
β parameter reduces the parametrization of kernel ridge
regression to a optimization problem in a 1D search space
(only λ has to be optimized).

B. Influence of the Number of Training Samples
Throughout our experimental work related to kernel ridge
regression, we identified a strong dependence of the number
of samples used for training and the estimation performance.
Obviously, a too small number of training samples leads to
poor estimation quality because the trained model does not
generalize well for any other than the training data. Further,
it is not only the amount of samples that influences the system
performance, but also the type of data used for training. In this
subsection, we limit our analysis to a discussion about the
amount of samples used for training in the case of the loga-
rithmic, Gaussian, and linear kernel. To analyze this factor,
we compared a tenfold cross-validation spectral estimation
performance for different numbers of training samples of
the shuffled Pantone dataset. Varying dataset sizes considered
here were from 50 to 100 samples in steps of 10 and from 200
to 1314 samples in steps of 100. The optimal parameter was
again selected by average RMSE minimization over 10 folds
using the parameter ranges described in Section 4.B.

The results of this experiment for the case of noiseless si-
mulated camera responses show that the estimation perfor-
mance (here, RMSE) as a function of training samples, l,
behaves differently depending on the choice of the kernel
function. The logarithmic kernel shows the strongest depend-
ence on the number of training samples, especially for small l,
showing a clear decrease in performance as compared with
the Gaussian and linear kernels. At approximately 530 sam-
ples, the linear and logarithmic kernel share similar estimation
performance. With a larger l, the logarithmic kernel ap-
proaches the estimation performance of the Gaussian kernel.
Figure 7 illustrates these results graphically.

Also for measured camera responses of the Pantone data-
set, fewer training samples result in lower RMSE. Unlike in the
simulated data case, the relation of RMSE and the number of
training samples for the logarithmic, linear, and the Gaussian
kernel is found to be quite similar in shape. Only for the linear
kernel, the RMSE is higher than that of the logarithmic and
Gaussian kernel for every number of training samples evalu-
ated. This result is illustrated in Fig. 8. The dissimilarity found
in the results for these two conditions indicates strong
differences between measured and simulated data.

C. Estimation Performance with Measured Sensor
Responses from the 12-Channel System
We have compared the spectral and colorimetric estimation
results obtained with the logarithmic, Gaussian, and linear
kernel for the Pantone and the HKS data of the 12-channel
acquisition system. Numerical results are illustrated in
Table 1.

For Pantone data, it can be observed that the mean colori-
metric estimation quality is similar to that of the Gaussian
kernel function (ΔE00 � 0.33), the mean spectral quality in

Fig. 4. Illustration of the mean RMSE (over 10 folds of parameter
optimization) over the parameter search space for Pantone 12C mea-
sured camera response data and the Gaussian kernel. The optimal
parameter selection is illustrated by a green square. The parameter
search space has been cropped for illustration purposes.

Fig. 5. Illustration of the mean RMSE (over 10 folds of parameter
optimization) over the parameter search space for Pantone 12C mea-
sured camera response data and the logarithmic kernel. The optimal
parameter selection is illustrated by a green square. The parameter
search space has been cropped for illustration purposes.
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terms of dp leads to similar results (dp � 0.0004), and the
RMSE is slightly worse in case of the logarithmic kernel
(RMSE � 0.0054 for logarithmic and RMSE � 0.0050 for
Gaussian). The linear kernel function results are the worst,
both spectrally and colorimetrically. The logarithmic kernel re-
sults in a slightly lower standard deviation for ΔE00 and dp as
compared with the Gaussian kernel. For RMSE, the Gaussian
kernel has a slightly lower standarddeviation. The linear kernel
has the highest standard deviations for all metrics. The maxi-
mumΔE00 anddp error is lowest for the logarithmickernel. The
maximum RMSE is lowest for the linear kernel.

When it comes to HKS data, the Gaussian (ΔE00 � 0.67),
log�ΔE00 � 0.73�, and the linear (ΔE00 � 0.75) kernel have
a relatively close average color difference value. Spectrally,
when considering mean dp, the Gaussian kernel performs best
(dp � 0.0006). In terms of the mean RMSE, the linear kernel
results in the smallest error (RMSE � 0.0092).

Overall, the mean estimation quality is approximately by a
factor of 2 worse for the HKS data as compared with Pantone
in case of the logarithmic and Gaussian kernel (in ΔE00 and
RMSE). One reason for the overall worse results of HKS com-
pared to Pantone data is the low number of training samples.
We have shown similar trends in the case of measured
Pantone data for the Gaussian and the logarithmic kernel
in Subsection 5.B.

In Fig. 9, we illustrate an instance of estimated and mea-
sured spectral reflectances from the Pantone dataset obtained
with the logarithmic kernel. As reference, results obtained
from the linear and Gaussian kernel are also illustrated.
Figure 9 (left) corresponds to the sample for which the lowest
RMSE was obtained (RMSE � 0.0006). It can be seen that the
estimated reflectance by the Gaussian kernel is only slightly
worse (RMSE � 0.0009), but in case of the linear kernel much
worse (RMSE � 0.0036). In Fig. 9 (middle), we illustrate the
sample corresponding to highest RMSE for the logarithmic
kernel. Here it can be observed that the estimated reflectances
for the logarithmic, Gaussian, and linear kernel are quite sim-
ilar but consistently deviate from the measured reflectance. It
was identified that for this particular sample, measured cam-
era responses and reflectance data do not correspond. The
sample with the second highest RMSE for the logarithmic ker-
nel (RMSE � 0.0457) is illustrated in Fig. 9 (right). For this
sample, the linear kernel performs best (RMSE � 0.0138), fol-
lowed by the Gaussian kernel (RMSE � 0.0332).

D. Estimation Performance with Simulated Sensor
Responses from the 12-Channel System
A similar setting as in the previous subsection was used for the
evaluation of simulated data. Namely, we compare results

Fig. 6. Illustration of the mean RMSE (over 10 folds of parameter optimization) over the parameter search space for Pantone 12C measured
camera response data and varying number of training samples for the logarithmic kernel. The optimal parameters (indicated as a green square)
are β1…4 � 2 and λ1…4 � 10−4.

Fig. 7. Analysis of the influence of the number of training samples on
the estimation performance (RMSE) for the logarithmic, Gaussian,
and linear kernel function. Camera responses were simulated noise-
less for the Pantone dataset.

Fig. 8. Analysis of the influence of the number of training samples on
the estimation performance (RMSE) for the logarithmic, Gaussian,
and linear kernel function andmeasured camera responses of the Pan-
tone dataset.
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obtained with the logarithmic, Gaussian, and linear kernel for
Pantone and HKS data of the 12-channel acquisition system
using noiseless simulated camera response data. The numeri-
cal results are illustrated in Table 2.

For Pantone data and comparison of the logarithmic kernel
performance, the following results are found: the logarithmic
and Gaussian kernel have the same mean ΔE00 and dp error
(ΔE00 � 0.01, dp � 0.0001), the RMSE is lower in case of the
Gaussian kernel. The linear kernel performs worst on average.

The results for the HKS dataset are different from the
Pantone data. Here, the logarithmic kernel performs consid-
erably worse than the Gaussian kernel, which gives the best,
and the linear kernel with intermediate results. This finding
applies to the mean, standard deviation, maximum, and the
95th percentile of the spectral and colorimetric error mea-
sures. It seems that the poor performance of the logarithmic
kernel is due to the relatively small training set used.

For the comparison of measured and simulated data results
(Tables 1 and 2), we concentrate on the Pantone dataset,
which does not inherit the limitation of the number of training
samples. Overall, a large discrepancy can be identified for all
kernel functions.

The increase in estimation performance from one kernel
function to another can be up to 48% (comparing mean
ΔE00 between the linear and the logarithmic or the Gaussian
kernel for Pantone data in Table 1).

E. Influence of the Number of Sensor Responses
We divided the 12 channels into three different sets with three,
six, and 12 channels, respectively, in order to investigate the
influence of the number of sensor spectral channels in the es-
timation. The spectral responsivities of the resulting systems
are illustrated in Fig. 3. It has to be mentioned that the cor-
responding three- and six-channel systems are far from ideal
for the task of spectral recovery. However, using measured
data from the same system allows us to analyze the influence
of the number of channels on the estimation performance
of the logarithmic kernel without the potential effect of
differences that are introduced by using measured data from
different estimation systems, such as different noise and non-
linearity behaviors.

The numerical results of the comparison are illustrated in
Table 3. Pantone 12-channel measured data results have
already been presented in Table 1, but are unified in Table 3

Table 1. Spectral Estimation Results for Measured Data of the Pantone and HKS Dataset and the 12-Channel

Acquisition System, Logarithmic, Gaussian, and Linear Kernel

Logarithmic Kernel Gaussian Kernel Linear Kernel

Pantone Measure Mean Std Max p95 Mean Std Max p95 Mean Std Max p95

ΔE00 0.33 0.26 4.59 0.73 0.33 0.28 4.62 0.73 0.68 0.50 5.02 1.46
dp 0.0004 0.0011 0.0299 0.0016 0.0004 0.0015 0.0426 0.0016 0.0014 0.0048 0.0930 0.0044
RMSE 0.0054 0.0043 0.0984 0.0114 0.0050 0.0040 0.1001 0.0102 0.0086 0.0047 0.0974 0.0158

HKS Measured

ΔE00 0.73 0.74 4.56 2.22 0.67 0.58 3.25 2.10 0.75 0.55 3.34 1.73
dp 0.0014 0.0028 0.0152 0.0064 0.0006 0.0014 0.0096 0.0029 0.0012 0.0025 0.0207 0.0052
RMSE 0.0129 0.0189 0.1451 0.0393 0.0106 0.0073 0.0380 0.0258 0.0092 0.0106 0.0763 0.0262
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Fig. 9. Estimation results for the Pantone dataset and measured camera responses: sample reflectance with lowest (left) and highest (middle)
RMSE error for the logarithmic kernel and corresponding estimated spectra of the linear and Gaussian kernel. The plot on the right illustrates the
sample corresponding to the 2nd highest RMSE for the logarithmic kernel.
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with the results of the three- and six-channel system to allow a
more clear illustration.

The general trend found in other experiments with 12 chan-
nels (i.e., the lower performance of the linear kernel in com-
parison with the Gaussian and logarithmic kernels) can also
be identified for six or three channels.

The logarithmic and Gaussian kernel, on the other hand,
perform quite similar. When considering color measurement
accuracy, the 12-channel as well as the six-channel case give
average ΔE00 errors for all three kernel functions smaller than
one unit, which is an error that is close to the just noticeable
difference. For the three-channel case and all three kernel
functions, the average ΔE00 errors are above one unit
(ΔE00 � 1.50 for the logarithmic kernel, ΔE00 � 1.49 for the
Gaussian kernel, and ΔE00 � 2.66 for the linear kernel). From
all metrics, it can be seen that the error increases less when
comparing 12 and six channels and more when comparing six
and three channels.

6. DISCUSSION AND CONCLUSION
In this work, we introduce the logarithmic kernel function to
kernel ridge regression. Specifically, we concentrate on the
problem of spectral estimation, in which spectral reflectance
values are to be estimated from few camera responses of a
multispectral image-acquisition system. The logarithmic
kernel belongs to the class of CPD kernel functions, which

require an additional parametric part to be included in the
regression model.

We considered two datasets (Pantone, 1314 samples; HKS,
91 samples) in our evaluations and a 12-channel multispectral
imaging system. The results based on measured camera re-
sponses for the Pantone dataset indicate that the logarithmic
kernel outperforms the linear kernel and leads to comparable
colorimetric and spectral estimation performance with the
Gaussian kernel. When considering the smaller HKS dataset,
the logarithmic kernel had the worst performance.

In further analysis on the larger Pantone dataset, it was iden-
tified that the logarithmic kernel requires more training data to
perform similar or better than the linear or Gaussian kernel,
when simulated noiseless camera responses are considered.
Formeasured camera response data, logarithmic andGaussian
kernel performance is similar, whereas the linear kernel per-
forms worse for any number of training samples evaluated.

We believe that the influence of the number of training sam-
ples can explain the relatively poor performance of the loga-
rithmic kernel (compared to other kernels), which was found
for the HKS set when noiseless simulated camera responses
were considered. However, the results for measured camera
response data of the HKS set were close to the results
obtained with the Gaussian kernel.

For the data considered in this work, it was identified that
the parametrization of the logarithmic kernel can be simpli-
fied, as the power term β of the logarithmic kernel did not

Table 2. Spectral Estimation Results for Simulated Data of the Pantone and HKS Dataset and 12-Channel

Acquisition System, Logarithmic, Gaussian, and Linear Kernel

Logarithmic Kernel Gaussian Kernel Linear Kernel

Pantone Simulated Mean Std Max p95 Mean Std Max p95 Mean Std Max p95

ΔE00 0.01 0.01 0.14 0.04 0.01 0.01 0.19 0.04 0.03 0.03 0.26 0.08
dp 0.0001 0.0001 0.0016 0.0001 0.0001 0.0001 0.0018 0.0001 0.0002 0.0008 0.0158 0.0008
RMSE 0.0017 0.0019 0.0192 0.0052 0.0009 0.0011 0.0233 0.0022 0.0033 0.0021 0.0169 0.0073

HKS Simulated

ΔE00 0.28 0.43 3.62 0.84 0.03 0.03 0.17 0.08 0.06 0.05 0.36 0.15
dp 0.0005 0.0014 0.0113 0.0023 0.0001 0.0003 0.0025 0.0004 0.0004 0.0011 0.0097 0.0016
RMSE 0.0074 0.0091 0.0579 0.0205 0.0030 0.0033 0.0172 0.0093 0.0049 0.0046 0.0328 0.0148

Table 3. Comparison of the Number of Channels for Measured Data of the Pantone Dataset, the Logarithmic,

Gaussian, and Linear Kernel

Logarithmic Kernel Gaussian Kernel Linear Kernel

12-Channel Measured Mean Std Max p95 Mean Std Max p95 Mean Std Max p95

ΔE00 0.33 0.26 4.59 0.73 0.33 0.28 4.62 0.73 0.68 0.50 5.02 1.46
dp 0.0004 0.0011 0.0299 0.0016 0.0004 0.0015 0.0426 0.0016 0.0014 0.0048 0.0930 0.0044
RMSE 0.0054 0.0043 0.0984 0.0114 0.0050 0.0040 0.1001 0.0102 0.0086 0.0047 0.0974 0.0158

6-Channel Measured

ΔE00 0.43 0.33 4.96 0.96 0.44 0.35 5.81 0.99 0.72 0.53 5.11 1.74
dp 0.0006 0.0015 0.0222 0.0031 0.0006 0.0014 0.0218 0.0030 0.0029 0.0060 0.0988 0.0124
RMSE 0.0068 0.0049 0.0975 0.0148 0.0065 0.0048 0.0988 0.0136 0.0146 0.0081 0.1003 0.0304

3-Channel Measured

ΔE00 1.50 1.34 12.10 4.29 1.49 1.33 12.22 4.26 2.66 2.41 23.69 7.12
dp 0.0055 0.0115 0.1552 0.0196 0.0054 0.0114 0.1581 0.0200 0.0173 0.0354 0.3098 0.0845
RMSE 0.0223 0.0183 0.1119 0.0626 0.0223 0.0182 0.1141 0.0612 0.0365 0.0234 0.1618 0.0836
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influence the selection of the regularization parameter λ of the
regression. This allows us to search for the optimal parameter
sequentially rather than in grid search for all combinations of
parameters in the parameter search space. For our data, we
found that β � 2 had the best performance.

We also investigated the influence of the number of sensor
spectral channels of the acquisition system on the estimation
performance. In comparison were three, six, and 12 channels
and measured camera response data of the Pantone set. We
observed that the logarithmic and Gaussian kernel perfor-
mance is very close and compared to the linear kernel, which
is significantly higher for any number of channels. Further, the
colorimetric performance of the 12-or 6-channel system seems
to be suitable for color measurements, whereas the three-
channel system could be considered for applications where
less color precision is required.
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Abstract. Density measurement of printed color samples takes an im-
portant role in print quality inspection and process control. When
multi-spectral imaging systems are considered for surface reflectance
measurement, the possibility of calculating spectral print density over the
spatial image domain arises. A drawback in using multi-spectral imag-
ing systems is that some spectral reconstruction algorithms can produce
estimated reflectances which contain negative values that are physically
not meaningful. When spectral density calculations are considered, the
results are erroneous and calculations might even fail in the worst case.
We demonstrate how this problem can be avoided by using kernel ridge
regression with additional link functions to constrain the estimates to
positive values.

Keywords: multi-spectral imaging, spectral density, kernel regression.

1 Introduction

The objective of color reproduction in printing technology is to reproduce colors
of a reference object as faithfully as possible. Print quality control is the task of
monitoring the printing process in terms of many factors, such as the accuracy
of color reproduction, image resolution or the registration of multicolor print
layers [1]. An increasing demand in high-fidelity printing motivates the ongoing
research in this field of technology, with the ultimate goal of improving color
reproduction and the degree of automation of the printing process.

When multicolor printing presses are considered, the application of ink (ie.
the ink thickness) on the paper substrate must be monitored and adjusted indi-
vidually for each printing unit to maintain high printing quality. Traditionally,
color control bars with solid ink patches are printed for this purpose on each
printed sheet in a spatial location that is afterwards trimmed off or occluded.
For the solid ink patches, changes of ink layer thickness can be approximated
from density measurements in a certain range, following the Beer-Lambert law.
One measure of such is color density, which can be obtained from an optical fil-
ter densitometer with optical filters that are typically specific for the inks to be

A. Elmoataz et al. (Eds.): ICISP 2014, LNCS 8509, pp. 79–86, 2014.
c© Springer International Publishing Switzerland 2014
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measured. The maximal transmittances of the filter peaks are spectrally located
at the corresponding surface reflectance minimum (so the absorption maximum).

An alternative approach to the classical optical filter densitometry is to calcu-
late spectral density from surface reflectance measurements, using narrow-band
filter functions. This approach allows spectral density measurements for arbitrary
colors and is not limited to those colors defined for color filter densitometry. Due
to advances of spectral imaging technologies in recent years, spectral densitom-
etry for printing process control is becoming more and more attractive. Clearly,
the real advantage of spectral imaging in printing applications is the possibility
of accurate color measurement to determine print quality in high spatial reso-
lution. But the data from such devices can also be used to determine spectral
density and potentially be applied to print process control [2].

Line-scan multi-spectral imaging systems qualify specifically for in-line print
inspection. In such systems, spectral reflectance at each spatial image location is
reconstructed from multi-channel image data. Reconstruction accuracy depends
heavily on the system design and the spectral estimation algorithm. Specifically
for spectral density measurement from estimated reflectance data a problem
occurs, if the estimated reflectance is physically not meaningful due to negative
values, an issue that is present in many multi-spectral systems.

In this work we evaluate spectral density measurement with a multi-spectral
imaging system and a reflectance estimation approach that guarantees positivity
and therefore qualifies for density calculations.

1.1 Spectral Density Measurements

The International Organization for Standardization (ISO) has published the ISO
5 norm series for densitometric measurements. For color density measurement
corresponding to the classical optical filter approach, several filter functions for
different types of standard density are defined, matching specific application
domains [3]. For printing applications, the norm filters are matched to the process
inks (typically C,M,Y).

Spectral density is defined less restrictive as compared with color density, as
it corresponds to computing the density for a particular surface using a narrow-
band filter function such that a maximal density reading is obtained [1]. The
filter peak-wavelength is accordingly adjusted to the minimal reflectance value
of the measurement surface. Consequently, the measurement can be considered
for other than standard process colors.

We compute this moving filter spectral density Dmf for the m×1 column vec-
tor of spectral reflectance r ⊂ Rm, with m being the dimensionality of reflectance
data, as

Dmf (r) = − log10

(
rT aλmin∑m

i=1 ai

)
, (1)

with aλmin = (a1, ..., am)T ⊂ Rm being a discretized narrow-band Gaussian
shaped filter function, with peak-wavelength λmin corresponding to the index of
r with minimal reflectance.
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1.2 Spectral Reflectance Estimation

We consider two regression models for spectral reflectance estimation. A linear
least-square model (further PI), and a kernel based ridge regression model (fur-
ther KL). The PI method is described for instance in [4]. The more recently pub-
lished KL method belongs to the class of so-called Reproducing Kernel Hilbert
Space (RHKS) regression models [5]. In this work we apply the logarithmic kernel
function, for which details about our implementation are described in [6].

The KL method can be expanded to constrain the solution of the estimation to
physically meaningful values, which means that the estimated reflectance spec-
tra have to be positive. Heikkinen et al. propose several so-called link functions
that can be used with RHKS regression models to impose this constraint on
the solution [7]. These function pairs consist of a forward transformation τ that
is applied to the reflectances r in the model training phase, and a backward
transformation τ−1, applied to the estimate in order to obtain the recovered
reflectance r̃. In this work, we consider the square root (or root function) and
logit transformation function pairs, defined in Table 1. There are several other
estimation approaches that constrain the solution to positivity, for instance by
using constrained quadratic programming [8]. We consider the KL method be-
cause of the high spectral and color accuracy in spectral reflectance estimation
reported previously [2,5,6,7].

Table 1. Square root and logit transformation functions

Link function τ (x) τ−1(y) data range

Square root y =
√
x x = y2 y ∈ [0, +∞),x ∈ [0, +∞)

Logit y = ln
(

x
1−x

)
x = exp (y)

1+exp (y)
y ∈ (−∞, +∞),x ∈ (0, 1)

2 Experiments and Results

Acquisition System: A 12-channel multi-spectral line scan camera of type
truePIXA1 and a LED line illumination of type Corona II-D50 in combination
with a linear translation stage were used for acquisition of multi-channel camera
response data. The measurement geometry of the camera observation and illumi-
nation angle were set to approximate 45/0 geometry. The linear stage was used
to translate color samples under the camera and by that scanned the sample
surface. More details on the acquisition system are reported in [9].

The number of spectral channels in most multi-spectral acquisition systems
vary between 3 and 12. In this study, two configurations of the truePIXA sys-
tem were considered, namely a 12- and a 3-channel configuration. The system
responsivities are illustrated in Figure 1a.

1 http://www.chromasens.de/en/truepixa-spectral-camera
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Dataset: The dataset considered in this work consists of 2698 color patches
(see Figure 1b), printed on a 7 ink wide gamut inkjet printer (HP Designjet
Z3100). Camera responses were acquired with the above mentioned acquisition
system, and averaged spatially over an image area of approximately 2mm×2mm
per patch. Reference measurements of spectral reflectance of each patch were
obtained with an ISO 13655 norm conform X-Rite i1iSis XL spectrophotometer2.
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Fig. 1. a) Spectral responsivity of the imaging system. The solid lines correspond to
the 3-channel configuration, dashed-lines and solid lines together correspond to the
12-configuration system; b) CIE-L*a*b* color coordinates of the 2698 printed color
samples, projected onto the coordinate planes.

Evaluation: As outlined in the introduction, the spectral density measurement
considered here is based on estimated spectral reflectance data and measurement
performance is therefore directly linked to the spectral reflectance estimation
performance. We therefore evaluate spectral density measurement performance
as well as estimation performance.

The quality of spectral density measurement is evaluated by means of the root
mean square error (further RMSE) between reference density Dmf (r), calculated
from measured reflectances r, and the spectral density Dmf (r̃), calculated from
the corresponding estimated reflectance r̃.

We assess the estimation performance spectrally by means of RMSE and col-
orimetrically by computing CIEDE 2000 color difference[10] (further ΔE00) be-
tween color coordinates from estimated and measured reflectances. CIE-L*a*b*
coordinates were calculated assuming the CIE-1964 10◦ standard observer and
CIE-D65 standard illuminant. The white point was set to the perfect reflecting
diffuser.

Our evaluation scheme is based on 10-fold cross-validation. The regularization
parameter in the KL method was selected to minimize average RMSE estima-
tion error in a 10-fold cross-validation scheme for the training data. The scale
parameter of the logarithmic kernel was fixed to 2, a value that was found to be
appropriate in previous studies[6].

2 https://www.xrite.com/product_overview.aspx?id=894
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2.1 Negativity of Estimated Reflectance Data

From the 2698 samples considered in this work, 101 estimated reflectances con-
tain negative values when PI estimation and the 12-channel configuration are
considered. For the 3-channel case and PI, 193 reflectances with negative com-
ponents are found. Using KL method without link functions, only the 3-channel
configuration results in estimates with negative values (5 samples). One might
conclude that using the KL approach with the 12-channel system without any
link function could be sufficient for the spectral density measurement task, how-
ever, non-negativity is not guaranteed in general.

In Figure 2, we illustrate the color coordinates of measured reflectances that
resulted in negative estimates for the 12-channel configuration and PI method.
It can be seen that those colors lie mostly close to the gamut boundary, corre-
sponding to highly saturated colors. The spectral density values computed from
the measured reflectances indicate that more than 90% of these samples have
spectral densities larger than 2, with 1.8 corresponding to the sample of minimal
spectral density.
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Fig. 2. CIE-L*a*b* color coordinates of the dataset. In color illustrated are reflectances
for which the 12-channel configuration and PI method result in negative values.

2.2 Spectral Estimation Performance

The numerical results of this evaluation are illustrated in Table 2. For the 12-
channel configuration and comparison of mean estimation performance, it was
found that KL without link function outperforms PI by roughly a factor of 2 in
terms of colorimetric and spectral error. Comparing KL results including link
functions, it can be seen that no link functions results in the lowest colorimetric
error and similar spectral error as for KL with square root link function. Logit
link function performance is spectrally worse and in terms of ΔE00 close to that
of PI. Comparing maximum colorimetric error values, the logit link function
performance is even worse than that of PI, whereas best results are achieved
with KL and square root link function. For maximum spectral error, the PI
method is almost by a factor of 6 better than any KL approach, with or without
link function.
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In case of the 3-channel system, comparison of estimation quality without
consideration of link functions shows that PI results on average in a considerable
higher spectral and colorimetric error as compared with KL. The maximum
spectral error is lowest for PI, but in case of colorimetric error, PI is outperformed
by KL. Introducing link functions can reduce the mean estimation performance,
this is similar to what was found for the 12-channel case. For logit link function,
the performance is worst. However, both link functions provide on average lower
errors than the PI method. The overall lowest maximum colorimetric error is
achieved with the square root link function. Lowest maximal RMSE is found for
PI. Highest maximum colorimetric and spectral errors are found for the logit
link function.

Table 2. Reflectance estimation errors for 3- and 12-channel configuration

Est. #- Link ΔE00 RMSE
method chan. fctn. Mean Std. Min. Max. Mean Std. Min. Max.

- 0.21 0.17 0.01 2.46 0.0018 0.0024 0.0002 0.0654
KL 12 logit 0.38 0.38 0.02 5.44 0.0023 0.0030 0.0002 0.0612

root 0.25 0.24 0.01 2.40 0.0018 0.0023 0.0002 0.0637

PI 12 - 0.42 0.30 0.03 3.18 0.0038 0.0024 0.0007 0.0162

- 0.41 0.31 0.01 4.50 0.0027 0.0040 0.0004 0.1265
KL 3 logit 0.63 0.71 0.01 27.75 0.0035 0.0065 0.0002 0.2499

root 0.46 0.36 0.01 4.03 0.0028 0.0040 0.0003 0.1370

PI 3 - 3.41 1.72 0.15 8.10 0.0161 0.0146 0.0005 0.0709

2.3 Spectral Density Measurement Performance

Clearly, due to the negativity of estimated reflectances for PI with the 3- and 12-
channel system configuration, and KL with the 3-channel configuration, we can
not evaluate the spectral density measurement performance for all samples in all
conditions. The KL method with link functions is therefore the only choice for
density measurement of arbitrary datasets. However, by excluding reflectances
with negative components from the analysis, a numerical comparison of spectral
density measurement performance can still be achieved. Therefore, we provide
two sets of results in Table 3: the left part corresponds to spectral density mea-
surements of the reduced set, and the right part to the results for the full set.

Comparing PI and KL for both, 3 and 12-channel configuration and the re-
duced set, we see clearly better average performance for the KL approach. For
the 12-channel configuration, the lowest average error is found for KL without
link function and square root link function, logit performance is only slightly
worse. The lowest maximum error is found for the logit function, 2nd lowest for
PI, then KL with square root function and KL without link function results in
the largest error. For the 3-channel configuration, average RMSE is lowest in
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case of logit and square root function and only slightly worse for KL without
link function. The lowest maximum error is again found for the logit function,
but unlike in the 12-channel case, the maximum error of PI is larger than that
of KL without or with square root link function. The 12-channel configuration
performs on average better than the 3-channel system, a finding that is similar
to the spectral estimation performance results described in Section 2.2.

Analyses of spectral density measurement performance based on the full dataset
seems to generalize well the reduced dataset case, as can be seen from the compar-
ison of the left and right part in Table 3.

Table 3. Spectral density measurement quality for the 3- and 12-channel configuration

Est. #- Link RMSE (reduced set) RMSE (full set)
method chan. fctn. Mean Std. Min. Max. Mean Std. Min. Max.

12 no 0.017 0.062 0 1.345 0.018 0.061 0 1.345
KL 12 logit 0.018 0.058 0 1.266 0.018 0.057 0 1.266

12 root 0.017 0.060 0 1.316 0.017 0.059 0 1.316

PI 12 - 0.057 0.113 0 1.271 - - - -

3 no 0.022 0.066 0 1.383 - - - -
KL 3 logit 0.020 0.060 0 1.299 0.020 0.058 0 1.299

3 root 0.020 0.062 0 1.349 0.021 0.061 0 1.349

PI 3 - 0.083 0.129 0 1.385 - - - -

3 Discussion and Conclusions

We have evaluated spectral density measurement from estimated reflectances of
a multi-spectral imaging system in 12 and 3-channel configuration. The calcula-
tion of spectral density requires positivity of the sample reflectances. Negative
reflectances are physically not meaningful, yet especially the widely used linear
least-square regression estimation can result in negative estimates if not avoided
by additional constraints. We showed that by constraining the estimation of
reflectances using kernel ridge regression and additional link functions, density
measurement with estimated reflectance data becomes feasible.

In this work, we have compared linear least-square regression and kernel ridge
regression with the logarithmic kernel without and with link functions (logit and
square root).

In conclusion, it was identified that kernel ridge regression with link func-
tion increases the spectral density measurement performance significantly as
compared with linear least-square regression. Constraining the estimates to pos-
itivity via usage of a link function in kernel ridge regression reduces the average
colorimetric and spectral estimation performance slightly as compared with not
using a link function. However, spectral density measurement performance was
found to be similar or even higher when using a link function and, what is more
important, the estimation produces physically meaningful reflectances.
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The performance of learning-based spectral estimation is greatly influenced by the set of training sam-
ples selected to create the reconstruction model. Training sample selection schemes can be categorized
into global and local approaches. Most of the previously proposed global training schemes aim to reduce
the number of training samples, or a selection of representative samples, to maintain the generality of the
training dataset. This work relates to printed ink reflectance estimation for quality assessment in in-line
print inspection. We propose what we believe is a novel global training scheme that models a large
population of realistic printable ink reflectances. Based on this dataset, we used a recursive top-down
algorithm to reject clusters of training samples that do not enhance the performance of a linear
least-square regression (pseudoinverse-based estimation) process. A set of experiments with real camera
response data of a 12-channel multispectral camera system illustrate the advantages of this selection
scheme over some other state-of-the-art algorithms. For our data, our method of global training
sample selection outperforms other methods in terms of estimation quality and, more importantly,
can quickly handle large datasets. Furthermore, we show that reflectance modeling is a reasonable,
convenient tool to generate large training sets for print inspection applications. © 2014 Optical Society
of America
OCIS codes: (150.1708) Color inspection; (110.4234) Multispectral and hyperspectral imaging;

(150.3040) Industrial inspection; (100.3190) Inverse problems; (120.5800) Scanners.
http://dx.doi.org/10.1364/AO.53.000709

1. Introduction

Since being introduced to the field of spectral
reflectance estimation, learning-based approaches
for spectral estimation have gathered a considerable
amount of attention and interest in the scientific
community. The approaches have been applied in
many practical applications, such as spectral estima-
tion of art painting [1] and spectral estimation of
human iris spectral reflectances [2]. Learning-based

approaches are popular because they are highly
adaptive to specific application domains. A main
issue in those approaches is the training process,
which is used to adapt the system to the statistical
structure of the data. It is well known that an
adequate selection of training samples is crucial
for quality estimations.

Usually, spectral estimation is carried out using
low-dimensional sensor response data from a camera
as input for the estimation algorithm. In this context,
the purpose of training is to establish the relation
between camera responses and spectral reflectance
data of a given image scene. Unknown reflectances

1559-128X/14/040709-11$15.00/0
© 2014 Optical Society of America
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can then be estimated on a pixel-by-pixel basis from
camera responses by using the previously learned
relation of the data.

A number of different approaches for training
sample selection have been proposed and can be cat-
egorized according to several criteria:

• Global versus local. In a global scheme, the es-
timation is computed using the same transformation
for all test samples, while in the local approach the
transformation used is different for each specific
sample, and therefore is adaptive to the sample
features.
• Bottom-up versus top-down. A bottom-up

selection scheme starts with an empty set and
successively adds samples to the set. Top-down
approaches, in contrast, start with a full set and
reject samples consecutively until the final training
set is obtained.
• General purpose versus application

dependent selection. Most of the state-of-the-art
selection schemes tackle the training sample selec-
tion from a rather general perspective, meaning that
the selection is not optimized for a specific applica-
tion but rather to a specific objective, such as to select
most distinct colors from a set of available samples.
Those methods can therefore be classified as general
purpose. Application dependent selection schemes on
the other hand perform the sample selection based
on the objective to enhance a specific type of estima-
tion application.

In this work, we compare nine different global
training schemes. Our method also belongs to the
class of global methods and is computed in top-down
fashion in an application-dependent scheme. The
other methods compared to our approach are for gen-
eral purpose training sample selection.

Very recently, spectral estimation has been used
for in-line print inspection for colorimetric quality
assessment of printed inks to monitor the colorimet-
ric and spectral quality of printed inks during the
production process [3]. In traditional approaches,
and even in most current state-of-the-art systems,
print quality inspection is performed off-line, mean-
ing that the quality of printing is quantified on
sample sheets of printed media [4]. A drawback of
such method is the lack of full quality control over
all printed material produced, since the reference
measurements are only based on individual samples,
extracted from the printing process. Apart from that,
the measurements are often carried out in time con-
suming manual fashion and can not be performed in
real time.

Dealing with printed ink samples allows us to
introduce an alternative approach for gathering
the initial pool of samples from which the training
set for a spectral estimation system is selected.
Rather than using real training data, we model a
large dataset of training reflectances using an empir-
ical printer characterizationmodel that has the same
CMYK values as input as a four-ink CMYK printer

has. Using, for instance, a step 10 sampling in CMYK
space for modeling leads to roughly 14600 reflectance
samples that span the gamut of printable reflectan-
ces. Further, we propose a novel recursive algorithm
to reduce the modeled training data to a set of sam-
ples that is optimal for the spectral estimation task.

The algorithm is clustering based and works in
top-down fashion by rejecting clusters of samples
that are not beneficial for the spectral estimation
process. The cluster based rejection makes the algo-
rithm fast on large datasets, compared to most other
approaches like [5–9] that select samples one-by-one
iteratively. The top-down processing and rejection
of samples also allows controlling the decrease in
estimation quality for a specific application, an
important feature that has not been considered in
previous studies.

Our approach overcomes some of the limitations in
traditional training of spectral estimation systems.
In such systems, training is commonly performed
based on datasets consisting of test charts (e.g.,
Macbeth ColorChecker or IT8.6 test chart) or stan-
dard color atlases [e.g., Munsell book of colors or
natural color system (NCS)]. One reason for their
popularity is the availability of instances of physical
samples and that for most of them, spectral data has
actually been measured and made publicly available,
for instance in [10]. However, using standard data-
sets does not guarantee a good basis for the selection
of training samples, as those samples might not be
general enough for a given specific application, or
simply not span the spectral or colorimetric data
space. By using printer characterization to model
reflectance data, samples spanning the whole gamut
of printable colors can be generated in a time-saving
manner. Furthermore, reflectances of printed inks
depend on a combination of several factors such as
ink type, printing substrate, and the printing tech-
nology. The empirical modeling allows an accurate
prediction of reflectances that are specific to the
ink, substrate and printer used, whereas standard
charts are more general in nature.

The remainder of this article is structured as
follows: In Section 2, we introduce the spectral esti-
mation application, the ink reflectance modeling
scheme, state-of-the-art training sample selection
schemes and in Section 3 our proposed algorithm
for training sample selection. Section 4 describes
the experimental configuration, experiments, and re-
sults of this work are presented in Section 5. Finally,
in Section 6 we discuss conclusions of the results and
future work.

2. Background

A. Notation

In what follows, a variable x describes a scalar value.
Denoted in bold, x refers to a vector and a matrix X is
indicated in bold capital letters. X� refers to the
Moore–Penrose pseudoinverse (PI) of matrix X.
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B. Spectral Estimation for In-line Print Inspection

As mentioned previously, in-line print inspection
aims to provide full-resolution quality assessment
in real-time during the printing process. In-line print
inspection is mainly applied in offset printing
technology. In the experiments described here, a
Chromasens GmbH prototype inspection system is
used, and is set up by a 12-channel multispectral
line-scan camera of type truePIXA and a Chroma-
sens Corona II-D50 daylight LED illumination
panel. The illumination system consists of four types
of high-power LEDs corresponding to warm-white,
cold-white, 400 nm peak-wavelength and 470 nm
peak-wavelength. The different LED types allowed
us to optimize the color rendering index of the
illumination.

The setting used for this work corresponds to a
color-rendering index of approximately 90. The cam-
era’s 12 channels are created by placing four lenses
in front of the cameras RGB sensor and thereby
dividing the line into four parts. Each of the four
lenses is coupled with a distinct color filter and pro-
vides R, G, and B camera responses in the spatial
area of the common field-of-view of all lenses.
Figures 1 and 2, respectively, show a schematic illus-
tration of the camera system and its responsivities
multiplied by the LED illumination spectrum.

Each acquisition of the camera produces only one
horizontal line of pixels, whereas the vertical dimen-
sion of an image is formed by moving the printed
samples under the camera and therefore scanning
it. In offset printing, movement of the substrate is
part of the process and line-scan cameras are there-
fore highly applicable for continuous data acquisi-
tion. For this work, camera responses have been
acquired on a laboratory prototype that is not oper-
ated on a printing machine yet; instead a scanning
table is used to move the sample while image acquis-
ition takes place.

We previously have investigated the task of
spectral estimation of printed ink reflectances for
print quality assessment [3]. In that work, several
approaches for estimation were compared. The best

estimation results were obtained for the Kernel
method [11]. In this work we are only investigat-
ing linear least-square regression (PI, estimation
method) [12] for the sake of its simplicity. PI is fast
compared to other approaches and does not need any
parametrization.

The PI method is based on a linear least-square
solution of a mapping from 12-dimensional camera
response space to the 71-dimensional spectral reflec-
tance space (discrete spectral data in the range from
380 to 730 nm in 5 nm steps), obtained from a set of
training samples. Formally, the 71 × v matrix of v
estimated reflectances Rte that relates to the 12 × v
matrix of test camera responses Pte is computed from
a 71 × u matrix of training reflectances Rtr and a
12 × u matrix of training camera response Ptr as

Rte � Rtr × P�
tr × Pte: (1)

The colorimetric quality of spectral estimation
for measured spectral data compared to estimated
spectral data is evaluated by CIEDE2000 color
difference, which will be referred to as ΔE00, [13].
Calculations were performed assuming D65 illumi-
nation and the CIE 1931 2° standard observer.
Spectral quality is evaluated by the root mean
square error (RMSE), defined for an estimated spec-
trum ~r and its measured counterpart r as

RMSE �
���������������������
1
m

jr − ~rj2
r

: (2)

Further, dp is the Pearson distance, which also is
known as the complemented GFC (goodness of fit
coefficient) [14,15] and defined as

dp � 1 −
hr; ~ri

∥r∥ · ∥~r∥
: (3)

C. Reflectance Modeling

Building models that predict printed reflectances
have been investigated for more than 50 years. From

Fig. 1. Schematic illustration of the working principle of the 12 channel multispectral camera system. The orange line indicates the field
of view of all lenses of the camera system. To acquire an image scene (illustrated by the multicolor logo of the Color Imaging Laboratory at
the University of Granada), the image is translated horizontally under the camera in the direction indicated by the green arrow.
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a historical perspective, modeling evolved over time
by expanding simple models with additional param-
eters taking into account the optical and physical
phenomena of the interaction of light, ink and print
substrate. A basic overview of reflectance modeling
in the printing process is given in [16].

For this work, reflectances were modeled using the
enhanced Yule–Nielsen spectral Neugebauer model
[17]. For the case of a four-ink printer, as considered
here, the inputs of the model are CMYK values,
specifying the amount of each ink type per pixel in
an image. This model belongs to the class of empiri-
cal models, where dot-gain and ink-spreading behav-
ior of the printing process are obtained empirically
from measured reflectances of specific printed sam-
ples and their CMYK counterparts.

In our experiments, we obtained a mean model
accuracy of ΔE00 � 1.85 and ΔE94 � 1.95 (CIE-Lab
CIE94 units) based on data from an Océ ColorWave
600PP inkjet printer on Océ Red Label Paper with a
printing resolution of 1200 dpi. The evaluation is
based on data from a printed ECI 2000R test chart.
Hersch and Crété [17] reported a model accuracy of
ΔE94 � 0.9 for ink-jet printing technology and a
printing resolution of 100 lines per inch for the same
printer model. We believe the deviation in model
accuracy from our results to be due to the differences
in substrate and ink type. The accuracy obtained for
our model will suffice for our particular task in the
following sections. However, we believe improve-
ments in model accuracy will further positively influ-
ence our results.

D. Global Training Sample Selection Schemes

As mentioned in Section 1, we have compared our
approach with several state-of-the-art global train-
ing set selection methods. In this section we present
a complete description of all of them, including
details on the implementation. The methods are
described using the following notation: the set of m
available training samples is S � fx1; x2;…; xmg.
The set of n selected training samples is denoted

Str � fy1; y2;…; yng and the set of samples not
included in the training is Str � SnStr. Further, jSj
refers to the cardinality of S.

Here are the global training set selection methods
to which we compared our approach:

Random selection (RD). The simplest design of a
training set is random selection, where the objective
of the method is a reduction of the number of samples
in the training set. In several experiments related to
machine learning in different application domains
RD was shown to be a rather bad choice [5–7].
Kennard–Stone (KS) design—1996. This method
aims at sequentially selecting n samples that are uni-
formly spaced over the sample space. The ith sample
(i � 1…n) is selected as yi � argv maxfD�v�jv ∈ Strg,
where D�v� is the minimal distance between v and
any point in Str, calculated as D�v� � minfd�u; v�ju ∈
Strg and d�u; v�, is defined as the Euclidean distance
between element u and v [5]. The Kennard–Stone
design was originally proposed in the field of design
of experiments. We have followed the implementation
of Wu et al. [5], which was applied to the training of a
neural network in a classification task.
Hardeberg (HD) method—1999. Based on the
objective that the selected samples should be most
distinct from each other (i.e., contain the least
amount of mutual information), Hardeberg [8] pro-
posed a bottom-up iterative method based on the
criterion of minimum condition number.

The first sample is selected as the one with
maximal variance in spectral space among S.
The ith sample (i � 2…n) is selected as yi �
argv maxfcond�Sc�v��jv ∈ Strg, where cond�Sc�v�� de-
notes the condition number of the i × d matrix of i el-
ements with dimensionality d in the set Sc � Str∪fvg.
Kang (KG) method—2004. Another method of
training sample selection that essentially aims at
a simple reduction of training samples was proposed
by Kang et al.[7]. They used k-means to cluster S into
n clusters and for each cluster the sample with the
smallest Euclidean distance to the cluster centroid
was added to Str.

We additionally propose a modification of Kang’s
method that involves substituting the Euclidean
distance measurement in k-means by the spectral
similarity value (SSV) distance metric. The SSVmet-
ric considers the magnitude as well as scale
differences between two spectra, whereas Euclidean
distance primarily measures magnitude differences
[18]. It has been shown that clustering based on
the SSV metric can outperform clustering based on
the Euclidean distance metric in some image seg-
mentation tasks [19].
Mohammadi (MH) method—2004. Mohammadi
et al. [20] cluster S into n clusters using agglomera-
tive hierarchical clustering with average linkage and
correlation distance to measure dissimilarity of
reflectances. For each cluster, the reflectance sample
having the minimum average vectorial angle to
any other reflectance in the set is selected for
training.

Fig. 2. Normalized product of responsivities Y and spectral
power distribution of the illumination l of the 12-channel multi-
spectral camera system.
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Cheung–Westland (CW) method—2006. Cheung
and Westland [6] proposed several objective func-
tions for an iterative approach that is based on the
assumption that representative colors to be selected
for training should be most distinct from each other.
We adapt the MAXSUMS objective function, which
was later tested by Shen et al. [9] and found to per-
form better than the alternative proposals of Cheung
and Westland.

Like in HD, the first sample is selected as the
one with maximal variance in spectral space among
S. The ith sample (i � 2…n) is selected as yi �
argv maxfD�v�jv ∈ Strg, where D�v��P

u∈Str

���������������
d�u;v�

p
and d�u; v� is defined as the Euclidean distance
between element u and v. The square-root term is
introduced to penalize small spectral differences.
Shen (SH) method—2008. Shen et al. [9] proposed
two sample selection schemes for spectral characteri-
zation. One is referred to as a virtual-imaging-based
approach, where the aim is to minimize the error
between measured reflectances in the training set
and corresponding reflectances estimated from cam-
era responses of a virtual imaging system. The other
approach is an iterative method in which the selected
samples should produce minimum spectral RMSE
for spectral characterization if the selected samples
can optimally represent the whole set. The latter
approach is compared in this work.

Again, the first sample is selected as the one
with maximal variance in spectral space among
S. The ith sample (i � 2…n) is selected as
yi � argv minfD�Sc�v�; S0c�v��jv ∈ Strg. The operator
D�Sc�v�; S0c�v�� denotes the Frobenius norm of the
residuals between reflectances in Sc�v� and recon-
structed reflectances in Sc�v�0, according to eigenvec-
tor decomposition. The reconstruction of set Sc�v�0 is
computed from 15 basis vectors of Sc�v�.

In case of KS, KG, MH, and SSV, the design of the
algorithms allow input data to be spectral reflectan-
ces or camera responses. Using response data
instead of reflectance data reduces the amount of
processing. We investigated the influence of either
selection on the quality of training sample selection.

Most approaches are iterative in nature. The com-
putational complexity of the algorithms vary greatly
with the type of computations that are performed in
each iteration. However, increasing the initial pool of
samples for selection increases the computation time
mostly because computations with more data are to
be performed within each iteration. Our proposed
algorithm does not process the data iteratively.
The difference in computational time becomes appar-
ent for large datasets.

3. Adaptive Global Training Sample Selection
Scheme: The Recursive Rejection Method

Rather than selecting training samples without
prior knowledge of the estimation application and
following general premises to select most repre-
sentative colors like in the methods introduced in

Subsection 2.D, the recursive rejection (RR) method
proposed in this article, optimizes a training set Str
for a certain application by measuring the change in
performance in spectral estimation when certain
clusters of samples are rejected from the training.
Unlike other approaches, the aim of RR is to reduce
the number of samples contained in an initially large
pool of samples while maintaining or improving
estimation quality resulting from estimation with
the reduced set.

The method works in a top-down fashion, starting
by considering the full set of all available training
samples Str;init � S. Then, k-means clustering [21]
is used to cluster Str;init into k clusters. The impor-
tance of each cluster of samples Sci for estimation
is evaluated. This is done by comparing the error
ea obtained from estimation using the whole set of
available training samples S with the estimation er-
ror er obtained from estimation using a reduced set
StrnSci for training. For evaluation, an application-
dependent dataset Sapp is used. If the estimation
error drops more than a predefined threshold th,
the cluster of samples Sci is considered to be impor-
tant and further processed. Other clusters are
rejected from the training set. Clusters of samples
that are not rejected are processed in a recursive call
of the algorithm with an updated training set to
evaluate if they consist of subclusters that could
be rejected according to the same criterion as out-
lined above. This procedure is repeated until either
all clusters are processed or the number of samples
in the remaining set S is less or equal to the number
of clusters k.

Why are clustering techniques used rather than
dividing the training sample space into quantized
bins and performing the rejection scheme based
on the members of these bins? In fact, performing
quantization on high-dimensional data, such as re-
flectance or camera response data, is often performed
by clustering techniques [22,23]. The simple and fast
k-means method as such is a member of vector quan-
tization algorithms.

For this work, spectral estimation is performed by
the PI method (see Subsection 2.B) and the RMSE is
used by the algorithm as a measure of estimation
quality. Str;init is intended to be a large set of available
training samples. In our work, Str;init is obtained
by modeling reflectances from CMYK values
using a printer characterization algorithm (see
Subsection 2.C). The application dependent set
Sapp on the other hand has to represent well real data
from the specific application (in our case, Sapp is
ideally selected as a representative set of printed
samples from the in-line printing process for which
print quality is going to be evaluated).

In contradiction to any other previously proposed
method, the number of samples in the final training
set is not fixed in advance. This characteristic
ensures that the final set of selected samples is
optimal in terms of estimation quality. However,
we can influence the size of the output training set
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to some extend by varying the threshold parameter
th, and therefore trade off quality of estimation with
training set size.

Figure 3 describes the proposed method in pseudo-
code. Source code of the algorithm for Matlab by
MathWorks is available on [24].

4. Experimental Configurations

Here, we compare the global training sample selec-
tion schemes introduced in Subsection 2.D with
our proposed approach and demonstrate the func-
tionality of the latter in two different experiments.
We found that several training sample selection algo-
rithms are not practical for large datasets due to
time-intensive computations. Our proposed global
training approach that involves a large set of mod-
eled reflectances is therefore not comparable to all
methods introduced in Subsection 2.D. However,
the proposed RR algorithm also can be operated with
a small dataset for training sample selection, which
allows comparison to all the other approaches.
Experiment 1 does this comparison.

The small dataset consists of 503 sample color
patches printed with ink from the Toyo Ink Group
on super-calendered paper. Real camera responses
of the patches were obtained with the previously
introduced prototype system of Chromasens GmbH
(see Subsection 2.B). Reflectance data of printed
samples were measured with a X-Rite SpectroEye
spectrophotometer in the spectral range between
380 and 730 nm. To evaluate Experiment 1 with data
that is independent from the training data, we used a
set of 140 samples from a X-Rite color checker digital
test chart (CC140). Camera responses and spectral

data were acquired in the same conditions as the
Toyo dataset. In summary, data for training (Str) is
selected from the Toyo set, and the estimation is
tested on the CC140 dataset (Ste). For RR, 30% of
the test data were reserved as application data-
set (Sapp).

Experiment 2 incorporates the modeled dataset for
training sample selection, but only for a constraint
set of methods applicable to large datasets (RD,
KG, KS, MH, and RR). This dataset consists of
14641 modeled ink reflectances, generated from
CMYK values sampled in steps of 10 from 0 to 100
digital counts for each ink type and all combinations
of inks (see Subsection 2.C). The corresponding cam-
era responses for the modeled dataset are simulated.
Using simulated camera responses of this dataset in
the RR method rather than real data is a fundamen-
tal characteristic, because it is undesirable to print
and measure the huge amount of samples of modeled
reflectances to acquire real camera responses. Note
that simulated data is used only within the training
sample selection and for training. The evaluation of
estimation quality of the RR method and its training
sample selection are, of course, based on real data.
The simulated responses are computed with signal-
dependent Gaussian noise according to Eq. (4):

P � Δλ � Y0 × diag�l� × R� b; (4)

where P refers to a c × n matrix of n c-dimensional
samples of camera responses. Y is a w × c matrix
of spectral responsivities of the camera system and
l is the w-dimensional spectral power distribution
of the illumination of the image scene, R a matrix
of w × n spectral reflectances, and Δλ refers to the
sampling interval of the discrete spectral data, which
in our case is Δλ � 5 nm.

The noise variance of the signal dependent addi-
tive noise term b was adjusted so that a mean
signal-to-noise ratio (SNR) of 54 dB was obtained.
This value is close to the SNR computed from real
and noiseless simulated camera responses for this
system. The term signal dependent here means that
higher camera response values are assigned with a
larger contribution of noise (this behavior models
shot noise). The signal independent contribution
of noise to real camera responses (e.g., thermal
noise) is accounted for in this system by dark signal
subtraction and therefore not considered in the
simulation.

As application and test dataset in Experiment 2,
Toyo was used. A total of 70% were reserved for test-
ing (Ste) and 30% for the RR method as application
dataset (Sapp). Figure 4 illustrates CIE-Lab coordi-
nates of Toyo, CC140 and the modeled set. As several
training sample selection methods depend on the ini-
tialization of the random number generator of the
PC, we repeated each experiment three times and
present averaged results to avoid a bias. Computa-
tions for this work were performed on a 64-bit system

Fig. 3. Pseudocode of the RR algorithm proposed in this work.
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with a Intel Core(TM) i5 CPU and 4GB RAM and all
algorithms were implemented in Matlab.

5. Experiments and Results

A. Experiment 1: Comparison of Training Sample
Selection Methods Using a Small Pool of Selectable
Training Data

The RR method proposed in this work does not have
the number of desired training samples as input
parameter (see Section 3). More precisely, training
sample reduction is performed on the premise to
enhance spectral estimation quality regardless of
the number of training samples. However, other
state-of-the-art algorithms compared in this work
have the number of training samples as input param-
eter. To allow a fair comparison, each method should
be operated with the number of optimal training
samples that minimize the estimation error. We seek
this number for each algorithm with an exhaustive
search in the range of 10 to 503 selected samples,
in steps of 10 samples. In practical applications,
an application dataset similar to that of RR (Sapp)
would have to be used to find the optimal n.

Figures 5 and 6 illustrate the results of this first
comparison in terms of ΔE00 mean estimation error
over n. The design of KG, KS, MH, and SSV allows
the use of reflectance or camera responses as input

data for the training sample selection. For applicable
methods, we compared both options.

An important finding in this experiment is that the
performance of most algorithms generally improves
(despite some variation) with larger number of
selected samples. Therefore, a clear number of opti-
mal samples can not necessarily be identified for this
dataset. The gradient indicating the increase in esti-
mation quality is large for few samples (up to 100)
and gets lower for higher number of samples.

This finding supports the development intention of
most algorithms that aim in incrementally selecting
most distinct samples: The samples selected at the
beginning influence the estimation drastically, while
adding more samples in further iterations produces
progressively less change in estimation quality. This
is in accordance with [25], where the optimal number
of samples for training in a spectral reconstruction
task are found by comparing the variance in quality
of the reconstruction that can be achieved from
equal-sized training sets containing different train-
ing samples.

Also, one might expect to find a monotonically
decreasing error value for larger number of training
samples. This is not necessarily the case because the
sample selection criteria in the methods compared
here is never to optimize the ΔE00 error for the
least-square spectral estimation illustrated in Fig. 5.
Even in the case of SH, where spectral reconstruc-
tion is considered in the selection scheme (see
Subsection 2.D), the reconstruction algorithm (eigen-
vector based reconstruction) as well as the metric
(Frobenius norm) for measuring reconstruction qual-
ity differ. For this method, for instance, the ΔE00
error shows large variation when less than 300 sam-
ples are used for training.

The comparison of reflectance versus camera
response space as input data for KG, KS, MH, and
SSV shows that for KS and MH, using reflectances
results in a lower mean estimation error for few
selected samples, as shown in Fig. 6. The more sam-
ples selected, the weaker this effect. In case of KG
and SSV, no clear difference can be observed.

Having SSV operated with reflectances as input to
the algorithm outperforms KG for a small n. This in-
dicates that using magnitude and shape information
in the computation of distances between data points

Fig. 4. CIE-L�a�b� color coordinates of modeled (green), Toyo (red), and CC140 (blue) dataset.

Fig. 5. Mean colorimetric estimation performance (ΔE00) over a
number of training samples n for RD, SH, CW, andHDmethod and
the small dataset.
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(in case of SSV) improves the initial KG method,
which uses only magnitude information.

In Table 1, the mean estimation error ΔE00 for
each method at its point of optimal performance is
presented and the results for RR are introduced.
RR outperforms the other methods significantly in
terms of colorimetric error. In terms of spectral error,
only CW performs better. We also observed that the
number of selected samples in our method is consid-
erably low, compared to most of the other methods.

Regarding the overall spectral and colorimetric
estimation performance achieved in this experiment
for print quality inspection, a colorimetric error
larger than approximately 1 ΔE00 is considered high
for some applications. The reason for the low perfor-
mance measured here is that datasets for training
and testing are from different populations (the Toyo
set consists of printed ink samples, whereas the
CC140 set are painted samples). Figure 4 also shows
that several samples of the CC140 test set are out of
the gamut of available training samples in the Toyo
set. However, this experiment only provides compar-
ative results of global training sample selection
schemes and does not offer insight on the perfor-
mance of the multispectral in-line print inspection
system. The results of Experiment 2 will help us
draw those conclusions.

As noted earlier the experiments were repeated
three times to avoid a bias caused by the PC’s ran-
dom number generator. This happens mainly in
KG and SSV, because their clustering method’s clus-
ter centroids must be initialized. Depending on that,
the algorithm might or might not converge for a
given number of maximal iterations (here, 100). Of
course, random initialization also happens in RD
because of the intrinsic random nature of the selec-
tion process. For KG and SSV, this effect decreases
with an increasing n, as convergence in few itera-
tions is more likely for a large n. The influence can
be measured with the standard deviation (std) of
mean ΔE00 estimation error over the number of rep-
etitions. For instance, for n � 50 and 10 repetitions
stdRD � 0.68, stdKG � 0.65 and stdSSV � 0.38 were
found. For the same reason of cluster initialization
and possible limitation of the convergence of the clus-
tering, the RR method is also influenced by this
(stdRR � 0.23 for 10 repetitions), however, less dra-
matically. The reason is that the clustering in this
method is only used to partition the data. Whether
or not a cluster of samples is rejected from the
training set depends on the importance of the sam-
ples for training, not on the structure of the cluster
itself. Not reaching convergence in clustering is
therefore rather likely to lead to an increase in time
for sample selection, as a large number of recursive
sub-clustering would have to be performed.

B. Experiment 2: Comparative Analysis of the Novel
Training Selection Scheme Using a Very Large Pool of
Selectable Training Data

We found that RD, KG, KS, and MH were able to bet-
ter handle large datasets than the other approaches
and therefore were compared with the RR method
using the modeled set for training sample selection.
The th and k parameter in the RR method are found
by exhaustive search given the objective to minimize
the mean ΔE00 error in spectral estimation as thopt �
5e−8 and kopt � 3. Figure 7 illustrates a surface plot
of the ΔE00 error over the parameter space for Toyo
data. The small optimal number of clusters might not
be intuitive, as the obtained clustering appears to be
too rough to divide the entire space spanned by the
large amount of training reflectances. However, the

Fig. 6. Mean colorimetric estimation performance (ΔE00) over number of training samples n for KG, SSV, KS, and MH and the small
dataset. For most methods, the optimal number of samples for training approaches the maximal number of samples.

Table 1. Experiment 1 Compares Mean Estimation Error
for the Method-Depending Optimal nopt Selected

Training Samples and the Small Dataseta

Method nopt ΔE00 dp RMSE

RD 415 3.40 0.0160 0.037
KS refl 155 3.33 0.0163 0.035
HD 485 3.36 0.0159 0.038
KG refl 125 3.22 0.0173 0.036
MH refl 265 3.30 0.0147 0.039
CW 35 3.26 0.0118 0.030
SH 485 3.39 0.0155 0.038
SSV refl 75 3.08 0.0150 0.034
RR 72 2.64 0.0124 0.031
ALL 503 3.41 0.0158 0.038

aFor KS, KG, MH, and SSV numerical results are given
for the case where reflectance data was used as input for
the selection.
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recursive fashion of the algorithm leads to a
progressive reduction of the number of samples
per cluster in deeper recursions. This results in an
adaptive finer clustering for those parts of the train-
ing data space that are relevant to maintain the
estimation quality.

We repeated Experiment 1 given the current data-
set for training to seek for an optimal number nopt of
training samples for each method. KG and KS had to
be computed with camera responses as input (rather
than reflectance data) to make the computations fea-
sible. For MH, we considered reflectances. Figure 8
illustrates the mean estimation error over number
of samples. Unlike with the small dataset, for the
large dataset and all methods, nopt was found to be
less than the total number of samples in the set. That
indicates that the modeled dataset for training is to
some extend redundant for the task of spectral esti-
mation, which supports the development intention of
the RR method. Performing RR selection, 1015 sam-
ples are selected. In addition to RD, KS, KG,MH, and
RR, we also present results for the case where all
available training samples were used for training

(further referred to as ALL). Table 2 shows the final
results for all methods and nopt.

The lowestΔE00 mean estimation error is found for
the RR method, followed by KG, KS, and MH. The
difference in colorimetric estimation quality is very
little. Spectrally, RR clearly outperforms the other
methods. Comparing the time consumption for train-
ing set selection (tsel) and finding the optimal n (topt)
makes a big difference. topt ranges from several
minutes in MH to several days in KS. RR, on the
other hand, does not require time to select the opti-
mal number of training samples, since this is done as
part of the selection routine. The time for finally se-
lecting the training set ranges from a few seconds for
MH to a few minutes for KG. RR is with 19 s quite
fast. The time for estimation (test) is upper bounded
with test < 0.02 s for ALL, and less time is required
for other methods with a smaller number of samples
in the training set. However, the increase in estima-
tion quality strongly supports our intent to use the
reduced training set rather than all samples.

6. Conclusions and Future Work

In this work, we have proposed what we believe is a
novel scheme of global training sample selection for
the process of training a spectral estimation system
for in-line print inspection. Unlike commonly applied
global training, we do not train the system with pub-
licly available test charts, color atlases, or a subset of
them, but instead use a printer characterization
model to generate a large set of ink reflectances
(14600 or more samples). We applied a training sam-
ple selection algorithm (the RRmethod) to reduce the
size of the training set while maintaining or enhanc-
ing the estimation quality.

The proposed algorithm can handle large datasets,
unlike most of the other state-of-the-art global train-
ing sample selection algorithms. Our recursive
method uses clustering to reject groups of similar
samples that do not contribute to enhancing the
estimation quality of a realistic application dataset
that is required as input for the algorithm. Introduc-
ing prior knowledge about a specific estimation
application, as proposed in our approach, allows
the training sample selection to be tailored in an
application-dependent fashion and therefore offers

Fig. 7. RR method optimal parameter search: ΔE00 error over k
and th.

Fig. 8. Mean colorimetric estimation performance (ΔE00) over
number of training samples n for RD, KG, KS, and MH method
and the large dataset. The optimal number of samples nopt is
indicated for all methods, including RR with a squared marker.

Table 2. Experiment 2 Compares Mean Estimation Error and
Time Performance for the Method-Depending Optimal nopt

Selected Training Samples and the Large Dataseta

KS KG MH

Method RD resp resp refl RR ALL

nopt 410 610 4010 6410 1015 14641
ΔE00 1.04 0.98 1.03 1.00 0.95 1.03
dp 0.0059 0.0053 0.0058 0.0056 0.0042 0.0058
RMSE 0.044 0.041 0.044 0.043 0.036 0.043
tsel <0.1 s 91 s 7.5 min 14 s 19 s —

topt <0.1 s 129 h 8 h 44 min — —

aFor applicable methods, it is indicated whether reflectance
data (refl) were used as input or camera responses (resp).
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an advantage over other methods that aim for a more
general design.

It is shown experimentally for real data from a
prototype of a 12-channel multispectral camera sys-
tem for in-line print inspection that the approach of
using modeled reflectances as pool for the training
together with the RR method for sample selection
is outperforming other state-of-the-art methods. This
increase in estimation quality is not significant, but a
major advantage of our method is that the optimal
number of selected training samples is determined
by the RR algorithm automatically and does not
have to be evaluated in a time-consuming process,
as is the case for other methods compared. We con-
clude that reflectance modeling is a feasible alterna-
tive to physically producing a large training set by
printing and later measuring spectral reflectances.
The RR method can be used to process these large
datasets.

In future work, we will further investigate the pro-
posed RR algorithm for training sample selection.
The threshold parameter th is currently a fixed
value, but could be implemented as a function of
the level of recursion of the algorithm, which would
allow a different treatment of small clusters com-
pared to big clusters. Also, the number of clusters
k itself is fixed in the current implementation. By
allowing th and k to change dynamically for consecu-
tive recursive calls of the algorithm we expect to be
able to further reduce the final number of samples
selected without decreasing the estimation quality
obtained for the test sets. As mentioned previously,
the current implementation of our selection algo-
rithm uses linear least-square regression (PI estima-
tion) for simplicity.

Another interesting possibility is to extend our ex-
periments to using printed instances of optimized
training sets that are obtained by different ap-
proaches. By doing so, we want to determine if mod-
eled reflectances and corresponding noisy simulated
camera responses (as used in this work) are per-
forming equally as well as real data. Furthermore,
reflectances are modeled for an ink-jet printer in
this work; however, the multispectral approach for
in-line print inspection considered here is primarily
intended for offset printing. We regard reflectance
modeling for offset printing technology as future
work to be considered once the prototype multispec-
tral camera system is integrated in a printing
machine.

The authors want to express their gratitude to
Piotr Bartczak who provided the modeled reflectan-
ces that were used in this study within the frame-
work of his master’s thesis in the Color in
Informatice and Media Technology (CIMET) Eras-
mus Mundus Master Program. We also want to
thank Max Klammer from Chromasens GmbH for
providing measurement data for this work. Eva
Valero and Javier Hernández-Andrés are supported
by the Spanish Ministry of Science and Innovation

(Grant DPI2011-23202). This work is supported by
Chromasens GmbH (UGR Grant 2936).
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