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This paper describes an emerging approach to the design of task 
sequences and the theory that undergirds it. The approach aims at 
promoting particular mathematical concepts, understood as the result of 
reflective abstraction. Central to this approach is the identification of 
available student activities from which students can abstract the 
intended ideas. The approach differs from approaches in which learning 
to solve the problem posed is the intended learning. The paper illustrates 
the approach through data from a teaching experiment on division of 
fractions.  
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Una aproximación al diseño de secuencias de tareas matemáticas: 
aprendizaje conceptual como abstracción 
Este artículo describe una aproximación emergente al diseño de 
secuencias de tareas y la teoría que la sustenta. La aproximación 
pretende promover conceptos matemáticos concretos como resultado de 
una abstracción reflexiva. Es central en esta aproximación la 
identificación de actividades disponibles para los estudiantes con las 
que puedan abstraer las ideas pretendidas. La aproximación difiere de 
aquellas en las que el aprendizaje para resolver problemas es el 
aprendizaje que se pretende. El artículo ilustra la aproximación a través 
de datos de un experimento de enseñanza sobre la división de fracciones.  

Términos clave: Abstracción reflexiva; Ingeniería didáctica; Tareas matemáticas; 
Teoría de aprendizaje 
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Our research and theoretical work build on several core ideas advanced by Piaget 
and therefore could be considered constructivist in orientation. Multiple 
theoretical perspectives are needed to do the work of design of mathematical 
tasks. Consistent with this view, we see our work as complementary to the work 
of research programs that work from a different core set of theoretical constructs.  

The emerging task design theory that I present here is focused on the 
learning of mathematical concepts and as such offers an approach to addressing 
difficult to learn concepts and to working with students who are struggling to 
learn specific concepts. This task design approach does not address other 
important areas of learning mathematics, particularly the important area of 
mathematical problem solving. Therefore, the approach is meant to complement 
problem-solving approaches, not replace them. The emerging task design theory 
is a product of the learning through activity research program aimed at 
investigating conceptual learning, understood as abstractions from one’s 
mathematical activity. In our empirical studies, we focus on activity that occurs 
in the context of carefully designed sequences of mathematical tasks. We employ 
a spiral strategy in which we design task sequences to study learning through 
student activity, and we use what we come to understand about learning to 
improve our understanding of task design, and so on. 

THEORETICAL BASIS  
The theoretical basis of our research program derives from Piaget’s (2001) work 
on reflective abstraction. DiSessa and Cobb (2004) pointed out, “Piaget’s theory 
is powerful and continues to be an important source of insight. However, it was 
not developed with the intention of informing design and is inadequate, by itself, 
to do so deeply and effectively” (p. 81).  

Our research program is aimed at elaborating reflective abstraction in a way 
that can inform instructional design. 

Two subconstructs of reflective abstraction are foundational to our work: (a) 
goal-directed activity and (b) reflection. Goal-directed activity includes both 
physical and mental activity. The notion of goal-directed is important, because 
the learners’ goals partially determine both what knowledge they call upon and 
what they pay attention to and can notice. Reflection, following von Glasersfeld 
(1995), refers to an innate tendency—often not conscious—to distinguish—
associate—commonalities in one’s experience—e.g., in one’s activity. 

In our research and theoretical work, consistent with Piaget and others, (e.g., 
Hershkowitz, Schwarz, & Dreyfus, 2001; Mitchelmore & White, 2008), we 
consider mathematics conceptual learning as the process of developing new and 
more powerful abstractions. Again following Piaget, we understand abstractions 
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to be learned anticipations and reflective abstractions1 to be those abstractions 
that result from reflection on one’s activity and result in knowledge of logical 
necessity (Simon, 2006; Simon, in press).  

Our task design approach builds on this theoretical base and involves 
specifying hypothetical learning trajectories (Simon, 1995) at multiple levels. In 
this article, I focus on the level of design of particular concepts, not the planning 
of trajectories for larger mathematical topics. A hypothetical learning trajectory 
consists of three components: (a) a learning goal, (b) a set of mathematical tasks, 
and (c) a hypothesized learning process. Whereas the specification of the 
learning goal generally precedes the specification of the tasks and hypothesized 
learning process, these latter two components necessarily co-emerge. That is, the 
learning process is at least partially determined by the tasks used, and the tasks 
used must reflect conjectures about possible learning processes. The design 
approach outlined here focuses particularly on the design process with respect to 
these two components. 

I briefly summarize the rationale for the learning through activity approach 
to task design. If we understand mathematical concepts as the result of reflective 
abstraction, and if we understand reflective abstraction as deriving from the 
learner’s activity, it should be possible to design task sequences that elicit the 
requisite activity and promote abstraction from that activity. (For further 
elaboration of the rationale and theoretical basis of the research program, see 
Simon, Placa, & Avitzur, 2016, and Simon et al., 2010) In the next section, I 
provide an example from our research and follow that with a discussion of the 
key steps in the design process.  

INSTRUCTIONAL EXAMPLE  
In this section, I present an instructional example from a one-on-one teaching 
experiment. The purpose of the teaching experiment was to promote and analyze 
students’ learning of new concepts—making of an abstraction—as they engaged 
in mathematical activity. Towards this end, we engaged them in a sequence of 
tasks and restricted the researcher’s role to probing thinking and posing 
subsequent tasks. 

The student, Erin, was an undergraduate prospective elementary teacher—
one of three that participated in the study. Pre-assessment showed she lacked 
understanding of both the meaning of fraction division and the invert-and-
multiply algorithm, although she had a rote knowledge of the procedure. In 
sessions, prior to the one described here, we worked on the meaning of fraction 
division. 

                                                
1 See Simon, Placa, and Avitzur (2016) for a full description of our elaboration of the reflective 
abstraction construct. 
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The goal of this session can be articulated at two levels of specificity. First, 
we wanted her to reinvent a common-denominator algorithm for division of 
fractions. More specific in terms of the understanding involved, we wanted her to 
understand the invariance of division as the common units of the dividend and 
divisor are varied.  

The task sequence, developed by the author (described in full in the 
Appendix http://goo.gl/OJqznu), began with division-of-fraction word problems 
whose dividend and divisors had common denominators. Erin was asked to solve 
them by drawing a diagram. She was able to solve the first task without 

difficulty—I have 
8
7  of a gallon of ice cream, and I want to give each of my 

friends a 
8
1  gallon portion. To how many friends can I give ice cream? The task 

sequence progressed to word problems in which the dividend and the divisor still 
had common denominators, but the divisor did not divide the dividend equally 

and then to similar tasks presented as number expressions (e.g., 
5
3

5
8
÷ ). Erin’s 

solution process can be summarized as follows. Example of actions for 
5
3

5
8
÷  in 

parentheses.  
♦ Draws the dividend—draws 2 whole rectangles divided into fifths, shades 

5
2  of one rectangle leaving 

5
8  unshaded. 

♦ Identifies groups the size of the divisor (circles each 
5
3 ). 

♦ Counts those groups (counts 2 groups). 

♦ Identifies the remainder—the ungrouped part of the dividend (
5
2

=r ). 

♦ Identifies the fractional part of the quotient by determining the fraction of 

the divisor represented by the remainder (
5
2  is 

3
2  of 

5
3 ). 

After a number of such tasks, the researcher changed the nature of the task. He 
gave Erin a task and announced that the numbers were too messy to draw a 

diagram. The first such task was 
25
7

25
23

÷ . Erin made it clear that she did not 

know the answer, and the researcher encouraged her to talk through a diagram 
solution without actually drawing. This she was able to do without difficulty and 

arrive at the answer. The following task was 
167
2

167
7

÷ . Again, Erin did not 
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know the answer and solved the task by doing a mental (verbal) run of her 

diagram drawing strategy. Finally, the researcher gave her 
103
2

103
7

÷ —same 

numerators as the previous task2. Erin responded immediately with the answer, 
“three and a half”, and explained that she did not need to use the denominator. 
When pushed to justify her claim, she drew a rectangle divided into seven boxes 
and argued that she could group them into groups of two parts regardless of the 
size of the parts represented—e.g., 167ths, 25ths. An additional task verified that 
Erin did not over-generalize for tasks that did not have common denominators 
and that she could convert to common denominators to use her reinvented 
algorithm—make common denominators and divide the numerators. Assessment 
the following week convinced us that she retained her algorithm, she could 
justify it, and she could call on the same reasoning to think about the invariance 
when composite units were involved—e.g., why 2400 divided by 400 is equal to 
24 divided by 4. 

Simon et al. (2010) gave a more detailed look at the data, analysis, and 
explanation of Erin’s learning. My focus here is the abstraction that Erin made. 
That abstraction became evident when Erin quickly gave the answer “three and a 
half”. So what did Erin abstract? Erin abstracted that regardless of the size of the 
parts—assuming common denominators, the quotient would always be the same 
and would be equal to the quotient of the numerators.  

Readers at this point might be tempted to argue that Erin just saw a number 
pattern. However, remember that up to this point in the teaching experiment, Erin 
had not seen two tasks with the same pair of numerators. Thus, there was no 
pattern to observe. The first time she encountered the situation she anticipated the 
result.3 Furthermore, her conclusion was not only about the task in question. She 
now knew that she could find the quotient of any division of fractions involving 
common denominators solely by dividing the numerators. And, she was able to 
justify her conclusions using an improvised diagram related to her diagram 
drawing. These three indications make it clear that the abstraction in question 
was conceptual in nature and not due to noticing a pattern in the numbers.  

THE DESIGN APPROACH  
The task sequence that fostered Erin’s reflective abstraction is an example of the 
general design approach that we use. The first two steps in our design approach 
are the first two steps in most instructional design that is aimed at conceptual 

                                                
2 The fact, that this problem had the same numerators as the previous one, was not pointed out 
to Erin.  
3 Simon (2006) presents a distinction between reflective abstraction and empirical learning 
processes. I have argument that Erin’s learning was the result of reflective abstraction as there 
was no empirical pattern to observe. 
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learning: (a) Assessing student understanding, and (b) articulating a learning 
goal4

 
for the students relative to their current knowledge. It is after these first two 

steps that our approach diverges.  
Our third step is to specify an activity that students currently can call on that 

can be the basis for the abstraction specified in the learning goal. The fourth step 
is to design a task sequence and related hypothesized learning process—the 
remaining aspects of the hypothetical learning trajectory. The task sequence must 
both elicit the intended student activity and lead to the intended abstraction on 
the part of the students. The process must account for not only the overt activity 
of the students, but the mental activities that are expected to accompany those 
overt activities. I will not focus on steps beyond step four 
—e.g., symbolizing, introducing vocabulary, discussing justification, because 
those steps also are common to many approaches.  

I will now use the example of the division-of-fractions task sequence to 
illustrate steps three and four of our task design approach. The consideration of 
what activity to use as the basis for promoting the abstraction is sometimes 
similar to design in Realistic Mathematics Education (RME) (Gravemeijer, 
1994). That is, it often involves a consideration of students’ informal strategies. 
Whereas RME focuses on developing progressively more formal solution 
strategies, our approach is focused on developing concepts by developing 
abstractions from those activities.5

 
In many of our design situations, we have a 

specified learning goal and then endeavor to identify an available activity that 
can be used. Our example of division of fractions illustrates a design in which 
there was an interaction between step two, setting the learning goal, and step 
three, identifying a useful activity. When considering students’ informal 
strategies and considering diagram drawing, we realized that students’ informal 
diagram solutions would more naturally support development of abstractions 
related to a common-denominator algorithm for division of fractions than an 
invert-and-multiply algorithm. Thus, the goal not only affected the identification 
of the activity, but the activity available affected the specific goal towards which 
the design was oriented.6

 
 

                                                
4 Articulation of conceptual learning goals is a problematic issue not covered here. It is a 
theoretical and empirical challenge to specify learning goals in a way and level of specificity 
that adequately guides instructional design (as well as instruction and assessment). See Simon 
(in press) for theoretical work in this area. 
5 Although there are often overlaps in what is learned by students using these two approaches, I 
emphasize here the differences in the primary aim and the theory built to achieve that aim. In 
our work, we build on aspects of RME, particularly their use of “model of becoming model for” 
(Gravemeijer, 1994). 
6 The target algorithm is not itself a conceptual learning goal. We still needed to specify the 
understanding involved (“t to understand the invariance of division as the common units of the 
dividend and divisor are varied”). However, I wanted to use the process of coming to the goals 
to illustrate how the knowledge/activities available can influence the goals that are set. 
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The challenge then was to construct a hypothetical learning trajectory. We 
began with division of fractions word problems and followed them up with 
numerical tasks—no context—to elicit a diagram drawing activity like the one 
that Erin used—outlined above. We then moved to larger numbers for the 
denominators and invited mental runs of the diagram drawing activity, which 
was a change in the activity from the researchers’ perspective. The mental 
activity involved in the mental runs was the activity that led to the intended 
abstraction. Let us examine how the activity of the mental runs was different 
from the diagram drawing activity. In the diagram solutions, the student first 
focused on how to create the number of equal parts in the rectangular unit. The 
focus then shifted to a sequence of two separate counting acts. First, she counted 
parts to circle divisor-sized groups. Second, she counted the number of circles 
produced. In the mental runs, the student could dispense with the first step by 
simply announcing, “I would draw twenty-three twenty-fifths”. The focus shifted 
to the quantities that she needed to relate. In the mental run she had to use whole 
number division to find out how many divisor-sized groups were in the dividend. 
She could no longer count the number of groups she had in front of her. She was 
comparing multiplicatively the number of parts in the dividend with the number 
of parts in the divisor. The original diagram drawing activity provided an 
important step towards this activity, but was unlikely to lead directly to the 
intended abstraction, because the student did not need to conceptualize the 
multiplicative comparison. 

Doing a couple mental runs did not in itself lead to the intended abstraction. 
The researcher at that point posed a task with the same numerators as the 
previous task. The purpose of this particular task was to increase the possibility 
that the student would see the commonality in her activity and, as a result, 
anticipate that the answer had to be the same and realize that it was not 
dependent on the value of the common denominators. So how do we explain the 
resulting change in thinking? 

As mentioned earlier, in doing the mental runs, Erin was able to give 
minimal attention to establishing the dividend—she merely needed to state that 
she would draw it. This initial statement established the size of the parts, so 
that—just as in the diagram drawing—she could focus on the number of parts of 
that size available and the number of parts of that size in a group. Thus, she 
naturally, without necessarily making a conscious decision, paid particular 
attention to how many total parts and how many parts in a group. This “focus of 
attention” (Simon et al., 2010) was not because she considered the denominator 
unimportant, but because she had established he size of the parts and was 
anticipating her next step, a computation involving these two quantities. In the 
third task of this set, when Erin was faced once again with the same pair of 
numerators and different common denominators, she realized that she was about 
to enact the same activity as in the previous task. At that moment, she also 
realized why the size of the common denominators did not change the quotient. 
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This was an example of Erin’s reflection on her—mental—activity. That is, she 
perceived the commonality in her activity in the two cases that led to an 
abstraction. She abstracted that the division of fractions with like denominators is 
equivalent to the division of the numerators—and could explain why it had to be 
so.  

CONCLUSIONS  
I highlight two features of our task design approach that can be seen in the 
example provided above. First, the approach provides a theoretically-based 
strategy for promoting specific mathematical understandings. It contrasts with 
strategies in which students must make a problem-solving leap to solve the given 
task—or hear the solutions of more able peers. Erin was able to solve every task 
she was given without difficulty. Her progress stemmed from her reflection on 
her activity, not from a problem solving breakthrough. Although mathematics 
teaching cannot cause learning, our approach involves engineering task 
sequences so that participating students predictably develop the ability to make 
the new abstraction. Second, the learning goal is not to learn to solve the tasks, as 
it is in many approaches. The tasks are made to elicit activities that the students 
already have available. As stated, Erin was able to solve all of the tasks prior to 
making the intended abstraction. Further, she was not consciously trying to find 
an easier way or to invent an algorithm. Her learning was a product of reflection 
on her activity across a sequence of tasks. 

Let us examine some of the implications of this approach to task design. 
♦ This design approach has particular affordances for research. Used with a 

teaching experiment methodology—design and implementation cycles, it 
provides an opportunity to understand in greater depth the interplay 
among goal-directed activity, reflection, and conceptual learning. (This is 
discussed in depth in Simon et al., 2010) 

♦ This design approach provides a way to design task sequences for 
concepts that students traditionally do not learn well. The approach 
focuses the instructional designers on identifying key activities—available 
to the students—that can serve as the basis for abstractions that are not 
readily made.  

♦ Small group work, using task sequences of the kind discussed here, can 
lead to somewhat different class discussions. If students are making the 
new abstraction as a result of their engagement with the task sequence—
and not needing to hear the abstraction from others, discussions can focus 
more on articulation of the new idea, justification, and establishing the 
idea as taken-as-shared knowledge. 

♦ The design approach has potential to address issues of equity in two ways. 
First, many students who have conceptual gaps early on seem to never 
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recover. This design approach provides a methodology for building up the 
specific experience needed to make particular abstractions. Second, 
success in promoting the new abstractions during small group engagement 
with the tasks can lead to a greater number of students participating in and 
benefiting from the class discussions that follow. That is, a greater number 
of the students might have the experiential base for contributing to the 
articulation of the abstracted relationship being discussed. 

One final point that was discussed briefly at the beginning of this paper is the 
relationship of our approach with mathematical problem solving. The approach 
that I have described and exemplified does not focus on students developing their 
problem solving abilities. Rather it focuses narrowly on the development of 
mathematical concepts. Developing problem solving abilities is a key part of 
mathematics education. Students may learn concepts through problem solving 
lessons. Our approach is in no way intended to minimize the importance of 
lessons in which that is the case. Rather, our approach provides an additional tool 
that has the potential for success in conceptual areas where mathematics 
educators tend to be less successful.  
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