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Resumen y Conclusiones

Introducción

Una buena parte de las investigaciones y aplicaciones en reconstrucción y clasi-
�cación de imágenes se centran en la resolución de problemas inversos, esto es,
a partir de un evento observado, encontrar las causas más probables que lo han
provocado. Estos problemas han sido abordados siguiendo numerosas aproxima-
ciones. Las estructuras espectrales y espaciales de las imágenes, provocan una alta
correlación entre los píxeles, que puede ser explotada explicitamente por métodos
probabilísticos (véase por ejemplo, [1, 2, 3, 4]).

Problemas de reconstrucción y clasi�cación de imágenes como restauración de
imágenes [5, 6, 7], deconvolución ciega [8, 9, 10], super-resolución [11, 12, 13], adquisi-
ción del campo de luz [14, 15, 16], pansharpening [17], clasi�cación de imágenes mul-
tiespectrales [18, 19, 20, 21], aprendizaje activo [22, 23, 24], recuperación de vídeo
[25, 26, 27], compresión de vídeo [28], vídeo vigilancia [29], reconocimiento de caras
[30, 31, 32], registrado de imágenes [33] y el tratamiento de imágenes médicas [34]
entre otros, pueden abordarse usando modelización e inferencia bayesiana.

Un principio fundamental de la �losofía bayesiana es considerar todos los parámet-
ros y variables no observadas como cantidades estocásticas, asignándoles distribu-
ciones de probabilidad basadas en creencias. Por ejemplo, a veces en reconstrucción
de imágenes, la imagen original, el ruido de la observación, e incluso la función
que de�ne el proceso de adquisición de la observación, son tratadas como vari-
ables aleatorias, asignándoles funciones de densidad que modelan el conocimiento
disponible sobre la naturaleza de las imágenes y el proceso de formación de la imagen
observada.

Dentro de la inferencia bayesiana, los métodos variacionales bayesianos (VB) han
atraído el interés de la comunidad estadística bayesiana, la dedicada al aprendizaje
automático, así como la de otras áreas relacionadas. La mayor desventaja de los
métodos de inferencia tradicionales, como máxima verosimilitud o máximo a poste-
riori, es que no hacen uso de la información que aporta la distribución a posteriori. El
algoritmo EM requiere un conocimiento completo de la distribución a posteriori que,
en muchas ocasiones, no puede ser calculada. Los métodos de simulación consiguen
obtener la distribución a posteriori pero en la práctica son métodos computacional-
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mente muy costosos. Los métodos VB [35, 36, 37, 1, 38, 39, 40] consiguen superar
estas limitaciones aproximando la distribución a posteriori desconocida por una dis-
tribución más simple y analíticamente tratable y, por tanto, extender la aplicabilidad
de la inferencia bayesiana a un mayor rango de modelizaciones. Por ejemplo, per-
mite usar con facilidad distribuciones a priori más complejas (las cuales son muchas
veces necesarias en problemas de procesamiento de imágenes) consiguiendo mejorar
la exactitud de las estimaciones.

En esta tesis doctoral, exploramos la aplicación de la modelización e inferencia
bayesiana a los siguientes problemas: restauración de imágenes, deconvolución ciega,
clasi�cación de imágenes multiespectrales, aprendizaje activo, adquisición de campos
de luz y recuperación de vídeo. De esta forma demostramos la amplia aplicabilidad
de esta metodología para resolver un amplio rango de problemas de procesamiento
de imágenes y clasi�cación. La memoria contiene contribuciones generales y especí�-
cas. Incluye una revisión de los modelos bayesianos que se han aplicado al problema
de deconvolución ciega, así como contribuciones en problemas muy especí�cos. Este
formato de tesis abordando una amplia gama de problemas hace que sea particu-
larmente útil para cualquiera que esté interesado en aprender sobre modelización e
inferencia bayesiana.

Estructura de la Tesis Doctoral

El principal objetivo de esta tesis doctoral es el estudio de la modelización e in-
ferencia bayesiana y su aplicación a problemas de reconstrucción y clasi�cación de
imágenes, que hemos agrupado en tres bloques: restauración de imágenes y de-
convolución ciega, clasi�cación de imágenes multiespectrales y aprendizaje activo y
otros problemas relacionados (adquisición de campos de luz y recuperación de video).
La tesis se presenta en la modalidad de �compendio� y a continuación citamos las
contribuciones en cada uno de los bloques.

Bloque I: Restauración de Imágenes y Deconvolución Ciega

• H. Madero-Orozco, P. Ruiz, J. Mateos, R. Molina, y A.K. Katsaggelos, �Image
Deblurring Combining Poisson Singular Integral and Total Variation Prior
Models� en 21th European Signal Processing Conference (EUSIPCO 2013),
1569744251, Marrakech (Marruecos), Septiembre 2013.

• P. Ruiz, H. Madero-Orozco, J. Mateos, O.O. Vergara-Villegas, R. Molina, y
A.K. Katsaggelos, �Combining Poisson Singular Integral and Total Variation
Prior Models in Image Restoration�, Signal Processing, vol. 103, 296-308,
Octubre 2014.

• P. Ruiz, X. Zhou, J. Mateos, R. Molina, y A.K. Katsaggelos, �Variational
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bayesian Blind Image Deconvolution: A Review�, Digital Signal Processing,
2015. doi:10.1016/j.dsp.2015.04.012 (Aceptado para publicación. Disponible
online desde 4 Mayo 2015)

Bloque II: Clasi�cación de Imágenes Multiespectrales y Apren-
dizaje Activo

• P. Ruiz, J.V. Talens, J. Mateos, R. Molina, y A.K. Katsaggelos, �Interac-
tive Classi�cation Oriented Superresolution of Multispectral Images� en 7th
International Workshop Data Analysis in Astronomy (DAA2011), editado por
Livio Scarsi and Vito Di Gesù, 77-85, Erice (Italy), Abril 2011.

• P. Ruiz, J. Mateos, R. Molina, y A.K. Katsaggelos, �Learning Filters in Gaus-
sian Process Classi�cation Problems� en IEEE International Conference on
Image Processing (ICIP 2014), 2913-2917, Paris (Francia), Octubre 2014.

• P. Ruiz, J. Mateos, R. Molina, y A.K. Katsaggelos, �A bayesian Active Learn-
ing Framework for a Two-Class Classi�cation Problem� en MUSCLE Interna-
tional Workshop on Computational Intelligence for Multimedia Understanding,
editado por Emanuele Salerno, A. Enis Çetin y Ovidio Salvetti, vol. LNCS-
7252, 42-53, Pisa (Italia), 2012.

• P. Ruiz, J. Mateos, G. Camps-Valls, R. Molina, y A.K. Katsaggelos, �bayesian
Active Remote Sensing Image Classi�cation�, IEEE Transactions on Geo-
science and Remote Sensing, vol. 52, no. 4, 2186-2196, Abril 2014.

• P. Ruiz, N. Pérez de la Blanca, R. Molina, y A.K. Katsaggelos, �bayesian
Classi�cation and Active Learning Using `p-Priors. Application to Image Seg-
mentation� en 22th European Signal Processing Conference (EUSIPCO 2014),
1183-1187, Lisboa (Portugal), Septiembre 2014.

Bloque III: Otros Problemas Relacionados (Adquisición de
Campos de Luz y Recuperación de Video)

En el problema de adquisición de campos de luz se publicaron las siguientes con-
tribuciones:

• S.D. Babacan, R. Ansorge, M. Luessi, P. Ruiz, R. Molina, y A. K. Katsagge-
los, �Compressive Light Field Sensing�, IEEE Transaction on Image Process-
ing, vol. 21, no. 12, 4746-4757, Diciembre 2012.

• P. Ruiz, J. Mateos, C. Cárdenas, S. Nakajima, R. Molina, y A.K. Katsagge-
los, �Light Field Acquisition from Blurred Observations Using a Programmable
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Coded Aperture Camera� en 21th European Signal Processing Conference
(EUSIPCO 2013), 1569743131, Marrakech (Marruecos), Septiembre 2013.

Para el problema de recuperación de video se presentaron las siguientes publica-
ciones:

• P. Ruiz, S.D. Babacan, L. Gao, Z. Li, R. Molina, y A.K. Katsaggelos, �Video
Retrieval Using Sparse bayesian Reconstruction� en IEEE International Con-
ference on Multimedia and Expo (ICME2011), 1-6, Barcelona (España), Julio
2011.

• P. Ruiz, S.D. Babacan, R. Molina, y A.K. Katsaggelos, �Retrieval of Video
Clips with Missing Frames using Sparse bayesian Reconstruction� en 7th In-
ternational Symposium on Image and Signal Processing and Analysis (ISPA
2011), 443-448, Dubrovnik (Croacia), Septiembre 2011.

Conclusiones

En esta tesis doctoral hemos aplicado la modelización e inferencia bayesiana a prob-
lemas de recuperación y clasi�cación de imágenes. Hemos demostrado que los prob-
lemas de restauración de la imagen, deconvolución ciega imagen, clasi�cación de
imágenes multiespectrales, pansharpening, aprendizaje activo, adquisición de cam-
pos de luz y recuperación de vídeo se pueden modelar dentro del marco bayesiano,
y la inferencia bayesiana nos ha permitido estimar la solución de estos problemas.
En algunos casos, se han utilizado estimadores puntuales para reducir los problemas
de inferencia a problemas de optimización. En otros casos, la inferencia variacional
nos ha permitido aproximar la distribución a posteriori y estimar los parámetros del
modelo. En las secciones experimentales, los métodos propuestos han demostrado
ser muy precisos y e�cientes y, en casi todos los casos, han llegado a superar los
métodos de última generación. A continuación detallamos las conclusiones especí�-
cas para cada bloque.

Bloque I: Restauración de Imágenes y Deconvolución Ciega

• Hemos presentado un nuevo método de restauración de imágenes que utiliza
Modelización e Inferencia Bayesuiana para combinar dos modelos a priori: el
modelo de variación total (TV), que realza las fronteras y suaviza las regiones
planas, y el modelo de la integral singular de Poisson (PSI) que es capaz de
conservar texturas. El producto �nal es un algoritmo de restauración que
combina las ventajas de ambos métodos. Además se ha llevado a cabo un
estudio sobre los modelos TV y PSI, y los parámetros que controlan su forma,
y hemos concluido que ni el modelo TV ni el PSI por separado pueden conseguir
restauraciones que a la vez recuperen textura y controlen el ruido. Finalmente
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se ha llevado a cabo un conjunto de experimentos donde el método propuesto
ha sido comparado con otros modelos clásicos y del estado del arte. Los
experimentos llevados a cabo demuestran que, en imágenes con detalles y
regiones planas, el modelo de restauración propuesto, que combina los modelos
TV y PSI, obtienen los mejores resultados.

• También hemos realizado una revisión sobre los métodos bayesianos de decon-
volución de imágenes que existen en la literatura (BID). Hay dos sucesos que
marcan la historia reciente de BID: el creciente interés de la comunidad de
visión por computador en resolver problemas de BID y el dominio de la infer-
encia bayesiana como herramienta para resolverlos. El uso de métodos VB en
combinación con modelos de imagen como los basados en las representaciones
de Super Gaussianas y Mezcla Escalada de Gaussianas ha conducido a her-
ramientas muy generales y potentes que consiguen muy buenas restauraciones
a partir de las imágenes emborronadas. También se han aportado ejemplos de
restauraciones con métodos en el estado del arte y se han discutido problemas
que marcarán el futuro cercano de las investigaciones en BID.

Bloque II: Clasi�cación de Imágenes Multiespectrales

• Hemos demostrado que las técnicas de pansharpening pueden ser usadas para
mejorar el rendimiento de los métodos de clasi�cación en imágenes multiespec-
trales. Para ello se ha abordado el problema de modi�car adaptativamente los
parámetros de los métodos de pansharpening con el objetivo de mejorar las
medidas de clasi�cación sobre una clase dada sin deteriorar el rendimiento
sobre las otras clases. La validez de la técnica propuesta ha sido demostrada
usando un imagen real de Quickbird.

• También hemos presentado un método que �ltra y clasi�ca imágenes de forma
conjunta. Usando la modelización bayesiana y la inferencia variacional hemos
desarrollado un algoritmo iterativo que estima los parámetros del clasi�cador
y un banco de �ltros óptimo de forma conjunta. En la sección experimen-
tal demostramos que los �ltros estimados ayudan a mejorar el rendimiento
en clasi�cación. El método propuesto se comparó con otras aproximaciones
de clasi�cación/�ltrado, y los resultados experimentales demostraron que el
método propuesto es más preciso y e�ciente.

• Hemos presentado una aproximación bayesiana no-paramétrica basada en nú-
cleos para clasi�cación de imágenes multiespectrales. A partir de la informa-
ción proporcionada por el clasi�cador se han desarrollado técnicas de apren-
dizaje activo que mostraron un rendimiento comparable a técnicas de apren-
dizaje activo recientes, que utilizan máquinas de vectores soporte (SVM). Los
tres métodos desarrollados fueron: máxima diferencia de entropías, mínima
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distancia a la frontera de decisión y mínima distancia normalizada. La es-
timación de los parámetros se hace de forma automática. La aproximación
propuesta fue probada en varios escenarios para resolver el problema de la
monitorización urbana con imágenes multiespectrales y datos de radar SAR.
Se observó que, aunque el rendimiento en clasi�cación era muy similar a SVM,
en aprendizaje activo los métodos propuestos consiguen una mejora impor-
tante.

• También hemos abordado el problema de clasi�cación imponiendo que los co-
e�cientes adaptativos tengan mínima pseudo norma `p. Así los coe�cientes
adaptativos correspondientes a las características no relevantes se harán cero,
lo que nos permite identi�carlos. Se usó la inferencia variacional bayesiana
para estimar todos los parámetros del modelo y además se probó la relación
con distribuciones a priori gaussianas independientes. También se calculó la
distribución predictiva de las clases, lo que nos permitió desarrollar dos nuevas
técnicas de aprendizaje activo para este clasi�cador: máxima entropía y mín-
ima probabilidad. En la sección experimental, los resultados demostraron que
el uso de las distribuciones `p permiten al clasi�cador seleccionar las carac-
terísticas discriminatorias y descartar la componentes que no son relevantes.
La aproximación propuesta ha demostrado ser más precisa que los métodos
SVM en problemas de clasi�cación y aprendizaje activo.

Bloque III: Otros Problemas Relacionados (Adquisición de
Campos de Luz y Recuperación de Vídeo)

• En adquisición de campos de luz, hemos presentado un nuevo prototipo de cá-
mara que usa apertura codi�cada para captar el campo de luz de una escena.
Este prototipo fue desarrollado en colaboración con el Instituto Andaluz de
Astrofísica (IAA). En [15] se colaboró para desarrollar un sistema que usa la
teoría de muestreo compresivo para obtener el campo de luz tomando muchas
menos observaciones que vistas del campo de luz. Además en [16], abor-
damos el problema de recuperar el campo de luz a partir de observaciones
emborronadas, que aparecen debido a la profundidad de campo limitada de
las cámaras. Hemos desarrollado un método para deconvolucionar el campo
de luz y obtener imágenes nítidas a partir de observaciones emborronadas, que
ha funcionado sobre imágenes sintéticas y reales.

• En recuperación de vídeo hemos desarrollado un sistema robusto y e�ciente,
basado en el uso de representaciones ralas, muestreo compresivo y modelización
bayesiana del problema de recuperación de vídeo. Los resultados experimen-
tales han demostrado que el método propuesto funciona mejor que los métodos
existentes en el estado del arte. También hemos demostrado que el modelo
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propuesto es muy efectivo y robusto a ruido y fotogramas perdidos, y no re-
quiere métodos so�sticados de extracción de características. Además, el mod-
elo propuesto tiene un menor coste computacional que algunos de los métodos
de recuperación de vídeo en el estado del arte consiguiendo, al mismo tiempo,
una muy alta precisión en la recuperación.
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Summary and Conclussions

Introduction

A good part of the research and applications on image recovery and image clas-
si�cation deals with inverse problems, that is, moving from known events back to
their most probable causes. Solutions to these problems have been derived using
numerous approaches. Spatial and spectral image structures lead to high correla-
tion among pixels, which can be explicitly exploited by probabilistic methods (see
for instance [1, 2, 3, 4]).

Image recovery and classi�cation problems like image restoration [5, 6, 7], blind
image deconvolution [8, 9, 10], super-resolution [11, 12, 13], light �eld acquisition
[14, 15, 16], pansharpening [17], multispectral image classi�cation [18, 19, 20, 21],
active learning [22, 23, 24], video retrieval [25, 26, 27], video compression [28], video
surveillance [29], face recognition [30, 31, 32], image alignment [33] and medical
imaging [34], among many others can be approached using Bayesian modeling and
inference.

A fundamental principle of the Bayesian philosophy is to regard all parameters
and unobservable variables of a given problem as unknown stochastic quantities, as-
signing probability distributions based on beliefs. For instance, in an image recovery
problem, the original image(s), the observation noise, and even the function(s) de�n-
ing the acquisition process can all be treated as samples of random variables, with
corresponding prior Probability Density Functions (PDFs) that model the available
knowledge on the nature of images and the imaging process.

Within Bayesian inference, Variational Bayesian (VB) methods have attracted
a lot of interest in Bayesian statistics, machine learning and related areas. A ma-
jor disadvantage of traditional methods like Maximum Likelihood or Maximum a
Posteriori, is that they do not make use of the information provided by the poste-
rior. Expectation Maximization requires the complete knowledge of some posterior
probabilities which cannot, in many cases, be calculated. Simulation methods aim
at obtaining the true posterior; however, they usually are very time consuming.
Variational Bayesian methods [35, 36, 37, 1, 38, 39, 40] overcome these limitations
by approximating the unknown posterior distributions with simpler, analytically
tractable distributions, and therefore extend the applicability of Bayesian inference
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to a much wider range of modeling options. For instance the use of more complex
priors (which are very often needed in image processing problems) modelling the
unknowns can be utilized with ease, resulting in improved estimation accuracy.

In this dissertation we explore the application of Bayesian modeling and inference
to the following problems: image restoration, blind image deconvolution, multispec-
tral image classi�cation, active learning, light �eld acquisition and video retrieval.
By doing so we prove the applicability of the Bayesian framework to solve a wide
range of image processing and classi�cation tasks.

We believe it is important to indicate that the dissertation contains very broad
as well as very speci�c contributions. Its content includes a Bayesian review of the
very interesting blind image decovolution problem and also includes contributions
on very speci�c problems. This wide range format makes it particulary useful to
anyone wanting to learn about Bayesian modeling and inference.

Structure of the Ph.D. Thesis

The main goal of this dissertation is to study the application of Bayesian modeling
and inference to image recovery and classi�cation problems. Its contents have been
grouped into three blocks: image restoration and blind deconvolution, multispectral
image classi�cation and other related problems (light �eld acquisition and video
retrieval). The dissertation is presented in the modality of �compendium�, and the
scienti�c contributions on each block are cited below.

Block I: Image Restoration and Blind Image Deconvolution

• H. Madero-Orozco, P. Ruiz, J. Mateos, R. Molina, and A.K. Katsaggelos, �Im-
age Deblurring Combining Poisson Singular Integral and Total Variation Prior
Models� in 21th European Signal Processing Conference (EUSIPCO 2013),
1569744251, Marrakech (Morocco), September 2013.

• P. Ruiz, H. Madero-Orozco, J. Mateos, O.O. Vergara-Villegas, R. Molina, and
A.K. Katsaggelos, �Combining Poisson Singular Integral and Total Variation
Prior Models in Image Restoration�, Signal Processing, vol. 103, 296-308,
October 2014.

• P. Ruiz, X. Zhou, J. Mateos, R. Molina, and A.K. Katsaggelos, �Variational
Bayesian Blind Image Deconvolution: A Review�, Digital Signal Processing,
2015. doi:10.1016/j.dsp.2015.04.012 (Accepted for publication. Available on-
line since 4 may 2015)
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Block II: Multispectral Image Classi�cation and Active Learn-
ing

• P. Ruiz, J.V. Talens, J. Mateos, R. Molina, and A.K. Katsaggelos, �Inter-
active Classi�cation Oriented Superresolution of Multispectral Images� in 7th
International Workshop Data Analysis in Astronomy (DAA2011), edited by
Livio Scarsi and Vito Di Gesù, 77-85, Erice (Italy), April 2011.

• P. Ruiz, J. Mateos, R. Molina, and A.K. Katsaggelos, �Learning Filters in
Gaussian Process Classi�cation Problems� in IEEE International Conference
on Image Processing (ICIP 2014), 2913-2917, Paris (France), October 2014.

• P. Ruiz, J. Mateos, R. Molina, and A.K. Katsaggelos, �A Bayesian Active
Learning Framework for a Two-Class Classi�cation Problem� in MUSCLE In-
ternational Workshop on Computational Intelligence for Multimedia Under-
standing, edited by Emanuele Salerno, A. Enis Çetin and Ovidio Salvetti, vol.
LNCS-7252, 42-53, Pisa (Italy), 2012.

• P. Ruiz, J. Mateos, G. Camps-Valls, R. Molina, and A.K. Katsaggelos, �Bayesian
Active Remote Sensing Image Classi�cation�, IEEE Transactions on Geo-
science and Remote Sensing, vol. 52, no. 4, 2186-2196, April 2014.

• P. Ruiz, N. Pérez de la Blanca, R. Molina, and A.K. Katsaggelos, �Bayesian
Classi�cation and Active Learning Using `p-Priors. Application to Image Seg-
mentation� in 22th European Signal Processing Conference (EUSIPCO 2014),
1183-1187, Lisbon (Portugal), September 2014.

Block III:Other Related Problems (Light Field Acquisition and
Video Retrieval)

For the light �eld acquisition problem the following contributions were presented:

• S.D. Babacan, R. Ansorge, M. Luessi, P. Ruiz, R. Molina, and A. K. Kat-
saggelos, �Compressive Light Field Sensing�, IEEE Transaction on Image Pro-
cessing, vol. 21, no. 12, 4746-4757, December 2012.

• P. Ruiz, J. Mateos, C. Cárdenas, S. Nakajima, R. Molina, and A.K. Katsagge-
los, �Light Field Acquisition from Blurred Observations Using a Programmable
Coded Aperture Camera� in 21th European Signal Processing Conference (EU-
SIPCO 2013), 1569743131, Marrakech (Morocco), September 2013.

For the video retrieval problem the following contributions were presented:

• P. Ruiz, S.D. Babacan, L. Gao, Z. Li, R. Molina, and A.K. Katsaggelos,
�Video Retrieval Using Sparse Bayesian Reconstruction� in IEEE International
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Conference on Multimedia and Expo (ICME2011), 1-6, Barcelona (Spain), July
2011.

• P. Ruiz, S.D. Babacan, R. Molina, and A.K. Katsaggelos, �Retrieval of Video
Clips with Missing Frames using Sparse Bayesian Reconstruction� in 7th In-
ternational Symposium on Image and Signal Processing and Analysis (ISPA
2011), 443-448, Dubrovnik (Croatia), September 2011.

Conclusions

In this Dissertation we have applied Bayesian Modeling and Inference to Image
Recovery and Classi�cation Problems. We have shown that the image restoration,
blind image deconvolution, multispectral image classi�cation, pansharpening, active
learning, light �eld acquisition and video retrieval problems can be modeled using the
Bayesian framework, and Bayesian inference has allowed us to �nd solutions to these
problems. In some cases, point estimates have been utilized to reduce the inference
problems to an optimization one. In other, variational inference has allowed us to
approximate the posterior distribution, and estimate the model parameters. In the
performed experiments, the proposed methods have been shown to be very accurate
and e�cient and, in almost all problems, they have outperformed the state-of-the-art
methods.

Below we detail the speci�c conclusions for each block.

Block I: Image Restoration and Blind Deconvolution

• First, we have presented a novel image restoration method that uses the
Bayesian paradigm to combine two prior models: the total variation (TV)
model that preserves edge structure while imposing smoothness on the solu-
tion and controlling noise, and the Poisson singular integral (PSI) model which
is capable of preserving textures but cannot di�erentiate between highly de-
tailed textures and noise. The �nal product is a restoration algorithm that
combines the advantages of the two models. A study of TV and PSI mod-
els and the parameters that control their shape has been carried out. The
work concludes that neither the TV nor the PSI image models alone can suc-
cessfully recover textures and control noise. A set of experiments has been
carried out, where the proposed method has been compared against both clas-
sical and state-of-the-art methods. The experimental results supported that
for images with a combination of detailed and smooth regions, the proposed
restoration method, which combines TV and PSI prior models, provides the
best restorations.

• For the BID problem we have written a review of the recent literature on
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Bayesian blind image deconvolution (BID) methods. We have stated that two
events have marked the recent history of BID: the predominance of variational
Bayes (VB) inference as a tool to solve BID problems and the increasing
interest of the computer vision community in solving BID problems. We have
shown that VB inference in combination with recent image models like the
ones based on Super Gaussian (SG) and scale mixture of Gaussians (SMG)
representations have led to the use of very general and powerful tools to provide
clear images from blurry observations. In the provided review emphasis has
been paid on VB inference and the use of SG and SMG models with coverage
of recent advances in sampling methods. We have also provided examples of
current state of the art BID methods and have discussed problems that very
likely will mark the near future of BID.

Block II: Multispectral Image Classi�cation Problems

• We have shown that pansharpening techniques can be used to increase the per-
formance of classi�cation methods when applied to multispectral images. We
have addressed the problem of adaptively modifying the parameter of a pan-
sharpening method in order to improve the precision and recall �gures of merit
of a classi�er on a given class without deteriorating its performance over the
other classes. The validity of the proposed technique has been demonstrated
using a real Quickbird image.

• We have also presented a new method to jointly �lter and classify a signal or an
image. Using Bayesian modeling and variational inference we have developed
an iterative procedure to jointly estimate the classi�er parameters, the �lter
bank and the model parameters. We have experimentally shown that the
estimated �lters improve the classi�er performance. The proposed method has
been compared with other classi�cation/�ltering approaches, and experimental
results have shown that the new method is both more accurate and more
e�cient.

• We have presented a non-parametric Bayesian learning approach based on
kernels for remote sensing image classi�cation. The Bayesian methodology ef-
�ciently tackles purely supervised and active learning approaches, and shows
competitive performance when compared to support vector machines (SVMs)
and recent active learning (AL) approaches. An incremental learning approach
based on three di�erent approaches was presented: maximum di�erential of
entropies, minimum distance to decision boundary, and minimum normalized
distance. Automatic parameter estimation is performed by using the evidence
Bayesian approach, the kernel trick, and the marginal distribution of the obser-
vations instead of the posterior distribution of the adaptive parameters. The
proposed approach was tested on several scenes dealing with urban monitoring
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problems using multispectral and SAR data. We observed that, while similar
results are obtained by SVMs in supervised mode, an improvement in accu-
racy and convergence is observed for the active learning scenario. Interestingly
our methods do not only provide point-wise class predictions but con�dence
intervals.

• We have also developed a multiclass classi�cation system using a prior on the
adaptive coe�cients based on the `p pseudo-norm. The contribution of the
adaptive coe�cients corresponding to no relevant data will be zero, which al-
lows us to identify the irrelevant coe�cients. Variational inference has been
used to estimate all model parameters and connections with independent Gaus-
sian priors was established. The predictive distribution of the classes has been
calculated. This distribution has been used to de�ne two active learning meth-
ods, named Minimum Probability Criteria and Maximum Entropy Criteria.
Experimental results have shown that the use of `p-priors allows the classi�er
to select discriminative features and discard non-relevance components. The
proposed approach has shown higher accuracy than SVM methods in both
classi�cation and AL problems.

Block III: Other Related Problems (Light Field Acquisition
and Video Retrieval)

• We have developed a new programmable aperture camera prototype to cap-
ture the light �eld. The prototype was constructed in collaboration with the
Instituto de Astrofísica de Andalucía (IAA). In [15] we developed a system
which uses the compressive sensing theory to capture the light �eld by taking
much fewer observations than views of the light �eld. In [16], we addressed
the problem of recovering blurred light �elds. We developed a method to de-
convolve blurred light �elds and experimentally showed that it is possible to
obtain sharp images from blurred observations using both synthetic and real
images.

• We have developed a robust and e�cient system for video retrieval, based on
the use of sparse representation, compressive sensing and Bayesian modeling
of the video retrieval problem. Experimental results demonstrate that the
proposed method performs better than existing state-of-the-art systems and
also it is robust against noise. We have also shown that the new system is
very e�ective and robust to noise and missing frames, and does not require
sophisticated and data-dependent feature extraction methods.
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Chapter 1

Introduction

1.1 Introduction

A good part of the research and applications on image recovery and image clas-
si�cation deal with inverse problems, that is, moving from known events back to
their most probable causes. Solutions to these problems have been originally de-
rived using numerous approaches. Spatial and spectral image structures lead to a
high correlation between pixels, which can be explicitly exploited by probabilistic
methods (see for instance [1, 2, 3, 4]).

Image recovery and classi�cation problems like image restoration [5, 6, 7], blind
image deconvolution [8, 9, 10], super-resolution [11, 12, 13], light �eld acquisition
[14, 15, 16], pansharpening [17], multispectral image classi�cation [18, 19, 20, 21],
active learning [22, 23, 24], video retrieval [25, 26, 27], video compression [28], video
surveillance [29], face recognition [30, 31, 32], image alignment [33] and medical
imaging [34], among many others can be approached by using Bayesian modeling
and inference.

A fundamental principle of the Bayesian philosophy is to regard all parameters
and unobservable variables of a given problem as unknown stochastic quantities, as-
signing probability distributions based on beliefs. For instance, in an image recovery
problem, the original image(s), the observation noise, and even the function(s) de�n-
ing the acquisition process can all be treated as samples of random variables, with
corresponding prior Probability Density Functions (PDFs) that model the available
knowledge on the nature of images and the imaging process.

Within Bayesian inference, Variational Bayesian (VB) methods have attracted
a lot of interest in Bayesian statistics, machine learning and related areas. A major
disadvantage of traditional methods like ML or MAP, is that the do not make use
of the information provided by the posterior. EM requires the complete knowledge
of some posterior probabilities which cannot, in many cases, be calculated. Simula-
tion methods aim that obtaining the true posterior however they usually are very
time consuming. Variational Bayesian methods [35, 36, 37, 1, 38, 39, 40] overcome

1
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limitations by approximating the unknown posterior distributions with simpler, an-
alytically tractable distributions, and therefore extend the applicability of Bayesian
inference to a much wider range of modeling options. For instance, the use of more
complex priors (which are very often needed in image processing problems) to model
the unknowns can be utilized with ease, resulting in improved estimation accuracy.

In this dissertation we explore the application of Bayesian modeling and inference
to the following problems: image restoration, blind image deconvolution, multispec-
tral image classi�cation, active learning, light �eld acquisition and video retrieval.
By doing so we prove the wide applicability of the Bayesian framework to solve a
wide range of image processing and classi�cation problems.

We believe that is it important to indicate that the dissertation contains very
broad as well as very speci�c contributions. Its content includes a Bayesian review
of the very interesting blind image decovolution problem and also includes contribu-
tions on very speci�c problems. This wide range format of the dissertation makes it
particulary useful to anyone wanting to learn on Bayesian modeling and inference.
Furthermore, it provides its author with the knowledge of an extremely powerful
tool which can be applied to many interesting problems.

Let us now brie�y describe the image processing and classi�cation problems we
will contribute to in the thesis.

1.1.1 Image Restoration and Blind Image Deconvolution

As stated in [10], thousands of millions of pictures are taken everyday. If the claim
in [41] is right, 880 billion photos were taken in 2014. Every minute, 27,800 pictures
are uploaded to Instagram, 208,300 photos are uploaded to Facebook and more than
one thousand to Flickr, and the trend, with a digital camera in every mobile phone,
is probably exponentially increasing. Those pictures are intended to be a detailed
representation of reality, but very often the captured image is degraded by blur and
noise. Blur can occur, for instance, by movement during the capturing process or
because the scene is out of focus. Furthermore, noise can be introduced, for instance,
by sensor imperfections, poor illumination or communication errors [42].

Image restoration, also referred to as image deconvolution, is a mature topic that
aims at recovering the underlying original image from its blurred and noisy obser-
vations. Sometimes, the blur is completely or partially known or can be estimated
prior to the deconvolution process. For instance, in astronomical imaging, an accu-
rate representation of the blur can be obtained by imaging a single star �rst before
photographing the astronomical object of interest. In contrast, blind image decon-
volution (BID) tackles the restoration problem without knowing the blur in advance,
leading to one of the most challenging image processing problems, since many com-
binations of blur and �true� image can produce the observed image. To start with,
image restoration with a known blur is an ill posed problem in the Hadamard sense
[43], that is, small variations in the data result in large variations in the solution.
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The problem is exacerbated in the BID problem, since in addition, small variations
in the estimated blur can lead to large variations in the restored image. BID is an
underdetermined nonlinear inverse problem, which requires the estimation of many
more unknown variables than the available observed data. To �nd meaningful solu-
tions, not only prior information about the unknowns is crucial, but also a good and
sound estimation approach. Variational Bayes inference has emerged as a dominant
approach for the solution of restoration and blind image deconvolution problems.
VB inference in combination with recently introduced image models has led to the
development of very general and powerful tools to obtain clear images from blurry
observations which will be explored in this dissertation.

1.1.2 Multispectral Image Classi�cation and Active Learning

Remote sensing images are of great interest in numerous applications. Map drawing,
delimitation of parcels, studies on hydrology, forest or agriculture are just a few
examples where these images are used [44, 45, 46]. Many of these applications
involve the classi�cation of pixels in an image into a number of classes. In supervised
classi�cation, the user provides the label of a set of samples to train the classi�ers.
Usually, the larger the training set, the better the classi�cation performance but
more expensive (in time or money) the construction of such a set is.

Due to physical and technological constraints, satellite images need to be pro-
cessed before the classi�er is trained. Many real classi�cation tasks takes into ac-
count the sequentiality (or vicinity) of the pixels, by �rst �ltering the data and then
performing classi�cation. For instance, in [20] multispectral images are �ltered be-
fore training the classi�er, using a �lter specially designed to improve the separation
between classes. In [47], the authors use pansharpening methods, an image fusion
approach that combines low resolution multispectral and panchromatic images to
obtain an image with the spectral resolution of the multispectral image and the
spatial resolution of the panchromatic image, followed by a classi�cation method on
the improved multispectral image.

However, as proved in [48] if processing is carried out before training, the classi�er
performance may not be optimal. To deal with this problem, an optimal �lterbank
is estimated during the training phase of a maximum margin classi�er in [48]. The
idea of jointly optimizing a �lter and a classi�er dates back to the 1990s within
the �eld of arti�cial neural networks. It was, for instance, used in convolutional
networks [49] or to de�ne a neural model for temporal processing [50, 51].

While extracting the training pixels is normally straightforward and inexpen-
sive, labeling each one of those pixels is a tedious and often expensive task. Active
learning is a supervised learning technique that attempts to overcome the labeling
bottleneck by asking queries in the form of unlabeled samples to be labeled by an
oracle (e.g., a human annotator) [22]. An active learning procedure queries only the
most informative samples from the whole set of unlabeled samples. The objective is
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to obtain a high classi�cation performance using as few labeled samples as possible,
minimizing, this way, the cost of obtaining labeled data. In the literature there
are active learning methods that use Support Vector Machines (SVM) as classi�er
[22, 24, 52], as well as Bayesian approaches [23, 21]. A survey of active learning
algorithms for supervised remote sensing image classi�cation can be found in [53].
The selection of the best sample in SVM active learning approaches is based on the
distance of the samples to the boundary decision. In the Bayesian approach, how-
ever, the selection is based on the samples posterior probability of belonging to each
class, thus taken into account the prediction uncertainty and providing a signi�cant
advantage during active learning tasks. Bayesian simultaneous �ltering and classi�-
cation, and active learning techniques will be contributed to in this dissertation.

1.1.3 Light Field Acquisition

Moving from analog to digital has been a major advance in the world of photogra-
phy. Besides the cost reduction, digital images can be edited and post-processed in
countless ways by using a computer. In computational photography (CP), the post-
processing does most of the work, considering the image captured by the sensor as
an intermediate data [54]. The light �eld of a given scene contains di�erent angular
views of the same scene. It is used to reconstruct a 3D model of the scene [55], in
re-focusing problems [14] or to synthesize interpolated views [56].

To capture light �elds di�erent techniques have been proposed. Plenoptic cam-
eras, like Lytro [57] or Raytrix [58], introduce an array of microlenses in front of
the sensor. This allows the sensor to record di�erent angular views of the scene.
Depending on the number of microlenses used, the resolution of the captured im-
ages can be greatly reduced. That is, there is a trade-o� between angular resolution
and spatial resolution of the light �eld; the more angular views are generated, the
smaller the spatial resolution of each view. To deal with this problem, systems us-
ing a coded aperture have been designed. In coded aperture acquisition systems, a
pattern mask is introduced to modify the lens aperture and to capture images that,
once processed, allow the reconstruction of the light �eld. Coded aperture started
to be used for light �eld acquisition only a few years ago. In [14], the N angular
views are obtained from N scrambled images captured with di�erent masks and then
solving a determined system of linear equations. The masks are loaded into a pro-
grammable LCD that is placed into the lens. The design in [59] uses Liquid Crystal
on Silicon (LCoS) to create the masks. This reduces the loss of light and improves
the brightness and contrast but makes the lens bulkier than the LCD design. None
of the proposed models has dealt with the problem of defocused light �elds. In spite
of the small size of the individual blocks composing the coded aperture, the depth
of �eld is limited and objects outside it will appear defocused in the reconstructed
views. In this dissertation we will explore the use of Bayesian CS techniques to
capture the light �eld as well as methods to deblur the obtained images.
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1.1.4 Video Retrieval

With the rapidly increasing growth of digital video content, there is an equally
growing need for e�cient techniques to analyze, search and retrieve video content.
Individuals may want to search for video content they are interested in from YouTube
videos, media companies may want to locate video content that violates their copy-
right protection (�ngerprint) and, security systems may want to detect suspicious
events among surveillance videos. Video retrieval is a key step in many applications
including copyright protection, multimedia content search, security and surveillance.
Fast and accurate algorithms in all the above, and many other, cases are needed for
e�cient video retrieval.

A number of methods have been developed for video retrieval. Generally, meth-
ods identify features distinguishing video frames and employ classi�cation, indexing
and searching based on these features. Surveys and comparisons for feature identi-
�cation can be found in [60, 61]. After identifying the distinguishing features, the
second step in video retrieval is searching based on these features. Indexing and
hashing are commonly used to improve the search e�ciency. In [62] geometric hash-
ing is used to build database indices, while [63, 64, 65] used tree-based indexing.
A powerful data structure for indexing is the kd-trees. In [66], video trajectories
over time are indexed using kd-trees with a dimensionality reduction using PCA.
Random projections instead of PCA are utilized in [67], followed by several kdtrees
for indexing. In this dissertation we explore the use of Bayesian techniques for video
retrieval.

1.2 Outline

This dissertation is organized as follows:

• Chapter 2, brief introduction to Bayesian modeling and inference and objec-
tives of the thesis.

• Chapter 3, contributions on image restoration [68, 69] and blind image decon-
volution [10].

• Chapters 4, contributions on image processing for classi�cation [70, 71].

• Chapter 5, contributions on active learning [72, 73, 74].

• Chapter 6, contributions on light �eld acquisition [15, 16], and video retrieval
[75, 76].

• Chapter 7, conclusions and future works.
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Chapter 2

Problem Formulation and Objectives
of the Thesis

In this chapter we provide a introduction to Bayesian modeling and inference and
present the thesis contributions.

2.1 Bayesian Modeling

All the problems described in the previous chapter, can be tackled using Bayesian
modeling and inference. This section contains a basic introduction to the Bayesian
framework. A complete description of Bayesian modeling and inference, which is
beyond the scope of this thesis, can be found in [1, 2, 3, 4, 35]

Let y = {yi}Ni=1 be a set of N observed variables, where each of them is a vector
of size n. For instance, in an image restoration problem, y would denote the noisy
and blurred image, ordered using the lexicographic order as a column vector, in a
classi�cation problem, y would be a vector of labels, and in a light �eld acquisition
system, it would be the set of captured images. z = {zi}Mi=1 denotes the unknown
variables which have led to the observations y, each one of size mi, i = 1 . . . ,M . For
example, in a classi�cation problem, z would be an adaptive coe�cient vector, while
in a blind deconvolution problem z = {x,h}, where x represents the original image
and h the blur kernel. Bayesian methods start with a prior distribution, a probabil-
ity distribution over unknown z, p(z|Ω), where Ω is the set of parameters. In the
prior distribution is where the expected structure of z is incorporated. Usually, a
prior p(Ω) on the model parameters is also incorporated. Sometimes the prior on
the model parameters is called hyperprior and the elements of Ω are called hyper-
parameters. It is also necessary to specify p(y|z,Ω), the probability distribution of
observed variables y if z, Ω were known. We then �nally have

p(y, z,Ω) = p(y|z,Ω)p(z|Ω)p(Ω). (2.1)

7
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The objective of Bayesian analysis is to infer the unknown z, Ω given the observed
y. Before describing how inference is performed, let us describe each of component
in the above equation, that is, the prior, observation and hyperparameter models.

2.1.1 Prior models

The Bayesian paradigm starts by modeling the previous knowledge on the unknown
z. For instance, in a classi�cation problem we may want to estimate a set of adaptive
parameters w which are assumed a priori to be close to zero. This information is
introduced in the problem by considering that w is a realization of the Gaussian
distribution

p(w|α) = N (w|0, α−1I), (2.2)

where α is the precision parameter. Note that α here is used to model how close to
zero we expect the values to be.

In an image restoration problem, the di�erence between one pixel of the origi-
nal image x and its neighbors is expected to be small, this is modelled using the
distribution

p(x|α) = N (x|0, α−1C−1), (2.3)

where C is the Laplacian operator, and α is again a precision parameter.

These probability distributions are called priors since they encapsulate previous
knowledge on the unknowns.

More complex priors can be used depending on the application and the knowledge
we have on the problem solutions. Together with the classical prior models such as
Conditional Autoregression (CAR) or Simultaneous Autoregression (SAR) used by
Molina et al. [77] to impose smoothness, or Total Variation proposed by Rudin,
Osher and Fatemi [78] to impose piecewise smoothness, the `p prior has been used
in a large number of works such [79, 80, 81, 82, 83, 84]. In these papers the prior
distribution is based on the use of quasi-norms ‖ · ‖pp with 0 < p < 1 as energy
functions. Levin et al. [81] suggest the use of p in the range [0.6, 0.8] for natural
images. This prior model is not only used in image recovery, and can be found in
problems like classi�cation [85, 86], or compressive sesing [87].

The Super-Gaussianity property of probability distributions presented by Palmer
in [88], was used in Babacan et al. [9] as the building block to propose a general
representation for sparse priors. Interestingly, almost all previous and very recently
proposed prior models can be represented using SG. This representation is used in
the same work [9] to introduce two new image priors log and exp. Recent models like
the one proposed by Zhang and Wifp [89], or the Student-t prior recently proposed
by Mohammad-Djafari [90] are particular cases of SG distributions.

In general, previous knowledge on the unknowns is modeled using the probability
distribution p(z|Ω). However, the unknowns cannot be directly estimated from the
priors, this task is carried out once the information provided by the observations is
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incorporated.

2.1.2 Observation Model

The observation model describes how the observations y are obtained from the hid-
den variables z. In the Bayesian formulation it is represented using the conditional
probability distribution of y given z, also known as likelihood,

p(y|z,Ω). (2.4)

For instance, in image restoration it is usual to model the degradation process as

y = Hx + ε, (2.5)

where H is a convolution matrix representing the blur, assumed to be known, and
ε is a noise vector. Assuming that ε is a Gaussian noise with inverse of variance β
we have

p(y|x, β) = N (y|Hx, β−1I). (2.6)

where for this case Ω = {β}.
In a two-class classi�cation problem the relation between the observed labels y

and the hidden variables w can be modeled using the distribution

p(y|w) =
N∏
i=1

(
1

1 + exp(−wTxi)

)yi ( exp(−wTxi)

1 + exp(−wTxi)

)1−yi
. (2.7)

where {xi}Ni=1 is the training set.

2.1.3 Hyperprior Models

Observation and prior models depend on a set of parameters Ω that needs to be
estimated along with the unknown variables z. Bayesian modeling and inference
provides di�erent ways to estimate the system parameters from the input data.
Thus we can develop algorithms capable of working automatically, which help non-
expert users to obtain satisfactory problem solutions.

In a hierarchical Bayesian framework, parameter modeling is carried out in a
second stage (the �rst stage models the degradation and prior on the data), where
a probability distribution is assigned to each parameter. These distributions, allow
to incorporate knowledge on the hyperparameters into the model.

A large part of the Bayesian literature is devoted to �nding hyperprior distri-
butions p(Ω) for which p(z,Ω|y) can be calculated in a straightforward way or at
least be approximated. These are the so called conjugate priors [91], which were
developed extensively in Rai�a and Schlaifer [92].
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Besides providing for easy calculation or approximations of p(z,Ω|y), conjugate
priors have the intuitive feature of allowing one to begin with a certain functional
form for the prior and end up with a posterior of the same functional form, but with
the parameters updated by the sample information.

The a priori models for the hyperparameters depend on the type of the un-
known parameters, and di�erent models proposed in the literature. For parameters
corresponding to inverses of variances, the gamma distribution is normally used

p(ω) = Γ(ω|a, b), (2.8)

which has mean and variance

E[ω] =
a

b
, Var[ω] =

a

b2
, (2.9)

where ω ∈ Ω and a and b are the hyperparameters which must be set in advance.

Other methods proposed in the literature use the uninformative prior model on
a proper scale

p(Ω) = constant, (2.10)

which is appropriate when no knowledge on the prior value of the parameters is
available.

2.2 Bayesian Inference

Once the observation and prior models have been described, in other words, once
the elements of the joint probability model in (2.1) have been speci�ed, the goal now
becomes the inference on the unknown variables Θ = {z,Ω} given the observations.

In the Bayesian framework, Θ is inferred calculating (or approximating) the
posterior distribution p(Θ|y), expressed using the Bayes' rule as

p(Θ|y) =
p(Θ,y)

p(y)
=

p(y|Θ)p(z|Ω)p(Ω)

p(y)
. (2.11)

Unfortunately, since the integral p(y) =
∫

p(Θ,y)dΘ is not tractable in most
real applications, the above posterior cannot be analytically calculated. Di�erent
estimation methods have been proposed to address this problem and we will now
review them.

Probably the most widely used method in the literature is Maximum a Posteriori
(MAP). Since p(Θ|y) ∝ p(Θ,y) the maximum of the posterior distribution can be
obtained by maximizing the joint distribution p(Θ,y) with respect to Θ. However,
as pointed out in the landmark papers by Levin et al. [93, 94], MAP is not a suitable
estimation procedure in many problems.
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Table 2.1: Comparison of inference methods

MAP VB MCMC
Has full posterior no yes yes
Has point estimates yes yes yes
Has uncertainty info no yes yes
Allows hidden data no yes yes

Complexity low medium high

In contrast, variational Bayesian (VB) inference provides approaches for estima-
tion of the posterior distributions of z and Ω, and moreover generalizes MAP (see
[35] for a proof).

Together with the well established use of VB inference, Markov Chain Monte
Carlo (MCMC) methods are also popular. MCMC is the most general method used
to approximate a posterior distribution, see [95, 96, 97] for details. The model in
Eq. (2.1) is used to generate thousands of samples of p(z,Ω|y), which are used
to infer the posterior distribution. In theory, sampling methods can �nd the exact
form of the posterior distribution, but in practice they are computationally intensive
(especially for multidimensional signals such as images) and their convergence is hard
to establish.

In computationally cost terms, VB is much more e�cient than MCMC, and more
expensive than MAP. The features of each method are summarized in Table 2.1.

We now describe the application of VB to solve inverse problems.

2.2.1 Variational Inference

Variational Bayes inference is a powerful alternative to MAP, MCMC and many
other inference methods. It provides more accurate approximations to the posterior
distribution than point estimation methods, and it is computationally much more
e�cient than sampling approaches.

VB methods provide analytically tractable approximations q(Θ) to the true pos-
terior p(Θ|y) by assuming that q(Θ) has speci�c parametric or factorized forms.
The distribution q(Θ) is found as the distribution that minimizes the Kullback-
Leibler (KL) divergence

KL(q(Θ)‖p(Θ|y)) =

∫
Θ

q(Θ) log
q(Θ)

p(Θ|y)
dΘ =

∫
Θ

q(Θ) log
q(Θ)

p(y,Θ)
dΘ + constant,

(2.12)
which is always non-negative and 0 only when q(Θ) and p(Θ|y) coincide. (See [3]
for a proof).

To minimize the Kullback-Leibler divergence it is necessary to assume some
constraints on the distribution q(Θ). The �rst options is to consider that q(Θ)
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belongs to a parametric family of distributions. Another (very commonly used)
assumption is to consider that q(Θ) factorizes as M disjoint groups, i.e.,

q(Θ) =
M∏
i=1

qi(Θi), (2.13)

where each factor qi depends on a subset of unknown variables Θi ⊆ Θ. This
method is known as Mean Field in Physics [98]. Thus, the KL divergence can be
minimized with respect to each factor qi separately, while the remaining factors are
�xed.

The solution to this problem is given in [1]

qi(Θi) = Zi exp
{
EΘ\Θi

[log p(Θ,y)]
}
, (2.14)

where Zi is a normalization constant.

Note that Eq. (2.14) de�nes a system of nonlinear equations in {Θi}Mi=1. One
way to solve this system of equations is via an alternating optimization procedure,
where the distribution of each factor is iteratively updated using the most recent
distributions of all the other factors. This update process is cyclic and is repeated
until convergence. Since the KL divergence Eq. (2.12) is convex with respect to
qi(Θi) [99], the convergence is guaranteed.

2.3 Objectives of the Ph.D. Thesis

Having described the tool we will use in this thesis to solve image �ltering and
classi�cation problems we now state the thesis objectives.

The main goal of this Ph.D. Thesis is to �nd solutions to the problems de-
scribed in section 1.1 using Bayesian modeling and inference. These problems can
be grouped in three blocks: image restoration and blind deconvolution, multispec-
tral image classi�cation and other related problems (light �eld acquisition and video
retrieval). We detail next the speci�c research objectives for each block.

2.3.1 Image Restoration and Blind Deconvolution

Image restoration and blind image deconvolution problems have been addressed
using di�erent approaches, being those based on Bayesian paradigm one of the most
successful. In this area the thesis objectives are:

• To provide a comprehensive review of Bayesian modeling and inference tech-
niques that have been used in BID problems.
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• To examine the use of image priors which combine smoothness with texture
preservation in image restoration problems.

2.3.2 Multispectral Image Classi�cation and Active Learning

On this area of research the thesis objectives are:

• To use Bayesian modeling and inference to develop new classi�cation tech-
niques for multispectral images.

• To propose new image joint image �ltering and classi�cation techniques aimed
at improving classi�er performance.

• To develop new Bayesian active learning techniques outperforming the existing
ones.

2.3.3 Other Related problems (Light Field Acquisition and
Video Retrieval

For the light �eld acquisition problem, the thesis objectives are:

• To create a new coded aperture camera prototype implementing CS concept.

• To develop a new image acquisition algorithm for the new prototype.

• To develop techniques to recover the light �eld from a set of blurred multi-
plexed observations captured with the coded aperture camera.

In video retrieval the thesis objectives are:

• To develop new techniques of video retrieval which use Bayesian modeling and
inference. Those techniques should to retrieve sequences even if a large number
of frames is missing in the query clip.
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Chapter 3

Image Restoration and Blind
Deconvolution

3.1 Image Restoration

3.1.1 Image Deblurring Combining Poisson Singular Integral
and Total Variation Prior Models

• H. Madero-Orozco, P. Ruiz, J. Mateos, R. Molina, and A.K. Katsaggelos, �Im-
age deblurring combining Poisson Singular Integral and Total Variation prior
models� in 21th European Signal Processing Conference (EUSIPCO 2013),
1569744251, Marrakech (Morocco), September 2013.

� Status: Published

� Indexed in CORE Conference Ranking as CORE B 1

� H index: 9 (Q3: 755/1201) 2

12014 CORE Conference Ranking http://www.core.edu.au/index.php/

conference-rankings
2H index obtained from A. Martín-Martín, E. Orduña-Malea, J. M. Ayllón, E. Delgado López-

Cózar, �Proceedings Scholar Metrics: H Index of proceedings on Computer Science, Electrical &
Electronic Engineering, and Communications according to Google Scholar Metrics (2009-2013)�,
http://arxiv-web3.library.cornell.edu/abs/1412.7633

15
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ABSTRACT
In this paper a new combination of image priors is intro-

duced and applied to Bayesian image restoration. Total Vari-
ation (TV) image prior preserves edge structure while impos-
ing smoothness on the solutions. However, it does not per-
form well in textured areas. To alleviate this problem we pro-
pose to combine TV with the Poisson Singular Integral (PSI)
image prior, which is able to preserve image textures. The
proposed method utilizes a bound for the TV image model
based on the majorization-minimization principle, and per-
forms maximum a posteriori Bayesian inference. In the ex-
perimental section the proposed approach is tested on synthet-
ically degraded images with different levels of spatial activity
and areas with different types of texture. Since the proposed
method depends on a set of parameters, an analysis, about
their impact on the final restorations, is carried out.

Index Terms— Deblurring, Bayesian image restoration,
Total Variation, Poisson Singular Integral

1. INTRODUCTION

When we take a picture, we want a detailed representation
of the scene, but very often the observed image is degraded.
The degradation is usually caused by movement during the
recording process or because the scene is out of focus. Image
deconvolution is an important task in image processing. Its
goal is to recover or estimate the original image x from a
blurred and noisy obervation y. The image degradation model
is a convolution between the original image and the known
blurring operator H. It can be expressed as

y = Hx + n, (1)

where n is Gaussian additive white noise with zero mean and
precision β.

1Special thanks to CONACYT.
2This research was supported by the Spanish Ministry of Economy and

Competitiveness under project TIN2010-15137, the European Regional De-
velopment Fund (FEDER) and, in part by the US Department of Energy grant
DE-NA0000457.

Nowadays, different approaches try to solve this inverse
problem. Methods based on Wavelets and Curvelets, capture
and preserve sharp features in the image, and combined with
threshold or shrinkage rules provide good results [1, 2].

Models based on the Bayesian paradigm provide solu-
tion to problems like blind deconvolution [3], space-variant
deblurring [4], camera shake [5] and light field sensing [6].
Many of the proposed methods utilize a Total Variation (TV)
image prior [7].

Total Variation preserves object boundaries (edges) but
often eliminates image texture, because TV restricts the space
of solutions to the space BV (R2) of functions of bounded
variation; however, most natural images do not exactly be-
long to this space [8]. The texture in an image plays an im-
portant role in visual quality and it is not well modeled in such
a space.

Carasso in [8] formulates the image restoration problem
in Lipchitz spaces where a broader class of images can be
accommodated. He proposes a new approach to recover the
texture in images. The central idea is the implementation of
the Poisson Singular Integral (PSI), which recovers the tex-
ture where the TV fails. PSI is also utilized in [9], where its
authors propose a model which combines PSI and curvelet-
type decomposition space semi-norm as regularizer.

The work presented by Chen et al. [10] proposes the use
of texture-preserving image deblurring method. The authors
adopt a two-step non-iterative processing procedure which
first uses regularization in the frequency domain to remove
the noise, and then utilizes a modified non-local means filter
to reduce the leaked colored noise in order to obtain a good
texture-preserving deblurred image.

In this paper, we propose a novel algorithm for image de-
convolution, using a prior model combination (TV and PSI)
in order to impose different properties on the restored image.
The method produces restorations with edges and textures
preserved, high PSNR and good visual quality. The paper
is organized as follows. In section 2, the Bayesian modeling
of the problem is presented. Section 3 discusses the inference
procedure and proposes an algorithm to restore the images.



Section 4 contains the experimental section and, finally, sec-
tion 5 concludes the paper.

2. BAYESIAN MODELING

The Bayesian paradigm is one of the most popular tool in
image restoration (see [11] and references therein). The ob-
servation y and the original image x are treated as stochastic
variables, and an inference process using Bayes’ rule allows
to obtain the restored image.

2.1. Observation Model

The degradation model in Eq. (1) provides the conditional
probability distribution:

p(y|x, β) ∝ exp(−β
2
‖y −Hx‖2). (2)

2.2. Image Model

In this paper we use a prior model combination, in order to
ensure different properties of the restored image are presented
[12]. The TV [11] prior has the advantage of preserving the
edge structure while imposing smoothness on the solution. It
is defined as

p1(x|α1) ∝ exp(−α1TV(x)), (3)

where TV(x) =
∑P
i=1

√
∆h
i (x)2 + ∆v

i (x)2 with the oper-
ators ∆h

i (x) and ∆v
i (x) corresponding to the horizontal and

vertical first order differences at pixel i, respectively, and P
is the image size. However, this model does not work well
in textured areas. To alleviate this problem, we combine TV
with the Poisson Singular Integral (PSI) [8] filter which pre-
serves textures. The PSI filter is defined in the Fourier domain
for each t > 0 as

z(ξ, ν, t) =

(
t+

4e−tρ − e−2tρ − 3

2ρ

)1/2

, (4)

where ξ, ν are the coordinates in Fourier domain and ρ =√
ξ2 + ν2. We denote by Z the convolution matrix associated

to filter z in the spatial domain, and then define the second
prior model as

p2(x|α2) ∝ exp(−α2

2
‖Zx‖2). (5)

Figure 1 shows a set of realizations of the PSI prior model
with variance 1, for different t values. As it can be observed t
controls the smoothness of the texture. As t changes so does
the texture granularity (notice the log scale).

Combining both models in Eq. (3) and (5), the prior dis-
tribution is given by

p(x|α1, α2) ∝ exp(−α1TV(x)− α2

2
‖Zx‖2). (6)

(a) t=10−1 (b) t=10−2

(c) t=10−4 (d) t=10−6

Fig. 1. Realizations of the prior model in Eq. (5) for different
values of t.

3. BAYESIAN INFERENCE

The restored image sought after is the Maximum a Posteriori
(MAP)

x̂ = arg max
x

p(x|y, β, α1, α2)

= arg max
x

p(y|x, β)p(x|α1, α2), (7)

which is obtained by minimizing

L(x) =
β

2
‖y −Hx‖2 + α1TV(x) +

α2

2
‖Zx‖2. (8)

Due to use of the TV image prior, we need to utilize a
majorization-minimization procedure [13]. Based on the av-
erage inequality [11], we have

TV(x) ≤ 1

2

P∑
i=1

∆h
i (x)2 + ∆v

i (x)2 + ui√
ui

=
1

2
M(x,u).

(9)
We then minimize

L̄(x) =
β

2
‖y −Hx‖2 +

α1

2
M(x,u) +

α2

2
‖Zx‖2. (10)

This procedure introduces an additional parameter set u =
(u1, u2, . . . , uP ), calculated as (see [11] for details)

ui = ∆h
i (x)2 + ∆v

i (x)2. (11)

Then the MAP estimator, x̂, is obtained as the solution of the
linear equation system

Ax = βHTy, (12)



where

A = βHTH+α1((∆h)TW∆h + (∆v)TW∆v) +α2Z
TZ,
(13)

and ∆h and ∆v are the convolution matrices associated
with horizontal and vertical gradients, respectively, and
W = diag( 1√

ui
). We solve this system utilizing a con-

jugate gradient method. Since the estimation of x and u
are coupled, we have the following iterative algorithm that
alternatively estimates x and u until convergence.

Algorithm 1 Proposed Restoration Algorithm
Require: An initial estimate of the original image, x0

Set k = 0
repeat

1. Set uki = ∆h
i (xk)2 + ∆v

i (x
k)2 for i = 1, . . . , P .

2. Compute Ak using the {uki }i=1,...,P in Eq. (13).
3. Set xk+1 as the solution of Akx = βHTy.
4. Set k = k + 1.

until ‖xk − xk−1‖2/‖xk−1‖2 < tol

4. EXPERIMENTS AND RESULTS

We tested the proposed algorithm on three different images,
cameraman, barbara, and baboon. We chose these test im-
ages because they have different levels of spatial activity and
areas with different types of texture. The images were syn-
thetically degraded following the observation model in Eq. (2)
by normalization to [0, 1] interval, blurring each original im-
age with a Gaussian blur with support 21 × 21 and stan-
dard deviation 1.5. Zero mean Gaussian noise with variance
σ2
1 = 0.0001 and σ2

2 = 0.001 was added to blurred images to
obtain two set of degraded images with a PSNR of about 34
dB and 24 dB, respectively.

To obtain the restored images, we run Algorithm 1 start-
ing from the degraded image as initial estimate of the original
image, that is, x0 = y and using tol = 10−4 in the stopping
criterion. The proposed method depends on a set of parame-
ters, which need to be set to obtain the best performance. The
PSI prior in Eq. (5) depends on the parameter t that controls
the texture preservation. We run experiments to test the influ-
ence of this parameter on the restored images. We changed
the parameter t in the range −6 ≤ log t ≤ −1, following [8],
and found that the difference on PSNR obtained with differ-
ent values for the parameter t was low. This was a surprising
result since the value of t conditions the shape of the prior
model and it was supposed to preserve different textures on
the image. Using a single value of t for the whole image
is very likely not optimal and changing it locally will better
adapt the algorithm to the different textures of the image. In
this paper, however, we fixed t = 0.1 as suggested in [8].

We searched a set of values for the parameters that control
the prior and degradation models as follows. First, notice that

1e−3
1e−2

0.1
0.2

0.3 1e−6
1e−5

1e−4
1e−3

1e−2
18

19

20

21

22

23

24

25

λ
1

PSNR barbara SNR 34.11 dB

λ
2

P
S

N
R

1e−6
1e−5

1e−4
1e−3

1e−2 1e−4 1e−3 1e−2 0.1 0.2 1e−4 1e−3 1e−2 0.1

12

14

16

18

20

22

24

26

λ
1

PSNR barbara SNR 24.11 dB

λ
2

P
S

N
R

Fig. 2. PSNR evolution with different values of λ1 and λ2 for
the barbara image. (a) Degradation with a SNR of 34 dB, (b)
Degradation with a SNR of 24 dB.

Eq. (10) can be written as

L̄(x) = λ‖y −Hx‖2 + λ1M(x,u) + λ2‖Zx‖2, (14)

with λ = (1− λ1 − λ2),

λ1 =
α1

β + α1 + α2
and λ2 =

α2

β + α1 + α2
. (15)

In these equations, λ, λ1 and λ2 take values in the interval
[0, 1) and satisfy λ + λ1 + λ2 = 1. Thus, λ, λ1 and λ2
represent the influence on the restored image of the observed
data, the TV, and the PSI models, respectively. Notice that
selecting λ1 and λ2 in Eq. (14) is easier and more intuitive
than selecting β, α1 and α2 in Eq. (10). We performed a
search on this range by moving λ1 and λ2 in the set of values
[0, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4],
and as we indicated above setting λ to 1 − λ1 − λ2. We
note that for values of λ1 or λ2 larger than 0.4 the quality of
the restored image reduces drastically so we did not consider
them in our experiments. In Fig. 2 we present the evolution
of the PSNR as a function of λ1 and λ2 for the barbara image
for the two noise degradations considered. In both cases, the
shape of the curve is similar. We note that the value of the
PSNR is quite similar around this maximum, which means
that the method is not very sensitive to different values of the
parameters λ1 and λ2. This behavior was also observed on
the rest of the test images so it confirms that it is not needed
to select the parameters with a high precision to obtain good
restorations.

However, we found significant differences on the values
of the parameters that achieve the maximum PSNR for the
different images. The values of the parameters as well as the



Table 1. Numerical results for the test images.
Cameraman

SNR=24.44 dB SNR=34.44 dB
PSNR Param PSNR Param

Obs Rest λ1 λ2 Obs Rest λ1 λ2

22.81
24.93 10−2 10−7

23.62
26.61 10−3 10−7

24.93 10−2 0 26.61 10−3 0
24.20 0 10−1 25.90 0 10−2

Barbara
SNR=24.11 dB SNR=34.11 dB

PSNR Param PSNR Param
Obs Rest λ1 λ2 Obs Rest λ1 λ2

23.01
24.03 10−2 10−4

23.88
24.65 10−4 10−1

24.03 10−2 0 24.59 10−3 0
23.88 0 10−1 24.60 0 10−2

Baboon
SNR=24.56 dB SNR=34.56 dB

PSNR Param PSNR Param
Obs Rest λ1 λ2 Obs Rest λ1 λ2

21.25
22.27 10−3 0.2

21.80
23.33 10−7 10−1

21.88 10−3 0 23.11 10−4 0
22.02 0 10−1 23.33 0 10−2

value of the PSNR for the observed and restored images are
summarized in Table 1. We can extract some conclusions
from those values. First, as the noise increases, higher re-
liance on prior information is needed and, hence, the values of
the parameters λ1 and λ2 increase. Second, the relation of the
importance of the PSI and TV models highly depend on the
contents of the image. So, if the image presents a low level of
detail, as it happens in the cameraman image, the restoration
method prefers smooth restorations and the maximum value
for the PSNR is obtained when λ2 is equal to zero, giving con-
trol of the smoothness of the solution to the TV prior model.
However, if the image contains a very high level of detail, as
is the case with the baboon image, better results are obtained
if the TV prior influence is almost neglected by setting the
value of λ1 very close to zero and leaving the control of the
noise and texture preservation to the PSI prior model. This is
expected since the TV prior tends to smooth out the small de-
tails in the image. Note however that, as the noise increases,
including a small contribution by the TV prior provides better
results since the PSI prior cannot differentiate between highly
detailed textures and noise [9]. In images with a combination
of detailed and smooth regions, a combination of both prior
models provides the best result. This is the case with the bar-
bara image that reaches its maximum PSNR when λ1 and λ2
are both greater than zero.

In Fig. 3 we present the original, observed and restored
images for different noise degradations and different values
for the parameters λ1 and λ2. Although all restored images

(a) Original image.

(b) Observation with a SNR of 24 dB. (c) Observation with a SNR of 34 dB.

(d) Restoration of (b): only TV model. (e) Restoration of (c): only TV model.

(f) Restoration of (b): only PSI model. (g) Restoration of (c): only PSI model.

(h) Restoration of (b): both models. (i) Restoration of (c): both models.

Fig. 3. Experimental results for the Barbara image.



(a) Observation with a SNR of 34 dB. (b) Restoration of (a): only TV model.

Restoration of (a): only PSI model. Restoration of (a): both models.

Fig. 4. Details of the restorations in Fig. 3.

present a high quality, the images obtained using a combina-
tion of the TV and the PSI models (Figs. 3h and 3i) show a
higher visual quality and better preserve textures in areas as
the handkerchief and the tablecloth while controlling noise,
as can seen in the details in Fig. 4. The images obtained using
only the TV prior, that is, using λ2 = 0 (Figs. 3d and 3e) look
flat and most of the texture has been lost while the images
using only the PSI prior (λ1 = 0), depicted in Figs. 3f and
3g, are noisy. This agrees with the numerical results in Ta-
ble 1. Notice that when the noise is higher, more contribution
of the TV prior was needed in order to eliminate noise and,
thus, texture in the restored image, as the handkerchief and
the trousers, could not be successfully recovered.

5. CONCLUSIONS

In this paper we present a novel methodology to restore
blurred images with noise. The combination of TV and PSI
prior models provides better visual quality and PSNR than
utilizing both models alone. The model recovers fine-scale
details (texture) in cases were TV completely fails and our
experimental results confirm this. The proposed method
shows good performance with images with a combination of
detailed and smooth regions, and textured images with high
noise where the combination of TV and PSI controls the noise
while preserving the details.
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cDepartamento de Ingenieŕıa Industrial y Manufactura, Universidad Autónoma de
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Abstract

In this paper, a novel Bayesian image restoration method based on a combi-

nation of priors is presented. It is well known that the Total Variation (TV)

image prior preserves edge structures while imposing smoothness on the so-

lutions. However, it tends to oversmooth textured areas. To alleviate this

problem we propose to combine the TV and the Poisson Singular Integral

(PSI) models, which, as we will show, preserves the image textures. The PSI

prior depends on a parameter that controls the shape of the filter. A study

on the behavior of the filter as a function of this parameter is presented.

Our restoration model utilizes a bound for the TV image model based on
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the majorization-minimization principle, and performs maximum a posteri-

ori Bayesian inference. In order to assess the performance of the proposed

approach, in the experimental section we compare it with other restoration

methods.

Keywords: Deblurring, Denoising, Bayesian image restoration, Total

Variation, Poisson Singular Integral.

1. Introduction

In the digital age we live in, millions of pictures are taken every day

with digital cameras or mobile devices like cell-phones, tablets, etc. Those

pictures are intended to be a detailed representation of the reality, but very

often the captured image is degraded by blur and noise. Blur can occur, for

instance, by movement during the capturing process or because the scene is

out of focus. Furthermore, noise can be introduced, for instance, by sensor

imperfections, poor illumination or communication errors [1]. When such

problems occur, the usual solution is to take another picture, but sometimes

it is not possible to retake the same picture and the moment is lost. Image

restoration can help in those situations by estimating the original image from

its blurred and noisy observation.

The image restoration problem has been addressed successfully using dif-

ferent approaches (see [2] for a detailed review of classical models and [1] for

references of recent restoration models). When only noise is present, that

is, the image is crisp but noisy, denoising algorithms such as [3, 4, 5] can

be used. However, if the image is also blurred, image restoration methods,

that handles both blurring and noise, are needed. Many restoration methods
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utilize a Total Variation (TV) image prior or regularizer [6, 7, 8, 9]. TV is

well known for preserving object boundaries (edges) and removing noise, but

it often eliminates image texture, which plays an important role in visual

quality.

Different methods have been developed to preserve image textures. Chen

et al. [10] adopt a two-step non-iterative processing procedure which first

employs a simplified Wiener filter to obtain a distortion free but noisy esti-

mate, and then utilizes a modified non-local means filter to reduce the leaked

colored noise in order to obtain a good texture-preserving restoration.

Within the Bayesian paradigm, constraints on the characteristics of the

resulting image are formulated as prior distributions. Two of the most classi-

cal prior distributions are conditional and simultaneous autoregressive (CAR

and SAR) models [11]. They impose smoothness constraints on the original

image and are able to preserve image textures better than TV, unfortunately,

they oversmooth edge regions.

Carasso proposes in [12] a new approach to preserve image textures.

He formulates the image restoration problem in a Lipschitz space where a

broader set of images can be accommodated. The central idea is the introduc-

tion of the Poisson singular integral (PSI), which recovers the image texture

in cases where TV fails. PSI is also utilized in [13], where it is combined

with a curvelet-type decomposition to preserve textures while controlling the

noise. Other methods based on wavelets and curvelets have also been pro-

posed in combination with shrinkage-threshold rules [1, 14] to capture and

preserve sharp features in the image.

Wang et al. [15] proposes to combine a weighted anisotropic TV (WATV)
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[16] and tetrolet shrinkage [17]. WATV can recover sharp and clear edges

along four directions, but this approach also eliminates image textures. To

alleviate this problem, the tetrolet transform is used in combination with a

TV regularizer.

Recently, a new approach that combines different priors has been used

to solve super resolution [18], blind deconvolution [19, 20], astronomical and

natural image [21] restoration problems. The idea behind the combination

of priors is that using priors that preserve edges jointly with priors that

preserve textures, can achieve better reconstructions than simply using one

image prior. Notice that this idea is also related to the model in [19].

Using this approach, Vega et al. [21] tackle image restoration in Astron-

omy by combining a prior based on the the `1 norm of the horizontal and

vertical first order differences which preserve edges and a simultaneous au-

toregression (SAR) prior model which preserves image texture. A similar

approach was used by Villena et al. in super resolution problems [18]. The

problem of blind deconvolution is addressed in [19] using Bayesian inference

with super-Gaussian sparse image priors. This methodology can be used in

blind and non-blind image deconvolution problems with the only knowledge

of the noise variance.

Based on these recent developments, in this paper we propose a novel

Bayesian image restoration algorithm that uses a combination of the TV and

PSI prior models in order to preserve different properties on the restored im-

age. This combination takes advantage of each prior: the TV prior preserves

edge structure and removes the noise while the PSI prior preserves the image

textures.

4



The rest of the paper is organized as follows. In Section 2, the TV and

PSI models are presented within the Bayesian framework, their relations

are established and an analysis of the PSI is presented. Section 3 discusses

the inference procedure and proposes our algorithm to restore the images.

Section 4 contains the experimental results and Section 5 concludes the paper.

2. Bayesian Modeling

The Bayesian paradigm is one of the most popular tools in image restora-

tion (see [8] and references therein). The use of prior distributions that

impose constraints on the estimates and act as regularizers, allows the intro-

duction of additional information in the restoration process. In this section,

we first model the image acquisition process to obtain the observed image

from the original one and the blur and then introduce the proposed combi-

nation of priors models we will use.

2.1. Observation Model

It is usual to model the degradation process as a convolution between the

original image and a known blurring operator that is expressed in vector-

matrix notation as

y = Hx + n, (1)

where x and y are column vectors of size P = m×n obtained by lexicograph-

ically ordering the pixels in the original and observed image, respectively, H

is a known blurring matrix of size P × P , and n is Gaussian additive white

noise with zero mean and precision β. From this degradation model, the con-

ditional probability distribution of the observed image y given the original
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image x and the noise precision parameter, β, is given by

p(y|x, β) ∝ exp

(
−β

2
‖y −Hx‖2

)
. (2)

2.2. Image Model

Digital images are discrete representations of continuous bidimensional

signals, i.e., each image x is assumed to have been obtained by discretizing

a continuous bidimensional signal f that belongs to the space of signals with

bounded p-norm (Lp(R2)). In this space the continuous Total Variation (TVc)

semi-norm is defined as

TVc(f) =

∫
R2

‖∇f(s)‖2ds. (3)

Notice that for constant signal f 6= 0, TVc(f) = 0 and, therefore, TVc is not

a norm. The equivalent semi-norm in discrete case is the Total Variation

function, that is defined as

TV(x) =
P∑
i=1

√
∆h
i (x)2 + ∆v

i (x)2, (4)

where the operators ∆h
i (x) and ∆v

i (x) correspond to the horizontal and ver-

tical first order differences at pixel i, respectively. In other words, ∆h
i (x) =

xi−xl(i) and ∆v
i (x) = xi−xa(i) with l(i) and a(i) denoting the nearest neigh-

bors to the left and above of pixel i, respectively. Using this energy function

we obtain the so called TV [8] prior defined as

p1(x|α1) ∝ exp(−α1TV(x)). (5)

The TV prior has the advantage of preserving the edge structure while im-

posing smoothness on the solution.
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This model implicitly imposes that the continuous total variation is boun-

ded. However, it is demonstrated in [22] that the continuous signals corre-

sponding to images with high texture have an unbounded total variation,

and for this reason, the TV model fails on highly textured images.

Following [12], the space of bounded total variation (BV(R2)) is composed

of all signals f ∈ Lp(R2) satisfying the constrain∫
R2

‖f(s + d)− f(s)‖ds ≤ Const‖d‖. (6)

To preserve textures, Carasso [12] proposes to work in the Lipschtiz (Besov)

space Λ(α, 2,∞), where the weaker constraint{∫
R2

‖f(s + d)− f(s)‖2ds
}1/2

≤ Const‖d‖α, 0 < α < 1, (7)

must be satisfied.

In [23] it is shown that f belongs to the Lipschitz space Λ(α, 2,∞) if, and

only if

sup
t>0

t−α‖Utf − f‖2 <∞, (8)

where Ut is the Poisson integral operator defined as

Utf =

∫
R2

φ(x, y, t)f(x− u, y − v)dudv, (9)

and φ is the Poisson kernel in R2

φ(x, y, t) =
t

2π(x2 + y2 + t2)3/2
. (10)

Carasso [12] shows that this space contains a rich and significant class of

images, and propose a restoration method for them. To force the signal f to
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be in Λ(α, 2,∞), in [12] it is imposed that
∫ t
0
‖Usf − f‖2ds is bounded, and

it is demonstrated that ∫ t

0

‖Usf − f‖2ds = ‖Zf‖22, (11)

where Z is the continuous convolution operator of the filter z, which is defined

in the Fourier domain as follows

z(ξ, ν, t) =

(
t+

4e−tρ − e−2tρ − 3

2ρ

)1/2

, (12)

where ξ, ν are coordinates in the Fourier domain, ρ =
√
ξ2 + ν2. By con-

tinuity, we have z(0, 0, t) = 0. The obtained filter is normalized so that its

squared components add to 1.

Using the discrete version of the convolution operator of the filter z, Z,

obtained by sampling the filter at the resolution of the image, we can define

the PSI based prior model

p2(x|α2) ∝ exp(−α2

2
‖Zx‖2), (13)

where α2 is the prior precision parameter.

The filter z in Eq. (12), depends on a parameter t. To illustrate the effect

of this parameter on the prior, Fig. 1 shows a set of realizations of the PSI

prior model in Eq. (13) with precision α2 = 1, for four different values of t.

As it can be observed t controls the smoothness of the texture. As t changes

so does the texture granularity (notice the log scale).

Figure 2 shows the Fourier spectrum of the PSI filter. Notice that as t

decreases, the radius from the center of non preserved frequencies increases.

To see this more clearly, Figure 3 depicts a transversal section of the PSI

filter in the Fourier domain for different values of t. Here, we appreciate in
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detail the described behavior. As the value of t decreases passing frequencies

will diminish. Furthermore we can observe that the passing high frequency

will be amplified. Notice that for values of t < 10−3, the shape of the PSI

filter almost does not vary, and therefore we can define the range of useful

values of t in the interval [10−3, 1]. In [12] it was found that the useful range of

values was in the interval (0, 1]. Note, however, that in [12] the filter was not

normalized so that its squared components add to 1, and, hence, t produces

large variations that had to be compensated with large variations on the

regularization parameter. For comparison purposes, Figure 3 also shows a

transversal section of the SAR filter. The SAR filter presents a frequency

response similar to the PSI when the value of t is close to 0, specially in the

middle frequencies, but it attenuates more the low frequencies and does not

amplify very high frequencies.

As it is well known, the high frequencies in an image are associated with

abrupt changes, fine details, edges, and unfortunately also to noise in the

spatial domain. In Fig. 4(b) the original Barbara image in Fig. 4(a) was

filtered using the PSI filter with a value of t = 1, which produces an image

very similar to the original where only a narrow band of low frequencies are

eliminated. In Figure 4(c–d) the filtered images with a parameter t = 0.1

and t = 0.03 respectively are presented. In these figures the eliminated

frequencies becomes more evident, smooth areas are lost, and the edges and

fine details become sharper since the high frequencies are amplified. This

effect is more notorious in Fig. 4(e) where the image was filtered using a

value of t = 0.001, and all but the textures are removed, and edges and

fine details like the trousers, scarf and tablecloth are highlighted. Hence, as
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the value of t decreases, only high frequencies will be preserved and smooth

regions will be removed. For comparison, Fig. 4(f) also shows the application

of the SAR filter to the same image.

In this section, we have presented two prior models: the TV prior that

preserves the edges but smooths textures and the PSI model that preserves

the textures. To take advantage of the characteristics of both models, we

combine them and define the following new prior

p(x|α1, α2) ∝ exp(−α1TV(x)− α2

2
‖Zx‖2). (14)

Once the prior and degradation models are defined, we perform inference to

estimate the original image.

3. Bayesian Inference

In the inference stage we use the observation and prior models presented

in the previous section, to obtain a maximum a posteriori (MAP) estimation

of the restored image.

The MAP, x̂, satisfies

x̂ = arg min
x

{
β

2
‖y −Hx‖2 + α1TV(x) +

α2

2
‖Zx‖2

}
. (15)

Due to the form of the TV prior, the above objective function is difficult

to evaluate. However, we can majorize the TV prior by a function which

renders the function easier to calculate. Based on the average inequality [8],

we utilize the following upper bound of the TV function

TV(x) ≤ 1

2

P∑
i=1

∆h
i (x)2 + ∆v

i (x)2 + ui√
ui

=
1

2
M(x,u), (16)
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where u ∈ (R+)P , is a P -dimensional vector with components u1, u2, . . . , uP ,

that needs to be computed along with the image and has, as will be shown

later, an intuitive interpretation related to the unknown image x.

We then minimize

L̄(x,u) =
β

2
‖y −Hx‖2 +

α1

2
M(x,u) +

α2

2
‖Zx‖2. (17)

By alternating between the minimization of x and u.

For a given x, we calculate u as

u = arg min
u

P∑
i=1

∆h
i (x)2 + ∆v

i (x)2 + ui√
ui

(18)

and, obtain

ui = ∆h
i (x)2 + ∆v

i (x)2. (19)

Note that that vector u is a function of the spatial first order differences of

the unknown image x and represents its local spatial activity.

For a given u, to obtain the estimation of the image, first notice that

Eq. (17) can be rewritten as

L̄(x,u) = λ‖y −Hx‖2 + λ1M(x,u) + λ2‖Zx‖2, (20)

with λ = (1− λ1 − λ2),

λ1 =
α1

β + α1 + α2

and λ2 =
α2

β + α1 + α2

, (21)

take values in the interval [0, 1) and satisfy λ + λ1 + λ2 = 1. Thus, λ, λ1

and λ2 represent the relative influence on the restored image of the fidelity

to the observed data and the combination of priors. Notice that selecting λ1
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and λ2 in Eq. (20) is easier and more intuitive than selecting β, α1 and α2

in Eq. (17).

Then the MAP estimator, x̂, is obtained as the solution, utilizing for

instance a conjugate gradient method, of the linear equation system

Ax = λHTy, (22)

where

A = λHTH + λ1((∆
h)TW∆h + (∆v)TW∆v) + λ2Z

TZ, (23)

∆h and ∆v are the convolution matrices associated with horizontal and verti-

cal gradients, respectively, and W = diag
(
1/
√
ui
)
. This matrix controls the

smoothness applied at each pixel of the image. So, for pixels in areas with

a low spatial activity, the value of W will be large, thus enforcing smooth-

ness. In those areas, the PSI will be responsible for the texture preservation.

However, for pixels in high spatial activity areas W will be very small which

means that no smoothness is enforced, thus preserving the edges and other

features of the image.

The proposed restoration method is summarized in the Algorithm 1.

Notice that if we fix λ2 to zero in Eq. (23) we have a Bayesian formulation

of the TV model and, when λ1 = 0 we use only the PSI model.

4. Experimental results

Before comparing the proposed method with other restoration approaches,

we assess the influence of the parameter t. We blurred the region of the the

original Barbara image depicted in Fig. 5(a) scaled to the range [0, 1], using

a Gaussian kernel of size 21× 21 and standard deviation 1, and then added
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Algorithm 1 Proposed Restoration Algorithm

Require: An initial estimate of the original image, x0

Set k = 0

repeat

1. Set uk = arg minu L̄(xk,u).

2. Set xk+1 = arg minx L̄(x,uk).

3. Set k = k + 1.

until ‖xk+1 − xk‖2/‖xk‖2 < tol

white Gaussian noise of variance 10−3. It produced the observation shown in

Fig. 5(b), whose peak signal-to-noise ratio is PSNR = 24.68 dB.

Since we want to assess the influence of t on the final restorations, we

fixed λ1 = 0, to see how the PSI restoration method works alone. Then we

obtained the restoration for λ2 ∈ {0, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1,

0.2, 0.3, 0.4} and t ∈ {0.001, 0.01, 0.03, 0.1, 1}.

In Figure 6(a), we plot the PSNR evolution for all considered couples of

values (λ2, t). For a small values of λ2 the PSI model has not much influence

on the restorations, that it is not enough regularized and then low PSNR

values are obtained. When λ2 increases, such influence is higher and the

obtained restorations achieve up to appoint better PSNR values.

The maximum is reached at the point (λ2, t) = (0.1, 0.01), and for values

of λ2 higher than 0.1 the PSNR slightly decreases. Figure 6(b) shows the

PSNR values for fixed λ2 = 0.1 and the different values of t, which highlights

the influence of t on the final restorations.

To visually observe this behavior, Figures 5(d)–(f) depict the obtained

restorations for λ2 = 0.1 and t = 0.001, t = 0.01 and t = 1. When t = 0.001
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we obtain the noisiest restoration (Fig. 5(d)), but if we look at the scarf and

the chair behind Barbara we can see that the textures are more pronounced

than in the other two restorations. On the other extreme, when t = 1

(Fig. 5(f)) we obtain the smoothest and less noisy restoration, but textures

are less marked. Finally, when t = 0.01 the restored image (Fig. 5(e)) has

an acceptable level of noise, while the textures remain quite marked. Hence,

there exists a trade-off between the restored textures and level of noise in the

image, which can be tuned by modifying the value of the parameter t. As we

mentioned before, this result is also numerically supported, since the PSNR

values for the restoration of the image in Fig. 5(b) with t = 0.001 and t = 1

are 26.02 dB and 25.65 dB, respectively, while the best PSNR, 26.05 dB, is

obtained for t = 0.01. For comparison purposes, we included in Fig. 5(c) the

restoration with the TV model, obtained with Alg. 1 by setting λ1 = 0.01

and λ2 = 0, which has a PSNR of 25.02 dB. This is an almost noise free

image but the textures in some parts of the scarf are lost.

From this experiment we can conclude that (a) neither the TV nor the

PSI image models alone are able to successfully recover the textures and

control the noise and (b) that the parameter t of the PSI model will control

the amount of texture in the image. In the following experiments we will

show that a sensible combination of the TV and PSI models produces better

results than using just one model alone.

To obtain the restored images using the TV, PSI, and TV+PSI priors,

we run Alg. 1 starting from the degraded image as initial estimate of the

original image, that is, x0 = y, and used tol = 10−4 for the stopping criterion

in Alg. 1. To select the value of the parameters governing the weight of the
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TV and PSI prior models on the final restoration, λ1 and λ2, we performed

a search in the set of values {0, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1,

0.2, 0.3, 0.4} and, as we have already indicated, we calculated the weight

of the fidelity to the data term, λ, as 1 − λ1 − λ2. Note that if λ2 = 0,

the TV model is used alone and that for λ1 = 0 the PSI model is selected.

We have experimentally observed that values of λ1 or λ2 larger than 0.4

reduce drastically the quality of the restored image so we did not consider

them in our reported experiments. Additionally, the PSI prior in Eq. (13)

depends on the parameter t. As we explained in section 2.2, the range of

useful values for this parameter is {10−3, 1} so, we explored the range t ∈

{0.001, 0.01, 0.03, 0.1, 1}.

We compared the performance of the proposed method with several clas-

sical and state-of-the art methods. First, we used the classical method in [11],

that uses a simultaneous autoregressive (SAR) prior model obtains a MAP

estimate of the image and, simultaneously, estimates the model parameters

by maximum likelihood.

Also, we compared with the method in [21] that proposes a combination

of `1 and SAR prior models. The `1 prior model is similar to the TV prior

but considers a different parameter for the horizontal and vertical first order

differences. Following [21], we assumed an exact knowledge of the noise vari-

ance and let the method estimate only the `1 and SAR prior parameters. The

combination parameter that controls the relative importance of the `1 and

SAR restoration methods is selected by exploring the interval [0, 1] in steps

of 0.1 and selecting the one resulting in a better PSNR. Finally, we compared

with the recently proposed log model in [19], named General Sparse Prior
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(GSP). We want to note that, although the method in [19] was originally

formulated as a blind deconvolution method, in this paper, we assume that

the blur is known. We supplied the method with the real value for the noise

variance.

We run all the restoration methods on four classic images in image pro-

cessing: Barbara, Cameraman, Baboon and Lena. These test images have

different levels of spatial activity and areas with different types of texture.

The original images were synthetically degraded following the observation

model in Eq. (1) after been scaled to the interval [0, 1]. Each image was

blurred with a Gaussian blur with support 21×21 and standard deviation 1.

Zero mean Gaussian noise with variance σ2
1 = 10−5, σ2

2 = 10−4 and σ2
3 = 10−3,

was added to the blurred images to obtain three set of degraded images with

SNR of about 50 db, 40 dB and 30 dB, respectively. We repeated each ex-

periment 3 times to decrease the dependence on a given realization of the

noise and report the mean value of the results for all experiments.

We present detailed results on two representative images and noise combi-

nations and, finally, we summarized and extract conclusions for the complete

set of experiments.

Figure 7(a) shows to the original Baboon image. To better appreciate the

details in the images we show results in a small region of interest, marked with

a square, of size 200× 200. In Fig. 7(b) the region of interest of the original

image is depicted. It contains different features that allow us to evaluate

how the method works. We can distinguish high frequency information as

the hair or the details around the eye, as well as smoother zones as the nose.

In Fig. 7(c) we shown the degraded image for a noise variance σ2
2 = 10−4.
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The PSNR for the whole image is 22.99 dB. Using the SAR model restoration

is depicted in Fig. 7(d). Notice that this model restores the details in the

image; however it also amplifies the noise, as can be seen in the nose. In fact,

the PSNR for this restoration is smaller than the one of the observation,

22.85 dB. On the other side, TV and GSP models, whose restoration are

shown in Fig. 7(f) and 7(g), respectively, obtain the smoothest restorations

and similar PSNR values (24.54 dB for the TV model and 24.52 dB for the

GSP model). The zone of the nose is almost noise-free, but the details around

the eye and in the hair are smoothed out. The PSI, `2+PSI, `1+SAR and

the proposed method, shown in Fig. 7(e) and 7(g), 7(i) and 7(j), respectively,

achieve a good balance between noise and texture, however, if we compare the

zone of the nose, we observe that the proposed method better eliminates the

noise, while preserving a similar quality in textures. The numerical results

also support this fact. PSI model alone obtains PSNR = 24.71 dB, `2+PSI

model obtains PSNR = 24.74, and the `1+SAR gets PSNR = 24.27 dB, while

the proposed method obtain PSNR = 24.86 dB.

For the image of Barbara, shown in Fig. 8(a), the same behavior is re-

peated. In this case, we have selected an area of interest of size 256 × 256,

which is marked by the square, and in Fig. 8(b). The degraded image was

generated with noise variance σ2
2 = 10−4, Fig. 8(c), has PSNR = 25.32 dB.

In this case, the noise amplification and edge smoothness produced by the

SAR model is much more evident (see Fig. 8(d)), getting PSNR = 24.14 dB.

The TV and GSP models in Fig. 8(e) and 8(g), manage to eliminate the

noise almost completely, obtaining PSNR = 26.75 dB and PSNR = 26.73

dB, respectively. However, it can be appreciated that some textures in the
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scarf are lost. The PSI model (Fig. 8(e)), `2+PSI model (Fig. 8(f)), `1+SAR

model (Fig. 8(h)) and TV+PSI model (Fig. 8(i)), are capable to restore the

texture in the scarf and obtain PSNR = 27.26 dB, PSNR = 27.32, PSNR

= 25.93 dB and PSNR = 27.55 dB, respectively. If we look at top and left

corner of the images, we can see that the proposed model again removes the

noise better than the PSI, and `1+SAR models.

To summarize the experiments, in Tables 1 and 2 we report the mean

PSNR values obtained in the experiments for the four images. We can see

that the proposed method obtains the highest PSNR for all the restorations,

except for the Barbara and Cameraman images when the noise variance is

σ2
3 = 10−3. In these cases GSP obtain better results since it better controls

high noise. Note that, in these cases, the differences between TV, GSP and

TV+PSI methods is small for all the images. However, as the noise level

is reduced the proposed TV+PSI method produces better results, especially

in highly textured images. We want to note that the combination of PSI

and TV models clearly improves over a single model, PSI or TV. In all the

experiments the value of λ1 and λ2 was greater than zero, meaning that our

method always included information from both models. Although we evalu-

ated different values for the parameter t, it is worth mentioning that in most

cases t = 0.001 produces good results. Also the proposed method is com-

petitive with the two state-of-the-art methods we compared with, `1+SAR

model combination and GSP.
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5. Conclusions

In this paper, we have presented a novel image restoration method that

uses the Bayesian paradigm to combine two prior models: the TV model that

preserves the edge structure while imposes smoothness on the solution and,

the PSI model which is capable to preserve the textures. The final product

is a restoration algorithm that combines the advantages of the two models.

An study of PSI model and the parameter that controls its shape has been

carried out, and concluded that neither the TV nor the PSI image models

alone successfully recover the textures and control the noise. Finally a set

of experiments has been carried out, where the proposed method has been

compared against both classical and state of art methods. The experimental

results supported the proposed model and demonstrated that TV + PSI

obtains high-quality restorations.

Future work will adapt the model to the local image characteristics and

perform automatic parameter estimation within the Bayesian framework.
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(a) (b)

(c) (d)

Figure 1: Realizations of the PSI prior model for different values of t, (a) t = 1 , (b)

t = 0.1, (c) t = 0.03 and (d) t = 0.001
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(a) (b)

(c) (d)

Figure 2: Fourier spectrum of the PSI filter for (a) t = 1, (b) t = 0.1, (c) t = 0.03, (d)

t = 0.001.
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Figure 4: (a) Original Barbara image, filtered images with (b) t = 1, (c) t = 0.1, (d)

t = 0.03, (e) t = 0.001 and (f) SAR.
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(a) (d)

(b) (e)

(c) (f)

Figure 5: (a) Original Barbara image, (b) degraded observation, (c) restoration with the

TV model. Restorations with PSI method for (d) t = 0.001, (e) t = 0.01 and (f) t = 1.
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Figure 6: (a) PSNR values for the restorations using the PSI model varying parameters

λ2 and t. (b) PSNR values for the restorations using the PSI model fixing λ2 = 0.1 and

varying parameter t.
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a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 7: (a) Original image with the area of interest marked, (b) Area of interest of the

original image, (c) Degraded image, (d) Restored image with the SAR model, (e) Restored

image with the PSI model, (f) Restored image with the TV model, (g) Restored image

with the `2 + PSI model, (h) Restored image with the GSP model, (i) Restored image

with the `1+SAR model, (j) Restored image with the proposed model.
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a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 8: (a) Original image with the area of interest marked, (b) Area of interest of the

original image, (c) Degraded image, (d) Restored image with the SAR model, (e) Restored

image with the PSI model, (f) Restored image with the TV model, (g) Restored image

with the `2 + PSI model, (h) Restored image with the GSP model, (i) Restored image

with the `1+SAR model, (j) Restored image with the proposed model.
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Table 1: Peak signal to noise ratio results for Baboon and Barbara with different levels of

noise.

Image Method
PSNR

(SNR = 30 dB)

PSNR

(SNR = 40 dB)

PSNR

(SNR = 50 dB)

Baboon

Observation 22.27 22.99 23.06

SAR 14.77 22.85 26.28

PSI 23.10 24.71 26.06

TV 22.65 24.54 26.19

`2 + PSI 23.10 24.74 26.28

GSP 23.03 24.52 25.81

`1 + SAR 22.62 24.27 25.74

TV + PSI 23.18 24.86 26.34

Optimum parameters

λ1 = 10−3,

λ2 = 10−1,

t = 0.001

λ1 = 10−4,

λ2 = 10−2,

t = 0.001

λ1 = 10−5,

λ2 = 10−3,

t = 0.03

Barbara

Observation 24.16 25.32 25.46

SAR 14.45 24.14 30.74

PSI 24.87 27.26 29.91

TV 24.70 26.75 30.59

`2 + PSI 24.87 27.32 30.79

GSP 25.02 26.73 30.13

`1 + SAR 24.54 25.93 29.29

TV + PSI 24.93 27.55 30.93

Optimum parameters

λ1 = 10−3,

λ2 = 10−1,

t = 0.01

λ1 = 10−4,

λ2 = 10−2,

t = 0.001

λ1 = 10−5,

λ2 = 10−3,

t = 0.001
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Table 2: Peak signal to noise ratio results for Lena and Cameraman with different levels

of noise.

Image Method
PSNR

(SNR = 30 dB)

PSNR

(SNR = 40 dB)

PSNR

(SNR = 50 dB)

Lena

Observation 27.91 31.43 32.01

SAR 15.09 24.67 33.33

PSI 30.69 33.02 34.51

TV 31.62 33.53 34.85

`2 + PSI 30.69 33.02 34.58

GSP 31.52 32.94 33.45

`1 + SAR 30.79 32.81 34.43

TV + PSI 31.62 33.61 34.91

Optimum parameters

λ1 = 10−2,

λ2 = 10−2,

t = 0.001

λ1 = 10−3,

λ2 = 10−2,

t = 0.001

λ1 = 10−4,

λ2 = 10−2,

t = 0.001

Cameraman

Observation 24.51 25.82 25.97

SAR 14.38 24.15 30.67

PSI 25.95 27.85 30.38

TV 26.93 29.83 32.46

`2 + PSI 25.95 28.24 30.55

GSP 27.41 29.32 30.29

`1 + SAR 25.71 28.02 30.13

TV + PSI 26.94 29.84 32.47

Optimum parameters

λ1 = 10−2,

λ2 = 10−6,

t = 0.03

λ1 = 10−3,

λ2 = 10−5,

t = 0.01

λ1 = 10−4,

λ2 = 10−5,

t = 1
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Variational Bayesian Blind Image

Deconvolution: A Review
Pablo Ruiz, Xu Zhou, Javier Mateos, Rafael Molina and Aggelos K. Katsaggelos

Abstract

In this paper we provide a review of the recent literature on Bayesian Blind Image Deconvolution

(BID) methods. We believe that two events have marked the recent history of BID: the predominance

of Variational Bayes (VB) inference as a tool to solve BID problems and the increasing interest of

the computer vision community in solving BID problems. VB inference in combination with recent

image models like the ones based on Super Gaussian (SG) and Scale Mixture of Gaussians (SMG)

representations have led to the use of very general and powerful tools to provide clear images from

blurry observations. In the provided review emphasis is paid on VB inference and the use of SG and

SMG models with coverage of recent advances in sampling methods. We also provide examples of

current state of the art BID methods and discuss problems that very likely will mark the near future of

BID.

I. INTRODUCTION

Thousands of millions of pictures are taken everyday. If the claim in [1] is right, 880 billion photos were

taken in 2014. Every minute, 27,800 pictures are uploaded to Instagram, 208,300 photos are uploaded

to Facebook and more than one thousand to Flickr, and the trend, with a digital camera in every mobile
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phone, is probably exponentially increasing. The quality of these pictures varies widely from professional

to amateur, in which case in many instances the images are taken under adverse conditions, such as low

lighting or with motion between the camera and the scene, thus resulting in blurred images. While in

some cases the introduction of blur in photography is intentional, being a powerful element of visual

aesthetics, in most cases it is an undesirable effect degrading the quality of the image. Examples of the

intentional introduction of blur includes the silky water effect obtained by using a long exposure when

photographing a water flow (Fig. 1a), the bokeh effect obtained in parts of the scene lying outside the

depth of field (Fig. 1b) and used to focus the attention of the viewer on a specific subject, or the motion

blur effect (Fig. 1c) used to provide a sense of speed. Unintentional blur is caused by a number of causes,

the most important ones being: camera or subject motion while the shutter is open (Fig. 1d) which leads

to motion blur, out-of-focus (Fig. 1e) that blurs the whole the image or relevant parts of it or, simply,

the presence of the atmosphere (Fig. 1f) as is the case with astrophotograhy.

Not only commercial photography is affected by blur. Modern science makes an intensive use of

images in areas such as astronomy, remote sensing, medical imaging and microscopy and, in all of them,

imperfections and characteristics of the capture system lead to images degraded during the observation

process by blur, noise, and other degradations that diminish the quality and, hence, the value of the

captured images.

Image deconvolution is a mature topic that aims at recovering the underlying original image from its

blurred and noisy observations. Sometimes, the blur is completely or partially known or can be estimated

prior to the deconvolution process. For instance, in astronomical imaging, an accurate representation of

the blur can be obtained by imaging a single star first before photographing the astronomical object of

interest. In contrast, blind image deconvolution (BID) tackles the restoration problem without knowing

the blur in advance, leading to one of the most challenging image processing problems, since many

combinations of blur and “true” image can produce the observed image. To start with, deconvolution

is an ill posed problem in the Hadamard sense [2], that is, small variations in the data result in large

variations in the solution. The problem is exacerbated in the BID problem, since in addition, small

variations in the estimated blur can lead to large variations in the restored image.

BID is an underdetermined nonlinear inverse problem, which requires the estimation of many more

unknown variables than the available observed data. To find meaningful solutions, not only prior infor-

mation about the unknowns is crucial, but also a good and sound estimation approach. In this paper,

we provide a comprehensive survey of BID methods reported since the publication of the review [3],

with a focus on Bayesian approaches. In our opinion, since the publication of [3], Variational Bayes

DRAFT May 28, 2015
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Blurred pictures due to intentional blur: a) silky water effect by Geraint Rowland (https://www.flickr.com/photos/

geezaweezer/15327097294), b) bokeh by Rodrigo Gomez (https://www.flickr.com/photos/rgomez74/2970906336), c) motion blur

by Ernest (https://www.flickr.com/photos/viernest/3380560365). Blurred pictures due to unintentional blur: d) camera motion by

tunguska (https://www.flickr.com/photos/tunguska/103472115), e) out of focus by Nacho (https://www.flickr.com/photos/gonmi/

8193430914), f) atmosphere by Mike Durkin (https://www.flickr.com/photos/madmiked/43831827).

(VB) inference has emerged as a dominant approach for the solution of BID problems. VB inference

in combination with recently introduced image models, like the ones based on Super Gaussian (SG)

and Scale Mixture of Gaussian (SMG) representation, has led to the development of very general and

powerful tools to obtain clear images from blurry observations. We review the recent BID literature

with an emphasis on VB inference and the use of SG and SMG models but without ignoring recent

advances in sampling methods. We also provide examples of current state of the art BID methods and

discuss problems that very likely will mark the near future of BID. The paper is organized as follows.

In Section II, we briefly introduce the BID problem as well as the prior models. Section III shows the

variational Bayesian methodology and its advantages over other inference approaches. We also present

two representation models for variational inference, followed by the final BID algorithm. Section IV

discusses some important outstanding challenges regarding the applications of VB based BID methods

and BID as a whole research field. Experimental results are presented in Section V.
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II. BAYESIAN PROBLEM FORMULATION

A. Bayesian framework for BID

In BID the image formation model is usually assumed to be:

y = x⊗ h + n = Hx + n, (1)

where y ∈ RN is the observed blurred image (a column vector of N pixels), ⊗ represents the convolution

operation, x ∈ RN is the unknown original image, H ∈ RN×N is the convolution matrix obtained from

the also unknown blur kernel h ∈ RK and n ∈ RN is a noise term which is assumed to be i.i.d. Gaussian

with variance β−1. As discussed in section IV-D. other degradation models than the Linear and Spatially

Invariant model above are also utilized.

Notice that although the BID problem is defined here in the image domain, it can also be easily

formulated in transformed domains, such as the derivative, wavelet, and curvelet domains. The use of

the filter space has gained popularity recently, however, there are still some open questions which need

to be addressed before deciding which one is the right domain to work on, see section IV-A.

From a Bayesian perspective, given the observed blurred image y, the goal is to infer the latent (hidden)

variables z = {x,h} and possibly the model parameters denoted by Ω. The image degradation model in

Eq. (1) can be written as:

p(y|z, β) = N (y|Hx, β−1I), (2)

where β is the precision parameter of the observation model, and possibly one of the model parameters

to be estimated.

It is well known that the inverse problem of Eq. (1) is ill-posed [3]. Therefore, additional information

on the latent variables and model parameters must be provided. The Bayesian paradigm introduces this

necessary information for the BID problem as a prior distribution p(z|Ω), which models the information

on z, and a prior p(Ω) on the model parameters. Sometimes the prior on the model parameters is called

hyperprior and the elements of Ω are called hyperparameters.

With these ingredients, the global modeling of the BID problem can be written as

p(z,Ω,y) = p(y|z,Ω)p(z|Ω)p(Ω). (3)

Before describing how inference is performed, we will now review the image, blur and hyperparameters

priors proposed for the BID problem since the publication of [3].
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Fig. 2. (a) and (b): examples of penalty functions ρ(s), where the MOG is obtained from Levin et al. [4]. (c): their corresponding

ρ′(s)/s. (d): plots of ρ′(s)/s, where an upper bounding is taken for visualization. Note that TV is replaced with anisotropic

TV (`1 prior) since isotropic TV cannot be shown in 1-D function.

B. Image prior models

An unquestionable landmark on the recent history of BID is the paper by Miskin and MacKay [5]. In

that work the authors propose the use of a mixture of Laplacians to restore cartoon images and utilize,

for the first time in the BID literature, VB inference (to be described later) to restore the observed image.

Later, Likas and Galatsanos [6] proposed a Gaussian prior to impose smoothness on the image and blur,

see also [7], and Fergus et al. [8] proposed a mixture-of-Gaussians (MOG) to impose sparsity.

The 2007 Bishop et al. [3] review on BID describes, among others, classical prior models such as

Conditional Autoregression (CAR) or Simultaneous Autoregression (SAR) used by Molina et al. [9] to

impose smoothness, or Total Variation proposed by Rudin, Osher and Fatemi [10] to impose piecewise-

smoothness. The TV prior model has been frequently used in BID, see for instance [11]–[15], see also

[16] and [17]. Fergus et al. [8] represents the first publication on the use of filtered versions of the original
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image to estimate image and blur. The use in [12] of majorization methods with variational inference and

diagonal covariance approximation led to a new way to approach BID in image processing (not widely

acknowledged in the computer vision community). As we will see in the following, the TV prior used

in [12] is a particular case of the use of Super Gaussian Distributions in BID.

Since the influential work of Fergus et al. [8], sparse prior models have attracted the attention of BID

researchers and are, in our opinion, rightly considered to be the state of the art representation in filtered

domains. It is a well known fact that when high-pass filters are applied to natural images, the resulting

coefficients are sparse; i.e., most of the coefficients are zero or very small while only a small number

of them are large (e.g., at the edges). This is a very important characteristic that should be taken into

account when restoring natural images.

The `p prior has been used in a large number of works such [12], [13], [18]–[21]. They use a prior

distribution based on the minimization of quasi-norms ‖ · ‖pp with 0 < p ≤ 1. Levin et al. [18] suggest

the use of p in the range [0.6, 0.8] for natural images.

The Super-Gaussianity property presented by Palmer in [22], was used in Babacan et al. [23] as the

building block to propose a general representation for sparse priors. As we will see, almost all previous

and very recently proposed prior models can be represented using SG. This representation is used in the

same work [23] to introduce two new image priors log and exp. Recent models like the one proposed by

Zhang and Wifp [24], or the Student-t prior recently proposed by Mohammad-Djafari [25] are particular

cases of SG distributions.

1) Sparse General Representation: A probability distribution is considered to be sparse when it is

Super Gaussian (SG) [22], i.e., compared to the Gaussian distribution, it has heavier tails, it is more

peaked, and has a positive excess kurtosis. These distributions are referred to as sparse since most of

the distribution mass is located around zero (hence strongly favoring zero values), but the probability of

occurrence of large signal values is higher compared to the Gaussian distribution.

Babacan et al. [23] propose the use of the following general framework to define the prior model

either in the image or the filter space. First they consider L high-pass filters {fγ}Lγ=1 (such as derivatives,

wavelets, curvelets, etc.) and define

xγ = fγ ⊗ x, γ = 1, . . . , L. (4)

Using these filters on the real underlying image the following prior model in the image space can be

defined

p(x) ∝
L∏
γ=1

N∏
i=1

exp (−αγρ(xγ(i))) , (5)
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where ρ(·) is an energy function symmetric around zero with ρ(
√
s) increasing and concave for s ∈ (0,∞)

[22] and αγ a scale parameter.

Alternatively, the filtered original images can be assumed to be independent. The following set of

independent priors is then considered

p(xγ) ∝
N∏
i=1

exp (−ρ(xγ(i))) , γ = 1, . . . , L. (6)

In this case, a set of blurred and noisy observations can be defined, associated with the filtered original

images

yγ = fγ ⊗ y = h⊗ fγ ⊗ x + fγ ⊗ n = h⊗ xγ + nγ , (7)

where nγ is assumed to be Gaussian independent noise with precision β. It is important to note that the

observations yγ , γ = 1, . . . , L, are assumed to be independent and they provide information on the blur

but not exactly on x but on its filtered versions.

Notice that the most popular recent prior models, such as TV, `p, or MOG are Super Gaussian

distributions (see Fig. 2 for some examples), and therefore can be represented using Eq. (5). Notice

also in Fig. 2, that log enforces sparsity very strongly due to its infinite peak at zero and heavy tails.

A sub-class of Super Gaussian distributions is the so called Scale Mixture of Gaussians (SMG),

proposed by Andrews and Mallows [26] and used as a general framework for BID in Babacan et al.

[23]. Here, associated with each filter γ and each pixel i we have

p(xγ(i)) =

∫
p(xγ(i)|ξγ(i))p(ξγ(i))dξγ(i), (8)

where p(xγ(i)|ξγ(i)) is a Gaussian distribution with precision ξγ(i). This model can also benefit from

the introduction of a global scale parameter αγ in Eq. (5).

SMG requires complete monotonicity of p(
√
s), i.e., (−1)np(

√
s)n ≥ 0 must be satisfied for all

n = 0, 1, 2, . . .. As can be seen in [22], this representation is more strict, in the sense that fewer classes

of sparse priors can be represented with it than using Eq. (5). Finding p(ξγ(i)) is in general a difficult

task; however, as we will see in Section III its full knowledge is not needed for our purposes. One

example of SMG is the Student-t prior proposed by Mohammad-Djafari [25]. It is clear that an MOG is

an SMG model and that spike and slab distributions on z ∈ R, p(z) = λδ(z) + (1− λ)N (z|0, σ2) [27]

are the limit of MOG models with two components, one of them with very small variance. Inference

with these models is complicated due to the image size; however variational inference can still be carried

out, see [28]. Notice that sparse promoting spike and slab and Bernoulli-Gaussian [27], [29] priors will
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very likely receive more attention by the BID community especially when estimating the blur in the filter

space.

C. Blur models

Although the above described prior models were proposed for the image, all of them can also be used

for the blur as well. The BID literature also contains specific blur models which we now describe. Molina

et al. [9] propose a Dirichlet prior for kernel modeling. Since the curvelet representation can take into

account both the continuity and sparsity of the motion blur kernel, Cai et al. [30] suggest the use of this

representation for this type of blur. Oh and Kim [31] propose a piecewise-linear model for motion blur

in order to reduce the dimensionality of the solution space and make the kernel estimation process more

robust.

Based on the assumption that the power spectrum of natural images drops quadratically as the frequency

increases Goldstein and Fattal [32] introduce a power spectrum prior on the blur kernel. Recently, a novel

convex blur regularizer based on the spectral properties of the convolution operators can be found in [33].

Since the spectral properties used are based on a linear and shift-invariant model without considering the

noise, these methods do not work well for spatially varying blurs and noisy observations.

Let us consider the observation model in Eq. (1) and assume that the original image x is known. In

this case we have N observations and aim at estimating K coefficients, where K is the size of the blur.

Since the image size is usually much larger than the blur size, N observations should be sufficient to

obtain a good blur estimate, even more so if L filtered observations are used. Based on the fact that

usually K << N , many authors [15], [23], [34], [35] have recently advocated the use of flat priors on

the blur, enforcing only its nonnegativity and normalization constraints.

D. Hyperparameters models

So far we have studied the distributions p(z|Ω), p(y|z,Ω) that appear in the Bayesian modeling of

the BID problem in Eq. (3). We complete this modeling by studying now the distribution p(Ω).

An important problem is the estimation of the vector of parameters Ω when they are unknown. To

deal with this estimation problem, the hierarchical Bayesian paradigm introduces a second stage, where

the hyperprior p(Ω) is also formulated.

For parameters, ω, corresponding to inverses of variances, the gamma distribution is used. It is defined

by:

p(ω) = Γ(ω|aω, bω) =
(bω)aω

Γ(aω)
ωaω−1 exp [−bωω] , (9)
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where ω > 0 denotes a hyperparameter, bω > 0 is the rate parameter, and aω > 0 is the shape parameter.

These parameters are assumed known. The gamma distribution has the following mean, variance, and

mode:

E(ω) =
aω
bω
,Var(ω) =

aω
b2ω
,Mode(ω) =

aω − 1

bω
. (10)

Note that the mode does not exist when aω ≤ 1 and that mean and mode do not coincide. The literature

also reports the use of non-informative prior models, p(Ω) ∝ constant, which can be considered as the

limits of the above described hyperpriors.

Finally, we would like to mention here that the SG and SMG formulations turn the parameter estimation

into a difficult task, especially when several filtered images are considered, since their partition functions

can not usually be calculated.

III. BAYESIAN INFERENCE

Once the observation and prior models have been described, in other words, once the elements of the

joint probability model in (3) have been specified, the goal now becomes the drawing of inference of the

unknown variables Θ = {z,Ω} given the observations.

In the Bayesian framework Θ is inferred calculating (or approximating) the posterior distribution

p(Θ|y), expressed using the Bayes’ rule as

p(Θ|y) =
p(Θ,y)

p(y)
=

p(y|Θ)p(z|Ω)p(Ω)

p(y)
. (11)

Unfortunately, since the integral p(y) =
∫

p(Θ,y)dΘ is not tractable, the above posterior cannot be

analytically calculated. Different estimation methods have been proposed to address this problem in the

BID context and we will now review them.

Probably the most widely used method in the literature is Maximum a Posteriori (MAP). Since

p(Θ|y) ∝ p(Θ,y) the maximum of the posterior distribution can be obtained by maximizing the joint

distribution p(Θ,y) with respect to Θ. However, as pointed out in the landmark papers by Levin et

al. [4], [34], MAP is not a suitable estimation procedure in BID problems, because the associated cost

function favors flat images for many sparse priors and leads to a delta blur estimate. To avoid the delta

blur solution, Perrone and Favaro [14] show that a delayed normalization [11] should be used while other

authors [36]–[38] suggest using non-dimensional sparsity measures.

Another very popular inference method is MAPh [39] [34] [40] [24]. Unlike MAP, this method

integrates the joint distribution with respect to x before estimating h and Ω, that is, blur and parameters
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TABLE I

COMPARISON OF INFERENCE METHODS

MAP MAPh VB MCMC

Has full posterior no partial yes yes

Has point estimates yes yes yes yes

Has uncertainty info no partial yes yes

Allows hidden data no yes yes yes

Complexity low low medium high

are estimated by maximizing the evidence [41]. The restored image is finally calculated by maximizing

the joint distribution, using the estimate values of h and Ω through the above integration on the image.

Variational Bayesian inference has been widely used in BID (see [4]–[8], [13], [20], [23], [24], [40]).

VB generalizes MAP and MAPh (see [42] for a proof) providing approaches for estimation of the

posterior distributions of x, h and Ω.

Together with the well established use of VB inference in BID, Markov Chain Monte Carlo (MCMC)

methods are also gaining popularity. MCMC is the most general method used to approximate a posterior

distribution, see [43] [44] [45] for details. The model in Eq. (3) is used to generate thousands of samples

of p(z,Ω|y), which are used to infer the posterior distribution. In theory, sampling methods can find the

exact form of the posterior distribution, but in practice they are computationally intensive (especially for

multidimensional signals such as images) and their convergence is hard to establish.

In computationally cost terms, VB is much more efficient than MCMC, and more expensive than MAP

or MAPh. The features of each method are summarized in Table I.

We now describe the application of VB and MCMC to BID.

A. Variational Inference in the image space for Super Gaussian priors

Since SG distributions are flexible enough to represent most of the image models used in the BID

literature, we restrict, without loss of generality, the VB description to this representation. Furthermore

we will formulate the inference in the image space; a detailed account of the use of SMG for the filter

representation can be found in [23].

As it has already been explained above, the posterior distribution cannot be calculated analytically using

the Bayes’ rule in Eq. (11). To approximate p(z,Ω|y), VB minimizes the following Kullback-Leibler
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divergence

KL(q(Θ)‖p(Θ|y)) =

∫
q(Θ) log

q(Θ)

p(Θ|y)
dΘ =

∫
q(Θ)

p(Θ,y)
dΘ + const. (12)

The Kullback-Leibler divergence is always non negative and is zero if and only if q(Θ) = p(Θ|y). Since

the minimizer q(Θ) = p(Θ|y) cannot be calculated, some assumptions on q(Θ) have to be made. One

possible assumption is that q(Θ) has a specific parametric form, e.g., a Gaussian distribution. Another

widely used assumption is that q(Θ) factorizes into disjoint groups, i.e.,

q(Θ) = q(x)q(h)q(Ω). (13)

This factorized form of variational inference is called mean field theory in physics [46].

Using Eq. (13), the KL divergence can be minimized with respect to each factor while holding the

other factors fixed. The optimal solution for each factor is then [47]

log q(θ) = E [ln p(Θ,y)]q(Θ̄) + const, (14)

where Θ̄ = Θ\θ is the set of unknowns excluding θ and E [ln p(Θ,y)]q(Θ̄) denotes the expectation taken

with respect to all the approximating factors Θ̄. This system of equations is solved by an alternating

minimization procedure, where each distribution q(θ) is iteratively updated using the latest distributions

of all the other factors. Since the KL divergence (12) is convex with respect to q(θ) [48], the convergence

of this alternating minimization procedure is guaranteed.

The penalty function ρ(·) defined in (5) can be represented as (see [49])

ρ (s) = inf
ξ>0

1

2
ξs2 − ρ∗

(
1

2
ξ

)
, (15)

where ρ∗ (ξ/2) is the concave conjugate function

ρ∗
(

1

2
ξ

)
= inf

s

1

2
ξs2 − ρ (s) . (16)

Furthermore, the infimum in (15) is achieved at ξ = ρ
′
(s)/s, as shown in [23]. Directly applying VB

inference using p(x,h,y) is unfeasible, since the expectation of the logarithm of the joint distribution

with respect to q(x) is intractable.

Since ρ(s) is the penalty associated to a SG distribution we can write

p(x) ≥ Z
L∏
γ=1

N∏
i=1

exp(−αγ(
ξγ(i)

2
x2
γ(i)− ρ∗(1

2
ξγ(i)))), ∀ξγ(i) > 0, (17)

where Z is a constant. This Gaussian like lower bound will allow the expectation of the joint distribution

to be calculated analytically. We have
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p(x,h,y) ≥ p(y|x,h)p(h)Z

L∏
γ=1

N∏
i=1

exp(−αγ(
ξγ(i)

2
x2
γ(i)− ρ∗(1

2
ξγ(i))))

= M(y,x,h, ξ), (18)

where ξ = {ξγ(i), γ = 1, . . . , L, i = 1, . . . , N} with all component positive.

We then have ∫ ∫
q(x)q(h) log

q(x)q(h)

p(x,h,y)
dxdh

≤
∫ ∫

q(x)q(h) log
q(x)q(h)

M(y,x,h, ξ)
dxdh

=

∫ ∫ ∫
q(ξ)q(x)q(h) log

q(ξ)q(x)q(h)

M(y,x,h, ξ)
dxdhdξ, (19)

where q(ξ) is a degenerate distribution on ξ.

We then minimize the above integral on q(ξ), q(x), and q(h) assuming that q(h) is degenerate.

According to (14), we obtain

ĥ = arg max
h

E[log(M(y,x,h, ξ̂))]q̂(x), (20)

q̂(x) ∝M(y,x, ĥ, ξ̂), (21)

ξ̂ = arg max
ξ>0

E[log(M(y,x, ĥ, ξ))]q̂(x). (22)

B. Estimation of blur, image, and variational parameters

For the latent image, we obtain from (21),

log q̂(x) = −β
2
‖Ĥx− y‖22 −

1

2

L∑
γ=1

αγx
T
γ diag(ξ̂γ)xγ , (23)

which is a multivariate Gaussian with precision matrix

C−1
x = βĤT Ĥ +

L∑
γ=1

αγF
T
γ diag(ξ̂γ)Fγ , (24)

where Fγ is an N × N convolution matrix formed by the filter fγ , and Ĥ is an N × N convolution

matrix obtained from ĥ. The mean value x̂ is used as the estimate for x, which is obtained by solving

the following system of linear equations

C−1
x x̂ = βĤTy. (25)
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For the variational parameter ξ̂, we obtain from (22)

ξ̂γ(i)=
ρ

′
(νγ(i))

νγ(i)
, (26)

where νγ(i) =
√
E[x2

γ(i)], 1 ≤ i ≤ N , with the expected value calculated using the distribution q̂(x).

To estimate the blur we have

ĥ=arg min
h
‖Hx̂− y‖22 + hTDxh, (27)

subject toh(i) ≥ 0,

K∑
i=1

h(i) = 1, (28)

where Dx is a K ×K matrix given by

Dx(m,n) =

N∑
j=1

Cx(m+ j, n+ j). (29)

To estimate the variational parameters in Eq. (26) and the blur in Eq. (27), the matrix Cx is required.

This means that the N × N matrix C−1
x has to be inverted, a very time and memory demanding

task. Following [4] and [23], we approximate Cx as the inverse of the diagonal of C−1
x . This inverse

approximation is commented on in the open issues section IV-C.

The prior image model can also be made dependent on a global parameter, which models the general

scale behavior of the prior model. Its estimation is a very hard problem which can be approached under

some assumptions on the prior model, see [20].

C. Algorithm

The VB based blind deconvolution algorithm is presented in Alg. 1. However, as pointed out by

Fergus et al. [8], directly applying it to estimate the blur may end up in the local minima, especially

when the kernel support is large. To handle the large blur support problem, they suggest using a multiscale

approach, namely building an image pyramid and then applying the BID method at each scale, which

has proved to be very effective in BID problems. The rationale is that at the coarsest level, the blur is

reduced significantly, so that it is easy to estimate a kernel from the downsampled image. At the next

finer level, this kernel estimate is upsampled and can be used as a good initial guess for the single scale

BID. Repeating this process until the finest level, we can obtain a better kernel estimate. After kernel

estimation, we reconstruct the final sharp image using a non-blind deconvolution method (e.g., [50], [18],

[51]).

The computation in Alg. 1 is dominated by the solution of Eqs. (25) and (27). Since the most time

consuming part when solving these two equations is the 2-D convolution, the computational complexity
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Algorithm 1 Single Scale Bayesian Blind Deconvolution Using Super Gaussian Priors
Require: Observation y, noise level β, penalty ρ(s), prior weight α.

1: Initialization x = y, Cx = 0,

2: repeat

3: Initialize ξ

4: while not converge do

5: Update x by solving the linear system 25

6: Update ξ using Eq. (26)

7: Approximate Cx(i, i) with 1/C−1
x (i, i)

8: end while

9: Update h by solving the quadratic programming problem in Eq.(27)

10: until Convergence

is O(NK) or O(N log(N)), depending on the usage of spatial convolution or FFT, respectively. We

should mention that the computational complexity increases to an extremely large number, O(N3), if

C−1
x is inverted exactly. The number of iterations required for convergence depends on the image priors.

For example, the use of log prior leads to faster convergence than the use of `0.8 prior, because the log

prior is more edge preserving and sparsity promoting than the `0.8 prior. It is also shown in [38] that, for

the same optimization method and parameter settings, the use of the normalized `1 prior [38] results in

fewer iterations for convergence than the `1/`2 prior [36] in the kernel estimation step. Due to the use

of the covariance matrix, the VB BID method is slower than the MAP method [36] [37] [38], and much

slower than the edge prediction based methods [52] [53].

D. Sampling methods

Since the posterior distribution is not analytically available, sampling methods can be used to draw

a large number of samples from it, and Monte Carlo integration techniques provide tools which allow

performing inference on this dataset.

To simulate the posterior distribution Markov chains are used to develop different sampling methods.

Perhaps the most widely used sampling method is Gibbs sampling described by the Geman and Geman

in [54]. More recent methods are the Metropolis adjusted Langevin algorithms [55] and Hamiltonian

Monte Carlo [56].
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To better understand the sampling methods let us see an example of Gibbs sampling. If we can write

down analytic expressions for the conditional distributions of all the unknowns we wish to estimate,

given the others, we simply draw samples from each of the distributions in turn, conditioned on the most

recently generated samples values for the other parameters. In our case we want to simulate p(x,h,Ω|y);

the iterations would proceed as follows:

First iteration: x(1) ← p(x|h(0),Ω(0),y)

h(1) ← p(h|x(1),Ω(0),y)

Ω(1) ← p(Ω|x(1),h(1),y)

Second iteration: x(2) ← p(x|h(1),Ω(1),y)

h(2) ← p(h|x(2),Ω(1),y)

Ω(2) ← p(Ω|x(2),h(2),y)

... (30)

where the symbol ← means that the values are drawn form the distribution on the right. Once enough

samples have been collected, point estimates and other statistics of the distribution may be found using

Monte Carlo integration, for example the Minimum Squared Error estimator of the mean can be obtained

as x̂ = 1
J

∑J
j=1 x

(j), where J is the number of drawn samples.

Due to the expensive computational cost (which is even worse when it is applied to high-dimensional

data, such as images), the use of sampling methods in BID is not very extended. The works in this field

are focused on developing more efficient algorithms. Ge et al. [57] or Kail et al. [58] propose modified

versions of the Gibbs sampling, and Pereyra [35] uses the Langevin algorithm which uses convex analysis

to simulate efficiently the distributions.

IV. OPEN ISSUES

Before presenting some BID examples we would like to comment here on some open problems, either

on the Variational Bayesian BID (VBBID) or BID itself, that we believe will very likely be explored in

the near future:

A. Image space versus filter space

VB methods can be formulated in either the image or the filter space. Levin et al. [4] state that the

filter space has better performance for the MOG prior. Xu et al. [37] indicate that using the image space
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formulation for latent image estimation and filter space formulation for kernel estimation is better than

using the same spaces. In our opinion additional work is needed to establish the best spaces for image

and kernel estimation. The image space appears to be less sensitive to noise since the noise is amplified

in the filter space. Furthermore, the filter space is probably more computationally expensive than the

image space. On one hand, utilizing the same number of iterations and L derivative filters, the total

computation time in the filter space is about L times that of the image space. On the other hand, it is

shown in Cho and Lee [52] that the kernel estimation in the image space requires more iterations to

converge than in the filter space, since the symmetric matrix X̂T X̂ of the quadratic program in Eq. (27),

is not as diagonally dominant as
∑

γ X̂
T
γ X̂γ , where X̂ and X̂γ denote the convolution matrices formed

by x̂ and x̂γ , respectively. Based on the above two factors, it is conceivable that the image space is

computationally less expansive than the filter space, when L ≥ 2. Additionally, filter space methods have

access to more “observations” to estimate the blur, although with an unrealistic independence assumption

on them. The pros and cons of both approaches should be carefully analyzed.

B. Bottom-up approach

The bottom-up approach, first proposed by Babacan et al. [23], refers to formulating a weight update

scheme φ(ν) = ρ′(ν)/ν for the Gaussian prior approximation (without knowing explicitly the penalty

function) provided that φ(ν) is decreasing on (0,+∞). A crucial and very challenging question is how

to choose a good penalty function ρ or φ for VB blind deconvolution.

Wipf and Zhang [59] state that the preferred distribution is not the one reflecting the accurate statistics

of the latent image, but the one that is most likely to guide VB iterations to high quality global solutions

by strongly differentiating between blurry and sharp images. This implies choosing a φ that strongly

discriminates sharp and blurry images. To that end, φ should be strongly sparsity promoting and also

very edge preserving, such as φ(ν) = ν−p with (p ≥ 2).

We believe that a trade-off between preserving edges and promoting sparsity should be achieved when

dealing with noisy images. If noise is high, a very edge preserving φ(ν) cannot suppress it. Babacan et

al. [23] also suggest a more general form φ(ν) = (Fν)−p, where F is a linear operator (e.g., nonlocal

mean filter [60]). A variety of heuristics can easily be embedded through F to combat noise and increase

robustness. Finally, we emphasize that given a φ, the value of αγ should be chosen properly, as we will

show in the experimental section.
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C. Covariance approximation and general optimization issues

The covariance matrix Cx plays a very important role not only in the image estimation step but also in

the kernel estimation step. This matrix makes VB methods different from MAP methods. Intuitively, the

introduction of Cx in the estimation of the weights ξ makes their estimated values slightly smaller than

when the covariance is not considered. As a result, the edges are better preserved. Besides, in the kernel

estimation step, it provides an adaptive smoothness promoting regularization term which helps avoid the

delta kernel estimates.

Unfortunately, due to the high computational cost, Cx is approximated by the inverse of the diagonal of

the weighted deconvolution matrix C−1
x . Since C−1

x is not diagonal, the diagonal approximation definitely

introduces an error. The diagonal approximation is only reliable when β−1 and ξ are relatively large.

If both β−1 and ξ are small, this approximation is not that reliable. Another alternative is the mean

value approximation proposed by Babacan et al. [61], which replaces the weights ξγ with the average∑N
i=1 ξγ(i)/N , so that Cx is a circulant matrix associated with the kernel hCx

= F−1Λ−1
h , where F

denotes the 2-D DFT and Λh is a column vector formed by the eigenvalues of C−1
x . hCx

has a large

but finite support thanks to regularization and can be computed efficiently with the use of an FFT. This

approximation takes the non-diagonal elements information into account, but the important information

on the spatially variant weights is lost. The consequences of the use of the diagonal and mean value

approximation remain an open question. Better but also feasible approximations to Cx should also be

explored.

Notice that the image estimation step involves solving a nonconvex problem when the penalty function

is nonconvex, e.g., ρ(s) = sp/p (0 < p < 1). Assuming that the covariance term in ξ is ignored, it has

been shown in [21] that the IRLS method which alternatively solves the linear equations in (25) and

updates the weights by (26), definitely converges to a stationary point. Since the problem is nonconvex,

the initial weights can make a difference in the final result, especially for the extremely nonconvex

functions like log. A typical choice for the initial weights is the use of a large constant (e.g., 104, see

[4] [23]). It is conceivable that a ξ whose large values are located at the blur region may lead to a good

stationary point, as the blur will be removed accurately. Since it is hard to know the blur region, finding

such a good initial weights is not a trivial task in BID. Finally, we would like to mention that the linear

equations (25) can be efficiently solved by ADMM [21] (Alternating Direction Method of Multipliers,

see [62] for a comprehensive review), provided that the blur is spatially invariant.

Together with the IRLS method [21], other nonconvex optimization methods including variable splitting
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and look-up-table based method [63], `1-decomposition based method [64], and recently the smoothing

trust region methods [65] [66] have also been applied to image deconvolution.

D. Spatially varying blur and other modeling problems

In this paper we have assumed that the blur is the same across the image. However, as shown in

[67], even the camera optical system generates a considerable amount of spatially varying (SV) blur. In

general, spatially varying degradation can be modeled as

y(s) =
∑
u

h(s, s− u)x(u) + n(s), (31)

where y(s) is the value of the observed image at position s, x(u) is the value of the unknown ideal image

at position u, h(s, s− u) is the blur affecting the image, that depends on each image pixel position, and

n(s) is the noise. When SV BID is addressed, some restrictions are applied to the way the blur varies in

Eq. (31) in order to make the problem feasible. Such restrictions include the assumption that the blur is

piecewise-invariant or piecewise smooth spatially varying, that is, the blur varies smoothly in the image,

or that the blur is piecewise constant and location dependent, that is, different regions in the image have

different blurs but the blur is spatially-invariant in each region. Another typical restriction is to assume

that the type of the blur is known, for example, it is due to camera shake, or to consider images of a

certain type, such as images with text [68] or star fields [69].

One approach to SV BID is to divide the image into non-overlapping patches where the blur is

assumed to be stationary, apply a BID method on each patch independently, and merge the restored

patches to obtain the final image. If the patches are not predefined, this approach casts the SV BID

into a segmentation problem [70] in which the simpler case is to consider just two regions, a focused

foreground and a out-of-focus background [71]. If the patches overlap and the blur varies smoothly on

the image, the degradation model in Eq. (31) can be approximated as

y(s) =
∑
r

∑
u

hr(s− u)wr(u)xr(u) + n(s), (32)

where wr(u) ≥ 0,
∑

r wr(u) = 1, are weights allowing the smooth blending of the overlapping patches

[72]. The advantage of this model is that it allows for an efficiently implementation using the Efficient

Flow Filter (EFF) method [73] and also for different types of blur. On the other hand, its accuracy

depends on the accuracy of the estimated kernel and may produce large errors if the kernels are not

precisely estimated. In [74] the EFF method is extended to handle TV priors and a method to detect

and replace erroneous blurs is proposed making it more robust. Another method to estimate smoothly
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varying blurs, with applications to star field images, is propossed in [69]. The method estimates the blur

at certain image positions and uses SVD to remove outliers and estimate a smooth PSF field from the

individual PSFs.

If only camera-shake blur is considered, the Projective Motion Path approach [75] models the SV

degradation as the average of multiple sharp images, each one corresponding to one of all possible

camera poses, that is,

y(s) =
∑
i

x(Hiu) + n(s), (33)

where Hi are homographies, that is, combinations of rotations and translations, that project the sharp

image given a camera orientation. The homographies can be obtained from auxiliary sensors attached to

the camera, such as gyroscopes (see [76] and section IV-E), and high speed low resolution cameras [77],

or they are estimated with the image [78].

A similar approximation is considered in [79] where the SV degradation is modeled as a weighted

sum of sharp images obtained at all possible camera poses, that is,

y =
∑
i

w(i)Cix + n, (34)

where Ci is the matrix that applies the homography Hi to the image x and w(i) weights the i-th projection

depending on the time spent by the camera at the i-th pose during the capture time. In [80], VB is used

to estimate both the image x and the weights w(·). The drawback of this approach is that is resource

demanding since it has to compute and store all the projections. To alleviate this problem, [81] proposes

an iterative method that, at each iteration, restricts the solution space to a small set of camera poses

which the camera motion trajectory is most likely to belong to.

Despite all these advances, more research is still needed to solve the general SV BID problem as

described by Eq. (31).

Even without mentioning the spatially variant nature of the blur, the linear model in Eq. (1), utilized

by most BID methods, is not a realistic one for real-life images. Common violations include the presence

of defective sensor pixels, saturated pixels [82], a nonlinear camera response curve [83], or non additive

white Gaussian noise [84], [85] which, if not properly handled, may generate ringing artifacts when

restoring the image even if the blur is accurately estimated [86]. We believe that developing methods

that explicitly handle such model violations will improve the applicability of BID to real problems.

These modeling problems are alleviated with the use of more than one images. Considering color and,

in general, multichannel images, remedies, to a great extend, the ill-posed nature of blind deconvolution

[87]. Using image pairs with different properties facilitates blur estimation and helps handle saturated
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pixels and other camera imperfections. For instance, in [88] a near-infrared image is captured together

with a visible blurred image and, in [89], [90] a low exposure sharp but noisy image is used to improve

the restoration results. If video is available, techniques can take into account the motion between frames

[91]–[93] to tackle the deblurring problem. Of interest is also the approach in [94] where a single high-

quality image is obtained from a sequence of images distorted by atmospheric turbulence. Having several

images also allows blind image deconvolution to be addressed simultaneously with other problems, such

as, super-resolution (see, for instance, [95] or [96]) or high dynamic rage (HDR) imaging [97].

Finally, to conclude this section on modeling, we would like to mention the need to model what a

good restoration is. We believe that more BID software applications will be developed if the quality of

a restored image can be assessed, without human intervention, before presenting it to the user.

E. Deconvolution in mobile devices

The ubiquity of mobile devices, such as smartphones and tablets, and the not-so-high quality of

their cameras make the restoration of images taken with those devices a succulent market. Running

the deconvolution process on mobile devices is, nevertheless, difficult given their limited computational

power. Some commercial applications that claim to remove blur from images are available for the different

platforms (see DeblurIt Pro or Photo Fix de Blur for Android or Photo Doctor for iOS). However

they seem to deal only with out-of-focus blur with a manually selected radius and implement simple

deconvolution algorithms.

Smartphones and tablets are more than simple cameras. They usually have other built-in sensors to

capture the device position and trajectory and the capability of processing images. Hence, some methods

are being proposed to perform deconvolution on those devices. In an effort to take advantage of the

sensors present on the mobile phones, Šindelář and Šroubek [98] used the information provided by the

gyroscope to keep track of the device motion while taking the picture and, hence, obtain an estimation of

the blur by rendering the camera trajectory on the image plane. This blur estimate is used to deconvolve

the image by a simple Wiener filter. An extension considering spatially variant blur and rolling shutter

compensation is presented in [99].

A similar approach was used in [100] where the blur is obtained from a combination of the kernel

estimated from the fusion of gyroscope, magnetometer and accelerometer measurements and a Gaussian

kernel with small variance to take into account the out-of-focus blur due to the motion of the camera

from the finger movement on pressing on the screen. Additionally, to minimize artifacts on faces, a face

detection algorithm is applied to the image and an SVM classifier is trained and used to select between
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deblurring followed by denoising or sharpening the image, depending on the face characteristics.

Using a developer tablet modified by attaching a USB connected external gyroscope, a multi-image

deconvolution which captures and combines multiple frames in order to make deblurring more robust and

tractable is proposed in [101]. Blur is obtained from the gyroscope data and multi-image deconvolution

is performed by minimizing
n∑
i=1

‖yi −Hix‖2 + λ‖∆x‖p, (35)

where λ is a regularization parameter and ∆ is the gradient operator. The authors conclude that this

deconvolution procedure outperforms, in most situations, the align-and-average strategy, that is, averaging

multiple noisy images captured using a short exposure time, and hence blur-free, aligned using the

gyroscope data. The optimization problem in Eq. (35) was first utilized in the work by Katsaggelos

[102].

F. Implementation issues

Since BID methods need to estimate both image and blur, they usually take a significant amount of time.

Apart from developing mathematically efficient methods to compute blur and image estimates, efficient

implementations are needed to speed up the algorithms. Nowadays, most computers are equipped with

graphical processing units (GPUs) that have several GFLOPS of computing power. Massive computing

using these GPU or hybrid CPU+GPU computing can dramatically improve the speed of the algorithms.

Most of the deconvolution implementations using GPUs are based on their capability to accelerate an

FFT, with the CUDA framework and the CUFFT library [103] being the most popular implementation.

Some BID methods have been implemented using GPUs with great success as proved in [104] where

the time needed to blindly deconvolve an 8 MPixel image using the method in [105] is reduced from

55.6s to 13.8s. The EFF spatially variant blind image deconvolution method in [73] runs about ten times

faster using GPU than using only CPU.

Several efforts have also been carried out to use GPU computing in non-blind image deconvolution. For

instance, Zhang et al. [106] performed real-time high definition 720p video processing with a Wiener

filter using an NVIDIA GeForce GTX 460 GPU and Holder et al. [107] obtained an acceleration of

1:5 compared to CPU of the Richardson-Lucy algorithm on an NVIDIA Geforce GT640M. The GPU

implemention of the non-blind Krishnan-Fergus [63] algorithm presented in [108] runs at 15 frames per

second on 710× 470 pixels color images on an NVIDIA GeForce GTX 260.
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Fig. 3. Cumulative histograms of the error ratios across the dataset [39]

V. EXPERIMENTS

We test the performance of 5 image priors, including log, `0.8, MOG, TV and bu3, where the parameters

for MOG are borrowed from Levin et al. [4] and bu3 is referred to the bottom-up approach [20] [23] with

φ(ν) = ν−3 (corresponding to ρ(x) = −x−1). We choose the widely used dataset [39] which consists of

32 images generated by 4 groundtruth images with 8 motion blurs. For the priors log, `0.8, MOG, TV

and bu3, we set αγ to 1, 10, 1, 20 and 0.1 respectively. After obtaining the kernels, we use the non-blind

deconvolution method [18] with the same parameters used in [4] to reconstruct the final image.

Fig. 3 presents the success percent of 6 methods (ours with 5 different priors and Levin et al. [4])

in the sense of error ratio metric (ratio between sum of squared difference errors of the restoration with

the estimated kernel and the restoration with the groundtruth kernel, see [39] for more details). As we

can see, the log prior has the best performance, with over 80% good restorations (error ratio ≤ 2) and

90% successful restorations (error ratio ≤ 3 is regarded as successful restoration, according to Levin et

al. [4]), followed by bu and MOG. `0.8 and TV also have good performance with about 80% and 70%

successful restorations. It should be emphasized that, a suitable αγ is crucial for the different priors to

work well. Fig. 4 shows some selected results for visual evaluation.

DRAFT May 28, 2015



23

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Selected results on dataset [39] for visual comparison. (a) Blurred. (b) Groundtruth. (c) TV. (d) `0.8. (e) Levin et al.

[4]. (f) MOG. (g) bu3. (h) log.
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ABSTRACT

Classification techniques are routinely utilized on satellite im-
ages. Pansharpening techniques can be used to provide super
resolved multispectral images that can improve the perfor-
mance of classification methods. So far, these pansharpen-
ing methods have been explored only as a preprocessing step.
In this work we address the problem of adaptively modify-
ing the pansharpening method in order to improve the preci-
sion and recall figures of merit of the classification of a given
class without significantly deteriorating the performance of
the classifier over the other classes. The validity of the pro-
posed technique is demonstrated using a real Quickbird im-
age.

Index Terms— Pansharpening, super-resolution, classifi-
cation, LDA, SVM.

1. INTRODUCTION

Satellite images are of great interest due to the numerous ap-
plications they can be utilized. Drawing maps, delimitation
of parcels, studies on hydrology, forest or agriculture are just
a few examples where these images are used.

Due to physical and technological constraints, satellites
usually have sensors that capture two types of images. One
sensor captures a multispectral (MS) image composed of sev-
eral spectral bands with low spatial resolution (LR). The other
sensor captures a high spatial resolution (HR) image, named
panchromatic (PAN) image, with a low spectral resolution.
While the first image allows to distinguish features spectrally
but not spatially, the second allows to distinguish features spa-
tially but not spectrally.

Pansharpening is an image fusion approach that combines
the LR MS and PAN images to obtain an image with the
spectral resolution of the MS image and the spatial resolu-
tion of the PAN image. Many techniques have been proposed

This work has been supported in part by the Comisión Nacional de Cien-
cia y Tecnologı́a under contract TIN2010-15137, CEI BioTic at the Univer-
sity of Granada, and the Department of Energy grant DE-NA0000457.

in the literature to carry out the pansharpening procedure (see
Ref. [1] for a complete review of pansharpening methods).

Many satellite image applications involve the classifica-
tion of pixels in an image into a number of classes. In su-
pervised classification, starting from a small set of samples
previously labeled by the user, classification is carried out au-
tomatically by the classifiers. Bruzzone et al. [2] showed that
the use of pansharpening methods that do not introduce sig-
nificant spectral distortion helps the classifier to obtain higher
accuracy, especially for pixels at the borders of objects.

While in the past pansharpening techniques have only
been used as a preprocessing step, in this work we address the
problem of adaptively modifying the pansharpening method
in order to improve the precision and recall figures of merit
of the classification of a given class without deteriorating the
performance of the classifier over the other classes.

The rest of paper is organized as follows: In section 2
we describe the pansharpening technique we use. The used
classifiers are briefly explained in section 3. The proposed
method to estimate the pansharpening parameters to improve
the performance of the classifier on a given class is described
in section 4. Section 5 presents experimental results on real
data. Finally, section 6 concludes the paper.

2. PANSHARPENING ALGORITHM

In this paper we use the pansharpening method proposed
by Amro et al. [3] and the parameter estimation procedure
described in Ref. [1]. This method makes use of the non-
subsampled contourlet transform [4] (NSCT) to decompose
the details of the PAN and each band of the MS image into
different scales and different directions. Then, the hierarchi-
cal Bayesian framework is used to model those observations
and their relations with the original high resolution multi-
spectral image and Bayesian inference is applied to estimate
the HR MS image and the model parameters. Let us now
explain in detail the used pansharpening method.

The used contourlet based pansharpening algorithm takes
as input the PAN image, x, of size p = m × n, and the ob-



served LR MS image, Y , with B bands, Yb, b = 1, . . . , B,
each of size P = M × N pixels with M < m and N < n.
Initially, each band of the LR MS image Y is upsampled to
the size of the PAN image by bicubic interpolation. We will
denote by sb each band b of the p = m×n upsampled image.

Then, using the NTSC transform we can write the PAN
and the upsampled MS images as:

x = xr+
L∑

l=1

D∑
d=1

xld, sb = srb+
L∑

l=1

D∑
d=1

sldb , b = 1, . . . , B

(1)
where the superscript r denotes the residual (low pass filtered
version) NSCT coefficient band and the superscript ld refers
to the detail bands, with l = 1, . . . , L, representing the scale
and d = 1, . . . , D, representing the direction for each coef-
ficient band. The pansharpening goal is to estimate the HR
MS image coefficients yldb from the observed xld and sldb co-
efficients. Finally, each band of the pansharpened HR MS
image will be obtained by the inverse NSCT from the corre-
sponding residual band of the upsampled MS image srb and
the estimated detail bands yldb .

We will model the coefficient bands using the hierarchical
Bayesian framework. This framework has two stages. In the
first stage, knowledge about the structural form of the noise
in the coefficients bands and the structural behavior of the HR
MS image coefficients is used in forming p(sldb , x

ld|yldb ,Ωld
b )

and p(yldb |Ωld
b ), respectively. These noise and image mod-

els depend on the unknown parameters Ωld
b that need to be

estimated. In the second stage a hyperprior on the parame-
ters is defined, thus allowing the incorporation of information
about these hyperparameters into the process. Let us define
the probability distribution involved in each stage.

Following Refs. [3, 5], we chose a prior model based on
the Total Variation (TV) for the HR MS image coefficient
bands, yldb , given by

p(yldb |αld
b ) ∝ (αld

b )p/2 exp
{
−αld

b TV (yldb )
}
, (2)

with TV (yldb ) =
∑p

i=1

√
(∆h

i (yldb ))2 + (∆v
i (yldb ))2 where

∆h
i (yldb ) and ∆v

i (yldb ) represent the horizontal and vertical
first order differences at pixel i, respectively, and αld

b is the
model parameter of the MS band b coefficients at level l and
direction d. The idea behind this model is to consider the co-
efficient bands as a set of relatively smooth regions separated
by strong edges, such as the coefficients of the NSCT.

Since the MS bands coefficients and the PAN image
coefficients are independent given the HR MS image coef-
ficients, we define p(sldb , x

ld|yldb ,Ωld
b ) = p(sldb |yldb ,Ωld

b ) ×
p(xld|yldb ,Ωld

b ). The conditional distribution of the upsam-
pled MS coefficients given the HR MS coefficients is defined
as [3]

p(sldb |yldb , βld
b ) ∝ (βld

b )p/2 exp

{
−1

2
βld
b

∥∥sldb − yldb ∥∥2} ,
(3)

where βld
b is the inverse of the unknown noise variance of the

detail band at level l and direction d of the MS band b. The re-
lationship between the HRMS band coefficients and the PAN
image is modeled by the conditional probability distribution

p(xld|yldb , γldb ) ∝ (γldb )p/2 exp

{
−1

2
γldb
∥∥xld − yldb ∥∥2} .

(4)
where γldb is the inverse of the unknown noise variance at each
NSCT decomposition level, l, and direction, d, of PAN im-
age. Note that, with this modeling, we have decoupled each
one of the bands of the contourlet transform and, since they
are uncorrelated, we can do the estimation of each band inde-
pendently of the other bands.

In the second stage of the hierarchical Bayesian frame-
work we define the distribution on the parameters by using a
gamma distribution

p(w|aw, cw) = Γ(w|aw, cw), (5)

where w > 0, w ∈ Ωld
b = (αld

b , β
ld
b , γ

ld
b ) denotes a hyperpa-

rameter, and aw > 0 and cw > 0 are, respectively, the shape
and the inverse scale parameters of the distribution.

Finally, combining the first and second stages of the prob-
lem modeling, and defining Ωld

b = {αld
b , β

ld
b , γ

ld
b }, we have

the global distribution

p(Ωld
b , y

ld
b , x

ld, sldb ) =p(αld
b ) p(βld

b ) p(γldb ) p(yldb |αld
b )

×p(sldb |yldb , βld
b ) p(xld|yldb , γldb ), (6)

where p(yldb |αld
b ), p(sldb |yldb , βld

b ) and p(xld|yldb , γldb ) are
given in Eqs. (2), (3), and (4), respectively.

The Bayesian paradigm dictates that inference on the
parameters and the image, (Ωld

b , y
ld
b ), should be based on

p(Ωld
b , y

ld
b |sldb , xld) = p(Ωld

b , y
ld
b , s

ld
b , x

ld)/p(sldb , x
ld). Since

p(sldb , x
ld) cannot be calculated analytically, then p(Ωld

b , y
ld
b |sldb , xld)

can not be found in closed form. We apply the variational
methodology to approximate the posterior distribution by an-
other distribution, q(Ωld

b , y
ld
b ), that minimizes the Kullback-

Leibler(KL) divergence. We choose to approximate the
posterior distribution p(Ωld

b , y
ld
b |sldb , xld) by the distribution

q(Ωld
b , y

ld
b ) = q(Ωld

b )q(yldb ), where q(yldb ) and q(Ωld
b ) denote

distributions on yldb and Ωld
b , respectively.

The estimation of the parameters and the image is done
iteratively. First, an estimation of each parameter w ∈ Ωld

b is
selected as the mean of the posterior gamma distribution q(w)
and then the estimation of the Gaussian distribution of the HR
MS coefficients, q(yldb ), is performed.

3. CLASSIFICATION

Once the pansharpened image has been obtained, its classi-
fication is carried out. The approach we follow (which will
be described later) to improve the classification rate of one
class will be tested on two classification methods which, for



completeness, are briefly described now: linear discriminant
analysis (LDA) and support vector machines (SVM).

LDA is an effective subspace technique that optimizes
Fisher’s score [6]. Subspace methods are a particular class
of algorithms focused on finding projections of the original
hyperdimensional space to a lower dimensional space where
class separation is maximized. In addition, LDA does not
require the tuning of free parameters. These good attributes
have resulted in its extensive use and practical exploitation in
remote sensing applications mainly focused on image classi-
fication and band selection. LDA is related to Fisher’s linear
discriminant and, roughly speaking, both aim at finding a lin-
ear combination of features that characterize or separate two
or more classes.

SVM is one of the most successful examples of kernel
methods, being a linear classifier that implements maximum
margin separation between classes in a high dimensional
Hilbert space H. Kernel methods embed the data observed
in the input space X into a higher dimensional space, the
feature spaceH, where the data are more likely to be linearly
separable. Therefore, it is possible to build an efficient lin-
ear classifier in H, that translates into a nonlinear classifier
in the input space. The mapping function to perform such
an embedding is denoted as Φ : X → H. Computing the
explicit mappings Φ(x) of all the observed data points can
be computational demanding, especially if the dimensionality
of H is high. To avoid this problem and build efficient algo-
rithms, kernel methods compute the similarity between train-
ing samples {xi}ni=1 using inner products between mapped
samples instead of computing the dot product in the higher
dimensional space explicitly. The so-called kernel matrix
Kij = K(xi,xj) = 〈Φ(xi),Φ(xj)〉 contains all necessary
information to perform many classical linear algorithms in
the feature space, which are non-linear in the input space [7].

It is important to note that, both for training and using
the SVM for testing, one only needs to work with a valid
kernel function, which should accurately reflect the similar-
ity between samples. Valid kernels are functions represent-
ing a dot product in H. The radial basis function (RBF),
K(x, z) = exp

(
−‖x− z‖2/2σ2

)
, σ ∈ R+ was the kernel

function selected in this work. To implement SVM for multi-
class problems we used the one-versus-all strategy given the
particular characteristics of the proposed scheme.

4. IMPROVING THE CLASSIFICATION
PERFORMANCE FOR A SINGLE CLASS

Once the pansharpening method described in section 2 has
been used on a LR MS image and one of the classification
methods described above has been applied, the user may be
interested in boosting the performance of the classifier on a
given class. In this section we propose to recalculate the pa-
rameters of the pansharpening method in order to obtain a
new pansharpened image with an improved classification rate

for the class of interest.
By examining the HR classified image, both visually and

numerically (using for instance the confusion matrix), the
user selects a class to improve its classification figures of
merits. A new estimation of the image and parameters is
performed. Utilizing the already estimated pansharpened im-
age, the parameters for the new reconstruction are estimated
utilizing only the pixels belonging to the class of interest
in this image. Using those parameters a new pansharpened
image is obtained. No iteration between parameter and image
estimates is required.

This result in an estimation of the image whose spectral
and spatial characteristics are more tailored to the pixels in
the class of interest and, hence, will hopefully increase the
classification performance for the elements of the class. Note
however that this may imply, as we will see in the experimen-
tal section, that the classification performance on the other
classes may decrease.

5. EXPERIMENTAL RESULTS

Experiments were run on a Quickbird image. The MS image,
depicted in real color in Figure 1a, has a spatial resolution
of 256 × 256 pixels with each pixel covering a square area
with a side of 2.4 m and four spectral bands: blue (450-520
nm), green (520-600 nm), red (630-690 nm), near-IR (760-
900 nm). The PAN image (see Fig. 1b) has a resolution of
1024 × 1024 pixels with a size of 0.6 m covering the whole
spectral interval (405-1053 nm). The result of the pansharp-
ening process, with the parameters automatically estimated
using all the MS and PAN images, is shown in Fig. 1d.

Using the MS and PAN images, a small number of pixels
were classified into ten different classes (cars, water, forest,
. . . ). This set of pixels, depicted in Fig. 1c, is considered
our ground truth. We randomly chose 20% of the samples
of each class to train the LDA and SVM classifiers and the
rest was used for testing. In order to incorporate both spectral
and spatial characteristics for each pixel into the classifica-
tion process, we used a descriptor composed of the value of
each pixel under consideration and its four nearest neighbors.
Since each pixel has associated five values, four correspond-
ing to the MS bands and another one for the panchromatic,
the descriptor for each pixel has 25 components.

The classification quality is measured using the precision
and recall values on a given class defined as

recall =
TP

TP + FN
, precission =

TP

TP + FP
(7)

where TP is the number of pixels in class correctly classified,
FN is the number of pixels in the class incorrectly classified
and FP is number of pixels not belonging to a class incor-
rectly classified as belonging to the class. Table 1 presents
the figures of merit for each classifier on the pansharpened
image in Fig. 1d. This image presents a very high level of



Table 1. Recall and Precision values obtained using the pan-
sharpened image with parameters estimated from all the pix-
els in the image.

LDA SVM
Class recall precision recall precision
1. Asphalt 0.89 0.91 0.99 0.98
2. Dense Forest 0.75 0.72 0.91 0.93
3. Forest 0.87 0.98 0.99 0.98
4. Bare Soil 0.93 0.86 0.99 0.99
5. Building 0.84 0.93 0.99 0.98
6. Grass 0.82 0.82 0.96 0.94
7. Dry Grass 0.99 0.77 0.99 0.99
8. Car 0.63 0.66 0.81 0.98
9. Water 0.93 0.74 0.97 0.98
10. Isolated Tree 0.89 0.29 0.82 0.89

spatial detail with no chromatic distortion. The classification
figures show that SVM outperforms LDA although both clas-
sifiers perform well for all the classes except classes 10 and 8
where they perform poorly, especially the LDA classifier.

A class is now selected to improve its classification fig-
ures. In this case class 10 (isolated tree) was selected although
similar results were obtained when selecting the other classes.
Using only the pixels of the MS and PAN image belonging to
the selected class, the parameters were estimated using the
procedure described in section 4 and a new pansharpened im-
age, depicted in Fig. 1e, was obtained.

Using this image, the classifiers were trained and a new
classification step was performed obtaining the results pre-
sented in Table 2. Although the reconstructed images using
the parameters estimated from the whole image (Fig. 1d) and
the parameters estimated using only the pixels of the class
10 (Fig. 1e) are very similar from a visual point of view, the
classification figures show a higher precision and recall for
the selected class 10 and, also, for many others. Note how-
ever, that some classes, like classes 6 or 8, perform slightly
worse with those parameters.

6. CONCLUSIONS

In this paper we have shown that pansharpening techniques
can be used to increase the performance of classification
methods when are applied to MS images. We have addressed
the problem of adaptively modifying a pansharpening method
in order to improve the precision and recall figures of merit
of the classification on a given class without deteriorating the
performance of the classifier over the other classes. The va-
lidity of the proposed technique has been demonstrated using
a real Quickbird image. Work is being currently carried out
to theoretically justify the used approach.

(a) (b)

(c)

(d) (e)

Fig. 1. (a) MS and (b) PAN images. (c) Ground truth. (d) Pan-
sharpened image using the super resolution method described
in section 2 with the parameters estimated using the whole
image. (e) Pansharpened image utilizing only the pixels of
the training set in class 10 to estimate the model parameters.



Table 2. Recall and Precision values obtained using the pan-
sharpened image with parameters estimated only from pixels
of the class 10.

LDA SVM
Class recall precision recall precision
1. Asphalt 0.89 0.90 0.99 0.97
2. Dense Forest 0.72 0.73 0.92 0.93
3. Forest 0.88 0.99 0.99 0.99
4. Bare Soil 0.94 0.87 0.99 0.99
5. Building 0.82 0.93 0.99 0.98
6. Grass 0.83 0.80 0.96 0.95
7. Dry Grass 0.99 0.80 0.99 0.99
8. Car 0.54 0.56 0.75 0.94
9. Water 0.94 0.72 0.99 0.99
10. Isolated Tree 0.89 0.30 0.88 0.92

Acknowledgements

This work has been supported by the Consejerı́a de Inno-
vación, Ciencia y Empresa of the Junta de Andalucı́a un-
der contract P07-FQM-02701, by the Comisión Nacional
de Ciencia y Tecnologı́a under contract TIN2010-15137,
and the Spanish research program Consolider Ingenio 2010:
MIPRCV (CSD2007-00018).

7. REFERENCES

[1] I. Amro, Multispectral Image fusion using Multiscale and
Super-resolution methods, PhD thesis, Dept. of Com-
puter Science and Artificial Intelligence, Universidad de
Granada 2011.

[2] L. Bruzzone, L. Carlin, L. Alparone, S. Baronti, A.
Garzelli and F. Nencini, Can multiresolution fusion tech-
niques improve classification accuracy? Image and Sig-
nal Processing for Remote Sensing XII, 6365 2006.

[3] I. Amro, J. Mateos, M. Vega, General contourlet pan-
sharpening method using Bayesian inference, in 2010 Eu-
ropean Signal Processing Conference (EUSIPCO-2010),
2010.

[4] A. L. da Cunha, J. Zhou and, M. N. Do, The nonsub-
sampled contourlet transform: theory, design, and appli-
cations, in IEEE Trans. Image Proc., 15, 3089 (2006).

[5] M. Vega, J. Mateos, R. Molina and A.K.. Katsaggelos,
Super resolution of multispectral images using TV image
models, in 2th Int. Conf. on Knowledge-Based and Intel-
ligent Information & Eng. Sys., 2008.

[6] R. Duda and P. Hart, Pattern classification and scene
analysis (Wiley, New York, USA, 1973).

[7] J. Shawe-Taylor and N. Cristianini, Kernel Methods for
Pattern Analysis, (Cambridge University Press, 2004).



96 4.1. Interactive Classi�cation Oriented Superresolution of Multispectral Images



Chapter 4. Multispectral Image Classi�cation (I). Image Processing for
Classi�cation 97

4.2 Learning Filters in Gaussian Process Classi�ca-

tion Problems

• P. Ruiz, J. Mateos, R. Molina, and A.K. Katsaggelos, �Learning Filters in
Gaussian Process Classi�cation Problems� in IEEE International Conference
on Image Processing (ICIP 2014), 2913-2917, Paris (France), October 2014.

� Status: Published

� Indexed in CORE Conference Ranking as CORE B

� H index: 35 (Q1:81/1201)



98 4.2. Learning Filters in Gaussian Process Classi�cation Problems



LEARNING FILTERS IN GAUSSIAN PROCESS CLASSIFICATION PROBLEMS

Pablo Ruiz1⇤, Javier Mateos1, Rafael Molina1 and Aggelos K. Katsaggelos2

1 Dpto. de Ciencia de la Computación e I.A. Universidad de Granada.
2 Dpt. of Electrical Engineering and Computer Science. Northwestern University.

⇤e-mail:mataran@decsai.ugr.es

ABSTRACT

Many real classification tasks are oriented to sequence (neighbor) la-
beling, that is, assigning a label to every sample of a signal while tak-
ing into account the sequentiality (or neighborhood) of the samples.
This is normally approached by first filtering the data and then per-
forming classification. In consequence, both processes are optimized
separately, with no guarantee of global optimality. In this work we
utilize Bayesian modeling and inference to jointly learn a classifier
and estimate an optimal filterbank. Variational Bayesian inference is
used to approximate the posterior distributions of all unknowns, re-
sulting in an iterative procedure to estimate the classifier parameters
and the filterbank coefficients. In the experimental section we show,
using synthetic and real data, that the proposed method compares
favorably with other classification/filtering approaches, without the
need of parameter tuning.

Index Terms— Gaussian Process classification, filter estima-
tion, analysis representation.

1. INTRODUCTION

Many real classification tasks assign a label to every sample of a
signal (or pixel of an image) while taking into account the sequen-
tiality (or vicinity) of the samples. This task is normally approached
by first filtering the data and then performing classification. For in-
stance, a super resolution method can be applied to a multispectral
image [1] followed by a classification method on the improved mul-
tispectral image [2]; or an improved passive millimeter-wave image
can be obtained [3] followed by an object detection procedure [4].

Using filtering as a pre-processing step before learning a clas-
sifier does not guarantee optimal joint performance. To solve this
problem, we propose a Bayesian framework to learn a classifier, at
the same time estimate an optimal filterbank to improve the classifier
performance.

Let us assume that we have access to a multichannel sequential
signal or multichannel sequential features extracted from the signal.
We use the term “multichannel features” to refer to both concepts for
simplicity. Let Z = [z1, . . . , zN ] be the matrix including these orig-
inal input features, where each feature zi is of length B. Instead of
performing classification directly on the features Z, we would like
to compute new features X = [x1, . . . ,xN ] so as to optimize the
classification performance. Z and X can be related in two different
ways. The first method, based on the analysis representation, obtains
X as a linear transformation of Z, leading to X = AZ where A de-
fines a linear filterbank whose coefficients must be estimated. The
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analysis representation appears in many signal reconstruction prob-
lems. For instance, it can be used to improve the classification of
EEG data in brain-computer interfaces [5], or to discover causality
interaction in functional MRI [6].

In the second method, based on the synthesis representation, Z
is represented using a dictionary D that has to be learnt from a set
of samples, that is, Z = DX. The new features X are to be used to
classify the samples. The synthesis representation model is related,
for instance, to the use of discriminative Gaussian Process Latent
Variable Models (GPLVM) [7], where a linear discriminant prior on
the latent variables is introduced and bears some connections with
learning discriminative dictionaries (see, for instance, [8, 9]). In this
work we use the analysis representation.

The idea of jointly optimizing a filter and a classifier dates back
to the 1990s within the field of artificial neural networks. It was, for
instance, used in convolutional networks [10] or to define a neural
model for temporal processing [11, 12]. Recently, the same principle
is used in [13] where filters are learnt jointly with a support vector
machine (SVM) to perform classification.

In this work the filtering/classification tasks are formulated as
a single Bayesian inference problem. Variational inference is used
to learn the classifier and the optimal filterbank coefficients as well
as the model parameters. The rest of this paper is organized as fol-
lows. In Section 2 Bayesian modeling is presented to use analysis
representation on images. Variational Inference is performed in Sec-
tion 3. The classification rule is introduced in Section 4. In Section 5
results for both synthetic and real experiments are presented and fi-
nally Section 6 concludes the paper.

2. HIERARCHICAL BAYESIAN MODELING

Let us assume that during the training phase we have access to Z =

[z1, . . . , zN ], where each zi is of length B, and their corresponding
labels y = [y1, . . . , yN ]

T with yi 2 {0, 1}. To obtain the new
features each band is filtered with a spatial filter ai 2 Rk2
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where each zi,j is a column vector of size k

2 containing the neigh-
borhood of the j-th sample in the i-th band. To reduce the number
of coefficients in A to be estimated, we only perform intraband fil-
tering. Interband filtering is not performed because the classifier
utilizes multiband information.



To model the classification function relating each sample xi to
its corresponding label yi we follow a two stage procedure. First, we
introduce a latent variable fi which is related to yi by a sigmoidal
function yi = �(fi) = 1/(1 + e

�fi
). Let f = [f1, . . . , fN ] be

the values of the latent function at X = [x1, . . . ,xN ], then the joint
likelihood factorizes to

p(y|f) =
NY

i=1

[�(fi)]
yi
[1� �(fi)]

1�yi
. (2)

In the second stage, to model f , we define on fi a Gaussian Process,
which depends on X, and so we write

p(f |X, µ, � ,�) = N (f |µ1,C), (3)

where C = �K
X

+ �I, and K
X

= (k(xi,xj)), i, j = 1, . . . , N ,
is the kernel used. In this work linear and Gaussian kernels are con-
sidered (see [14] for details).

To model X, instead of enforcing Eq. (1), we consider a weaker
constraint by defining the following pseudo-observation model

p(X|Z,A) / exp

✓
��

2

kX�AZk2F
◆
, (4)

where k · kF is the Frobenius norm. When � ! 1 we obtain the
constraint X = AZ. In Sect. 3 we explain how to configure the
penalty �.

With no much prior information on the filterbank coefficients,
we follow the approach in [13] and use the following prior on A,

p(A|↵) =

BY

i=1

p(ai|↵i) =

BY

i=1

N (ai|0,↵�1
i Ik2), (5)

where ↵ = (↵1, . . . ,↵B)
T are the precision coefficients, which are

modeled using Gamma distributions, that is,

p(↵) =

BY

i=1

p(↵i) /
BY

i=1

↵

ai�1
i exp(�bi↵i). (6)

The parameters ai and bi are treated as deterministic whose values
are set to small values (e.g., 10�5) to obtain broad hyperpriors.

Finally, the joint distributions factorizes as

p(y,⇥) = p(y|f)p(f |X, µ, � ,�)p(X|A,Z,�)p(A|↵)p(↵).

where ⇥ = {f ,X,A,↵, µ, � ,�}, and Z is fixed.

3. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION

In our Bayesian framework, unknown variables are estimated from
the posterior distribution p(⇥|y) = p(y,⇥)/p(y). However this
distribution is not tractable because p(y) can not be calculated. To
alleviate this problem, variational methods are used to approximate
it by a tractable distribution of the form

q(⇥) = q(f)q(X)q(µ)q(�)q(�)

BY

i=1

q(ai)q(↵i). (7)

The variational criterion used to find q(⇥) is the minimization
of the Kullback-Leibler (KL) divergence [14], given by

CKL(q(⇥)kp(⇥|y)) =
Z

q(⇥) log

q(⇥)

p(y,⇥)

d⇥+ const (8)

which is always non negative and equal zero if and only if the distri-
butions q(⇥) and p(⇥|y) coincide.

Due to the form of the joint likelihood defined in Eq. (2), the KL
divergence cannot be evaluated. To solve this problem we bound the
joint likelihood in Eq. (2), using the variational lower bound [14, 15]
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bounded as:
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�(�⇠i) = H(y, f , ⇠),

where ⇠ = (⇠1, . . . , ⇠N )

T , and ⇤ = Diag(�(⇠1), . . . ,�(⇠N )). The
inequality in Eq. (10) leads to the following lower bound for the joint
probability distribution:

p(y,⇥) �M(y,⇥, ⇠) = (11)
H(y, f , ⇠)p(f |X, µ, � ,�)p(X|A,Z,�)p(A|↵)p(↵).

Finally, the KL divergence in Eq. (8) is majorized by

CKL(q(⇥)kp(⇥|y))  CKL(q(⇥)kM(y,⇥, ⇠)) + const. (12)

Although a new set of unknowns ⇠ has been included, now the
KL divergence between q(⇥) and M(y,⇥, ⇠) is mathematically
tractable, and it can be used to calculate the posterior distribution
q(⇥). The optimal posterior distribution approximation is the given
by [14]

q(✓) / exp

⇥
hlogM(y,⇥, ⇠)iq(⇥✓)

⇤
, (13)

where ✓ 2 ⇥, the set ⇥✓ represents the set difference ⇥ \ {✓} and
the operator h·iq(⇥✓) denotes expected value with respect to the dis-
tribution q(⇥✓). For simplicity we use hui to denote huiq(u). In
this paper we assume that q(X), q(µ), q(�) and q(�) are degen-
erate distributions. No constraints are imposed on q(f), q(ai) and
q(↵i).

Since hlogM(y,⇥, ⇠)iq(⇥f ) is a quadratic function on f , its
posterior distribution approximation is a Gaussian distribution with
parameters

µ
f

= ⌃
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+ 2 ⇤

��1
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The value where q(µ) is degenerate is obtained by solving

µ̂ = argmin

µ
hlogM(y,⇥, ⇠)iq(⇥µ). (15)

By differentiating hlogM(y,⇥, ⇠)iq(⇥µ) with respect to µ and
equating to zero we obtain

µ̂ =

(µ
f

)

TC�11

1TC�11
. (16)

Following the same procedure for � in Eq. (3) we obtain

(µ1� µ
f

)

TC�1K
X

C�1
(µ1� µ

f

)� Tr

⇥
C�1

⌃

f

⇤K
X

⇤
= 0,

where � is included in C. Then we use the following fixed point
algorithm (see [2] for details) to update �

� =

�

2

(µ1� µ
f

)

TC�1K
X

C�1
(µ1� µ

f

)

Tr [C�1
⌃

f

⇤K
X

]

, (17)



where the old value of � is used in the right hand side to obtain an
updated value in the left hand side. The same procedure is used on
� to obtain the updating rule

� =

�

2

(µ1� µ
f

)

TC�1C�1
(µ1� µ

f

)

Tr [C�1
⌃

f

⇤]

. (18)

To estimate ⇠ we solve the optimization problems
ˆ

⇠i = argmin

⇠i
hlogM(y,⇥, ⇠)iq(⇥). (19)

Differentiating and equating to zero we obtain

ˆ

⇠i =

q
(µ

f

)

2
i + (⌃

f

)ii. (20)

Since hlogM(y,⇥, ⇠)iq(⇥ai )
is a quadratic function on ai, q(ai) is

a Gaussian distribution with parameters

haii = �⌃iZi(Xi)
T
, ⌃i = (�ZiZ

T
i + h↵iiIk2)

�1
, (21)

where Xi, i = 1 . . . , B, represent the i-th row of X.
The posterior density of ↵i becomes a Gamma distribution with

mean

h↵ii =
2ai + k

2

2bi + Tr (⌃i + haiihaiiT )
. (22)

Finally, to estimate X we solve
ˆX = argmin

X

hlogM(y,⇥, ⇠)iq(⇥X). (23)

For a linear kernel we have
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h
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For a Gaussian kernel case with a fixed scale parameter, we obtain a
update rule for each component of X. Thus, for the p-th component
of xi we obtain

xpi=

�
s2

PN
t 6=i(vivt�wit(�(⇠i)+�(⇠t)))eitxt(p)+�aT

p zp,i
�
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where s is the scale parameter of the Gaussian kernel, v =

C�1
(µ

f

� µ1), wij , W = (I + 2�⇤ + 2�K
X

⇤)

�1, and
eij = exp

�
�kxi � xjk2/2s2

�
.

To configure the proximity operator penalty, �, we multiply
Eq. (24) by �+�

�+� and define ⌧ =

�
�+� . Hence, Equation (24) can

then be written as

XT
=

h
�(1� ⌧)C�1

(µ
f

� µ1)(µ
f

� µ1)TC�1

+ (1� ⌧)(C�1
⌃

f

2⇤) + ⌧IN ]

�1
⌧ZT hAiT . (26)

Note that ⌧ 2 [0, 1] and when ⌧ = 1, we obtain X = hAiZ in
Eq. (26). For Gaussian kernels we proceed in the same manner but
multiplying Eq. (25) by �/s2+�

�/s2+�
.

Let us now summarize the estimation procedure. Starting with
X0

= A0Z, (K0
X

)ij = k(x0
i ,x

0
j ), a0

i = identity filter, ↵0
i = 1,

µ

0
= 0, �0

= 1, �0
= 1, C0

= �

0K0
X

+ �

0I, and ⇠0
i = 1,

the method iterates until convergence between Eqs. (14), (16), (17),
(18), (20), (21), (22) and (23). We use the old value of the parameter
in the right hand side of the estimations to obtain the new values in
the left hand side. For the value for ⌧ , we have experimentally found
that using ⌧

n+1
= min(⌧

n
+ 0.001, 1) made the iterative process

to first concentrate on the estimation of the model parameters and
then proceed to estimate the filter coefficients. See the experimen-
tal section to determine the initial value of ⌧ . At convergence of
the estimation procedure we obtain the classifier and the filterbank
coefficients.

4. CLASSIFICATION OF NEW PIXELS

In order to classify a new sample z we transform it using the equa-
tion x = hAiz where hAi has been obtained at convergence of the
training phase and denote by f

x

its associated latent variable. Then
p(f

x

|f ,X,x, µ, � ,�) is a Gaussian distribution with mean and vari-
ance

hf
x

|f ,X,x, µ, � ,�i = µ+ hTC�1
(f � µ1),

var(f
x

|f ,X,x, µ, � ,�) = c� hTC�1h,

where c = �k(x,x) and h = �(k(x,x1), . . . ,k(x,xN ))

T and �,
� and µ have been provided by the proposed method at convergence.

We then have
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which is a Gaussian distribution with parameters

hf
x

|y,X,x, µ, � ,�i = µ+ hTC�1
(µ

f

� µ1),

var(f
x

|y,X,x, µ, � ,�) = hTC�1
⌃

f

C�1h+ c� hTC�1h,

This leads to the following classification procedure

y

x

=

⇢
1 if µ+ hTC�1

(µ
f

� µ1) � 0

0 if µ+ hTC�1
(µ

f

� µ1) < 0

. (27)

5. EXPERIMENTAL RESULTS

In this section synthetic and real experiments are conducted to eval-
uate the performance of the proposed method, named GPF. In both
experiments, we used filters of size 3 ⇥ 3, 5 ⇥ 5, 7 ⇥ 7 and 9 ⇥ 9.
We ran the proposed method for different values of ⌧0 in the interval
[0.1, 0.9] with step 0.01 and selected the one giving the best clas-
sification results. GPF was compared with the SVMF method [13]
which jointly learn a SVM classifier and estimates a filterbank as
well as a GP classifier which does not filter the data. To do this,
SVM objective function is augmented with a regularization term on
the filters. Hence, in addition to the cost parameter of the SVM (C),
the regularization coefficient of the filter (�) has to be selected. We
ran SVMF on (C,� ) 2 {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 25, 50, 100}2
and selected the values producing the best performance.

To obtain unbiased conclusions from the results, ten indepen-
dent repetitions of the experiments were carried out. For each of
them, a training set of 40 randomly selected samples (20 from each
class) and a test set of 2000 samples were used. The Overall Ac-
curacy (OA), the estimated Cohen’s kappa statistic (-index) and
Z-score are used as measures of accuracy and class agreement. We
also report the computational cost in seconds of each algorithm, im-
plemented using MATLAB R� on a i7 at 2.80 GHz.

5.1. Synthetic data experiment

In the synthetic data experiment, we generated a 500 ⇥ 500 binary
image where black and white pixels alternate in a checkerboard fash-
ion. Observations in the class C0 (black pixels) are generated by a
Gaussian distribution of mean 0.25 and standard deviation 0.4, ob-
servations of pixels in the class C1 (white pixels) are generated by a
Gaussian distribution of mean 0.75 and standard deviation 0.4. Fig-
ure 1a shows a zoom of the observation dataset. Notice that it is hard
to decide the class of some pixels by considering only their values.



(a) (b) (c) (d)
Fig. 1. (a) A set of observations of the synthetic dataset. (b) Filtered
observations with the estimated kernel. (c) Estimated 7 ⇥ 7 kernel.
(d) Classification map: dark blue C0, light yellow C1.

Table 1. Figures of merit for the synthetic experiment.
GPF SVMF

Sizes ⌧0 OA  Z Time C � OA  Z Time
3 ⇥ 3 0.86 96.06 0.9212 106.75 0.26 0.1 5 95.84 0.9168 103.80 0.30
5 ⇥ 5 0.86 99.72 0.9943 452.77 0.31 0.5 1 99.69 0.9938 444.85 0.56
7 ⇥ 7 0.87 100 1 1 1.02 0.5 1 100 1 1 0.50
9 ⇥ 9 0.87 100 1 1 1.69 0.5 1 100 1 1 0.60

No Filter – 71.06 0.4314 21.39 0.05 0.1 – 72.72 0.4537 22.74 0.003

However, in the filtered image, shown in Fig. 1b, it is easier to dis-
tinguish the class of each pixel. It is worth noting that the estimated
filter, depicted in Fig. 1c, alternates positive coefficients, in the po-
sition of pixels belonging to the class of kernel central pixel, with
negative coefficient, in the remainder positions. Figure 1d displays
the classification map for the image in Fig. 1a, with a 100% OA.

Mean values for OA, -index and Z-score and the value of ⌧

providing the best classification results are reported in Table 1. The
proposed GPF method obtained an OA above 96% for all considered
filter sizes and, for sizes of 7 ⇥ 7 and 9 ⇥ 9, the estimated filter is
capable to linearly separate both class and a 100% OA is obtained.
In all the cases, an improvement of almost 30% is obtained over the
base case where the data are not filtered (see the last row of Table 1).
The computational cost of the algorithm is very limited needing only
between 0.26 and 1.69 seconds to perform both training and classi-
fication tasks. The figures of merit for the SVMF method are very
similar to those of the GPF although the proposed method scored
slightly better for the kernel sizes of 3⇥ 3 and 5⇥ 5.

5.2. Real data experiment

The dataset was extracted from a 7-bands satellite image of city of
Naples (Italy) captured by the Landsat TM sensor in 1995 in the
Urban Expansion Monitoring project (UrbEx) [16]. A small RGB
region of this image is displayed in Fig. 2a. A reference land cover
map was also provided by the Italian Institute of Statistics (ISTAT).
The goal is the discrimination of urban (C1) versus non-urban (C0)
land-cover classes. The reference land cover map for the image
in Fig. 2a is shown in Fig. 2b. Light yellow color represents urban
class, dark blue color represents non-urban and red corresponds to
pixels whose class is unknown.

In this experiment we used a Gaussian kernel with parameter
s = 100. This value was selected as the one giving the best results
for SVMF. Table 2 shows the mean values for OA, -index and Z-
score for GPF and SVMF method. Baseline case results, when no
filtering is used, are also reported. GPF obtained over a 95% OA,
values above 0.90 of -index and Z-score values close to 100 for all
filter sizes, while the running time moved from 0.48 to 1.62 seconds
as the kernel size increased. Those figures of merit indicates a small
but significant improvement over the baseline case. In this real sit-
uation, GPF consistently obtained better results than SVFM for all
kernel sizes. Also, the proposed GPF method ran much faster than

(a) (b)

OA = 95.11, = 0.88, Z = 158.44 OA = 96.67,  = 0.92, Z = 202.15
(c) (d)

Fig. 2. (a) RGB representation of a small region of the real image.
(b) Its reference land cover map. (c) Classification map without fil-
tering. (d) Classification map with filtering.

Table 2. Figures of merit for the real experiment.
GPF SVMF

Sizes ⌧0 OA  Z Time C � OA  Z Time
3 ⇥ 3 0.89 95.18 0.9036 95.02 0.48 50 100 93.92 0.8785 86.02 6.25
5 ⇥ 5 0.87 95.78 0.9156 103.03 0.64 100 50 93.16 0.8633 77.55 20.22
7 ⇥ 7 0.90 95.64 0.9127 100.42 0.81 100 50 93.09 0.8618 76.93 51.15
9 ⇥ 9 0.85 95.25 0.9049 95.50 1.62 100 50 92.88 0.8558 74.61 79.81

No Filter – 93.21 0.8542 77.15 0.34 0.01 – 92.88 0.8577 74.93 0.11

SVMF (more than 50 times faster in some cases).
To better understand the role of filtering in the proposed method,

Figures 2c and 2d depict the classification map for the image in
Fig. 2a when no filtering was applied and when kernels of size 5⇥ 5

were estimated, respectively. The classification map when the image
is not filtered is quite noisy, specially at the boundary of urban and
non-urban areas, while the one for the filtered image exhibit more
homogeneous regions and, although some pixels are misclassified,
class boundaries are much better delimited. The figures of merit for
this particular area are shown under their corresponding map. Al-
though the OA for the filtered case is only a 1.5% better than the one
for the unfiltered case, filtering allows for a significantly better class
agreement reflected in a higher -index and Z-score.

6. CONCLUSIONS

In this work we have presented a new method to jointly filter and
classify a signal or an image. Using Bayesian modeling and varia-
tional inference we have developed an iterative procedure to jointly
estimate the classifier parameters, the filterbank and the model pa-
rameters. In the experimental section we have shown that the esti-
mated filters helps to improve the classifier performance. The pro-
posed method has been compared with other classification/filtering
approaches, and experimental results have shown that the proposed
method is more accurate and efficient.
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Abstract. In this paper we present an active learning procedure for the
two-class supervised classification problem. The utilized methodology
exploits the Bayesian modeling and inference paradigm to tackle the
problem of kernel-based data classification. This Bayesian methodology
is appropriate for both finite and infinite dimensional feature spaces.
Parameters are estimated, using the kernel trick, following the evidence
Bayesian approach from the marginal distribution of the observations.
The proposed active learning procedure uses a criterion based on the
entropy of the posterior distribution of the adaptive parameters to select
the sample to be included in the training set. A synthetic dataset as well
as a real remote sensing classification problem are used to validate the
followed approach.

1 Introduction

In many real applications large collections of data are extracted whose class is
unknown. Those applications include, for instance, most image classification ap-
plications, text processing, speech recognition, and biological research problems.
While extracting the samples is straightforward and inexpensive, classifying each
one of those samples is a tedious and often expensive task. Active learning is a
supervised learning technique that attempts to overcome the labeling bottleneck
by asking queries in the form of unlabeled samples to be labeled by an oracle
(e.g., a human annotator) [10]. An active learning procedure queries only the
most informative samples from the whole set of unlabeled samples. The objec-
tive is to obtain a high classification performance using as few labeled samples
as possible, minimizing, this way, the cost of obtaining labeled data.

Kernel methods in general and Support Vector Machines (SVMs) in particu-
lar dominate the field of discriminative data classification [8]. This problem has
also been approached from a Bayesian point of view. For example, the relevance
vector machine [13] assumes a Gaussian prior over the adaptive parameters and
uses the EM algorithm to estimate them. In practice, this prior enforces sparsity
because the posterior distribution of many adaptive parameters is sharply peaked
around zero. Lately, Gaussian Process Classification [7] has received much at-
tention. Adopting the least-squares SVM formulation may alternatively allow to



perform Bayesian inference on SVMs [12]. A huge benefit is obtained by apply-
ing Bayesian inference on these machines since hyperparameters may be learned
directly from data using a consistent theoretical framework.

In this paper we make use of the Bayesian paradigm to tackle the problem
of active learning on kernel-based two-class data classification. The Bayesian
modeling and inference approach to the kernel-based classification we propose
in this paper allows us to derive efficient closed-form expressions for parameter
estimation and active learning.

The general two-class supervised classification problem [2] we tackle here
implies a classification function of the form:

y(x) = φ>(x)w + b+ ε, (1)

where the mapping φ : X → H embeds the observed x ∈ X into a higher
L-dimensional (possibly infinite) feature space H. The output y(x) ∈ {0, 1}
consists of a binary coding representation of its classification, w is a vector
of size L × 1 of adaptive parameters to be estimated, b represents the bias in
the classification function, and ε is an independent realization of the Gaussian
distributions N (0, σ2).

While kernel-based classification in static scenarios has been extensively stud-
ied, the problem related to the emerging field of active learning [10] is still un-
solved. Let us assume that we have access to P vectors in the feature space
denoted by φ(xi), i = 1, . . . , P for which the corresponding output y(xi), i =
1, . . . , P can be provided by an oracle. The key is to decide which elements xi to
acquire from the set of P possible samples in order to build an optimal compact
classifier. Active learning aims at efficiently sampling the observations space to
improve the model performance by incrementally building training sets. Such
sets are obtained by selecting from the available samples the best ones accord-
ing to a selection strategy and querying the oracle only for the label of those
samples. Many selection strategies have been devised in the literature, which are
based on different heuristics: 1) large margin, 2) expert committee, and 3) pos-
terior probability (see [10] for a comprehensive review). The first two approaches
typically exploit SVM methods. The latter requires classifiers that can provide
posterior probabilities.

In [6], a Bayesian active learning procedure for finite dimensional feature
spaces is proposed. Assuming that φ(xi), i = 1, . . . , P has L components, the
design matrix Φ:,: is of size P×L, whose ith row, i = 1, . . . , P is given by φ(xi)

>.
Then, a subset of size C of the L columns of Φ:,:, denoted by Φ:,IC , is selected
using the differential entropy instead of the response functions y(xi) [6]. Notice
that this approach is in contrast to other basis selection techniques which make
explicit use of the response functions, for example, [3] in the context of SVM, [4]
in the context of sparse representation, and [1] considering compressive sensing.
To select the rows of Φ:,IC , for which the response associated to φ(xi) will be
queried, a criterion based again on differential entropy is utilized (see [6] for
details). See also [5] for the general theory and [9] for the use of the approach in
compressive sensing.



Here, the Bayesian modeling and inference paradigm is applied to two-class
classification problems which utilize kernel-based classifiers. This paradigm is
used to tackle both active learning and parameter estimation for infinite dimen-
sional feature spaces, and consequently for problems where basis selection cannot
be carried out explicitly. As we will see later, the proposed approach will make
extensive use of the marginal distribution of the observations to avoid dealing
with infinite dimensional feature spaces and the posterior distribution of the
infinite dimensional w.

The rest of the paper is organized as follows. Section 2 introduces the models
we use in our Bayesian framework. Then, in section 3, Bayesian inference is per-
formed. We calculate the posterior distribution of w, and propose a methodology
for parameter estimation, active learning, and class prediction. Experiments il-
lustrating the performance of the proposed approach on a synthetic and a real
remote sensing classification problem are presented in section 4. Finally, section 5
concludes the paper.

2 Bayesian modeling

Let us assume that the target variable y(xi) follows the model in Eq. (1). If we
already know the classification output y(xi) associated with the feature samples
φ(xi), i = 1, . . . ,M , with M the number of samples, we can then write

p(y|w, σ2) =

M∏
i=1

N (y(xi)|φ>(xi)w + b, σ2). (2)

Since xi, i = 1, . . . ,M , will always appear as conditioning variable, for the sake
of simplicity, we have removed the dependency on x1, . . . ,xM in the left-hand
side of the equation. We note that, for infinite dimensional feature vectors φ(xi),
w is infinite dimensional.

The Bayesian framework allows us to introduce information about the pos-
sible value of w in the form of a prior distribution. In this work we assume that
each component of w independently follows a Gaussian distribution N (0, γ2).
When the feature vectors are infinite dimensional, we will not make explicit
use of this prior distribution but still we will be able to carry out parameter
estimation and active learning tasks.

3 Bayesian inference

Bayesian inference extracts conclusions from the posterior distribution p(w|y, γ2, σ2).
The posterior distribution of w is given by [2]

p(w|y, γ2, σ2) = N (w|Σw|y,γ2,σ2σ−2Φ>(y − b1),Σw|y,γ2,σ2), (3)

where
Σw|y,γ2,σ2 = (σ−2Φ>Φ + γ−2I)−1



and Φ is the design matrix whose ith row is φ(xi)
>.

It is important to note that we do not need to know the form of Φ explicitly to
calculate this posterior distribution. We only need to know the Gram matrix K =
ΦΦ>, which is an M ×M symmetric matrix with elements Knm = k(xn,xm) =
φ(xn)>φ(xm), which has to be a positive semidefinite matrix [8]. This leads to
the construction of kernel functions k(x,x′) for which the Gram matrix K is
positive semidefinite for all possible choices of the set {xn} [11]. Note that, even
if Φ has an infinite number of columns, which correspond to the case of xi being
an infinite dimensional feature vector, we can still calculate K of size M ×M
by means of the kernel function. Note also that we are somewhat abusing the
notation here because w is infinite dimensional for infinite dimensional feature
vectors.

3.1 Parameter Estimation

To estimate the values of γ2 and σ2 we use the Evidence Bayesian approach
without any prior information on these parameters. According to it, we maximize
the marginal distribution obtained by integrating out the vector of adaptive
parameters w. It can easily be shown, see for instance [2], that

p(y|γ2, σ2) = N (y|b1,Σy|γ2,σ2), (4)

where
Σy|γ2,σ2 = γ2ΦΦ> + σ2I.

The value of b can be easily obtained from Eq. (4) as

b =
1

M

M∑
i=1

y(xi). (5)

Differentiating 2 ln p(y|γ2, σ2) with respect to γ2 and equating to zero, we
obtain

tr[(γ2ΦΦ> + σ2)−1ΦΦ>] = (6)

tr[(y − b1)>(γ2ΦΦ> + σ2I)−1ΦΦ>(γ2ΦΦ> + σ2I)−1(y − b1)].

Diagonalizing ΦΦ>, we obtain UΦΦ>U> = D, where U is an orthonormal
matrix and D is a diagonal matrix with entries λi, i = 1, . . . ,M . We can then
rewrite the above equation as

M∑
k=1

λk
γ2λk + σ2

=
M∑
i=1

z2i
λi

(γ2λi + σ2)2
, (7)

where U(y − b1) = z with components zi, i = 1, . . . ,M .
Multiplying both sides of the above equation by γ2 we have

γ2 =
M∑
i=1

λi

γ2λi+σ2∑M
k=1

λk

γ2λk+σ2

γ2z2i
γ2λi + σ2

=
M∑
i=1

µi
γ2z2i

γ2λi + σ2
, (8)



where

µi =

λi

γ2λi+σ2∑M
k=1

λk

γ2λk+σ2

. (9)

Note that µi ≥ 0 and
∑M
i=1 µi = 1.

Similarly, differentiating 2 ln p(y|γ2, σ2) with respect to σ2 and equating it
to zero, we obtain

M∑
k=1

1

γ2λk + σ2
=

M∑
i=1

z2i
1

(γ2λi + σ2)2
. (10)

Following the same steps we already performed to estimate γ2, we obtain

σ2 =
M∑
i=1

νi
σ2z2i

γ2λi + σ2
, (11)

where

νi =

1
γ2λi+σ2∑M
k=1

1
γ2λk+σ2

. (12)

Note that, again, νi ≥ 0 and
∑M
i=1 νi = 1.

To obtain estimates of γ2 and σ2 we use an iterative procedure where the
values of the old estimates of γ2 and σ2 are used on the right hand side of
Equations (8) and (11) to obtain the updated values of the parameters in the
left hand side of these equations. Although we have not formally established the
convergence and unicity of the solution, we have not observed any convergence
problems in the performed experiments. Note that to estimate γ2 and σ2 we
have not made use of the posterior distribution of the components of w.

3.2 Active Learning

Active learning starts with a small set of observations whose class is already
known. From these observations, the posterior distribution of w and the pa-
rameters b, γ2 and σ2 can be estimated using the procedure described in the
previous sections. Now we want that the system learns new observations incre-
mentally. Let us assume that we want to add a new observation associated to
φ(x+), whose corresponding y(x+) will be learned by querying the oracle. The
covariance matrix of the posterior distribution of w when φ(x+) is added is
given by

Σ
x+

w|y,γ2σ2 = (σ−2(Φ>Φ + φ(x+)φ>(x+)) + γ−2I)−1.

Since we have a set of observations that could be added and whose class is
unknown (but can be learned by querying the oracle), the objective of active
learning is to select the observation that maximizes the performance of the sys-
tem, minimizing in this way the number of queries answered by the oracle. To



select this new feature vector, in this paper, we propose to maximize the differ-
ence between the entropies of the posterior distribution before and after adding
the new feature vector (see [6, 9]) to obtain

x+ = arg max
x

1

2
log |Σw|y,γ2,σ2 ||Σx

w|y,γ2,σ2 |−1. (13)

Then we have

1

2
log |Σw|y,γ2,σ2 ||Σx

w|y,γ2,σ2 |−1

=
1

2
log |I + σ−2φ(x)φ>(x)(σ−2Φ>Φ + γ−2I)−1|

=
1

2
log(1 + σ−2φ>(x)(σ−2Φ>Φ + γ−2I)−1φ(x)),

and using

(σ−2Φ>Φ + γ−2I)−1 = γ2I− γ4Φ>(σ2I + γ2ΦΦ>)−1Φ, (14)

we can finally write

1

2
log |Σw|y,γ2,σ2 | · |Σx

w|y,γ2,σ2 |−1

=
1

2
log
(
1 + σ−2γ2φ>(x)φ(x)− σ−2γ4φ>(x)Φ>(σ2I + γ2ΦΦ>)−1Φφ(x)

)
=

1

2
log
(

1 + σ−2γ2φ>(x)φ(x)− σ−2γ4φ>(x)Φ>Σ−1y|γ2,σ2Φφ(x)
)
. (15)

Consequently, all needed quantities to select x+ can be calculated without knowl-
edge of the feature vectors and the posterior distribution of the possibly infi-
nite dimensional adaptive parameters and using only kernel functions and the
marginal distribution of the observations.

Notice that, given Σ−1y|γ2,σ2 , we can easily calculate the new precision matrix

Σ−1y,y(x+)|γ2,σ2 of the marginal distribution of y when the observation correspond-

ing to x+ has been added. We have

Σ−1y,y(x+)|,γ2,σ2 =

(
M −Mvd−1

−d−1v>M d−1 + d−2v>Mv

)
, (16)

with v = γ2Φφ(x+), d = σ2+γ2φT(x+)φ(x+), and M = (Σy|γ2,σ2−d−1vv>)−1.
To calculate M we use the Sherman-Morrison-Woodbury formula to obtain

M = Σ−1y|γ2,σ2 −
1

−d+ v>Σ−1y|γ2,σ2v
Σ−1y|γ2,σ2vv

>Σ−1y|γ2,σ2 ,

and consequently Σ−1y,y(x+)|γ2,σ2 can be calculated from the previous Σ−1y|γ2,σ2 in

a straightforward manner.
Hence, starting with an initial estimation of the parameters, to perform active

learning we alternate between the selection of a new sample using Eq. (13) and
the estimation of the unknown parameters b, γ2, and σ2 using the procedure
described in section 3.1.



3.3 Prediction

Once the system has been trained, we want to predict the value of y(x∗) for a
new value of x, denoted by x∗. To calculate this predicted value, we make use of
the distribution of φ>(x∗)w + b where the posterior distribution of w is given
in Eq. (3). Its mean value, φ>(x∗)E[w] + b, is given by

φ>(x∗)E[w] + b = φ>(x∗)Σw|y,γ2,σ2σ−2Φ>(y − b1) + b, (17)

where we have made use of Eq. (14) to obtain

φ>(x∗)E[w] + b = γ2σ−2φ>(x∗)Φ
>(y − b1) (18)

− γ4σ−2φ>(x∗)Φ
>(σ2I + γ2ΦΦ>)−1ΦΦ>(y − b1) + b,

which can be calculated without knowing the feature vectors if the kernel func-
tion is known.

4 Experimental Results

We have tested the proposed active learning algorithm on a synthetic dataset
and a real remote sensing classification problem. The synthetic data set, due to
Paisley [6], consists of 200 observations, 100 from each one of the two classes, in
a bi-dimensional space. The data, plotted in figure 1, is composed of two classes
defined by two manifolds, which are not linearly separable in this bi-dimensional
space.

We have compared the proposed active learning method with random sam-
pling and the recently proposed Bayesian method in [6]. Random sampling was
implemented using the proposed method but, instead of selecting the samples
according to Eq. (13), samples are selected randomly from the available training
set. In all cases, a Gaussian kernel was used, whose optimal width parameter
was selected by maximizing the standard cross-validation accuracy.

We divided the full set of 200 samples into two disjoint sets of 100 randomly
selected samples each, one for training and the other for testing. We started our
active learning process with a seed, a single labeled sample, randomly selected
from the data set, that is, M = 1 at the beginning and the rest of the training
set was used to simulate the oracle queries. We run the three algorithms for 99
iterations adding one sample at each iteration, that is, querying the oracle one
sample each time so, at the end, M = 100. To obtain meaningful results, the
process was repeated 10 times with different randomly selected training and test
sets.

The performance of the algorithms is measured utilizing the samples in the
test set using the mean confusion matrix, the mean overall accuracy (OA) and
OA variance, and the mean kappa index. Each cell (i, j) of the mean confusion
matrix contains the mean number of samples, over the ten executions of the
algorithms using the different training and test sets, belonging to the j-th class,
classified in the i-th class. The overall accuracy is the proportion of correctly



(a) (b)

Fig. 1. First 15 selected samples for (a) the method in [6] and (b) the proposed method.

classified samples over the total number of samples. The mean OA averages
the ten OA results of the ten different algorithm executions. The variance of
the OA in all the executions is reported as OA variance. The kappa index is
a statistical measure, which reflects agreement between the obtained accuracy
and the accuracy that would be expected by randomly classifying the samples.
Unlike the Overall Accuracy, the kappa index avoids the chance effect. A value
of the kappa index greater than 0.8 is considered to be ”very good”. Since ten
runs of the algorithm are performed, the mean kappa over all the executions
index is used.

In Figure 1 we show the first 15 selected samples for the method in [6]
and the proposed method. It can be seen that both algorithms select samples
that efficiently represent the two manifolds. Figure 2 shows the average learning
curves for random sampling, the method in [6] and the proposed method. From
the figure, it is clear that random sampling provides the lowest convergence rate,
while the method in [6] and the proposed method have a similar learning rate to
the full set overall accuracy. At convergence, when 100 samples are included in
the training set, all methods have the same accuracy but the proposed method
reaches this value with 18.4 samples on the average while the method in [6] needs
28.2 samples and random sampling needs 36.4 samples.

In the second experiment a real remote sensing dataset was used. Satellite
or airborne mounted sensors usually capture a set of images of the same area
in several wavelengths or spectral channels forming a multispectral image. This
multispectral image allows for the classification of the pixels in the scene into
different classes to obtain classification maps used for management, policy mak-
ing and monitoring. A critical problem in remote sensing image segmentation is
that few labeled pixels are typically available: in such cases, active learning may
be very helpful [14].

We evaluated the methods on a real Landsat 5 TM image, whose RGB bands
are depicted in Fig. 3a. The region of interest is a 1024 × 1024 pixels area cen-
tered in the city of Granada, in the south of Spain. The Landsat TM sensor
provides a six bands multispectral image that covers RGB, near-infrared and
mid-infrared ranges with a spatial resolution of 30 meters per pixel, that is, each
pixels captures the energy reflected by the Earth in a square area of side equal to
30 meters. The dataset, created by the RSGIS Laboratory at the University of
Granada, divides the scene into two classes, vegetation and no-vegetation. Note



Fig. 2. Average learning curves for the active learning techniques using random sam-
pling, the Bayesian method in [6] (Paisley method), and the proposed method for the
synthetic experiment.

(a) (b) (c)

Fig. 3. (a) Multispectral image, (b) classification map with the proposed method, and
(c) classification map with the method in [6]. Pixels classified as vegetation are shown
in green color and pixels classified as no-vegetation are shown in brown.

that the no-vegetation class includes bare soil that has a very similar spectral sig-
nature to vegetation making the correct classification of the pixels a challenging
problem.

A total of 336 samples, whose class is precisely known by visual inspection of
the images and by terrain inspection, were selected from the image, 174 samples
corresponding to the vegetation class and 162 samples corresponding to the no-
vegetation class. Each sample has six characteristics, each one corresponding to
the mean value of a 3×3 area centered in the pixel under study for each one of the
six bands that comprise the multispectral information provided by the Landsat
TM satellite. Again, the same Gaussian kernel was used for all methods.

From the labeled dataset a test set of 150 samples was randomly selected, and
the remaining 186 samples were used to simulate the oracle queries. We run the
experiments 10 times with different training and test sets. All the algorithms



Table 1. Mean confusion matrix, mean kappa index, mean overall accuracy and its
variance for ten runs of the method in [6] on different test sets.

Predicted/actual vegetation no-vegetation

vegetation 74.4 3.5
no-vegetation 0.6 71.5

Mean Kappa = 0.9453
Mean OA = 97.27%
OA variance = 4.39 × 10−5

Table 2. Mean confusion matrix, mean kappa index, mean overall accuracy and its
variance for ten runs of the proposed method on different test sets.

Predicted/actual vegetation no-vegetation

vegetation 74.4 2.4
no-vegetation 0.6 72.6

Mean Kappa = 0.96
Mean OA = 98.00%
OA variance = 9.87 × 10−5

were run for 185 iterations, starting from a training set with a single labeled
pixel, that is M = 1, and adding one pixel to the training set at each iteration
(query).

Again, the proposed method is compared with random sampling and the
Bayesian method in [6]. For the method in [6] we did not perform the basis
selection step. We want to note that, since this basis selection procedure discards
features from the samples, better results are expected when all the features are
used although the computational cost will be higher.

Figure 4 shows the average learning curves. The method in [6] provides a
lower convergence rate to the full set overall accuracy than the proposed method.
However, the method in [6] starts learning faster than the proposed one. It may
be due to the fact that the active learning is carried out in an M -dimensional
feature space while the proposed method works in an infinite-dimensional space.
However, at convergence, when 186 samples have been included in the training
set, the proposed method performs better than the method in [6]. Note also that,
at convergence, random sampling obtains the same results with the proposed
method, obtaining better classification accuracy than the method in [6]. This
was expected since it uses the same classification procedure as the proposed
method, except for the active learning selection procedure. Note, however, that
the convergence rate is much slower than the other two methods.

Figures 3b and 3c depict the classification map for the full image using the
proposed method and the method in [6]. The random sampling classification is
not shown since, at convergence, coincides with the proposed method. The mean
of the confusion matrices as well as the mean kappa index, the mean overall
accuracy, and the overall accuracy variance are shown in Tables 1 and 2, for the
method in [6] and the proposed method, respectively. From these figures of merit
it is clear that the proposed method discriminates better between vegetation and
no-vegetation than the method in [6].

All compared methods were implemented using Matlab c© and run on a Intel
i7 @ 2.67GHz. The proposed method took 1.23 sec to complete the 185 iterations
while the method in [6] took 48.44 sec and random sampling took 1.01 sec. It
is worth noting that computing the precision matrix Σ−1y,y(x+)|γ2,σ2 in Eq. (16)



Fig. 4. Learning curve for the active learning techniques using random sampling, the
Bayesian method in [6] (Paisley method), and the proposed method for the real remote
sensing dataset.

takes most of the time, which explains the similar cost between the proposed
method and random sampling. It is worth noting that the proposed method
provided better figures of merit than the method in [6] for both mean kappa
index and mean overall accuracy, learning with less interaction with the oracle
and, also, with a much lower computational cost.

5 Conclusions

We presented an active learning procedure that exploits Bayesian learning and
parameter estimation to tackle the problem of two-class kernel-based data clas-
sification. Using the Bayesian modeling and inference, we developed a Bayesian
method for classification both finite and infinite dimensional feature spaces. The
proposed method allows us to derive efficient closed-form expressions for pa-
rameter estimation and incremental and active learning. The method was ex-
perimentally compared to other methods and its performance was assessed on
remote sensing multispectral image as well as synthetic data.
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support vector machines (SVMs) have been successfully intro-
duced to remote sensing image classification. Their properties
make them appropriate for dealing with high number of image
features and low number of available labeled spectra. The
introduction of alternative approaches based on (parametric)
Bayesian inference has been quite scarce in the more recent years.
Assuming a particular prior data distribution may lead to poor
results in remote sensing problems because of the specificities and
complexity of the data. In this context, the emerging field of non-
parametric Bayesian methods constitutes a proper theoretical
framework to tackle the remote sensing image classification
problem.

This paper exploits the Bayesian modeling and inference
paradigm to tackle the problem of kernel-based remote sensing
image classification. This Bayesian methodology is appropriate
for both finite and infinite dimensional feature spaces. The
particular problem of active learning is addressed by proposing
an incremental/active learning approach based on three different
approaches: the maximum differential of entropies, the minimum
distance to decision boundary, and the minimum normalized dis-
tance. Parameters are estimated by using the evidence Bayesian
approach, the kernel trick, and the marginal distribution of
the observations instead of the posterior distribution of the
adaptive parameters. This approach allows us to deal with
infinite dimensional feature spaces. The proposed approach is
tested on the challenging problem of urban monitoring from
multispectral and synthetic aperture radar (SAR) data and in
multiclass land cover classification of hyperspectral images, in
both purely supervised and active learning settings. Similar
results are obtained when compared to SVMs in supervised
mode, with the advantage of providing posterior estimates for
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with random sampling, and standard active learning methods,
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a systematic overall accuracy gain and faster convergence with
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I. INTRODUCTION

CURRENTLY, kernel methods in general and support
vector machines (SVMs) in particular dominate the field

of discriminative data classification models [1]. During the last
years, the methods have been successfully introduced in the
field of remote sensing image classification [2], [3]. Kernel
methods deal efficiently with low-sized datasets of potentially
high dimensionality, as in the case of hyperspectral images.
The use of the kernel trick [4], as is known in the literature,
allows kernel methods to work in higher dimensional (possibly
infinite-dimensional) spaces requiring the knowledge of only
a kernel function which calculates an inner product in the new
space using the original data. Also, since kernel methods do
not assume an explicit prior data distribution but are inherently
non-parametric models, they cope well with remote sensing
data specificities and complexities. Alternative Bayesian ap-
proaches to remote sensing processing problems also exist and
have been introduced as well to Earth observation applications.
For example, the relevance vector machine (RVM) [5] assumes
a Gaussian prior over the weights to enforce sparsity and
uses expectation-maximization to infer the parameters. In [6],
[7], the RVM was used for multispectral image segmentation
and landmine detection using ground penetrating radar, while
in [8] the model was used for adaptive biophysical param-
eter retrieval. Lately, Gaussian Processes [9] have received
much attention in the field of machine learning, and some
applications and developments have been introduced in remote
sensing data processing as well, both for classification [10],
[11] and parameter retrieval [12] settings.

In this paper, we restrict ourselves to the classification
problem. Due to the particular characteristics of remote sens-
ing data, namely potentially high-dimensionality, low number
of labeled samples and different noise sources, assuming a
particular prior data distribution may lead to poor classification
results. In this context, the emerging field of non-parametric
Bayesian methods constitutes a proper theoretical framework
to tackle the problem [13], [9], [14]1. This paper follows
a Bayesian modeling and inference paradigm to tackle the
problem of kernel-based remote sensing image classification.
This Bayesian methodology is appropriate for both finite and
infinite dimensional feature spaces, and hence robustness to
the aforementioned problems in remote sensing is achieved.
In two-class classification problems, the goal is to estimate
a function and use as decision boundary the points where

1Excellent online lectures are available at: http://videolectures.net/
mlss09uk teh nbm/ and http://videolectures.net/mlss09uk orbanz fnbm/
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the function is zero, to decide whether a sample belongs
to a given class. In its simplest form, and given a training
set, this is equivalent to estimate a linear function on a
transformed feature space to separate samples from both
classes. SVMs approach this problem through the concept of
margin which is defined as the smallest distance between the
decision boundary and any of the samples. On the other hand,
Bayesian modeling and inference approach the problem by
introducing information on the hyperplane coefficients using
a prior model which in combination with the likelihood of
the labeled samples leads to both a posterior distribution
of the hyperplane coefficients and a Bayesian classification
procedure. The use of the Bayesian paradigm allows for the
calculation of the uncertainty of the estimated parameters and
also the determination of the certainty of the estimated label
for a given sample. It also allows for the estimation of all the
model parameters in a rigorous and sound manner.

Relations between SVMs and Bayesian inference is not
new. Note that adopting the least-squares SVM formulation
may alternatively allow to perform Bayesian inference on
SVMs [15]. Bayesian inference on these machines yields
some relevant benefits: hyperparameters may be learned di-
rectly from data using a consistent theoretical framework, and
posterior probabilities for the predictions can be obtained.
Consequently, non-parametric Bayesian methods may deal
with uncertainties in the data and naturally allow us developing
intuitive incremental/active learning methods. The presented
Bayesian kernel-based classifier permits to derive efficient
closed-form expressions for parameter estimation, as well as
to perform incremental, adaptive and active learning in a
consistent, principled way.

While kernel-based classification in static scenarios has
been extensively studied, the problem of on-line and in-
cremental classification is still unsolved. The most effective
schemes so far make use of both incremental and online
SVMs [16], [17], [18]. Most of these approaches are based
on growing and pruning strategies to create and update a
dictionary of (representative) support vectors. Unfortunately,
the algorithms require tuning several heuristic parameters.
Alternatively, Bayesian kernel machines, such as Gaussian
processes, have been successfully reformulated to deal with
online and sparse settings [19], [20]. These methods typically
rely again on a sequential generation of datasets of relevant
samples. Nevertheless the framework nicely allows for both a
propagation of predictions and Bayesian error estimates.

The previous online/incremental approaches are actually
related to the emerging field of active learning [21]. Active
learning aims at building efficient training sets by iteratively
improving the model performance through sampling. Many
query strategies have been devised in the literature, which
are based on different heuristics: 1) large margin, 2) ex-
pert committee, and 3) posterior probability (see [21] for a
comprehensive review). The first approach typically exploits
SVM methods, while the second one can be adopted by
any classifier. The latter requires classifiers that can provide
posterior probabilities. While Platt’s solution [22] of including
a sigmoid link in SVMs could do the job, some theoretical
concerns have been raised about the true meaning of such

posteriors. In Bayesian active learning, the prior over the hy-
potheses space is updated after seeing new data. For example,
in [23], the expected Kullback-Leibler divergence between the
current and the revised posterior distributions is maximized,
while in [24], the authors proposed a Bayesian framework to
tackle the active learning problem, which is utilized in Remote
sensing in [25]. In [26], a Bayesian framework is also used
and the posterior distribution is obtained as a Multinomial
Logistic Regression model. Other basis selection techniques
make explicit use of the response functions [27], [28], [29].
See also [30] for the basis selection general theory and [31]
for the use of the approach in compressive sensing.

The field of remote sensing image classification has experi-
enced a growing interest in active learning. Most of the intro-
duced methods rely on smart sampling strategies over the SVM
margin [32], [33], [34]. Some alternative approaches to work
with batches of selections per iteration have been presented,
and mainly rely on the concept of diversity between candidate
pixels [35], [33] or with respect to the current model [36],
or both [37]. Recent papers deal with new applications of
active learning algorithms: in [38], [39], active learning is
used to select the most useful unlabeled pixels to train a
semisupervised classifier, while in [11], [40] active queries are
used to correct for dataset shift in different areas of images.
A complete review of the field of active learning in remote
sensing can be found in [41].

In this paper, the Bayesian modeling and inference paradigm
is applied to kernel-based classifiers. This paradigm is used to
tackle both passive and active learning, as well as to address
the problem of parameter estimation for infinite dimensional
feature spaces, and consequently for problems where basis
selection cannot be carried out explicitly. The current work
presents the novel introduction of nonparametric Bayesian
learning for remote sensing image classification both in purely
supervised and active learning settings. This approach pro-
poses an iterative procedure to maximize the marginal of the
observations and, to the best of our knowledge, this is the
first paper where nonparametric Bayesian methods are used in
Active Remote Sensing Images Classification. The presented
methods actually go one step further by extending standard
nonparametric large margin techniques, such as SVM, which
are typically used for image segmentation applications. Non-
parametric Bayesian modeling and inference paradigms are
introduced here to tackle the problem of kernel-based remote
sensing image classification with the resulting major advantage
of automatically learning the values of the (hyper)parameters
from the data and thus no ad hoc cross-validation tun-
ing schemes are necessary. This Bayesian methodology is
appropriate for both finite and infinite dimensional feature
spaces. The particular problem of active learning is addressed
by proposing an incremental/active learning approach based
on three different approaches: the maximum differential of
entropies, the minimum distance to decision boundary, and
the minimum normalized distance. Comparison with random
sampling and standard active learning methods, such as margin
sampling, or entropy-query-by-bagging, reveals a systematic
overall accuracy gain and faster convergence with the number
of queries.
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The remainder of the paper is organized as follows. Sec-
tion II introduces the basic notation to perform Bayesian mod-
eling. Section III presents the Bayesian inference framework
proposed in this paper. We first introduce the basic tools and
then the novel formulations for parameter estimation, active
learning data classification and prediction. Section V illustrates
the performance of the proposed method in multispectral
image segmentation. Conclusions are outlined in Section VI.

II. PROBLEM STATEMENT AND BAYESIAN MODELING

Let us introduce the basic problem formulation and notation.
Let n be the number of pixels of a d-dimensional hyperspectral
image, {xi|i = 1, . . . , n}, x ∈ Rd we want to classify. The
general two-class supervised classification problem we tackle
here defines a classification function of the form

y(x) = φ>(x)w + b+ ε, (1)

where the mapping φ : X → H maps the observed data
point (samples, spectra) x ∈ X into a higher L-dimensional
(possibly infinite) Hilbert feature space H. Note that for a K-
class problem, the decision function implies K independent
classification functions of the form yk(x) = φ>(x)wk+ bk+
εk, k = 1, . . . ,K [4].

For the sake of simplicity of the notation, we will focus
here on the binary case. However, its extension to multiclass
scenarios is straightforward2. Therefore, for a data point, x, the
output y(x) ∈ {0, 1} consists of a binary coding representation
of its classification as belonging to class C0 or C1, respectively,
w is a vector of size L × 1 of adaptive parameters to be
estimated, b represents the bias in the classification function,
and ε is an independent realization of the Gaussian distribution
N (0, σ2).

For a training set, we already know the classification
output y(xi) associated with the feature samples φ(xi), i =
1, . . . ,M , with M the number of samples, and therefore we
can write

p(y|w, b, σ2) =
M∏
i=1

N (y(xi)|φ>(xi)w + b, σ2), (2)

where y = (y(x1), y(x2), . . . , y(xM ))>. Since xi, i =
1, . . . ,M , will always appear as conditioning variable, for
the sake of simplicity, we have removed the dependency on
x1, . . . ,xM in the left-hand side of the equation. We note that,
for infinite dimensional feature vectors φ(xi), w is infinite
dimensional.

The Bayesian framework allows us to introduce information
about the possible value of w in the form of a prior distribu-
tion. Since the likelihood function defined in Eq. (2) is the
exponential of a quadratic function of w, its corresponding
conjugate prior should be a Gaussian distribution [4] so that
the posterior will also be Gaussian. In this work, we consider a
particular form of the Gaussian prior in which each component

2Extension to multiclass problems can be accomplished in many different
ways by following standard schemes: one-versus-all, one-versus-one, pure
multiclass schemes, or even sophisticated puncturing alternatives. We suggest
here the use of a one-versus-all scheme, which typically gives rise to simpler
and highly competitive results [42].

of w independently follows a Gaussian distribution N (0, γ2).
Notice that this distribution can also be obtained utilizing the
Gaussian Process framework [4]. When the feature vectors are
infinite dimensional, we will not make explicit use of this prior
distribution but still we will be able to carry out parameter
estimation, prediction, and active learning tasks.

III. PROPOSED BAYESIAN INFERENCE METHOD

Due to the possible use of infinite dimensional feature
spaces we will mainly use the marginal distribution of the
observations to perform inference tasks, that is, parameter
estimation, prediction and active learning and avoid, when
possible, the use of the posterior distribution of the adaptive
parameters, w, since it cannot be calculated for infinite di-
mensional spaces. However, when a finite dimensional space
is used, we will also calculate the posterior distribution in this
section.

A. Marginal Distribution of y

The marginal distribution of y can be obtained by integrat-
ing out the vector of adaptive parameters w. It can easily be
shown, see for instance [4], that

p(y|b, γ2, σ2) = N (y|b1,C), (3)

with
C = γ2ΦΦ> + σ2I, (4)

where Φ is the design matrix whose i-th row is φ>(xi), and
1 is a column vector with all its M components equal to 1.

It is important to note that we do not need to know the
form of Φ explicitly to calculate this marginal distribution. We
only need to know the Gram matrix K = ΦΦ>, which is an
M×M symmetric matrix with elements Knm = k(xn,xm) =
φ>(xn)φ(xm). It has to be a positive semidefinite matrix
(see [1]), i.e., we only need to know the kernel function
k(·, ·) that represents the inner product in the new feature
space to calculate the marginal distribution. This leads to the
construction of kernel functions k(x,x′) for which the Gram
matrix K is positive semidefinite for all possible choices of
the set {xn}. Note that, even if Φ has an infinite number of
columns, which corresponds to the case of φ(xi) being an
infinite dimensional feature vector, we can still calculate K of
size M ×M by means of the kernel function. Consequently,
the new feature space dimension depends of the selected kernel
function.

It is also worth noting that the above marginal distribution
can be obtained by assuming that y consists of independent
additive noisy observations, with variance γ2, of a Gaussian
process with mean b and covariance K.

For a new sample x∗ the distribution of

yM+1 =

(
y

y(x∗)

)
, (5)

has the form

p(yM+1|b, γ2, σ2) = N (yM+1|b1M+1,CM+1), (6)
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with CM+1 = γ2ΦM+1Φ
>
M+1 + σ2IM+1, which can be

written as
CM+1 =

(
C k
k> c

)
, (7)

where C has been defined in Eq. (4) and

k> = γ2φ>(x∗)Φ
>, (8)

c = γ2φ>(x∗)φ(x∗) + σ2. (9)

Furthermore, the conditional distribution p(y(x∗)|y) is a
Gaussian distribution with mean m(x∗) and variance v(x∗)
given by

m(x∗) = b+ γ2φ>(x∗)Φ
>C−1(y − b1), (10)

v(x∗) = c− k>C−1k. (11)

B. Posterior Distribution of w

When the feature space is finite dimensional we can also
calculate the posterior distribution of w, which is given by
(see [4]),

p(w|y, b, γ2, σ2) =

N (w|Σw|y,γ2,σ2σ−2Φ>(y − b1),Σw|y,γ2,σ2), (12)

where
Σw|y,γ2,σ2 = (σ−2Φ>Φ + γ−2I)−1.

Notice that m(x∗) defined in Eq. (10) can be expressed in
terms of E[w] as

m(x∗) = φ(x∗)
>E [w] + b. (13)

C. Parameter Estimation

The last step in the Bayesian inference we are carrying out
is the estimation of the parameters involved in the models, that
is, the estimation of the values of γ2, σ2, and b. The value of
b can be easily obtained from Eq. (3) as

b =
1

M

M∑
i=1

y(xi). (14)

To estimate the values of γ2 and σ2 we use the Evidence
Bayesian approach without any prior information on these
parameters. The Evidence Bayesian approach [43], see [44],
[45] for other possible names, determines the values of the
parameters γ2 and σ2 by maximizing the marginal distribution
in Eq. (3) obtained by integrating out the vector of adaptive
parameters w. Intuitively, by integrating over w we are
searching for the best value of γ2 and σ2 for all possible
values of w. Differentiating 2 ln p(y|b, γ2, σ2) with respect to
γ2 and equating the result to zero, we obtain

tr[C−1ΦΦ>] = tr[(y− b1)>C−1ΦΦ>C−1(y− b1)]. (15)

Diagonalizing ΦΦ>, we obtain UΦΦ>U> = D, where
U is an orthonormal matrix and D is a diagonal matrix with
entries λi, i = 1, . . . ,M . We can then rewrite the above
equation as

M∑
k=1

λk
γ2λk + σ2

=
M∑
i=1

z2i
λi

(γ2λi + σ2)2
, (16)

where U(y − b1) = z with components zi, i = 1, . . . ,M .
Multiplying both sides of the above equation by γ2 we have

γ2 =
M∑
i=1

λi

γ2λi+σ2∑M
k=1

λk

γ2λk+σ2

γ2z2i
γ2λi + σ2

=
M∑
i=1

µi
γ2z2i

γ2λi + σ2
,

(17)
where

µi =

λi

γ2λi+σ2∑M
k=1

λk

γ2λk+σ2

. (18)

Note that µi ≥ 0 and
∑M
i=1 µi = 1.

Similarly, differentiating 2 ln p(y|γ2, σ2) with respect to σ2

and equating the result to zero, we obtain
M∑
k=1

1

γ2λk + σ2
=

M∑
i=1

z2i
1

(γ2λi + σ2)2
. (19)

Following the same steps we already performed to estimate
γ2, we obtain

σ2 =
M∑
i=1

νi
σ2z2i

γ2λi + σ2
, (20)

where

νi =

1
γ2λi+σ2∑M
k=1

1
γ2λk+σ2

. (21)

Note that, again, νi ≥ 0 and
∑M
i=1 νi = 1.

Equations (17) and (20) suggest the iterative procedure
described in Alg. 1 to estimate the parameters where the old
value of the parameters is used in the right hand side of the
equations to obtain a new estimate of the parameters in the
left hand side of the equations.

Algorithm 1 Parameter estimation

Using Eq. (14), compute b = 1
M

∑M
i=1 y(xi).

Compute U and λi, i = 1, . . . ,M , as the eigenvector matrix
and eigenvalues of ΦΦ>, respectively.
Set z = U(y − b1).
Initialize γ2 = 1, σ2 = 1.
repeat

Set γ2old = γ2, σ2
old = σ2.

Set γ2 =
∑M
i=1 µi γ

2
old z

2
i /(γ

2
old λi + σ2

old).

Set σ2 =
∑M
i=1 νi σ

2
old z

2
i /(γ

2
old λi + σ2

old).
until (γ2 − γ2old)

2/(γ2old)
2 < 10−6 and (σ2 −

σ2
old)

2/(σ2
old)

2 < 10−6.

D. Classification
Once the system has been trained, we want to assign a class

to a new value of x, denoted by x∗. We already know that the
conditional distribution p(y(x∗)|y) is a Gaussian distribution
with mean m(x∗) and variance v(x∗) given in Eqs. (10) and
(11). We classify x∗ utilizing m(x∗) and write

x∗ is assigned to
{
C1 if m(x∗) ≥ 0.5
C0 if m(x∗) < 0.5

. (22)

Notice that the classification of x∗ is based on the proximity
of the mean value of p(y(x∗)|y) to the value zero or one that
represents the classes C0 and C1, respectively.
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IV. PROPOSED ACTIVE LEARNING METHOD

Active learning starts with a small set of observations whose
class is already known. From these observations, the marginal
distribution of y, the conditional distribution of w given y, and
the parameters b, γ2, and σ2 are estimated using the procedure
described in the previous sections. In order to improve the
performance of the classifier we want to select a new training
sample x+, whose corresponding y(x+) will be learned by
querying the oracle. Let us now examine different ways to
select the new training sample.

A. Method 1: Maximum differential of entropies

Utilizing Eq. (10) and (11) we observe that, for a sample x
not already present in the training set, the distribution of y(x)
given the set of observations y has variance

v(x) = γ2φ>(x)φ(x)+σ2−γ4φ>(x)Φ>C−1Φφ(x), (23)

and consequently we can select the new training sample as the
one maximizing the variance of the prediction, that is,

x+ = argmax
x

v(x). (24)

Notice that using this criterion amounts to selecting the
sample the classifier is less certain about the class it belongs
to.

Let us relate this active method procedure to the one
proposed in [24], [31] for finite dimensional feature spaces.
The covariance matrix of the posterior distribution of w when
a new x is added to the training set is given by

Σx
w|y,γ2σ2 = (σ−2(Φ>Φ + φ(x)φ>(x)) + γ−2I)−1. (25)

For finite dimensional feature spaces it is proposed in [24],
[31] to add to the training set the sample with maximum
difference between the entropies of the posterior distribution
before and after adding the new sample, that is,

x+ = argmax
x

1

2
log |Σw|y,γ2,σ2 ||Σx

w|y,γ2,σ2 |−1. (26)

Let us first express this criterion in terms of the marginal
distribution of the observations in order to remove the need of
using finite dimensional feature spaces. We note that

log|Σw|y,γ2,σ2 ||Σx
w|y,γ2,σ2 |−1

= log |I + σ−2φ(x)φ>(x)(σ−2Φ>Φ + γ−2I)−1|
= log(1 + σ−2φ>(x)(σ−2Φ>Φ + γ−2I)−1φ(x)), (27)

and using

(σ−2Φ>Φ + γ−2I)−1 = γ2I− γ4Φ>C−1Φ, (28)

we can write Eq. (27) in terms of the marginal distribution of
the observations as

log |Σw|y,γ2,σ2 ||Σx
w|y,γ2,σ2 |−1 =

= log(1 + σ−2γ2φ>(x)φ(x)− σ−2γ4φ>(x)Φ>C−1Φφ(x))

= log(1 + σ−2γ2φ>(x)φ(x)

− σ−2γ4φ>(x)Φ>Σ−1y|γ2,σ2Φφ(x)). (29)

Consequently, all needed quantities to select x+ can be
calculated without knowledge of the feature vectors and
the posterior distribution of the possibly infinite dimensional
adaptive parameters and using only kernel functions and the
marginal distribution of the observations.

Furthermore we have

log |Σw|y,γ2,σ2 ||Σx
w|y,γ2,σ2 |−1 = log(σ−2v(x)), (30)

and consequently both criteria coincide. Notice that, as we
have already mentioned, we have also shown that the max-
imum differential of entropies criterion can be utilized over
infinite dimensional feature spaces.

B. Method 2: Minimum distance to decision boundary

In our classification problem the decision boundary corre-
sponds to the set

Π =
{
x ∈ X : φ>(x)E[w] + b− 0.5 = 0

}
. (31)

We can then select the next sample to be included in the
training set by using

x+ =argmin
x

d2(x,Π)

= argmin
x

(φ>(x)E [w] + b− 0.5)2

‖E [w] ‖2
=argmin

x
(m(x)− 0.5)2. (32)

Note that this method provides a Bayesian formulation of the
SVM margin sampling heuristic (see [41]).

C. Method 3: Minimum Normalized Distance

The two active learning methods described above take into
consideration only partial aspects of the conditional distri-
bution p(y(x∗)|y). While maximum differential of entropies
utilizes the variance of this distribution, it does not use the
distance to the decision boundary. On the other hand, the
minimum distance to the decision boundary criterion is based
on the mean of this conditional distribution and does not take
into account the uncertainty of the distribution. It is obviously
very easy to imagine scenarios where these two criteria will
not select the best sample, either because it is too far from the
decision boundary and, hence, having large variance does not
represent a problem, or because, although the sample is the
closest to the decision boundary, its uncertainty is very small
and consequently it may not be the best sample to be included
in the training set.

We can then use the following active learning procedure
which combines precision and proximity to the decision
boundary

x+ =argmin
x

E
[
(y(x)− 0.5)2

v(x)

]
, (33)

where the expected value is calculated utilizing the conditional
distribution p(y(x)|y) defined in Eqs. (10) and (11).

Notice that since

E
[
(y(x)− 0.5)2

v(x)

]
= 1 +

(m(x)− 0.5)2

v(x)
, (34)
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we can rewrite this criterion as

x+ =argmin
x

(m(x)− 0.5)2

v(x)
(35)

D. Multiclass Extension of the Active Learning Methods

Here we extend the proposed active learning methods to deal
with K-class problems. Recently, arquitectures for multiclass
active learning have been proposed. For instance, in [33]
authors propose the MCLU technique which selects the most
uncertain samples according to a confidence score based on
the distances to all separation hyperplanes. Note, however,
that this approach is specific to maximum margin algorithms
like SVM, which is not our case. In this paper, nevertheless,
we will use the classical one-versus-all strategy for tackling
multiclass problems. Hence, for each candidate x, K different
pair of values {mk(x), vk(x)}k=1,...,K are obtained. These
values are used in Eqs. (24), (32) or (35), depending on the
selected method, that is finally optimized with respect to x
and k.

V. EXPERIMENTAL RESULTS

In this section, the proposed method is applied to both
purely supervised and active remote sensing image classi-
fication settings. The method is compared to the standard
SVM algorithm in the case of supervised classification when
few labeled samples are available. This problem is typically
encountered in remote sensing image classification, in which
active learning can improve performance. Comparison to ran-
dom sampling and standard active learning methods, such
as margin sampling and entropy-query-by-bagging is then
performed. In all cases we provide the overall accuracy, the
estimated Cohen’s kappa statistic and Z-score 3 as measures
of accuracy and class agreement, respectively. All experiments
were implemented using Matlab c© and run on an Intel c©

i7@2.67GHz. The Matlab c© source code of the proposed
method is available at http://decsai.ugr.es/vip/resources/BAL.
html for the interested reader. Additionally, a video demon-
stration of the method is available at the same location.

A. Study area and data collection

Two multispectral images are used in our experiments for
supervised and active learning classification:
• Supervised classification with Landsat imagery. The im-

age was acquired in the context of the Urban Expansion
Monitoring project [46] over the city of Rome (Italy)
by the Landsat TM sensor in 1999. An external Digital
Elevation Model (DEM) and a reference land cover map
provided by the Italian Institute of Statistics (ISTAT)
were also available. The available features were the seven
Landsat bands, two SAR backscattering intensities (0–35
days), and the SAR interferometric coherence.
Since image features come from different sensors, the
first step was to perform a specific processing and con-
ditioning of optical and SAR data, and to co-register all

3Z-score is defined as the ratio between the estimated kappa statistic and
its standard deviation.

images [46]. In particular, the seven bands of Landsat
TM were co-registered with the ISTAT classification data,
and resampled to 30×30 m with the Nearest-Neighbor
algorithm. The registration for the multi-source images
was performed at the sub-pixel level obtaining a root-
mean-squared error of about 10 m, which potentially
enables good urban classification ability. We also ap-
pended two SAR features: the estimated coherence, Co,
and a spatially filtered version of the coherence, FCo,
which is specially designed to increase the urban areas
discrimination [46]. After this preprocessing, all features
were stacked at the pixel level, and each feature was
standardized. The goal is the discrimination of urban (C1)
versus non-urban (C0) land-cover classes.

• Active classification with ROSIS imagery. The second
image was acquired by the DAIS7915 sensor over the
city of Pavia (Italy), and constitutes a challenging 9-class
urban classification problem dominated by directional
features and relatively high spatial resolution (5 meters
pixels). We took into account only 40 spectral bands of
reflective energy in the range [0.5, 1.76]µm, thus skipping
thermal infrared bands and middle infrared bands above
1958 nm. We carried out a Principal Components Anal-
ysis (PCA) to reduce the dimensionality of the problem
and considered the 10 first components for each pixel
that have provided good classification performance in
previous works (see, for instance, [47]).

B. Supervised Classification Results

For the case of supervised classification, we report results
both on the binary classification problem of the Rome scene
and the multiclass classification problem of the Pavia scene
and compare the performance of our approach to the standard
SVM approach.

From the Rome image, of size 1440×930 pixels, a training
set of 500 randomly selected pixels was obtained, and results
are given in a representative test set of 10000 samples. To
obtain unbiased conclusions from the results, the process was
repeated 10 times with different randomly selected training and
test sets, and the average accuracies are given. In all cases, a
Gaussian kernel was used. Using 3-fold cross-validation with
the SVM as classifier, a kernel lengthscale σ = 100 was
selected. Although we could have used Bayesian inference
to estimate the kernel parameter (see, for instance, [4]) we
decided to use the same kernel parameter on both methods and
concentrate on the remaining model parameters. Notice that
this decision slightly favors SVM since the kernel parameter
is estimated seeking the best SVM performance. For the case
of SVMs, the regularization parameter C was tuned by 3-fold
cross-validation on the training dataset. Our method does not
need any heuristic tuning since hyperparameters are estimated
automatically in the training phase. The proposed method
needed 0.33 seconds to complete the training while the SVM
needed 1.94 seconds.

Table I shows the obtained results in the 10 independent
realizations and their average and variance. Although SVM
obtains better results in many cases, the differences are not
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TABLE I
CLASSIFICATION ACCURACY FOR SVM AND THE PROPOSED METHOD IN
THE ROME (1999) SCENE. OVERALL ACCURACY, ESTIMATED COHEN’S

STATISTIC AND Z-SCORE RESULTS ARE GIVEN FOR ALL 10 REALIZATIONS
AND AVERAGED.

Overall Kappa
accuracy, OA[%] statistic, κ Z-score, Z

Realization Proposed SVM Proposed SVM Proposed SVM
1 96.66 96.95 0.895 0.905 158.04 169.50
2 96.48 96.61 0.890 0.896 154.57 161.07
3 97.27 96.96 0.914 0.905 177.60 168.35
4 96.24 96.54 0.883 0.894 150.20 160.00
5 97.10 96.54 0.909 0.892 172.39 157.37
6 96.64 95.99 0.893 0.874 156.69 142.59
7 96.86 96.58 0.905 0.898 170.81 165.14
8 96.76 96.72 0.895 0.896 156.32 158.44
9 97.02 96.71 0.901 0.900 174.92 167.36

10 96.99 97.00 0.906 0.908 170.54 173.04
Average 96.80 96.66 0.90 0.90 164.21 162.29
Variance 0.0957 0.0867 < 10−5 < 10−5 98.95 74.66

TABLE II
MEAN CONFUSION MATRIX FOR SVM AND THE PROPOSED METHOD (IN

BRACKETS). WE SHOW THE AVERAGE KAPPA STATISTIC, ALONG WITH ITS
VARIANCE, Z-SCORE AND CONFIDENCE INTERVALS FOR BOTH METHODS.

C0 C1
Ĉ0 7802.80 (7846.30) 169.00 (198.30)
Ĉ1 165.00 (121.50) 1863.20 (1833.90)

SVM Proposed
OA [%] 96.66% 96.80%
κ 0.90 0.90
σ2
κ 3.07e-05 3.02e-05

Z-score 162.29 164.21
κ CI [0.886,0.908] [0.889,0.910]

statistically significant, as assessed by the average values of
the three measures. Table II shows the average confusion
matrices for the 10 realizations, along with its variance, Z-
score and confidence intervals for both methods. These results
also confirm the numerical and statistical similarity of the
results. Finally, Fig. 1 shows the classification maps obtained
by SVM and the proposed method in a particular realization.
Visual results match the previous numerical accuracies as no
difference is obtained. The statistical significance of the kappa
statistic also confirms this issue.

A second experiment was performed on the 9-class urban
classification problem of the Pavia scene depicted in Fig. 2a,
which has 400×400 pixels. Training was done on 1260 ran-
domly selected pixels (140 from each class), and a test set of
13314 representative samples was used. Again, ten different
realizations were used to obtain unbiased conclusions from
the results. We used a Gaussian kernel, whose lengthscale
σ = 500 was selected using 3-fold cross-validation with
the SVM as classifier. As in the previous experiment, the
regularization parameter C for the SVM was tuned by 3-fold
cross-validation on the training dataset while the proposed
method estimated all hyperparameters automatically in the
training phase. The proposed method needed 14.32 seconds
to complete the training while the SVM needed 9.09 seconds.
This is explained by the fact that SVM estimates a single
value of C for all classifiers while the proposed method has
to estimate the value of the hyperparameters for each classifier.

Table III shows the obtained results in the 10 independent

(a) RGB (b) Ground truth

(c) SVM (96.71 %, 0.9) (d) Proposed (97.02%, 0.901)

Fig. 1. (a) RGB composite of the Landsat multispectral image, (b) ground
truth showing the urban (yellow), non-urban (blue) classes and background
(black), (c) classification map with SVMs, and (d) classification map with
the proposed method. Overall accuracy and kappa statistic are given in
parentheses.

TABLE III
CLASSIFICATION ACCURACY FOR SVM AND THE PROPOSED METHOD IN

THE PAVIA SCENE. OVERALL ACCURACY, ESTIMATED COHEN’S STATISTIC
AND Z-SCORE RESULTS ARE GIVEN FOR ALL 10 REALIZATIONS AND

AVERAGED.

Overall Kappa
accuracy, OA[%] statistic, κ Z-score, Z

Realization Proposed SVM Proposed SVM Proposed SVM
1 98.24 98.10 0.979 0.977 705.28 678.51
2 97.75 98.13 0.973 0.977 622.88 683.29
3 98.31 98.28 0.979 0.979 721.51 712.40
4 98.42 98.42 0.981 0.981 743.00 744.51
5 98.46 98.11 0.981 0.977 754.33 680.18
6 97.95 98.36 0.975 0.980 653.39 730.60
7 98.48 98.27 0.981 0.979 760.01 710.51
8 98.29 98.23 0.979 0.978 714.96 701.91
9 98.37 98.30 0.980 0.979 733.20 715.85
10 98.18 97.87 0.978 0.974 693.48 640.06

Average 98.25 98.21 0.979 0.978 710.20 699.78
Variance 0.0545 0.0253 < 10−6 < 10−6 1926.64 906.97

realizations and their average and variance. The proposed
method provides better results in almost all cases, although
the differences are not statistically significant, as assessed by
the Z score of the κ statistic for both classifiers. Unlike
the overall accuracy, the kappa statistic avoids the chance
effect, and a value above 0.8 is typically considered to be
a ‘very good’ agreement. The kappa index confidence interval
is [0.975, 0.980] for the proposed method and [0.975, 0.981]
for the SVM. These results also confirm the numerical and
statistical similarity of the results. Finally, Fig. 2 shows the
classification maps obtained by SVM and the proposed method
in a particular realization. Visual results match the previous
numerical accuracies as no difference is obtained.

C. Active Learning Results

In this second battery of experiments, we illustrate the
capabilities of the proposed active learning methods. Clas-
sification experiments are conducted using the Rome (Italy)
scene acquired in 1999 whose RGB bands are depicted in
Fig. 1a. The proposed Bayesian active learning methods are
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(a) RGB (b) Ground truth

(c) SVM (98.27%, 0.979) (d) Proposed (98.48%, 0.981)

Water Meadows Parking lot Bitumen
Asphalt Bare soil Brick roofs
Trees Shadows Background

Fig. 2. (a) False color Pavia multispectral image composed by bands
[8, 4, 1], (b) ground truth showing classes in colors and background in black,
(c) classification map with SVMs, and (d) classification map with the proposed
method. Overall accuracy and kappa statistic are given in parentheses.

identified as follows: maximum differential of entropies (BAL-
1), the minimum distance to decision boundary (BAL-2), and
the minimum normalized distance (BAL-3). They are com-
pared to SVM-based approaches following similar heuristics:
margin sampling (MS) [21] and entropy-query-by-bagging
(EQB) [36]. The naı̈ve (passive) approach of random sampling
(RS) is included here as baseline.

Figure 3 shows the average accuracy curves over 10 real-
izations with different randomly selected training, pool and
test sets as a function of the number of training samples.
The initial training set is formed by only 7 labeled pixels
for each class, while the pool set has 986 spectra, and the
test set is formed by 10000 samples. Although the proposed
method can be used for the selection of a batch of samples,
in the experiments we report results by adding one sample at
each iteration (query). At each iteration the SVM model was
retrained using 3-fold cross validation on the current training
dataset to tune the regularization parameter C. The parameters
for the proposed method were automatically estimated using
Eqs. (17) and (20). For the EQB method, six classifiers were
used. The compared methods perform remarkably differently
from the very beginning: while all of them start from ap-
proximately Z = 80, a fast convergence is observed for
all methods but RS, as expected. MS and EQB show very
similar performance, and both outperform our proposed BAL-
1. The curves also reveal better results at convergence for
the BAL-2 and BAL-3 methods. Nevertheless, for a low
number of iterations (between 25-50), BAL-3 shows much

TABLE IV
FIGURES OF MERIT AT CONVERGENCE IN THE ROME (1999) SCENE

(AFTER 100 SAMPLES WERE ADDED) FOR ALL LEARNING METHODS.

Methods Avg. OA σ2
OA Avg. kappa σ2

κ Z-score κ CI
SVM-RS 95.09 0.7520 0.8467 0.0008 128.79 [0.83,0.86]
SVM-MS 97.08 0.0894 0.9095 0.0001 175.23 [0.90,0.92]

SVM-EQB 97.06 0.1009 0.9094 0.0001 175.53 [0.90,0.92]
BAL-1 96.41 0.1847 0.8869 0.0002 152.87 [0.88,0.90]
BAL-2 97.31 0.0921 0.9166 0.0001 183.82 [0.91,0.93]
BAL-3 97.34 0.0412 0.9173 < 10−4 184.28 [0.91,0.93]

TABLE V
TOTAL RUNNING TIME IN SECONDS FOR ALL ACTIVE LEARNING METHODS

IN THE ROME(1999) SCENE.

SVM-RS SVM-MS SVM-EQB BAL-1 BAL-2 BAL-3
179 185 235 9 9 9

better results. The dashed line represents the upper bound for
OA=97.45 and Z-score=187.62. Table IV gives the accuracy,
kappa and Z agreement scores after the full iterative process,
when 100 samples were added, and confirms the suitability of
the proposed methods, specifically BAL-2 and BAL-3, which
show higher accuracies and lower variance. Table V shows
the total running time in seconds, after 100 queries, for the
compared methods, including the initial learning stage and the
parameter estimation at each query. It is worth mentioning that
the running time for SVM based methods, MS and EQB, is
much higher than the time for the proposed Bayesian active
learning methods.

In addition, a multiclass active learning experiment was
performed in the Pavia scene. In this experiment, we compare
the multiclass extension of the proposed methods with the
multiclass versions of RS, MS and EQB. Also, the Multiclass
Level Uncertainty method (MCLU) [33] was included in the
comparison. Figure 4 shows the average accuracy curves over
10 realizations with different randomly selected training, pool
and test sets as a function of the number of training samples.
The initial training set is formed by only 5 labeled pixels
for each class, while the pool set has 13076 spectra, and
the test set is formed by 1453 samples. For the parameter
selection we followed the same procedure as in the previous
experiment. The proposed methods start with an advantage
of 2% with respect to the SVM based methods that, in the
case of the proposed BAL-2 and BAL-3 methods, is kept until
iteration 40. After that, MS, EQB, MCLU, BAL-2 and BAL-
3 have a similar behavior. We think that this is due to the
way the parameters are estimated. SVM methods use cross-
validation to estimate the parameters and, when the training
set is small, it does not provide accurate results. However,
the proposed method provides a precise estimation even if the
number of training samples is very small. BAL-1 performs
similarly to RS which confirms that maximizing the variance
of the prediction is not a good selection method by itself
but, in some cases, helps when combined with the minimum
distance to the decision boundary, as in BAL-3 method. Table
VI shows the numerical results when 100 samples were added.
From those figures of merit we observe that MCLU provides
slightly better results than MS, EQB, BAL-2 and BAL-3. The
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Fig. 3. Average accuracy (left) and Z-score (right) learning curves in the Rome(1999) scene.

TABLE VI
FIGURES OF MERIT AT CONVERGENCE IN THE PAVIA SCENE (AFTER 100

SAMPLES WERE ADDED) FOR ALL ACTIVE LEARNING METHODS.

Methods Avg. OA σ2
OA Avg. kappa σ2

κ Z-score κ CI
SVM-RS 95.09 0.3812 0.9407 < 10−4 139.62 [0.93,0.95]
SVM-MS 97.56 0.2055 0.9706 < 10−4 202.10 [0.96,0.98]

SVM-MCLU 98.12 0.0934 0.9774 < 10−4 230.84 [0.96,0.99]
SVM-EQB 97.90 0.1213 0.9746 < 10−4 217.61 [0.96,0.98]

BAL-1 94.51 1.7123 0.9338 0.0003 133.54 [0.92,0.95]
BAL-2 97.92 0.2092 0.9749 < 10−4 220.04 [0.97,0.98]
BAL-3 97.69 0.2791 0.9720 < 10−4 208.67 [0.96,0.98]

TABLE VII
TOTAL RUNNING TIME IN SECONDS FOR ALL ACTIVE LEARNING METHODS

IN THE PAVIA SCENE.

SVM-RS SVM-MS SVM-MCLU SVM-EQB BAL-1 BAL-2 BAL-3
380 397 401 812 148 165 183

dashed line represents the upper bound for OA=98.50 and Z-
score=260.99. Table VII shows, for the compared methods, the
total running time in seconds after 100 queries, including the
initial learning stage and parameter estimation at each query.
Again the running time for SVM based methods is much
higher (from 2 to 5 times depending on the method) than
the time required by the proposed Bayesian active learning
methods.

VI. CONCLUSIONS

This paper presented a non-parametric Bayesian learning
approach based on kernels for remote sensing image classi-
fication. The Bayesian methodology efficiently tackles purely
supervised and active learning approaches, and shows com-
petitive performance when compared to SVMs and recent
active learning approaches. For the latter setting, an incre-
mental learning approach based on three different approaches
was presented: the maximum differential of entropies, the
minimum distance to decision boundary, and the minimum
normalized distance. Automatic parameter estimation is solved
by using the evidence Bayesian approach, the kernel trick, and
the marginal distribution of the observations instead of the
posterior distribution of the adaptive parameters.

The proposed approach was tested in several scenes dealing
with the urban monitoring problem from multispectral and
SAR data. We observed that, while similar results are obtained
by SVMs in supervised mode, an improvement in accuracy
and convergence is observed for the active learning scenario.
Interestingly our methods do not only provide point-wise class
predictions but confidence intervals.

Future work will deal with the application to more challeng-
ing multitemporal image segmentation and change detection
problems, in which a confidence map could be readily ex-
ploited. Also, it is interesting to study the performance of the
model in the presence of a reduced number of labeled samples
and much higher dimensionality scenarios.
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ABSTRACT

In this paper we utilize Bayesian modeling and inference to learn
a softmax classification model which performs Supervised Classifi-
cation and Active Learning. For p < 1, lp-priors are used to impose
sparsity on the adaptive parameters. Using variational inference, all
model parameters are estimated and the posterior probabilities of
the classes given the samples are calculated. A relationship between
the prior model used and the independent Gaussian prior model is
provided. The posterior probabilities are used to classify new sam-
ples and to define two Active Learning methods to improve classifier
performance: Minimum Probability and Maximum Entropy. In the
experimental section the proposed Bayesian framework is applied to
Image Segmentation problems on both synthetic and real datasets,
showing higher accuracy than state-of-the-art approaches.

1. INTRODUCTION

The goal of Supervised Classification is to learn a model which au-
tomatically assigns samples to a set of predefined categories. Differ-
ent approximations have been proposed in literature. For example,
Support Vector Machines (SVMs) [1, 2] find the boundary decision
which maximizes the distance between support vectors, Bayesian
approaches such as Relevance vector machine [3] or Gaussian Pro-
cess Classification [4] attempt to learn the underlying probabilistic
model.

The use of Bayesian modeling and inference provides huge ben-
efits: prior distributions are used to introduce information on the
adaptive parameters, and hyperparameters are learned from data us-
ing a consistent framework. Priors based in lp-quasinorms, p ≤ 1,
enforce sparsity on the adaptive parameters. The use of sparse pri-
ors has already been reported for softmax classification problems,
see [5] for the use of the l1 prior, and [6, 7] for the use of quadratic
prior. However, the use of lp-quasinorms, p < 1, is of particular
importance when only very few features are relevant to the target
output of a large number of features. Current approaches utilizing
lp-regularization treat the logistic regression from a likelihood-based
perspective, and employ a cross-validation procedure to estimate the
required regularization parameters (see [8] for details). Here we pro-
pose a Bayesian modeling and inference approach to sparse softmax
classification using lp-priors with p < 1. For a given x, the output
vector y(x) = [y1(x), . . . , yK(x)]T consists of the 1-of-K binary
representation of its classification. We have

This work has been supported in part by the Comisión Nacional de Cien-
cia y Tecnologı́a under contract TIN2010-15137, CEI BioTic at the Univer-
sity of Granada, and the Department of Energy grant DE-NA0000457.

p(y(x)|W,x) =

K∏
k=1

(
exp(wT

kφ(x))∑K
i=1 exp(wT

i φ(x))

)yk(x)
(1)

where the function φ : X → H, maps the observed x ∈ X into
a higher dimensional feature space H of dimension M whose first
component is 1 and W is a matrix whose column vectors are the
so called adaptive vectors w1, . . . ,wK . The goal in softmax clas-
sification is to learn the adaptive matrix W from a set of samples
xi, i = 1, . . . , N with known classification y(xi), i = 1, . . . , N .

Getting the ground-truth label of each sample is in general a
costly task. Active Learning (AL) techniques provide an iterative
alternative to minimize such cost (see [9] for a complete survey).
These techniques train an initial classifier using a small dataset, then,
based on an optimality criterion, iteratively select samples (without
knowing their labels). These samples are then classified by an oracle
and used to improve the initial classifier.

AL techniques depend on the model the classifier learns, and
therefore each classifier has its own AL techniques. For SVM, rel-
evant approaches are: the sampling approach discussed in [9], the
binary- and multiclass-level uncertainty [10], and the entropy-query-
by-bagging [11]. In [12] a Bayesian framework is proposed and dif-
ferential entropy is used to select new samples. In [13] A Gaussian
process is used to estimate the posterior distribution of the labels,
and three AL methods are proposed: maximum variance (equiva-
lent to differential entropy in [12]), minimum distance to decision
boundary, and a combination of both minimum normalized distance.

The goal of this paper is twofold. Firstly, using a prior based
on lp-quasinorms, we formulate the softmax classification problem
from a Bayesian viewpoint. All required algorithmic parameters are
also included in the proposed Bayesian model, and are estimated
along with the unknowns. Due to the intractability of the posterior
distributions, we employ Variational Bayesian analysis to provide an
approximation to the posterior distribution of the unknowns. A rela-
tionship between the prior model used and the independent Gaussian
prior model is also provided. Secondly, we tackle AL by utilizing the
posterior distribution of the classes.

The paper is organized as follows. In Section 2 we use Bayesian
modeling to define probability distributions on the unknowns. Vari-
ational inference is used to develop a training algorithm and a clas-
sification rule in Section 3. A study on the relationship between the
proposed classification model and the use of Gaussian independent
prior models is presented in Section 4. AL techniques are proposed
in Section 5. In Section 6, the proposed methods are applied to Im-
age Segmentation on a synthetic example and a real dataset. Con-
clusions are presented in Section 7.



2. BAYESIAN MODEL

To perform Bayesian inference we assume that we already have the
K−dimensional classification vectors yi = y(xi) associated to the
feature samples φ(xi), i = 1, . . . , N . Then we can write

p(Y|W) =

N∏
i=1

p(yi|W) (2)

where Y is aN ×K matrix with ith row yT
i whose components are

yik, k = 1, . . . ,K, p(yi|W) has been defined in Eq. (1) and the set
X containing all the used samples, has been omitted for simplicity.

To estimate W we use, for each of its columns, the prior distri-
bution p(wk|αk) based on lp-quasinorms

p(wk|αk) ∝ αM/pk exp

[
−αk

M∑
i=1

|wki|p
]
, (3)

where αk > 0 and 0 < p ≤ 1, wk = (wk1, . . . , wkM )T, k =
1, . . . ,K. This type of prior has been shown to enforce sparsity in
estimation problems like logistic regression (see [14] and [15] for a
regularization point of view) and in areas like image restoration and
compressive sensing (see, for instance [16]).

Then, given α = (α1, . . . , αK)T, we have

p(W|α) =

K∏
k=1

p(wk|αk) . (4)

Finally, we assume that each αk, k = 1, . . . ,K has as hyperprior,
p(αk), the Gamma distribution, p(αk) = Γ(αk|aoαk , b

o
αk ), where

boαk > 0 and aoαk > 0, and have the following global model

p(α,W,Y) = p(α)p(W|α)p(Y|W). (5)

3. VARIATIONAL BAYESIAN INFERENCE

The Bayesian paradigm dictates that inference on (α,W) should
be based on p(α,W|Y). However, p(α,W|Y) cannot be found
in closed form. Therefore, we apply variational methods to approx-
imate this distribution by a distribution q(α,W). The variational
criterion used to find q(α,W) is the minimization of the Kullback-
Leibler (KL) divergence, given by

KL(q(α,W)‖p(α,W|Y)) = const (6)

+

∫ ∫
q(α,W) log

(
q(α,W)

p(α,W,Y)

)
dαdW.

Unfortunately, due to the form of the prior and the observation
models defined in (4) and (2) respectively, the integral above cannot
be calculated. To solve this problem we proceed to bound below the
distribution p(α,W,Y) by a function which renders the calcula-
tion of KL(q(α,W) ‖ p(α,W|Y)) possible when p(α,W,Y)
is replaced by such a function. A lower bound on p(wk|αk), k =
1, . . . ,K is found by using the following inequality (see [17], and
[18] based on [19])

a
p
2 ≤ p

2

a+ 2−p
p
b

b1−p/2
, (7)

for a ≥ 0, b > 0, and 0 ≤ p ≤ 2, which applied to the energy of the
prior produces

αk

M∑
i=1

|wki|p ≤
1

2
αkp

M∑
i=1

w2
ki + 2−p

p
θki

θ
1−p/2
ki

, (8)

where θi > 0. Consequently, for the prior in Eq. (3) we have

p(wk|αk) ≥M(αk,wk,θk) = (9)

= const× αM/pk exp

(
−1

2
αkp

M∑
i=1

w2
ki + 2−p

p
θki

θ
1−p/2
ki

)
,

where θk = (θk1, . . . , θkM )T, and we can write

p(W|α) ≥
K∏
k=1

M(αk,wk,θk) = M(α,W,Θ). (10)

where Θ is a matrix with column vectors θ1, . . . ,θK . In order to
obtain a lower bound on p(Y|W) we follow [6] and notice that for
any u ∈ RK and β ∈ R we have

ln

K∑
k=1

euk ≤ β +

K∑
k=1

uk − β − ξk
2

+

K∑
k=1

(λ(ξk)((uk − β)2 − ξ2k) + ln(1 + eξk )) (11)

for all ξk ∈ R+
0 with λ(ξk) = 1

2ξk

(
1

1+e−ξk
− 1

2

)
. Applying (11)

to Eq. (2) we obtain

ln p(Y|W) =

N∑
i=1

ln p(yi|W) ≥
N∑
i=1

K∑
k=1

yikw
T
kφ(xi)

−
N∑
i=1

K∑
k=1

(
wT
kφ(xi)− βi − ξik

2
+ ln(1 + eξik ))

−
N∑
i=1

K∑
k=1

λ(ξik)((wT
kφ(xi)− βi)2 − ξ2ik)

−
N∑
i=1

βi = ln H(W,Ξ,β,Y), (12)

where Ξ is a matrix with row vectors ξT
i , i = 1 . . . N , each of these

vectors has the form ξi = (ξi1, . . . , ξiK)T and β = (β1, . . . , βN )T.
Notice that in [6] the same parameter β is used for all the sam-

ples.
Using the lower bounds in (10) and (12), the joint distribution is

bounded below by

p(α,W,Y) ≥p(α)M(α,W,Θ)H(W,Ξ,β,Y)

=F(α,W,Θ,Ξ,β,Y) . (13)

We replace p(α,W,Y) by this lower bound in (6) and use the
factorization q(α,W) = q(α)q(W).

Then the posterior distribution q(wk), k = 1, . . . ,K is the mul-
tivariate normal distributionN (<wk>,Σwk ) where

Σ−1
wk = Λk + 2

N∑
i=1

λ(ξik)φ(xi)φ
T(xi), (14)

<wk> = Σwk

N∑
i=1

((yik −
1

2
)φ(xi) + 2βiλ(ξik)φ(xi))

with Λk = diag
(
<αk>pθ

p/2−1
ki

)
, i = 1, . . . ,M .

Furthermore we have

θki = <w2
ki> = (Σwk )ii + (<wki>)2 . (15)



Furthermore q(αk) = Γ(αk|aoαk+M
p
, boαk+

∑M
i=1 θ

p/2
ki ) with mean

<αk> =
1

p

aoαk p+M

boαk +
∑M
i=1 (θki)p/2

. (16)

Finally we have

ξik =
√

φT(xi)Σwkφ(xi) + (<wk>Tφ(xi)− βi)2, (17)

and

βi =
K − 2 + 4

∑K
k=1 λ(ξik)<wk>

Tφ(xi)

4
∑K
k=1 λ(ξik)

. (18)

Notice that the uncertainty of the estimate of wk is incorporated
into the estimation procedure of the other unknowns by the use of
the covariance matrix Σwk in (15), (16) and (17).

The above inference leads to a learning procedure which is sum-
marized in Algorithm 1. At convergence this algorithm estimates
all the parameters, including the distribution of the adaptive vectors
wk. The point estimates of the adaptive vectors are 〈wk〉 in Eq. (14).
Given a new sample x∗, we utilize as predictive distribution of the
classes

p(Ck|x∗) =
exp(〈wk〉Tφ(x∗))∑K
i=1 exp(〈wi〉Tφ(x∗))

(19)

and assign x∗ to the class with maximum probability.

Algorithm 1 Learning Procedure

Require: α0 = (1, . . . , 1)T, θ0ki = 1, ξ0ik = 1 and βi = 1.
1: repeat
2: Calculate q(W)n+1 using Eq. (14).
3: Calculate q(α)n+1 using Eq. (16).
4: Parameters θn+1

ki , ξn+1
ik , and βn+1

i are updated using Eq. (15),
Eq. (17) and Eq. (18) respectively.

5: until convergence

4. RELATION TO INDEPENDENT GAUSSIAN PRIOR
MODEL

Let us study here the relationship between the proposed classifica-
tion model and the use of Gaussian independent prior models on the
components of wk, k = 1, . . . ,K. Let us assume that

pG(wk|υk) ∝
M∏
i=1

υ
1/2
ki exp

[
−1

2
υkiw

2
ki

]
, (20)

p(υk) =

M∏
i=1

p(υki) =

M∏
i=1

Γ(υki|aoαk , b
o
αk ) , (21)

where υk = (υk1, . . . , υkM )T, k = 1, . . . ,K and the parameters
aoαk , b

o
αk are the ones defined for the lp-quasinorms.

Utilizing the same observation bound in (12), we obtain

pG(Υ,W,Y) = p(Y|W)

K∏
k=1

p(υk)pG(wk|υk)

≥ H(W,Ξ,β,Y)

K∏
k=1

p(υk)pG(wk|υk) . (22)

where Υ is a matrix with row vectors υT
k , k = 1 . . .K, each of these

vectors has the form υk = (υk1, . . . , υkM )T

Utilizing qG(W) =
∏K
k=1 qG(wk), the variational posterior

distribution qG(wk) isN (<wk>G,Σwk,G) with parameters

(Σwk,G)−1 = Λk,G + 2

N∑
i=1

λ(ξik)φ(xi)φ
T(xi) , (23)

<wk>G = Σwk,G

N∑
i=1

((yik −
1

2
)φ(xi) + 2βiλ(ξik)φ(xi),

Λk,G = diag (<υki>) . (24)

The mean of the posterior distribution approximation of υki is

<υki> =
aoαk + 1

2

boαk +
<w2

ki
>

2

. (25)

Let us assume that aoαk = boαk = 0 and rewrite (14) making
explicit its dependency on p. Utilizing (16) we have

Λk,p = diag

(
aoαk p+M

boαk +
∑M
i=1 θ

p/2
ki

θ
p/2−1
ki

)
(26)

Taking the limit p→ 0 and using (15), we obtain

lim
p→0

Λkp = diag
(
θ−1
ki

)
= diag

(
<w2

ki>
−1) . (27)

Let us now examine the Gaussian model. When aoαk = boαk =
0, we have from (24) and (25)

Λk,G = diag (<υki>) = diag
(
<w2

ki>
−1) . (28)

Consequently, when the starting distributions of the variational
algorithms are the same we have limp→0 Λk,p = Λk,G. Therefore,
in the limiting case p→ 0, the posterior distributions associated with
the lp-prior and the independent Gaussian priors for each component
of wk coincide.

5. INCREMENTAL AND ACTIVE LEARNING

Let us now assume that we want to add a new observation xN+1 to
the training set, whose corresponding y(xN+1) will be provided by
an oracle. To select xN+1 we propose two active learning methods
which are based on the posterior probabilities of the classes.

In the first method, called Minimum Probability Criteria, we se-
lect the next sample to be used to improve the classifier as

xN+1 = arg min
x∗

(max
k

(p(Ck|x∗))). (29)

In the second method, named Maximum Entropy Criteria, we
select the sample whose posterior distribution of the classes is less
informative. Formally

xN+1 = arg max
x∗
−

K∑
k=1

p(Ck|x∗) ln p(Ck|x∗). (30)

6. EXPERIMENTAL RESULTS

Due to space limitations, in this section we provide a limited number
of experiments to analyze the performance of the proposed model for
classification and AL.
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Fig. 1. (a) Original synthetic image. (b) Estimated WT for the synthetic dataset. (c) Estimated WT for the real dataset.

6.1. Supervised Classification results

Figure 1(a) shows a synthetically generated 60 × 60 image. The
goal is to segment the three vertical rectangles in the image. Each
rectangle represents one class in our segmentation problem. The
pixels in each class are drawn from Gaussian distributions with mean
vectors µ1 = (0.9, 0.5, 0.1)T, µ2 = (0.5, 0.5, 0.5)T and µ3 =
(0.1, 0.5, 0.9)T, respectively. The three components of each pixel
are normalized RGB values, each component is corrupted with noise
of standard deviations 0.05, 0.5 and 0.05 respectively. Notice that the
G band does not provide information to the classifier.

The experiment is repeated 10 times with 10 different training
sets, each with 12 samples (4 from each class). As accuracy measure,
the Cohen’s Kappa statistic (κ-index) is calculated on a test set of
1500 samples (500 from each class).

The values p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
were tested. For values p = 0.1, . . . , 0.6 the obtained κ-index was
1, and 0.99 for the other values. Therefore, for p = 0.1, . . . , 0.6, the
proposed method segments the synthetic image correctly on the test
set. Fig. 1(b) shows the coefficients of the estimated adaptive matrix
WT for p = 0.1. Non zero entries represent components relevant
to classification. The proposed model does not use the G band and
assigns zero to the corresponding adaptive coefficients.

We compare the proposed method with an SVM classifier. To
perform a fair comparison we use a Gaussian kernel whose parame-
ter is manually tunned to obtain the best performance. The SVM cost
parameter is estimated using cross-validation. The obtained mean κ-
index was 0.95, and therefore, the SVM classifier does not segment
correctly the whole test sets from the synthetic image.

In our second classification experiment we evaluate the pro-
posed Bayesian classifier on the real data set “Image Segmentation”,
available on-line at the “UCI Machine Learning Repository” [20].
The goal is to classify a set of pixels in 7 classes: “BRICKFACE”,
“SKY”, “FOLIAGE”, “CEMENT”, “WINDOW”, “PATH” and
“GRASS”. The data set has 2310 samples (330 from each class).
Each sample is a 19 component vector representing different at-
tributes measured on a 3× 3 neighborhood of the pixel of interest.

The experiment is repeated 10 times on 10 different training sets,
each with 126 samples (18 from each class). The κ-index is calcu-
lated on a test set with 1050 samples (150 from each class). For
p = 1, the obtained κ-index was 0.86. The best κ-index, 0.88, was
obtained at p = 0.02, this implies that lp-quasinorms with p < 1
can outperform the l1-norm.

Fig. 1(c) shows the absolute value of the estimated adap-
tive coefficients in WT . Components 9, 12, 14, 15, 17, 18, 20
correspond to attributes “‘horizontal edge mean”, “rawred-mean”,
“rawgreen-mean”, “excess red”, “excess green”, “value-mean” and
“hue-mean”, respectively. Attributes like “row” or “column”, which
correspond to pixel position in the image, have no discriminative
information. In those components, the estimated values of W were

0 (second and third columns in the figure). The fourth component is
“number of pixel where attributes were measured”, this component
is equal to 9 for all samples, consequently the fourth component
acts as the bias for each class while the first component, which was
introduced for this purpose, takes the value zero. Interestingly, and
as expected, if we remove the fourth component, the estimated val-
ues of the first components are the values of the fourth components
multiplied by 9. Notice that because of the prior used, the classifier
prefers to make zero the first component and assign small values to
the adaptive coefficients of the fourth feature.

Finally we compare again the proposed method with an SVM
classifier. Its mean κ-index was 0.84. Its performance is 0.02 and
0.04 lower than the proposed classifier for p = 1 and p = 0.02,
respectively. Additionally we note that our proposed method does
not need parameter tunning.

6.2. Active Learning results

To evaluate the performance of the proposed AL methods, we utilize
learning curves. We start by training the classifier using Algorithm
1 on a reduced subset from the training set. The estimated adaptive
matrix W is then used to classify the test set, the κ-index is utilized
as accuracy measure in the learning curves. Next, the AL methods
proposed in Section 5 are used to select a new sample from the train-
ing set and the classifier updated.

The proposed AL methods in Sections 5 are noted MIN PRO
(minimum probability) and MAX ENTRO (maximum entropy).
They are compared to the following AL methods: margin sam-
pling (SVM-MS) [9], entropy-query-by-bagging (SVM-EQB) [11]
and multiclass-level uncertainty (SVM-MCLU) [10]. All of them
use SVM as classifier. The cost parameter is estimated by cross-
validation.

For the synthetic dataset, the experiment is repeated 10 times
with 10 different initial training sets. The starting training set has 6
samples (2 from each class) and the whole training and test sets have
1500 samples (500 from each class). We use p = 0.1.

Figure 2(a) shows the mean κ-index learning curves. The pro-
posed methods start at κ-index=0.91. Their learning rates are very
fast, reaching κ-index=1 after adding only 2 samples to the inital
training set. Both methods have the same behavior and perform bet-
ter than randomly selecting the new samples from the training set
and using the proposed classifier. The random approach does not
reach κ-index=1 even after 20 samples have been added. Methods
that use a SVM classifier start at κ-index=0.78, so they initially per-
form worse than our classification method. SVM-MCLU needs 5 to
reach κ-index= 1. SVM-EQB obtains a κ-index=1 when 11 samples
have been added. Furthermore SVM-MS does not achieve κ-index
=1 even when 20 samples have been added.

For the real dataset we use a test set with 1050 samples (150
from each class), the whole training set also contains 1050 samples
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Fig. 2. (a) Learning curves for synthetic dataset. (b) Learning curves
for real dataset.

(150 from each class). 10 initial training sets with 21 samples (3
from each class), are used. We use p = 0.02.

Figure 2(b) depicts the mean κ-index. The proposed methods
start at 0.72 and reach κ-index=0.98 when the training set has 150
samples. After that the corresponding learning curves become flat.
In this experiment MIN PRO outperforms MAX ENTRO, in par-
ticular notice the difference between both methods when we have
less 100 samples. Both methods outperform random sampling which
reaches κ-index=0.9 when 200 samples have been added.

The SVM classifiers utilize a Gaussian kernel whose parame-
ters are manually tunned to obtain the performance. They start al-
most 0.15 below the proposed methods. SVM-MS does not perform
well and its learning curve is similar to random sampling. SVM-
MCLU and SVM-EQB performs similarly when 150 samples have
been added and reach κ-index = 0.96. However SVM-EQB is better
than SVM-MCLU for less than 150 samples. None of these methods
outperformed the proposed ones.

7. CONCLUSIONS
In this work Bayesian modeling and inference have been used to
address Supervised Classification and AL problems. The lp-prior
models utilized on the adaptive coefficients have promoted sparsity
on the estimated adaptive parameters. Variational inference has been
used to estimate all the model parameters and connections with in-
dependent Gaussian priors established. The predictive distribution
of the classes has been calculated. This distribution has been used
to define two AL methods. In the experimental section the proposed
approach has been applied to Image Segmentation problems. Exper-
imental results have shown that the use of lp-priors allows the classi-
fier to select discriminative features and discard non-relevance com-
ponents. The proposed approach has shown higher accuracy than
SVM methods in both classification and AL problems.
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Abstract

We propose a novel design for light f eld image acquisition based on compressive sensing principles.

By placing a randomly coded mask at the aperture of a camera, incoherent measurements of the light

passing through different parts of the lens are encoded in the captured images. Each captured image

is a random linear combination of different angular views of a scene. The encoded images are then

used to recover the original light f eld image via a novel Bayesian reconstruction algorithm. Using the

principles of compressive sensing, we show that light f eld images with large number of angular views

can be recovered from only a few acquisitions. Moreover, the proposed acquisition and recovery method

provides light f eld images with high spatial resolution and signal-to-noise-ratio (SNR), and therefore

does not suffer from limitations common to existing light f eld camera designs. We present a prototype

camera design based on the proposed framework by modifying a regular digital camera. Finally, we

demonstrate the effectiveness of the proposed system using experimental results with both synthetic and

real images.
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I. INTRODUCTION

Recent advances in computational photography [2] provided effective solutions to a number of pho-

tographic problems, and also resulted in novel methods to acquire and process images. Novel camera

designs allow for the capturing of information of the scene which is not possible to obtain using traditional

cameras. This information can then be used for example to generate the three-dimensional scene geometry,

or for novel applications, such as digital refocusing or synthetic aperture [2].

Light f eld cameras are one of the most widely used class of computational cameras. The light f eld

expresses the radiance density function on the camera sensor, or the light energy of all rays in 3D space

passing through the camera. For instance, a four-dimensional (4D) discrete light f eld image x(i, k,m, n)

with spatial dimensions i, k and angular dimensions m, n contains images of a scene from a number of

angles, which provide information about the 3D structure of the scene. Each 2D image x(i, k,m0, n0)

with f xed angular coordinates m0, n0 is called an angular image. Traditional cameras integrate these

angular images (or equivalently, light rays) over their 2D aperture to obtain the image, which results in

the loss of valuable depth information about the scene. On the other hand, light f eld cameras capture

the angular data and provide means to work directly with the light-rays instead of pixels, allowing one

to produce many views of the scene, or perform many photographic tasks after the acquisition is made.

This provides a clear advantage for light f eld imaging over traditional photography and makes many

novel applications possible.

Compressive sensing (CS) [3], [4] has recently become very popular due to its interesting theoretical

nature and wide area of applications. The theory of compressive sensing dictates that a signal can be

recovered very accurately from a much smaller number of measurements than required by traditional

methods, provided that it is compressible (or sparse) in some transform basis, i.e., only a few basis

coeff cients contain the major part of the signal energy. Besides sparsity, compressive sensing makes use

of the incoherent measurement principle1, and has led to many interesting theoretical results and novel

applications (see, for instance, [5], [6]).

In this paper, we present a novel application of compressive sensing, namely, a novel framework to

acquire light f eld images. We show that light f eld acquisition can be formulated using a incoherent

measurement principle. We then demonstrate that light f eld images have a highly sparse nature, which,

in combination with incoherent measurements, can be exploited to reconstruct the light f eld images with

1Loosely speaking, incoherent measurements refer to non-adaptive and uncorrelated with the signal of interest. See, for

instance, [3], [5] for technical def nition and interpretations.
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much fewer image acquisitions than traditionally required. By exploiting this sparsity in light f eld images,

we develop a novel reconstruction algorithm that recovers the original images from few compressive

measurements with a very high degree of f delity.

In addition, we propose a novel camera design based on the developed acquisition framework. We build

our design on ideas from coded aperture imaging, computational photography and compressive sensing.

By exploiting the fact that different regions of the aperture of a camera correspond to images of the

scene from different angles, we incorporate a compressively coded mask placed at the aperture to obtain

incoherent measurements of the incident light f eld. These measurements are then decoded using the

proposed reconstruction algorithm to recover the original light f eld image. We exploit the highly sparse

nature of the light f eld images to obtain accurate reconstructions with a small number of measurements

compared to the high angular dimension of the light f eld image. The proposed camera design provides

images with high signal-to-noise ratio and does not suffer from the spatio-angular resolution trade-off in

most existing light f eld camera designs. Finally, we demonstrate the eff ciency of the proposed framework

with both synthetic experiments and real images captured by a prototype camera.

The paper is organized as follows. First we review related prior work in light f eld and coded aperture

imaging in Sec. II. In Sec. III we present the proposed acquisition method to obtain incoherent mea-

surements of the light f eld image. We model the acquisition system and the light f eld images using a

Bayesian framework, which is described in Sec. IV. The Bayesian inference procedure used to develop

the reconstruction algorithm is presented in Sec. V. We present a prototype light f eld camera based on

the proposed framework in Sec. VI. The effectiveness of the proposed system is demonstrated with both

synthetic and real light f eld images in Sec. VII and conclusions are drawn in Sec. VIII.

II. RELATED PRIOR WORK

A. Light Field Acquisition

Light f eld acquisition, based on the principles of integral photography, was f rst proposed over a

century ago [7], [8]. The same ideas appeared in the computer vision literature f rst as the plenoptic

camera [9], and then the potential of light f eld imaging was demonstrated in [10] and [11]. The original

design in [9] is implemented in a hand-held camera in [12], where a microlens (lenticular) array is placed

between the main lens and the camera sensor. A similar approach is proposed in [13], where instead of

using microlenses, a lens array is placed in front of the camera main lens. In both approaches, the light

f eld image is captured using one acquisition. The additional lens array is used to capture the angular

information, and reordering the captured image results in images of different views of the scene. Other
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proposed light f eld camera designs include multi-camera systems [14] and mask-based designs [15],

[16], which encode the angular information using frequency-multiplexing.

Many of these designs suffer from the spatio-angular resolution2 trade-off [13], that is, one cannot obtain

light f eld images with both high spatial- and high angular resolution. This problem is inherent in designs

with one recording sensor (or f lm) and where only one acquisition is made. If the captured light f eld

image has an angular resolution of Nh×Nv, and a spatial resolution of Ph×Pv, then Nh×Nv×Ph×Pv

can only be less than or equal to the number of pixels in the camera sensor. For instance, a typical

light f eld image captured using the plenoptic camera in [12] provides 14x14 angular images of size

approximately 300x300 in a 16 megapixel camera. Multi-camera systems [14] are not affected from the

spatio-angular resolution trade-off, but they are very costly to implement and cumbersome for practical

usage.

Recently, a programmable aperture camera is proposed [17], where a binary mask is used to code the

aperture. Angular images are multiplexed into single 2D images similarly to the principle of coded aperture

imaging. After multiple acquisitions are made, a linear estimation procedure is employed to recover the

full light f eld image. Although this design captures images with both high spatial and angular resolution,

the number of acquisitions are equal to the number of angular dimensions. Therefore, obtaining a light

f eld image with a high angular resolution is not practical.

During the development of this work, we became aware of [18], which appeared after [1], and

independently considered the application of compressive sensing to light f eld acquisition. The work

in [18] devises a linear recovery procedure from compressive measurements incorporating statistical

correlations among the angular images via their autocorrelation matrix. In contrast, in this work we

exploit the structure within the light f eld more explicitly using nonlinear relationships among the angular

images.

B. Coded Aperture Imaging

Coded aperture imaging is developed in order to collect more light in situations where a lens system

cannot be used, due to the measured wavelengths. Imaging systems with coded apertures are currently

widely used in astronomy and medicine. The technique is based on the principle of pinhole cameras, but

instead of only one pinhole which suffers from low SNR, a specially designed array of pinholes is used.

2The spatial and angular resolution here only refer to the number of digitally acquired elements such as pixels and images.

Certain optical effects such as diffraction due to aperture size are not included in this analysis.
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This array of pinholes provides images that are overlapping copies of the original scene, which can then

be decoded using computational algorithms to provide a sharp image. There is a vast literature on coded

aperture methods in astronomy and medicine (see, for example, [19], [20]).

Recent works considered coded aperture methods for developing novel image acquisition methods. In

[21], the aperture is coded in the time-domain to modify the exposure for motion deblurring. Spatially

modifying the aperture has been used for a range of applications: Levin et. al. [22] proposed utilizing an

aperture mask to reconstruct both the original image and the depth of the scene from a single snapshot.

A lensless imaging system is proposed in [23] that allows for the manipulation of the captured scene

in ways not possible by traditional cameras, such as splitting f eld of view. Nayar et. al. [24] used a

spatial light modulator to control the exposure per pixel, which can be used to obtain high-dynamic range

images. Other uses of coded apertures include super resolution [25] and range estimation [26].

Compressive sensing methods have also been applied in conjunction with coded apertures or com-

pressively coded blocking masks. Novel imaging methods have been proposed for spectral imaging [27],

dual-photography [28], and the design of structured light for recovering inhomogeneous participating

media [29]. Most recently, compressively coded aperture masks are used for single-image super-resolution

and shown to provide higher quality images than traditional coded apertures [30], [31].

A related approach to coded aperture imaging is wavefront coding [32], where the image is intentionally

defocused using phase plates so that the defocus is uniform throughout the image. The captured image

can then be deconvolved to obtain an image with an enlarged depth of f eld.

III. COMPRESSIVE SENSING OF LIGHT-FIELDS

In this section, we will show that light f eld image acquisition can be formulated within the compressive

sensing framework. We f rst show that light f eld images can be acquired by coding the camera aperture,

and then present the proposed compressive acquisition system. In the following, a 4D light f eld image

is denoted by x, which is the collection of N angular images xj , such that x = {xj}, j = 1, . . . N .

A. Light-Field Acquisition by Coded Apertures

A fundamental principle used in this work is that different regions of the aperture capture images of the

scene from different angles3 [17], [23], [34], [35]. Specif cally, the main camera lens can be interpreted

3This is a widely used model employing a geometric optics perspective. A more recent analysis of lightf elds based on wave

optics provide additional views on the transformation of light f elds through lenses [33].
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as an array of multiple virtual lenses (or cameras). This concept is illustrated in Fig. 1(a)-(c), where only

certain parts (white blocks) of the aperture are left open. As can be seen from Fig. 1(a)-(c), the acquired

images exhibit vertical and horizontal parallax. By separately opening one region of the aperture and

blocking light in the others, the complete light f eld with an angular dimension of N can be captured with

N exposures. However, obtaining the light f eld image in this fashion has two disadvantages: First, due to

the very small amount of light arriving to the sensor at each exposure, the captured angular images have

very low signal-to-noise ratios (SNR). Second, a large number of acquisitions have to be made in order

to obtain high angular resolution. The programmable aperture camera design in [17] addressed the f rst

problem by incorporating a multiplexing scheme, but the second problem remains a serious drawback.

We address both of these issues by using a randomly coded non-refractive mask in front of the

aperture. Each image acquired in this fashion is a random linear combination (and therefore an incoherent

measurement) of the angular images. An example image captured in this fashion is illustrated in Fig. 1(d),

where the amount of light passing through different regions of the aperture are randomly selected (shown

at the bottom of Fig. 1(d)). As shown in the following, using such a random mask overcomes both of

the problems described above.

The mathematical principle behind this idea is formulated as follows. Let us assume that the aperture

of the main camera lens is divided into N blocks, with N = Nh ×Nv where Nh and Nv represent the

number of horizontal and vertical divisions. During each acquisition i, each block j is assigned a weight

0 ≤ aij ≤ 1 which controls the amount of light passing through this block. Therefore, aij represents the

transmittance of the block j, i.e., it is the fraction of incident light that passes through the block. As

mentioned above, each block j captures an angular image xj in the light f eld image, and therefore the

acquired image yi at the ith acquisition can be represented as a linear combination of the N angular

images as

yi =

N
∑

j=1

aijxj , i = 1, . . . ,M, (1)

where we use the vector notation such that yi and xj are both P × 1 vectors, with P the number of

pixels in each image. Note that in a traditional camera, the acquired image is the average of all angular

images, i.e., aij = 1
N , since the aperture integrates all light rays coming from different directions.

After M acquisitions (M ≤ N ), the complete set of observed images {yi} can be expressed in
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(a) (b)

(c) (d)

Fig. 1. The basic principle of utilizing a coded aperture to obtain light f eld images. The angular images are shown in (a), (b)

and (c) when only corner blocks of the aperture are left open. Both horizontal and vertical parallax can be observed between

these images (horizontal and vertical dashed lines are shown to denote the vertical and horizontal parallax, respectively). Figure

(d) shows a captured image with the randomly coded aperture used in the proposed compressive sensing light f eld camera. All

images are from a synthetic light f eld image (see Sec. VII).
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with I the P × P identity matrix. The system in (2) is expressed in a more compact form as

y = Ax , (3)
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with
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⊗ I = Â⊗ I , (4)

where ⊗ is the Kronecker product. Taking also the acquisition noise into account, the f nal observation

model can be expressed as

y =
(

Â⊗ I
)

x+ n = Ax+ n , (5)

with n the PM × 1 noise vector.

B. Compressively Coded Apertures

If the linear measurement matrix A satisf es certain properties dictated by the theory of compressive

sensing [3], the light f eld acquisition system in (5) can be seen as a noisy incoherent measurement

system. A suff cient condition for a matrix to be a compressive sensing matrix is the restricted isometry

property (RIP) [3], [36], which is proven to hold with a very high probability for a general class of

matrices with their entries drawn from certain random probability distributions. For instance, if Â in (5)

is constructed by independently drawing its entries from a Gaussian distribution, then Â satisf es RIP

with an overwhelming probability.

It is straightforward to show that if Â is a valid compressive sensing matrix, then A is a valid

compressive sensing matrix as well. A simple proof is as follows. The mutual coherence of matrix Â is

given by [37]

µ
(

Â
)

= max
i6=j

|ÂT
i Âj|

‖ Âi ‖ ‖ Âj ‖
, (6)

where Âi is the ith column of Â. The mutual coherence characterizes the correlation between the columns

of matrix Â, and it is always positive for matrices with more columns than rows. It is shown that the

mutual coherence provides a bound for the RIP constants [38], and therefore RIP-based guarantees can

be applied using mutual coherence. Using properties of the Kronecker product, it can be seen that

ATA =
(

Â⊗ I
)T (

Â⊗ I
)

(7)

= ÂT Â⊗ I . (8)
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Thus, the inner products of columns of A have the exact same values as the columns of Â, and therefore

they have the same mutual incoherence. If the mutual coherence of Â is suff ciently small so as to satisfy

RIP [38], A also satisf es the restricted isometry property and it is therefore a valid compressive sensing

matrix.

Based on this, the acquisition system in (5) is an incoherent measurement system of angular images

xj , where each acquired image is a random linear combination of the angular images. The theory of

compressive sensing then dictates that if the unknown image x can be represented sparsely in some

transform domain, then it can be recovered with much fewer measurements than traditionally required

(M ≪ N ). Due to the nature of multi-view images and especially in the specif c case considered in this

work where the angular images are aligned on a small-baseline, the redundancy within the light f eld

images is very high. In fact, there are multiple sources of sparsity inherent in light f eld images, due to

correlations both within and in between the angular images (see Sec. IV-B for details). Therefore, light

f eld images can be very accurately reconstructed with very few acquisitions by utilizing the compressive

acquisition system in (5) and by exploiting their sparse nature within nonlinear reconstruction frameworks.

An important design issue is the selection of the measurement matrix A, which determines the

level of incoherence of the measurements and therefore the reconstruction performance. The design

of measurement matrices for compressive sensing is an active area of research, and many of the existing

designs can be used for the proposed aperture mask. In this work, we specif cally experimented with two

different types of measurement matrices, namely, uniform spherical and scrambled Hadamard ensembles

[39]. If fractional values of the block transmittances are permitted, a general class of matrices can

be utilized, with positivity of the matrix entries as the only constraint. In this case, uniform spherical

ensembles (with values ranging between 0 and 1) are very suitable as measurement matrices. If the mask

is limited to binary codes, scrambled Hadamard ensembles can be used to code the aperture. Moreover, the

measurement matrices can also be selected depending on specif c requirements of the optical systems, e.g.,

the expected amount of transmitted light can be varied by varying the mean value of the corresponding

probability distribution, or by choosing a specif c construction of the random measurement matrix.

It should be noted that since many (or possibly all) blocks are open in each exposure, each captured

image has a high SNR due to the small amount of loss of light. In fact, the measurement matrices can be

designed to optimize the amount of passing light while maintaining the random structure. Moreover, as

shown in the experimental results section, incorporating a nonlinear reconstruction mechanism provides

images with much higher SNRs than those of linear reconstruction methods, such as demultiplexing.

Finally, it should be noted that the coded aperture setup used in this work is a specif c application of
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the acquisition system in (5). The proposed compressive sensing formulation for light f eld acquisition

can be applied to a wider range of light f eld imaging applications. For instance, multiple camera or

multiple lens imaging systems such as camera arrays and stereo cameras can equally well incorporate

the incoherent measurement system in (5) and signif cantly reduce the number of acquisitions without

sacrif cing spatial or angular resolution.

IV. HIERARCHICAL BAYESIAN MODEL FOR RECONSTRUCTION

In order to reconstruct the angular images x1,x2, . . . ,xN from the incoherent measurements y1,y2, . . . ,yM

and A, both the observation process (5) and the unknown light f eld image x have to be modeled. For this

modeling, we use the hierarchical Bayesian framework by employing a conditional distribution p(y|x, β)

for the observation model in (5) and a prior distribution p(x|αTV,αc) on the unknown light f eld image

x. These distributions depend on the model parameters β, αTV and αc, which are called hyperparameters.

In the second stage of the hierarchical model we use additional prior distributions, called hyperpriors, to

model them. In the following subsections, we present the specif c forms of each of these distributions.

A. Observation (Noise) Model

The observation noise is assumed to be independent and Gaussian with zero mean and variance equal

to β−1, that is, using (5),

p(y|x, β) = N (y|Ax, β−1). (9)

B. Light-Field Image Model

The choice of randomly programmed coded apertures makes the exact/approximate recovery of the

angular images possible through the use of sparsity inherent in light f eld images. There are two sources

of sparsity within a light f eld image that can be exploited. The f rst one is sparsity within each angular

image. It is already well known that two-dimensional images can be very accurately represented by only

a small number of coeff cients of a sparsifying transform, such as wavelet transforms or total-variation

(TV) function applied on the image. In the case of light f eld images, there is another fundamental source

of sparsity, that is, the angular images are very closely related to each other. Specif cally, each angular

image can be accurately estimated from another one using dense warping (or correspondence) f elds, as

shown below.

Based on the above, we use the following factorized form of the prior distribution

p(x|αTV,αc) = p(x|αTV) p(x|αc)C(αTV, αc) , (10)
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where p(x|αTV) is the TV image prior employed on each angular image separately, p(x|αc) is the prior

that models the sparsity arising from the strong dependency between angular images and C(αTV, αc) is

a function of the unknown hyperparameters needed for the image prior model to integrate to one. In this

work, we assume C(αTV, αc) is constant.

Next we describe the specif c models used for each of the prior distributions in this factorization.

1) Total Variation Image Prior: The angular images xi are natural images, hence they are expected

to be mostly smooth except at a number of discontinuities (e.g., spatial edges). As spatial domain image

priors, we employ the total variation function which, due to its edge-preserving property, does not over-

penalize discontinuities in the image while imposing smoothness [40]. Specif cally, p(x|αTV) is expressed

as

p(x|αTV) ∝
N
∏

i=1

(

αi
TV

)P/2
exp

[

−
1

2
αi
TVTV(xi)

]

, (11)

with

TV(xi) =
∑

k

√

(∆h
k(x

i))2 + (∆v
k(x

i))2, (12)

where ∆h
k and ∆v

k correspond to, respectively, horizontal and vertical f rst order differences, at pixel k,

that is, ∆h
k(x

i) =
(

xi
)

k
−

(

xi
)

l(k)
and ∆v

k(x
i) =

(

xi
)

k
−

(

xi
)

a(k)
, where l(k) and a(k) denote the

nearest neighbors of pixel k, to the left and above, respectively.

2) Cross-image prior: As mentioned above, there is a high correlation between angular images in

the light f eld image. Specif cally, disregarding occlusions, each angular image xi can be very closely

approximated by another angular image xj using the dense warping f eld Mij between i and j, that is,

xi ≈ Mijxj . Therefore, the dependency of each angular image on another one is very strong and can

be exploited while modeling x. Based on this, we use the following cross-image prior between angular

images

p(x|αc) ∝ exp





N
∑

i=1

∑

j∈Ω(i)

−
αij
c

2
‖ xi −Mijxj ‖2Oij



 , (13)

= exp





N
∑

i=1

∑

j∈Ω(i)

−
αij
c

2

(

xi −Mijxj
)T

Oij
(

xi −Mijxj
)



 , (14)

where αij
c is the precision of the registration error, and Oij is a diagonal matrix with 0 and 1’s on the

diagonal to account for occlusions. In the occluded areas, the corresponding entries are set equal to zero,

and the remaining entries equal to 1. This usage of the weighted norm is equivalent to the assumption

that Oijxi ≈ OijMijxj , that is, the angular image xi can be closely approximated by the warped angular
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image Mijxj except at the occluded areas. Notice that the occluded areas (hence matrices Oij) can easily

be extracted if the warping f elds Mij are known.

In (14), Ω(i) def nes a neighborhood of xi, which consists of the angular images with closest viewpoints

to that of xi (a maximum of 8 images on a rectangular grid). In other words, angular images captured

by nearby regions in the aperture are treated as neighboring images. This neighborhood is imposed in

(14) for several reasons. First, angular images far apart in the aperture can be less accurately related

by dense warping f elds due to the 3D structure of the scene and increased size of the occluded areas.

Second, incorporating a cross-image prior between each pair of angular images in x largely increases

memory requirements and therefore it is computationally not eff cient during the reconstruction phase.

Finally, since xi is part of at least one neighborhood def ned on x, the warping constraint is propagated

to all angular images during the reconstruction algorithm.

The cross-image prior in (14) can be written in matrix-vector form as

p(x|αc) = zc exp(−
1

2
xT Πx), (15)

where zc is the partition function, and Π is a sparse NP ×NP matrix constructed from N ×N blocks

of size P × P . Its explicit form is given by

Π =























Π11 Π12 . . Π1N

Π21 Π22 . . Π2N

. . . . .

. . . . .

ΠN1 ΠN2 . . ΠNN























. (16)

The P × P block Πij can be obtained from (14) as

Πij =



























∑

s∈Ω(i) α
is
c Ois + αsi

c

(

Msi
)T

OsiMsi if i = j

−αij
c O

ij Mij − αji
c O

ij
(

Mji
)T if j 6= i, j ∈ Ω(i)

0 else

The form of the matrix Π makes the calculation of the partition function zc of the distribution in (15)

intractable. To overcome this diff culty, we approximate the partition function by a quadratic form, and

use the following as the cross-image prior

p(x|αc) = c





∏

i,j

(

αij
c

)P/2



 exp(−
1

2
xT Πx), (17)
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with c being a constant.

It is clear that incorporating the cross-image prior requires knowledge of the dense warping f elds Mij ,

which cannot be directly obtained from the compressive measurements. In this work, we overcome this

problem by acquiring two additional images from two opposite diagonal sides of the aperture. These

images exhibit full horizontal and vertical parallax, and a dense registration algorithm based on graph-

cuts [41] is employed to obtain the warping f eld from them. Due to the uniform partitioning of the

aperture, this warping f eld can be used to obtain approximate intermediate warping f elds between all

angular images. The disadvantage of this approach is that two additional exposures have to be taken

with small apertures (and therefore with low SNR), and combined with the approximate calculation

of the intermediate warping f elds, the constraints imposed in the cross-image prior might not fully

characterize the actual relations within the light f eld image. However, our experiments have shown that

this approach provides accurate enough warping f elds so that accurate reconstructions are obtained.

Moreover, estimating the precision variables αij
c along with the image compensates for the inaccuracies

in the warping f elds during reconstruction.

An alternative method is to use xi ≈ xj , which is similar to the approximation used in the compressive

video sensing algorithm in [42]. Although this method does not require knowledge of the warping f elds,

it is a very crude approximation and therefore does not provide reconstruction results comparable to the

ones reported here. However, it can be used with relatively high performance in the case of very densely

packed angular images, since the variation between two neighboring angular images will be very small.

It should be emphasized that the modeling in (14) is an approximation to the structure within the

light f eld image. It implicitly assumes that the scene is Lambertian, and that the occluded areas between

neighboring angular images are relatively small in size. Nevertheless, it provides a close approximation

to the light-f eld structure (especially with small-baseline angular images as considered in this paper),

and as shown in the experimental results section, it leads to a high reconstruction performance. Without

such an enforcement of the internal structure of the light-f eld (i.e., without the use of the cross-image

priors) and by only using separate image priors on the angular images, accurate reconstructions cannot be

obtained. On the other hand, the role of the intra-image priors is to individually impose smoothness on

the angular image estimates while preserving the sharp image features, and the advantages of employing

them are demonstrated in a number of works in the literature (see, e.g., [43]).
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C. Hyperpriors on the Hyperparameters

The form of the hyperprior distributions on the hyperparameters β, αTV and αc determines the ease

of calculation of the posterior distribution p(x, β,αTV,αc|y). Since the distributions p(y|x, β) and

p(x|αc) are Gaussian distributions, and we will approximate the distribution p(x|αTV) by a Gaussian

distribution (shown in Section V), we chose to utilize Gamma distributions for all hyperparameters, as

it is the conjugate prior for the inverse variance (precision) of the Gaussian distribution [44]. Thus, the

hyperprior distributions are given by

p(β) = Γ(β|ao, bo) =
(bo)a

o

Γ(ao)
βao−1 exp [−boβ] (18)

p(αi
TV) = Γ(αi

TV|a
o, bo), i = 1, . . . , N (19)

p(αij
c ) = Γ(αij

c |a
o, bo), i = 1, . . . , N, j ∈ Ω(i) (20)

with identical shape and inverse scale parameters ao and bo, respectively. These parameters are set equal

to small values (e.g., 10−5) to make the hyperpriors vague, which makes the estimation process depend

more on the observations than the prior knowledge. Note, however, that if some prior knowledge about the

hyperparameters is available (for example, approximate values of the noise variances in the observations),

this knowledge can easily be incorporated into the estimation procedure using appropriate values of the

shape and inverse scale parameters (see, for example, [43]).

V. RECONSTRUCTION ALGORITHM

Let us denote by Θ = {β,αTV,αc,x} the set of all unknowns. The Bayesian inference is based on

the posterior distribution

p(Θ | y) = p(x, β,αTV,αc|y) =
p(x, β,αTV,αc,y)

p(y)
, (21)

where p(β,αTV,αc,x,y) is given by

p(y,x, β,αTV ,αc) = p(y|x, β) p(x|αTV ,αc)p(β)p(αTV)p(αc). (22)

Unfortunately, the posterior p(Θ | y) is intractable (since p(y) is intractable), and therefore approxima-

tions are utilized. A common approximation is to represent the posterior by a delta function at its mode.

Then, using p(x|y,Ω) ∝ p(Θ,y), the unknowns can be found by

Θ = argmax
Θ

p(Θ | y) = argmax
Θ

p(Θ,y)
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Note that this formulation results in the well-known maximum a posteriori (MAP) estimate of Θ.

Specif cally, assuming uniform hyperpriors on the hyperparameters, the estimates found by this inference

procedure are equivalent to the solution of the following regularized inverse problem:

Θ = argmin
Θ



β ‖ y −Ax ‖2 +
N
∑

i=1

αi
TVTV(xi) +

N
∑

i=1

∑

j∈Ω(i)

αij
c ‖ xi −Mijxj ‖2Oij + log zα



 , (23)

where zα =
∏

i,j

(

αi
TV

)P/2
(

αij
c

)P/2
represents all (approximate) normalizing terms in p(x|αTV,αc).

Therefore, existing methods for TV-regularized optimization can also be employed for solving the recovery

problem (see, for example, [45], [46]). However, even with the MAP approximation, the calculation of

the hyperparameters is hard due to the use of the TV priors. Therefore, we resort to the majorization-

minimization method proposed in [43]. We omit the details of the derivations here, and provide only the

form of the updates of each unknown variable.

The estimate for the light f eld image x̂ can be calculated as

x̂ = Σx βA
Ty , (24)

Σ−1
x = diag

(

αi
TV(∆

h)
T
Wi

TV(∆
h) + αi

TV(∆
v)TWi

TV(∆
v)
)

+Π+ βATA , (25)

where the f rst matrix term in (25) is a NP × NP block diagonal matrix created by P × P blocks

αi
TV(∆

h)
t
Wi

TV(∆
h) + αi

TV(∆
v)tWi

TV(∆
v). The matrices Wi

TV are calculated by

Wi
TV = diag





1
√

(

wi
TV

)

k



 , k = 1, . . . P (26)

where
(

wi
TV

)

k
= (∆h

k(x̂
i))2 + (∆v

k(x̂
i))2. (27)

It is clear that the vector wi
TV (and hence the matrix Wi

TV) represents the local spatial activity in each

angular image xi using its total variation. The estimates of the hyperparameters are given by

β =
1
2NP + ao − 1

1
2 ‖ y −Ax ‖2 +bo

, (28)

αi
TV =

1
2P + ao − 1

∑

k

(

wi
TV

)

k
+ bo

, (29)

αij
c =

1
2P + ao − 1

1
2 ‖ xi −Mijxj ‖2

Oij +bo
. (30)

Finally, the algorithm iterates among estimating the light f eld image using (24), the spatial adaptivity

vectors using (27), and the hyperparameters using (28)-(30) until convergence.
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VI. PROTOTYPE LIGHT FIELD CAMERA

We have assembled a prototype of the proposed system as shown in Fig. 2(a). A binary LCD array

(Electronic Assembly DOGL128S-6), shown in Fig. 2(b), is mounted to the lens of a digital camera.

The LCD array consists of 128 × 64 pixels and we used 8 × 8 pixel segments as the aperture blocks.

To avoid excessive vignetting, we only use the central 56× 40 pixel part of the LCD array as the mask;

the remaining part outside this area is covered with black carton to block light. Note that since the LCD

array is binary, uniform measurement matrices cannot be realized with this mask, which require LCDs

that can produce gray-scale values.

Both the LCD array and the digital camera are controlled by a computer. A specif cally designed

computer program successively changes the LCD image and makes an acquisition using the camera. The

delay between the mask display and exposure is negligible, hence the total acquisition time approximately

consists of the exposure times of each image.

Since the LCD array is not designed for this purpose, there are multiple sources of imperfections in

the acquisitions4. For instance, the diffraction due to pixel boundaries in the LCD causes some artifacts

in the acquired images. More importantly, a black pixel in the LCD array does not completely block

light passing through it, which changes the effective measurement matrix. Similarly, a white pixel does

not completely pass the light. Also, the pixels in the LCD array have different responses, which cause

inhomogeneity within the images. To compensate for these effects, we have acquired images of white

backgrounds and color calibration boards, and used these acquisitions to approximately calculate the

pixel responses. These pixel responses are then used to calculate the actual measurement mask. Although

this calibration signif cantly reduced artifacts, this prototype system can be considerably improved with

specially designed hardware. For instance, [34] recently reported that Liquid Crystal on Silicon devices are

more suitable for aperture coding than LCDs. Our incoherent acquisition and reconstruction framework

can be directly applied to this system as well.

VII. EXPERIMENTAL RESULTS

A. Synthetic Experiments

For synthetic experiments, a 4D light f eld image is constructed using the Blender software [47]. We

constructed a toy 3D scene with three objects at different depths, and the camera is moved vertically

4Notice also that the LCD array is not placed right at the aperture plane, but in front of the lens, as the former requires

extensive modif cation of the main lens. This also introduces some artifacts in the angular images.
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(a) (b)

Fig. 2. (a) Our prototype camera where an LCD array is mounted to the lens of a digital camera, (b) the LCD array showing

an example mask combination, and (c) zoomed area marked in (b).

and horizontally to acquire angular images that compose the 4D light f eld image with both horizontal

and vertical parallax. One angular image from this set is shown Fig. 4(a). The light f eld image has

a spatial resolution of 200 × 150 and an angular resolution of 5 × 7. The warping f elds between the

angular images are assumed to be known to test the best-case reconstruction performance. Our current

(unoptimized) MATLAB implementation takes about 10 minutes on a 3GHz Core2 Duo CPU to obtain

the f nal reconstructions.

We experimented with two different measurement matrices A: 1) The uniform spherical ensemble,

where the entries of A are drawn from a uniform distribution and are between 0 and 1, and 2) scrambled

Hadamard matrices, where a random subset of rows of a S-matrix [48] is chosen to generate A. In

both cases, the expected mean of the entries in one row of A is 0.5, as the mean of the distribution is

0.5 in the f rst case and due to the property of the Hadamard matrices in the second case. Therefore,

the expected amount of light passing through the aperture in each acquisition is half of the maximum

possible with both measurement matrices. Finally, we add zero-mean Gaussian noise to the measurements

to obtain the f nal observations. We tested the reconstruction performance at two different noise levels

with corresponding variances 0.001 and 1, where the intensity interval of the images is [0, 255].

We vary the number of acquired images M from 3 to 35 and apply the proposed reconstruction

algorithm using the incoherent observations to obtain estimates of the original light f eld image. The

relative reconstruction error is calculated according to ‖ x̂ − x ‖22 / ‖ x ‖22, where x and x̂ are the



18

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
10

−5

10
−4

10
−3

10
−2

Number of Measurements

R
el

at
iv

e 
R

ec
on

st
ru

ct
io

n 
E

rr
or

 

 

σ2 = 10−3

σ2 = 1

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Measurements

R
el

at
iv

e 
R

ec
on

st
ru

ct
io

n 
E

rr
or

 

 

σ2 = 10−3

σ2 = 1

(a) (b)

Fig. 3. Number of measurements vs relative reconstruction error (averaged over 20 runs) at two different noise levels (a) with

uniform and (b) with scrambled Hadamard measurement matrices.

original and estimated images, respectively.

Average reconstruction errors over 20 runs are shown in Fig. 3. Multiple remarks can be made from this

f gure: First, using uniform ensembles as measurement matrices generally result in lower reconstruction

errors than in the case of scrambled Hadamard matrices. This is an expected result, as the uniform

measurement matrices collect information from all angular images at each acquisition whereas when

Hadamard matrices are used, only some of the acquired images contain information about a particular

angular image. Therefore, more acquisitions are generally required to achieve the same reconstruction

error.

Second, note that when the number of acquisitions is very low, e.g., 3-7, in some cases the algorithm

is unable to provide successful restorations with Hadamard measurements, whereas we can always obtain

some estimate of the light f eld image with the uniform measurements. Note, however, that although

uniform measurements are clearly superior to Hadamard measurements with a low number of measure-

ments, they achieve almost the same reconstruction performance when the number of measurements is

higher than 11. This is an important result as the practical application of Hadamard matrices is much

easier than employing masks with uniform measurements.

Note that the difference in the reconstruction errors between low- and high-noise cases is not signif cant.

It is clear that the reconstruction method is very successful in reconstructing the light f eld image when

heavy noise is present. This is especially evident in the reconstruction error at full measurement (M = 35);
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the error level is around the same order as when M ≥ 9 in the uniform measurement case and M ≥ 11

in the Hadamard measurement case, and the visual f delity of the reconstructed light f eld remains nearly

unchanged.

Overall, it is clear that very accurate reconstructions can be obtained using few measurements compared

to the angular dimension of the light f eld image. In the low-noise case, average reconstruction errors of

around 6 × 10−4 and 3 × 10−4 from 9 and 15 measurements, respectively, are obtained with uniform

measurement matrices. With scrambled Hadamard matrices, same error levels are achieved with about

11 and 17 measurements.

For visual quality assessment, examples of reconstructed images using 9, 13 and 17 measurements are

shown in Fig. 4 for uniform and in Fig. 5 for Hadamard matrices, respectively. Note that in both cases,

the reconstructed images are very close to the original angular image; the image details and structure

of the scene are accurately reconstructed. The visual quality of the reconstructions can also be observed

from Fig. 6, where nine angular images from the light f eld reconstructed from 13 measurements with

uniform matrices are shown.

Light f eld images have a number of applications in image based rendering, with typical ones being

novel view synthesis and refocusing. To assess the visual quality of the reconstructed images in such

a postprocessing application, we present digital refocusing results in Fig. 7. Notice that although only

the reconstructed 35 images are used to obtain the refocused images, the results are of high visual

quality without ghosting artifacts. Moreover, the refocused images using the reconstructions are nearly

indistinguishable from the refocused images rendered using the original light f eld image.

In summary, it can be observed that using the proposed design the number of acquisitions can be

signif cantly reduced (by a factor between 4 and 6). Furthermore, the reduction in the number of

acquisitions is expected to be much higher with larger light f eld images, due to the increased level

of sparsity.

B. Experiments with Real Images

Using the camera described in Section VI, we have acquired a real light f eld image of a representative

scene. The acquired light f eld has angular dimensions 5 × 7, and each acquired image is around 10

megapixels (3888 × 2592). To reduce the computational load for demonstration purposes, we cropped

and downsampled them to 350 × 230 images. We have acquired a full set of measurements (total of 35

exposures) with Hadamard measurements to compare the compressive sensing reconstruction with linear

reconstruction (such as the method in [17]). The warping f elds are obtained by acquiring the single-block
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images from the opposite ends of the mask, and using the procedure described in Section IV-B2.

Three of the 35 acquired images are shown in Fig. 8(a). Three angular images reconstructed using linear

Hadamard inversion from the full set of 35 images are shown in Fig. 8(b). The amplif ed noise level is

clearly visible, which is not surprising since no postprocessing (such as denoising) is applied to handle the

noise during the acquisition and multiplexing phase. Figures 8(c)-(e) show corresponding reconstructed

angular images using the proposed scheme with 10, 15 and 20 measurements, respectively. The central

parts of the images are shown in Fig. 9 for a closer inspection. Although much fewer acquisitions are used,

the quality of the reconstructed images is higher than using linear reconstruction with the full dataset.

It is clear that the proposed method successfully controls the trade-off between noise amplif cation and

smoothness of the solution, thus resulting in noise-free images with sharp edges, while correcting the

vignetting artifacts and nonuniform lighting to some extent. Notice that no additional postprocessing

is applied to the f nal images to demonstrate the effectiveness of the reconstruction algorithm; the

remaining illumination differences between the angular images can be corrected by employing additional

postprocessing algorithms.

VIII. CONCLUSIONS

In this paper, we proposed a novel application of compressive sensing to a new camera design to acquire

4D light f eld images. We have shown that incoherent measurements of angular images can be collected

by using a randomly coded mask placed at the aperture of a traditional camera. These measurements are

then used to reconstruct the original light f eld image. We developed a reconstruction algorithm which

exploits the high degree of information redundancy (and hence, sparsity) inherent in the light f eld images,

and have shown that the complete light f eld image can be reconstructed using only a few acquisitions.

Moreover, the captured images have high signal-to-noise ratios due to small amount of loss of light. The

proposed design provides high spatial and angular resolution light f eld images, and does not suffer from

limitations of many existing light f eld imaging systems. Finally, the proposed design can be implemented

by simple modif cations of traditional cameras. Experimental results with both synthetic and real image

sets show the effectiveness and potential of this approach for light f eld acquisition.

The proposed design, although powerful in terms of providing both high spatial- and angular-resolution,

also has several limitations. Most importantly, it requires the scene and the camera to be static as a number

of acquisitions have to be made. Any object or camera motion will necessarily introduce signif cant

artifacts in the reconstructed images. In addition, our current implementation of the reconstruction method

requires simultaneous processing of all angular images and the observations. Although we observed that
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 4. Reconstruction examples with uniform matrices. (a) Original angular image, reconstructed images from (b,e) 9

measurements, (c,f) 13 measurements, and (d,g) 17 measurements. The middle row corresponds to the low noise case, and

the bottom row corresponds to the high noise case.

the convergence is generally very fast, this processing might lead to high computational load if the size

of the light f eld is large. Although not explored in this paper, this problem can potentially be addressed

by processing images in patches and by parallel processing.
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ABSTRACT
In this paper we deal with the problem of acquiring a scene
light field using a programmable coded aperture camera
when the angular observations are out-of-focus. We describe
a portable programmable coded aperture prototype that can
be attached to any DSLR camera lens and propose a blind de-
convolution method to deblur light fields. The performance
of the proposed method is evaluated on synthetic and real
images.

Index Terms— Computational photography, light field,
blurred observations, programmable coded aperture camera.

1. INTRODUCTION

Moving from analog to digital has been a major advance in
the world of photography. Besides the cost reduction, digital
images can be edited and post-processed in countless ways
by using a computer. In computational photography (CP), the
postprocessing does most of the work, considering the image
captured by the sensor as an intermediate data [1].

In the present work, we will use CP techniques to capture
the light field of a scene. In recent years a number of light-
field cameras have been developed. Plenoptic cameras, like
Lytro [2] or Raytrix [3], introduce an array of microlenses in
front of the sensor. This allows the sensor to record different
angular views of the scene. Depending on the number of mi-
crolenses used, the resolution of the captured images can be
greatly reduced. That is, there is a trade-off between angular
resolution and spatial resolution of the light field; the more
angular views are generated, the smaller the spatial resolution
of each view.

To deal with this problem, systems using a coded aperture
have been designed. In coded aperture acquisition systems, a

This research was supported by the Spanish Ministry of Economy and
Competitiveness under project TIN2010-15137, the European Regional De-
velopment Fund (FEDER), and in part by the US Department of Energy grat
DE-NA0000457.

Work in collaboration with the CP team members at IAA: J. Rodrı́guez
Gómez, I. Bustamante Dı́az, G. P. Candini, L. Costillo Iciarra, J. M. Jerónimo
Zafra and M. R. Sanz Mesa.

pattern mask is introduced to modify the lens aperture and to
capture images that, once processed, allow to reconstruct the
light field. Coded aperture began to be used for light field ac-
quisition only a few years ago. In [4], theN angular views are
obtained from N scrambled images captured with different
masks and then solving a determined system of linear equa-
tions. The masks are loaded into a programmable LCD that
is placed into the lens. Babacan et al. [5] reduce the number
of observations required using Compressive Sensing theory
in a system that uses an LCD to place the masks in front of
the lens. The design by Nagahara [6] uses Liquid Crystal on
Silicon (LCoS) to create the masks. This reduces the loss of
light and improves the brightness and contrast but makes the
lens bulkier than the LCD design.

None of the proposed models has dealt with the problem
of defocused light fields. In spite of the small size of the indi-
vidual blocks composing the coded aperture, the depth of field
is limited and objects outside it will appear defocused in the
reconstructed views. In this paper, we deal with the problem
of blurred light field captured by the new coded aperture LCD
based prototype, described in section 2, based on the design
in [5], that can be mounted as a filter on any DSLR camera.
To recover the light field from a set of blurred multiplexed
observations, in section 3, we propose a new blind light field
deconvolution method that adapts the model in [4] and the
blind deconvolution method in [7] to our problem. The pro-
posed method is evaluated on synthetic and real images and
its performance is analyzed in section 4. Finally, section 5
concludes the paper.

2. PROTOTYPE DESCRIPTION

The coded aperture LCD based prototype we have con-
structed, see Fig. 1, can be mounted in front of the lens
and has a small battery and controls so that it is portable and
can be used autonomously. It uses an LCD array (Electronic
Assembly DOGXL160S-7) consisting of 160 × 104 pixels
of 0.418 × 0.397 mm with an active area of 70.0 mm ×
43.5 mm. In the prototype we have used a central part of 42



Fig. 1. (a) Mechanical interface, electronic control board and
LCD, mounted in the prototype. It is equipped on a Nikon
D5000 camera with a Nikkor 50mm f/1.8 lens. (b) The LCD
showing one of the coded apertures.

mm in diameter and baffled the remaining area of the LCD
to minimize the stray light. A high level software has been
developed in the Labview environment that automatically
detects the connection of the prototype to the computer USB
port. It also allows to create masks, load them from disk,
store them locally or in the prototype, set the LCD contrast,
and display a given mask stored in the prototype EEPROM.
Also, a low level interface has been programmed in Matlab so
that the prototype and the camera can be directly controlled
from a PC. This simplifies the capture of pictures in batch
mode.

The LCD allows four different transmission levels for
each pixels: transparent, opaque and two intermediate gray
levels. The transmission of the LCD has been measured in
the visible spectral range, from 400 nm to 800 nm, in the four
states (see Fig. 2) and the contrast of the LCD has been set to
95% in order to maximize the transmission when the pixel is
“transparent” and to provide a good separation between the 2
gray states. Unfortunately, the transmission in the “opaque”
state is not negligible, and the images have to be properly
corrected. Furthermore, the images captured by the prototype
suffer from a set of aberrations. Firstly, the LCD spectral
transmittance is not uniform and, also, it is not the same at all
spatial locations. Secondly, the location of the prototype with
respect to the lens creates a mechanical vignetting effect that
heavily affects apertures with diameter smaller than half the
LCD size.

To ameliorate these problems, we concentrate on a small
30×30 pixels central part of the LCD where the transmittance
of the LCD can be considered as spatially invariant. Also, we
take into account only the central part of the images where no
vignetting is present. This allows us to simplify the prepro-
cessing of the captured images that, in fact, reduces to camera
calibration. We only need to perform white balance using a
white surface and take two calibration pictures of this surface;
one with the LCD set to opaque and another to transparent.
These images will allow us to recover the original luminance
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Fig. 2. LCD transmittance for the different wavelengths with
a contrast of 95%.

Fig. 3. Set of coded apertures used in the experiments. White
means transparent and black corresponds to opaque.

of the scene despite the lower transmittance of the LCD.

3. IMAGE MODEL AND RECONSTRUCTION

By setting different blocks of the LCD to opaque or transpar-
ent we can capture different angular views of the same scene
[4, 5, 6]. Opening only one block at a time allows to capture
the light field sequentially by acquiring N angular views in
N exposures. However, better results are obtained [4] using a
multiplexed strategy where several blocks are set to transpar-
ent at the same time using a so called coded aperture.

To recover N views of the light field, we consider cap-
turing M different pictures with coded apertures like the
ones shown in Fig. 3. Then, each acquired image, yi,
i = 1, . . . ,M , is modeled as a linear combination of the
different N , possibly blurred, angular views, as

yi =
N∑
j=1

aijHxj + ri, i = 1, . . . ,M, (1)

where xj is the j-th original (unknown) angular view of size
P = Px × Py pixels, represented as a column vector. We
assume that all the angular views share the same blur, H, that
is a P × P blurring matrix obtained from the unknown blur
kernel h of support K = Kx × Ky , and ri is the capture
noise. The aij coefficients indicate the contribution of the
light field angular view j to picture i. Notice that, if the LCD
behaved ideally, those coefficients would be 0 if the corre-
sponding block in the LCD is set to opaque, or 1 if it is set to



transparent. Unfortunately this is not the case on real LCDs
but the values for the aij coefficients, with values between 0
and 1, can be estimated from the calibration pictures.

Our goal is to estimate the light field angular views xi, i =
1, . . . , N , and the blurring kernel, h, from the set of M = N
multiplexed observed images yi, i = 1, . . . , N .

We first recover each pixel k of the different blurred angu-
lar views, represented by zj , j = 1, . . . , N , from the acquired
images. Since the observations yj , j = 1, . . . , N , are noisy
we utilize y′j , the denoised version of yj obtained by apply-
ing the BM3D [8] denoising method to the observed images
before recovering the different blurred angular views. Then
we obtain zj by solving the determined linear systems

y′(k) = Az(k), k = 1, . . . , P, (2)

where the matrix A is the N ×N system matrix formed from
the coefficients aij , where each row of the matrix contains the
coefficients of a coded aperture and z(k) and y′(k) are col-
umn vectors formed by stacking the pixels at position k of the
set of images {z1, . . . , zN} and {y′1, . . . ,y′N}, respectively.

According to our model each blurred angular view, zj ,
j = 1, . . . , N , can be mathematically expressed by

zj = Hxj + nj , (3)

where the vector nj represents the noise, assumed to be Gaus-
sian of variance β−1. Its precision parameter, β, is the same
for all the images because, as they are taken under identical
conditions, they will have the same noise properties. Notice
that nj was introduced since zj of Eq. (2) will very likely be
noisy.

We apply the variational Bayesian approach in a blind de-
convolution procedure [7] to recover the blurring kernel h and
the restored angular views xj . From Eq. (3), we write the
degradation model as

p(z|x,h, β) =

N∏
j=1

p(zj |xj ,h, β)

∝ βP/2 exp

−β
2

N∑
j=1

‖ zj −Hxj ‖2
 , (4)

where z and x are column vectors formed by stacking verti-
cally the vectors zj and xj , j = 1, . . . , N , respectively.

We use the general TV function as image prior for each
view and, hence, we define

p(x) =
N∏
j=1

p(xj |α) ∝ exp

−α N∑
j=1

TV(xj)

 , (5)

where

TV(xj) =
P∑

k=1

√
(∆h(xj)(k))2 + (∆v(xj)(k))2, (6)

with the operators ∆h(xj)(k) and ∆v(xj)(k) corresponding
to the horizontal and vertical first order differences at pixel k,
respectively.

To estimate all unknowns Θ = {x1, . . . ,xN ,h} the vari-
ational Bayesian approach is used. In this approach, the pos-
terior p(Θ|z) is approximated by another distribution, q(Θ),
by minimizing the Kulback-Leibler (KL) divergence between
both distributions [9]. A convenient factorization of q(Θ) =
q(x1) . . . q(xN )q(h), named mean field approximation [9], is
used in order to get a tractable minimization problem.

3.1. Angular view estimation

Due to use of TV prior, for estimating the distribution of
each angular view, q(xj), it is necessary to carry out a
majorization-minimization procedure, as described in [7].
Thus, q(xj) is estimated as a Gaussian distribution with
mean x̄j and covariance matrix Σxj given by

x̄j = ΣxjβH̄
T zj (7)

Σxj
= (βH̄T H̄+α((∆h)TWj∆

h+(∆v)TWj∆
v))−1 (8)

where H̄ is the convolution matrix obtained from the cur-
rent estimation of h, h̄, and Wj = diag((uj(k))−1/2), k =
1, . . . , P , with uj(k) a set of additional parameters introduced
in the majorization procedure and calculated [7] as

uj(k) = (∆h(xj)(k))2 + (∆v(xj)(k))2. (9)

Notice that Σxj
in Eq. (8) is a P × P matrix and therefore its

computation is extremely expensive. To alleviate this prob-
lem, each restored view, x̄j , is estimated by solving, using
conjugate gradient, the linear equation system

(βH̄T H̄+α((∆h)TWj∆
h + (∆v)TWj∆

v))xj = βH̄T zj .
(10)

3.2. Blur estimation

Note that Eq. (3) can also be written as zj = Xjh + nj by
forming the matrix Xj similarly to H. To estimate the blur,
we follow the approximation proposed in [10] where h is as-
sumed to have a degenerate distribution q(h) and the value
where the distribution is degenerate is calculated as the PSF
solution of

ĥ = arg min
h

E[β
N∑
i=1

‖zi −Hxi‖2]. (11)

Let us approximate Wj in Eq. (8), following [7], by
Wj ≈ mean(diag(Wj)IP×P , and then, following [10],
utilize

Σxj
≈ sxj

IP×P , (12)



with sxj = (β
∑K

k=1 h(k)2 + 4αmean(diag(Wj)))
−1. Let

C−1h =
N∑
j=1

(X̄T
j X̄j + PsxjIK×K), (13)

with X̄j the convolution matrix obtained from the current es-
timation of xj , x̄j . Then, ĥ can be approximated as the solu-
tion of the restricted quadratic program problem

ĥ = arg min
h

hTbh +
1

2
hTC−1h h,

subject to
K∑

k=1

h(k) = 1,

h(k) ≥ 0, k = 1, . . . ,K. (14)

with

bh = −
N∑
j=1

X̄T
j z̄j . (15)

In summary, to recover the light field from the degraded
observations we proceeded as follows. First, we denoise
the observed images by applying the BM3D [8] denoising
method and then recover the different blurred angular views
from Eq. (2). Secondly, we estimate the blur from the lu-
minance band of the blurred views by alternatively iterating
between Eqs. (10) and (14). The rationale behind this process
is that the blur contaminating the R, G, and B bands is the
same since these bands were captured under the same condi-
tions and so we can speed up the estimation process by using
only the luminance band. Finally, once the blur is obtained,
we estimate each one of the RGB bands of the restored an-
gular views by applying the non-blind restoration procedure
described by Eq. (10) with the already estimated blur.

4. EXPERIMENTAL RESULTS

We have evaluated the performance of the proposed method
with synthetic and real images. In the synthetic experiment,
a scene was created with Blender1 and a set of 9 different
angular views were taken by placing a pinhole camera at 9
coplanar positions in the space. Those positions formed a
3 × 3 grid in a plane perpendicular to the Z scene axis. The
angular view at position 5 (center) of the grid is displayed in
Fig. 4a.

We then generated the set of 9 coded apertures depicted
in Fig. 3 by selecting random 3 × 3 binary masks that have
5 open blocks. Each single block was in total open the same
number of times in the 9 coded apertures set. The observed
set of images was obtained by simulating the capture process
in Eq. (1), that is, first blurring each view with a Gaussian blur
with variance 1 and then multiplexing the blurred views using
the set of coded apertures shown in Fig. 3. Finally, Gaussian

1Available at http://www.blender.org/

Table 1. Mean PSNR and SSIM for the R,G,B bands and the
mean of the RGB images for the synthetic experiment.

R G B mean (RGB)
PSNR 37.10 35.15 34.35 35.53
SSIM 0.9888 0.9868 0.9873 0.9876

(a) (b) (c)

Fig. 4. Synthetic experiment with Gaussian blur (σ = 1): (a)
Original angular view 5, (b) Simulated captured image with
mask 5 in Fig. 3, (c) reconstructed angular view 5.

noise with standard deviation 0.001 was added to obtain the
observed images, whose observation number 5 is depicted in
Fig. 4b. Note that the letters in “Hola” that are at the focal
plane are only blurred (since they will be at the same position
in all the views) while the cone, that is far from the focal
plane, represents the mixture of the different blurred views.

To estimate the original angular views from the observed
images we apply the reconstruction algorithm described in the
previous section. The initial blur h0 is set to a Gaussian with
variance 0.16 and support Kx = Ky = 21, hence K = 441,
that is a PSF close to a delta function. The precision param-
eter β in Eq. (3) is chosen such that the value of Psxk

in
Eq. (13) is a fraction (0.1) of the maximum value of XtX
in the first iteration of the algorithm. The rationale behind
this is that the value of Psxk

IK×K , that represents the uncer-
tainty of the minimum squares solution, tends to be smaller
as we are more certain on the value of the image so, in the
first iterations, we are forcing some uncertainty in the blur es-
timation process that will be reduced as the image is better
restored. The image prior parameter α is chosen as a fraction
of the value of β. We chose α = 0.001β to preserve most
of the original data while smoothing out the restoration arti-
facts and the noise. The estimated angular view 5 is presented
in Fig. 4d. Note that the blur has been successfully removed
while preserving the structure in the cone. Numerical results,
shown in Table 1, show that the reconstructed images have a
very high quality both in trems of PSNR and SSIM measures.

We also tested the proposed method on real images. The
set of images was taken with the prototype using the set of
coded apertures depicted in Fig. 3. To minimize the effects of
the spatially variant degradations produced by the LCD, we
concentrated on a square of 30 × 30 pixels in the center of
the LCD which was divided in a 3× 3 set of square apertures
each of size 10× 10 pixels. This means that the area of each
single block is 16.6 mm2. Also, we used only the 512 × 512
pixel central part of the images to reduce the spatially variant



effects of the lens and prevent vignetting from appearing.
The scene, as seen in Fig. 5, was set at 800 mm from the

camera, the distance from the pin to the background is 40 mm,
and, when 5 blocks are open, the depth of field is 45.1 mm.

We took pictures focusing at 50 mm from the dice (see
Figs. 5a and 5b). For each RGB band, the system matrix
A was obtained by setting its coefficients equal to the mean
value of the calibration pictures with the LCD set to opaque or
to transparent, depending on whether the corresponding block
is opaque or transparent. This allows us to recover the blurred
angular views without any additional preprocessing.

We applied BM3D to the observed images using a vari-
ance calculated from a flat region of the image. Then we re-
covered the different blurred angular views from Eq. (2) re-
sulting in the images depicted in Figs. 5c and 5d. Finally,
the deconvolution algorithm was applied to the blurred an-
gular views following the procedure described for synthetic
images, obtaining the restored views, two of which are shown
in Figs. 5e and 5f. As it can be observed, the restored views
are sharp, making clearly visible the lines in the background
or the details in the thread on the screw, but a bit noisy. This
is due to noise amplification in the demultiplexing stage.

5. CONCLUSIONS

We have presented a new programmable aperture camera pro-
totype that allows to capture light fields. We have addressed
the problem of recovering blurred light fields that may occur
due to the limited depth of field of the cameras. We have de-
veloped a method for deconvolving those blurred light fields
and tested it on both synthetic and real images.
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ABSTRACT
Every day, a huge amount of video data is generated for differ-
ent purposes and applications. Fast and accurate algorithms
for efficient video search and retrieval are therefore essential.
The interesting properties of sparse representation and the
new sampling theory named Compressive Sensing (CS) con-
stitute the core of the new approach to video representation
and retrieval we are presenting in this paper. Once the rep-
resentation (where sparsity is expected) has been chosen and
the observations have been taken, the proposed approach uti-
lizes Bayesian modeling and inference to tackle the retrieval
problem. In order to speed up the inference process the use
of Principal Components Analysis (PCA) to provide an alter-
native representation of the frames is analyzed. Experimen-
tal results validate the proposed approach whose robustness
against noise is also examined.

Index Terms— Video retrieval, compressive sensing,
Bayesian modeling, Bayesian inference

1. INTRODUCTION

A large amount of video data is generated every day. Search-
ing through huge video databases is an important problem
in many applications. For instance, individuals may want to
search for video content they are interested in from YouTube
videos, media companies may want to locate video content
that violates their copyright protection (fingerprint) and, se-
curity systems may want to detect suspicious events among

This work was supported in part by the “ Comisión Nacional de Cien-
cia y Tecnologı́a ” under contract TIN2010-15137 and the Spanish research
programme Consolider Ingenio 2010: MIPRCV (CSD2007-00018).

surveillance videos. Fast and accurate algorithms in all these
cases are needed for efficient video retrieval.

Due to the different types of query applications (such as
query by example, query by video clip, query by semantics,
etc), various image/video features are being employed by the
different algorithms. For example, the color histogram of
video frames is used in [1] , both color and motion features
are used in [2, 3, 4, 5, 6, 7], visual features and semantic labels
are used in [8], and time interval statistics are used in [9]. A
survey of this topic can be found in [10]. In [11], the authors
compared the use of local and global features.

With the former robust results are obtained with high
computational cost, while with the latter computational ef-
ficiency is gained at the expense of reduced performance.

Some algorithms also use indexing or hashing to improve
search efficiency. For example, in [8] geometric hashing is
used to build database indices, while in [4, 5, 7, 9] indexing
tree structures are used. In [12], a kd-tree based space par-
titioning indexing scheme is applied to the video trajectory
representations by using scaling and PCA. In [13] several ran-
dom projections are used to project scaled videos on different
search spaces, and then kd-trees on each space are used.

As described in [14] sparsity has emerged in the last
decade as one of the important concepts in a wide range of
signal processing applications [15, 16]. This interest has been
even more elevated by the compressive sensing (CS) theory
[17, 18, 19]. Compressive sensing is a new paradigm for sig-
nal acquisition where a signal is recovered from a low num-
ber of measurement without satisfying the Nyquist rate. CS
is based on two main principles. First, the signal of interest
can be represented with a sparse set of coefficients in a basis



(BS).The second important property is the incoherence be-
tween this representation basis and the measurement basis. It
is shown by a large body of work that CS can be applied with
great success to many application dramatically reducing the
number of measurements needed for signal reconstruction.

Originally, most of the works in the CS and sparse rep-
resentation literature focused on accurate representation and
recovery of a signal in a given dictionary or basis. More re-
cent works, however, exploit the discriminative properties of
sparse recovery for classification (see, for instance, [20, 21]).
The general principle behind sparse recovery for classification
is that the test signals can be represented as linear combina-
tions of the samples in the dictionary. Generally, this linear
combination will include only a few coefficients, thus choos-
ing the most relevant samples in the dictionary.

In this paper, we exploit the same discriminative nature of
sparse representation for the video retrieval problem. Specifi-
cally, our goal is to find the sparsest representation of an input
query video clip from the samples of a video database. We
first construct the video database that is invariant to the start-
ing video frame, and then formulate the video retrieval prob-
lem as sparse reconstruction. We employ a Bayesian com-
pressive sensing algorithm to find the sparse representations
of query videos within this database, and apply the classifica-
tion procedure on the recovered sparse coefficients. Empirical
results demonstrate the high retrieval performance of the pro-
posed method compared to some existing algorithms.

The paper is organized as follows. In section 2 we ex-
plain how retrieving a video clip can be formulated as finding
sparse representation in a convenient domain. In section 3
we formulate the video retrieval problem using the Bayesian
framework, describe the inference procedure and explain the
classification method for deciding whether a query video is in
the database. In section 4 we discuss the feature extraction
procedure. In section 5 we analyze the performance of the
proposed system and determine its robustness in comparison
with other systems.

2. SPARSE REPRESENTATION OF VIDEO CLIPS

In this section, we build a sparse representation for each video
clip in the database in order to retrieve a clip of interest from
a database using sparse representation principles.

The video database can be represented as a matrix by con-
catenating the existing video clips as

A = [a1,1,a1,2, . . . ,a1,N1
, . . . ,aK,1, . . . ,aK,NK

] (1)

where ai,j , i = 1, . . . ,K, j = 1, . . . , Ni represents the j−th
frame in the i−th video. Each ai,j is assumed to be a column
vector of size M where M = V H with V and H the verti-
cal and horizontal dimensions of each frame. For notational
convenience, Eq. (1) is rewritten as

A = [a1,a2, . . . ,aN ] (2)

where N =
∑K

i=1Ni. Let y be a video-clip in the database
written in the vector form as

y =


y1

y2

...
yS

 (3)

where each yi represents the i−th frame, and S is the length
of the video clip. Next, we build the following matrix for a
query of length S

Ã =


a1 a2 a3 . . . aN−(S−1)

a2 a3 a4 . . . aN−S

...
...

...
. . .

...
aS aS+1 aS+2 . . . aN

 (4)

by shifting the columns of A in (1). Using this matrix, it can
be observed that y admits a sparse representation as

y = Ãx0 (5)

where x0 = (0, . . . , 0, 1, 0, . . . , 0)t is a sparse vector with all
coefficients equal to zero except for the entry corresponding
to the location of the video clip y in the database, which is
equal to 1. Hence, the position of y in the database is deter-
mined by x0.

For a given clip y, solving for the corresponding x0 is an
ill-posed problem as the system in (5) is highly underdeter-
mined which leads to non-uniqueness of the solutions. How-
ever, as our goal is to find the sparsest solution, i.e., finding
the solution with most components equal to zero, this moti-
vates following [21] to seek for the solution of

x̂0 = arg min
x
‖ x ‖0 subject to Ãx = y (6)

where ‖ x ‖0 is the l0-quasinorm (the number of non-zero co-
efficients). However, as is well known, the solution of this op-
timization problem is NP-hard. Furthermore, there are other
issues like noise, different image sizes or even occlusions that
make us resort to the CS formulation of the problem.

The noisy CS acquisition system can be modeled as

y = Ãx + n, (7)

where n is the (SM) × 1 independent, Gaussian, zero-mean
noise vector with variance equal to β−1. The problem (6) can
then be relaxed using the l1-norm formulation as

x̂ = arg min
x
{‖y − Ãx‖22 + τ‖x‖1}, (8)

where ‖ · ‖1 denotes the l1-norm. Solving (8) is much easier
than (6) and has attracted much interest in the CS community.



3. VIDEO RETRIEVAL BASED ON BAYESIAN
COMPRESSIVE SENSING

A number of methods have been proposed to solve the sparse
optimization problem in Eq. (8), (see [14] and references
therein, see also [22]). In this paper, we formulate the prob-
lem using the Bayesian framework following [23] which will
also allow us to automatically estimate the regularization pa-
rameters, (see [23, 14] for references to parameter estima-
tion). We provide here a brief review of solving (8) using
a Bayesian approach.

In Bayesian modeling, all unknowns are treated as
stochastic quantities with assigned probability distributions.
The joint probability distribution of all quantities is given by

p(x,γ, β,y) = p(y|x, β) p(x|γ) p(γ) p(β). (9)

The observation noise is independent and Gaussian with zero
mean and variance equal to β−1, that is, with (7),

p(y|x, β) = N (y|Ãx, β−1). (10)

It is shown in [23] that the l1 regularization formulation in
(8) is equivalent to using a hierarchical Laplace prior on the
coefficients of x, that is,

p(x|γ) =
N∏
i=1

N (xi|0, γi), (11)

p(γi|λ) =
λ

2
exp

(
−λγi

2

)
, γi ≥ 0, λ ≥ 0, (12)

where γ = (γ1, γ2, . . . , γN ). Using this specification, the
signal distribution p(x|y, λ, β) is estimated as a multivariate
Gaussian distribution N (x|µ,Σ) with parameters

Σ =
[
βÃtÃ + Λ

]−1

, (13)

µ = Σ βÃty, (14)

with Λ = diag(1/γi). The hyperparameters γ are then esti-
mated by forming the likelihood function

L = −1

2
log |C| − 1

2
ytC−1y +N log

λ

2
− λ

2

∑
i

γi , (15)

with C =
(
β−1I + ÃΛ−1Ãt

)
, and maximizing it with re-

spect to each γi and λ in an alternating fashion. This proce-
dure results in the updates

γi = − 1

2λ
+

√
1

4λ2
+
<x2i>

λ
, (16)

λ =
N − 1∑
i γi/2

, (17)

where<x2i> = x2i +Σii. In summary, at each iteration of the
algorithm, given an estimate of γ and λ, the estimate of the

distribution of x is calculated using (13) and (14), followed
by the estimation of the variances γi from (16) and the hyper-
parameter λ from (17). In addition, [23] proposed a greedy
approach that finds the solutions much more efficiently with-
out the need of solving the large linear system in (14). In our
work, we use this greedy approach to find the solution of (8).

3.1. Classification Procedure

We finally proceed to decide whether the query video-clip is
in the database. If the query video-clip is in database, then
its sparse representation will only have one non-zero compo-
nent, and equal to 1 in the position of the first frame of the
query video. Let x̂ be the vector µ at convergence of the
Bayesian algorithm, and m = maxi x̂i. We then define the
vector xcomp with components

xcomp
i =

{
1 if x̂i = m
0 otherwise i = 1, 2, . . . , N. (18)

We fix a threshold δ and decide that the query video is in the
database if, and only if, xcomp only has one non-zero compo-
nent and

‖x̂− xcomp‖1 ≤ δ (19)

4. FEATURE EXTRACTION

In order to perform an efficient search, and due to the size of
frames, feature extraction is needed. We first assume that the
frames in the database have been downsampled to a reason-
able size (11×8 in our experiments). We then use a linear fea-
ture transformation. The projection from the image space to
the feature space can be represented by a matrix D ∈ RT×M

with T �M which when applied to A produces

DT×MAM×N = ȦT×N (20)

Then we can use the proposed retrieval procedure on Ȧ,
which leads to a faster search. In this work we consider D
to be the matrix associated to PCA, see [12]. Notice that we
could have also used a matrix of random projections ΦT×M .

The PCA transformation retains much of the information
in only a reduced set of principal components. The number
of preserved dimensions, T , determines the energy loss dur-
ing the PCA transformation. The energy represented by each
PCA coefficient obtained from the test database used in the
experiments, which consists of 567146 frames, is shown in
Figure 1. Notice that for T=4 70 % of the energy is preserved.
Furthermore if the CS theorical conditions are met by Ã, see
[21], then x̂ can be recovered by l1-minimization with over-
whelming probability if ST > 2log(567146/ST ). In other
words, around ST ≈ 10 would suffice to recover the only
non-zero component. As we will see in the experimental sec-
tion, when S = 3 and T = 4 the proposed system retrieves
all the relevant clips in the database in the noiseless case.



Fig. 1. Energy of the PCA components

No. of frames Frames in database Frames not in database
3 1.45 s 2.90 s
7 2.62 s 4.44 s

15 5.72 s 8.07 s

Table 1. CPU time used to find a query.

5. SIMULATION RESULTS

In our experiments we used the 2004 NIST TRECVID shot
boundary test set. This data set has approximately 6 hour of
video in 12 videos (each of about 30 mins long). We split it
in two data sets. The positive video repository (or database)
consists of 11 videos and the other video forms the negative
data set.

The frames are downsampled with a scaling factor of 32
to produce 11x8 video icons. Then the frames are projected
using PCA transformation with T = 4. In our test, we se-
lect randomly 250 positives and 250 negatives query videos.
The query clip lengths are S = 3, 7 and 15 frames. All experi-
ments were performed in an Intel Core 2 Duo 2GHz notebook
with 2 GB of RAM. The mean times the Bayesian algorithm
took to find the sparse representation of a video query is re-
ported in Table 1.

5.1. Noise free test cases

For noise-free test cases our system retrieved all positive cases
and rejected all negative one. The results are exactly the same
as the ones reported in [12] and [13].

5.2. Noisy test cases

In real world applications video clips can be corrupted by cod-
ing and communication losses, as well as, image formation
variations. To simulate coding losses in the query clips, we
added Gaussian noise to the query clips at PSNR levels of 20,
25, 30, and 35 dB. Figure 2 shows one original image in the

(a) (b)

Fig. 2. (a) Original frame in the database, (b) its noisy obser-
vation

Fig. 3. Precission-Recall curves for three video-retrieval sys-
tems: KD-System PCA [12], KD-System RP [13], and Pro-
posed Method.

database and its 20 dB noisy observation. Due to their sizes,
the corresponding 11x8 icon frames are not shown.

In order to compare our system with certain state-of-art
algorithms, we calculated the precision-recall curves, for the
same set of query clips. The precision-recall curve [24] is
a typical way of characterizing retrieval performance. For a
given threshold, let us assume that a is the number of rele-
vant (present in the database) clips retrieved, b the number
of relevant clips not retrieved, and c the number of non rel-
evant clips retrieved, then the precision and recall values are
defined by precision = a/(a + c) and recall = a/(a + b) ,
respectively. By changing the threshold value we obtain, for
a given method, its precision-recall curve. Notice that as the
threshold δ in Eq. (19) decreases the recall value is expected
to decrease while the precision value is expected to increase.

In Fig. 3 three systems are compared for the case T = 4,
S = 3, and PSNR = 20 dB. We can see that the method
proposed in [13] performs worse than the one in [12]. Fur-
thermore, the proposed sparse Bayesian retrieval method per-
forms better than the method in [12].

In Fig. 4 the same systems compared for the case T = 4,



Fig. 4. Precission-Recall curves for three video-retrieval sys-
tems: KD-System PCA [12], KD-System RP [13], and Pro-
posed Method.

S = 7, and PSNR = 20 dB. The method proposed in [12]
performs worse than the one in [13]. Furthermore, the pro-
posed sparse Bayesian retrieval method performs better than
the method in [13]. As shown in Fig. 4 its precision-recall
curve is precision = 1 for recall ≤ 0.98

Finally in Fig. 5 the three systems are compared for the
case T = 4, S = 7 and PSNR = 25 dB. Again the method
proposed in [12] performs worse than the one in [13]. Fur-
thermore, the proposed sparse Bayesian retrieval method per-
forms better than the method in [13]. As shown in Fig. 5 its
precision-recall curve is precision = 1 since the threshold
values for all relevant clips are smaller than the correspond-
ing to nonrelevant clip. The same behavior is observed for
higher PSNR levels. When more frames are included in the
query, that is when S = 15, the precision-recall curve for the
proposed method is precision = 1.

6. CONCLUSION

In this paper we have developed a robust and efficient system
for video retrieval, based on the use of sparse representation,
compressive sensing and Bayesian modeling of the video re-
trieval problem. Experimental results demostrate that the pro-
posed method performs better than existing state-of-art sys-
tems and also its robustness against noise. Work to tackle
the problems of occlusions and missing frames is already in
progress.
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Abstract—Fast and accurate algorithms are essential for the
efficient search and retrieval of the huge amount of video data
that is generated for different purposes and applications every
day. The interesting properties of sparse representation and the
new sampling theory named Compressive Sensing (CS) constitute
the core of the new approach to video representation and retrieval
we are presenting in this paper to deal with the search of
noisy video clips with also possibly missing frames. Once the
representation (where sparsity is expected) has been chosen
and the observations have been taken, the proposed approach
utilizes Bayesian modeling and inference to tackle the retrieval
problem. In order to speed up the inference process the use of
Principal Components Analysis (PCA) to provide an alternative
representation of the frames is analyzed. Experimental results
validate the proposed approach to the retrieval of video clips
with missing frames as well as its robustness against noise.

I. INTRODUCTION

With the rapidly increasing growth of digital video content,
there is an equally growing need for efficient techniques to
analyze, search and retrieve video content. Video retrieval is a
key step in many applications including copyright protection,
multimedia content search, security and surveillance. Fast and
accurate algorithms in all these cases are needed for efficient
video retrieval.

A number of methods have been developed for video
retrieval. Generally, methods identify features distinguishing
video frames and employ classification, indexing and search-
ing based on these features. Among a large number of features,
commonly used ones are color histograms [1], color and
motion cues [2], [3], [4], visual features and semantic labels
[5], and time interval statistics [6]. Surveys and comparisons
can be found in [7], [8].

After identifying the distinguishing features, the second
step in video retrieval is searching based on these features.
Indexing and hashing are commonly used to improve the
search efficiency. In [5] geometric hashing is used to build
database indices, while [3], [4], [6] used tree-based indexing.
A powerful data structure for indexing is the kd-trees. In [9],
video trajectories over time are indexed using kd-trees with
a dimensionality reduction using PCA. Random projections
instead of PCA are utilized in [10], followed by several kd-
trees for indexing.

In this paper, we present a new approach to video retrieval
using sparse representation and reconstruction. The concept of
sparsity has emerged in the last decade as a powerful modeling
tool with a large number of potential applications [11], [12],
[13]. This has been significantly motivated by the emergence
of compressive sensing [14], [15]. Although compressive
sensing and sparse reconstruction have originally aimed at
the reconstruction of an original signal, the discriminative
properties of sparse representations have been successfully
utilized for several applications including face recognition and
image classification [16], [17].

In this work, we demonstrate that the discrimination prop-
erty of sparse representations can be employed very effectively
for video retrieval. Specifically, we formulate the problem of
searching a query video clip in a video database as a sparse re-
construction problem. We construct the video database directly
from the existing video clips, such that no sophisticated feature
extraction methods are needed as preprocessing. Moreover, we
present a method to handle the problem of missing frames
in the query clip, and show that our method is extremely
robust to the cases where a large number (almost 80%)
of the frames are removed. Finally, we demonstrate with
experimental results that the proposed method provides very
high retrieval performance in terms of both error rate and
retrieval speed.

This paper is organized as follows. In section II, we
present the proposed sparse representation framework and the
Bayesian reconstruction algorithm for the video retrieval prob-
lem. The searching and classification procedure is explained
in Section III. The dimensionality reduction step using PCA is
presented in Section IV. We analyze the retrieval performance
of the proposed system and its robustness to noise and missing
frames in Section V and conclude in Section VI.

II. FRAME RETRIEVAL USING SPARSE REPRESENTATION

In this section, we study how to retrieve one frame in the
database using sparse representation principles.



A. Sparse representation of frames

The video database can be represented as a matrix by
concatenating the existing video clips as

A = [a1,1,a1,2, . . . ,a1,N1
, . . . ,aK,1, . . . ,aK,NK

] (1)

where ai,j , i = 1, . . . ,K, j = 1, . . . , Ni represents the j−th
frame in the i−th video. Each ai,j is assumed to be a column
vector of size M where M = V H with V and H the vertical
and horizontal dimensions of each frame respectively. For
notational convenience, Eq. (1) is rewritten as

A = [a1,a2, . . . ,aN ] (2)

where N =
∑K

i=1Ni.
Let Y be a video-clip in the database with only one frame:

Y = [y1] (3)

Then, it can be observed that y1 admits a sparse representation
as

y1 = Ax1 (4)

where x1 = (0, . . . , 0, 1, 0, . . . , 0)t is a sparse vector with all
coefficients equal to zero except for the entry corresponding
to the location of the frame y1 in the database, which is equal
to 1. Hence, the position of y1 in the database is determined
by x1.

For a given frame y1, solving for the corresponding x1 is
an ill-posed problem as the system in (4) is highly under-
determined which leads to non-uniqueness of the solutions.
However, x1 has only one non-zero component, and therefore,
our goal is to find the sparsest solution, finding the solution
with most components equal to zero. This motivates, following
[17], to seek for the solution of

x̂1 = arg min
x
‖ x ‖0 subject to Ax = y1, (5)

where ‖ x ‖0 is the l0-quasinorm (the number of non-zero
coefficients). However, as is well known, the solution of this
optimization problem is NP-hard. Furthermore, there are other
issues like noise, different image sizes or even occlusions that
make us resort to the CS formulation of the problem.

With y = y1, the noisy CS acquisition system can be
modeled as

y = Ax + n, (6)

where n is the M×1 independent, Gaussian, zero-mean noise
vector with variance equal to β−1. The problem (5) can then
be relaxed using the l1-norm formulation as

x̂ = arg min
x
{‖y −Ax‖22 + τ‖x‖1}, (7)

where ‖ · ‖1 denotes the l1-norm. Solving (7) is much easier
than (5) and has attracted much interest in the CS community.

B. Frame Retrieval Based on Bayesian Compressive Sensing

A number of methods have been proposed to solve the
sparse optimization problem in Eq. (7), (see [11] and refer-
ences therein, see also [18]). In this paper, we formulate the
problem using the Bayesian framework following [19] which
will also allow us to automatically estimate the regularization
parameters, (see [19], [11] for references to parameter estima-
tion). We provide here a brief review of solving (7) using a
Bayesian approach.

In Bayesian modeling, all unknowns are treated as stochastic
quantities with assigned probability distributions. The joint
probability distribution of all quantities is given by

p(x,γ, β,y) = p(y|x, β) p(x|γ) p(γ) p(β). (8)

The observation noise is independent and Gaussian with zero
mean and variance equal to β−1, that is, with (6),

p(y|x, β) = N (y|Ax, β−1). (9)

It is shown in [19] that the l1 regularization formulation in
(7) is equivalent to using a hierarchical Laplace prior on the
coefficients of x, that is,

p(x|γ) =
N∏
i=1

N (xi|0, γi), (10)

p(γi|λ) =
λ

2
exp

(
−λγi

2

)
, γi ≥ 0, λ ≥ 0, (11)

where γ = (γ1, γ2, . . . , γN ). Using this specification, the
signal distribution p(x|y, λ, β) is estimated as a multivariate
Gaussian distribution N (x|η,Θ) with parameters

Θ =
[
βAtA + Λ

]−1
, (12)

η = Θ βAty, (13)

with Λ = diag(1/γi). The hyperparameters γ are then
estimated by forming the likelihood function

L = −1

2
log |E| − 1

2
ytE−1y +N log

λ

2
− λ

2

∑
i

γi , (14)

with E =
(
β−1I + AΛ−1At

)
, and maximizing it with respect

to each γi and λ in an alternating fashion. This procedure
results in the updates

γi = − 1

2λ
+

√
1

4λ2
+
<x2i>

λ
, (15)

λ =
N − 1∑
i γi/2

, (16)

where <x2i> = x2i + Θii. In summary, at each iteration of
the algorithm, given an estimate of γ and λ, the estimate
of the distribution of x is calculated using (12) and (13),
followed by the estimation of the variances γi from (15) and
the hyperparameter λ from (16). In addition, [19] proposed a
greedy approach that finds the solutions much more efficiently
without the need of solving the large linear system in (13). In
our work, we use this greedy approach to find the solution of
(7).



III. VIDEO RETRIEVAL

A. Searching for video clips without missing frames

In [21] we utilized the CS theory to retrieve a video clip
of consecutive frames. More formally, let y be a video-clip in
the database written in the vector form as

y =


y1

y2

...
yS

 (17)

where each yi represents the i−th frame, and S is the length
of the video clip. Next, we built the following matrix for a
query of length S

Ã =


a1 a2 a3 . . . aN−(S−1)

a2 a3 a4 . . . aN−S

...
...

...
. . .

...
aS aS+1 aS+2 . . . aN

 (18)

by shifting the columns of A in (1). Using this matrix, it can
be observed that y admits a sparse representation as

y = Ãx0 (19)

where x0 = (0, . . . , 0, 1, 0, . . . , 0)t is a sparse vector with all
coefficients equal to zero except for the entry corresponding to
the location of the video clip y in the database, which is equal
to 1. Hence, the position of y in the database is determined
by x0.

The noisy CS acquisition system for this problem can be
modeled as

y = Ãx + n, (20)

where n is the (SM) × 1 independent, Gaussian, zero-mean
noise vector with variance equal to β−1. The retrieval problem
is the formulated using the l1-norm formulation as

x̂ = arg min
x
{‖y − Ãx‖22 + τ‖x‖1}, (21)

where ‖ · ‖1 denotes the l1-norm.

B. Searching for video clips with missing frames

The method proposed above works well (see [21]) when
there are no missing frames in the clip we are looking
for. However, when there may be missing frames and their
positions in the clip are not known the above Ã matrix can
not be built and the proposed method is then not applicable.
To deal with possibly missing frames we propose the location
and classification procedures that are described next.

Let
Y = [y1 y2 . . .yS ] (22)

be a query video-clip in the database which may contain
missing frames. The location procedure consists on finding
a candidate video-clip in the database that contains Y. Fol-
lowing the proposed CS methodology, we can search for
each frame independently and then examine if their sparse
representations correspond to frames in a video clip in the

database. However, we can reduce the computational time by
noticing that the presence of the query video in the database
is determined by the location of the first and last frames in
the database.

Therefore we start by finding the two sparse vectors x̂1 and
x̂S that solve:

x̂1 = arg min
x
{‖y1 −Ax‖22 + τ‖x‖1} (23)

and
x̂S = arg min

x
{‖yS −Ax‖22 + τ‖x‖1} (24)

respectively. Then, if x̂1 or x̂S do not satisfy the following
initial conditions:

1) They only have one non-zero component.
2) The position marked by x̂1 is preceding the position

marked by x̂S .
the video clip is classified as not present in the database. If
these initial conditions are satisfied, we proceed to examine if
Y is in the database.

We define the candidate video-clip to be retrieved as:

C = [c1 c2 . . . cP ] (25)

where ci i = 1, . . . , P are the frames in the database between
the positions marked by x̂1 and x̂S .

It is very important to note that P and S do not have to
be the same. The query video can have missing intermediate
frames. Other systems as [9], [10], [21] strongly utilize the
fact that the query video-clip has all intermediate frames, and,
as we will see in experimental section, they fail when this does
not happen.

Once we have located the tentative position of the first and
last frames of the video query in the database we proceed
to accept or reject the candidate video clip. We assume that
all frames in C are independent realizations of a Gaussian
distribution with mean µ and covariance matrix Σ which are
estimated by using

µ =
1

P

P∑
i=1

ci, Σ =
1

P − 1

P∑
i=1

(ci − µ) (ci − µ)
t
. (26)

Therefore if Y is in the database, then y = 1
S

∑S
i=1 yi will be

close to µ when using the Mahalanobis distance. We define the
Classification Coefficient (CC), fix a threshold δ and decide
that Y is in the database if and only if:

CC(Y)
.
=

√
1

S
(y − µ)

t
Σ+ (y − µ) ≤ δ. (27)

where Σ+ is the Generalized Inverse of Moore-Penrose of Σ.

IV. FEATURE EXTRACTION

In order to perform an efficient search, and due to the size of
the frames, feature extraction is needed. We first assume that
the frames in the database are downsampled to a reasonable
size. This is an important step and a compromise between the
size of the downsampled images and the feature extraction
process has to be reached. If the downsampled frames are too



Fig. 1. Energy of the PCA components.

large, feature extraction is very time consuming, on the other
hand if the downsampled images are too small, the frames
can not be distinguished. See section V for the size of the
downsampled images used in the experiments.

We then use a linear feature transformation. The projection
from the image space to the feature space can be represented
by a matrix R ∈ RT×M with T � M which when applied
to A produces

RT×MAM×N = ȦT×N (28)

Then we can use the proposed retrieval procedure on Ȧ, which
leads to a faster search. In this work we consider R to be the
matrix associated to PCA, (see [9]). Notice that we could have
also used a matrix of random projections ΦT×M .

The PCA transformation retains much of the information in
only a reduced set of principal components. The number of
preserved dimensions, T , determines the energy loss during
the PCA transformation. The energy represented by each
PCA coefficient obtained from the test database used in the
experiments, which consists of 567146 frames, is shown in
Figure 1. Notice that for T=21 more than 90 % of the energy is
preserved. Furthermore if the CS theorical conditions are met
by A (see [17]), then x̂ can be recovered by l1-minimization
with overwhelming probability if T > 2log(567146/T ). In
other words, around T ≈ 21 would suffice to recover the
only non-zero component. As we will see in the experimental
section, when T = 21 the proposed system retrieves all the
relevant clips in the database in the noiseless case.

V. SIMULATION RESULTS

In our experiments we used the 2004 NIST TRECVID shot
boundary test set. This data set has approximately 6 hours of
video in 12 videos (each of about 30 mins long). We split it
in two data sets. The positive video repository (or database)
consists of 11 videos and the other video forms the negative
data set.

The frames are downsampled with a scaling factor of 16
to produce 22x16 downsampled frames. Then the frames are
projected using PCA transformation with T = 21. In our

TABLE I
CPU TIME USED TO FIND A QUERY.

Methods 15 Frames 30 Frames 60 Frames
KD-PCA [9] 0.04 s 0.06 s 0.12 s

Proposed Method 0.69 s 0.72 s 0.71 s
KD-RP [10] 2.25 s 2.50 s 4.00 s
SR-C [21] 7.57 s 22.17s out of memory

test, we select randomly 100 positive and 100 negative query
videos. The query clip lengths are S = 15, 30, and 60 frames.
All experiments were performed utilizing an Intel i7 2.8GHz
notebook with 8 GB of RAM.

A. Noise free and complete test cases

For noise-free test cases with all its frames our system
retrieved all positive cases and rejected all negative one. The
results are exactly the same as the ones reported in [9], [10]
and [21].

B. Degraded test cases

In real world applications video clips can be corrupted by
coding and communication losses, as well as, image formation
variations. We evaluate the robustness of our system to both,
noise and missing frames, using precision-recall curves. The
precision-recall curve [20] is a typical way of characterizing
retrieval performance. For a given threshold, let us assume
that a is the number of relevant (present in the database) clips
retrieved, b the number of relevant clips not retrieved, and c
the number of non relevant clips retrieved. Then the precision
and recall values are defined by precision = a/(a + c) and
recall = a/(a+b). By changing the threshold value we obtain,
for a given method, its precision-recall curve. Notice that as the
threshold δ in Eq. (27) decreases the recall value is expected
to decrease while the precision value is expected to increase.

To simulate the systems in [9], [10], [21] Gaussian noise is
added to the query clip to evaluate their robutness to noise.
However these systems do not consider test cases with missing
frames. This is because they are not designed to retrieve videos
with more frames than the query video, and therefore if the
query video has missing frames, these systems can not retrieve
it.

1) Noisy test cases.: We added Gaussian noise to query
clips at PSNR of 25dB; this is the noisiest case considered in
[9] and [10]. The comparison between our system and KD-
PCA [9], KD-RP [10] and SR-C [21], when the query does
not contain missing frames, is shown in Fig. 2, for the case
T = 30. The proposed method obtains a recall = 0.94 and a
precision = 1.

2) Test cases with missing frames.: We created queries with
missing frames by randomly removing intermediate frames at
the following percentages 20%, 50%, and 80%. For noise-free
queries all positives cases are retrieved, and all negatives are
rejected. For noisy videos with 80% missing frames, out of 30
and 60 frames query clips the precision = 1, i.e., all negatives
cases are rejected, and recall = 0.94 and recall = 0.96,
respectively. Finally, Fig. 3 shows the precision-recall curves



Fig. 2. Comparison of four systems of video retrieval for noisy test.

Fig. 3. Precission-Recall curves for noisy query videos with 15 frames and
80% of missing frames, and noisy query videos with all 15 frames.

for a video query of 15 frames and the same query with 80%
of missing frames. The system produces more false positives
when we remove frames.

VI. CONCLUSION

In this paper we have developed a new system for video
retrieval based on the sparse representation framework. We for-
mulate the video retrieval as a sparse reconstruction problem
by constructing a database matrix and searching for the spars-
est representation of a query clip using the database. We have
shown that the proposed system is very effective and robust to
noise and missing frames, and does not require sophisticated
and data-dependent feature extraction methods. Moreover, the
proposed system requires comparable and less computational
resources to some of the state-of-the-art methods for video
retrieval while providing very high retrieval accuracy.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this dissertation we have applied Bayesian modeling and inference to image recov-
ery and classi�cation problems. We have shown that image restoration, blind image
deconvolution, multispectral image classi�cation, pansharpening, active learning,
light �eld acquisition and video retrieval problems can be modeled using a Bayesian
framework, and Bayesian inference has allowed us to �nd the solutions of these
problems. In some cases, point estimators have been utilized to reduce the infer-
ence problems to optimization problems. In other cases, the variational inference
has allowed us to approximate the posterior distribution, and estimate the model
parameters. In the performed experiments, the proposed methods have shown to be
very accurate and e�cient and, in almost all cases, they outperformed the state-of-
the-art methods.

The dissertation has been presented in the modality of �compendium� and has
been structured in three blocks: image restoration and blind deconvolution, multi-
spectral image classi�cation and other related problems. Below we detail the speci�c
conclusions and contributions of each area.

7.1.1 Image Restoration and Blind Deconvolution

• First, we have presented a novel image restoration method that uses the
Bayesian paradigm to combine two prior models: the total variation (TV)
model that preserves edge structure while imposes smoothness on the solution
and controls the noise, and the Poisson singular integral (PSI) model which is
capable to preserve the textures but cannot di�erentiate between highly de-
tailed textures and noise. The �nal product is a restoration algorithm that
combines the advantages of the two models. A study of TV and PSI mod-
els and the parameters that control their shape has been carried out. The
work concludes that neither the TV nor the PSI image models alone can suc-
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cessfully recover the textures and control the noise. A set of experiments has
been carried out, where the proposed method has been compared against both
classical and state of art methods. The experimental results supported that
for images with a combination of detailed and smooth regions, the proposed
restoration method, which combines TV and PSI prior models, provides the
best restorations.

• For the BID problem we have written a review of the recent literature on
Bayesian blind image deconvolution (BID) methods. We have stated that two
events have marked the recent history of BID: the predominance of variational
Bayes (VB) inference as a tool to solve BID problems and the increasing
interest of the computer vision community in solving BID problems. We have
shown that VB inference in combination with recent image models like the
ones based on Super Gaussian (SG) and scale mixture of Gaussians (SMG)
representations have led to the use of very general and powerful tools to provide
clear images from blurry observations. In the provided review emphasis has
been paid on VB inference and the use of SG and SMG models with coverage
of recent advances in sampling methods. We have also provided examples of
current state of the art BID methods and have discussed problems that very
likely will mark the near future of BID.

7.1.2 Multispectral Image Classi�cation Problems

• We have shown that pansharpening techniques can be used to increase the
performance of classi�cation methods when they are applied to multispectral
images. We have addressed the problem of adaptively modifying the param-
eter of a pansharpening method in order to improve the precision and recall
�gures of merit of a classi�er on a given class without deteriorating its perfor-
mance over the other classes. The validity of the proposed technique has been
demonstrated using a real Quickbird image.

• We have also presented a new method to jointly �lter and classify a signal or
an image. Using Bayesian modeling and variational inference we have devel-
oped an iterative procedure to jointly estimate the classi�er parameters, the
�lterbank and the model parameters. We have experimentally shown that the
estimated �lters improves the classi�er performance. The proposed method
has been compared with other classi�cation/�ltering approaches, and exper-
imental results have shown that the new method is both more accurate and
more e�cient.

• We have presented a non-parametric Bayesian learning approach based on
kernels for remote sensing image classi�cation. The Bayesian methodology ef-
�ciently tackles purely supervised and active learning approaches, and shows
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competitive performance when compared to support vector machines (SVMs)
and recent active learning (AL) approaches. An incremental learning approach
based on three di�erent approaches was presented: maximum di�erential of
entropies, minimum distance to decision boundary, and minimum normalized
distance. Automatic parameter estimation is solved by using the evidence
Bayesian approach, the kernel trick, and the marginal distribution of the ob-
servations instead of the posterior distribution of the adaptive parameters.
The proposed approach was tested on several scenes dealing with urban mon-
itoring problems using multispectral and SAR data. We observed that, while
similar results are obtained by SVMs in supervised mode, an improvement
in accuracy and convergence is observed for the active learning scenario. In-
terestingly our methods do not only provide point-wise class predictions but
con�dence intervals.

• We have also developed a multiclass classi�cation system using a prior on the
adaptive coe�cients based on the `p pseudo-norm. The contribution of the
adaptive coe�cients corresponding with no-relevant data will be zero, which
allow us to identify the irrelevant coe�cients. Variational inference has been
used to estimate all the model parameters and connections with independent
Gaussian priors established. The predictive distribution of the classes has
been calculated. This distribution has been used to de�ne two active learning
methods, named Minimum Probability Criteria and Maximum Entropy Cri-
teria. Experimental results have shown that the use of `p-priors allows the
classi�er to select discriminative features and discard non-relevance compo-
nents. The proposed approach has shown higher accuracy than SVM methods
in both classi�cation and AL problems.

7.1.3 Other Related Problems (Light Field Acquisition and
Video Retrieval)

• We have developed a new programmable aperture camera prototype to capture
the light �eld. The prototype was constructed in collaboration with the Insti-
tuto de Astrofísica de Andalucía (IAA). In [15] we developed a system which
uses the compressive sensing theory to capture the light �eld by taking much
less observations than views of light �eld. In [16], we addressed the problem of
recovering blurred light �elds. We developed a method to deconvolve blurred
light �elds and experimentally shown that it is possible to obtain sharp images
from blurred observations using both synthetic and real images.

• We have developed a robust and e�cient system for video retrieval, based on
the use of sparse representation, compressive sensing and Bayesian modeling
of the video retrieval problem. Experimental results demonstrate that the
proposed method performs better than existing state-of-art systems and also
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its robustness against noise. We have also shown that the new system is
very e�ective and robust to noise and missing frames, and does not require
sophisticated and data-dependent feature extraction methods.

7.2 Future Works

7.2.1 Image Restoration and Blind Deconvolution

• In Chapter 3 we proposed a restoration method based on model combination
to simultaneously preserve edges and textures while controlling noise. The new
restoration method depends on a set of parameters that need to be estimated
for each image. However we have not so far addressed the parameter estimation
problem. For future work we want to introduce variational inference in order
to estimate the model parameters.

7.2.2 Multispectral Image Classi�cation Problems

• In [71] we proposed a model where we jointly estimates an optimal �lterbank
and trained a GP classi�er. To link both procedures, in [71] we used a pa-
rameter which was increasing in each iteration. We are currently working on
solving this constrained optimization problem using the Alternating Method
of Multipliers (ADMM) [100]. ADMM is often utilized to transform a con-
strained optimization problem into an unconstrained one through the use of
the augmented Lagrangian. The use of this approach and in our case, it will
allow to automatically estimate all the model parameters.

• In [73] we used kernel methods to �nd non-linear decision boundaries for clas-
si�cation problems. In [74] we presented a method to eliminate non-relevant
classi�cation features. In future work we want to develop systems capable of
�nding non-linear decision boundaries and discarding information non-relevant
for classi�cation by combining kernel method and sparse priors.

7.2.3 Other Related Problems

• As we have studied in [16] the camera prototype utilize a mask in front of the
lens, which produces vigneting in the observed images. To avoid this problem,
we plan to develop a new camera prototype where the mask will be located in
the aperture plane of the lens.

• In order to obtain a robust video copy detector, the system proposed in [75]
has to work with transformed videos. In [76] we addressed the problem of
missing frames. For future works the system will be improved to deal with
other transformations like, video re-coding or croped videos.
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• We have shown that Bayesian modeling and inference are powerful tools to
address image recovery and classi�cation problems. In the future we want to
apply the learned methodology to solve more inverse problems. In particular
we want to explore the use of Bayesian modelling and inference in crowdsourc-
ing [101, 102], sensor fusion [103, 104], as well as threat detection in millimeter
images [105, 106].
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