UNIVERSIDAD DE GRANADA

Data Science and Big Data Processing in R:

Representations and Software

Tesis Doctoral

Lala Septem Riza

Granada, Julio de 2015
Programa de Doctorado en Tecnologias de la
Informacion y la Comunicacion

Departamento de Ciencias de la Computacion
e Inteligencia Artificial

Editorial: Universidad de Granada. Tesis Doctorales
Autora: Llala Septem Riza

ISBN: 978-84-9125-215-3
URI:http://hdl.handle.net/10481/40689

UNIVERSIDAD DE GRANADA

Data Science and Big Data Processing in R:

Representations and Software

MEMORIA QUE PRESENTA

Lala Septem Riza

PARA OPTAR AL GRADO DE DOCTOR EN ,
TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACION

Julio de 2015

DIRECTORES

José Manuel Benitez Sanchez
Francisco Herrera Triguero

Departamento de Ciencias de la Computacién
e Inteligencia Artificial

El doctorando Lala Septem Riza y los directores de la tesis los doctores
D. José Manuel Benitez Sanchez y D. Francisco Herrera Triguero garanti-
zamos, al firmar esta tesis doctoral, que el trabajo ha sido realizado por
el doctorando bajo la direccién de los directores de la tesis y hasta donde
nuestro conocimiento alcanza, en la realizacién del trabajo, se han respeta-
do los derechos de otros autores a ser citados, cuando se han utilizado sus
resultados o publicaciones.

Granada, Julio de 2015

El Doctorando

Fdo: Lala Septem Riza

El Director El Director

Fdo: D. José Manuel Benitez Sanchez Fdo: D. Francisco Herrera Triguero

Acknowledgments

First and foremost I want to thank my supervisors: José Manuel Benitez
Sanchez and Francisco Herrera Triguero. I really appreciate all their contri-
butions of time, ideas, and supports to make my Ph.D. experience productive
and challenging. I wish to thank various people for their contribution to this
research: Christoph Bergmeir, Andrzej Janusz, Dominik Sl@zak, and Bartosz
Krawczyk. I would also like to thank my committee members in Computer
Science and Artificial Intelligence, Universidad de Granada, for comments
and suggestions in my defense.

I gratefully acknowledge to the Dept. of Computer Science, Universitas
Pendidikan Indonesia, for supporting me to pursue the Ph.D. program, and
to the Directorate General of Higher Education of Indonesia, for providing
a Ph.D. scholarship.

I am especially grateful for all members of “FuzzyCoffee”: Fran, Manu,
Diana, Pablo, Sergio, Sara, Rafa, Dani, Jorge, Alexandro, Julio, etc., for
interesting discussions while sipping a cup of coffee and tea. I also want to
acknowledge the “EAP 2010” group that always motivates me to accomplish
Ph.D. To all friends that, thank you very much for everything, especially for
the friendship.

And, last but not least, I would like to thank my family for love and
encouragement. You are everything.

Man jadda wajada, wa man zara’a hasada, wa man yajtahid yanjah,
Alhamdulillah
— Muchas gracias —

Granada, 1 Syawal 1436

Resumen

El principal objetivo de esta tesis es el desarrollo de implementaciones en
software de alta calidad y facil uso de distintos paquetes para implementar
representaciones y algoritmos para modelado de sistemas y andlisis de da-
tos. Por haberse convertido en un estandar de facto, la plataforma obligada
para la implementacién es el lenguaje R. Los paquetes referidos consideran
distintas técnicas basadas en sistemas difusos, Rough Sets, v Fuzzy Rough
Sets. Ademds, se presenta un formato de representacién universal para siste-
mas basados en reglas difusas. Finalmente, se aborda la implementacién de
random forests y random ferns para procesamiento en Big Data. De acuerdo
con estos objetivos, los resultados de la investigacion son los siguientes:

1. El paquete “frbs”: Se trata de un paquete en R que implementa repre-
sentaciones de los principales tipos de sistemas basados en reglas difu-
sas asi como una seleccién de algoritmos de aprendizaje automaético pa-
ra construirlos. El paquete se centra en las aplicaciones para problemas
de clasificacién y regresion. También incluye un mecanismo para cons-
truir sistemas difusos directamente por expertos humanos. Esta dis-
ponible en CRAN: http://cran.r-project.org/package=frbs y en
el sitio web del proyecto: http://sci2s.ugr.es/dicits/software/
FRBS.

2. El paquete “RoughSets”: Se trata de un paquete en R que implementa
algoritmos basados en Rough Sets y Fuzzy Rough Sets para la repre-
sentacion de conocimiento y andlisis de datos. Incluye herramientas
especificas para manejo de valores perdidos, discretizacion, seleccion
de caracteristicas, y seleccién de instancias. Esté disponible en CRAN:
http://cran.r-project.org/package=RoughSets y en el sitio web
del proyecto: http://sci2s.ugr.es/dicits/software/RoughSets.

vl

Resumen

3. frbsPMML: Es un formato para la representacién universal de de sis-
temas basados en reglas difusas que se basa en el Predictive Model
Markup Language. Asociado a este formato, se implementan dos bi-
bliotecas para manejar la representacién: una extensién del paquete
“frbs” y el paquete en Java “frbsJpmml”.

4. El paquete “SparkFernTreeR”: Es un paquete en R que implementa

random forests y random ferns para el procesamiento de Big Data.
Este paquete se desarrolla sobre las plataformas: Apache Hadoop y
Apache Spark.

Summary

The main objective of this thesis is the development of high quality and
easy to use software modules for represent, create and manage system mo-
dels and data analysis. Since it has become a de facto standard, R is the
platform of choice. The mentioned packages consider the techniques based
on fuzzy systems, rough sets, and fuzzy rough sets. In addition, a universal
representation framework for fuzzy rule-based systems is introduced. Finally,
the implementation of random forests and random ferns for tackling Big Da-
ta is discussed. According to these objectives, the following are results of the
research:

1. The “frbs” package: It is an R package implementing the most relevant
types of fuzzy rule-based systems along with a selection of machine
-learning algorithms to build them. The package focuses on classifica-
tion and regression tasks. It also includes a mechanism to allow the
construction of a model by human experts. It is available in CRAN:
http://cran.r-project.org/package=frbs and in the project web-
site: http://sci2s.ugr.es/dicits/software/FRBS.

2. The “RoughSets” package: It is an R package implementing algorithms
based on rough set theory and fuzzy rough set theory for knowledge
representation and data analysis. In includes tools for managing mis-
sing values, discretization, feature selection, and instance selection,
for both classification and regression tasks. It is available in CRAN:
http://cran.r-project.org/package=RoughSets and in the project
website: http://sci2s.ugr.es/dicits/software/RoughSets.

3. frbsPMML: It is a universal representation framework for fuzzy rule-
based systems based on the Predictive Model Markup Language. Furt-
hermore, two software libraries to manage the representation are im-

Vi1l

Summary

plemented: an extension of the “frbs”package and the Java package
“frbsJpmml”.

The “SparkFernTreeR” package: It is an R package implementing ran-
dom forests and random ferns for dealing with Big Data processing.
This package is developed on top of the Big Data frameworks: Apache
Hadoop and Apache Spark.

Contents

Introduccion
A. Planteamiento
B. Objetivos . . .

C. Resumen. . ..

Introduction

A. Problem Statement

B. Objectives . .

C. Structure of the Document

1 State of the Art

1.1 A Gentle Introduction to Data Science.
1.2 Machine Learning,
1.2.1 Learning
1.2.2 Machine Learning
1.2.3 Application Areas
1.3 R Language and Ecosystem
1.3.1 An Introductionto R
1.3.2 The Comprehensive R Archive Network
1.3.3 Development of R Packages
1.4 Predictive Model Markup Language

ix

S Ot =

©

13
14

CONTENTS

1.5

1.6

1.7

1.8
1.9

The
2.1
2.2
2.3

24

1.4.1 Introduction 34
1.4.2 Specifications oL 36
Fuzzy Systems o 40
1.5.1 Fuzzy Sets 40
1.5.2 Fuzzy Rule-Based Systems 44
Rough Set Theory and Fuzzy Rough Set Theory 52
1.6.1 Rough Set Theory. 52
1.6.2 Fuzzy Rough Set Theory. 58
Decision Trees and Random Forests 65
1.7.1 Decision Trees 65
1.7.2 Random Forests 69
Random Ferns, 70
Big Data Processing and Platforms 71
1.9.1 The Big Data Phenomenon 71
1.9.2 The Issues on Big Data 76
1.9.3 Apache Hadoop 77
1.9.4 Apache Spark L. 79
1.9.5 R Tools for BigData 81
“frbs” Package 89
Introduction o 89
The Package Architecture and Implementation Details 91
Examplesof Usage 96
2.3.1 Installation and Loading the “frbs” Package 97
2.3.2 Regression Problem 98
2.3.3 Classification Problem 104
2.3.4 Human Expert Constructions 105
Experimental Studies 109
2.4.1 Regression Tasks 109

2.4.2 Classification Tasks 112

CONTENTS i

2.5 A Comparison with Other Software Libraries 114
2.5.1 Other FRBS Packages Available in CRAN 114
2.5.2 Other Fuzzy Tools 118

2.6 SUMMATY e e e 120

3 frbsPMML: A Universal Representation Framework for FRBSs

Based on PMML 122
3.1 Introduction. 122
3.2 Specifications of frbsPMML 124
3.2.1 The Mamdani Model 131
3.22 The TSK Model 134
3.23 The FRBCSModel 136

3.3 Implementations of frbsPMML 138
3.3.1 The Extension on the “frbs” Package 139
3.3.2 The Predictor Engine “frbsJpmml” in Java 140

3.4 Features and Benefits of frbsPMML 141
3.5 A Comparison with Other Representation Proposals 144
3.6 Exampleof Usage 147
3.6.1 Regression 147
3.6.2 Classification 152

3.7 Summary ... 157
4 The “RoughSets” Package 158
4.1 Introduction. 158
4.2 The Package Architecture and Implementation Details 162
4.3 Examplesof Usage 168

4.3.1 Installation and Loading the “RoughSets” Package . . 170
4.3.2 Constructing Datasets in the DecisionTable Format . 172
4.3.3 Examples of the Basic Concepts 173
4.3.4 An Example using Rule-Based Classifiers. 180

) CONTENTS
4.3.5 An Example Using Instance-Based Classifiers 183

4.4 A Comparison with Other Packages 186
4.5 Summaryo e 191

5 The “SparkFernTreeR” Package 192
5.1 Introduction. 192
5.2 The Package Architecture and Implementation Details 195
5.3 Examplesof Usage 200

5.3.1 Installation and Loading the “SparkFernTreeR” Package201

5.3.2 Classification Using Random Forests with the Standa-
lone Mode 203

5.3.3 Classification Using Random Forest on Apache Spark 205
5.3.4 Classification Using Random Ferns on Apache Spark . 208

5.4 Survey and Comparison with Other Software Libraries 210
5.5 Summary ... e 214
Concluding Remarks 215
A. Summaries 215
B. The Associated Publications 216
C. Future Work 218
Appendix 220
Appendix A. The “frbs” Package in CRAN 221
Appendix B. The “RoughSets” Package in CRAN 226
Appendix C. The “SparkFernTreeR” Package 229
Bibliography 231

List of Figures

1.1
1.2
1.3
14
1.5

1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

1.14

1.15

1.16
1.17
1.18

The data science venn diagram [51]. 19
Information processing model [17]. 20
Basic components on the learning step [2]. 23
Basic components on the prediction step. 24

A survey of predictive analytics/data mining/data science

software conducted by [152] in 2015. 28
The display of the “frbs” package on CRAN. 30
The processes of an R package submission. 33
Workflow using PMML. 37
Membership functions of the “age” variable. 43
The components of the Mamdani model. 45
Learning and prediction phases of an FRBS. 49
A DT model for a binary classification problem. 66
The number of published articles containing the keyword Big

Data. 72
The media publishing articles that contain the keyword Big

Data. 73
The subject areas of published articles including the keyword

BigData. 73
The architecture of Apache Hadoop YARN. 78
The architecture of Apache Spark. 80
A survey on R packages for Big Data. 84

xiii

T LIST OF FIGURES
2.1 Main features in the “frbs” package. 91
2.2 Constructing an FRBS model from data and the reasoning

process (prediction) L L. 92
2.3 Constructing an FRBS model by human experts and the
TeasOning PrOCESS . « « ¢ v v v v v v v v i e e e e 93
2.4 The four hill function. 98
2.5 The plot of membership functions in the regression example. 103
2.6 The plot of membership functions in the classification example.106
3.1 The membership functions of “Variable.1.” 130
3.2 Workflow and interactions between “frbs” and “frbsJpmml”. . 139
3.3 Classes and their methods involved to predict new data in
frosdpmmlo 142
4.1 Models and their implementations in “RoughSets.” 161
4.2 Constructing the DecisionTable format from a file and data.frame.169
4.3 Generating a new decision table in the data pre-processing
“RoughSets.” 170
4.4 The learning and prediction steps based on rule-based classi-
fiers in “RoughSets”. L o oL 171
4.5 The learning and prediction steps based on nearest neighbor-
based classifiers “RoughSets”. 171
4.6 The workflow of data analysis using a rule-based classifier
based RST. 181
4.7 The workflow of data analysis using instance-based classifiers
based FRST. 184
5.1 Main modules included in the “SparkFernTreeR” package. . . 194
5.2 The general architecture of “SparkFernTreeR.” 196
5.3 Big Data processing on learning: The scenario “big training
data.” 199
5.4 Big Data processing on prediction: The scenario “big testing

data” and “big model.” L 200

LIST OF FIGURES v

9.5

5.6

Big Data processing on prediction: The scenario “big testing

data” and “small model.” Lo oL 201
Big Data processing on prediction: The scenario “small tes-
ting data” and “big model.” 202
The display of the “frbs” package in CRAN at http://cran.r-
project.org/package=frbs. L. 222

The display of the “RoughSets” package in CRAN at http://cran.r-
project.org/package=RoughSets. 227

List of Tables

2.1
2.2

2.3
24
2.5

2.6

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

The main functions of the “frbs” package.

Parameters of the methods selected for comparison for regres-
SION. e

Results obtained in the regression tasks.
Datasets considered for classification tasks.

Parameters of the methods selected for comparison for clas-
sification.

Results obtained in the classification experiments.
Comparison with other representations

Functions included in the basic concepts of “RoughSets” and
their references. oo oo

Functions included in the missing value completion in “Rough-
Sets” and their references.

Functions included in the discretization approaches in “Rough-
Sets” and their references.

Functions included in the instance selection in “RoughSets”
and their references.

Functions included in the feature selection in “RoughSets” and
their references. oo Lo

Functions included in the rule induction in “RoughSets” and
their references. Lo Lo o

Functions included in the nearest neighbor-based classifiers in
“RoughSets” and their references.

xvi

96

LIST OF TABLES TV

4.8

4.9

5.1
5.2
5.3

A comparison of “RoughSets” with other packages (Part: 1 of

) 189
A comparison of “RoughSets” with other packages (Part: 2 of

2) e 190
Part 1: The functions included in “SparkFernTreeR.” 197
Part 2: The functions included in “SparkFernTreeR.” 198
A comparison of “SparkFernTreeR” with other packages. . . . 213
Notes on the engineering software process of “frbs.” 224
Notes on the engineering software process of “RoughSets.” . . 228

Notes on the engineering software process of “SparkFernTreeR.”230

xviil

Table of Acronyms T
Table of Acronyms
FRBSs Fuzzy Rule-Based Systems 10
RST Rough Set Theory, 10
FRST Fuzzy Rough Set Theoryot 11
RFs Random Forests i 11
RFe Random Ferns i 11
CRAN The Comprehensive R Archive Network 11
DTs Decision Treesoouuuiiiiiiniiii e 12
PMML The Predictive Model Markup Language 13
GPL General Public Licenseo oL, 27
XML Extensible Markup Language 35
IEEE The Institute of Electrical and Electronics Engineers ... 35
TSK Takagi Sugeno Kangt 45
FRBCSs Fuzzy Rule-Based Classification Systems 47
WM Wang and Mendel’s Technique 49
FRBCS.CHI FRBCS Using Chi’s method 49
FRBCS.W FRBCS Using Ishibuchi’s Method with Weight Factor . .49
FNN Fuzzy Neural Networks, 50
ANN Artificial Neural Networks 50
ANFIS The Adaptive-Network-Based Fuzzy Inference System . .50
HYFIS The Hybrid Neural Fuzzy Inference System 50
GFS Genetic Fuzzy Systems, 50
GFS.THRIFT GFS Based on Thrift’s Method 50
GFS.FR.MOGUL GFS Based on the MOGUL Methodology 50
GFS.GCCL Ishibuchi’s Method Based on Genetic Cooperative Compe-
titive Learningo 50
FH.GBML Ishibuchi’s Method Based on Hybridization of GFS.GCCL
and Pittsburgh 50
SLAVE Structural Learning Algorithm on Vague Environment . 51
SBC Subtractive Clustering ..., 51
DENFIS Dynamic Evolving Neural Fuzzy Inference System 51
FIR.DM Fuzzy Inference Rules with Descent Method ol
FS.HGD FRBS Using Heuristics and the Gradient Descent Method
51
RDD Resilient Distributed Datasets 76

Introduccion

A. Planteamiento

Hoy en dia, se generan datos a un ritmo imparable en préacticamente
todos los &mbitos de la actividad humana. Los datos se producen en gran
cantidad, con una alta velocidad con formatos complejos y desde multi-
ples fuentes. Por ejemplo, se estdn generando datos digitalizados desde las
administraciones publicas, Internet de las Cosas (IoT, por ejemplo, GPS),
teléfonos moviles, PDAs, medios sociales, sensores, aplicaciones de negocios,
webs publicas, etc. Por otra parte, ademas del aspecto de la dimensién de
los datos, la mayoria de los datos contienen informacién incierta, ruidosa,
incompleta e irrelevante. Como las dos caras de una moneda, este fenémeno
ofrece dos lados opuestos. En primer lugar, las herramientas y algoritmos
disponibles tienen dificultades para manejar dichos datos de manera efi-
ciente. Por otro lado, esta situacién puede explotarse exitosamente si somos
capaces de extraer conocimiento a partir de todos esos datos. Estas circun-
stancias estan atrayendo a muchos investigadores y profesionales de todo el
mundo, interesados en desarrollar metodologias sisteméticas que permitan
manejar los datos de manera eficiente. Recientemente, el término “ciencia de
datos” (Data Science) se utiliza ampliamente para designar en este campo.

La Ciencia de Datos es el estudio que se centra en la extraccién de
conocimiento a partir de los datos [66]. Para extraer conocimiento til,
los datos se procesan de forma sistemdtica en varios pasos, tales como su
recopilacién, preparacién, andlisis, visualizacién, administracién y almace-
namiento de grandes cantidades de informacién [266]. Los cientificos de
datos utilizan técnicas y teorias de distintos ambitos del conocimiento. Por
ejemplo, aprendizaje automatico, que es el campo de estudio cientifico que
se centra en los algoritmos que son capaces de aprender de los datos [160],

2 Introduccidn

y es un componente importante para llevar a cabo el anélisis de datos. Del
aprendizaje automatico se usan muchos algoritmos para abordar distintas
etapas de la ciencia de datos, tales como el pre-procesamiento, modelado,
etc. Otros elementos relevantes en la ciencia de datos son las herramientas
informéticas y tecnologias, estadisticas, algoritmos de optimizacién, sistemas
de gestion de bases de datos y lenguajes de programacién.

En aprendizaje automatico, podemos encontrar muchos métodos para
la construccién de modelos predictivos. Puesto que los datos no siempre
son fiables, los enfoques deben ser robustos en el manejo de la informacién
imperfecta, imprecisa, con ruido y redundante. Entre las diversas propues-
tas cientificas, hay dos teorias que destacan en este ambito: la Teoria de
Conjuntos Difusos [306] y la Teoria de Rough Sets (RST) [213]. Ambas se
incluyen en el 4&mbito de la Inteligencia Computacional [72], que es una sub-
rama de la Inteligencia Artificial que estudia los mecanismos de adaptacién
con inspiracién lingiiistica o biolégica para desarrollar sistemas con compor-
tamiento inteligente en entornos complejos y cambiantes.

Los sistemas difusos constituyen una extension de la teoria de conjuntos
clésica surgida para modelar y representar el conocimiento humano. El
concepto conjunto difuso introduce un grado de pertenencia que en vez de
plantear sélo dos posibles valoraciones, miembros o no miembros, un objeto
puede ser clasificado en una categoria determinada, con un grado que puede
variar continuamente entre cero y uno. Por otra parte, el empleo de los
grados de pertenencia permite emplear los conjuntos difusos para representar
de forma efectiva el lenguaje natural, aquejado de vaguedad e imprecision
[307]. Sobre la base de los sistemas difusos, los sistemas basados en reglas
difusas (SBRDs), son representaciones del conocimiento experto humano
en términos de un conjunto de reglas difusas. En los SBRDs, en lugar de
utilizar valores numéricos, una regla contiene una expresiéon en forma “Si A
entonces B”, donde A y B son conjuntos difusos. Un beneficio importante de
SBRDs es que las representaciones basadas en conjuntos difusos son mucho
més féciles de ser interpretadas por humanos que las reglas cldsicas (es decir,
reglas numéricas).

RST fue introducida por Pawlak en 1982 [213] como una metodologia
para el andlisis de datos basado en la aproximacién de los conceptos en
sistemas de informacién. Se centra en torno a la nocién de discernibili-
dad: la capacidad de distinguir entre objetos, basada en los valores de sus
atributos. Dada una relacién de indiscernibilidad, podemos construir las
aproximaciones inferior y superior de los conceptos. Los objetos incluidos

A. Planteamiento 3

en la aproximacién mas baja se pueden clasificar con certeza como miem-
bros del concepto. En contraste, la aproximacién superior contiene objetos
posiblemente pertenecientes al concepto. RST se ha generalizado de muchas
maneras para abordar diversos problemas. En particular, en 1990, Dubois
y Prade [68] combinaron los conceptos de vaguedad expresada por los gra-
dos de pertenencia de los conjuntos difusos [306] e indiscernibilidad en RST
para obtener la teoria de Fuzzy Rough Sets (FRST). FRST permite una
pertenencia parcial de un objeto a las aproximaciones inferior y superior, y
por otra parte, la igualdad aproximada entre los objetos se puede modelar
mediante relaciones difusas de indiscernibilidad.

Otra herramienta que se requiere en la ciencia de datos es un lenguaje
de programacién para desarrollar bibliotecas de software. Por lo general, los
cientificos de datos trabajan en plataformas interactivas que permiten re-
alizar de forma relativamente facil tareas graficas, informes y anélisis. MAT-
LAB, Python, R, SAS y SPSS son lenguajes de programacion que cumplen
con estos requisitos, por lo que se pueden utilizar en el analisis de datos.
Por supuesto, cada uno de ellos tiene sus ventajas y desventajas. Todos
tienen comunidades amplias de usuarios que las emplean, pero en cuanto a
popularidad y uso una de ellas se ha convertido en el estandar de facto para
el andlisis de datos: R. Entre las principales ventajas de R destacan que
es un software de cédigo abierto —Python también es de cédigo abierto—
y tiene una comunidad sélida que produce y mantienen una gran cantidad
de paquetes, que estan disponibles en el Comprehensive R Archive Network
(CRAN). La popularidad de R entre los analistas de datos se constata a
través de una encuestarealizada por KDnuggets [152] que muestra que R
alcanza el primer lugar como el lenguaje de programacién utilizado para
andlisis/minerfa de datos/ciencia de datos durante los tltimos afios.

Por otra parte, como indicibamos anteriormente los datos recopilados
crecen a un ritmo vertiginoso. Este fenémeno ha dado lugar al término
“Big Data.” En 2012, la agencia Gartner [29] indicé: “Big Data es gran
volumen, alta velocidad y alta variedad de activos de informacién que ex-
igen, formas innovadoras y rentables de procesamiento de la informacion
para mejorar la comprensiéon y la toma de decisiones”. Hay dos cuestiones
relacionadas con Big Data. En primer lugar, actualmente las computadoras
y los algoritmos no puede manejar grandes conjuntos de datos de manera
eficiente. En segundo lugar, los sistemas de gestién de almacenamiento
actuales se enfrentan a esos mismos problemas. Han surgido multitud de
plataformas para plantear soluciones frente al almacenamiento y gestién de
datos en Big Data, pero entre todas ellas destacan dos: Apache Hadoop

4 Introduccion

[255, 199] y Apache Spark [308, 150]. Mientras Hadoop ofrece tres com-
ponentes principales: un sistema distribuido de archivos, un modelo de
programacién llamado MapReduce, y un sistemas de gestién de recursos,
Apache Spark ofrece un modelo computacional basado en el concepto cen-
tral de conjuntos de datos distribuidos resilientes (RDD). Ademds, hay un
paquete en R que integra R [124] con Apache Spark y que permite utilizar
mandatos R de manera distribuida. El paquete se llama “SparkR”(http:
//amplab-extras.github.io/SparkR-pkg/).

Como se mencioné anteriormente, en la era de Big Data, necesitamos
extender algoritmos convencionales para que puedan ser utilizados sobre las
plataformas de Big Data. Entre los diversos algoritmos conocidos existen
dos que se pueden extender de forma natural. Son random forest (RFS) [33]
y random ferns (RFE) [212]. El primero es un conjunto de métodos para
la construccién de un ensemble de arboles de decisién (DTS) [35] que se
generan a partir de bootstrap y caracteristicas aleatorias. El segundo, RFe,
es un método que emplea bootstrap y clasificaciéon Naive Bayes [212]. En
otras palabras, el método reemplaza DTs con ferns no jerarquicos basados
en la férmula de Bayes.

Por otra parte, a pesar de que los algoritmos de aprendizaje automaético,
tales como los basados en SBRD, RST, FRST, DTs, RF y RFe estan disponibles,
su uso en situaciones practicas no es un proceso sencillo. Las bibliotecas de
software para ciencia de datos son necesarias debido a las siguientes razones:

1. Dificultad de implementacion. Si bien en cada propuesta nueva de al-
goritmos y métodos éstos deben ser detallados de forma suficiente como
para permitir que un usuario interesado en implementarlas pueda hac-
erlo, no siempre es tan facil. Puede ocurrir que los usuarios no tengan
la habilidad o conocimiento necesario para lograrlo. O tal vez que
los autores no incluyeran detalles suficientes para producir una imple-
mentacion fiel. Una implementacién en software es una representacion
especifica de los métodos en una forma lista para ser usada.

2. Audiencia mads amplia. Una implementacion de un método en cédigo
fuente proporciona una forma alternativa de entender realmente los al-
goritmos. Esto se complementa con la documentacion que debe acom-
panar a cada paquete de software. Ademds, esto permitird el acceso a
los métodos a una audiencia mas amplia de usuarios. Por lo tanto, las
bibliotecas de software como las que se proponen en esta investigacion
ayudarian al usuario a realizar un analisis de datos con las técnicas
abordadas.

B. Objetivos)

3. Investigacion reproducible. Con el fin de verificar los resultados pub-
licados por los investigadores es necesario reproducir los experimentos
que se publican. Si el mismo software utilizado para el estudio ex-
perimental esta disponible, la verificacién se puede realizar con mas
precision y mas rapidamente.

4. Falta de una representacion portable. Mientras que los modelos pro-
ducidos con las técnicas consideradas pueden ser desplegados en distin-
tas plataformas, la utilizacion en un conjunto mas amplio de platafor-
mas podria ser mejorada si se definiera y desarrollase un formato de
representacion universal. Este formato estandar es una necesidad si
se desea compartir y comunicar los modelos con otras personas, como
por ejemplo, otro grupo de investigadores u otros usuarios de diferentes
departamentos de una organizacion.

5. Licencia de codigo abierto. El conocimiento y los resultados produci-
dos con fondos publicos deben estar universalmente disponibles. Esto
no es s6lo una buena idea, sino que también es un requisito para los
programas de investigacién de la mayoria de los paises y de las orga-
nizaciones publicas que sufragan la investigacion. Cuando se trata de
software, se han publicado multiples tipos de licencias “open-source”.
La mayoria de ellos permiten un uso libre que, basicamente, implica
a los usuarios a utilizar y extender el software publicado bajo esta
licencia.

De acuerdo con los parrafos previos, se requiere una investigacién centrada
en la implementacién e integracién de los algoritmos anteriores en bibliotecas
software de alta calidad y faciles de usar. Por tanto, los investigadores y los
profesionales que los usen pueden hacer frente a sus tareas de ciencia de
datos més eficazmente.

B. Objetivos

En general, esta investigacién tiene como objetivo implementar repre-
sentaciones y algoritmos de técnicas de andlisis de datos en bibliotecas de
software y diseniar un estdndar de representacion universal para algunos
modelos. Este objetivo general se puede desglosar en los siguientes:

1. Desarrollar paquetes en R para abordar tareas de andlisis de datos

6 Introduccidn

(concretamente, pre-procesamiento de datos, clasificacién y regresion)
basados en métodos de inteligencia computacional. El objetivo se cir-
cunscribe a dos técnicas principales:

(a) Sistemas basados en reglas difusas. Se pretenden desarrollar
representaciones y algoritmos de aprendizaje automatico para
SBRDs. Estos sistemas se dirigiran a la resolucién de problemas
de clasificacién y regresiéon. Ademaés de los procesos autométi-
cos, se ofrecerd funcionalidad para la construccién de SBRDs por
expertos humanos.

(b) Rough Sets (RST) y Fuzzy Rugh Sets (FRST). Se pretende desarro-
llar un paquete extenso con los principales algoritmos basados en
RST y FRST utilizados para el pre-procesamiento de datos (es
decir, discretizacién, seleccion de caracteristicas, y la seleccién de
instancias), clasificacién y regresién.

2. Para diseniar un estandar de representaciéon universal para SBRDs
basado en el Predictive Model Markup Language (PMML). Se com-
plementara con paquetes para manejar y explotar la representacion en
distintas plataformas.

3. Para desarrollar un paquete en R para el procesamiento de Big Data
que implemente dos algoritmos conocidos: RF y RFe. El paquete debe
ser interoperable con Apache Hadoop y Apache Spark.

C. Resumen

Para detallar cémo se han alcanzado los objetivos propuestos, esta tesis
se estructura en cinco capitulos principales, uno adicional con las principales
conclusiones y notas finales y, finalmente, tres anexos. A continuacion, se
presenta un resumen de los respectivos capitulos.

En el capitulo 1 se incluye una introduccién a cada tema relacionado con
la tesis y el estado de la técnica. En primer lugar, se explican los conceptos
de Ciencia de Datos. Un tema que estd fuertemente relacionado con la
ciencia de datos, el Aprendizaje Automético, se presenta en la Seccién 1.2.
Después de eso, se detallan el lenguaje R y su ecosistema, PMML, sistemas
difusos, RST y FRST, DTs y RFs, RFe, procesamiento de Big Data y sus
plataformas.

C. Resumen 7

El capitulo 2 pretende responder al Objetivo 1(a). El resultado obtenido
es el paquete de R “frbs,” basado en SBRDs, para abordar los problemas de
clasificacion y regresion. Este capitulo comienza con una introduccién al pa-
quete. Posteriormente, se indica la arquitectura del paquete y los detalles de
implementacién. Después se ilustra su uso. Le siguen estudios experimen-
tales sobre su eficacia y una comparacién con otras bibliotecas de software.
Por tltimo, se presenta de forma concisa un resumen del capitulo.

frbsPMML, que es una propuesta de formato estandar para representacién
universal de SBRDs basado en PMML. Se detalla en el capitulo 3, cuyo obje-
tivo es abordar el Objetivo 2. El capitulo se estructura en cuatro secciones.
Después de la introduccién de frbsPMML, se presentan en detalle las es-
pecificaciones de la representacién de SBRDs. Ademads, se presentan dos
modulos que proporcionan los motores de explotacién en R y Java. Las car-
acteristicas y los beneficios de frbsPMML junto con un resumen del capitulo
se discuten en las secciones finales.

El capitulo 4 detalla el trabajo realizado para alcanzar el Objetivo 1(b).
El resultado de este trabajo es el paquete “RoughSets”. Es un paquete de R
basado en RST y FRST para abordar las siguientes tareas: discretizacion,
seleccion de caracteristicas, seleccién de instancias, clasificacion y regresion.
Béasicamente, la estructura de este capitulo es similar a la del Capitulo 2.
Contiene una introduccién, la arquitectura del paquete y su implementacion,
ejemplos de uso, y una comparacién con otros paquetes. Por ultimo, se
presenta un breve resumen del capitulo.

En el capitulo 5, se presenta un paquete de R utilizado para el proce-
samiento de Big Data, que completa el tercer objetivo. Se centra en la
implementacion de algoritmos basados en RF y RFe. Este capitulo contiene
las siguientes secciones: una introduccion, la arquitectura e implementacion
de los paquetes y los ejemplos que muestran cémo utilizar el paquete. Por
ultimo, la seccién de resumen concluye el capitulo.

En el sexto capitulo se incluyen las observaciones finales, que se estruc-
turan en: restimenes generales, las publicaciones asociadas, y el trabajo
futuro.

Finalmente, los apéndices relacionados con “FRBS,” “RoughSets,” y “Spark-
FernTreeR” se presentan para proporcionar materiales detallados relaciona-
dos con la investigacién. En estos apéndices, se incluyen algunos datos
relacionados con el proceso de ingenieria del software seguido durante el de-
sarrollo del trabajo descrito en esta memoria. Después de eso, en la parte
final de la tesis aparece toda la bibliografia consultada durante la investi-

8 Introduccidn

gacion.

Introduction

A. Problem Statement

Nowadays, the flood of data can no longer be dammed so that it inun-
dates every corner of our daily activities. In other words, data have been
produced in a high amount, a high speed with complex formats and from
various sources. For example, we have been generating data from digitized
government administrations, Internet of Things (IoT, e.g., GPS), mobile
phone, PDA, social media, sensors, business applications, public webs, etc.
Furthermore, besides the aspect of data dimension, most data contain un-
certain, noisy, incomplete, and irrelevant information. As head and tail on
a coin, this phenomenon offers two opposing sides. First, it brings emerg-
ing problems since available tools and algorithms have difficulties to handle
such data efficiently. However, at the same time, this condition offers great
advantages if we are able to extract knowledge from data, e.g., to make a
better decision, predict a future action, describe a current situation, etc.
These problems and advantages have been attracting many researchers and
practitioners around the world to provide systematic methodologies dealing
with data efficiently. Recently, the term “data science” has become widely
used for expressing the research.

Data science is the study that focuses on knowledge extraction from
data [66]. In this study, to extract useful knowledge, data are systematically
processed in several steps, such as data collection, preparation, analysis,
visualization, management, and preservation of large collections of infor-
mation [266]. To accomplish an objective perfectly, data scientists involve
techniques and theories contributed by many fields. For example, machine
learning, which is the field of scientific study focusing on algorithms that
are able to learn from data [160], is a major component to perform data

9

10 Introduction

analysis. It promises a huge number of learning algorithms that can be
used for tackling various stages in data science, such as data pre-processing,
data analysis, etc. Other factors that should be considered in data science
are computing tools and technologies, statistics, optimization algorithms,
database management systems, and programming languages.

In machine learning, one can find many sophisticated methods for con-
structing predictive models. Since data are not always reliable, approaches
should be robust in handling imperfect, vague, noisy, and redundant infor-
mation. In the literature, there are two concepts promising these capabili-
ties: fuzzy systems [306] and rough set theory (RST) [213]. These concepts
are usually included in the term Computational Intelligence [72], which is
a sub-branch of Artificial Intelligence that studies adaptive mechanisms to
enable or facilitate intelligent behavior in complex and changing environ-
ments.

Fuzzy systems propose an extension of the classical set theory for mod-
eling and representing human knowledge. The concept introduces a degree
of membership which means that instead of just having two qualifications:
member or non-member, an object can be classified into a certain category
with a degree between zero and one. Therefore, fuzzy sets can be viewed as
a generalization of the classical sets. Furthermore, employing the degrees of
membership makes fuzzy set theory effectively works on natural languages
containing vagueness and imprecision [307]. Based on fuzzy systems, fuzzy
rule-based systems (FRBSs), which are methodologies to represent human
expert in a set of fuzzy rules, are introduced. In FRBSs, instead of involv-
ing numerical values, a fuzzy rule contains an expression in the form “IF A
THEN B” where A and B are fuzzy sets. A main benefit of FRBSs is that
the representations based on fuzzy sets are much easier to be interpreted by
human than classical rules (i.e., numerical rules).

RST was introduced by Pawlak in 1982 [213] as a methodology for data
analysis based on the approximation of concepts in information systems. It
revolves around the notion of discernibility: the ability to distinguish be-
tween objects, based on their attribute values. Given an indiscernibility
relation, we can construct lower and upper approximations of concepts. Ob-
jects included in the lower approximation can be classified with certainty as
members of the concept. In contrast, the upper approximation contains ob-
jects possibly belonging to the concept. RST has been generalized in many
ways to tackle various problems. In particular, in 1990, Dubois and Prade
[68] combined concepts of vagueness expressed by membership degrees in

A. Problem Statement 11

fuzzy sets [306] and indiscernibility in RST to obtain fuzzy rough set theory
(FRST). FRST allows partial membership of an object to the lower and
upper approximations, and moreover, approximate equality between objects
can be modeled by means of fuzzy indiscernibility relations.

Another tool that is required in data science is a sufficient programming
language in order to build a software libraries. Usually data scientists work
on interactive platforms so that plotting, summarizing, and analyzing can be
done in a relatively easy manner. MATLAB, Python, R, SAS, and SPSS are
programming languages met with these requirements, so they can be used
in data analysis. Of course, they promise some advantages along with draw-
backs at the same time; it depends on the tasks, objectives, and situations
at hand. The main advantages that are specific to R are that it is an open
source software — Python is also open source — and has a solid commu-
nity that contributes a huge number of packages, which are available at the
Comprehensive R Archive Network (CRAN). This statement is emphasized
by a survey conducted by KDnuggets [152] showing that R has been tak-
ing the first place for the programming language used for an analytics/data
mining/data science for the last years.

Furthermore, the flooding of data is not stopping any time soon; data go
on growing exponentially. Thus, the term Big Data was introduced by com-
puter scientists several years ago. In 2012, Gartner [29] says: “Big Data is
high-volume, high-velocity and high-variety information assets that demand
cost-effective, innovative forms of information processing for enhanced in-
sight and decision making.” There are two issues related to Big Data. First,
current computers and algorithm cannot handle massive datasets efficiently.
Second, current storage management systems face the same problems. There
are two famous frameworks available currently: Apache Hadoop [255, 199]
and Apache Spark [308, 150]. While Apache Hadoop offers three main com-
ponents: a distributed file system, the programming model called MapRe-
duce, and resource management systems, Apache Spark offers on in-memory
computational model based on the central concept of Resilient Distributed
Datasets. Additionally, there is an R package that integrates R [124] with
Apache Spark and enables native R commands in a distributed fashion,
named “SparkR” (http://amplab-extras.github.io/SparkR-pkg/).

As mentioned above, in the Big Data era, we need to extend conventional
algorithms so that they can be utilized on top of the Big Data frameworks.
Two methods that can be naturally extended are random forests (RFs) [33]
and random ferns (RFe) [212]. The first one is a set of methods constructing

12 Introduction

a model by assembling decision trees (DTs) [35] that are generated from
bootstrap samples and randomized features. Moreover, a DT is an algorithm
that constructs a tree by performing a recursive partition of the instance
space. Then, RFe is a method employing bootstrap sampling and Naive
Bayesian classification [212]. In order words, the method replace DTs with
non-hierarchical ferns based on Bayes’s formula.

Furthermore, even though machine-learning algorithms, such as those
based on FRBS, RST, FRST, DTs, RFs, and RFe have been available, us-
ing them in practical situations is not a straightforward process. Software
libraries for Data Science is a necessity because of the following reasons:

1. Difficulty of implementation. While new proposal for algorithms and
methods should be detailed with enough detail to allow an interested
reader to implement them, it is not always that easy. May the read-
ers do not have the skill or knowledge necessary to accomplish it. Or
maybe that the authors did not include enough detail to produce a
faithful implementation. An implemented software is a specific repre-
sentation of the methods in a way ready to use.

2. Wider audience. An implementation of a method in source code pro-
vides an alternative way to actually understand the algorithms. This
complemented with the documentation that should accompany every
piece of software. This will enable the access to the methods to a
wider audience of users. Thus, software libraries like the one proposed
in this research would help user perform data analysis with addressed
techniques.

3. Reproducible research. In order to verify the results published by re-
searchers it is necessary to reproduce the experiments they report. If
the very same software used for the experimental study is available,
the verification can be done more accurately and faster.

4. Lack of portable representations. While the models produced with
the techniques considered could be deployed in a number of different
platforms, the used along those platforms could be boosted if a univer-
sal representation format were defined and developed. This standard
format is a must if one wants to share the models and communicate
them with other people, just like other group of researchers or users
in different departments of an organization.

5. Open-source license. The knowledge and result produced out of public

B. Objectives 13

funds should be universally available. This is not only a good idea,
but also a requirement by most countries’ and public organizations’
research programs. When it comes to software a number of different
“open-source” license have been published. Most of them allow for a
free usage that basically entails users to use and extend the software
published under them.

According to the above explanation, a research focusing on implementing
and integrating the above algorithms into high quality and easy to use soft-
ware libraries is required. Thus researchers and practitioners that use them
can cope with their data science tasks efficiently.

B. Objectives

In general speaking, this research aims to implement several well-known
concepts and associated algorithms to deal with data analysis in software
libraries and to design a universal representation framework for some models.
This general objective can be described in detail as follows:

1. To develop R packages used for tackling tasks in data analysis (i.e.,
data pre-processing, classification, and regression) based on computa-
tional intelligence methods. The following are two concepts considered:

(a) Fuzzy rule-based systems (FRBSs). The research aims to imple-
ment models and several machine-learning algorithms based on
FRBSs for dealing with classification and regression. Further-
more, a functionality for constructing an FRBS model by human
experts is required to be implemented.

(b) Rough set theory (RST) and fuzzy rough set theory (FRST). This
objective is to implement several algorithms based on RST and
FRST used for data preprocessing (i.e., discretization, feature
selection, and instance selection), classification, and regression.

2. To design a universal representation framework of FRBS models based
on the predictive model markup language (PMML). It should be multi
platforms. To achieve this, prediction engines complying with the
representation would be developed.

14 Introduction

3. To develop an R package for Big Data processing that implements
two well-known algorithms: RFs and RFe. The package should be
interoperable with Apache Hadoop and Apache Spark.

C. Structure of the Document

To describe how the proposed objectives have been reached, this thesis is
organized in five main chapters, another one with concluding remarks, and
three appendices. In the following, a summary of each chapter is presented.

In Chapter 1, an introduction to each related topic and state of the art
are discussed. Firstly, we explain concepts of data science. A topic that is
strongly related to data science, which is machine learning, is presented in
Section 1.2. After that, the R language and its ecosystem, PMML, fuzzy
systems, RST and FRST, DTs and RFs, RFe, Big Data processing and its
platforms are discussed.

Chapter 2 aims to answer Objective 1(a). The obtained result is the R
package “frbs”, based on FRBSs, for dealing with classification and regression
problems. In this chapter, an introduction to the package is firstly explained,
and the package architecture and implementation details follow. The usage
of the package, experimental studies, and a comparison with other software
libraries are explained as well. Finally, it concisely presents a summary of
the chapter.

frbsPMML, which is a universal representation framework for FRBSs
based on PMML, is presented in Chapter 3. The chapter is intended to
fulfill Objective 2. There are four sections included in the chapter. After
introducing frbsPMML, specifications of the representation of FRBS models
are presented in detail. Furthermore, we present two modules providing
prediction engines that comply with the standard framework. Features and
benefits of frbsPMML along with a summary of the chapter are discusses in
the final sections.

Chapter 4 attempts to carry out Objective 1(b) by presenting the “Rough-
Sets” package. It is an R package based on RST and FRST to cope the
following tasks: discretization, feature selection, instance selection, classi-
fication, and regression. Basically, the structure of this chapter is similar
to that of Chapter 2. It contains an introduction, the package architecture
and its implementation, examples of usage, and a comparison with other

C. Structure of the Document 15

packages. Finally, a brief summary of the chapter is presented.

In Chapter 5, an R package used for Big Data processing is presented
for completing the third objective. It focuses on implementing algorithms
based on RFs and RFe. This chapter contains the following sections: an
introduction, the package architecture and implementation and examples
showing how to use the package. Then the summary section concludes the
chapter.

The sixth chapter includes the concluding remarks, that are structured
in: general summaries, the associated publications, and future work.

Finally, the appendices related to “frbs,” “RoughSets,” and “SparkFern-
TreeR” are presented to provide detailed materials related to the research.
In these appendices, several data related to the software engineering process
followed during the development of the research are included. After that,
all the consulted references are listed in the end of the thesis.

Chapter 1

State of the Art

This chapter reviews the main topics involved in the research. Firstly, we
introduce two important aspects that are related to each other: data science
and machine learning. After that the R programming language and its
ecosystem is presented. Moreover, an explanation on how to develop a
package in R is also depicted. Next, we briefly introduce PMML and its
benefits for providing interoperability. For machine-learning methods, we
discuss several algorithms included in FRBS, RST, FRST, DTs, RFs, and
RFe that will be implemented in this research. Finally, a brief background
and platforms used for the Big Data processing are presented.

1.1 A Gentle Introduction to Data Science

A well known aphorism says: “Who ever control information and knowl-
edge, will actually rule the world.” Recently, this proverb is closer to the
reality, especially from the business perspective, one can realize this by hav-
ing a look at the following examples. Google become the most popular
website after providing the search-engine application for 1.17 billion people.
By applying sophisticated algorithms for recognizing patterns of friendship
relationships, Facebook and LinkedIn are the biggest players providing social
media. Amazon gains many benefits from retail-business transactions, not
only from the transactions but also from knowledge that is extracted from
customer database and their behaviors. Therefore, it can be seen clearly that
analyzing data is required to be ahead of the competence. Unfortunately,

16

1.1. A Gentle Introduction to Data Science 17

it is not always an easy work because of some reasons. For example, data
can be represented in many formats (e.g., structured and unstructured),
generated from various sources (e.g., sensors, mobile phones, webs, etc.),
and contain noisy, redundancy, irrelevance, and uncertainty. Therefore, a
systematical study should be done to extract knowledge and useful informa-
tion from data so that we can make a better decision, predict future events,
identify and describe unseen patterns, etc. Data science aims to tackle these
objectives.

Several definitions of data science have been coined by researchers in
several disciplines. In the study [113], data science is not only a synthetic
concept to unify statistics, data analysis, and their related methods but also
comprises its results. Basically, it includes three steps: design for data,
collection of data, and analysis on data. Data science can be also defined
as an emerging area of work concerned with the collection, preparation,
analysis, visualization, management, and preservation of large collections of
information [266]. Furthermore, this study mentions that there are the four
A’s of data: data architecture, data acquisition, data analysis, and data
archiving. More general definition provided by [66] states that data science
is the study that focuses on extraction knowledge from data. Furthermore,
an introduction to data science by considering the history perspective can
be found in [227].

In detail, the study in [156] describes the activities of data scientists as
follows:

e Data collection:
1. Data engineering platform: building a system required for col-
lecting data from multiple sources continuously.

2. Telemetry injection: inserting instrumentation code to gather
software execution and usage profiles.

3. Experimentation platform: developing a system for supporting
experimentation with various software.
e Data analysis:
1. Data merging and cleaning: focusing on joining data from differ-
ent sources, dealing with missing values, and incomplete data.

2. Sampling: selecting a subset of available data by considering be-
havior of complete data.

18 Chapter 1. State of the Art

3. Data shaping including selecting and creating features: trans-
forming original data into a user-defined format.

4. Defining sensible metrics: building measurements that are sensi-
ble to data consumers.

5. Defining ground truths: defining class labels and scenarios of
anomalies.

6. Building predictive models: building a model used for prediction
by employing machine learning, data mining, statistics, etc.

7. Hypothesis testing: determining a hypothesis and doing a test of
it based on statistical methods.

e Use and dissemination:

1. Operationalization of predictive models: integrating predictive
models into software products and systems by performing right
models at a right condition.

2. Building automatic systems: defining automated actions and trig-
gers for different situations of predictions.

3. Translating insight and models to business values: delivering
the value of insights and predictive models using domain-specific
terms to end users.

According to Conway [51] as in Figure 1.1, data science is an interdis-
ciplinary field that requires hacking skills (i.e., programming), math and
statistics knowledge, and substantive expertise in a field of science. Fur-
thermore, machine learning, which will be explained in the next section, is
a major component that provides important contributions for data science.
Other factors that should be considered in data science are computation
tools and technologies, optimization algorithms, database management sys-
tems, etc. Furthermore, a capability to understand the context of problems
at the hand is also required by data scientists.

1.2 Machine Learning

This section briefly explains about concepts of learning in general. Then,
definitions of machine learning and its applications are presented.

1.2. Machine Learning 19

\\\9
9 Machine
QQ Learning Iz,/

r
'9
209% Bl
o 1'0“! o,&q,

Substantive
Expertise

Figure 1.1: The data science venn diagram [51].

1.2.1 Learning

For many years, the learning process in the organisms, such as humans
and animals, has been attracting many researchers, especially psychologists.
It can be understood because we have been doing it since our childhood.
For example, scientists study how we can speak, walk, swim, write, and
etc., which results out of our learning from people around us. Furthermore,
the ability of learning is not exclusive of humans, but animals and other
organisms also have it. With good training, a dog can help humans to do
some jobs, such as to pick up newspapers, to follow some instructions, etc.
These daily life activities challenge scientists to understand what learning
is.

There exists two well-known definitions of learning: behaviorism and
constructivism. These theories differently explain the main components and
processes involved in learning. The first one defines learning as changes
in the behavior of an organism that are the result of regularities in the
environment [256, 257]. A simple example describing the definition is on dog
training. A dog will be fed if it can do certain activities, such as sit and jump,
otherwise we do not give it anything. Therefore, the behaviorism theory is
quite related to reinforcement learning containing two components: reward
and punishment. The second perspective is called constructivism and refers
to a view on learning focused on how organisms actively construct knowledge

20 Chapter 1. State of the Art

Repetition Forgotten

Forgotten T

T) Encode
S P Long-Term
Environmental Mzr::))ry' Attention Short-Term Memory/
m ; v - Memory/Working Permanent
Input Visual, Memory: Momory

Auditory, etc. : P store
<
Retrieval
Response
Output

Figure 1.2: Information processing model [17].

out of experiences [223]. In other words, learning is a process to generate
and construct knowledge from an interaction between their experience and
minds. According to this theory, there are two processes involved, which are
assimilation and accommodation. Assimilation means to incorporate a new
experience with existing knowledge without changing its global structure.
This may happen when the experience is aligned with the knowledge. For
example, a preschool child who already understands the concept of fish might
initially label any animal living in the water with the term “fish,” even for
a whale or a dolphin. In contrast, accommodation refers to the process of
integration and adaptation of new experiences by utilizing them into existing
knowledge effectively. A child who initially generalizes the concept of fish,
which is any animals living in the water, eventually revise the concept by
adding other characteristics of fish, as e.g., any animals living in the water
having gills.

Another interesting concept related to the learning process is information
processing theory. It is a theory addressing how humans process, store,
structure, and respond to information they receive through their senses [201].
A component that becomes the main concern on information processing
model is a memory. From among available models, Atkinson and Shiffren’s
model [17] of the role of memory is the most popular in an information
processing system as illustrated in Figure 1.2.

It can be seen that sensory memory provides initial screening and pro-
cessing of incoming stimulus for very brief periods of time, usually on the
order of 1/2 to 3 seconds. The amount of information held at any given time
in sensory memory is limited to five to seven discrete elements, such as voice,
color, and human faces. After stimuli enter sensory memory, they are either

1.2. Machine Learning 21

forwarded to working memory or deleted from the system. It is a term that
is used to refer to a multi-component temporary memory system in which
information is assigned meaning, linked to other information, and essential
mental operations such as inferences are performed. Duration of retention
of working memory is 5 up to 15 seconds unless some type of mental re-
hearsal occurs. The amount of information stored in the memory is limited
to 7 up to 9 units of information. The last memory is long-term memory,
which is a memory used for placing all previous perceptions, knowledge, and
information learned by an individual. Unlike sensory and working memory,
long-term memory is not constrained by capacity or duration of attention
limitations.

1.2.2 Machine Learning

Basically, learning process in organisms, which was explained above, is
mimicked for learning on machine. By duplicating this process, we expect
that the machine is able to perform a complicated job as we do through the
learning process, such as pattern recognition, decision making, reasoning,
etc. Until now these tasks represent open challenges to scientists even though
many efforts have been proposed to reach closer to the goal. For example,
after the human chess champion Garry Kasparov won in 1996 against an
IBM computer called IBM Deep Blue, on May 11, 1997, the upgraded version
of Deep Blue, involving reasoning and other techniques, beat the world chess
champion after six-game match: two wins for IBM, one for the champion
and three draws [117]. Another task showing that machine learning still falls
behind human ability is on pattern recognition. For example, the study in
[167] attempts to recognize a pattern (e.g., face, cat, etc) by employing a
cluster containing 1000 machines (16,000 cores) for three days in the training
step.

Before proceeding further, it would be better to discuss what machine
learning is. It can be defined as the field of scientific study focusing on algo-
rithms that are able to learn from data [160]. According to the definition, it
can be seen that since we are working on machines, there are several com-
ponents on learning that are different from organisms. Firstly, on machines
instead of working with mind, we use algorithms as the main component on
learning. Furthermore, they are not aimed as fixed procedures, but designed
to extract knowledge using induction from data automatically. Another im-
portant aspect that needs to be prepared is data. In other words, machine

22 Chapter 1. State of the Art

learning only considers a specific input dataset that is already prepared as
parameters for dealing with an associated task.

Another well-known definition of learning proposed by Tom M. Mitchell
is that “A computer program is said to learn from experience E with respect
to some class of tasks T' and performance measure P, if its performance at
tasks in T', as measured by P, improves with experience E.” [195] It means
that learning involves three features related to each other: the class of tasks,
the measure of performance, and the source of experience. For example, on
fingerprint recognition we have the following components:

e Task T': recognizing and classifying fingerprint
e Performance measure P: percent of fingerprint correctly classified.

e Training experience E: a database of fingerprint with given classifica-
tions.

It should be noted that algorithms will repeatedly improve performance by
considering training experience E on the task T until the desired perfor-
mance is reached.

Furthermore, in order to accomplish given tasks, a comprehensive strat-
egy needs to be developed so that problem solving can be achieved effectively.
Generally, there are two big steps on machine learning: training and predic-
tion steps. Sometimes these processes can be conducted at the same time
on one module, but we often recognize them as two separated stages.

The training step aims to extract knowledge by conducting learning from
data. Therefore, it is also called the learning stage. Figure 1.3 shows com-
ponents involved in the learning step adopted from [2]. It can be seen that
the training dataset (D) contains a vector of the input variable x and y;
representing the output variable!. The input-output examples in the train-
ing data define an unknown function f mapping the input space X to the
output space Y, so that y; = f(x;). The next component involved is learning
methods. These algorithms mainly search the suitable hypothesis function
g, which is a good guess of the unknown target function f, that is obtained
from a set of hypotheses H. According to the explanation, we can say that
learning is actually a process to approximate the function f based on the
training data. Moreover, because available training data are limited and
searching all members of the hypothesis set is impossible, learning can be

INoted that we consider supervised learning in this case

1.2. Machine Learning 23

Unknown real target
function
f: X oY

v
Training data (D)
(x1, y1), (x2,¥),, (XN, YN)

Learning method, Predicted hypothesis
e.g., ANN, frbs, tree, etc (g=f)
I
Hypothesis set (H),

e.g., linear, quadratic, etc

Figure 1.3: Basic components on the learning step [2].

seen as generalization as well. In addition to the predicted function g, we
can define it as a model/knowledge represented by other formats, such as
based on rules, cluster center, instances, etc.

After obtaining the model from the previous step, we perform the pre-
diction stage on new data to get predicted values. Figure 1.4 shows that the
testing data T are predicted by a prediction engine with considering the ob-
tained model. Usually we perform the prediction step for the two following
objectives: fitting model and prediction. The first one is aimed to vali-
date and improve our model by using a part of the training data as testing,
whereas on the later we use new data whose output values are unknown.

By looking at the two basic processes explained above, machine learn-
ing is effectively used and it will produce a sophisticated result when the
following criteria can be fulfilled:

e Representative data are available. It is an important aspect required
when working with machine learning. Without representative data, it
will be impossible to produce a good model. Even though in practical
situations, it is also difficult to obtain perfect data as we wish. Some-
times available data are quite limited, but other cases data overflow

24

Chapter 1. State of the Art

Predicted hypothesis/
model/knowledge

Testing data (T) |

Predicted values

Prediction Engine N oa .
g (y1,92,, ¥»)

(t1, t2,, tp)

Figure 1.4: Basic components on the prediction step.

so that we are confused what we are looking for.

e Patterns exist on training data. Since basically a learning algorithm

discovers and exploits patterns within training data, the existence of
them is a must. It is represented by a function mapping input variables
to the output or by other representations. Therefore, it is reasonable
that machine learning does not produce a good model when data are
generated in a random way.

e A mathematical formula is difficult to be constructed. Machine learn-

ing attempts to obtain a relationship on the input-output examples
though from mathematical perspective the functions is difficult and
complicated to be found. In contrast, if we have data that are al-
ready known their hypothesis function, performing machine learning
becomes wasting the time. Of course, it still produces a result even
though not so accurate as calculation using the mathematical equation.

1.2.3 Application Areas

This section briefly discusses applications of machine learning. Some

examples of its implementations are provided on each type.

Supervised Learning

Definition. The supervised learning task consists of constructing a model

that maps input values to the output ones on available training data.

1.2. Machine Learning 25

It is clear here that we need to supply training data containing input and
output values. Moreover, the observations are often known as instances/ex-
amples, the explanatory variables are termed features or input ones (usually
grouped into a feature vector), and the output is called the response variable.

There are two types of problems that can be solved through supervised
learning:

e Classification: In this task the available training dataset contains a cat-
egorical output variable. In other words, the task is to learn a mapping
from inputs x to outputs y, where y € {1,...,C}, with C being the num-
ber of classes. For instance, let us consider the human face recognition
problem. In this case the training dataset is a collection of images
of human faces and their respective ids. Other cases can be found in
the literature e.g., credit risk domain [59], fingerprint matching [106],
the classification of cloud in satellite imagery [146], and forecast the
recruitment of seven fish species of North East Atlantic [76].

e Regression: It is just like classification except the output variable takes
real values. Here are some examples of real-world regression problems:
a local forecasting of daily global horizontal irradiation (GHI) [16],
prediction oil price [85], and financial time series data, e.g., IBM stock
daily close price data [41].

Unsupervised Learning

Definition. The unsupervised learning task consists of constructing a model

from training data that do not contain output values.

A model is built by deducing structures present or finding patterns in
the input variables. Techniques in unsupervised learning are association rule
identification and clustering. The former leads to the discovery of associa-
tions and correlations among available variables. For instance, in analysis of
customer buying habits one can discover that customers who buy milk, will
likely buy bread on the same trip to the supermarket as well. Clustering
is a process of grouping a set of objects so that members of a cluster are
more like each other than they are like members of a different cluster. The
following are some real cases of clustering: the design and implementation
of crime detection and criminal identification for Indian cities [274], early

26 Chapter 1. State of the Art

detection of lung cancer risk [7], and analysis of cellular phenotypes in large
imaging data sets [311].

Semi-supervised Learning

Definition. The semi-supervised learning task consists of constructing a
model from training data where a small set of input-output examples are

available and the remainder only includes inputs.

It can be seen that basically it is a combination between the super-
vised and unsupervised learning. In this case, the data set x = (x;)je[n) can
be divided into two parts: the examples x; = (x1,...,%;), for which labels
y; = (¥1,...,y;) are provided, and the examples x;, = (x741,...,%14y), the la-
bels of which are not known [44]. The goal of the task is to define predicted
values (e.g., labels/classes) for the unlabeled examples. Applications of the
semi-supervised learning are as follows: text classification with universum
algorithm [173], face recognition [88], and improvement the quality of mag-
netic resonance brain tissue segmentation [224].

Reinforcement Learning

Definition. The reinforcement learning task consists of constructing a model
by providing stimulus on an environment to which the model must respond

and react.

In this case, the training data do not contain the target output, but
instead contains some possible output along with a measure of how good
that output is. In contrast to supervised learning where the training exam-
ples were of the form (input, correct output), the examples in reinforcement
learning are of the form: (input, some output, grade for this output) [2]. We
can find implementations of reinforcement learning as follows: e.g., the card
game [19], the RoboCup simulated soccer [270], and the area of transporta-
tion and traffic engineering and specifically in intelligent transport systems

[1].

1.8. R Language and Ecosystem 27

1.3 R Language and Ecosystem

1.3.1 An Introduction to R

R is a programming language and software environment that provides
a powerful interactive environment for scientific computing, data analy-
sis, visualization, modeling, machine learning, high performance comput-
ing, statistics, etc [124]. It was developed by R. Ihaka and R. Gentleman
and released under the Free Software Foundation’s General Public License
(GPL) license. It can be run in different hardware platforms and with dif-
ferent operating systems. Currently it can be installed on Linux, Mac OS
X, Solaris, and MS Windows. Now, it is currently maintained and devel-
oped by the R Development Core Team. Furthermore, regarding a survey
conducted by KDnuggets [152], R takes the first place for the programming
language used for an analytics/data mining/data science in 2015 as shown
in Figure 1.5.

From the programming language perspective, the R language has some
characteristics and offers advantages, as follows [296]:

e It can be used in iterative and batch modes. For example, the inte-
grated development environment (IDE) RStudio provides a sophisti-
cated editor for developing R in the interactive way. In the batch mode,
we can run R with input from infile and send output (stdout/stderr)
to another file by using the command line environment.

e It provides complete data structures to ease data processing. For ex-
ample, list is an R object that allows to include heterogeneous data
types (e.g., matriz, vector, list, etc). For representing data in the ta-
ble format, there exists two types: matriz and data.frame, where the
first is used to collect objects having the same structure, whereas we
can include different types in data.frame. Furthermore, R provides
many strategies for manipulating data, e.g., subsetting, merging, and
concatenating.

e [t supports procedural, functional, and object-oriented programming
languages. Especially for functional programming, R provides the fol-
lowing primitive functions: e.g., Map(), Reduce(), and the *apply()
family. Moreover, there are three techniques for working on the object-
oriented programming, which are S§3, S4, and reference classes.

28

Chapter 1. State of the Art

meonths for a real project? [2758 voters]

What Analytics, Big Data, Data mining, Data Science software you used in the past 12

Legend: Red: Free/Open Source tools
Grean: Commercial tools
Fucl'_lgia:_Hadmp.’_BIg Data tools

R (1293), 3.6% alone

| % users in 2015
I % users in 2014

| m— % users in 2013

.
. kiR

| — 3T.4%
RapidMiner (870), 13.7% alone

SCQL (853), 0% alone | N 0.5%
I 75 %
na

Python (837), 0% alone

Excel (631), 0% alone
KNIME (553), 6.7% alone

Hadoop (507), 0% alone

Tableau (341), 0% alone

SAS base (313), 0.6% alone

Spark (311}, 0% alone

Figure 1.5: A survey of predictive analytics/data mining/data science soft-

ware conducted by [152] in 2015.

e The performance of modules can be improved by using codes written

in the C, C++, and Fortran languages.

R provides complete and mature primitive functions and their doc-
umentations. The language is focused on statistical computing and
graphics. For example, R provides binom(), anova(), and summary()
that are used for calculating binomial distribution, ANOVA, and sta-
tistical summary (i.e., minimum, first quartile, median, etc), respec-
tively.

R has been growing exponentially. Recently, there are over 6000 pack-
ages for dealing with various tasks. These packages are built by many

1.8. R Language and Ecosystem 29

active contributors from academics and industries.

e It is an open source and free language and runs on multiple platforms
(i.e., Linux, Mac OS X, Solaris, and MS Windows). Because of these,
it has been attracting many people to create a lot of community on
Internet. For example, in order to get help from experts, we can go to
the Rhelp mailing list (https://stat.ethz.ch/mailman/listinfo/
r-help), stackoverflow (http://stackoverflow.com/questions/tagged/
r), subject-specific mailing lists like R-SIG-mixed-models (https://
stat.ethz.ch/mailman/listinfo/r-sig-mixed-models) and ggplot2
(https://groups.google.com/forum/#!forum/ggplot2).

Besides the benefits explained above, R offers a suitable ecosystem for
scientists, engineers, and companies to contribute by developing packages,
joining in forum discussions, etc. That is why R is constantly growing and
now provides a wide variety of statistical and graphical techniques, as well
as modules in many other areas, such as data mining, machine learning,
pattern recognition, bioinformatics, and other fields.

1.3.2 The Comprehensive R Archive Network

Mostly, packages developed in the R framework are included in the fol-
lowing repositories: CRAN and the Bioconductor project. CRAN, which can
be found at http://cran.r-project.org/, is maintained by the efforts of
volunteers (the “CRAN team”) and the resources of the R Foundation and
the employers of those volunteers (WU Wien, TU Dortmund, U Oxford,
AT&T Research). Then, Bioconductor (http://www.bioconductor.org/)
is an open source, open development software project to provide R tools
for the analysis and comprehension of high-throughput genomic data. The
Bioconductor project started in 2001 and is overseen by a core team, based
primarily at the Fred Hutchinson Cancer Research Center, and by other
members coming from US and international institutions.

Now, there are over 6000 packages available in CRAN which are classi-
fied into more than 30 task views. For instance, the task view of “Machine
Learning and Statistical Learning” contains more than 30 packages related
to learning methods, e.g., neural networks, recursive partitioning, RF's, sup-
port vector machines, kernel methods, etc. Other task views that provides
many useful packages for engineering and industries are time series analysis,
high-performance and parallel computing, analysis of ecological and envi-

30 Chapter 1. State of the Art

frbs: Fuzzy Rule-based Systems for classification and Regression Tasks

This package implements finctionality and various algorithms to build and use fuzzy rule-based systems (FRBSs). FRBSs ar
representing the reasoning of human experts in a set of IF-THEN rules, to handle real-life problems in, e.g., control, predicti
also known as fuzzy inference systems and fuzzy models. During the modeling of an FRBS, there are two important steps the
there exists a wide variety of algorithms to generate fuzzy IF-THEN rules automatically from numerical data, covering both s

CRAN neuro-fuzzy techniques. clustering methods, genetic algorithms, squares methods, etc. Furthermore, in this version we provid
Mirrors Model Markup Language (PMML). for representing FRBS models. PMML is an XML-based language to provide a stand:
What's new? Therefore, we are allowed to export and import an FRBS model to/from frbsPMML. Finally, this package aims to implemer
Task Views FRBS modeling to the R community.
Search
Version® 3.0-0
ﬁl;;ut}l Suggests: class, e1071, XML
omepage ished 2015-01-
The R Journal Published: 2015-01-16
Author: Lala Septem Riza, Christoph Bergmeir, Francisco Herrera, and Jose Manuel Benitez
Software Maintainer: Christoph Bergmeir <c bergmeir at decsaiugr.es>
M License: GPL-2 | GPL-3 | file LICENSE [expanded from: GPL (= 2) | file LICENSE]
R Binaries URL: hitp://sci2s uer es/dicits software FRBS
Packages
Othies NeedsCompilation: no
In views: Machinel earning
L cumeniation CRAN checks: frbs results
Manuals
FAQs Downloads:
Contributed
Reference mamal fibs pdf
Package source: fibs 3.0-Ofargz
‘Windows binaries: 1-devel fibs 3.0-0.zip, r-release: fibs 3.0-0.zip, r-oldrel fibs 3.0-0.zip

OS X Snow Leopard binaries: r-release: frbs 3.0-0.tgz, r-oldrel: ftbs 3.0-0.tgz
OS X Mavericks binaries: r-release: frbs 3.0-0.tgz
Old sources: frbs archive

Figure 1.6: The display of the “frbs” package on CRAN.

ronmental data, and graphics displays and dynamic graphics and graphic
devices and visualization. Furthermore, CRAN has a standard display of R
packages on its website. For example, Figure 1.6 shows the display of the
“frbs” package in CRAN. It can be seen that there are several parts on the
CRAN page. Firstly, a title of the package is presented on the top; In this
case, it is “frbs: FRBSs for Classification and Regression Tasks.” Further-
more, we can also find: description, version, suggested packages, authors,
maintainer, license, manual in the pdf format, and package source. From
the user perspective R packages included in CRAN are easy to be installed
in users’ R environment, which is by calling the function install.packages().
CRAN is replicated through a network of mirrors around the globe.

The quality of many packages is backed through the following highly
reputed academic journals: Journal of Statistical Software (http://www.
jstatsoft.org/), the R Journal (http://journal.r-project.org/), and
Bioinformatics (http://bioinformatics.oxfordjournals.org/). These
journals have been publishing many articles related to R packages con-
tributed in the repositories.

1.8. R Language and Ecosystem 31

1.3.3 Development of R Packages

A key factor for the good quality of packages in R is that every package
submitted into the repositories is checked both in automatic and manual
fashions and must meet a standard quality. This section explains a work flow
that should be taken into account by developers, who want their package to
be included in CRAN.

An R package is a collection of functions that attempts to deal with
problems based on a particular method or concept or set of them. One
package usually involves many algorithms and techniques. The structure of
a package is simply a directory that has the same name as the package and
the following contents [234, 235, 236]:

e A filenamed DESCRIPTION with descriptions of the package, author,
and license terms in a text format that is readable by computers and
by people. Every package has to provide this file.

e A man/ directory that contains documentation files of each functions
included. These files are in the .Rd format and can be read by typing
the help() function.

e An R/ directory that comprises R code. So, it is obvious that this
directory is important since all functions are stored in it as files with
the extension .R.

e A data/ directory storing datasets embedded in the package.

e A sr¢/ directory that stores the C, C++, and Fortran code. If we do
not have the embedded code, this directory is not needed.

Furthermore, a good R package needs to present a complete and com-
prehensive manual. In general speaking, the manual contains several com-
ponents as follows:

e Global descriptions about the packages on the first page such as Main-
tainer, License, Title, Author, Description, Version, etc.

e Short explanation corresponding to a function. Usually it contains
Description, Detail, Usage, Arguments, Value, References, and Exam-
ples. The Usage, Arguments, and Value parts are used to explain a
signature, input parameters, and output values of the associated func-
tion. In case we implement a particular algorithm proposed in articles,

32 Chapter 1. State of the Art

references can be put on Reference. Lastly, the most important part
is Framples containing executable unit tests. It is recommended to
provide it for each function. Because every time we make a change on
the code, this part will be executed to be unit testing on the building
phase.

e Other information regarding an introduction to algorithms and con-
cepts.

Currently the manual can be generated automatically by using the “Roxy-
gen2” and “devtools” packages.

Processes of creating the R package can be illustrated as in Figure 1.7.
First, a directory with the same name as the package name is created. It can
be done by two ways, which are executing package.skeleton() and creating
manually by users. After that, we need to create and write the DESCRIP-
TION file. All functions involved in the package with their documentations
are saved in the R/ sub folder with the extension .R. After writing all parts
of the documentation, we generate .Rd files by using “Roxygen2” or “dev-
tools”. Checking, building, and testing need to be performed to ensure the
package as intended perfectly. On this stage, we may do debugging and
refining functions repeatedly. The final step before submission to CRAN,
final checking by executing R CMD check -as-cran should be done. Actu-
ally, this step aims to check whether the package has met with a standard
quality required by CRAN.

As we mentioned above that one remark showing how packages in R are
kept in good quality is that every package submitted into the repository is
checked manually and must meet a standard quality. The following are some
items that will be checked by R CMD check -as-cran:

e checking for the file DESCRIPTION,

e checking package subdirectories

e checking whether the package can be installed,
e checking R files for syntax errors,

e checking R code for possible problems,

e checking Rd files,

e checking for missing documentation entries,

1.3. R Language and Ecosystem

38

Generating directories of the R
package

package.skeleton()| Manual

|

Writing the
DESCRIPTION file

v

Writing functions and
save them as .R

Writing manual for
each function

A

A4

Generating manual
in .Rd files

A4

Checking the package
by executing

R CMD check
A 4
Checking the package as Testing and - .
on CRAN by executing ¢— performing —— Bu(l)lfd;gg agérlz:taéler
R CMD check --as-cran experiment studies P 9

!

Submitting the
package to CRAN

Figure 1.7: The processes of an R package submission.

e checking for code/documentation mismatches,

e checking examples,

34 Chapter 1. State of the Art

e checking PDF version of manual.

CRAN requires us to obtain the values OK, which means there is no a part
on the above items that gets warnings and NOTE. For specific problems,
CRAN’s maintainers can be also check a new R package manually. There-
fore, to fulfill all requirements is mandatory.

1.4 Predictive Model Markup Language

1.4.1 Introduction

Due to the complexity of problems faced today, researchers and practi-
tioners deal with them by proposing and using a wide variety of methods
implemented in various software libraries. This phenomenon leads us to a
situation where so many kinds of software are available for use. Next, when
using various packages having different specification of input and output
data, another problem arises, which is interoperability. As interoperabil-
ity is an important issue not only in industry cases but also for academic
purposes, this is a shortcoming that we address with our work.

For academic purposes, when proposing a new algorithm, it is important
to perform an experimental study and then provide a comparison with other
related approaches, to analyze the behaviour and performance of the new
technique. One of the critical issues regarding this process is that it typically
requires to understand and analyze different formats of models produced by
various software libraries. Naturally, it is difficult to make a comprehen-
sive comparison, e.g., according to the interpretability perspective. And
even further processing steps involving the models, such as assembling and
aggregation, are almost impossible. Therefore, we see that a universal rep-
resentation framework is urgent to be designed and implemented, especially
for the academic research community. Another advantage of the universal
representation is that it promotes reproducible research [221] as research
results can be archived, distributed, replicated, and reproduced easily in a
standard format. In other words, multiple research groups using different
platforms can share and analyze models.

In industry, interoperability is often very important and required, as users
dedicated to model construction may often be located in another department
as the users of the models, also using different computer programs in their

1.4. Predictive Model Markup Language 35

workflows. For example, an insurance company may have a department to
generate models of a risk level. Then, there may be another department
that is in charge of applying the model for prediction of the risk level of
somebody according to given profiles. Therefore, in this case the obtained
models would be distributed to many places. Furthermore, it is desirable
for the resulting models to be easily understood and communicated. Again,
from an industry perspective, a universal representation framework that
satisfies these requirements is desirable.

The Institute of Electrical and Electronics Engineers (IEEE) defines in-
teroperability as follows [125]: “The ability of two or more systems or com-
ponents to exchange information and to use the information that has been
exchanged.” In other words, interoperability attempts to minimize any role
of human to intervene of the models e.g., re-write, re-format, and trans-
form. Thus, the efficiency can be achieved by researchers and practitioners.
However, a challenge that should be addressed is that how we establish a
common representation of models. The universal representation should be
independent of programming languages and environment/platforms. Ad-
ditionally, it has to have solid definitions and constraints in representing
models so that ambiguities can be avoided.

PMML is an Extensible Markup Language (XML)- based language to
provide a standard for describing models produced by data mining and ma-
chine learning algorithms [103]. It is developed by Data mining Group which
is an independent, vendor led committee including companies such as IBM,
SAS, Zementis, and Microsoft.

One main reason why PMML is specified in XML is that XML is a stan-
dard language defined in the XML 1.0 specification by the World Wide Web
Consortium [299]. It provides a format that is both human- and machine-
readable. There are many applications that can generate their formats into
XML, such as Microsoft Office and LibreOffice. Additionally, to write a doc-
ument based on XML, we need to consider definitions determined by a given
schema, e.g., based on XML Schema [289]. It contains a basic grammar ex-
plaining the structure, content, and constraint of documents. Moreover, any
new extensions made in the document have to be defined on XML schema.
Therefore, it is reasonable that XML is used to be a standard representation
framework.

Figure 1.8 shows a PMML workflow, together with some advantages of
PMML in data analysis processes. The workflow generally involves a mod-
elling, expert intervention, and deploying phase. In the modelling phase,

36 Chapter 1. State of the Art

the final result is a model produced by learning methods according to given
data. It may also involve data pre-processing and model validation. Af-
ter the modelling, the model is exported to the PMML format, which is
XML-based and human-readable. Even though interpretability of the model
mainly depends on the type of learning methods used, PMML helps at this
end with readability and transparency. Therefore, human experts can be
relatively easy to read, understand, and even modify the model and adapt it
better to real-world conditions. Anyway, since it is a text based representa-
tion it can be viewed and edited with just a text editor; no specific complex
tool is required. In the final phase, we can also see several advantages. The
model can be used in various predictor engines compliant with the PMML
format to predict new data. In other words, with PMML it is easy to move
the obtained models between various applications and platforms, so that
it is easy to share them, e.g., across different departments. In addition,
we note that prediction with new data in this phase is usually performed
and repeated more frequently than the modelling in the first phase. Here,
PMML helps to achieve a reproducible concept [221] since PMML provides
a standard format that can be used anytime to predict new data by any
compliant application.

A main contribution of PMML is to provide interoperable schemata of
predictive models. Using PMML, we can easily perform these tasks as our
models are documented in an XML-based language. Human experts can
also update and modify the model on the files directly. Furthermore, the
study in [102] shows that PMML has been deployed in cloud computing [40,
39]. Therefore, we can apply our models anywhere without worrying about
details of applications and resources. Another benefit offered by PMML
is that it can effectively express many models without depending on any
programming languages (e.g., Java, Python, and C++) or platforms (e.g.,
Windows, Linux, and Mac).

1.4.2 Specifications

In PMML, currently, there are available 16 models documented as fol-
lows:

e Association rules: representing rules showing relations between at-
tributes;

e Baseline models: specifying change detection models;

1.4. Predictive Model Markup Language 37

. Learning

Modelling Phase Methods

e ¢
Training Data Pre- N Model €— Evaluation,
Data processing Generating —J» Validation

Expert Intervention

I A
A\ 4

Interpret, PMML Model
Modify Format Visualization

Deploying Phase

Predictor Predictor
Engine “A1” Engine “An”
N2 N2

<> <>
New g - _— New
Prediction |« ¥ Prediction

Dept. X Dept. Y

Figure 1.8: Workflow using PMML.

e Cluster models: representing a set of clusters;
e General regression: allowing a multitude of regression models;

e k-nearest neighbors: representing a model of instance-based learning
algorithms;

e Naive Bayes: representing a model based on simple probabilistic clas-
sifiers according to Bayes’ theorem;

e Neural networks: describing models based on artificial neural net-
works;

e Regression model: determining the relationship between dependent
and independent attributes;

e Ruleset models: representing rules based on DT models;

e Scorecard models: describing a model mapping a set of inputs to pre-
dict a target value;

e Sequence rules: containing a set of rules for various items;

38 Chapter 1. State of the Art

Text models: providing a model used for text operations, such as
frequency of terms;

e Time series models: providing time series analysis, such as forecasting;

Tree models: providing a model represented by a tree for classification;

Support vector machine: representing a model based on the method
for classification and regression.

Additionally, PMML also provides schemata for data pre- and post-processing.
For example, PMML defines normalization, discretization, value mapping,
aggregation, etc.

Since PMML is an XML-based language, the specification is defined by
an XML Schema as recommended by the World Wide Web Consortium
(W3C) [289]. The general schema and components of PMML can be seen
in Listing 1.1. The PMML format is specified by the main tag PMML
that contains some components. In the following, we describe the main
components:

e Header: It contains general information about the PMML document,
such as copyright information for the model, its description, applica-
tion, and timestamp of generation.

e DataDictionary: It contains information related to fields or variables,
such as number, names, types, and value ranges of variables.

e MODEL-ELEMENT: It is a main part of the PMML document that
consists of models supported by PMML. In each model, there are sev-
eral components embedded in the element, such as MiningSchema and
Output. MiningSchema specifies outlier treatment, a missing value re-
placement policy, and missing value treatment, whereas Qutput shows
a description of the output variable. For example, in a clustering
model, we define a schema representing the cluster centers that are
included in the ClusteringModel element.

Besides these components, there are some optional elements, such as Min-
ingBuildTask, TransformationDictionary, and Extension.

<xs:element name="PMML">
<xs:complexType>

<xs:sequence>

1.4. Predictive Model Markup Language 39

<xs:element ref="Header”/>
<xs:element ref="MiningBuildTask” minOccurs="0"/>
<xs:element ref="DataDictionary”/>
<xs:element ref="TransformationDictionary” minOccurs="0"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded”>
<xs:group ref="MODEL-ELEMENT”/>
< /xs:sequence>
<xs:element ref="Extension” minOccurs="0"
maxOccurs="unbounded”/>
< /xs:sequence>
<xs:attribute name="version” type="xs:string”
use="required”/>
< /xs:complexType>

< /xs:element>

<xs:group name="MODEL-ELEMENT”>
<xs:choice>

<xs:element ref="AssociationModel”/>

<xs:element ref="TreeModel”/>
< /xs:choice>
< /xs:group>

Listing 1.1: General XML Schema of PMML.

According to its functionalities, applications can be classified into two
groups:

e PMML producer: It refers to a software that produces models, and
exports/writes them to PMML format.

e PMML consumer: It refers to a software used for importing/reading
and deploying PMML models to predict new data. In this software,
there are procedures for validating and verifying the PMML format.

Nowadays, the PMML framework is implemented in several platforms.
In the R environment, we can find the PMML-producer application “pmml”
[103]. In order to generate models, the package executes several other pack-
ages available in R, such as “arules” for mining association rules, and “nnet”

40 Chapter 1. State of the Art

for neural networks. Another package available within R, “pmmlTransfor-
mations”, is an extension of “pmml” for supporting the data pre-processing
in PMML such as normalization, discretization, and value mapping [135].
Next, the Konstanz Information Miner (KNIME), which is a platform for
data integration, processing, analysis, and exploration [28], can be used both
as a PMML producer and consumer [197]. SPSS provides a feature to im-
port and export from/to PMML format [101]. The Waikato Environment
for Knowledge Analysis (WEKA) allows to import PMML models based on
regression, general regression, artificial neural networks, tree models, rule
set models, and support vector machine models [108]. In order to provide
further interoperability in delivering software solutions, PMML has been de-
ployed in cloud computing using the Software-as-a-Service model [102]. For
example, it is embedded in the ADAPA scoring engine on the Amazon Web
Services. A detailed table showing all software systems that implement the
PMML standard can be found at http://www.dmg.org/products.html.

1.5 Fuzzy Systems

1.5.1 Fuzzy Sets

When we were in school, a lot of lessons aimed at teaching us to think in
accordance with the rules precisely. In the arithmetic lesson, for example,
if we count the numbers by following the rules that have been learned, then
we will definitely get results that are 100 percent correct and precise. Every
time we repeat the calculations, we always get the same result. However, as
people say: “the world is full of uncertainty and ambiguity” we easily find
real-world problems that are not always possible to be solved with certainty.
Let us take a very simple example to explain this fact. Suppose a basket
containing 100 pieces of mango. Then, we asked 10 people to separate
the fruits into two groups, fruits have been ripe and still raw, in different
baskets. In the final results, we probably find that they choose different
fruits in the baskets. However, we can understand the results because they
may have different criteria for deciding which ones are ripe and raw, for
example based on color, odor, hardness, dimensions, etc. Even on the same
criteria, if we provide the scale 1 until 100, they may give different values on
the same fruit. This example illustrates that the imprecision and uncertainty
are very close and involved in our lives. Therefore, the procedure, which is
tolerant for imprecision and uncertainty, is required to deal with our real-

1.5. Fuzzy Systems 41

world problems.

Fifty years ago, Zadeh published a seminal paper that proposes an ex-
tension of the classical set theory, Fuzzy Set Theory [306], for modeling and
representing human knowledge. The concept introduces a degree of mem-
bership which means that instead of just having two qualifications: member
or non-member, an object can be classified into a certain category with a
degree between zero and one. A degree of zero and one refers to an object is
not a member and a member of set whereas a value somewhere in between
shows a partial degree of membership. For instance, instead of saying the
age in term of the exact number, e.g., 32 year old, we can just say in the
following terms: “child,” “young,” “adult,” “mature,” “old.” It can be seen
that the latter provide vague and less specific information, but it is more
useful in more cases. Then, by considering fuzzy sets, we can define that 30
year old refers to “young” with the grade 0.2 and “mature” with the degree
0.8.

Mainly, the degree of membership of a given object is defined by the
so-called membership functions. If the function of a fuzzy set A is denoted
by pa, it is mapping original values to the unit interval [0,1] as a grade:
ta : X —[0,1]. Therefore, fuzzy sets can be viewed as a generalization of the
classical sets that only involve two values: 0 and 1. Furthermore, employ-
ing the degrees of membership makes fuzzy set theory effectively works on
natural languages containing vagueness and imprecision [307].

A degree of membership is commonly generated by the following func-
tions: triangular, trapezoid, Gaussian, sigmoid, and generalized bell. They
can be defined as follows:

e Triangular: It has the shape of a triangle and is described by the corner
points (a,b,c). It can be written as

0, where x <aq or x>c¢
BTab,eo)®) =1 =%, wherea<x<b
7—c, whereb<x<c

e Trapezoid: It refers to the trapezoid function, which is defined by the

42 Chapter 1. State of the Art

corner points (a,b,c,d) as follows:

0, where x <aq or x>¢
x—a
Ut e.d)(X) = 5= Wherea<x<b
1, where b<x<c
%, where e<x<d

e Gaussian: Bell shaped and characterised by two parameters: mean c
and deviation o, with

(x—c)?
HG(C,T)(x)ZeXP(— 3)
(o)

e Generalized bell: It is defined by the parameters (a,b,c):

HGba,b,e)(X) =

e Sigmoid: It is defined by two parameters, y and c:

1
a +exp(—y(x—rc))

BSy,e)(%) =

Let us consider the previous example, so we can define membership functions
of age as Figure 1.9. In this case, we split “age” into five fuzzy terms: “child,”
“young,” “adult,” “mature,” “old,” by using the trapezoid functions between
0 and 80 year old.

Basically, Figure 1.9 can also be expressed by the following functions on

1.5. Fuzzy Systems

43

Membership Functions of “Age”

A
1
A1 Az As Aa As
(O]
o
(@]
(0]
=
205
c
@
(0]
QO
g
[0
= -
0 6 12 16 22 30 35 50 60 80
Age (year)

A1 = Fuzzy set “Child”

A2 = Fuzzy set “Young”

A3z = Fuzzy set “Adult”

A4 = Fuzzy set “Mature”

As = Fuzzy set “Old”

Figure 1.9: Membership functions of the “age” variable.

the interval [0,80]:

HA; =
HAy =3
HAs =3
Hay =3
HAs =

1,

(12 -x)/6,
0,

0,

(x—6)/6,
(22 —x)/6,
1,

0,
(x—16)/6,
(85—x)/5,
1,

0,
(x—30)/5,
(60 —x)/10,
1,

0,
(x—50)/10,

1,

where x <6
where 6 <x < 12

where x =12

where either x <6 or x =22
where 6 <x < 12
where 16 <x <22

where 12<x <16

where either x <16 or x =35
where 16 < x <22
where 30 <x <35
where 22 <x <30

where either x <30 or x =60
where 30 <x <35
where 50 <x <60
where 35 <x <50

where x <50
where 50 < x <60

where x =60

44 Chapter 1. State of the Art

So, it is clear that 32 year old refers to the term “adult” and the term
“mature” with the same degree of 0.4 for both terms.

Furthermore, the three basic operations on crisp sets, i.e., the comple-
ment, intersection, and union, can be generalized to fuzzy sets in various
fashions. The following are standard fuzzy set operations:

Ale) = 1-pulx)

(ka, N pay)(x) minfpa, (%), pa, ()] (1.1)

(pa, Upa,)x) = maxfua,(x), pna,®)]

A lot of monographs provide comprehensive explanations about fuzzy theory
and its techniques, for example in [158, 220].

Several extensions based on the fuzzy set concepts have been proposed,
such as FRBSs and FRSTs as presented below.

1.5.2 Fuzzy Rule-Based Systems

Fuzzy rules are an extension of classical rule-based systems (also known
as production systems or expert systems). Basically, they are expressed in
the form “IF A THEN B” where A and B are fuzzy sets. In other words,
instead of involving numerical values, a fuzzy rule contains fuzzy sets. A and
B are called the antecedent and consequent parts of the rule, respectively.
For example, we have following variables and their linguistic values to classify
a mango fruit quality:

dimension = {small, medium, large}
weight = {light, medium, heavy}
color intensity = {lighter, neutral, darker}

Based on a particular condition, we can define a fuzzy rule, as follows:

IF the dimension is medium and the weight is medium and
the color intensity is darker THEN the quality is good.

where the linguistic values of the output variable quality is “bad,” “medium,”
and “good.” It can be seen that the representations based on fuzzy sets are

1.5. Fuzzy Systems 49

Knowledge

Database Rulebase
(DB) (RB)

- =
d> Inference Engine d>

Figure 1.10: The components of the Mamdani model.

Input
Fuzzification

Defuzzification
Output

much easier to be interpreted by human than classical rules. Indeed, the
linguistic values are more understandable than in numerical form.

Furthermore, FRBSs are methodologies to represent human expert knowl-
edge in a set of fuzzy rules in a linguistic fashion. With respect to the
structure of the rule, there exist two basic FRBS models: the Mamdani and
Takagi Sugeno Kang (TSK) models. The differences and characteristics of
both models are discussed in the following.

The Mamdani Model

This model type was introduced by [183, 184]. It is built by linguistic
variables in both the antecedent and consequent parts of the rules. So,
considering multi-input and single-output (MISO) systems, fuzzy IF-THEN
rules are of the following form:

IF X;isAjand ... and X,, isA, THEN Y is B (1.2)

where X; and Y are input and output linguistic variables, respectively, and
A; and B are linguistic values.

The standard architecture for the Mamdani model is displayed in Fig-
ure 1.10. It consists of four components: fuzzification, knowledge base, infer-
ence engine, and defuzzifier. The fuzzification interface transforms the crisp
inputs into linguistic values. The knowledge base is composed of a database
and a rule base. While the database includes the fuzzy set definitions and

46 Chapter 1. State of the Art

parameters of the membership functions, the rule base contains the collec-
tions of fuzzy IF-THEN rules. The inference engine performs the reasoning
operations on the appropriate fuzzy rules and input data. The defuzzifier
produces crisp values from the linguistic values as the final results.

Since the Mamdani model is built out of linguistic variables it is usually
called linguistic or descriptive system. A key advantage is that its inter-
pretability and flexibility to formulate knowledge are higher than for other
FRBSs. However, the model suffers some drawbacks. For example, its ac-
curacy is lower for some complex problems, which is due to the structure of
its linguistic rules [52].

The TSK Model

Instead of working with linguistic variables on the consequent part as in
the Mamdani model in Equation 3.1, the TSK model [273, 271] uses rules
whose consequent parts are represented by a function of input variables. The
most commonly used function is a linear combination of the input variables:
Y =f(X4, ..., X,) where X; and Y are the input and output variables,
respectively. The function f(X1, ..., X,) is usually a polynomial in the
input variables, so that we can express it as Y =p1-X1+ --- +p,-X, +po
with a vector of real parameters p = (pg, p1, ..., pn). Since we have a
function on the consequent part, the final output is a real value, so that
there is no defuzzifier for the TSK model.

The TSK model has been successfully applied to a large variety of prob-
lems, particularly, when accuracy is a priority. Its success is due to the fact
that this model type provides a set of system equations on the consequent
parts whose parameters are easy to estimate by classical optimization meth-
ods. Their main drawback, however, is that the obtained rules are not so
easy to interpret.

Variants of FRBSs

Other variants have been proposed in order to improve the accuracy and
to handle specific problems. Their drawback is that they usually have higher
complexity and are less interpretable. For example, the disjunctive normal
form fuzzy rule type has been used in [92]. It improves the Mamdani model
in Equation 3.1 on the antecedent part, in the sense that the objects are

1.5. Fuzzy Systems 47

allowed to consider more than one linguistic value at a time. These linguistic
values are joined by a disjunctive operator. The approximate Mamdani type
proposed by [116] may have a different set of linguistic values for each rule
instead of sharing a common definition of linguistic values as it is the case of
the original Mamdani formulation. So they are usually depicted by providing
the values of the corresponding membership function parameters instead of
a linguistic label. The advantages of this type are the augmented degree
of freedom of parameters so that for a given number of rules the system
can better be adapted to the complexity of the problems. Additionally, the
learning processes can identify the structure and estimate the parameters of
the model at the same time.

Fuzzy rule-based classification systems (FRBCSs) are specialized FRBSs
to handle classification tasks. A main characteristic of classification is that
the outputs are categorical data. Therefore, in this model type we preserve
the antecedent part of linguistic variables, and change the consequent part to
be a class C; from a prespecified class set C ={C1,...,Cpy}. Three structures
of fuzzy rules for classification tasks can be defined as follows. The simplest
form introduced by [49] is constructed with a class in the consequent part.
The FRBCS model with a certainty degree (called weight) in the consequent
part was discussed in [129]. FRBCS with a certainty degree for all classes
in the consequent part are proposed by [185]. It means that instead of
considering one class, this model provides prespecified classes with their
respective weights for each rule.

Constructing FRBSs

Constructing an FRBS means defining all of its components, especially
the database and rule base of the knowledge base. The operator set for
the inference engine is selected based on the application or kind of model.
For example, minimum or product are common choices for the conjunction
operator. But the part that requires the highest effort is the knowledge base.
Basically, there are two different strategies to build FRBSs, depending on
the information available [291]. The first strategy is to get information
from human experts. It means that the knowledge of the FRBS is defined
manually by knowledge engineers, who interview human experts to extract
and represent their knowledge. However, there are many cases in which
this approach is not feasible, e.g., experts are not available, there is not
enough knowledge available, etc. The second strategy is to obtain FRBSs

48 Chapter 1. State of the Art

by extracting knowledge from data by using learning methods.

Generally the learning process involves two steps: structure identification
and parameter estimation [272, 219]. In the structure identification step, we
determine a rule base corresponding to pairs of input and output variables,
and optimize the structure and number of the rules. Then, the parameters
of the membership function are optimized in the parameter estimation step.
The processing steps can be performed sequentially or simultaneously.

Regarding the components of the FRBSs that need to be learned or
optimized, the following has to be performed:

e Rule base: Qualified antecedent and consequent parts of the rules need
to be obtained, the number of rules needs to be determined and the
rules have to be tuned.

e Database: Optimized parameters of the membership functions have to
be defined.

e Weight of rules: Especially for fuzzy rule-based classification systems,
optimized weights of each rule have to be calculated.

Additionally, tuning can be also performed after obtaining the model.

After the inference engine operators are set and the knowledge base is
built, the FRBS is ready. Obviously, as in other modeling or machine learn-
ing methods, a final validation step is required. After achieving a successful
validation the FRBS is ready for use. Figure 1.11 shows the learning and
prediction stages of an FRBS. An FRBS can be used just like other clas-
sification or regression models —e.g., classification trees, artificial neural
networks, and Bayesian networks.

Researchers have recently implemented methods based on FRBSs to soft-
ware libraries for both academic and industry purposes, e.g., “Xfuzzy” [21],
FisPro [105], GUAJE [12], and KEEL [10]. These software libraries are
important to be implemented, for a number of reasons. First, researchers
outside the field of computer science can just use the tools for tackling their
problems. In other words, researchers can focus on doing experiments to
solve the problems. After that, by using open-source tools, we can repro-
duce and communicate our scientific results with others.

1.5. Fuzzy Systems 49

Learning methods
Training
|::> Structure Parameter
identification estimation

Knowledge

Learning phase —

Prediction phase ~_=

Predicted
ME> Fuzzification |:> Inference/reasoning methods |:> Defuzzification I:>

Figure 1.11: Learning and prediction phases of an FRBS.

Learning Methods in FRBSs

As mentioned above there are two ways to construct a model in FRBSs:
by human experts and learning from data by using machine-learning meth-
ods. In this part, we explain the latter by presenting several well-known
algorithms. We can classify them into five groups: FRBSs based on space
partition, genetic algorithms, clustering, neural networks, and gradient de-
scent. In the following, we discuss these five groups in detail.

FRBSs based on space partition approaches. Learning methods in-
cluded in this group use a strategy of dividing the variable space, and
then considering this partition to obtain the parameters of the member-
ship functions. The following methods use space partition approaches to

build FRBSs:

e Wang and Mendel’s technique (WM). It was proposed in [292] using
the Mamdani model.

e FRBCS using Chi’s method (FRBCS.CHI). This method was proposed
in [49], which is an extension of WM method, for tackling classification
problems.

e FRBCS using Ishibuchi’s method with weight factor (FRBCS.W). This
method is adopted from [127]. It implements the second type of FR-
BCS which has certainty grades (weights) in the consequent parts of
the rules.

50 Chapter 1. State of the Art

FRBSs based on neural networks. The systems in this group are com-
monly also called neuro-fuzzy systems or fuzzy neural networks (FNN) [36]
since they combine artificial neural networks (ANN) with FRBSs. An FRBS
is laid upon the structure of an ANN and the learning algorithm of the lat-
ter is used to adapt the FRBS parameters, usually the membership function
parameters. There exist many variants of methods based on FNN, such as
the adaptive-network-based fuzzy inference system (ANFIS) and the hybrid
neural fuzzy inference system (HYFIS).

e ANFIS: This method was proposed in [132]. It considers a TSK FRBS
model which is built out of a five-layered network architecture. The
ANFIS learning algorithm consists of two processes, the forward and
the backward stage.

e HYFIS: This learning procedure was proposed in [155]. It uses the
Mamdani model as its rule structure. There are two phases in this
method for learning, namely the knowledge acquisition module and
the structure and parameter learning.

FRBSs based on genetic algorithms. Genetic fuzzy systems (GFS) [52]
are a combination of genetic algorithms and FRBSs. Generally, the genetic
algorithms are used to search and optimize the parameters of the member-
ship functions and of the fuzzy rule construction process. The following are
methods that can be included in this group:

e GFS based on Thrift’s method (GFS.THRIFT). [278] introduces a
technique for learning of Mamdani models based on a genetic algo-
rithm.

e GFS based on the MOGUL methodology (GFS.FR.MOGUL). This
method is proposed in [116]. It uses a genetic algorithm to determine
the structure of the fuzzy rules and the parameters of the membership
functions simultaneously.

e Ishibuchi’s method based on genetic cooperative competitive learning
(GFS.GCCL). This method is based on [128] using genetic cooperative
competitive learning to handle classification problems.

e Ishibuchi’s method based on hybridization of GCCL and Pittsburgh
(FH.GBML). This method is based on Ishibuchi’s method using the
hybridization of GCCL and Pittsburgh approach for GFSs [131].

1.5. Fuzzy Systems 51

e Structural learning algorithm on vague environment (SLAVE). This
method is adopted from [91]. SLAVE is based on the IRL approach
which means that we get only one fuzzy rule in each execution of the
genetic algorithm.

FRBSs based on clustering approaches. Fuzzy rules can be con-
structed by clustering approaches through representing cluster centers as
rules such as the following methods:

e Subtractive clustering (SBC). This method is proposed by [50]. For
generating the rules in the learning phase, the SBC method is used
to obtain the cluster centers. It is an extension of Yager and Filev’s
mountain method [305]. After getting all the cluster centers from SBC,
the cluster centers are optimized by fuzzy c-means.

e Dynamic evolving neural fuzzy inference system (DENFIS). This method
is proposed by [151]. There are several steps in this method that are
to determine the cluster centers using the evolving clustering method,
to partition the input space and to find optimal parameters on the
consequent part of the TSK model, using a least squares estimator.

FRBSs based on the gradient descent approach. Some methods use
a gradient descent approach to optimize the parameters on both antecedent
and consequent parts of the rules. The following are methods included in
this group:

e Fuzzy inference rules with descent method (FIR.DM). This method
is proposed by [208]. FIR.DM uses simplified fuzzy reasoning where
the consequent part is a real number (a particular case within the
TSK model), while the membership function on the antecedent part
is expressed by an isosceles triangle.

e FRBS using heuristics and the gradient descent method (FS.HGD). This
method is proposed by [130]. It uses fuzzy rules with non-fuzzy sin-
gletons (i.e., real numbers) in the consequent parts.

52 Chapter 1. State of the Art

1.6 Rough Set Theory and Fuzzy Rough Set The-

ory

1.6.1 Rough Set Theory

Basic Concepts

RST was introduced by Pawlak in 1982 [213] as a methodology for data
analysis based on the approximation of concepts in information systems. It
revolves around the notion of discernibility: the ability to distinguish be-
tween objects, based on their attribute values. Given an indiscernibility
relation, we can construct lower and upper approximations of concepts. Ob-
jects included in the lower approximation can be classified with certainty
as members of the concept. In contrast, the upper approximation contains
objects possibly belonging to the concept. Additionally, for more than three
decades RST has been attracting researchers and practitioners in many dif-
ferent areas.

In RST, a data set is represented as a table called an information sys-
tem «f = (U,A), where U is a non-empty set of finite objects known as the
universe of discourse (note: it refers to all instances/rows in datasets) and
A is a non-empty finite set of attributes, such that a : U — V, for every
a € A. The set V, is the set of values that attribute @ may take. Information
systems that involve a decision attribute, containing classes for each object,
are called decision systems or decision tables. More formally, it is a pair
o =(U,Auld}), where d ¢ A is the decision attribute. The elements of A
are called conditional attributes. The information system representing all
data in a particular system may contain redundant parts. It could hap-
pen because there are the same or indiscernible objects or some superfluous
attributes. The indiscernibility relation is a binary relation showing the re-
lationship between two objects. In the following, we describe an equivalence
relation. Let of =(U,A) be an information system, then for any B < A there
is an equivalence relation Rp(x,y):

Rp(x,y) = {(x,y) € U%|Va € B,a(x) = a(y)} (1.3)

If (x,y) € Rp(x,y), then x and y are indiscernible by attributes from B.
The equivalence classes of the B-indiscernibility relation are denoted [x]g.
The indiscernibility relation will be further used to define basic concepts
of RST which are lower and upper approximations. Let B< A and X <

1.6. Rough Set Theory and Fuzzy Rough Set Theory 58

U, X can be approximated using the information contained within B by
constructing the B-lower and B-upper approximations of X:

Rp | X = {xeUllxlg < X}, (1.4)
Rpt X ={xeUllxlgnX # ¢}.

The tuple (Rp | X,Rp 1 X) is called a rough set. The objects in Rp | X
mean that they can be with certainty classified as members of X on the
basis of knowledge in B, while the objects in Rp 1 X can be only classified
as possible members of X on the basis of knowledge in B.

In a decision system, for X we use decision concepts (equivalence classes
of decision attribute) [x]g. We can define B-lower and B-upper approxima-
tions as follows:

Rp | [xlg = x € Ullxlp < [xla), (1.6)
Rp1xlg ={xeUllxlp nlxlyg # o}.

The positive, negative and boundary of B regions can be defined as:

POSp = URBl[x]d (1.8)
xeU

The boundary region, BNDp, is the set of objects that can possibly —but
not certainly— be classified as follows:

BNDp=|JRptlxla- JRs!lxly (1.9)
xeU xeU

Furthermore, we can calculate the degree of dependency of the decision on
a set of attributes. The decision attribute d depends totally on a set of
attributes B, denoted B = d, if all attribute values from d are uniquely
determined by values of attributes from B. It can be defined as follows: for
Bc A, it is said that d depends on B in a degree of dependency:

_ IPOSB|
Ul

VB (1.10)

The decision table «f is called consistent if y4 =1.

Let (U, /) be an information system. The discernibility matrix M(</) is
a symmetric n x n matrix whose elements (c;;) are defined as:

cij=la€A:alx;) #alx))} for i,j=1,...,n.

o4 Chapter 1. State of the Art

In other words, c;; contains those attributes for which objects x; and x;
differ.

The discernibility matrix can be adapted to work with a decision system,
and is then called decision-relative discernibility matrix. It is defined as
follows:

Cij:{{aeA:am)#a(x,-)}, if d(x;) # d(x;) (L.11)

o, otherwise,

Application Areas

RST has been used to deal with problems in many areas, sometimes in
collaboration with other approaches. For example, Pawlak and Skowron
[215] quote many applications that employ RST and boolean reasoning.

This section presents some application areas of both theories: discretiza-
tion, feature selection, instance selection, rule induction, and nearest neighbor-
based classifiers. We focus on them as they are the tasks in which RST is
most frequently applied. Additionally, there are three important steps in
data modeling and analysis: preprocessing, learning, and prediction.

Discretization. Discretization refers to an approach for converting real-
valued attributes into nominal ones in information systems. It should be
ensured that this approach maintains the discernibility between objects.
Therefore, at the learning stage we may want to produce more general mod-
els which avoid overfitting at the prediction step.

Based on the perspective proposed in [67], approaches to the discretiza-
tion can be classified with regard to three different criteria:

e global vs. local: it refers to whether approaches evaluate discretizing
values over the whole continuous instance/attribute in the information
system or localized regions of instances/attributes. For example, the
study in [205] proposes both local and global approaches handling of
continuous attributes in large data bases.

e supervised vs. unsupervised: it refers to whether approaches consider
values of instances in the discretization process or not. A simple ex-
ample of an unsupervised approach is an equal width interval method
that works by dividing the range of continuous attributes into & equal
intervals, where & is given.

1.6. Rough Set Theory and Fuzzy Rough Set Theory 55

e static vs. dynamic: it refers to whether approaches need a parameter
for determining the number of labels/symbolic values or not. In other
words, the dynamic approaches are generating the number automati-
cally along the discretization process.

As a basic discretization method, we explain here in detail the maximal
discernibility (MD) heuristics presented in [23]. Other methods can be found
in, e.g., [23, 205].

Feature Selection. Feature selection is a process to find a subset of at-
tributes which represents the same information as the complete feature set.
In other words, the purpose of the feature selection is to identify significant
attributes and to eliminate the dispensable ones. An attribute a € B< A can
be regarded as dispensable in B if Rp = Rp\jq) otherwise a is called indis-
pensable in B. Furthermore, in both RST and FRST the feature selection
typically refers to finding a reduct or a superreduct. A superreduct is a set
of attributes B € A, such that Rg = R4, where Rgp and R4 are the indis-
cernibility relations defined by B and A, respectively [214, 216]. If it is also
minimal (w.r.t. inclusion), then it is called a reduct. The intersection of all
reducts is called the core.

In this section, we focus on calculating a reduct of a decision table which
is called decision reduct. A decision reduct of of = (U,A u{d}) is a minimal
(w.r.t inclusion) non-empty set of attributes B € A such that §p =84, where
d4 is the mapping on U such that for any object x it specifies all rows in
the table whose attribute values are the same as for x, and then collects
the decision values from each row [216]. Therefore, we can transform the
problem of feature selection into looking for criteria that measure the quality
of a set of features. Based on the measurement criteria in [260], we can
evaluate sets of features to be decision reducts by the following approaches:

1. Conditional independence: Following [259], we define B as a decision
reduct iff for any u € U we have following equality of probabilities P:

Py (dw)/B(w)) = P 4(d(u)/A(u)),

where HueU:Aw) d(u)=w'}|
ueU:Aw)=wAadu)=w'
P y(d(u)A(u)) = HueU:A®w)=w))

for wEVf‘] and w'eVg.

56

Chapter 1. State of the Art

2. Degrees of consistency: By considering the degree of dependency in

Equation (1.10), a set of attributes B € A is a decision reduct iff

YB=YA-

. Approximate entropy: By considering entropy as a measure of infor-

mation [253], we say that B € A is a decision reduct, iff
Hp,)(d(u))+1ogy(1—¢€) < Hp,y(d(w)),
where

1
— 2 logy Ppauy(d(w)),

Hp(dw) = -
Bw)(d(w)) Ul &

and for €€[0,1).

. Discernibility relation: We construct the decision-relative discernibility

matrix which is based on Equations (1.11). In order to generate deci-
sion reducts, we calculate the discernibility function f. of the matrix.
It is a boolean function of m boolean variables a1,...,a,, corresponding
to the attributes ai,...,an respectively, and defined by

fuldi,...,am)=AVEj:1<j<i<n,c;j#o}, (1.12)

where ¢;; ={d:a € ¢;;}. The decision reducts of A are then the prime
implicants of the function fo. Detailed explanations are given in [258].

Many algorithms have been proposed to find reducts in RST. According

to the output produced by these algorithms, we may divide them into three
groups: those that produce a superreduct, a set of reducts, or a single reduct.

e Superreduct. An example is the algorithm based on RST proposed

by Shen and Chouchoulas [254] called the QuickReduct algorithm.
According to Algorithm 1, it can be seen that the computation time
depends on the number of attributes instead of the number of objects,
which has NP complexity. Other methods based on RST can be found
in, e.g., [134, 260, 301].

Set of reducts. Basically, a set of reducts is obtained by constructing
the decision-relative discernibility matrix and then employing the dis-
cernibility function. We can construct the matrix by Equations (1.11)
and then compute the discernibility function using Equation (1.12).

1.6. Rough Set Theory and Fuzzy Rough Set Theory 57

input : A decision table of = (U,A u{d}).
output: A superreduct SR.

SR —{};

repeat

T —SR;

foreach x€(A-SR) do
if ysruw > Y7 then T — SR U {x};
SR — T,

end

until ysg ==7va;
Algorithm 1: QuickReduct

e Reduct. There exist two simple ideas to obtain a single reduct which
are by considering methods generating a set of reducts and a su-
perreduct. First, through methods constructing the decision-relative
discernibility matrix we obtain a set of reducts. After that we can
choose a single reduct from the resulting reducts. The other method is
by employing algorithms generating a superreduct. Here, we include
some procedures to eliminate features. The elimination process is it-
erated until obtaining a reduct. The algorithm proposed in [133] is an
example for obtaining a single reduct based on permutation procedures
employing the elimination process.

Rule Induction. Knowledge can be represented in many different ways.
Production rules are arguably the most popular knowledge representation.
The general structure of such a rule is IF ... THEN ..., where the IF part
refers to the predecessor and the THEN part to the successor [216]. One
advantage of building rules is that the model is easy to interpret and manip-
ulate. In this section, we focus on rule induction through RST and FRST
techniques.

In RST, a rule for the decision table & is called a decision rule denoted
by IF ¢ THEN d =v, where ¢ € 6(A,V,). €(A,V,) is a set of pairs of condi-
tional attributes A and their corresponding values V,, that are connected by
the propositional A (conjunction), v (disjunction), and = (negation). The
decision rule is true in «f if, and only if, || ¢ |<|l d = vy || Where in this
case, | .| is the set of objects matching the decision rule [216].

58 Chapter 1. State of the Art

For generating rules from data, decision rules of classes in d must meet
two properties: completeness and consistency [192]. Completeness means
that for every instance u € U from class of the attribute d there exists a
decision rule representing u while consistency means that there are no two
different decision rules that describe the same instance in U. Additionally,
in rule induction approaches, there exist three different types: minimum,
exhaustive, and satisfactory requirements [267]. In the first case, we gener-
ate the smallest number of decision rules that are adequate for describing all
given instances. On the other hand, the exhaustive approach refers to algo-
rithms that induce all possible decision rules, whereas the last case contains
decision rules that meet the pre-defined requirements.

Many algorithms to induce rules from data based on RST have been
proposed. For example, the learning system LERS (Learning from Exam-
ples based on RST) introduced the learning from example module, version 2
(LEM2) [95]. It produces a minimal set of rules which is based on computing
a single local covering for each concept from the decision table. An improve-
ment of LEM2 is introduced in [96] and the modified learning from examples
module, version 2 (MLEM2) algorithm [97]. MLEM2 treats numerical and
symbolic attributes differently. For numerical attributes, it computes cut
values as in discretization. After that, MLEM2 continues calling the LEM2
processes. Furthermore, an improvement of MLEM2 which is a local version
of the method can be found in [100]. The Explore algorithm generating an
exhaustive set of rules was presented in [194, 268].

1.6.2 Fuzzy Rough Set Theory

Basic concepts

Just like in RST (see Section 1.6.1), a data set is represented as a table
called an information system «f = (U,A), where U is a non-empty set of finite
objects as the universe of discourse (note: it refers to all instances/experi-
ments/rows in datasets) and A is a non-empty finite set of attributes, such
that a:U — V, for every a € A. The set V, is the set of values that attribute
a may take. Information systems that involve a decision attribute, contain-
ing classes or decision values of each objects, are called decision systems (or
said as decision tables). More formally, it is a pair o/ = (U,A u{d}), where
d ¢ A is the decision attribute. The elements of A are called conditional
attributes. However, different from RST, FRST has several ways to express

1.6. Rough Set Theory and Fuzzy Rough Set Theory 59

indiscernibility.

In FRST, it is assumed that R is at least a fuzzy tolerance relation in U,
that is, R satisfies

e Reflexivity: VxeU,R(x,x) = 1.
e Symmetry: Vx,y € U,R(x,y)=R(y,x).
Sometimes, additionally the following condition is imposed:
e J -transitivity: Vx,y,zeU,J (R(x,y),R(y,2)) < R(x,2).
In this case, R is called a fuzzy 9 -equivalence relation or J -similarity rela-

tion. In a case when 9 =min, R is simply called a fuzzy equivalence relation
or similarity relation.

For example, Hu et al. [119] considered the following kernel-based fuzzy
relations:

e Gaussian kernel: R(x,y)=exp (—M)

Exponential kernel: R(x,y)=exp (—@)

llx—yII?
llx=yl2+8

Circular kernel: if |[|x—y|| <&, R(x,y) = %arccos(”x(;y”)—% ”xgy” /1 _(ngy”)Z

3
Spherical kernel: if ||x—y|/ <&, R(x,y)=1— %@ + % (”’G—y”)

Rational quadratic kernel: R(x,y)=1-

where § > 0. They showed that each of them is a J;ys-similarity relation,
where the t-norm J¢,s is defined as, for a,b in [0,1],

Teos(a,b) =max(ab -V1-a2vV 1_b2’0)

Given a fuzzy tolerance relation R, it is always possible to transform
it into a J -similarity relation [200]. A simple procedure to calculate the
min-transitive closure of R is shown in Algorithm 2.

A common way to construct a fuzzy B-indiscernibility relation for B< A
proceeds by considering a fuzzy tolerance relation R, for each quantitative

60 Chapter 1. State of the Art

input : A fuzzy relation R.

output: A min-transitive fuzzy relation R™.

while R™ #R do

foreach x,y€ U do
| R™(x,y)=max(R(x,y), max,cy(min(R(x,z),R(z,y))))
end
R —R™
end
Algorithm 2: Computing the min-transitive closure of a fuzzy relation

R.

attribute a, such as the following equations considered by Jensen and Shen
in [143]:

(x)—a(y)
Ro(x,y) = 1- 22l
_ 2
Ru(x,y) = exp (—_(“(x;[%(y)))’ (1.13)
Ra(x: y) = max (mln (a(y)_z(x)"'ga , a(x)—l;(y)+0a) ,O) ,

where o2 is the variance of feature a. For a qualitative (i.e., nominal) at-

tribute a, the classical manner of discerning objects is used, i.e., R(x,y) =1

if a(x) =a(y) and R(x,y) =0, otherwise. Then we can define for any subset

B of A, the B-indiscernibility relation by Rg(x,y) = F (Rq(x,y)), where I is
—

aeB
a ¢-norm.
Following Radzikowska and Kerre [238], crisp lower and upper approxi-
mations are generalized by means of an implicator .# and a t-norm J~. Given
a fuzzy indiscernibility relation Rp and a fuzzy set X in U, we define

Rp | X)(y) infyey S (Rp(x,y), X (x)),

(1.14)

Rp1X)y) = sup,ey T Rplx,y),X(x)).

Other approaches for defining lower and upper approximations in FRST
have been proposed such as vaguely quantified rough sets (VQRS) [53],
ordered weighted average rough sets (OWA) [56], fuzzy variable precision
rough sets (FVPRS) [309], soft fuzzy rough sets (SFRS) [118], robust fuzzy
rough sets (RFRS) [120], and B-precision fuzzy rough sets (-PFRS) [249].

1.6. Rough Set Theory and Fuzzy Rough Set Theory 61

Regarding regions and degree of Dependency, FRST has the same equa-
tions as RST. Furthermore, while in RST the (decision-relative) discernibil-
ity matrix is uniquely defined, there exist various alternatives in FRST. For
instance, Chen et al. [45] defined the decision-relative discernibility matrix
in FRST as

ez {{a €A:1-Rp(x;,xj)< A}, where A; = (Rp | [x;1a)(x;), if d(x;) # d(x;)
/ o, otherwise.

(1.15)

While M(«#) based on RST is symmetric, in FRST it is not necessarily sym-

metric. Other approaches for constructing the decision-relative discernibility
matrix based on FRST can be found in, e.g., [46, 145, 282, 309).

Application areas

This section briefly discusses application areas of FRST. Related to the
research, we only consider four tasks: feature selection, instance selection,
rule-based classifiers (rule induction), and instance-based classifiers using
nearest neighbors.

Feature selection. As RST, feature selection in FRST is to find signif-
icant attributes by employing the lower and upper approximations. Many
algorithms have been proposed to find reducts and superreducts in the FRST
setting. For example, Based on FRST, the fuzzy rough QuickReduct algo-
rithm, which is a modified QuickReduct, was proposed in [143]. To obtain
the degree of dependency y, we can calculate the degree by using many vari-
ants of lower and upper approximations, e.g., implicator/¢-norm approach
[54], VQRS [53], OWA [56], FVPRS [309], SFRS [118], RFRS [120], B-PFRS
[249]. Intuitively, other modifications can also be made by changing the
stopping criterion (as, e.g., in [30]), or by randomizing the features consid-
ered for reducing the computation time. The following is the fuzzy rough
QuickReduct algorithm [143]:

Instance selection. The aim of instance selection is to remove or replace
noisy, superfluous, or inconsistent instances from training datasets but re-
tain consistent ones at the same time. Basically, from the RST perspective,
it refers to evaluating each object included in the boundary region. In other

62 Chapter 1. State of the Art

input : A decision table of =(U,A u{d}).

output: A superreduct SR.

SR —{}; Ybest = 0; Yprev = 0;

repeat

T — SR,

Yprev < Ybest;

foreach x€(A-SR) do
if Ysruwy > yr then T — SR U{x}; Ypest — VT3
SR —T;

end

until ypes == Yprev;
Algorithm 3: Fuzzy rough QuickReduct

words, according to the evaluation, we preserve objects in lower approxima-
tions, but we change objects included in the boundary region, for example
deleting them or changing their class labels to be consistent values.

In FRST, there exist some methods performing instance selection. The
fuzzy-rough instance selection (FRIS) method proposes three algorithms
that employ a positive region as a measurement tool for selecting instances
[138]. If the value of the positive region of objects is less than a threshold
value then the objects can be removed. The complete FRIS-1 algorithm is
defined as follows:

input : A decision table of = (U,A u{d});
A granularity parameter a;

A threshold value 7.

output: A set of selected objects Y.

Y < U,
foreach xe U do
if (POSSY(x)<7) thenY —Y —x;
end
Algorithm 4: Fuzzy-rough instance selection version 1 (FRIS-1)

1.6. Rough Set Theory and Fuzzy Rough Set Theory 63

The algorithm uses the following indiscernibility relation:

la(x) —a(y)l

Ri(x,y)=max|0,1-a @ ,

where «a is a level of granularity and [(a) is the range of the attribute a. In
order to select objects the algorithm offers linear complexity with respect
to the number of objects in the dataset, while computation of the positive
region needs O(|A]- |U|?).

The FRIS method is improved in [285] to obtain Fuzzy Rough Prototype
Selection (FRPS), a method specifically designed to optimize the accuracy
of the k-nearest neighbor (kNN) algorithm. First, instances are ordered
according to a measure based on FRST that evaluates the lack of predictive
ability of the instances, and a wrapper approach is then used to decide which
instances to select.

Rule-based classifiers (rule induction). In case of FRST, an algorithm
attempting to combine rule induction and feature selection at the same time
is proposed in [140]. Basically it inserts some steps to generate rules in the
fuzzy QuickReduct algorithm [141, 143]. In [310], a set of decision rules is
induced by constructing the decision-relative discernibility matrix based on
the fuzzy variable precision rough sets. There exist other methods proposed
to improve previous algorithms such as an extension of LEM2 for FRST
called FRLEM2 [175].

Nearest neighbor-based classifiers (instance-based classifiers). The
nearest neighbor-based classifiers were introduced first by Fix and Hodges
in [79]. Then, in 1967 they were improved and made famous by Cover and
Hart [57]. In supervised learning, the k-nearest neighbor-based classifiers
are defined as methods that predict new data/patterns based on the most
similar or nearest k patterns in training data. This section attempts to
illustrate enhancements of k-nearest neighbors based on FRST.

The fuzzy-rough ownership nearest neighbor algorithm was proposed by
Sarkar [250] and then improved in [251, 252]. To avoid determining & by trial
and error, it uses all training data to construct the fuzzy-rough ownership
function. It uses a squared weighted distance between a test pattern and all
training data, and constrained fuzzy membership.

The study in [139] considered a summation of lower and upper approx-
imations to predict the class of new instances. It uses lower and upper ap-

64 Chapter 1. State of the Art

proximations based on Equation (1.14) and on VQRS with fuzzy tolerance
relations in Equation (1.13). The procedure is outlined in Algorithm 5. The
complexity of this algorithm for classification of one object is O(|U|+K -|d|).

input : A decision table of = (U,A u{d}) as training data; y is
new data.

output: Class is a predicted class.

N —NN(y,K); /* NN is the k-nearest neighbor algorithm
(671 */
T 0; Class — o;
foreach Ced do
if (R|ICYy)+R1C)y)/2=7 then
Class — C;
T— (R C)»)+ R 1CNy2Z;
end

end
Algorithm 5: Fuzzy-rough nearest neighbor (FRNN)

The fuzzy rough positive region (POSNN) [286] algorithm considers the
positive region to predict the class of new data. Basically, the following steps
are used to determine the class of an object y:

1. Determine the set NN of the k-nearest neighbors of ¥ over the training
data

2. Select the class for which
Y xenN R (x, y)C(x)POS(x)
YrennR(x,2)
is maximal; where R, C, and POS are a fuzzy relation, a class mem-

bership function, and the positive region, respectively. The class mem-
bership function [153] is defined as

0.51+75£-0.49, if xis in class C
Cx)=1,. .
% -0.49, otherwise,

with n¢ the number of instances having class C in NN.

1.7. Decision Trees and Random Forests 65

1.7 Decision Trees and Random Forests

1.7.1 Decision Trees

Learning from data by generating tree-based models (DTs) was popular-
ized and unified by Breiman et al. [35], and then were improved by Quinlan
[232]. DTs are algorithms that construct a tree as the model by performing
a recursive partition of the instance space. There are various frameworks
regarding DT methods, such as ID3 [229, 230, 231], C4.5 [232], and CART
[35].

DTs have been attempted to deal with many problems. For instance, the
study [8] proposes a combination Seasonal Auto Regressive Integrated Mov-
ing Average (SARIMA) and DTs for constructing tourism demand modeling.
In [202], the DTs were able to determine the individual roles of permeability
and solubility in oral absorption process.

Before exploring the methods in more detail, there are several aspects
that make them attractive in practical uses, which are as follows [178]:

e DTs are non-parametric. It means that a model mapping inputs and
outputs does not need a priori assumption about the probability dis-
tributions of the variables being assessed.

e DTs are able to deal with mixed variables: categorical and real values.

e Since DTs calculate impurity or information gain, they implicitly per-
form feature selection. Therefore, the method is relatively robust to
irrelevant and noisy variables and outliers.

e A model generated by DTs is represented in the tree-based structure.
So, it is relatively easy to understand and interpret.

e Furthermore, DTs are employed to develop other sophisticated algo-
rithms such as random forests [33] and boosting methods [82, 83].

In the following we briefly explain an introduction to DTs that is divided
into the following topics: tree-based model, induction of DTS, stopping crite-
ria, splitting node, application areas, and prediction using tree-based model.

66 Chapter 1. State of the Art

Root node

False

Internal nodes

Terminal

t7 ts to t10 t11 t12 t13 t14
nodes

Probability Distribution of
Classes

Figure 1.12: A DT model for a binary classification problem.

Tree-Based Model

A model representing a piece of knowledge can be represented in many
ways, for example as a rule, instance, or tree format. This part focuses on
a tree-based model that is generated by DTs.

A tree is a graph that does not contain a cycle. In other words, nodes and
edges build a tree in the hierarchical shape. As shown in Figure 1.12, the root
of a tree is a node that does not have an incoming edge, but only outgoing
edges. A node that has incoming and outgoing edges is called internal node,
whereas a terminal one only has incoming edges. A tree allows to have more
than 2 incoming and outgoing edges on each node. However, in this research
we only focus on a binary tree, whose root and internal nodes have exactly
two outgoing edges.

According to Figure 1.12, basically an internal node divides instances into
two spaces by considering the given condition. For example, on the node #1,
the instances X;, are divided by x1 < 0.4 into Xy, on the child ¢3 and X;,
on t4. Furthermore, for classification tasks, on each terminal node we can
calculate probability distributions of classes. According the distributions,
predicted classes of new data that meet the condition are obtained.

Furthermore, the tree structure can be transformed into rules by tracking
from root into terminal nodes with considering the threshold value on each

1.7. Decision Trees and Random Forests 67

node. For example, the first rule, which follows the left side of the tree, is
as follow:

IF x3<0.8 and x1 <0.4 and x2 <0.4 THEN C¢,

Induction of Decision Trees

As we mentioned above, DTs are algorithms that automatically build a
tree from training data. There are various DT methods such as ID3, C4.5,
and CART. In this research, we only consider the CART algorithm without
pruning for constructing a binary DT, which only has two children on each
node. Moreover, the approach is also used as a main part for algorithms of
decision forest/random forest.

As other methods in machine learning, there are two steps included in the
algorithm, which are learning/training and testing/prediction. The training
step refers to a process aimed to grow a tree. Algorithm 6 shows that
basically there are four looping steps, which are constructing an initial tree,
checking stopping criteria, splitting node, and updating the tree.

Stopping Criteria

The following are criteria used for stopping iterations on Algorithm 6:

1. When the output values of the samples in ¢ are homogeneous. That
is, if y = yg for all (x,¥),(x0,y0) € ¢.

2. When the input variables X are each locally constant in ¢. That is, if
x =x¢ for all (x,y),(x0,y0) € ¢, for each input variable X.

3. Set t as a terminal node if it contains less than N,,;, samples. (Npin
is also known as minSamplesgsp;s.)

4. Set t as a terminal node if its depth d; is greater or equal to a threshold
dmax- (dmax is also known as maxqepen-)

5. Set t as a terminal node if there is no split such that ¢; and ¢, both
count a least Njeqr samples. (Njeqr is also known as minSamplesieqf.)

In all of the above, stopping criteria are defined in terms of user defined
hyper-parameters (Nmin, dmax, OF Nieqr) that have to be tuned in order to

68

Chapter 1. State of the Art

input : Training data.
output: A DT model.

create the root node ¢¢ and get instances A
push tp to an empty stack S
while S is not empty do

if the stopping criterion is met for t then
| tis a leaf node

end

else
find s which is a partition on A that gives maximum

information gain

create the left child #; according to s
create the right child ¢, according to s
push ¢, to S

push #; to S
end

end
Algorithm 6: Induction of the DT algorithm.

1.7. Decision Trees and Random Forests 69

find the right trade-off. Ideally, they need to be such that they are neither
too strict nor too loose for the tree to be neither too shallow nor too deep.
Too large a tree will have a higher generalization error than the right sized
tree. Likewise, too small a tree will not use some of the information in ¢,
again resulting in a higher generalization error than the right sized tree.

Splitting nodes

It refers to a process for dividing a node into two child nodes: right and
left, that can be classified into two groups, which are for categorical and
real values. For categorical value, we can define a value as a parameter
randomly, which represents a percentage of splitting. Using this value, we
do not calculate the information gain of all possible parameters according
to the percentage. In order to calculate information gain, there are several
equations available, such as the Shannon entropy, gini index, etc. In real-
valued variable, we can select a single value randomly between minimum
and maximum values as the splitting parameter.

Prediction on Tree-Based Model

The second step after learning and constructing a model is the prediction
step. It can be done by following a path from the root to a leaf node as in
Algorithm 7.

input : A DT model.
output: Predicted values.
t=tg

while ¢ is not a terminal node do
|t is the child node tg of ¢ such that x € Xy,

end
Algorithm 7: Prediction of the output in a DT.

1.7.2 Random Forests

Random forests are a set of methods constructing a model by assembling

70

Chapter 1. State of the Art

DTs that are generated from bootstrap samples and a randomized features.
The following is an algorithm of random forest considered in the package:

input : Training data.

output: A random forest model.

for b =1 to the number of trees B do

Draw a bootstrap sample from the training data
Growing DTs with:

- Select m features at random from all available features,

- Pick the best variable/split parameter among the m features,

- Split the node into two child nodes.
end
Algorithm 8: Induction of Random Forest.

It is obvious that in addition to including the DT algorithm, random
forest needs the number of trees B and the number of features m as the
input data. Therefore, it can be seen that the output of the training step is
a model containing a collection of DT's.

Because we now have a collection of trees, in the prediction stage we need
to aggregate predicted values of each tree by using aggregation functions
considering a particular task, as follows:

1.8

Classification: There are two well-known strategies for aggregating
results: majority vote and maximum probability.

Regression: For this task we just calculate mean of predicted values
of trees.

Clustering: We obtain a predicted cluster center by calculating a simi-
larity matrix. Then, we calculate eigen vectors and execute the trivial
clustering method, such as k-means.

Manifold learning: In this case, we produce eigen vectors by consider-
ing the number of eigen values as a used-defined parameter.

Random Ferns

Random ferns are methods employing bootstrap sampling and Naive

1.9. Big Data Processing and Platforms 71

Bayesian classification [212]. In order words, the method replace DTs with
non-hierarchical ferns based on Bayes’s formula. Let ¢;, i =1,...,H be the
set of classes and let f;, j=1,...,N be the set of binary features that will be
training datasets. In prediction, actually we are trying to find the predicted
value ¢;, as follows:

¢; =argmax P(C = ¢ilf1, f2,....),

where C is a random variable representing the class. According to Bayes’s
formula, we have

_ P(f1,f2,....,fNIC=¢;)P(C =c;)
P(f].’fZ,“-;fN) '

Since other parts are constant, we can also write as

P(C =clf1,f2,-.,N)

¢; =argmaxP(f1,fz,..., fNIC = ¢i).

By assuming independence between features, we can define the previous
equation as

N
¢i= argmgxﬂP (f§1C = cy).

Then, we set a group based on the bootstrap algorithm, so now we have the

following equation:
M

¢; = argmax [[P(F:IC = ¢;),
€ R=1

where the number of group is equal to %

The above method was extended by [164] by introducing random ferns
for handling non binary features, which include categorical and real-value
ones.

1.9 Big Data Processing and Platforms

1.9.1 The Big Data Phenomenon

Recently, The term Big Data has been widely used as a keyword in
many documents. According to database of http://scopus.com on March
11, 2015, the academic articles including the keyword Big Data have been

72 Chapter 1. State of the Art

1914 1945 1951 1957 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008 2013

Figure 1.13: The number of published articles containing the keyword Big
Data.

significantly increasing since 2003, as shown in Figure 1.13. For example, in
2014 there were 6833 documents whereas we found 3518 and 5440 in 2012
and 2013. These documents are written in several publication media as in
Figure 1.14, such as in academic journals/articles (54.4%), conference papers
(34.5%), and book chapters (0.8%). Furthermore, Figure 1.15 shows that
30% of the articles is included in the Computer Science area. Meanwhile,
engineering, medicine, earth and planetary sciences, and social sciences take
24.5%, 13.6%, 10.1%, and 8.3%, respectively. On the other side, the term Big
Data is also used as a headline in public media. For instance, The New York
Times publishes an article with the title: "In Big Data, Shepherding Comes
First” [176]. BBC News provides a report whether Big Data can help to
analyze the Ebola spread in [288]. We can also find other headlines related to
Big Data in [179, 61]. In addition, many governments have been announcing
their programs involving the technologies of Big Data, e.g., [73, 65]. It shows
that Big Data has been attracting researchers and practitioners working
in wide and different areas. It also means that the term is an emerging
challenges that need to be solved, and it can be a big opportunity offering
interesting benefits.

The attention of researchers and practitioners shown in the previous
paragraph is forced by real phenomena happened regarding the amount of
data that have been exponentially growing recently. Data grow in the in-
credible size because of many available sources generating them, such as
digitized government administrations, Internet of Things (IoT, e.g., GPS),
mobile computing (e.g., mobile phone, PDA), social media, sensor data,

1.9. Big Data Processing and Platforms 73

Undefined (1 6%) =
Note (0.5%) — ¥

Editorial (0.5%)

Short Survey (0.7%) ~

Conference Revi... (0.8%) ~_~ 4

Book Chapter (0.8%) ~

Article in Pres__ (1 3%) ~

Review (4.5%) o

.| T Article (54.4%)
Conference Pape... —

(34.5%)

Figure 1.14: The media publishing articles that contain the keyword Big

Data.
mﬂm‘
Undefined (0.6%) —s————————m—_
Agricultural an__ (6.6%) — —
Environmental S... (6.7%)
Mathematics (7.9%)

Physics and Ast . (8.2%)

Computer Scienc...

(30.0%)

" Engineering (24.5%)

©—— Medicine (13.6%

/ \
Social Sciences... (8.3%) " Earth and Plane...

(10.1%)

Figure 1.15: The subject areas of published articles including the keyword
Big Data.

business applications, public webs, etc. For example, based on a report
from International Data Corporation, in 2011, the overall digital data vol-
ume in the world was 1.8 zettabytes, which is expected to grow by nearly
nine times within five years [87]. A survey in [281] mentions that Facebook
handles more than 250 million photo uploads and the interactions of 800
million active users with more than 900 million objects (pages, groups, etc.)
for each day. Wal-Mart processes more than a million customer transactions

74 Chapter 1. State of the Art

each hour and imports those into databases estimated to contain more than
2.5 petabytes of data. In addition, we can classify data generator based on
the following sources: sensors from electronic devices, social interactions,
business transactions, and electronic files. Therefore, not only big compa-
nies generate and handle Big Data but also every body in the world. For
example, still according to the survey, more than 5 billion people are calling,
texting, tweeting and browsing on mobile phones worldwide.

Before stepping further, knowing definitions of Big Data is an essential
knowledge. Unfortunately, Big Data is a fuzzy concept, especially on the
first word. It may be reasonable that the word big refers to a unit of volume.
However, it can be a case: we would say ours are called Big Data when they
are just small for others. Of course, the concept of Big Data is not only
related to their volume. Due to this reason, several definitions for Big Data
have been proposed:

e In 2012, Gartner [29] says: “Big Data is high-volume, high-velocity
and high-variety information assets that demand cost-effective, inno-
vative forms of information processing for enhanced insight and deci-
sion making”. According to this definition, there are 3Vs, which are
volume, velocity, and variety, that should be taken into account. At
least, two issues regarding the data volume need to be handled: stor-
age (i.e., memory capacity and performance for reading and writing)
and analysis (i.e., computation cost for learning, noise handling, etc).
Velocity refers to the speed of data coming in/out the system, such as
batch, real time, and stream. Moreover, data may have various types:
structured (e.g., table and SQL), unstructured (e.g., email, text, and
videos), and semi-structured (e.g., XML). Recently, 3Vs has been ex-
tended by adding other Vs: value, veracity, variability, validity, and
volatility.

e The study in [112] defines: “Big Data is a set of techniques and tech-
nologies that require new forms of integration to uncover large hidden
values from large data sets that are diverse, complex, and of a massive
scale.”

e Microsoft provides a definition as follows: “Big Data is the term in-
creasingly used to describe the process of applying serious computing
power — the latest in machine learning and artificial intelligence — to
seriously massive and often highly complex sets of information” [193].

e According to National Institute of Standards and Technology (NIST),

1.9. Big Data Processing and Platforms 75

Big Data refers to the inability of traditional data architectures to effi-
ciently handle new data sets, which have the following characteristics:
high volume, high velocity, and high variety [207].

e The McKinsey Global Institute’s Big Data report defines Big Data as
datasets whose sizes are beyond the ability of typical software tools to
capture, store, manage, and analyze them [186].

Based on the above definitions, there are four important aspects we should
consider when dealing with Big Data:

1. Size and complexity: In these aspects, volume, variety, and velocity
are critical issues.

2. Technologies: It is clear that traditional technologies are no longer
sufficient to face such size and complexity data. Other features that
should be taken into account besides the size of storage are scalability,
fault tolerance, and accessibility.

3. Algorithms: Sophisticated approaches need to be invented by con-
sidering emerging technologies, such as data streaming, parallel and
distributed computing, etc. Furthermore, these approaches should be
robust, reliable, and smart to tackle uncertainty, noise, imbalanced,
and redundant information.

4. Workflow: New procedures should be proposed to analyze Big Data.
Interactions among data, technologies, and algorithms can be different
from the old processes with small data. For example, instead of bring-
ing data into applications, now we bring and execute code programs
to the place where data are. Additionally, visualization by plotting
the data is no longer feasible to do.

Nowadays, many problems that can be considered involving Big Data
have been carried out. In 2009, the study [90] proposed a method for early
detection of disease activity, which is influenza epidemics, by using Google
search engine. Netfix, which is a company providing movies and TV shows,
faces Big Data to be involved in its recommender systems, streaming, other
processing [14]. In Astronomy, [122] mentions that the Large Synoptic Sur-
vey Telescope (LSST) in Northern Chile will generate around 150 Petabyte
imaging dataset of the sourthern hemispehre sky in 2022. Therefore, the As-
troinformatics and Astrostatistics fields have been introduced to deal with
Big Data involving machine learning, statistics, and computational intelli-
gence.

76 Chapter 1. State of the Art

1.9.2 The Issues on Big Data

There are two main issues related to Big Data that should be taken into
consideration, which are database/storage frameworks and computational
models. These aspects are related to each other since even though we have
a sophisticated method to deal with Big Data, it is useless if we do not have
technology for storing and loading the data. In addition, Big Data saved
and managed by data management systems do not offer values and benefits
if we can not process and analyze the data.

The first aspect, which is storage frameworks, focuses on technologies and
mechanisms to write, read, and manage Big Data efficiently. Furthermore,
handling fault tolerance, availability, consistency, scalability, and hetero-
geneity of Big Data should be considered as well. Traditional data manage-
ment and analytics systems based on the relational database management
system (RDBMS) are no longer able to deal with these criteria. The pop-
ular software solution to the problem of huge data management has been
Apache Hadoop/YARN [255, 199]. Hadoop’s ecosystem provides Hadoop
Distributed File System (HDFS) which is a system that manages very large
amounts of data through a distributed model. Detailed descriptions about
Hadoop will be explained in the next section. Other technologies for storing
Big Data are the Google File System (GFS) [89], Colossus[187], Haystack
[26], BigTable [43], Hbase [275], MongoDB, Cassandra [166], Amazon’s Dy-
namo system [63], Voldemort [287]. Their comparisons can be found in the
study [237].

After discussing the technologies used for managing Big Data, now we
should think how the data are processed and analyzed. The MapReduce
programming model [62] has turned a new era in the parallelism field. It is
a parallel programming model consisting of a map and a reduce function that
is used on large-scale clusters of machine. This model is then included in
Apache Hadoop as a main core of the parallel computation. In 2010, Spark
was introduced, which is a computing model that allows iterative queries and
stream processing for Big Data [308]. It is based on an abstraction called
Resilient Distributed Datasets (RDD), and contains other functionalities,
such as task scheduling, memory management, fault recovery, interacting
with storage systems. Since these two models are strongly related to this
research, we will explain them in more detail in the next section. Further-
more, in the literature, we can also find other models for parallel computing.
For example, Dryad and DryadLINQ [126] developed by Microsoft Research
is used as a system and a set of language extensions that enable to perform

1.9. Big Data Processing and Platforms 77

large scale distributed computing by employing the programming languages
C++, C#, and VisualBasic. A computational model processing problems
including large graphs is implemented in Pregel [182]. It was inspired by
Valiant’s Bulk Synchronous Parallel model [284], and has been considered
for efficient, scalable, and fault-tolerant implementation on cluster. Other
models handling Big Data by employing parallel and distributed comput-
ing are e.g., All-pairs [198] and Message Passing Interface OpenMPT [86].
Furthermore, processing Big Data can also be done through query system
on database management systems, such as Dremel [188], X10 [70], Hive and
HiveQL [276], BigQuery [93], BigTable [43], and HBase [275]. The detailed
survey regarding frameworks for Big Data can be found in [77].

1.9.3 Apache Hadoop

Apache Hadoop offers a vast ecosystem of tools and applications for Big
Data. In fact, there are two versions of Hadoop available: Hadoop version 1
and Hadoop version 2 with YARN. In this section we only discuss the latter
version. Three main components included in Hadoop YARN, as follows:

e MapReduce: It is a computation framework that allows to break the
problems into two steps: mapping and reducing. Between them, it
automatically performs shuffling and sorting data. Moreover, we need
to take into account that the input data have to be constructed as
key-value pairs. Detailed information regarding MapReduce and its
applications can be found in [172].

e YARN: It is used as Hadoop’s cluster resource management system,
which is an interface for requesting and working with cluster resources
so that Hadoop becomes a host for other applications as shown in Fig-
ure 1.16. It can be seen that other applications, such as Spark, Hive,
Tez, etc, can use YARN for utilizing storage management systems
based on HDFS. Furthermore, users can also create specific applica-
tions for handling their own problems on top of the available computing
models.

e HDF'S: It is a distributed file system designed for storing very large files
with streaming data access patterns, running on clusters of commod-
ity hardware [255]. According to [294], HDFS produces the following
benefits:

78

Chapter 1. State of the Art

Mahout SparckR | ————— — — — — Other apps by users

\ 4 \ 4

MapReduce Spark Hive Storm Tez HBase || Others...

YARN: Cluster Resource Management

Hadoop Distributed File System

Node 1 Node2 | ————————— Node n

Figure 1.16: The architecture of Apache Hadoop YARN.

— Very large files: It means that HDF'S allows to store petabytes of
data.

— Streaming data access: It refers to HDFS used for a write-once
and read-many-times storage. So, basically HDFS is not so useful
for applications requiring low-latency access to data.

— Commodity hardware: A scalable storage system can be built out
of commodity hardware.

Furthermore, data saved in HDF'S will be distributed along nodes avail-
able in the cluster. To manage the system, there are two types of nodes:
namenode (master) and datanode (worker). The namenode manages
the file system namespace. It maintains the file system tree and the
metadata for all the files and directories in the tree. This informa-
tion is stored persistently on the local disk in the form of two files:
the namespace image and the edit log. The namenode also knows the
datanodes on which all the blocks for a given file are located; however,
it does not store block locations persistently, because this information
is reconstructed from datanodes when the system starts. Datanodes
are the workhorses of the filesystem. They store and retrieve blocks
when they are told to (by clients or the namenode), and they report
back to the namenode periodically with lists of blocks that they are

1.9. Big Data Processing and Platforms 79

storing.

In summary, Apache Hadoop offers the following benefits: fault toler-
ance, high availability, scalability, cheapness, distributed file system,
multitenancy, and data integrity. Furthermore, it has been used by big
companies, such as Amazon, Adobe, Baidu, Facebook, Google, IBM,
Linkedln, Twitter, etc.

1.9.4 Apache Spark

Apache Spark aims to extend and generalize MapReduce, which provides
computations in memory with several APIs in Python, Java, Scala, R, and
SQL [308, 150]. The core component of Spark is the abstraction Resilient
Distributed Datasets (RDD). It is simply an immutable distributed collec-
tion of objects. Each RDD is split into multiple partitions, which may be
processed on different nodes of the cluster at the same time. Furthermore,
it contains components for task scheduling, memory management, fault re-
covery, interacting with storage systems, and more. Spark is designed to be
highly accessible, offering simple APIs in Python, Java, Scala, R, and SQL.

Features included in Spark can be seen in Figure 1.17. First of all, Spark
can be installed on Hadoop YARN, and it can access any Hadoop data
source, including Cassandra. There are other features in Spark [150]:

e SparkR: It integrates R with Apache Spark and enables native R com-
mands in a distributed fashion. By using the package, a code script
containing R Spark Context will be translated by the “rJava” to Java
Spark Context.

e SparkSQL: It is Spark’s package for working with structured data. It
allows querying data via SQL as well as the Apache Hive variant of
SQL-called the Hive Query Language (HQL)-and it supports many
sources of data, including Hive tables, Parquet, and JSON.

e Spark Streaming: It is a Spark component that enables processing
of live streams of data. Examples of data streams include logfiles
generated by production web servers, or queues of messages containing
status updates posted by users of a web service.

e GraphX: It is a library for manipulating graphs (e.g., a social network’s
friend graph) and performing graph-parallel computations. Like Spark

80 Chapter 1. State of the Art

Spark Spark :
SparkR saL Streaming Graph X|| MLIlib
MapReduce Spark

YARN: Cluster Resource Management

Hadoop Distributed File System

Node 1 Node2 | —————- Node n

Figure 1.17: The architecture of Apache Spark.

Streaming and SparkSQL, GraphX extends the Spark RDD API, al-
lowing us to create a directed graph with arbitrary properties attached
to each vertex and edge.

e MLIib: Spark comes with a library containing common machine learn-
ing (ML) functionality, called MLlib. MLIib provides multiple types of
machine learning algorithms, including classification, regression, clus-
tering, and collaborative filtering, as well as supporting functionality
such as model evaluation and data import.

As we mentioned above, RDD is a core component in Spark. In general,
the following are the steps involving RDDs:

e Constructing RDD: Spark provides two ways to construct RDDs:

— Loading an external dataset: It means that datasets are saved
in other places (e.g., HDFS, EC2, etc), and then we load them
to Spark. It can be done by typing the following command:
textFile() and objectFile().

— Parallelizing an object: In the case objects are created in the
Spark environment, we can process them in the parallel way by
executing the parallelize() command.

1.9. Big Data Processing and Platforms 81

e Manipulating/processing RDD: RDD objects can be manipulated by
two types of operations: transformations and actions, as follows:

— Transformation: consisting of operations on RDDs that produce
a new RDD, such as map() and filter().

— Action: consisting of operations that return a result to the driver
program or write it to storage, and kick off a computation, such

as count() and first().

e Displaying results: Basically, this step is the same as the action op-
eration. In a particular of saving RDD into files, Spark provides two
commands to do that, which are saveAsTextFile() and saveAsObject-
File().

1.9.5 R Tools for Big Data

As mentioned in section, R offers many advantages for data analysis. For
example, over 6000 packages are ready to use for handling various complex
problems, e.g., finance, time series, machine learning, visualizations, and
statistics. However, as a common tool R also has drawbacks that need to
be resolved. A main weakness related to the research is that data used in
computations have to be loaded into Random Access Memory (RAM). It
means that the data must be smaller than the available RAM. Therefore,
basically R is only able to compute small datasets. Of course, this constraint
must be overcome if we are working with Big Data.

In this part, we focus on discussing strategies and implementations in
software libraries for dealing with Big Data on R environment. In order to
make a simplicity, we classify these approaches as follows:

1. Sampling: It refers to taking a sample of the specified size from the
dataset x using either with or without replacement. R provides the
primitive function sample() and packages aiming to draw and calibrate
samples, such as “sampling” [280].

2. Data streaming: It means that data are continuously processed as an
ordered sequence of data points. It can tackle the issue of the RAM
limitation because R only compute a point of data for single time.
We can find several R packages allowing data stream, e.g., “stream”
[107], “streamR” [20], and “RMOA” [297]. The package “stream” is a

82

Chapter 1. State of the Art

framework for data stream modeling and associated data mining tasks
such as clustering and classification, whereas functions in “streamR”
allow R users to access Twitter’s filter, sample, and user streams, and
to parse the output into data frames. “RMOA” attempts to connect R
with Massive Online Analysis [161] to build classification and regres-
sion models on streaming data.

. Memory management: There are R packages dealing with Big Data by

managing the memory used for computation. The package “bigmem-
ory” creates, stores, accesses, and manipulates massive matrices by al-
locating shared memory and may use memory-mapped files [148, 147].
The data structures may be allocated to shared memory, allowing sep-
arate processes on the same computer to share access to a single copy
of the data set. The data structures may also be file-backed, allowing
users to easily manage and analyze data sets larger than the available
RAM and share them across nodes of a cluster. Then, a generalized
linear model for large datasets is implemented in the “biglm” package
[180]. The sophisticated R package “ff” provide data structure that are
stored on disk but behave (almost) as if they were in RAM by trans-
parently mapping only a section (pagesize) in main memory [5]. More-
over, “ff” supports R’s standard atomic data types ‘double,” ‘logical,’
‘raw’ and ‘integer’ and non-standard atomic types ‘boolean’ (1 bit),
‘quad’ (2 bit unsigned), ‘nibble’ (4 bit unsigned), ‘byte’ (1 byte signed
with NAs), ‘ubyte’ (1 byte unsigned), ‘short’ (2 byte signed with NAs),
‘ushort’ (2 byte unsigned), ‘single’ (4 byte float with NAs). The“ff” ob-
jects store raw data in binary flat files in native encoding, and comple-
ment this with metadata stored in R as physical and virtual attributes.
They have well-defined hybrid copying semantics, which gives rise to
certain performance improvements through virtualization. Moreover,
they can be stored and reopened across R sessions. The “ff” files can
be shared by multiple “ff” R objects (using different data en/de-coding
schemes) in the same process or from multiple R processes to exploit
parallelism.

. Parallel and distributed computing: In this strategy, there are a lot of

R packages that can be mentioned. By considering the main focus of
the research, we divide the R packages as shown in Figure 1.18. Three
groups are considered as follows:

e MapReduce: It has been explained in Section 1.9.3. Moreover,
we will explain R packages supporting the MapReduce paradigm

1.9. Big Data Processing and Platforms 83

in more detail in the next section.

e Apache Spark: It has been discussed in Section 1.9.4. Detailed
descriptions related to implementations of R tools with Apache
Spark will be explained in the next section.

e Other frameworks: It should be noted that we do not mean that
packages included in this group are less important and useful than
previous ones. In this group, we can consider various frameworks
e.g., based on Message Passing Interface (MPI) and Graphics
Processing Unit (GPU)-based computing. For example, “Piv-
otalR” [228] utilizes the full power of parallel computation and
distributive storage, and thus gives the normal R user access to
Big Data. PivotalR also provides the R wrapper for MADIib.
MADIib is an open-source library for scalable in-database analyt-
ics [114]. Tt provides data-parallel implementations of mathemati-
cal, statistical andmachine-learning algorithms for structured and
unstructured data. The R package “pbdMPI” provides an effi-
cient interface to Message Passing Interface (MPI) by utilizing
S/ classes and methods with a focus on Single Program /Multiple
Data (SPMD) parallel programming style, which is intended for
batch parallel execution [47, 48]. Many functions are included
for parallel computing; For example pbdApply, pbdLapply, and
pbdSapply have quite similar functionalities as the *apply family
in R, but they are performed in a parallel way. A mechanism
of the loop in parallel is accommodated by the package “fore-
ach” [241]. Based on GPU, the “gputools” package offers several
common data-mining algorithms which are implemented by an
integration between nVidia’s CUDA language and cublas library
[37]. Matrix algebra on GPU and multicore is implemented in the
“magma” package [264]. The package “cudaBayesreg” promises to
provide a CUDA implementation of a Bayesian multilevel model
for the analysis of brain fMRI data [78]. Other R packages con-
sidered for parallel computing are e.g., “snow”[279], “parallelMap”
[31], “plyr” [295], and “DistributedR” [239]. The exhaustive list
regarding R packages for high performance and parallel com-
puting can be seen at http://cran.r-project.org/web/views/
HighPerformanceComputing.html.

Chapter 1. State of the Art

84

opJedYy
619 «
Bidy +
Baisahegepno « YO|BOSONSY <
mEmerM - oBpugyr <

sjooindb
dpainquisig SNIHY +
JAd + 02y + Je1ep buiptieds dNSen|g « BuiwesngdoopeH <
Axoid ¥ Wueds s|00 | welbo)siH doopeHy

802NN <
yoealio} «+ aiavy anbes AdIHY «

o sasodand
ous
| n__\\,“_,u“ 4« sasoding IGO0 oyvadg sesoding
u Hielond «| [esoued snoaue||9dsIy q |eJauan
VoW Aowawbiq # * *
Hweans wibig s19yj0 yedsg sonpayden
wealns
A Iy A
juawabeuep T

weals ejeq Kowapy

p $

Bunndwo) pajnquysig pue |ajjeled

+

T
ejeq big
yym Buijeag sabeyoed y

Figure 1.18: A survey on R packages for Big Data.

R with MapReduce

As shown in Figure 1.18, according to the functionalities the following
three groups are considered in the implementations of R with MapReduce:

1.9. Big Data Processing and Platforms 85

general purposes, specific purposes, and miscellaneous. The following are R
packages included in these classifications:

e General purposes: These packages are used as a framework, so that
we can create a specific application on top of Apache Hadoop.

— “RHadoop” [6, 240]: It is a well-know package integrating R and
Hadoop that was created by Revolution analytics. In current
version, it contains five R packages:

1. “rmr2”: It is an interface to perform MapReduce inside the
R environment. Therefore, as MapReduce in Hadoop, to use
the package we need to write three parts of code, which are
map, reduce, and driver program.

2. “rhdfs”: It contains functions that provide the HDFS com-
mands from the R environment for managing files, such as
put, copy local files to HDFS, make a directory, etc.

3. “rhbase” It is an R interface for manipulating Hbase from
R, such as creating and modifying Hbase tables.

4. “plyrmr”: It is a package that allows to process on a Hadoop
cluster of large data sets based on “rmr2”. For example, it
provides functions related to the data.frame operations such
as transmute, select, melt, etc.

5. “ravro”: It is used to read and write files in the Apache Avro
(https://avro.apache.org/) serialization format.

— “RHIPE” [104]: It is an R package that integrate R and Hadoop
based on the divide and recombine paradigm. Furthermore, it
consists of several function to interact with HDFS, e.g. create,
delete, and copy. The output of the computation can be produced
in the PDF files, R datasets, CVS files, etc.

— “HadoopStreaming” [248]: It provides a framework for writing
MapReduce for use in Hadoop Streaming. It Also facilitates op-
erating on data in a streaming manner, without Hadoop. In the
package, there are 3 functions for reading data:

1. hsTableReader(): 1t is used for reading data in table format.

2. hsKeyValReader(): It is used for reading key/value pairs,
where each is a string.

3. hsLineReader() It is used for reading entire lines as string,
without any data parsing.

86

Chapter 1. State of the Art

Generally, in order to perform MapReduce using the package, we
consider the following three steps: making a connection, writing
mapper and reducer, and running on command line the functions
with separated by a vertical line.

“Ricardo” [60]: It is a part of the eXtreme Analytics Platform
(XAP) project at the IBM Almaden Reseach Center. For data
processing, the package decompose data and save them into HDF'S.
Then they are computed by R separately. Furthermore, the de-
composition minimizes the through put cost to improve the com-
putation performance.

“JRBridge” [304]: It offers an integration of R with Hadoop by
employing JVM-based computational infrastructures, which uses
Java APIs code wrapper around the native R code automatically
and tackling type conversion. Moreover, it supports to store data
into HDFS and implements MapReduce.

“RHive” [203]: It is an R package for distributed computing via
HIVE query. Moreover, it presents functions connecting HIVE
SQL and R objects (HQL).

“RevoScaleR”[265]: It offers a mechanism for scaling the R lan-
guage to deal with Big Data. It contains three major components,
as follows:

1. A new file format especially designed for large files, which is
the XDF file format.

2. External memory implementations of the statistical algorithms
most commonly used with large data sets.

3. An extensible programming framework to write user-defined
external memory algorithms.

“RPig” [110]: The basic idea of the package is to provide an in-
terface between R and Pig. Pig is a high level programming
language used in Hadoop. Furthermore, it provides a scalable
advanced data analysis solution for machine learning and statis-
tical analysis.

“BigR” [123]: It is an R package aimed to integrate R with
IBM InfoSphere Biglnsights for dealing with Big Data with the

Hadoop/MapReduce framework. It also provides bigr.frame, bigr.vector,

and bigr.list which are similar to native R data structures, but
they are for Big Data.

1.9. Big Data Processing and Platforms 87

e Specific purposes:

— “HistogramTools” [269]: In Big Data, creating and manipulat-
ing histograms are not longer easy tasks. This package provides
a number of utility functions used for manipulating large his-
tograms, such as trim, subset, merge buckets, and merge his-
tograms.

— “BlueSNP” [121]: It implements genome-wide association stud-
ies (GWAS) statistical tests in the R environment and Hadoop.
Basically, the “BlueSNP” package depends on “Rhipe” to commu-
nicate with Hadoop.

o Miscellaneous:

— “RProtobuf” [71, 81]: It is an interface for encoding R data struc-
tures to the Google Protocol Buffers, which are a language for
data interchange format that independent of programming lan-
guages or operating systems. Moreover, it is embedded in “His-
togramTools”.

— “seque” [177]: It allows to do parallel processing on Amazon Web
Services (AWS) Elastic Map Reduce, so that we can easily per-
form lapply-style operations.

R with Apache Spark

In this part, we can find the following packages to deploy R and Apache
Spark jointly:

e General purposes:

— “RAPID” [171]: It is a distributed framework for data analysis
by integrating R and Apache Spark. There are three mechanisms
for dealing with Big Data: using the Apache Spark framework,
user distributed data structures (e.g., lapply and aggregate), and
optimizations on computations.

— “SparkR” [15]: It integrates R with Apache Spark and enables
native R commands in a distributed fashion. By using the pack-
age, a code script containing R Spark Context will be translated
by the “rJava” package to Java Spark Context. Then, it will
be distributed to whole workers/nodes on the cluster. On each

Chapter 1. State of the Art

worker, the program will be transformed and executed in the R
environment. This package offers the following advantages:

x All features included in Apache Spark are inherited by the
“SparkR” package, such as fault tolerance, scalable storage,
distributed file systems, and the RDD schema.

* Since the package works on R, we are allowed to include
any packages built in R by calling includePackage(). This
feature is the most important aspect since R contains a huge
number of packages for visualizations, statistics, machine-
learning methods, etc.

x It works on the interactive mode, which is easy to use for
data analysis.

x As Apache Spark naturally written in the Scala functional
programming, “SparkR” can be quite similar since R supports
the functional programming as well.

“Sparkling Water” (http://0Oxdata.com/): It is a framework that
integrate Apache Spark with the H20 platform. H20 allows to
apply math and predictive analytics to solve business problem.
It offers many benefits, such as open source, familiar interface,
interchangeable data structure (e.g., Microsoft Excel, Tableau,
HDFS, SQL, and NoSQL), massively scalable Big Data analysis,
and real time data scoring. Regarding data science, H20 provides
various methods: cox proportional hazards Model, deep learning,
generalized linear model, gradient boosted regression and clas-
sification, k-means, naive Bayes, principal component analysis,
random forest, etc. Furthermore, we find the “h20” package al-
lowing to work with H20 from the R environment [84].

Chapter 2

The “frbs” Package

This chapter aims to answer Objective 1(a), namely to produce a high
quality and easy to use implementation of the most widely used FRBS mod-
els as well as methods to learn them. We are mainly concerned with FRBS
applied on classification and regression problems. This software will in-
carnate in the shape of an R package. Furthermore, we will explain main
features and architecture of the package. After that, some examples of usage
and a comparison with other packages are presented. Lastly, we explain a
short summary regarding the chapter.

2.1 Introduction

As mentioned above, FRBSs are well known methods within computa-
tional intelligence, based on fuzzy concepts to address complex real-world
problems. They have become a powerful method to tackle various problems
such as uncertainty, imprecision, and non-linearity. They are commonly
used for identification, classification, and regression tasks. On CRAN, there
are already some packages present that make use of fuzzy concepts. The
“sets” package [191] includes the fundamental structure and operators of
fuzzy sets: class construction, union, intersection, negation, etc. Addition-
ally, it provides simple fuzzy inference mechanisms based on fuzzy variables
and fuzzy rules, including fuzzification, inference, and defuzzification. The
package “fuzzyFDR” [168] determines fuzzy decision rules for multiple test-
ing of hypotheses with discrete data, and genetic algorithms for learning

89

90 Chapter 2. The “frbs” Package

FRBSs are implemented in the package “fugeR” [38]. The “e1071” package
[190] provides many useful functions for latent class analysis, support vector
machines, etc. With respect to fuzzy concepts, this package offers imple-
mentations of algorithms for fuzzy clustering, and fuzzy k-means, which is
an enhancement of the k-means clustering algorithm using fuzzy techniques.
According to this short survey, it can be seen that a comprehensive and ef-
fective tool, which unify the following features: constructing FRBS models
by learning from data using well-known learning methods and by human
experts manually, is still missing. Once identified the need, we set the goal
of the research through a complete package in R. The result is the “frbs”
package.

The “frbs” package is written in pure R and provides implementations of
the most relevant models of FRBSs and more than fifteen different learn-
ing methods to construct FRBSs from data for regression and classifica-
tion tasks. Furthermore, constructing FRBS models can also be done by
human experts manually. The package is available from CRAN at http:
//CRAN.R-project.org/package=frbs. As of this writing, the package ver-
sion is 3.1-0. It is developed under the term GPL v.3. Moreover, the web
page providing some examples in detail can be found in http://sci2s.ugr.
es/dicits/software/FRBS.

Figure 2.1 shows global features available in the package. Two main
fashions to construct an FRBS model: learning from data by using learning
methods and defined by human experts manually. It implements FRBSs
based on the Mamdani, TSK, and FRBCS models. For the case of learning
from data, five different models can be produced: Mamdani, TSK, FRBCS,
approximate, and clustering.

Furthermore, in the package, some facilities are provided such as plotting
membership functions, a summary of FRBS models, demos, a structured
manual, and datasets. As other R packages submitted in CRAN, to keep
a standard quality of CRAN package, “RoughSets” has been checked by
the CRAN teams. Moreover, “frbs” has been included in the CRAN view:
Machine Learning & Statistical Learning.

2.2. The Package Architecture and Implementation Details 91

The “frbs” Package
]

Learning from

Human Experts

Data
Mamdani Model
y h 4

. Takagi Sugeno Fuzzy Rule-Based Approximate ‘ . ‘ Takagi Sugeno

‘ Mamdanl Model ‘ Kang Model Classification Systems Model Clustering Model Kang Model

Fuzzy Rule-Based
WM ‘ ANFIS ‘ —ﬁ FRBCS.CHI ‘ GFS.FR.MOGUL ‘ SBC ‘ Classification
Systems
HYFIS ‘ FIR.DM ‘ —>{ GFS.GCCL ‘ DENFIS
GFS.THRIFT‘ FS.HGD ‘ —>{ FH.GBML ‘

SLAVE

Figure 2.1: Main features in the “frbs” package.

2.2 The Package Architecture and Implementa-

tion Details

Regarding the learning approaches to construct FRBS models considered
in “frbs”. They can be classified into five groups:

1. FRBS based on space partition: It refers to any approach using a
strategy of splitting the variable space, and then considering these
partitions to obtain parameters of membership functions. We have
implemented WM [292], FRBCS.CHI [49], and FRBCS.W [127].

2. FRBS based on gradient descent: It refers to approaches using the gra-
dient descent approach to optimize parameters on both the antecedent
and consequent parts of rules, for example FIR.DM [208] and FS.HGD
[130].

3. FRBS based on genetic algorithms: It refers to GFS which is a combi-
nation of FRBSs with genetic algorithms where the genetic algorithms
are used to search and optimize parameters of membership functions
and of the fuzzy rule construction process [52, 115]. We have imple-
mented GFS.Thrift [278], GFS.FR.MOGUL [116], GFS.GCCL [128],
FH.GBML [131], GFS.LT.RS [9], and SLAVE [91]. In the case of the

92 Chapter 2. The “frbs” Package

Other parameters:
Training data method.type, type.mf,
type.tnorm, etc

frbs.learn()

\ 4
T
[0))
QU
Q
S
=

Testing data

Predicted values

Figure 2.2: Constructing an FRBS model from data and the reasoning pro-

cess (prediction)

GFS.GCCL and FH.GBML algorithms, they introduce a new term
which is dont_care for simplification rule bases.

4. FRBS based on neural networks: The systems using neural networks,
called FNN [36], combine artificial neural networks with FRBSs. An
FRBS is laid upon the structure of an artificial neural networks and the
learning algorithm of the latter is used to adapt the FRBS parameters,

usually the membership function parameters. In this group, we have
considered ANFIS [132] and HYFIS [155].

5. FRBS based on clustering: It refers to FRBSs constructed by cluster-
ing approaches through representing cluster centers as fuzzy rules. We
have included SBC [50] and DENFIS [151].

In order to construct an FRBS model by learning from data, we just
follow the process illustrated in Figure 2.2. There are only two reasonable
steps which are executing frbs.learn() and predict() used for learning data
and prediction, respectively.

“frbs” allows to build an FRBS model defined by human experts man-
ually. To follow this approach, we need to supply rulebase, database and

2.2. The Package Architecture and Implementation Details 93

Database:

Other parameters:

Rulebase Fuzzy values and
. . T-norm, etc
membership functions
Checking rules: | The fuzzifier function:
rulebase() " fuzzifier()

A 4

The inference function:
inference()

Testing data The defuzzifier function:
defuzzifier()

A 4

Predicted values

Figure 2.3: Constructing an FRBS model by human experts and the rea-

soning process

other parameters for reasoning processes as depicted by Figure 2.3. Rule-
base contains a set of fuzzy rules that defines a matrix whereas the database
consists of definitions of fuzzy values and a matrix representing parame-
ters on membership functions. For checking consistency of rules, we need to
perform rulebase(). After defining all required parameters, we invoke the fol-
lowing functions: fuzzifier() and inference(). Predicted values are obtained
by supplying testing data along with the FRBS model into defuzzifier().

Besides providing many learning methods, the “frbs” package offers many
other functionalities to construct an FRBS model. First, the package imple-
ments various choices of the following parameters:

e Triangular norm (¢#-norm): It is used for computing the two-valued
logical conjunction. We provide the following options:

— “MIN”: referring to the standard ¢-norm: min(xy,x2),

— “HAMACHER”: referring to the Hamacher product: (x1*xg)/(x1+
X2 — X1 * X2),

— “YAGER”: referring to the Yager class: 1—min(1,((1—x1)+(1—
x2))),

— “PRODUCT”: referring to the product operator: (x1 * x2),

94

Chapter 2. The “frbs” Package

— “BOUNDED?”: referring to the bounded product: max(0,x1 +x9—

1.

e Triangular conorm (s-norm): It is used for computing the two-valued
logical disjunction. We provide the following options:

“MAX”: referring to the standard s-norm: max(x1,x2),

“HAMACHER”: referring to the Hamacher sum: (x1+xg—2%x7 *
x2)/(1—x71 * x3),

“YAGER”: referring to the Yager class: min(1,(x1 + x2)),
“SUM”: referring to the sum operator: (x1 +x2 —x1 * X2),
“BOUNDED”: referring to the bounded sum: min(1,x1 + x2).

e Implicator functions: Methods used to calculate the implication on a

rule.

We provide the following options, where a rule is expressed by

a—b:

“DIENES_RESHER” means (b >1-a?b:1-a),
“LUKASIEWICZ” means (b<a?l-a+b:1),
“ZADEH” means (a <0.5|1—a>b?1-a:(a <b?a:b)),
“GOGUEN” means (a < b?1:b/a),

“GODEL” means (a <b7?1:b),

“SHARP” means (a <b?1:0),

“MIZUMOTO” means (1-a+a *b),
“DUBOIS_PRADE means b ==0?1-a:(a==1?b:1),
“MIN” means (a < b?a : b)

e Defuzzification methods: The following are methods available:

“WAM?”: it refers to the weighted average method,
“FIRST.MAX?”: it refers to the first maxima,
“LAST.MAX?”: it refers to the last maxima,
“MEAN.MAX”: it refers to the mean maxima,
“COG”: it refers to the modified center of gravity.

e Membership functions: To perform fuzzification, which is a process for
determining a degree of membership, we provide the following func-
tions:

2.2. The Package Architecture and Implementation Details 95

— “TRIANGLE”: representing the triangular function, which has
three parameters (a,b,c) where b is the center point, and @ and
¢ are the left and right points, respectively.

— “TRAPEZOID”: representing the trapezoidal function, which has
four parameters representing the corner points: (a,b,c,d).

— “GAUSSIAN”: representing the Gaussian function, which has two
parameters: mean ¢ and deviation o.

— “SIGMOID”: representing the sigmoid function, which has two
parameters expressing steepness and distance from the origin:
(y,0).

— “BELL”: representing the generalized bell function, which has
three parameters (a,b,c).

Moreover, even though we focus on constructing an FRBS model by
learning from data using various learning methods, we facilitate users to
build an FRBS model manually from knowledge of human experts. Also,
to obtain a representative model, experts can define linguistic hedges. The
kinds of hedges that can be used are

e “extremely” reduces the truth value, e.g., membership function “ex-
tremely a1”: u(ay) = ua1)?,

e “very” reduces the truth value, e.g., membership function “very a;”:
ua1) = par)?,

e “somewhat” increases the truth value, e.g., membership function “some-
what a1”: paq) = uai)®?,

e “slightly” increases the truth value, e.g., membership function “slightly
a157: ,U(al)/ — u(a1)0.33,

The dont_care is a lingustic value representing a value that always has the
degree of 1 so that we can minimize the complexity of the rules.

In summary, Table 2.1 shows the main functions in the package, where
the last three are functions designated for managing the frbsPMML format
that will be explained in Section 3.1. First, there are two functions that
are used for constructing models: frbs.learn() and frbs.gen(). Then, the two
functions frosPMML() and write. frosPMML() are used for converting FRBS
models to frbsPMML. Finally, to obtain prediction for new data, there is the

96

Chapter 2. The “frbs” Package

function predict(). Two additional functions: summary() and plot. MF(), are
used to display an FRBS model in the R environment and plot membership
functions, respectively.

Table 2.1: The main functions of the “frbs” package.

Functions

Description

frbs.learn()
predict()

frbs.gen()

summary()
plotMF()
frbsPMML()
read.frosPMML/()

write.frosPMML()

It is a main function used to construct an FRBS model
automatically from data.

It performs fuzzy reasoning to obtain predicted values for
new data, using a given FRBS model.

It is used to construct an FRBS model manually from ex-
pert knowledge.

It is used to show a summary of an FRBS model.

It is used to plot the membership functions.

It is a main function used to convert a model to the frbsP-
MML format.

It is used to read and convert a model in frbsPMML format
to an R object.

It is used to write and save a model in frbsPMML format
to a file.

2.3 Examples of Usage

In order to use “frbs”, the following steps should be considered.

1. Install and load “frbs”. We need to install “frbs” before it is available.
It should be noted that this has to be done only once. We can install
it from CRAN directly or from a local file in, e.g., .zip and .tar.gz

formats.

2. Prepare data. Usually, data are splitted into two parts: training and
testing. Data are not allowed to contain missing values and should be
in a matriz or data.frame type.

2.8. Examples of Usage 97

3. Construct an FRBS model. We construct an FRBS model by executing
frbs.learn().

4. Predict/inference new data. We predict new data by calling predict().

5. Report or summarize the model. The package provides functions to
make a summary of the model and plot the membership functions.

In this section, we provide three examples of the use of “frbs”: regres-
sion, classification, and human expert construction. The first two refers to
an extraction of knowledge from data by using learning methods, whereas
human experts construct an FRBS model manually on the latter.

2.3.1 Installation and Loading the “frbs” Package

Before using “frbs”, first we need to install it from CRAN by the following
simple command in the R environment.

R> install.packages("frbs")

After installing the package, in any session using “frbs” we need to load it
with the command:

R> library(frbs)

which makes any functions of “frbs” available in the R environment. We can
see a list of functions included in “frbs” by typing the following code.

R> library(help=frbs)

All R functions available in “frbs” are documented in the R hypertext and
pdf format. The manual of “frbs” in pdf format can be found in [244].
Furthermore, to get information of a particular function, we can apply the
help command as follows:

R> help(frbs.learn)

98 Chapter 2. The “frbs” Package

/l \ A
A, A
AN
R
X

ke
NN

N
‘ \{\\\\N
S

X
N
X

Figure 2.4: The four hill function.

2.3.2 Regression Problem

In the regression task, we describe how to use “frbs” to predict real-valued
output based on the input variables expressed by a continuous function.
The following is a function called the four hill function, which is plotted in
Figure 2.4. It involves two input variables x €[-2,2] and y €[-2,2].

1
+y4—2x2-2y2+3

fley)=—7

To provide training and testing data, we need to generate data according
to the function in a matrix format as follows. Here, we are using step size
0.14 and assigning the output to z. We will obtain a matrix containing 841
rows and 3 columns representing the X, Y, and Z variables.

R> fun <- function(input.xy){

+ z <- 1/(input.xy[1]°4 + input.xy[2]"4
+ - 2 * input.xy[1]°2 - 2 * input.xy[2]°2 + 3)
+ }

R> input.xy <- expand.grid(seq(-2, 2, by = 0.14),
+ seq(-2, 2, by = 0.14))
R> z <- apply(input.xy, 1, fun)

2.8. Examples of Usage 99

R> data <- cbind(input.xy, z)
R> colnames(data)<- c("X", "y", "Z")

After that, we split the data into two parts: training data and testing data.
For example, we use 80% of the data for training, and the rest for testing,
as follows 1:

R> cut.indx <- round(0.8 * nrow(data))

R> data.tra <- data[l:cut.indx,]

R> data.tst <- data[(cut.indx + 1):nrow(data), 1:2]
R> real.val <- data[(cut.indx + 1):nrow(data), 3,
+ drop=FALSE]

Then, we need to calculate the interval of each variable by

R> range.data <- apply(data, 2, range)

So, now our data is ready to use.

In order to construct an FRBS model, we need to assign values to avail-
able parameters. We note that all parameters have default values, if we ig-
nore them. For instance, we use the Wang and Mendel’s algorithm ("WM”)
as the learning method and assign it to the parameter method.type. Then, we
define other parameters in the control parameter, for instance the number
of linguistic values, 5. And, we use the center of gravity ("COG”), "MIN?”,
and "LUKASIEWICZ” to be our defuzzification method, types of ¢-norm,
and implicator operators, respectively. Finally, let us call our simulation
“fourhill” by assigning the parameter name, as follows:

R> method.type <- "WM"

R> control <- list(num.labels = 5,

+ type.mf = "GAUSSIAN", type.defuz = "COG",

+ type.tnorm = "MIN", type.implication.func = "LUKASIEWICZ",

+ name="fourhill")

It is a simple way to execute the learning method as follows.

Mndicate that the sampling should be done randomly, but it is not done here, because

the example is just for illustration purposes

100 Chapter 2. The “frbs” Package

R> mod.reg <- frbs.learn(data.tra,range.data,

+ method. type, control)

We can summarize our model by the following command.

R> summary (mod.reg)

The name of model: fourhill
Model was trained using: WM
The names of attributes: X Y Z
The interval of training data:
X Y Z
min -2.00 -2.00 0.05263158
max 1.92 1.92 0.99674630
Type of FRBS model:
(1] "MAMDANI"
Type of membership functions:
[1] "GAUSSIAN"
Type of t-norm method:
[1] "Standard t-norm (min)"
Type of s—norm method:
[1] "Standard s-norm"
Type of defuzzification technique:
[1] "modified COG"
Type of implication function:
(1] "LUKASIEWICZ"
The names of linguistic terms on the input variables:
[1] "very.small" "small" "medium" "large" "very.large"
[6] "very.small" "small" "medium" "large" "very.large"

The parameter values of membership function on the input variable
(normalized):

very.small small medium large very.large very.small small
[1,] 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
[2,] 0.0000 0.2500 0.5000 0.7500 1.0000 0.0000 0.2500

2.3. Examples of Usage 101

[3,1] 0.0875 0.0875 0.0875 0.0875 0.0875 0.0875 0.0875

[4,] NA NA NA NA NA NA NA

(5,1 NA NA NA NA NA NA NA
medium large very.large

[1,]1 5.0000 5.0000 5.0000

[2,] 0.5000 0.7500 1.0000

[3,]1 0.0875 0.0875 0.0875

[4,] NA NA NA

[5,1] NA NA NA

The names of linguistic terms on the output variable:

[1] "very.small" "small" "medium" "large" "very.large"
The parameter values of membership function on the output variable
(normalized) :

very.small small medium large very.large

[1,] 5.0000 5.0000 5.0000 5.0000 5.0000
[2,] 0.0000 0.2500 0.5000 0.7500 1.0000
[3,1] 0.0875 0.0875 0.0875 0.0875 0.0875
(4,1 NA NA NA NA NA
(5,] NA NA NA NA NA
The number of linguistic terms on each variables
XY Z

[1,1 555
The fuzzy IF-THEN rules:

V1l V2 V3 V4 V5 V6 V7 ve V9 V10 Vi1 V12
1 IF X is very.small and Y is very.small THEN Z is very.small
2 IF X is small and Y is very.small THEN Z is very.small
3 IF X is medium and Y is very.small THEN Z 1is very.small
4 IF X is large and Y is very.small THEN Z is very.small
5 IF X is very.large and Y is very.small THEN Z is very.small
6 IF X is small and Y is very.small THEN Z is small
7 IF X is medium and Y is very.small THEN Z 1is small
8 IF X is large and Y is very.small THEN Z 1is small
9 IF X is very.large and Y is very.small THEN Z is small

102

Chapter 2. The “frbs” Package

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

Lo T T - R B B B o T T - B A - - B B B B B T o T o T - B B B - - B I

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

is

very.small
very.small
small
small
medium
large
large
very.large
very.large
medium
small
large
small
large
very.small
very.small
small
small
medium
medium
large
very.large
very.large
large
very.small
very.small
small
small
medium
large
very.large
very.large

small

<K K K K KK KK K K K K K K K K K K K K K K " K " K"K "< R << <

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

is

small
small
small
small
small
small
small
small
small
small
small
small
small
small
medium
medium
medium
medium
medium
medium
medium
medium
medium
medium
large
large
large
large
large
large
large
large

large

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

is

very.small
small
small
medium
small
small
medium
small
very.small
medium
large
large
very.large
very.large
very.small
small
small
medium
medium
small
medium
small
very.small
small
very.small
small
small
medium
medium
medium
small
very.small

large

2.3. Examples of Usage

108

43 IF X is large
44 IF X is small
45 IF X is large
46 IF X is very.small
47 IF X is medium

and
and
and

and

< oR< k=

and

is
is
is
is

is

large
large

large

very.small

large

THEN
THEN
THEN
THEN
THEN

is large
is very.large
is very.large

is small

N N N N N

is small

The reader can also refer to the project web site http://dicits.ugr.es/
software/FRBS/ in order to see the model. And, we plot the membership
functions as seen in Figure 2.5 by

R> plotMF (mod.reg)

X
=
¢ 27
5 ©
(7]
EE
2Ol T T T T T
00 02 04 06 08 10
X
z
S
g 27
(=2}
5 ° 4
g g
EC)l T T T T T
00 02 04 06 08 10

MF.degree(x)

0.0 0.8

1.0

Figure 2.5: The plot of membership functions in the regression example.

The final step is to predict testing data using the predict() function. It
needs two arguments which are mod.reg and new data. It can be done as

follows.

R> res.test <- predict(mod.reg, data.tst)

The predicted values are generated in matrix format. They can be compared

with the real values using the mean square error (MSE) by

R> err.MSE <- mean((real.val-res.test)"2)

R> print(err.MSE)

104 Chapter 2. The “frbs” Package

[1] 0.07852261

2.3.3 Classification Problem

In this example, we are using the iris data set which is already included in
the R environment. The iris data set is a well-known data set in the pattern
recognition literature. The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. One class is linearly separable
from the other 2; the latter are not linearly separable from each other. To
use it, we just load the data by the command:

R> data(iris)

To get a relatively good proportion, usually we randomize the data by

R> set.seed(2)

R> irisShuffled <- iris[sample(nrow(iris)),]

Because the decision attribute, which is in the last column, and is represented
with a string, we need to convert it into numerical values. Then, the data
are split into two parts which are tra.iris for training data and tst.iris for
testing ones.

R> irisShuffled[,5] <- unclass(irisShuffled[, 5])
R> tra.iris <- irisShuffled[1:105,]

R> tst.iris <- irisShuffled[106:nrow(irisShuffled)
+ , 1:4]

R> real.iris <- matrix(irisShuffled

+ [106 :nrow(irisShuffled), 5], ncol = 1)

Then, even though “frbs” by default calculates the range of the input data,
we strongly recommend to define it manually.

R> range.data.input <- apply(iris[, -ncol(iris)],

+ 2, range)

It should be noted that for classification tasks we only need to define the
range of input data.

2.8. Examples of Usage 105

As in the regression example, after our data is ready to use, we need
to define some parameters concerning the used method and its control pa-
rameter. For example, we are going to use the FRBCS.CHI method and
we define three linguistic values, the trapezoid membership function, and
minimum and Zadeh for the types of t-norm, and implicator operators, re-
spectively.

R> method.type <- "FRBCS.CHI"

R> control <- list(num.labels = 3,

+ type.mf = "TRAPEZOID", type.tnorm = "MIN",
+ type.implication.func = "ZADEH")

We generate an FRBS model through the following command.

R> mod.class <- frbs.learn(tra.iris,

+ range.data. input, method.type, control)

As in the regression example, we do prediction as follows:

R> res.test <- predict(mod.class, tst.iris)

Then, we can check the result by calculating the percentage error:

R> err = 100*sum(real.iris!=res.test)/
+ nrow(real.iris)

R> print(err)

[1] 4.444444

The plot of membership functions can be seen in Figure 2.6. Further in-
formation and examples can be found in our project web site at http:
//dicits.ugr.es/software/FRBS/.

2.3.4 Human Expert Constructions

There are two manners to construct an FRBS model as follows:

106 Chapter 2. The “frbs” Package

Sepal.Length Sepal.Width
= =
- g 37
=2} - > -
3 o o 3 o o
E S T T T T T T E o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Petal.Length Petal.Width

0.0 08
NN

MF.degree(x)
0.0 0.8
111l
MF.degree(x)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.6: The plot of membership functions in the classification example.

e by calling frbs.gen(). It is a function for building the frbs object that
contains database, rulebase, and other parameters. After generating
the object, we execute predict() for prediction new data.

e by executing all involved functions: rulebase(), fuzzifier(), inference(),
and defuzzifier(), separately.

User is allowed to construct the Mamdani, TSK, and FRBCS models.

In this example, we only show the second way, so users interested in
another way should take a look at [244].

First, we need to construct a set of rules in matriz, e.g. as follow:

R> rule <- matrix(

+ C(”al”, Ila-nd", "blll’ "andll’ "C1”, "and", IIdl", II_>"’ Ilell',
+ "a2", "and", "b2", "and", "c2", "and", "d2", "->", "e2",
+ "a3", "and", "b2", "and", "c2", "and", "d1", "->", "e3"),
+

nrow = 3, byrow = TRUE)
Then, we check and validate the rules with

R> rule <- rulebase(type.model = "MAMDANI", rule, func.tsk = NULL)

2.8. Examples of Usage 107

It can be seen that we construct a Mamdani model.

After that, we define database that contains fuzzy definitions and mem-
bership functions. For example, we consider the trapezoid function as the
membership function as follows:

R> varinp.mf <- matrix(c(2, 0, 20, 40, NA,

+ 4, 20, 40, 60, 80, 3, 60, 80, 100, NA,

2, 0, 35, 75, NA, 3, 35, 75, 100, NA,

2, 0, 20, 40, NA, 1, 20, 50, 80, NA, 3, 60, 80, 100, NA,
2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),
nrow = 5, byrow = FALSE)

+ o+ o+ o+

with the following fuzzy definitions:

R> num.fvalinput <- matrix(c(3, 2, 3, 3), nrow=1)

It means that we have four input variables: e.g., “A”, “B”, “C”, and “D”,
where these variables have 3, 2, 3, and 3 fuzzy terms, repectively, as follows:

R> A <- c("a1", "a2", "a3")

R> B <- c("b1", "b2")

R> C <= c("c1", "c2", "c3")

R> D <- c¢("d1", "d2", "d3")

R> names.varinput <- c(A, B, C, D)

Moreover, we set the following range:

R> range.data <- matrix(c(0,100, 0, 100, 0, 100, 0, 100, 0, 100),

nrow = 2)

Furthermore, since we consider the Mamdani model, we need to define mem-
bership functions for the output variable as well, as follows:

R> varout.mf <- matrix(c(2, 0, 20, 40, NA,
+ 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),
+ nrow = 5, byrow = FALSE)

R> names.varoutput <- c("el", "e2", "e3")

R> num.fvaloutput <- matrix(c(3), nrow = 1)

108 Chapter 2. The “frbs” Package

After that, we execute the following function for converting crisp values
of data into fuzzy ones:

R> newdata <- matrix(c(15, 80, 85, 85, 45, 75, 78, 70), nrow = 2,
byrow = TRUE)
R> num.varinput <- ncol (num.fvalinput)

R> MF <- fuzzifier(newdata, num.varinput, num.fvalinput, varinp.mf)

It should be noted that newdata is a dataset for the testing step. For con-
structing an FRBS model by human experts, we do not need any training
data.

After converting into fuzzy values, we calculate the confidence factor on
each antecendet rule by calling the following function:

R> miu.rule <- inference(MF, rule, names.varinput,

+ type.tnorm = "MIN", type.snorm = "MAX")

It can be seen here that we assign "MIN” and "MAX” to type.tnorm and
type.snorm.

Finally, we convert back fuzzy values to crisp values by running the
defuzzification, as follows:

R> range.output <- range.datal, ncol(range.data), drop = FALSE]

R> result <- defuzzifier(newdata, rule, range.output, names.varoutput,
+ varout.mf, miu.rule, type.defuz = "WAM",

+ type.model = "MAMDANI", func.tsk = NULL)

We see the result by

R> print(result)

(,1]
[1,] 50
[2,] 40

2.4. Experimental Studies 109

2.4 Experimental Studies

This section presents an experimental comparison of the “frbs” package
with other packages available in CRAN. The goal of this comparison is ba-
sically to illustrate that the performance of the implementation of FRBSs
done on the “frbs” package is competitive to other approaches. The com-
parison includes both regression and classification problems. In regression,
the response or output variable is numerical/continuous, whereas in clas-
sification the output is a category. We perform experiments using several
datasets to evaluate the methods.

2.4.1 Regression Tasks

In the following, we describe the experiment design for regression, which
includes the datasets, the methods considered for comparison, their param-
eters, and finally the experimental results.

Datasets

In this task, we consider two time series, which are the gas furnace dataset
[32] and the Mackey-Glass series [181]. Both datasets have been included
in the package. Originally, the first dataset has two attributes which are
methane gas and the percentage of carbon dioxide inside the gas furnace.
However, in this experiment we arrange the dataset as follows. As input
variables, we use 292 consecutive values of methane at time (¢ —4) and the
COg at time (¢—1), with the produced COg at time (¢) as an output variable.
In other words, each training data point consists of [u(t—4),y(t— 1), y(¢)],
where u is methane and y is COg. Then, we divide the data into two
groups: 70% of the data are used for training and the rest of the data is
used for testing.

Secondly, The Mackey-Glass chaotic time series is defined by the follow-
ing delayed differential equation:
dx(t) _ (axx(t-7))
dt (1+x(t-1)19)

B x x(t)

Using the above equation, we generate 1000 samples, with input param-
eters as follows: a=0.2, $=0.1, 1 =17, x9 = 1.2, dt = 1. The dataset is

110 Chapter 2. The “frbs” Package

embedded in the following way: input variables: x(¢t—18), x(¢ — 12), x(¢ —6),
x(¢) and output variable: x(¢+6). After that, we split the data into two
equally sized datasets (i.e., training and testing data).

Methods considered for comparison and their parameters

The following R packages are used to compare them to the “frbs” pack-
age. The selection of packages is certainly not exhaustive, however, it is a
representative set of well-known standard methods, which furthermore have
different characteristics and implement different approaches to deal with the
regression problems.

e “randomForest” [34]: This package implements the random forests
method, which combines various decision trees to predict or classify the
values. The method is suitable for both classification and regression
tasks.

e “RSNNS” [27]: This package implements many standard procedures
of neural networks. Here, we use the multi-layer perceptron (mip) for
regression.

e “fRegression” [303]: This package implements various methods for re-
gression tasks. We use three methods from the package: linear regres-
sion model (Im), generalized linear modeling (glm), and projection
pursuit regression (ppr).

e “nnet” [242]: This package is the standard/recommended package for
neural networks in R, so that it is available directly from within R.
It implements a multi-layer perceptron with one hidden layer (nnet),
and uses a general quasi-Newton optimization procedure (the BFGS
algorithm) for learning.

e “CORElearn” [246]: This package contains several learning techniques
for classification and regression. We use the regression tree method
(regTree) of the package here.

e “e1071” [190]: From this package, we use the available support vector
machine, svm, to perform regression tasks.

The parameters of the methods considered in the experiments are shown
in Table 2.2. We use the same parameter specifications for the two datasets.

2.4. Ezxperimental Studies

111

Table 2.2: Parameters of the methods selected for comparison for regression.

Methods Parameters

randomForest importance = TRUE, proximity = TRUE

mlp size = 5, learnFuncParams = [0,1], maxit = 350

Im none

glm none

ppr none

nnet size = 30, linout = TRUE, maxit = 1000

regTree none

som cost = 10, gamma = 0.01

ANFIS num.labels = 5, max.iter = 300, step.size = 0.01, type.mf
=3

HYFIS num.labels = 5, max.iter = 200, step.size = 0.01

SBC r.a = 0.3, eps.high = 0.5, eps.low = 0.15

DENFIS Dthr = 0.15, max.iter = 5000, step.size = 0.01, d = 2

FIR.DM num.labels = 5, max.iter = 1000, step.size = 0.01

FS.HGD num.labels = 5, max.iter = 100, step.size = 0.01, al-
pha.heuristic = 1

GFS.THRIFT popu.size = 30, num.labels = 5, persen_cross = 0.9,
persen_mutant = 0.3, max.gen = 100

GFS.FR.MOGUL persen_cross = 0.9, max.iter = 300, max.gen = 200,

)7WM77

max.tune = 500, persen_mutant = 0.3, epsilon = 0.95
num.labels = 15, type.mf = 3, type.defuz = 1, type.tnorm

= 1, type.snorm = 1

112 Chapter 2. The “frbs” Package

Table 2.3: Results obtained in the regression tasks.

Methods G. Furnace M.-Glass | Methods G. Furnace M.-Glass

(RMSE) (RMSE) (RMSE) (RMSE)
randomForest 0.91 0.016 SBC 0.72 0.022
milp 0.86 0.011 DENFIS 0.89 0.101
Im 0.72 0.094 FIR.DM 1.23 0.234
glm 0.72 0.094 FS.HGD 0.83 0.052
ppr 0.64 0.050 GFS.THRIFT 1.64 0.225
nnet 0.58 0.002 GFS.FR.MOGUL 1.08 0.084
regTree 1.41 0.062 WM 0.78 0.019
svm 0.72 0.033 HYFIS 0.87 0.087
ANFIS 0.64 0.032

Experimental results

This section presents the results of the methods considered for compari-
son. To evaluate the results, we calculate the RMSE. The complete results
are shown in Table 2.3. It can be seen that the best result for the gas
furnace dataset are an RMSE of 0.58, obtained by the nnet method. For
the Mackey-Glass series, the best method is nnet, with an RMSE of 0.002.
Based on this benchmarking experiment, we can say that the methods that
provide the best three results for the gas furnace dataset are nnet, ANFIS,
and ppr. One of these methods is from the “frbs” package. In the case of
the Mackey-Glass series, methods from other packages like nnet, mlp, and
randomForest outperform the methods included in package “frbs.” Gener-
ally, the methods included in package “frbs” obtain reasonable, competitive
results.

2.4.2 Classification Tasks

In this section an illustrative empirical study of FRBS methods in classifi-
cation is provided. We describe again the experiment design, which includes
the datasets, the methods considered for comparison, their parameters, and
finally the experimental results.

2.4. Experimental Studies 113

Table 2.4: Datasets considered for classification tasks.
Name Attributes Patterns Classes

iris 4 150 3
pima 8 768 2
wine 13 178 3

Datasets

In these experiments, we consider three datasets, namely, the iris, pima,
and wine datasets. Some properties of the datasets can be seen in Table 2.4.
To validate the experiments, we consider a 5-fold cross-validation, i.e., we
randomly split the datasets into five folds, each containing 20% of the pat-
terns of the dataset. Then, we use four partitions for training and one
partition for testing. All of the data are available from the KEEL-dataset
repository [10].

Methods considered for comparison and their parameters

Again, we compare the classification methods in the “frbs” package with
several different packages available on CRAN. The methods are chosen since
they are well-known methods and represent different characteristics in the
way they solve the particular tasks. The packages used for comparison are
the following ones:

e “CORElearn” [246]: As mentioned before, this package contains several
methods. In this case, we use the k-nearest-neighbors classifier method

e “C50” [163]: The package implements the C5.0 algorithm presented
by [232].

e “randomForest” [34]: The randomForest can be used both for regres-
sion and for classification, so that we use it also here.

e “nnet” [242]: We use nnet as in the regression task.

e “RSNNS” [27]: As in the regression task, we use mlp for classification.

114 Chapter 2. The “frbs” Package

e “tree” [243]: The package implements the ¢ree method.

e “kernlab” [149]: The package implements SVM methods. In this ex-
periment, we use the ksum function to perform classification tasks.

e “fugeR” [38]: The package implements the fugeR method which is
a genetic algorithm to construct an FRBS model. We consider this
package for comparison because it is a package already available from
CRAN that applies FRBSs.

The parameters of the methods used in the experiments are shown in Ta-
ble 2.5. The same parameter specifications were used for all the datasets in
classification.

Experimental results

Table 2.6 shows the results obtained from the three experiments using
5-fold cross-validation. By considering all datasets, in these experiments
the best results are obtained by FRBCS.CHI, tree, and ksvm for iris, pima,
and wine, respectively. So, we see that the methods available in the “frbs”
package can be considered competitive for classification tasks.

2.5 A Comparison with Other Software Libraries

In this section, we develop two comparisons: a comparison “frbs” with
other packages included in CRAN and a comparison “frbs” with other soft-
ware libraries.

2.5.1 Other FRBS Packages Available in CRAN

Here, we review in more detail the packages available in CRAN which
implement FRBSs. We compare them to “frbs,” considering functionality
and capability. The following packages provide functions which are able to
construct FRBSs (i.e., “sets” and “fugeR”):

“sets” As already stated briefly, “sets” [191] provides standard procedures
for the construction of sets, fuzzy sets, and multisets. Especially w.r.t. fuzzy

2.5. A Comparison with Other Software Libraries

115

Table 2.5: Parameters of the methods selected for comparison for classifica-

tion.

Methods Parameters

knn none

C5.0 trial = 100

randomForest importance = TRUE, proximity = TRUE

nnet size = b, rang = 0.8, decay = 5e-4, maxit = 1000

mlp maxit = 350, learnFuncParams = [0, 1], size = 5

tree none

ksvm type = "C-bsvc”, kernel = "rbfdot”, kpar = list(sigma =
0.1), C = 10, prob.model = TRUE

fugeR generation = 100, population = 100, elitism = 20, ver-
bose = TRUE, threshold = NA, sensiW = 0.0, speciW =
0.0, accuW = 0.0, rmseW = 1.0, maxRules = 10, max-
VarPerRule = 2, labelsmf = 3

FRBCS.CHI num.labels = 9, type.mf = 3

FRBCS. W num.labels = 9, type.mf = 3

GFS.GCCL popu.size = 70, num.labels = 3, persen_cross = 0.9,
max.gen = 100, persen_mutant = 0.3

FH.GBML popu.size = 50, max.num.rule = 100, persen_cross = 0.9,
max.gen = 100, persen_mutant = 0.3, p.dcare = 0.8,
p-michigan = 1

SLAVE num.labels = 5, persen_cross = 0.9, max.iter = 100,

max.gen = 100, persen_mutant = 0.3, k.low = 0, k.upper

=1, epsilon = 0.7

116 Chapter 2. The “frbs” Package

Table 2.6: Results obtained in the classification experiments.

Methods Classification rate (%)
iris pima wine
knn 94.67 74.09 96.62
C5.0 94.00 74.34 94.35
randomForest 95.33 76.56 96.61
nnet 95.33 65.50 93.19
mlp 94.00 73.43 97.18
tree 94.67 76.57 92.67
ksvm 96.00 76.56 98.29
fugeR 95.33 76.09 89.31

FRBCS.CHI 97.34 67.44 92.67
FRBCS.W 96.00 69.92 92.67
GFS.GCCL 94.00 66.54 84.91
FH.GBML 95.34 68.62 81.93
SLAVE 97.33 7291 88.17

2.5. A Comparison with Other Software Libraries 117

sets, an advantage of “sets” is that it does not only rely on the R built-in
match() function to perform set operations, but it also provides compre-
hensive operations such as negation, conjunction, disjunction, implication,
etc. For example, the conjunction operator, .7T.(), provides many options
such as: “Zadeh,” “drastic,” “product,” “Lukasiewicz,” “Fodor,” “Hamacher,”
“Yager,” etc. Furthermore, there are several functions to set the shape of
the membership function which are fuzzy_normal() for the Gaussian func-
tion, fuzzy_trapezoid() for trapezoid, fuzzy triangular() for a triangle shape,
etc. Regarding the construction of FRBSs, “sets” has the capability to per-
form fuzzy reasoning by using fuzzy_inference(), and to convert fuzzy into
crisp values by using gset_defuzzify(). However, the package does not include
learning algorithms, which is the main focus of our package. So, at first sight
“sets” may seem an ideal base for the implementation of the functionality
available in our package. But there is only the Mamdani model available,
and we found it difficult to extend the “sets” package to our needs, as the
underlying data types and syntactics do not facilitate automatization of the
construction process of FRBSs?. So, finally we opted for simple numerical
matrices as the basic data type in the “frbs” package. In “frbs,” we provide
many different learning procedures to learn from numerical data, as well
as a mechanism for fuzzy reasoning without learning, by using our func-
tion frbs.gen(). Furthermore, “frbs” does not only implement the Mamdani
model but it also has the TSK and FRBCS models implemented.

“fugeR” The package “fugeR” [38] implements genetic algorithms to con-
struct an FRBS from numerical data for classification. It is based on
fuzzy cooperative coevolution [217] where two coevolving species are de-
fined: the databases and the rule base. In this package, there are two main
functions which are fugeR.run() for construction of the FRBS model and
fugeR.predict() for prediction. So, “fugeR” implements one particular classi-
fication method based on genetic algorithms. Our package implements the
same workflow, but with more than ten different models, both for classifi-
cation and regression, among them various different ones which use genetic
algorithms.

In summary, while “sets” focuses on constructing FRBS models by human
experts and providing the set representation and “fugeR” is used for learning
from data based on genetic algorithms, “frbs” offers the implementations of

2Actually we tried pretty hard but did not find a way to get the parameters to

fuzzy_inference() evaluated, as they are passed to substitute internally by that function.

118 Chapter 2. The “frbs” Package

several well-known machine-learning methods for learning from data and the
construction of FRBS models by human experts manually.

2.5.2 Other Fuzzy Tools

In this section, we review well-known software libraries implementing
FRBS concepts: Xfuzzy [21], Fuzzy Logic Toolbox for MATLAB [277],
Fuzzy Inference System Professional (FisPro) [105], Generating Understand-
able and Accurate Fuzzy Models in a Java Environment (GUAJE) [12], and
Knowledge Extraction based on Evolutionary Learning (KEEL) [11, 10]. All
of them support learning from data using various learning procedures.

Xfuzzy is an open-source framework released under the term of the GPL
License implementing fuzzy inference-based systems [21]. The software has
an architecture containing several parts which share the proposed language
XFLS3. Using the graphical user interface, these parts have different func-
tionalities, such as zfedit which can be used to describe the logical structure
needed for the inference process. It is quite similar to the frbs.gen() function
in “frbs” to perform inference based on knowledge constructed manually by
human experts. zfsl is a tool used to extract knowledge from data. There-
fore, it is obvious that zfsl has functionalities similar to frbs.learn() in “frbs.”
Some learning methods have been considered in this part, such as gradient
descent, second-order, Gauss-Newton, and statistical algorithms. It can be
seen that “frbs” offers more algorithms for generating FRBS models. For the
inference process, Xfuzzy provides the zfmt tool which is the same as pre-
dict() in “frbs.” Other capabilities of Xfuzzy are, e.g., plotting membership
functions and converting codes using zfc, zfcpp, and zfj into XFL3. Fur-
thermore, many options for ¢-norm, s-norm, and implicator operators and
defuzzification methods are available as well.

The Fuzzy Logic Toolbox for MATLAB is a toolkit for analysis, design,
and simulation systems based on fuzzy logic. It provides Simulink, a graph-
ical user interface (GUI), and a command line mode to build FRBS models
[277]. Tt supports standard Mamdani and Sugeno-type fuzzy inference sys-
tems. In order to design an FRBS model, it allows to use ANFIS, substrac-
tive clustering, and fuzzy C-means. Two of the three methods are provided
in “frbs,” and we provide several others. Additionally, in this toolbox, the
FISEditor is used to display general information about a fuzzy inference
system while the Membership Function Editor and Rule Editor are used to
provide functions to display and edit membership function and rules. Since

2.5. A Comparison with Other Software Libraries 119

“frbs” works with a scripting interface, editing is a straightforward process
by changing the matrix of the model.

FisPro, built in C++ and Java, implements fuzzy inference systems con-
sidering the rule base interpretability and modularity in an open source
software. As “frbs,” it provides two modes of FRBS models which are expert
rule design and automatic induction for regression and classification cases.
It implements k-means, hierarchical fuzzy partitioning (HFP), Wang and
Mendel (WM), fast prototyping algorithm (FPA), and fuzzy decision trees
(FDT) in order to generate fuzzy partitions and rule bases. Additionally,
FisPro provides the aggregation operators "MAX” and "SUM” for conjunc-
tion, which are also available in “frbs.” FisPro also includes mechanisms for
merging and improving fuzzy rules in a separated part which is an optimiza-
tion modul. In contrast, “frbs” simultaneously performs optimization with
along learning processes by using learning methods such as genetic fuzzy
systems.

GUAJE is an open-source software that implements fuzzy rule-based sys-
tems in Java. It is an extension of the Knowledge Base Configuration Tool
(KBCT) [13] and aimed to provide interpretable fuzzy systems. Addition-
ally, it integrates several other software programs, such as FisPro, ORE,
Espresso, Graphviz, JMetal, and WEKA. From the perspective of the al-
gorithms used to generate fuzzy rules, GUAJE adopts the approaches im-
plemented in FisPro. Also, the generated FRBS models can be exported
to FisPro, Xfuzzy, and the Fuzzy Logic Toolbox for MATLAB. Although
GUAJE provides data pre-processing algorithms (e.g., feature selection) and
implements other approaches, “frbs” has the advantage of being built in
the R environment which offers additional benefits since R provides more
comprehensive and complete algorithms for data pre-processing and other
prediction methods.

KEEL is a big and comprehensive software library containing classical
knowledge extraction algorithms, preprocessing techniques (e.g., instance se-
lection, feature selection, discretization, etc.), learning algorithms for clus-
tering, regression, and classification problems, and a statistical test module
for comparison [11, 10]. It provides three important blocks: data manage-
ment, design of experiments, and educational experiments. Therefore, it can
be seen that KEEL is intended as a research and educational tool. From the
perspective of FRBSs, it is focused on implementation of learning methods
based on GFS, such as GFS based on Thrift’s algorithm [278], SLAVE [91],
etc. Some of the algorithms considered in KEEL are implemented in “frbs”

120 Chapter 2. The “frbs” Package

as well. Even though KEEL has implemented more than thirty learning al-
gorithms based on FRBSs, it does not provide construction of FRBS models
from human experts as in “frbs.”

According to the comparison, it can be seen that “frbs” has some advan-
tages that are not available in other tools separately. For example, “frbs”
provides the capabilities of learning from data and constructing by human
experts, the complete FRBS models, and the available parameters for build-
ing the models.

2.6 Summary

This chapter presents the implementation of the “frbs” package that ful-
fills Objective 1(a). The package offers the following functionalities:

1. It includes implementations of three well-known FRBS models: Mam-
dani, TSK, and FRBCS, that are used for dealing with classification
and regression.

2. There are over 10 machine-learning methods employing genetic algo-
rithms, artificial neural networks, gradient descent, clustering, and
space partitions.

3. It allows constructing FRBS models by human experts by using the
following functions: frbs.gen(), fuzzifier(), rulebase(), inference(), and

defuzzifier().
4. Plotting membership functions and summarizing fuzzy rules.

5. Wide diversity in choices for different components of triangular norm
(t-norm), s-norm, implicator functions, defuzzification methods, mem-
bership functions, and linguistic hedges.

6. Free and open source software under the GPL License.

7. Many demos and datasets embedded in the package with the struc-
tured and complete documentation/manual.

Moreover, some comparisons with other tools show that “frbs” should be
considered as a software system unifying various advantages of the separately

2.6. Summary 121

available tools. In this chapter, we also provide some example showing how
to use the package.

The “frbs” package is available in CRAN: http://cran.r-project.org/
package=frbs and in the project website: http://sci2s.ugr.es/dicits/
software/FRBS. Additionally, the journal paper describing the package is
published:

L.S. Riza, C. Bergmeir, F. Herrera, and J.M. Benitez. frbs: Fuzzy Rule-
Based Systems for Classification and Regression in R. Journal of Statistical
Software, Vol. 65(6), p. 1-30, 2015, http://www. jstatsoft.org/v65/
i06/.

Chapter 3

frbosPMMUL: A Universal
Representation Framework
for FRBSs Based on PMML

This chapter associated Objective 2, namely designing a universal rep-
resentation framework of FRBS models based on PMML. The representa-
tion called frbsPMML will be introduced in Section 3.1. Moreover, the
frbsPMML specifications and their implementations are presented before
explaining detailed features and benefits. Then some examples of usage are
provided. Lastly, we provide a summary of the chapter.

3.1 Introduction

Nowadays, many software systems implementing FRBSs are available for
both academic and industry purposes. For example, “Xfuzzy” is an open-
source framework based on fuzzy inference-based systems [21]. To represent
an FRBS model, it uses a formal language called the Xfuzzy 3.0 specification
language (XFL3). XFL3 contains declarations about membership functions,
a set of rules, and other parameters. In the MATLAB environment, there is
the Fuzzy Logic Toolbox [277]. It is developed by utilizing Simulink, which
is a graphical user interface (GUI) used for data flow, and a command-line

122

3.1. Introduction 123

mode to build an FRBS model saved in the so-called .fis file format. Addi-
tionally, apart from these most relevant software systems, there are others,
e.g., “FisPro” [105], “GUAJE” [12], and “KEEL” [11, 10]. Though available
software libraries provide many useful features for tackling real-world prob-
lems, we note that there is not a standard interface that connects between
them, so that it is difficult to exchange models between the different soft-
ware systems. As interoperability is an important issue not only in industry
cases but also for academic purposes, this is a shortcoming that we address
with our work.

In this work, we overcome this shortcoming by designing and imple-
menting a proposal for a universal representation framework of FRBSs for
PMML, called frbsPMML. By developing an extension of PMML, an FRBS
model can be easily read, checked, verified, deployed in most computing
platforms, and even modified by human experts because the model is stored
in an XML text file. Additionally, in this research we present an extension
of the “frbs” package to produce and consume an FRBS model in PMML
format. Another implementation, written in Java, is presented as well. It is
called “frbsJpmml,” and can be used to deploy PMML models and perform
predictions on new, unknown data.

As mentioned before, a universal representation framework naturally of-
fers the advantages of interoperability and reproducible research. Moreover,
two essential aspects considered for measuring the performance in FRBSs
are accuracy and interpretability. Using FRBSs in the PMML format, we
gain a benefit which is high levels of interpretability. In other words, because
of the XML-based language, an FRBS model becomes readable by human
and machine. Therefore, human experts can easily check, verify, and mod-
ify the model. Additionally, from the FRBS point of view, interpretability
mainly refers to the capability of the fuzzy model to express the behaviour
of system in a understandable way, which depends on several aspects: the
model structure, the number of input variables, the number of fuzzy rules,
the number of linguistic terms, and the shape of the fuzzy sets [42]. FRBSs
in the PMML format allow to represent a model in accordance with these
criteria. It happens since a database and a rulebase are specified by the
XML-based language in flexible way.

Three models, which can be used for handling regression and classifica-
tion tasks, are specified by the proposed representations: Mamdani, TSK,
and FRBCS. A key advantage of FRBS model specification in frbsPMML
is that high degrees of transparency and interpretability can be achieved so

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
124 on PMML

that human experts can easily understand, verify, modify, and communicate
the models. So, an easier deployment and integration of FRBSs with other
tools for modelling and data analysis becomes possible, as well as easier re-
producibility of research. The new representation can be considered an open
standard for representing FRBS models.

3.2 Specifications of frbsPMML

In this section, we describe its basic elements, the XML schemata for
specifying an FRBS model in PMML format. Based on Listing 1.1, the
extension is made in the MODEL-ELEMENT part, while other components
are still based on the existing PMML schema. Therefore, we only discuss
on the new components of the extension.

The general schema specifying an FRBS model is described in Listing 3.1.

<xs:element name="FrbsModel”>
<xs:complexType>
<xs:sequence>
<xs:element ref="Extension” minOccurs="0"
maxQOccurs="unbounded”/>
<xs:element ref="MiningSchema”/>
<xs:element ref="Output” minOccurs="0"/>
<xs:element ref="InferenceSchema”/>
<xs:element ref="Database”/>
<xs:element ref="Rulebase”/>
<xs:element ref="ModelVerification” minOccurs="0"/>
<xs:element ref="Extension” minOccurs="0"
maxQOccurs="unbounded”/>
< /xs:sequence>
<xs:attribute name="modelName” type="xs:string”
use="required”/>
<xs:attribute name="functionName” type="MINING-FUNCTION”
use="optional”/>
<xs:attribute name="algorithmName” type="xs:string”
use="optional”/>
<xs:attribute name="targetFieldName” type="xs:string”
default="optional”/>

3.2. Specifications of frosPMML 125

< /xs:complexType>

< /xs:element>

Listing 3.1: XML Schema for FRBS models.

It can be seen that the FrosModel tag is required for representing an FRBS
model. In the FrbsModel, there are two types of components: attribute and
element. We define four attributes: modelName, functionName, algorithm-
Name, and targetFieldName, where only modelName is required to be set.
The modelName attribute refers to the type of FRBS model, i.e., MAM-
DANI, TSK, and FRBCS, for representing the Mamdani, TSK, and FRBCS
model, respectively. In the elements, three components are important and
emphasized, as follows: InferenceSchema, Database, and Rulebase.

InferenceSchema is a schema representing essential parameters in an
FRBS model for inference/reasoning: conjunction, disjunction, implication,
and aggregation operators. For example, the conjunction operators can be
any of the following functions: MIN, PRODUCT, HAMACHER, YAGER,
and BOUNDED. It should be noted that the parameters are defined as an
optional components depending on the models. For instance, we need to set
the AggregationOperator value if we use the Mamdani model. The schema
of InferenceSchema can be seen in Listing 3.2.

<xs:element name="InferenceSchema”>
<xs:complexType>
<xs:element ref="ConjunctionOperator” use="optional”/>
<xs:element ref="DisjunctionOperator” use="optional”/>
<xs:element ref="TmplicationOperator” use="optional”/>
<xs:element ref="AggregationOperator” use="optional”/>
< /xs:complexType>

< /xs:element>

<xs:element name="ConjunctionOperator”>
<xs:attribute name="value”>
<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:enumeration value="MIN”/>
<xs:enumeration value="PRODUCT”/>
<xs:enumeration value="HAMACHER”/>
<xs:enumeration value="YAGER”/>
<xs:enumeration value="BOUNDED”/>

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
126 on PMML

< /xs:restriction>
< /xs:simpleType>
< /xs:attribute>
< /xs:element>

<xs:element name="DisjunctionOperator”>
<xs:attribute name="value”>
<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:enumeration value="MAX”/>
<xs:enumeration value="SUM”/>
<xs:enumeration value="HAMACHER”/>
<xs:enumeration value="YAGER”/>
<xs:enumeration value="BOUNDED”/>
< /xs:restriction>
< /xs:simpleType>
< /[xs:attribute>
< /xs:element>

<xs:element name="ImplicationOperator”>
<xs:attribute name="value”>
<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:enumeration value="DIENES_RESHER”/>
<xs:enumeration value="LUKASIEWICZ"/>
<xs:enumeration value="ZADEH"/>
<xs:enumeration value="GOGUEN”/>
<xs:enumeration value="SHARP”/>
<xs:enumeration value="MIZUMOTO”/>
<xs:enumeration value="DUBOIS_PRADE”/>
< /xs:restriction>
< /xs:simpleType>
< /xs:attribute>

< /xs:element>

<xs:element name="AggregationOperator”>

<xs:attribute name="value”>

3.2. Specifications of frosPMML 127

<xs:simpleType>
<xs:restriction base="xs:string”>
<xs:enumeration value="WAM"/>
<xs:enumeration value="FIRST .MAX"/>
<xs:enumeration value="LAST.MAX"/>
<xs:enumeration value="MEAN.MAX”/>
<xs:enumeration value="COG”/>
< /xs:restriction>
< /xs:simpleType>
< /xs:attribute>

< /xs:element>

Listing 3.2: XML Schema for the InferenceSchema component.

The database is represented by the Database element, and it contains
the following information:

e names of variables including the number of their linguistic values,

e types of membership functions, such as Gaussian, trapezoid, and tri-
angular memberships,

e parameters of membership functions. For example, in the Gaussian
membership function, the parameters are mean and variance.

The XML Schema of the Database is described in Listing 3.3 and List-
ing 3.4. Basically, the Database contains MembershipFunction involving the
element FuzzyTerm and two attributes: name and numberOfLabels. While
FuzzyTerm represents databases containing linguistic values and their pa-
rameters; name and numberOfLabels express the variable name and the
number of linguistic terms corresponding to each variable.

<xs:element name="Database”>
<xs:complexType>
<xs:element ref="MembershipFunction”/>
< /xs:complexType>

< /xs:element>

<xs:element name="MembershipFunction”>
<xs:complexType>

<xSs:sequence>

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
128 on PMML

<xs:element ref="FuzzyTerm”/>
< /xs:sequence>
<xs:attribute name="name” type="xs:string” use="required”/>
<xs:attribute name="numberOfLabels” type="INT-NUMBER”
use="required”/>
< /xs:complexType>

< /xs:element>

Listing 3.3: Part 1: XML Schema for the Database component.

<xs:element name="FuzzyTerm”>
<xs:complexType>
<xs:attribute name="name” type="xs:string” use="required”/>
<xs:attribute name="type” use="required”>
<xs:complexType>
<xs:restriction base="xs:string”>
<xs:enumeration value="GAUSSIAN">
<xs:element name="Parameters”>
<xs:element name="Mean” type="REAL-NUMBER”/>
<xs:element name="Variance” type="REAL-NUMBER”/>
< /xs:element>
< /xs:enumeration>
<xs:enumeration value="TRAPEZOID">
<xs:element name="Parameters”>
<xs:element name="Left” type="REAL-NUMBER”/>
<xs:element name="LeftMiddle” type="REAL-NUMBER”/>
<xs:element name="RightMiddle” type="REAL-NUMBER”/>
<xs:element name="Right” type="REAL-NUMBER”/>
< /xs:element>
< /xs:enumeration>
<xs:enumeration value="TRIANGLE">
<xs:element name="Parameters”>
<xs:element name="Left” type="REAL-NUMBER”/>
<xs:element name="Middle” type="REAL-NUMBER”/>
<xs:element name="Right” type="REAL-NUMBER”/>
< /xs:element>
< /xs:enumeration>
<xs:enumeration value="SIGMOID”>

3.2. Specifications of frosPMML 129

<xs:element name="Parameters”>
<xs:element name="Gamma” type="REAL-NUMBER”/>
<xs:element name="Distance” type="REAL-NUMBER”/>
< /xs:element>
< /xs:enumeration>
<xs:enumeration value="BELL”>
<xs:element name="Parameters”>
<xs:element name="Width” type="REAL-NUMBER”/>
<xs:element name="Power” type="REAL-NUMBER”/>
<xs:element name="Center” type="REAL-NUMBER”/>
< /xs:element>
< /xs:enumeration>
< /xs:restriction>
< /xs:complexType>
< /xs:attribute>
< /xs:complexType>
< /xs:element>

Listing 3.4: Part 2: XML Schema for the Database component.

According to the FuzzyTerm schema, we provide five types of member-
ship functions:

1. GAUSSIAN: In this case, we need to define two elements: Mean and
Variance representing mean and variance of the Gaussian function.

2. TRAPEZOID: We supply four components Left, LeftMiddle, Right-
Middle, and Right for representing the corner points.

3. TRIANGLE: 1t has three parameters: Left, Middle, and Right that

represent the corner points.

4. SIGMOID: There are two parameters: Gamma and Distance, repre-
senting steepness of the function, and distance from the origin, respec-
tively.

5. BELL: Three parameters need to be defined in BELL: Width, Power,
and Center, which determine the width of the curve, a positive number
for the power, and the center of the curve.

Furthermore, it is possible to define different membership functions and
numbers of linguistic values for the variables. We can also assign different

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based

130 on PMML
Variable.1
low medium high

0.8 -
a) e—
o
20.4—
[m)

0.0 —

| | | |
0 20 40 60 80 100
Values

Figure 3.1: The membership functions of “Variable.1.”

numbers of linguistic values for other variables. For instance, “Variable.1”
has 3 linguistic values which are “low”, “medium”, and “high”. To determine
the degree we define that “medium” has TRIANGLE and the rest have
TRAPEZOID memberships as in Figure 3.1. This example can be specified

in frbsPMML format as in Listing 3.5.

<Database>
<MembershipFunction name="Variable.1” numberOfLabels="3">
<FuzzyTerm name="low” type="TRAPEZOID”>
<Parameters>
<Left>0</Left>
<LeftMiddle>0< /LeftMiddle>
<RightMiddle>20</RightMiddle>
<Right>40</Right>
< /Parameters>
< /FuzzyTerm>
<FuzzyTerm name="medium” type="TRIANGLE”">
<Parameters>
<Left>20</Left>
<Middle>50</Middle>
<Right>80</Right>
< /Parameters>
< /FuzzyTerm>
<FuzzyTerm name="high” type="TRAPEZOID”>

3.2. Specifications of frosPMML 151

<Parameters>
<Left>60</Left>
<LeftMiddle>80< /LeftMiddle>
<RightMiddle>100</RightMiddle>
<Right>100</Right>

< /Parameters>

< /FuzzyTerm>
</MembershipFunction>
< /Database>

Listing 3.5: The Database schema of “Variable.1.”

Finally, Listing 3.6 describes the XML Schema of the Rulebase consisting
of the element Rule and the attribute numberOfRules. Rule specifies a set of
rules whereas numberOfRules shows the number of rules used for validation.

<xs:element name="Rulebase”>
<xs:complexType>
<xSs:sequence>
<xs:element ref="Rule” minOccurs="1" maxOccurs="unbounded”/>
< /xs:sequence>
<xs:attribute name="numberOfRules” type="INT-NUMBER” use="required”/>
< /xs:complexType>

< /xs:element>

Listing 3.6: XML Schema for the Rulebase component.

As mentioned before, FRBS models can be classified into two popular
models: Mamdani and TSK, used for dealing with regression problems. Ad-
ditionally, FRBCS is suitable for classification tasks. Since the difference of
models is determined by the representations of rules, we explain the compo-
nents of the Rulebase in the following.

3.2.1 The Mamdani Model

This model was introduced by Mamdani in [183, 184]. It is built by
linguistic variables in both the antecedent and consequent parts of the rules.
So, considering multi-input and single-output (MISO) systems, fuzzy IF-

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
1532 on PMML

THEN rules are of the following form:

IF X;isAjand ... and X,, is A,
THEN Y is B (3.1)

Here, X; and Y are input and output linguistic variables, respectively, while
A; and B are linguistic values, e.g., “hot”, “medium”, and “cold”.

Generally, a rule represented by Equation 3.1 can be specified by the
XML Schema as in Listing 3.7. It contains two elements: If and Then, used
for expressing the antecedent and consequence parts.

<xs:element name="Rule”>
<xs:complexType>
<xs:element name="1f">
<xs:complexType>
<xs:element ref="CompoundPredicate”/>
< /xs:complexType>
< /xs:element >
<xs:element name="Then">
<xs:complexType>
<xs:element ref="SimplePredicate”/>
< /xs:complexType>
< /xs:element >
<xs:attribute name="id” type="INT-NUMBER”
use="optional”/>
< /xs:complexType>
< /xs:element>

Listing 3.7: XML Schema for the Rule component based on the Mamdani

model.

The If part includes the CompoundPredicate component, whose XML
Schema is shown in Listing 3.8. Basically, CompoundPredicate consists of
SitmplePredicate together with the attribute booleanOperator to construct
the antecedent part recursively. The SimplePredicate element is built from
two components: field and value. The field attribute expresses a variable
name whereas value is a linguistic value. The attribute booleanOperator ex-
presses the logic operators (i.e., and and or). Furthermore, since we assume
that the model is MISO, the Then part contains a single Simple Predicate.

3.2. Specifications of frosPMML 133

<xs:element name="CompoundPredicate”>
<xs:complexType>
<XxS:sequence>
<xs:element ref="SimplePredicate”/>
<xs:element ref="CompoundPredicate”/>
< /xs:sequence>
<xs:attribute name="booleanOperator” use="required”>
<xs:simpleType>
<xs:enumeration value="and”/>
<xs:enumeration value="or"/>
< /xs:simpleType>
< /xs:attribute>
< /xs:complexType>

< /xs:element>

<xs:element name="SimplePredicate”>
<xs:simpleType>
<xs:attribute> name="field” type="xs:string” use="required”/>
<xs:attribute> name="value” type="xs:string” use="required”/>
< /xs:simpleType>
< /xs:element>

Listing 3.8: XML Schema for the CompoundPredicate and SimplePredicate

components.

For example, the rule 3.2 is documented in frbsPMML as in Listing 3.9.

IF X1 is normal and X2 is tall and X3 is small
THEN Y is good (3.2)

<Rulebase numberOfRules="1">
<Rule id="1">
<If>
<CompoundPredicate booleanOperator="and”>
<SimplePredicate field="X1" value="normal”/>
<CompoundPredicate booleanOperator="and”>
<SimplePredicate field="X2" value="tall”/>
<SimplePredicate field="X3” value="small”/>
< /CompoundPredicate>

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
134 on PMML

< /CompoundPredicate>
</If>
<Then>
<SimplePredicate field="Y” value="good”/>
</Then>
</Rule>
< /Rulebase>

Listing 3.9: The Rulebase schema of the example based on the Mamdani

model.

A main benefit of the schema is that it is rather flexible. For example,
we can define different values of booleanOperator for each predicate. Addi-
tionally, this schema allows us to put the negation operator (i.e., not) and
linguistic hedges (e.g., very, somewhat, etc.) in the value attribute. Further-
more, it is not necessary to involve all input variables for the construction
of each rule. In other words, the length of SimplePredicate in each rule can
be different. We can also set the dont_care value which represents a variable
whose degree of membership is 1 for all conditions.

3.2.2 The TSK Model

The difference of the TSK model from the Mamdani model is on the
consequent part. TSK uses rules whose consequent parts are represented
by a function of input variables instead of using linguistic variables [273,
271]. The most commonly used function is a linear combination of the input

variables: Y = f(Xq, ..., X,) where X; and Y are the input and output
variables, respectively. Therefore, we can expressit asY =p1- X1+ -+ +py-
X, +po with a vector of real parameters p =(pg, p1, ..., Pn)-

We define the XML Schema of Rule based on TSK as in Listing 3.10.

<xs:element name="Rule”>
<xs:complexType>
<xs:element name="Tf">
<xs:complexType>
<xs:element ref="CompoundPredicate”/>
< /xs:complexType>
< /xs:element>

<xs:element name="Then”>

3.2. Specifications of frosPMML

185

<xs:complexType>
<xs:sequence>
<xs:element ref="Coefficient” minOccurs="0"/>
< /xs:sequence>
<xs:element ref="Constant” minOccurs="1"/>
<xs:attribute name="type” default="LinearFunction”>
<xs:simpleType>
<xs:enumeration value="LinearFunction”/>
<xs:enumeration value="NonLinearFunction”/>
< /xs:simpleType>
< /xs:attribute>
< /xs:complexType>
< /xs:element>

<xs:attribute name="id” type="INT-NUMBER” use="optional”/>

< /xs:complexType>

< /xs:element>

Listing 3.10: XML Schema for the Rule component based on the TSK model.

It can be seen that on the antecedent part (i.e., the If element) we have the
same schema as in the Mamdani model, but in the Then block, we define
two components: Coefficient and Constant. The XML Schema of both com-
ponents is described in Listing 3.11. In order to construct a linear function,
the attribute Coefficient represents coefficient values of each variable while
Constant is the constant value of the equation. Using the specification, we

allow to define first- and zero-order TSK.

<xs:element name="Coefficient”>

<xs:simpleType>

<xs:attribute name="field” type="xs:string” use="required”/>
<xs:attribute name="value” type="REAL-NUMBER” use="required”/>

</xs.simpleType>
< /xs:element>

<xs:element name="Constant”>
<xs:simpleType>
<xs:attribute name="value” type="REAL-NUMBER”
use="required”>

< /xs:simpleType>

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
156 on PMML

< /xs:element>

Listing 3.11: XML Schema for the Coefficient and Constant components.

For example, a rule as in 3.3 can be specified in Listing 3.12.

IF X1 is normal and X2 is tall and X3 is small
THEN Y =0.2-X1+01-X5-0.2-X35+0.9 (3.3)

<Rulebase numberOfRules="1">
<Rule id="1">
<If>
<CompoundPredicate booleanOperator="and”>
<SimplePredicate field="X1" value="normal”/>
<CompoundPredicate booleanOperator="and”>
<SimplePredicate field="X2" value="tall”/>
<SimplePredicate field="X3" value="small”/>
< /CompoundPredicate>
< /CompoundPredicate>
</Ift>
<Then type="LinearFunction”>
<Coefficient field="X1” value="0.2"/>
<Coefficient field="X2" value="0.1"/>
<Coefficient field="X3” value="-0.2"/>
<Constant value="0.9"/>
</Then>
</Rule>
< /Rulebase>

Listing 3.12: The Rulebase schema of the example based on the TSK model.

3.2.3 The FRBCS Model

A main characteristic of classification is that the outputs are categori-
cal data. Therefore, in this model type we preserve the antecedent part of
linguistic variables, and change the consequent part to be a class C; from
a prespecified class set C ={C1y,...,Cpy}. Generally, there are three struc-
tures for representing FRBCS. First, the simplest form introduced by [49] is

3.2. Specifications of frosPMML 137

constructed with a class in the consequent part. Then, the FRBCS model
with a certainty degree (called weight) in the consequent part is discussed
in [129]. In [185], every fuzzy rule has with a certainty degree for all classes
in the consequent part. In other words, instead of considering one class, this
model provides prespecified classes with their respective weights for each
rule. In this paper, we consider the second type.

Listing 3.13 shows the schema of Rule for FRBCS. We note that it is
quite similar to the Mamdani model in Listing 3.7, but in the Then part
we have categorical values instead of linguistic ones. Additionally, there is
a component Grade representing a degree of the certainty of each rule that
has a value between 0 and 1.

<xs:element name="Rule”>
<xs:complexType>
<xs:element name="Tf">
<xs:complexType>
<xs:element ref="CompoundPredicate”/>
< /xs:complexType>
< /xs:element>
<xs:element name="Then”>
<xs:complexType>
<xs:element ref="SimplePredicate”/>
< /xs:complexType>
< /xs:element>
<xs:element name="Grade” value="REAL-NUMBER”/>
<xs:attribute name="id” type="INT-NUMBER” use="optional”/>
< /xs:complexType>

< /xs:element>

Listing 3.13: XML Schema for the Rule component based on the FRBCS

model.

For example, we define a rule as in 3.4, where w is its grade. In the frbsP-
MML format, it can be specified as in Listing 3.14.

IF X1 is normal and X2 is tall and X3 is small
THEN class is 1 with w =0.1. (3.4)

<Rulebase numberOfRules="1">

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
138 on PMML

<Rule id="1">
<If>
<CompoundPredicate booleanOperator="and”>
<SimplePredicate field="X1" value="normal”/>
<CompoundPredicate booleanOperator="and”>
<SimplePredicate field="X2" value="tall”/>
<SimplePredicate field="X3" value="small”/>
</CompoundPredicate>
< /CompoundPredicate>
</If>
<Then>
<SimplePredicate field="Class” value="1"/>
</Then>
<Grade>0.1</Grade>
</Rule>
</Rulebase>

Listing 3.14: The Rulebase schema of the example based on the FRBCS

model.

3.3 Implementations of frbsPMML

The frbsPMML format described above is a complete specification for
representing the most commonly used model types. As most XML represen-
tations, it is designed to be complete and exhaustive, and usually considered
for manual editing. Thus, we present two libraries of software for managing
the frbsPMML representation. They are published under an open-source
license, hence available freely, for use, adaption, and extension.

The two libraries represented in the following are called “frbs” and “frb-
sJpmml.” They can be used to export an FRBS model to the frbsPMML
format and vice versa. The general workflow of the applications to gener-
ate an FRBS model and perform prediction for new data can be seen in
Figure 3.2.

3.8. Implementations of frbsPMML 159

Training

1 dataset |
[

Human Experts: Learning Methods:
frbs.gen() frbs.learn()

FRBS models

v) 4
Write frosPMML in R: Write frbosPMML to a file:
frbsPMML () Write.frosPMML ()

Producing frosPMML

Testing

r' dataset
\/\

Predict using “frbs” > Pfridij:t usinlg
“frbsdJpmml”

frosPMML file
(.frosPMML)

Read frosPMML:
read.frbosPMML()

Prediction Step:

predict()
Predicted
Values

Figure 3.2: Workflow and interactions between “frbs” and “frbsJpmml”.

Consuming frosPMML

3.3.1 The Extension on the “frbs” Package

As shown in Table 2.1, we have included functions related to frbsPMML
in the current version of “frbs.” There are three functions designated for
managing the frbsPMML format. First, there are two functions that are
used for converting FRBS models into the frbsPMML format: frosPMML()
and write.frbsPMML/(). Then, in order to consume/import the frbsPMML
format to an FRBS model, we execute read.frbsPMML().

The following are the signatures of the functions related to frbsPMML:

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
140 on PMML

e frbsPMML(): Though the function has several arguments, usually only
the model parameter needs to be supplied which refers to the FRBS
model.

frbsPMML (model, model.name = "frbs_model", app.name = "frbs",
description = NULL, copyright = NULL,
algorithm.name = model$method.type, ...)

e read.frbsPMML(): The function has as its only parameter the name
of the file to read.

read.frbsPMML (fileName)

e write.frbsPMML(): There are two required parameters: object and
fileName. object represents the FRBS model in R format whereas
fileName is the name of the file where the model will be written to.

write.frbsPMML(object, fileName = NULL)

So, as illustrated in Figure 3.2, we can use “frbs” both as an frbsPMML
producer and a consumer with the following steps:

1. Construct an FRBS model: this can be done by executing frbs.learn()
or frbs.gen().

2. Export the model to frbsPMML format: we call write.frosPMML() to
save the model to a file or frbsPMML() to store the model in frbsP-
MML format in an R object. Obviously, after obtaining the model in
frbsPMML format, we can also modify directly the file.

3. Import the FRBS model in frbsPMML format to an R object: we
execute read.frbsPMML().

4. Perform prediction for new data with predict().

3.3.2 The Predictor Engine “frbsJpmml” in Java

This PMML-consumer application is implemented in Java and can be used
to make predictions from the FRBS models that are available in the PMML

3.4. Features and Benefits of frbsPMML 141

format. It is designated in compliance with “frbs,” and provides the standard
functionalities for constructing an FRBS model.

Basically, “frbsJpmml” consists of four parts, as follows:

e DataReader: It is a package containing classes for reading new data
and saving results into files.

e FRBSEngine: It consists of classes representing the FRBS models.
There are three child classes of the frbsModel class representing the
models: MamdaniModel, TSKModel, and FRBCSModel. Additionally,
in the parent class frbsModel we include the fuzzifier() and Inference()
which are methods used for fuzzifying data and reasoning, respectively.
predict(), an abstract method for prediction, is included in this part
as well.

e PMMLreader: 1t is a package used for reading/importing FRBS mod-
els in the PMML format to Java objects. A verification procedure of
the obtained model is also included in this part.

e MainlOfrbs: It is a main package included the class frbosJpmml which
has the main() method. Therefore, it is an interface to users to work
with the package.

A brief description explaining classes and their methods involved to predict
new data can be seen in Figure 3.3.

Detailed descriptions and the installer can be found in the project website
at http://dicits.ugr.es/software/frbsJpmml/.

3.4 Features and Benetfits of frbsPMML

This section aims to recapitulate all features of the presented frame-
work and their benefits of implementations for researchers and practitioners.
Moreover, a short comparison with representations from other applications
is presented. We discuss features included in the new representation from
the following perspectives: completeness of FRBS models and expressiveness
of the language.

Regarding FRBS models included in the representation we consider three
models: Mamdani, TSK, and FRBCS, with the following detailed specifica-
tions:

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
142 on PMML

FRBS models in Testing
frosPMML format

l frbsJpmml: main() i

frbsData: frbsData() TestData:
pmmIReader: TestData()
pmmlIReader()

frosData:
constructFRBSModel()
v
frosData:
checkModel()
[

v

PredictedValues:
PredictedValues()

v

ResultData:
saveResult()

[
v

@esuItOffrstpmmexx.txD

Figure 3.3: Classes and their methods involved to predict new data in fro-

sdpmml.

e In the InferenceSchema part, we provide complete parameters, such
as conjunction, disjunction, aggregation, and implication operators.
Furthermore, each operator has several options representing different
approaches.

e The Database component supports five membership functions: Gaus-
sian, triangle, trapezoid, sigmoid, and generalized bell. Besides pa-
rameters of the membership functions being defined in an easy way,
the main benefit is that we allow to set different numbers of labels and
membership functions in a particular variable.

e The Rulebase used to represent rule-based knowledge has several useful
features. Firstly, we can mix boolean operators, i.e., and and or,
together in one rule. It is not necessary to involve all variables in each
rule. In other words, the interpretability of rules is favored by the
representation. Linguistic hedges can be also included together with

3.4. Features and Benefits of frbsPMML 143

fuzzy terms in the value element. Furthermore, for the TSK model,
the representation allows to use first- and zero-order TSK. For dealing
with classification tasks, we provide the FRBCS representation that
involves a degree component for each rule.

e The XML Schema frbsPMML is compatible with PMML that is an
established industry standard. Furthermore, as included in PMML,
several facilitations for data analysis are available as well, such as data
transformation, missing values completion, etc. Additionally, descrip-
tions of data are included in the DataDictionary element containing
information about names, ranges, and types of variables.

From a language point of view, the new representation offers several advan-
tages as follows:

e In the Rulebase, each rule is constructed in a recursive way, and it
contains two components: SimplePredicate and CompoundPredicate.
This means it has a sophisticated structure which makes rule reduction
and extension a straightforward task. In fact, the expression represents
a mathematical formulation of rules.

e The XML schema used to specify the representation provides trans-
parency and readability of documents. Therefore, it is easy for users
to read, understand, and modify the documents. Furthermore, since
we develop an open standard, other researchers can contribute.

¢ An FRBS model represented has a text-based representation. So, hu-
man experts can read it without problems. It can also be easily mod-
ified with a text editor, archived and transferred to other platforms.
Moreover, further deployment is possible, e.g., for cloud computing
applications.

e The representation provides some validity and verification compo-
nents, such as numberOfRules and numberOfLabels are used to validate
the number of rules and the number of linguistic values.

It can be seen that the representation helps the interpretability of FRBS
models as proposed in [42], which depends on the model structure, the num-
ber of input variables, the number of fuzzy rules, the number of linguistic
terms, and the shape of the fuzzy sets. For example, the representation
allows to define a subset of input variables included in fuzzy rules. Further-
more, we provide an XML Schema of the representation in order to allow

Chapter 3. frbsPMML: A Universal Representation Framework for FRBSs Based
144 on PMML

other researchers to extend the deployment and integration of FRBS with
other tools and models for data analysis.

3.5 A Comparison with Other Representation Pro-

posals

Some authors have produced some other proposals to represent FRBSs.
In this section we compare our proposal to the most relevant alternatives.
Table 3.1 shows a comparison of the proposed format with others. We
consider four formats: XFL3 [21], .fis (MATLAB) [277], XFSML [196], and
FisPro [105].

XFL3 is a formal language representing fuzzy systems that is imple-
mented by Xfuzzy. It consists of two parts: the logical definition of the
system structure and the mathematical definition of the fuzzy functions.
Basically, an FRBS model is specified in a function-based format. There-
fore, for common users a complex model in this format can be difficult to
read and understand. Additionally, there exist several membership func-
tions, operators, hedges, and defuzzification methods. Next, XFSML is an
XML-based language for modelling fuzzy systems. It contains four com-
ponents: domains, partitions, relations, and modules. One main drawback
of this representation is that rulesets are expressed in a relatively compli-
cated manner. Furthermore, though it attempts to be a standard modeling
language in the fuzzy community, to the best of our knowledge it is not im-
plemented by any applications, and it is not documented in a formal schema
of XML.

In the MATLAB environment, the Fuzzy Logic Toolbox has the pro-
prietary .fis format. Since the format is not open, it does not facilitate
interoperability. The same holds for FisPro.

Another work that is similar to and improved by our research is the
Fuzzy Markup Language (FML). It is an emerging XML-based markup lan-
guage used for designing and implementing fuzzy controllers (FLC) [3, 4].
Two models are supported in this representation: Mamdani and TSK. An
interface connecting to the Matlab Fuzzy Logic Toolbox is provided, as well
as Extensible Stylesheet Language Transformations (XSLTs) that are used
to convert the FML fuzzy controller to a representation in a general pur-
pose computer language. Even though FML is quite similar to the proposed

representation in this paper, we improve and extend some aspects. For
example, FML is not designed to accommodate a rule containing mixed op-
erators (i.e., “and” and “or”). This issue is resolved by frbsPMML since it
constructs a fuzzy rule in a recursive way. Secondly, since FML is used for
representing FCL, it does not provide other typical components included in
data mining, such as data pre-processing, missing value handling, etc. Since
frbsPMML adopts the schema of PMML, we have the same capabilities as
PMML for dealing with data mining processes. Another drawback of FML
that attempts to be refined by frbsPMML is that no formal definition of an
XML Schema is provided. So, it is relatively difficult to extend the format.

In addition to a standard representation, the study in [18] proposes a
representation based on the unified modeling language (UML), called the
evolutionary computing modeling language (ECML). It focuses on repre-
senting the concepts of the meta evolutionary computation domain. There
is a significant drawback of the representation, which is that the graphi-
cal schema can be difficult to be understood and processed when ECML
expresses a big model. In [302] rule-based representations based on the
Resource Description Framework and Ontology Representation Languages
(RDFS and OWL) have been proposed. The format is designed so that it
easily allows to supply it to database management systems, such as the Or-
acle RDBMS. Since these studies are not related to fuzzy sets, we do not
include them in Table 3.1.

Table 3.1:

Comparison with other representations

Components frosPMML XFL3 .fis (MATLAB) XFSML FisPro FML
General
Open standard Yes No No Yes No No
Implementations “frbs”, “frbsJpmml” “Xfuzzy” “Fuzzy Logic Tool- - “FisPro”, “Fuzzy Logic
box” “GUAJE” Toolbox”

Other features Data mining methods Support for Java, C, - - - -

(e.g., mneural networks, C++, VHDL, and Sys-

association rules, etc.), Gen

Data preprocessing

(e.g., transformations,

missing value comple-

tion)
Completeness of FRBS mod-
els
Models Mamdani, TSK, FRBCS Mamdani, TSK Mamdani, TSK Mamdani, Mamdani Mamdani, TSK

Inference parameters
Membership functions

Many options
Many options

Many options
Many options

Many options
Many options

Fuzzy decision
trees,

Not specified
Not specified

Many Options
Many Options

Not specified
Not specified

Hedges Supported Supported Supported - Supported Supported

Interpretable rules Supported Supported - - Supported Supported

Operators: AND, OR, NOT Supported Supported Supported - Supported Supported (not
mixed)

Expressiveness of languages

Format base Text (XML) Function, GUI Object, GUI Text (XML) GUI Text (XML)

Interoperability High Medium Low High Low High

Validity and verification compo- Provided - - - - -

nents

Readability High Medium High Medium High High

Ease of extension High High Low High Low Medium

Therefore, according to the features and their benefits, it can be seen
that the new representation should be considered as an open standard for
representing FRBS models by researchers and practitioners. Since it is an
open standard based on XML, other developers and researchers in the fuzzy
community can adopt it in any applications and can propose enhancements,
e.g., in form of definitions of XML schemata to accommodate complicated
models.

3.6 Example of Usage

In this section, two examples showing how to export and import an
FRBS model to/from the frbsPMML format are presented. Basically, we
just continue examples that have been presented in Section 2.3.

3.6.1 Regression

After obtaining the model (mod.reg) in Section 2.3, we can construct and
save the model in frbsPMML format to a file with extension frbsPMML,
which is modRegress.frbsPMML, by using “frbs” as follows:

R> write.frbsPMML (frbsPMML (mod.reg), "modRegress")

[1] "modRegress.frbsPMML"

We can also export to frbsPMML format but with storing it within R in the
memory or directly displaying it as follows:

R> frbsPMML (mod.reg)

<frbsPMML version="1.0" xmlns="http://sci2s.ugr.es/dicits/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://sci2s.ugr.es/dicits/">

<Header copyright="Copyright (c) 2015 Lala">

<Extension name="user" value="Lala" extender="frbs"/>

<Application name="frbs" version="1.4"/>

147

<Timestamp>2015-03-28 22:43:31</Timestamp>
</Header>
<DataDictionary numberOfFields="3">
<DataField name="X" optype="continuous" dataType="double">
<Interval closure="closedClosed" leftMargin="-2"
rightMargin="1.92"/>
</DataField>
<DataField name="Y" optype="continuous" dataType="double">
<Interval closure="closedClosed" leftMargin="-2"
rightMargin="1.92"/>
</DataField>
<DataField name="Z" optype="continuous" dataType="double">
<Interval closure="closedClosed" leftMargin="0.0526315789473684"
rightMargin="0.996746301114346"/>
</DataField>
</DataDictionary>
<FrbsModel modelName="MAMDANI" functionName="regression"
algorithmName="WM" targetFieldName="7">
<MiningSchema>
<MiningField name="X" usageType="active"/>
<MiningField name="Y" usageType="active"/>
<MiningField name="Z" usageType="predicted"/>
</MiningSchema>
<Output>
<OutputField name="Predicted_Z" optype="continuous"
dataType="double" feature="predictedValue"/>
</0Output>
<InferenceSchema>
<ConjunctionOperator value="MIN"/>
<DisjunctionOperator value="MAX"/>
<ImplicationOperator value="LUKASIEWICZ"/>
<AggregationOperator value="CO0G"/>

</InferenceSchema>

148

<Database>
<MembershipFunction name="X" numberOfLabels="5">
<FuzzyTerm name="very.small" type="GAUSSIAN">
<Parameters>
<Mean>0</Mean>
<Variance>0.0875</Variance>
</Parameters>
</FuzzyTerm>
<FuzzyTerm name="small" type="GAUSSIAN">
<Parameters>
<Mean>0.25</Mean>
<Variance>0.0875</Variance>
</Parameters>
</FuzzyTerm>
<FuzzyTerm name="medium" type="GAUSSIAN">
<Parameters>
<Mean>0.5</Mean>
<Variance>0.0875</Variance>
</Parameters>
</FuzzyTerm>
<FuzzyTerm name="large" type="GAUSSIAN">
<Parameters>
<Mean>0.75</Mean>
<Variance>0.0875</Variance>
</Parameters>
</FuzzyTerm>
<FuzzyTerm name="very.large" type="GAUSSIAN">
<Parameters>
<Mean>1</Mean>
<Variance>0.0875</Variance>
</Parameters>
</FuzzyTerm>
</MembershipFunction>

149

<MembershipFunction name="Z" numberOfLabels="5">

<FuzzyTerm name="very.small" type="GAUSSIAN">
<Parameters>
<Mean>0</Mean>
<Variance>0.0875</Variance>
</Parameters>

</FuzzyTerm>

<FuzzyTerm name="small" type="GAUSSIAN">
<Parameters>
<Mean>0.25</Mean>
<Variance>0.0875</Variance>
</Parameters>

</FuzzyTerm>

<FuzzyTerm name="medium" type="GAUSSIAN">
<Parameters>
<Mean>0.5</Mean>
<Variance>0.0875</Variance>
</Parameters>

</FuzzyTerm>

<FuzzyTerm name="large" type="GAUSSIAN">
<Parameters>
<Mean>0.75</Mean>
<Variance>0.0875</Variance>
</Parameters>

</FuzzyTerm>

<FuzzyTerm name="very.large" type="GAUSSIAN">
<Parameters>
<Mean>1</Mean>
<Variance>0.0875</Variance>
</Parameters>

</FuzzyTerm>

</MembershipFunction>

150

</Database>
<Rulebase numberOfRules="47">
<Rule id="1">
<If>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="X" value="very.small"/>
<SimplePredicate field="Y" value="very.small"/>
</CompoundPredicate>
</If>
<Then>
<SimplePredicate field="Z" value="very.small"/>
</Then>
</Rule>

<Rule id="47">
<If>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="X" value="medium"/>
<SimplePredicate field="Y" value="large"/>
</CompoundPredicate>
</1f>
<Then>
<SimplePredicate field="Z" value="small"/>
</Then>
</Rule>
</Rulebase>
</FrbsModel>
</frbsPMML>

Then, we import and apply the model from the file modRegress.frbsPMML
by the following command:

R> objReg <- read.frbsPMML("modRegress.frbsPMML")
R> res.test <- predict(objReg, data.tst)

151

3.6.2 Classification

As on the regression task, we can export the FRBS model (i.e., mod.class
in Section 2.3) to the frbsPMML format as follows:

R> frbsPMML (mod.class)

<frbsPMML version="1.0" xmlns="http://sci2s.ugr.es/dicits/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://sci2s.ugr.es/dicits/">
<Header copyright="Copyright (c) 2015 Lala">
<Extension name="user" value="Lala" extender="frbs"/>
<Application name="frbs" version="1.4"/>
<Timestamp>2015-03-28 22:43:32</Timestamp>
</Header>
<DataDictionary numberOfFields="5">
<DataField name="Sepal.Length" optype="continuous"
dataType="double">
<Interval closure="closedClosed" leftMargin="4.3"
rightMargin="7.9"/>
</DataField>
<DataField name="Sepal.Width" optype="continuous"
dataType="double">
<Interval closure="closedClosed" leftMargin="2"
rightMargin="4.4"/>
</DataField>
<DataField name="Petal.Length" optype="continuous"
dataType="double">
<Interval closure="closedClosed" leftMargin="1"
rightMargin="6.9"/>
</DataField>
<DataField name="Petal.Width" optype="continuous"
dataType="double">

<Interval closure="closedClosed" leftMargin="0.1"

152

rightMargin="2.5"/>
</DataField>
<DataField name="Species" optype="categorical"
dataType="string">
<Value value="1"/>
<Value value="2"/>
<Value value="3"/>
</DataField>
</DataDictionary>
<FrbsModel modelName="FRBCS" functionName="classification"
algorithmName="FRBCS.CHI" targetFieldName="Species">
<MiningSchema>
<MiningField name="Sepal.Length" usageType="active"/>
<MiningField name="Sepal.Width" usageType="active"/>
<MiningField name="Petal.Length" usageType="active"/>
<MiningField name="Petal.Width" usageType="active"/>
<MiningField name="Species" usageType="predicted"/>
</MiningSchema>
<Output>
<OutputField name="Predicted_Species" feature="predictedValue"/>
<OutputField name="Probability_1" optype="continuous" dataType="double"
feature="probability" value="1"/>
<QutputField name="Probability_2" optype="continuous" dataType="double"
feature="probability" value="2"/>
<OutputField name="Probability_3" optype="continuous" dataType="double"
feature="probability" value="3"/>
</0Output>
<InferenceSchema>
<ConjunctionOperator value="MIN"/>
<DisjunctionOperator value="MAX"/>
<ImplicationOperator value="ZADEH"/>
</InferenceSchema>

<Database>

153

<MembershipFunction name="Sepal.Length" numberOfLabels="3">

<FuzzyTerm name="small" type="TRAPEZOID">
<Parameters>
<Left>0</Left>
<LeftMiddle>0</LeftMiddle>
<RightMiddle>0.2</RightMiddle>
<Right>0.4</Right>
</Parameters>

</FuzzyTerm>

<FuzzyTerm name="medium" type="TRAPEZ0OID">
<Parameters>
<Left>0.23</Left>
<LeftMiddle>0.43</LeftMiddle>
<RightMiddle>0.53</RightMiddle>
<Right>0.73</Right>
</Parameters>

</FuzzyTerm>

<FuzzyTerm name="large" type="TRAPEZ0OID">
<Parameters>
<Left>0.6</Left>
<LeftMiddle>0.8</LeftMiddle>
<RightMiddle>1</RightMiddle>
<Right>1</Right>
</Parameters>

</FuzzyTerm>

</MembershipFunction>

<MembershipFunction name="Petal.Width" numberOfLabels="3">
<FuzzyTerm name="small" type="TRAPEZOID">
<Parameters>
<Left>0</Left>
<LeftMiddle>0</LeftMiddle>
<RightMiddle>0.2</RightMiddle>

154

<Right>0.4</Right>
</Parameters>
</FuzzyTerm>
<FuzzyTerm name="medium" type="TRAPEZOID">
<Parameters>
<Left>0.23</Left>
<LeftMiddle>0.43</LeftMiddle>
<RightMiddle>0.53</RightMiddle>
<Right>0.73</Right>
</Parameters>
</FuzzyTerm>
<FuzzyTerm name="large" type="TRAPEZOID">
<Parameters>
<Left>0.6</Left>
<LeftMiddle>0.8</LeftMiddle>
<RightMiddle>1</RightMiddle>
<Right>1</Right>
</Parameters>
</FuzzyTerm>
</MembershipFunction>
</Database>
<Rulebase numberOfRules="19">
<Rule id="1">
<If>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="Sepal.Length" value="small"/>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="Sepal.Width" value="medium"/>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="Petal.Length" value="small"/>
<SimplePredicate field="Petal.Width" value="small"/>
</CompoundPredicate>
</CompoundPredicate>

155

</CompoundPredicate>
</If>
<Then>
<SimplePredicate field="Species" value="1"/>
</Then>
<Grade>1</Grade>
</Rule>

<Rule id="19">
<If>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="Sepal.Length" value="small"/>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="Sepal.Width" value="small"/>
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="Petal.Length" value="medium"/>
<SimplePredicate field="Petal.Width" value="large"/>
</CompoundPredicate>
</CompoundPredicate>
</CompoundPredicate>
</1f>
<Then>
<SimplePredicate field="Species" value="3"/>
</Then>
<Grade>0.333333333333333</Grade>
</Rule>
</Rulebase>
</FrbsModel>
</frbsPMML>

For importing frbsPMML, users can refer to the way on the regression task.

156

3.7 Summary

This chapter presents specifications and implementations of the univer-
sal representation framework frbsPMML, which is associated to the second
objective. It can be summarized as follows:

1. frbsPMML, which is a universal representation framework for FRBSs
based on the PMML standard, has been presented. It implements all
models supported by FRBSs, namely Mamdani, TSK, and FRBCS
models. Three essential components of FRBS models, the database,
rulebase, and inference parameters, are provided in a flexible way.
The representation offers benefits for: interoperability, reproducibility,
transparency, interpretability, and flexibility.

2. An extension of “frbs”, which is a standard package for constructing
FRBS models in the R environment, to represents models in the frb-
sPMML format.

3. The software “frbsJpmml”, written in Java, can be used to import
FRBS models in the frbsPMML format and for prediction on new
data.

4. Usage examples of both software libraries have been illustrated in the
paper.

5. A comparison with other formats is represented to emphasize impor-
tant benefits of frbsPMML.

Furthermore, a paper describing the tool has been submitted:

L.S. Riza, C. Bergmeir, F. Herrera, and J.M. Benitez. A Universal
Representation Framework for Fuzzy Rule-Based Systems Based on PMML.
Information Sciences, 2015 (submitted).

157

Chapter 4

The “RoughSets” Package

In this chapter we present the research carried out towards Objective 2,
which is to implement algorithms based on RST and FRST used for data
preprocessing (i.e., discretization, feature selection, and instance selection),
classification, and regression. First, we introduce the “RoughSets” package
as the result of the research. Then, the package architecture and its im-
plementation details are explain to provide a complete explanation related
to “RoughSets.” We present some usage examples and a comparison with
other package implementing the same concepts. Finally, a short summary
concludes the chapter.

4.1 Introduction

There are several tools implementing RST and FRST for dealing with
various problems. Rough Set Data Explorer (ROSE) is an RST-based soft-
ware system created by the Laboratory of Intelligent Decision Support Sys-
tems of the Institute of Computing Science in Poznan [225, 226]. In [24, 25], a
free software system for data exploration, classification support, and knowl-
edge discovery called the Rough Set Exploration System (RSES) was pre-
sented. The rough set toolkit for analysis of data (ROSETTA), which is an
advanced system for RST data analysis [209, 210], includes the RSES library
as the computation kernel. Also, a few algorithms from FRST have been
implemented in the Waikato Environment for Knowledge Analysis (WEKA)
[136]. WEKA is a collection of machine learning algorithms for data mining

158

tasks implemented in Java [109]. Rough Set Based Intelligent Data Analysis
System (RIDAS) is another data mining toolkit utilizing notions from RST
[290]. It was developed at Chongqing University of Posts and Telecommuni-
cations and consists of a C++ kernel and a GUI for Windows systems. An
important data mining system for inducing decision rules from various types
of data, called Learning from Examples based on Rough Sets (LERS), was
created at University of Kansas [98]. There have also been developed a few
rule based expert systems for a medical diagnostics purposes. One of the
most prominent is PRIMEROSE [283] which allows generation of decision
and inhibitory rules to construct reliable differential diagnosis. Furthermore,
after reviewing R packages in CRAN, we cannot find an R package that im-
plements RST and FRST. Therefore, the research attempting to develop an
R package unifying RST and FRST is required. The research has produced
the “RoughSets” package.

“RoughSets” is an R package integrating implementations of various algo-
rithms based on RST and FRST in a single software library. It is a result of a
collaboration between two research groups: Soft Computing and Intelligent
Information Systems, Universidad de Granada and Institute of Mathemat-
ics, University of Warsaw, Poland. Currently, it is available from CRAN in
version 1.2-0, at http://cran.r-project.org/package=RoughSets. More-
over, detailed explanation and some examples can be found on our groups’
web page of the package, available at http://dicits.ugr.es/software/
RoughSets. It is licensed under the terms of the GPL so that it can be
redistributed or modified under that term.

There are more than 40 algorithms included in the package for deal-
ing with missing values, discretization, feature selection, instance selection,
classification using rule-based classifiers and instance-based classifiers, and
regression. These features can be seen in Figure 4.1, which depicts the seven
tasks that have been considered. For example, in the basic concepts, we have
implemented eight functions, e.g., BC.IND.relation.RST used to calculate
the indiscernibility relations based on RST. We include discretization meth-
ods based on RST that calculate cut values using static & dynamic, local &
global, and supervised & unsupervised methods. The other tasks included
in this package are instance selection, feature selection, rule induction, and
nearest neighbor-based classifiers. While algorithms used for feature selec-
tion and rule induction are based on RST and FRST, instance selection and
nearest neighbor-based classifiers are based on FRST.

Furthermore, another main feature of the package is that it can be used

159

not only for practitioners who perform data analysis, but also for researchers
who develop a new approach based on RST and FRST. In other words, we
facilitate researchers to define their own functions expressing a new basic
concept, such as lower and upper approximations. It can be done since
“RoughSets” employs a functional programming so that instead of modifying
code directly, users just need to supply user-defined functions.

Additionally, the package has embedded some datasets used to do ex-
perimental studies. For example, the hiring dataset is a dataset used orig-
inally in [159]. We also provide the housing [111], wine [80], and pima [11]
datasets. A complete manual explaining the package in detail can be down-
loaded from CRAN. In the manual, we also ship many demos showing to
users how to use the package. As other R packages submitted in CRAN, to
keep a standard quality of CRAN package, “RoughSets” has been checked by
the CRAN teams. Moreover, “RoughSets” has been included in the CRAN
view: Machine Learning & Statistical Learning.

160

1SHH4'SH4D'1H

1S¥H"SHPUGAY 1S
LS¥senypasegAliqiuILIsipur|y
:suonejuawajdw)

1SH4'SdH4’S]
1SH4'SIH4'SI
:suonejuawajdw)

4 1Sy 1onpanyoinb's4

s 8 1S¥'10npanjoinb s

X 3 _1S¥1onpau-opsunay uosenuwied-S-

1SY4NNSOdD ¢ LS 'si0n 1d0Reu S

1SH4'O'NNEHD 2 € 1Sy ponpavsdns-osuney Apeeib sS4

LSH4'NNYD z g 1Sy 7onpauroysuney Apeeib s

:suonejuswajdu) m z :o.:E:&Eoo.SuatE.‘\mum(

< S uonejndwoojonper s

” u = uonendwios jesqns-ainjes) S

.m %S :suonejuawa|du)
2 o_ g2
©
C 598 DE
o ®o g X
2 25 29
2 52358
o = <

L

slalisse|)

peseq

-loqyBisN

]1SaleaN

+

uononpuj siny

+

Set of Reducts
Single Reduct
Superreduct

t

uonooles
alnjes

+

Prototype Selection
Positive Region

uonooles
aoue)sy|

+

1S¥/'s[erseyurfenbaezijesosip'q
1SY uoezye.osip'q
:suonejuswalduy

Dynamic
Static

Globa

Local
Unsupervised
Supervised

g

uonezielosig

+

J1415850[0)d82UCI AW
11415950/0/8qOI6 AN
[eAUOWIWODISOW AW

do0UO0D SOYIBAUOWILLODISOUW AW
seseQuonalep AW
:suonejuawajdu)

Most Common

Closet Fit
Deletion

£

uons|dwo)
anje/ buissiy

4

1S4 Beransod-0g

1Sy uopewixodde' N 708
1Sy uogewixoidde’n10g
1S¥- uoelranog

1S¥ Uoleleran|og
:suonejuawajdw|

Discernibility Matrix

Positive Region

Lower & Upper Approximations
Indiscernibility Relations

sydaouo)
oiseq

+

abeyoed
sjesybnoy syl

in “RoughSets.”

1018

Models and their implementat

Figure 4.1

161

4.2 The Package Architecture and Implementa-

tion Detalils

As shown in Figure 4.1, since there are more than 40 functions included
in the package for implementing various algorithms, we compose their names
with three parts separated by dots: prefix, suffiz, and middle as follows:

e prefiz: This part shows that corresponding functions perform a par-
ticular task as follows:
— BC(': basic concepts of a certain theory,
— D: discretization,
— FS: feature selection,
— 1S: instance selection,
— RI: rule-based classifiers (rule induction),
— (" nearest neighbor-based classifiers,
— SF': support functions,
— MV missing value handling,
— X: auxiliary functions.
e suffiz: Two names in this part are RST and FRST. The suffix RST
refers to rough set theory while FRST shows that the function is ap-

plied to fuzzy rough set theory. Additionally, some functions that do
not have these suffixes are used for both the theories.

e middle: The actual function name. It can consist of more than one
word separated by points.

For example, BC.positive.reg. RST is a function based on RST used to cal-
culate the positive region, which is a part of the basic concepts. Other
functions that have names not based on the above rules are S3 functions
which are built-in functions in the R framework. For instance, summary and
predict are used to summarize objects and predict new data, respectively.

These tasks will be explained in detail, as follows:

1. Basic concepts: In the basic concepts, we consider algorithms for cal-
culating the indiscernibility relation, the lower and upper approxi-
mations, the regions, and the discernibility matrix. These tasks are

162

Table 4.1: Functions included in the basic concepts of “RoughSets” and their

references.
Names of functions Descriptions References
BC.IND.relation.RST Indicernibility relation based on [213]
RST
BC.IND.relation. FRST Indiscernibility relation based on [200, 143,
FRST 119]
BC.LU.approzimation.RST Approximations based on RST [213]
BC.LU.approzimation. FRST Approximations based on FRST [238, 53, 56,
309, 120,
249
BC.positive.reqg. RST Positive region based on RST [213]
BC.positive.reg. FRST Positive region based on FRST [143]
BC.discernibility.mat.RST Decision-relative discernibility — [258]
matrix based on RST
BC.discernibility.mat. FRST Decision-relative discernibility [282, 309, 46,
matrix based on FRST 45]

implemented in eight functions, e.g., BC.IND.relation.RST used to
calculate the indiscernibility relations based on RST. The complete
list of the functions is presented in Table 4.1. These functions are im-
portant because they are used as the core functions for other functions
in the package.

2. Missing value completion: It refers to a process to deal with missing
values. This task is useful to be included in the package since all func-
tions based on RST and FRST in the package can not handle missing
values automatically. There are five functions implemented to han-
dle missing values, as shown in Table 4.2. Furthermore, in order to
provide a simple execution, we can also invoke the wrapper function
MV.missing Value Completion() where the following is its signature:

MV.missingValueCompletion(decision.table, type.method)

where decision.table is the training data in the R object DecisionTable,
and a chosen method is assigned to type.method.

163

Table 4.2: Functions included in the missing value completion in “Rough-

Sets” and their references.

Names of functions Descriptions References

MYV.deletionCases Deleting instances [94]
MV.mostCommonValResConcept Assigning the most common [94]
value of an attribute restricted

by concepts

MV.mostCommon Val Replacing the attribute mean or [94]
common values

MV.globalClosestF'it The global closest fit [94]

MYV.conceptClosestFit The concept closest fit [94]

3. Discretization: It refers to approaches for converting real-valued at-
tributes into nominal ones in information systems. In the case of RST,
we have to make sure that our data contains nominal values, otherwise
we have to perform discretization first. In the package, we consider
several types of discretization, which are dynamic, static, global, lo-
cal, unsupervised, and supervised. Detailed description of functions
in the package is presented in Table 4.3. Furthermore, in order to
provide a simple execution, we can also invoke the wrapper function
D.discretization.RST() where the following is its signature:

D.discretization.RST(decision.table, type.method, ...)

where decision.table is the training data in the R object DecisionTable,
and a chosen method is assigned to type.method.

4. Instance selection: It is to remove or replace noisy or inconsistent
instances from training datasets. In RST, it refers to evaluating each
object included in the boundary region or the positive region. In the
package, we provide two algorithms as shown in Table 4.4.

5. Feature selection: It is a process to find a subset of attributes which
gives the same quality as the complete feature set. In other words,
a purpose of the feature selection is to identify significant attributes

164

Table 4.3: Functions included in the discretization approaches in “Rough-

Sets” and their references.

Names of functions Descriptions

D.maz.discernibility. matriz. RST Discretization based on maximal [23]
discernibility

D.local. discernibility. matriz. RST Discretization based on local [23]
strategy

D.global. discernibility.heuristic. RST Discretization based on global [205]
maximum discernibility heuristic

D.discretize.quantiles. RST Discretization based on quantiles [67]

D.discretize.equal.intervals. RST Discretization based on equal in- [67]

terval size

Table 4.4: Functions included in the instance selection in “RoughSets” and

their references.

Names of functions Descriptions
IS.FRIS.FRST Fuzzy rough instance selection [138]
IS.FRPS.FRST Fuzzy rough prototype selection [285]

165

and to eliminate the dispensable ones. According to the output pro-
duced by feature-selection algorithms, we may divide them into three
groups: those that produce a superreduct, a set of reducts, or a single
reduct. An attribute a € B< A can be regarded as dispensable in B if
Rp = Rp\iq) otherwise a is called indispensable in B. Furthermore, in
both RST and FRST the feature selection typically refers to finding
a reduct or a superreduct. A superreduct is a set of attributes B<S A,
such that Rg =R 4, where Rp and R4 are the indiscernibility relations
defined by B and A, respectively [214, 216]. If it is also minimal (w.r.t.
inclusion), then it is called a reduct. The intersection of all reducts
is called the core. All functions included in the package can be seen
in Table 4.5. Furthermore, in order to provide a simple execution, we
provide three wrapper functions, where the following are their signa-
tures:

FS.reduct.computation(decision.table,method,...)
FS.feature.subset.computation(decision.table,method,...)

FS.all.reducts.computation(discernibilityMatrix)

where decision.table is the training data in the R object DecisionTable,
and a chosen method is assigned to type.method.

. Rule induction: It is also called a rule-based classifier, which is an
approach used to extract knowledge in IF-THEN rules. In RST, a rule
for the decision table & is called a decision rule denoted by IF ¢ THEN
d =v, where ¢ € €(A,V,). 6(A,V,) is a set of pairs of conditional
attributes A and their corresponding values V, that are connected by
the propositional A (conjunction), v (disjunction), and - (negation).
The decision rule is true in & if, and only if, || ¢ <]l d = vy || where in
this case, || .|| is the set of objects matching the decision rule [216]. In
the package we consider three different methods as shown in Table 4.6.

. Nearest neighbor-based classifiers: The nearest neighbor-based classi-
fiers were introduced first by Fix and Hodges in [79]. Then, in 1967
they were improved and made famous by Cover and Hart [57]. In su-
pervised learning, the k-nearest neighbor-based classifiers are defined
as methods that predict new data/patterns based on the most similar

166

Table 4.5: Functions included in the feature selection in “RoughSets” and

their references.

Names of functions Descriptions

FS.quickreduct. RST Feature selection based on [254]
QuickReduct

FS.quickreduct. FRST Feature selection based on fuzzy [141, 249, 30,
QuickReduct 54, 143, 3009,

56, 120]

FS.greedy.heuristic.superreduct. RST Greedy heuristics for selecting a [301, 260,
superreduct 134]

FS.nearOpt.foprs. FRST Feature selection based on near- [309]
optimal reduction

FS.greedy.heuristic.reduct. RST Greedy heuristics for selecting a [301, 260,
reduct 134]

FS.all.reducts.computation Wrapper for computing all [258, 282,
reducts 309, 46, 45]

FS.permutation.heuristic.reduct. RST Permutation heuristic for deter- [133]

mining a reduct

Table 4.6: Functions included in the rule induction in “RoughSets” and their

references.

Names of functions

Descriptions

RIindiscernibilityBased Rules. RST Rule induction based on RST

RILhybrid. FRST
RI.GFRS.FRST

QuickRules algorithm
Generalized fuzzy rough set rule

induction

[213]
[140]
310]

167

Table 4.7: Functions included in the nearest neighbor-based classifiers in

“RoughSets” and their references.

Names of functions Descriptions

C.FRNN.FRST Fuzzy-rough nearest neighbors [139]

C.FRNN.O.FRST Fuzzy-rough ownership nearest [251]
neighbors

C.POSNN.FRST Positive region based fuzzy- [286]

rough nearest neighbors

or nearest £ patterns in training data. This section attempts to illus-
trate enhancements of k-nearest neighbors based on FRST. Table 4.7
show the functions included in this group.

4.3 Examples of Usage

In general speaking, to analyze data using “RoughSets” we follow these
steps:

1. Installation and loading the “RoughSets” package: In order to use the
package, we need to install and load it as shown in Section 4.3.1.

2. Constructing datasets in the DecisionTable format: DecisionTable is
a standard format expressing a decision table and an information sys-
tem in “RoughSets”. All functions included in the package require De-
cistonTable as the input data. Therefore, we must convert data into
this format before calling any functions. Basically, the DecisionTable
representation contains three attributes, as follows:

(a) mominal.attrs: containing boolean values representing types of
attributes whether nominal or not.

(b) desc.attrs: containing two parts: names of attributes and range
of data.

(c) decision.attr: showing an index of the decision attribute. In the
case of the information system, it is set by NULL.

168

Input Data

Dataset in a file: csv, i

\ txt, dat, RData, xIs Dataset in

N data.frame
. I

v v

SF.read.DecisionTable() SF.asDecisionTable()

Dataset in
DecisionTable

v

Data analysis using “RoughSets”

Figure 4.2: Constructing the DecisionTable format from a file and

data.frame.

Figure 4.2 shows two ways to construct DecisionTable. First, we can
obtain from a file with extensions csv, tzt, data, RData, and zls by ex-
ecuting the function SF.read.DecisionTable(). Second, DecisionTable
can be generated from a dataset represented by data.frame. Detailed
illustrations showing how to build the format can be seen in Sec-
tion 4.3.2.

3. Performing data pre-processing: In this part, we can perform missing
value handling, discretization, feature selection, and instance selection
by invoking associated functions. It should be noted that all functions
in this step do not generate a new decision table (i.e., dataset), but
they produce a model related to these tasks. For example, a function
used for discretization returns cut values as the model. Therefore, as
shown in Figure 4.3, we need to execute SF.applyDecTable() to mate-
rialize the decision table by considering an obtained model. Detailed
illustrations showing how to perform data pre-processing can be seen
in Section 4.3.4 and 4.3.5.

4. Generating learning models and predict new data: In order to con-
struct a learning model, we provide two techniques: rule-based clas-
sifiers (i.e., rule induction) and instance-based classifiers (i.e., nearest
neighbor-based classifiers). A simple difference between these two clas-
sifiers is that while instance-based classifiers produces a set of selected

169

Dataset in
DecisionTable

M(|:sosr|Tr]1 gl e\(iaolﬁe Discretization Feature Selection Instance Selection
Met‘r)mds Metods Methods Methods

Index of Selected
Objects

Completion Values Cut Values Decision Reduct

v v

P | SF.applyDecTable()

A

New Dataset in
DecisionTable

Figure 4.3: Generating a new decision table in the data pre-processing
“RoughSets.”

instances, rule-based classifiers generates a set of rules. Furthermore,
rule-based classifiers performs learning and prediction sequentially, but
the other one does these processes at the same time. Figure 4.4 and
4.5 emphasize the differences between the two classifiers. Furthermore,
it can be seen in Figure 4.4, the output of learning functions based on
rule-based classifiers is a model, called decision rules. Detailed illus-
trations showing how to perform the learning and prediction steps can
be seen in Section 4.3.4 and 4.3.5.

4.3.1 Installation and Loading the “RoughSets” Package

To install “RoughSets” from CRAN, users simply enter the following
command in the R environment:

R> install.packages(c("class", "RoughSets"))

Here, “class” is a package required for some functions of the “RoughSets”
package.

The package installation has to be done only once. After that in any
session using “RoughSets”, we need to load it with the following command:

170

Learning: rule induction
methods (e.g.,
Rl.hybridFS.FRST())

Testing dataset in Prediction: .
DecisionTable predict() Predicted values

Figure 4.4: The learning and prediction steps based on rule-based classifiers
in “RoughSets”.

Training dataset in
DecisionTable
Call classifiers, e.g., | .
C.POSNN.FRST() Predicted values
Testing dataset in
DecisionTable

Figure 4.5: The learning and prediction steps based on nearest neighbor-

raining dataset in
DecisionTable

based classifiers “RoughSets”.

R> library(RoughSets)
The command loads the “RoughSets” package and makes its functions avail-

able in the R environment. We can see a list of functions included in “Rough-
Sets” by running the following command:

R> library(help=RoughSets)
All R functions available in “RoughSets” are documented in the R help
system in a hypertext format, and in the package manual in pdf format. The

manual is available on the package website on CRAN. To get information
on a particular function, we can call the help command, e.g.,

R> help(BC.IND.relation.RST)

171

In this section, we provide some examples showing how to use the “Rough-
Sets” package. Simple data are used in the examples to give clear illustra-
tions. It will be divided into three parts of examples: constructing the
DecisionTable format, executing basic concepts, and applications.

4.3.2 Constructing Datasets in the DecistonTable Format

Every dataset used in the package has to be in DecisionTable format.
Let dt.exl be our dataset, the following code shows how to construct the
DecisionTable of dt.ex1.

R> dt.ex1 <- data.frame(c(1,0,2,1,1,2,2,0), ¢c(0.5,1.2,0.1,1.2,0.4,
+ 2.2,1.1,1.5), c(2,1,0,0,2,0,1,1), c(0,2,1,2,1,1,2,1))

R> colnames(dt.ex1l) <- c("a", "b", "c", "d")

R> DecTable.1l <- SF.asDecisionTable(dataset = dt.exl,

+ decision.attr = 4, indx.nominal = c(1,3:4))

We can see DecTable.1 by typing:

R> print.default(DecTable.1)

$a
[1] 10211220

$b
[1] 0.5 1.2 0.1 1.2 0.4 2.2 1.11.5

$c
[1] 21002011

$d
(1102121121

attr(,"class")

[1] "DecisionTable" "data.frame"

172

attr(,"nominal.attrs")

[1] TRUE FALSE TRUE TRUE
attr(,"desc.attrs")
attr(,"desc.attrs")$a

[1] "o" m1n n2n

attr(,"desc.attrs")$b
[1] 0.1 2.2

attr(,"desc.attrs")$c
[1] nou nqn non

attr(,"desc.attrs")$d
[1] "Oll lll" ||2||

attr(,"decision.attr")
[1] 4

Basically, DecTable.1 (which is a DecisionTable object) contains the dataset
as a data.frame, attribute descriptions (namely desc.attrs), type of attributes
(namely nominal.attrs), and an index of the decision attribute (namely de-
cision.attr). In nominal.attrs, we can see that the second attribute has real
values and the others have nominal values. Furthermore, desc.attrs consti-
tutes a set of attributes and their range of values, and decision.attr shows
that the attribute on index 4 is the decision attribute.

In case we have data with many rows and columns, it may be more conve-
nient to construct DecisionTable from files, executing SF.read. DecisionTable.
An example of this case can be found in the package manual.

4.3.3 Examples of the Basic Concepts

In the following, we illustrate with some examples the basic concepts of
RST and FRST.

173

Based on Rough Set Theory

In this example, we are using the hiring.dt dataset [159]. It has been
included in the “RoughSets” package. In order to load the data, we need to
type the following command:

R> data(RoughSetData)
R> hiring.dt <- RoughSetData$hiring.dt

First, we calculate the indiscernibility relation. For example, by con-

sidering the second and third attributes only, we obtain the indiscernibility
relation IND with the command:

R> IND <- BC.IND.relation.RST(hiring.dt)

The IND object contains the equivalence classes of the objects.

After obtaining the relation, we can calculate the approximations (namely
roughset) and positive region (namely region) as follows:

R> roughset <- BC.LU.approximation.RST(hiring.dt, IND)
R> region <- BC.positive.reg.RST(hiring.dt, roughset)

Furthermore, we can also construct the discernibility matrix as follows:
R> disc.Mat <- BC.discernibility.mat.RST(hiring.dt)

We can then show the results, e.g. the output of BC.LU.approximation.RST
which is roughset by

R> print (roughset)

$lower.approximation
$lower.approximation$Accept
MBA High No Good MBA Medium Yes Excellent

4 1
MSc High Yes Excellent MSc High Yes Neutral
3 2

174

$lower.approximation$Reject
MBA Low Yes Neutral MCE Low No Excellent
5 8
MSc Medium Yes Neutral
7

$upper . approximation

$upper . approximation$Accept

MCE Low Yes Good
6

MBA High No Good MBA Medium Yes Excellent

4 1
MSc High Yes Excellent MSc High Yes Neutral
3 2

$upper.approximation$Reject
MBA Low Yes Neutral MCE Low No Excellent
5 8
MSc Medium Yes Neutral
7

$type.model
[1] "RST"

attr(,"class")

[1] "LowerUpperApproximation" "list"

Based on Fuzzy Rough Set Theory

MCE Low Yes Good
6

This example uses the dataset pima7.dt which contains seven objects of
the pima dataset [11]. It is included in the “RoughSets” package. Therefore,

we load it with:

175

R> data(RoughSetData)
R> pima7.dt <- RoughSetData$pima7.dt

As in the RST case, we need to compute the indiscernibility relation,
approximations and the positive region in sequential order. First, we cal-
culate the indiscernibility relation of the considered conditional and deci-
sion attributes. For example, in this case we consider the second and third

attributes only (condAttr) and the last column as the decision attribute
(decAttr).

R> condAttr <- c(2, 3)
R> decAttr <- ncol(pima7.dt)

Then, we need to assign values of the control parameter. For the indiscerni-
bility on the conditional attributes (the second and third attributes only),
we set lukasiewicz and eq.1 to be our ¢-norm and relation, respectively. De-
tailed descriptions of the parameters can be found in the package manual.

R> control.ind <- list(type.aggregation =

+ c("t.tnorm", "lukasiewicz"),

+ type.relation = c("tolerance", "eq.1"))

R> IND.condAttr <- BC.IND.relation.FRST(pima7.dt,

+ attributes = condAttr, control = control.ind)

Since our data have nominal values in the decision attribute, we assign
crisp for the type of aggregation and relation to calculate the indiscernibility
relation on the decision attribute.

R> control.dec <- list(type.aggregation = "crisp",
+ type.relation = "crisp")

R> IND.decAttr <- BC.IND.relation.FRST(pima7.dt,

+ attributes = decAttr, control = control.dec)

After obtaining the relations on the conditional and decision attributes,
we can calculate the lower and upper approximations as:

R> control <- list(t.implicator = "lukasiewicz")

R> imp.tnorm <- BC.LU.approximation.FRST(pima7.dt,

176

+ IND.condAttr, IND.decAttr,

+ type.LU = "implicator.tnorm", control = control)

It can be seen that in this case we use implicator.tnorm proposed by [238]
with lukasiewicz as the implicator. The imp.tnorm object is a list showing
each index of objects included in lower and upper approximations based on
decision concepts.

The positive region and degree of dependency can be obtained with:

R> region <- BC.positive.reg.FRST(pima7.dt, imp.tnorm)

Finally, we can construct the decision-relative discernibility matrix. For
example, we use the following parameters.

R> control.1 <- list(type.relation = c("tolerance", "eq.1"),
+ type.aggregation = c("t.tnorm", "min"),

+ t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")

The detailed explanation can be found in the manual. Then, we construct
the matrix based on the standard.red algorithm which is based on [282].

R> disc.Mat <- BC.discernibility.mat.FRST(pima7.dt,
+ type.discernibility = "standard.red",

+ control = control.1)

As we mentioned above, the user can also define his or her own func-
tions. For example, for constructing the indiscernibility relation we create
the function FUN.average to be our aggregation operator. FUN.average is
defined as average of all data on each considered attribute. Using the same
dataset, we calculate the indiscernibility relation IND.custom of the second
and third attributes as follows:

R> FUN.average <- function(data){

+ return(Reduce("+", data)/length(data))

+ }

R> control.ind <- list(type.aggregation = c("custom", FUN.average),

+ type.relation = c("tolerance", "eq.1"))

177

R> IND.custom <- BC.IND.relation.FRST(pima7.dt,

+ attributes = condAttr, control = control.ind)

For calculating approximations, as in the indiscernibility relations, we
can build new models. For example, we design a new model based on the
OWA model by defining our own weight vectors (w.vector) [56].

R> w.vector <- matrix(0, nrow = nrow(pima7.dt))
R> m.owa <- round(arow(pima7.dt)/2)

R> for (i in 1 : m.owa){

+ w.vector[i] <- (2" (m.owa - i))/(2"m.owa - 1)

+ }
Then, we assign lukasiewicz as the type of implicator and ¢-norm.

R> control <- list(t.implicator = "lukasiewicz",

+ t.tnorm = "lukasiewicz", w.owa = w.vector)
We use the same dataset and the conditional and decision relations: pima7.dt,

IND.condAttr, and IND.decAttr. Lastly, we calculate the approximation by
the following command:

R> owa.custom <- BC.LU.approximation.FRST(pima7.dt,
+ IND.condAttr, IND.decAttr, type.LU = "owa",

+ control)

To display the approximations owa.custom, we can execute:

R> print (owa.custom)

$fuzzy.lower
$fuzzy.lower$l

1 2 3 4 5 6 7
1.0000000 0.3785507 0.6765217 0.3785507 0.9339130 0.9953623 1.0000000

$fuzzy.lower$2

178

1 2 3 4 5 6 7
0.2291304 0.9026087 0.2856522 0.7055072 0.3124638 0.1307246 0.1442029

$fuzzy.upper
$fuzzy.upper$l

1 2 3 4 5 6 7
0.7708696 0.0973913 0.7143478 0.2944928 0.6875362 0.8692754 0.8557971

$fuzzy.upper$2

1 2 3 4 5
0.000000000 0.621449275 0.323478261 0.621449275 0.066086957
6 7

0.004637681 0.000000000

$type.LU

[1] "owa"

$type.model
[1] "FRST"

attr(,"class")

[1] "LowerUpperApproximation" "list"

It can be seen that the owa.custom object is a list containing the lower and
upper approximations separated by the concept classes. Additionally, other
descriptions, such as type.L U, are presented as well.

Other examples showing the use of custom functions can be seen in the
package manual and on our website. The manual has been designed to show
how all approaches are executed with complete related parameters.

179

4.3.4 An Example using Rule-Based Classifiers

In this example, we only consider implementations based on RST for
prediction while examples regarding FRST can be found in the manual
at cran.r-project.org/package=RoughSets. The example uses a real
dataset which is the wine data included in the package.

Figure 4.6 shows processes conducted in the example. Basically, we first
construct the DecisionTable object. Then, we do discretization, feature
selection, and learning using a rule-based classifier. Finally, we perform
prediction over new data. In this case, we focus on executing functions
based on RST.

First, we load the wine data from the package:

R> data(RoughSetData)
R> dataset <- RoughSetData$wine.dt

For simplicity, we divide the data into training and testing data in the fol-
lowing way. After shuffling the data, the training data called wine.decTable
are 80% of all data while the rest is the testing data (¢st.wine).

R> dt.Shuffled <- dataset[sample(nrow(dataset)),]

R> idx <- round(0.8 * nrow(dt.Shuffled))

R> wine.decTable <- SF.asDecisionTable(dt.Shuffled[1 : idx,],
+ decision.attr = 14, indx.nominal = 14)

R> tst.wine <- SF.asDecisionTable(dt.Shuffled[(idx +

+ 1) :nrow(dt.Shuffled), -ncol(dt.Shuffled)])

R> real.val <- dt.Shuffled[(idx + 1) :nrow(dt.Shuffled),

+ ncol(dt.Shuffled), drop = FALSE]

Since the wine dataset contains real-valued attributes, we need to dis-
cretize them. For example, we use the global.discernibility method. Then
we obtain cut values (called cut.values) by the following command:

R> cut.values <- D.discretization.RST(wine.decTable,

+ type.method = "global.discernibility")

Then we apply the cut values to the training and testing data to generate
new decision tables (called d.tra and d.tst):

180

Data

Training Data in

Training Data
in data.frame

Constructing DecisionTable:
SF.asDecisionTable()

Testing Data
in data.frame

Testing Data in

DecisionTable

- L

v

Discretization:
D.discretization.RST()

. | Materializing datasets:

» DecisionTable

~_

A

SF.applyDecTable()
| |

Training Data in
nominal values

Feature selection:
FS.feature.subset.computation()

v

Testing Data in
nominal values

Learning using rule-based classifier:
Rl.indiscernibilityBasedRules.RST()

v

Prediction:

predict()

Predicted
values

Figure 4.6: The workflow of data analysis using a rule-based classifier based

RST.

181

R> d.tra <- SF.applyDecTable(wine.decTable, cut.values)
R> d.tst <- SF.applyDecTable(tst.wine, cut.values)

Now, we have the datasets containing nominal values.

We perform feature selection using the quickreduct.rst method as follows:

R> red.rst <- FS.feature.subset.computation(d.tra,

+ method = "quickreduct.rst")

A new decision table can be generated from the decision reduct red.rst with
the following command:

R> fs.tra <- SF.applyDecTable(d.tra, red.rst)

After data preprocessing, a rule-based classifier can be induced from the
training data:

R> rules <- RI.indiscernibilityBasedRules.RST(d.tra, red.rst)

It should be noted that in this case, the function needs the decision reduct
as input data. Then, we can predict the testing data (d.¢st) by considering
the rules as follows:

R> pred.vals <- predict(rules, d.tst)

The predicted values pred.vals can be compared with the real values real.val
as follows:

R> err <- 100 * sum(pred.vals != real.val)/nrow(pred.vals)

R> cat("The percentage error = ", err, "\n")

The percentage error = 11.11111

Detailed output for these examples and additional output is available at the
project web page.

In summary, the examples illustrate the way in which the “RoughSets”
package facilitates data analysis. Many options of parameter values are
available to obtain good solutions. The functionality for defining our own
functions as parameter values provides flexibility and opportunities for re-
searchers to extend current models.

182

4.3.5 An Example Using Instance-Based Classifiers

In this example, we illustrate how to construct a model based on instances

and predict new data. As the previous example, it uses a real dataset which
is wine data included in the package.

Figure 4.7 depicts the processes considered in the example. First, we con-

struct the DecisionTable object, and then feature and instance selections are
conducted. After that, we consider two methods of instance-based classifiers
in FRST: C.FRNN.FRST and C.FRNN.O.FRST.

First, we load the wine data from the package:

R> data(RoughSetData)
R> dataset <- RoughSetData$wine.dt

For simplicity, we divide the data into training and testing data in the fol-
lowing way. After shuffling the data, the training data called wine.tra are
80% of all data while the rest is the testing data (wine.tst).

R>
R>
R>
+
R>
+
R>
+

dt.Shuffled

<- dataset [sample (nrow(dataset)),]

idx <- round(0.8 * nrow(dt.Shuffled))

wine.tra <-
decision
wine.tst <-
-ncol (dt

real.val <-

SF.asDecisionTable(dt.Shuffled[1 : idx,],

.attr = 14, indx.nominal = 14)
SF.asDecisionTable(dt.Shuffled[(idx + 1) :nrow(dt.Shuffled),
.Shuffled)])

dt.Shuffled[(idx + 1) :nrow(dt.Shuffled), ncol(dt.Shuffled),

drop = FALSE]

The following command is to obtain a decision reduct by performing fea-

ture selection. For example, we consider the method quickreduct.frst which
is the algorithm quick reduct based on FRST.

R> reduct <- FS.feature.subset.computation(wine.tra,

+

method =

"quickreduct.frst")

After that, we generate new decision tables of the training and testing data
by considering reduct, as follows:

183

Training data

Data

Testing data in

in data.frame

data.frame

4 A 4

| Constructing DecisionTable: |

SF.asDecisionTable()

Training data in
DecisionTable

Testing data in
DecisionTable

FS.feature.subset.computation()

Feature selection:

Decision
Reduct

. | Materializing datasets:

SF.applyDecTable()

New training
data

New testing

data

Instance selection:
IS.FRIS.FRST()

v

Materializing datasets:

SF.applyDecTable()

Selected
indices

New training
data

N

Vv

A 4
Instance-based Classifier: Instance-based Classifier:
C.FRNN.FRST() C.FRNN.O.FRST() -

Predicted
values

Figure 4.7: The workflow of data analysis using instance-based classifiers

based FRST.

184

Predicted
values

R> wine.tra.fs <- SF.applyDecTable(wine.tra, reduct)
R> wine.tst.fs <- SF.applyDecTable(wine.tst, reduct)

According to the scenario, we then perform instance selection as follows:

R> indx <- IS.FRIS.FRST(wine.tra.fs,
+ control = list(threshold.tau = 0.2, alpha = 1))

In this case, we use the method IS.FRIS.FRST with 1=0.2 and a=1. We
materialize the decision table after instance selection by

R> wine.tra.is <- SF.applyDecTable(wine.tra.fs, indx)

Further, we perform learning and prediction by using two instance-based
classifiers, which are C.FRNN.O.FRST and C.FRNN.FRST. Parameters in
the methods are defined in the control arguments: control.frnn.o and con-

trol.frnn. Detailed description of the parameters can be seen in the manual
[245].

R> ## Using C.FRNN.O.FRST

R> control.frnn.o <- list(m = 2, type.membership = "gradual")
R> predValues.frnn.o <- C.FRNN.Q.FRST(wine.tra.is,

+ newdata = wine.tst.fs, control = control.frnn.o)

R> ## Using C.FRNN.FRST

R> control.frnn <- list(type.LU = "implicator.tnorm",k = 20,

+ type.aggregation = c("t.tnorm", "lukasiewicz"),
+ type.relation = c("tolerance", "eq.1"),

+ t.implicator = "lukasiewicz")

R> predValues.frnn <- C.FRNN.FRST(wine.tra.is,

+ newdata = wine.tst.fs, control = control.frnn)

We can compare the results by typing the following commands:

R> real.val <- dt.Shuffled[(idx+1) :nrow(dt.Shuffled),
+ ncol(dt.Shuffled), drop = FALSE]

R> err.1 <- 100*sum(predValues.frnn.o!=real.val)/

185

+ nrow(predValues.frnn.o)
R> err.2 <- 100*sum(predValues.frnn!=real.val)/
+ nrow(predValues.frnn)

R> cat("The percentage error = ", err.1, "\n")
The percentage error = 2.777778
R> cat("The percentage error = ", err.2, "\n")

The percentage error = 0

4.4 A Comparison with Other Packages

This section reviews some existing software libraries implementing RST
and FRST. A comparison according to the functionality and capability of
other exemplary software systems is shown in Table 4.8. In particular, we
compare the “RoughSets” library with the following four libraries:

Rough Set Data Explorer (ROSE) It is a software developed by the
Laboratory of Intelligent Decision Support Systems of the Institute of Com-
puting Science, Poznan Technical University. It is used to implement basic
elements of the rough set theory and rule discovery technique [225, 226]. It
allows to apply the variable precision rough set defined by Ziarko [312] and
the classical model by Pawlak [213] for constructing the approximations.
Both ROSE and “RoughSets” allow the user to perform the basic concepts
of RST. For data processing, it provides a discretization method based on
an entropy measure proposed by Fayyad and Irani [74]. Feature selection
is done by algorithms based on the lattice search introduced by Romanski
[247] and the decision-relative discernibility matrix in [258]. Some algo-
rithms are implemented to generate rules, such as LEM2 [95, 162] and the
explore algorithm [194]. The software implements the L-metric or valued
closeness relation based on [261] to predict new data. Even though ROSE
provides more algorithms for rule induction than “RoughSets,” in the case
of discretization and feature selection “RoughSets” offers more functionality.

186

Rough Set Exploration System (RSES) It is a toolset for analyzing
data implemented at the Group of Logic, Institute of Mathematics, Uni-
versity of Warsaw and the Group of Computer Science, Institute of Math-
ematics, University of Rzeszéw, Poland [25]. It has an associated Java li-
brary called RSESIib. There are some algorithms included for handling data
processing (e.g., missing value completion, discretization, feature selection,
decomposition), rule induction, and classifiers based on nearest neighbor al-
gorithms. For handling missing values, it provides four approaches: object
removal, filling missing parts [99], analysis of data and treating the miss-
ing data as information. The discretization task is performed by algorithms
proposed in [204]. Besides determining reducts based on exhaustive and
genetic algorithms [23], it has implemented feature selection based on dy-
namic reducts [23, 22|. Furthermore, decomposition of tables and creation
of new attributes are considered in this package as well. Implementation of
the covering with reducts approach [300] and LEM2 [96] is used to generate
rules. Although the following classifiers are not based on rough set theory,
classifiers based on nearest neighbors [69] and local transfer function [298]
are implemented as well in the package. It is clear that RSES is a com-
prehensive software, especially for tackling data preprocessing. However, it
does not provide facilities for users to operate the basic concepts of RST as
in “RoughSets.”

Rough Set Toolkit for Analysis of Data (ROSETTA) It is a software
package developed by a collaboration of researchers working in the Knowl-
edge System Group at the Norwegian University of Science and Technology
(NTNU), Norway, and the Group of Logic, University of Warsaw, Poland. It
is an advanced system for data analysis based on RST [209, 210]. It consists
of two parts which are a computational kernel and a graphical user interface
(GUI) front end. Even though ROSETTA implements some algorithms as
its computational kernel, it also uses the RSES library. For example, in
discretization algorithms, it considers algorithms of boolean reasoning [206],
entropy measure [67, 75] and y-statistics [154, 174]. From a front end view,
it provides a user friendly interface and allows to import datasets from ex-
ternal data sources, e.g., database management systems (DBMS), via the
open database connectivity (ODBC) interface. Additionally, we can export
results, e.g., decision rules, reducts, etc., to various formats such as XML,
C++ and Prolog. In summary, the advantages of this software are that
it provides a user friendly interface based on GUI and a connection with
databases. “RoughSets” offers other benefits. For example, the consistency

187

and reliability of command line facilities for batch processing and heavy ex-
perimentation. Furthermore, R as the scientific environment provides many
other packages implementing the connection with databases and various file
formats.

Waikato Environment for Knowledge Analysis (WEKA) It is a
popular framework for data mining tasks such as data preprocessing, clas-
sification, regression, clustering, association rules and visualization [109].
It provides a sophisticated GUI containing four menus: Ezplorer, Experi-
menter, KnowledgeFlow, and SimpleCLI. Even though there are many pack-
ages included in WEKA | in this survey we focus on a package implementing
FRST in WEKA. It was created by Jensen et al. [136]. For feature selection,
it has implemented several methods, for example fuzzy QuickReduct using
parameters y [55], boundary region [143], § [143], VQRS [54], and fuzzy dis-
cernibility matrix approach [144]. By employing search methods such as ant
colony optimization (ACO) [142] and particle swarm optimization (PSO)
[293], reducts can be generated. Fuzzy-rough instance selection is deployed
to select qualified objects in the instance selection task [138]. Lastly, it also
provides classifier methods based on nearest neighbors [137] and rule induc-
tion using hybrid fuzzy-rough rule induction and feature selection (called
QuickRules) [140]. Some algorithms of feature selection, rule induction,
and nearest neighbor-based classifier in the package are also implemented
in “RoughSets.” However, especially for constructing the approximations, in
“RoughSets” we provide not only more approaches but also custom functions
for some parameters. In addition, the R environment provides the possibil-
ity to convert the data.frame format from/to the WEKA Attribute-Relation
File Format (ARFF) by employing the “foreign” package [233].

In summary, it can be seen that “RoughSets” offers some advantages that
are not shared by others, such as the integration RST and FRST, a com-
plete algorithms for missing value handling, discretization, feature selection,
instance instance, rule-based classifiers, and instance-based classifiers, the
facilities to build own models (i.e., the lower and upper approximations) by
defining customized functions.

Table 4.8: A comparison of “RoughSets” with other packages (Part: 1 of 2).

Components ROSE RSES ROSETTA WEKA “RoughSets”

General views:

Theory Rough set (RST) RST RST Fuzzy rough set (FRST) RST and FRST

Programming Lan- C++ C++ and Java C++ Java R

guage (mainly)

Operating System MS Windows MS Windows and Linux MS Windows MS Windows, Mac Os X, MS Windows, Mac OS X,
and Linux Linux, and Solaris

User Interface Graphical User Interface GUI and scripting inter- GUI GUI Scripting interface

(GUI) face
License Use only for research, Freely distributed for Use only for non- The GNU General Public The GNU General Public
education, development, non-commercial purposes commercial purposes, a License License
private, and non profit partially restricted use
purposes for algorithms of RSES
library
Available fea-
tures:
Basic concepts Yes No No No Yes
Discretization Yes Yes Yes No Yes
Feature selection Yes Yes Yes Yes Yes
Instance Selection No No No Yes Yes
Missing value com- Yes Yes Yes Yes No
pletion
Decomposition No Yes No No No
Rule-based classi- Yes Yes Yes Yes Yes
fiers
Nearest neighbor- No Yes No Yes Yes
based classifiers
Cross validation Yes Yes Yes Yes No
Algorithms of the
basic concepts:
Relations Equivalence [213], simi- Equivalence [213] Equivalence [213] Jensen [143] RST: equivalence [213];
larity [262, 263] FRST: Naessend [200],
Jensen [143], and kernel
[119]
Approximations Pawlak [213], Ziarko Pawlak [213], Ziarko Pawlak [213], Ziarko implicator/t-norm [238], RST: Pawlak [213];
[312] [312] [312] VQRS [53], OWA [56] FRST: implicator/¢-norm
[238], VQRS [53], OWA
[56], FVPRS [309], SFRS
[118], RFRS [120], and
B-PFRS [249]
Positive Region Pawlak [213] Pawlak [213] Pawlak [213] Pawlak [213] Pawlak [213]
Discernibility Ma- Skowron [258] Skowron [258] Skowron [258] Fuzzy discernibility ma- RST: Skowron [258];

trix

trix approach [144]

FRST: Tsang [282], Zhao
[309], and Chen [46, 45]

Table 4.9: A comparison of “RoughSets” with other packages (Part: 2 of 2).

Components ROSE RSES ROSETTA WEKA “RoughSets”
Algorithms of ap-
plications:
Discretization Entroy measure [74] Nguyen [204] Nguyen [204], Boolean - RST: maximal & local
reasoning [206], entropy [23], global [205], and un-
[67, 75], and y-statistics supervised [67]
(154, 174]
Feature Selection Lattice search [247], dis- Discernibility matrix Discernibility matrix Fuzzy QuickReduct 7y RST: QuickReduct [254],
cernibility matrix [258] [258], genetic algo- [258], genetic algo- [55], boundary region the greedy heuristics
rithm [23], and dynamic rithm [23], and dynamic [143], &6 [143], VQRS [301, 260, 134], permuta-
reducts (23, 22] reducts [23, 22] [54], fuzzy discernibility tion [133], discernibility
matrix approach [144], matrix [258]; FRST: fuzzy
ACO [142], and PSO QuickReduct [141, 249, 30,
[293] 54, 143, 309, 118, 56, 120],

Rule Induction

Instance Selection

Nearest Neighbor

Classifiers

LEM2 [95, 162], explore
[194]

Covering reducts
and LEM2 [96]

[300]

Covering reducts
and LEM2 [96]

[300]

QuickRules [140]

FRIS [138]

FRNN [137, 139)

the near-optimal [309]

RST: indiscernibility
based rules [213]; FRST:
QuickRules [140] general-

ized [310]
FRST: FRIS [138] and
FRPS [285]
FRST: FRNN [139],
FRNN.O [251], and

POSNN [286]

4.5 Summary

In order to fullfil Objective 1(b), this chapter has discussed the following
points:

1. the “RoughSets” package, which is an R package integrating imple-
mentations of various algorithms based on RST and FRST for dealing
with missing value, discretization, feature selection, instance selection,
rule-based classifiers, and nearest neighbor-based classifiers,

2. the package architecture and implementation details explaining impor-
tant components included in the package,

3. some guidance and examples for end users in order to use the package,

4. a comparison with other tools related to the concepts.

The “RoughSets” package is available in CRAN: http://cran.r-project.
org/package=RoughSets and in the project website: http://dicits.ugr.
es/software/RoughSets/. Additionally, a journal paper describing the
package has been published:

L.S. Riza, A. Janusz, C. Bergmeir, C. Cornelis, F. Herrera, D. élgzak,
and J.M. Benitez. Implementing Algorithms of Rough Set Theory and Fuzzy
Rough Set Theory in the R Package. Information Sciences, 2014, 287, 68-
98.

191

Chapter 5

The “SparkFernTreeR”
Package

This chapter aims to address the third objective, which is to develop an
R package for Big Data processing based on RFs and RFe. The package is
called “SparkFernTreeR”. First, we introduce the “SparkFernTreeR” pack-
age, and then present the package architecture and implementation details.
Some examples showing the usage of the package and a comparison with
other tools are also provided. Finally, a short summary is presented in the
last section.

5.1 Introduction

Recently, data exploding in high volume, speed, and variety offer chal-
lenges to data scientists since traditional tools cannot handle them efficiently.
Data fulfilling these dimensions is termed Big Data. Basically, two main
problems should be considered in Big Data processing: storage manage-
ment systems and programming models. In Big Data frameworks, storage
systems should be able to read, write, and manage Big Data efficiently be-
sides providing fault tolerance, availability, consistency, scalability, and het-
erogeneity. From the computational-model perspective, we need to tackle
data in parallel and distributed ways. These strategies should also consider
several aspects, such as fault tolerance and recovery, task scheduling, etc.

192

Furthermore, to prevent network congestions instead of bringing data into
applications, now we need to spread and execute programs in the place where
data are.

There are two well-known Big Data frameworks: Apache Hadoop and
Apache Spark. First, Apache Hadoop offers three main functionalities:
HDEFS for the distributed file systems, MapReduce for the programming
model, and YARN for the resource management system. Apache Spark aims
to extend and generalize the MapReduce paradigm, which provides compu-
tations in memory by employing the RDD abstraction. Apache Spark pro-
vides the following modules: SparkR, SparkSQL, Spark Streaming, GraphX,
and MLIib. These frameworks have been attracting other researchers to de-
velop other systems tackling specific problems on top of them.

Since the connection between R and Big Data platforms is an emerging
topic no state-of-the-art overview could be found and we have gone through
the topics thoroughly to develop an extensive overview. It can be found
in Section 1.9.5. By focusing on R tools working with Apache Hadoop
and Apache Spark only, a survey in Figure 1.18 shows that these exists
some packages that are used to general and specific purposes. Basically,
these packages attempt to resolve the drawbacks of R. The main drawback
is that data are loaded into random access memory (RAM) before being
processed by R. It means that the active data must be smaller than available
RAM. Moreover, R is designed to work on single-threaded and standalone
framework.

While some packages in R can be found to allow parallel and distributed
computation, none of them offer the additional benefits of current Big Data
platforms, such as scalability, fault tolerance, task scheduling, etc. There-
fore, we aim to propose an R package to fulfill this hole so that the R
community can directly use it for their tasks without programming from
scratch. It calls the “SparkFernTreeR” package.

The “SparkFernTreeR” package is an R package implementing the fol-
lowing methods: DTs, RFs, and RFe, for dealing with Big Data. Actually,
there are two modes for running the package: standalone/single machine
and cluster mode. While on the standalone mode it can be executed in
the R environment as the regular packages, we employ the Apache Spark
framework in order to work on the cluster mode. In order to connect R and
Apache Spark, we utilize the R package “SparkR”. Furthermore, for stor-
age management systems, “SparkFernTreeR” can load and save files from/to
HDFS and other systems that are allowed by Apache Spark.

193

> Decision Trees

Standalone Mode
(Single Machine)

Random Forests
Parallel and
Distributed Mode

(Cluster Machines) » Random Ferns

» Random Forests

SparkFernTreeR

Other Functionalities:
"| Confusion Matrix, etc

Figure 5.1: Main modules included in the “SparkFernTreeR” package.

Figure 5.1 shows a global feature included in the package as follows:

e Running on standalone/single machine:

— Decision trees: As depicted in Section 1.7.1, DT is a basic al-
gorithm used for building RFs. In this package, it can be used
for handling classification, regression, clustering, and manifold
learning tasks.

— Random Forests: Based on the methods, we allow to deal with
classification, regression, clustering, manifold learning/feature ex-
traction problems. Furthermore, in this package, several param-
eters for setting a model, such as a number of trees, a number of
features, maximum depth of trees, entropy methods, and splitting
methods on nodes, are provided.

e Running on cluster mode (by using Apache Spark):

— Random forests: Basically, RFs in this case are an extension of
RFs on a single machine. The same as RFs on standalone, we al-
low to use them for handling classification, regression, clustering,
and feature extraction.

194

— Random ferns: The RFe method is implemented by including
“rFerns” [164, 212] into the package for dealing with Big Data
analysis.

— Other utilities for experiments: We also embed the following func-
tionalities for experiments:

*x Generating k-fold cross validation. In fact, this feature is use-
ful when performing experiments with Apache Spark using
not massive datasets so that we need to do cross validation
on these data.

x Calculating confusion matrix and other measures for classi-
fication adopted from [165]: OSR, TPR, TNR, PPV, NPV,
F-measure, JCC, and ICSI. It is only used for classification
tasks.

* Calculating accuracy measures for regression (i.e., MSE and
RMSE). It can be used for regression tasks.

It can be seen that instead of employing R packages available in CRAN
for implementing RF's, we develop a new framework that attempts to
unify RF's for dealing with several tasks (i.e., classification, regression,
clustering, and manifold learning) by adopting the study in [58]. How-
ever, For the RFe method, we utilize the “rFerns” package for Big Data
processing, so that users refers to the package when working on the
standalone mode.

Furthermore, as the “SparkR” package, “SparkFernTreeR” gain the
same benefits, such as running on Apache Hadoop, Mesos, and stan-
dalone, accessing input data from HDFS, Cassandra, HBase, and S3,
supporting fault tolerance, etc.

5.2 The Package Architecture and Implementa-

tion Details

The “SparkFernTreeR” package is built on top of “SparkR” for parallel and
distributed computing as shown in Figure 5.2. Therefore, before working
with the package on the cluster mode, the “SparkR” must be available first.
Moreover, if we only work on the R environment, it is not necessary to install
the “SparkR” package.

195

iEnvironment SparkFernTreeR

! v %
SparkR R Shell

A 4

‘ MapReduce H Apache Spark ‘
‘ Hadoop Distributed File ‘ Other File ‘
System Systems Single

Figure 5.2: The general architecture of “SparkFernTreeR.”

Table 5.1 and 5.2 show that there are three main parts in the package:
learning, prediction, and other utilities. Learning aims to build a model
that extracts knowledge from training data, whereas prediction is executed
for obtaining predicted values based on the models. Other utilities provides
some functions for helping in experimental phases.

As we mentioned above, R can only work over data in main memory.
Therefore, we need to pay attention to the size of the following data when
using the package: training, model, testing, and result/predicted values.
Furthermore, in order to optimize the performance, there are several scenar-
ios that should be taken into account, as follows:

e On the learning step: There are two possibilities whether training data
are big or small. Therefore, the scenarios are as follows:

1. Big training data: In this case, we have to parallelize the data
through worker nodes as shown in Figure 5.3. Learning functions
invoked in this case are SparkRF() for RFs and SparkFerns() for
RFe. The output, which is a model, can be emitted as an R ob-
ject, but we would recommend to produce it in an RDD object by
defining outputFile. Furthermore, we also provide another algo-
rithm to bootstrap datasets, named the Bag of Little Bootstraps
(BLB) [157].

2. Small training data: This is just provided for convenience of
the users. While there are already available packages for reg-
ular (“small”) datasets processing, by incorporating this func-
tionality in the Big Data package, the user familiar with the

196

Table 5.1: Part 1: The functions included in “SparkFernTreeR.”

Functions Descriptions

Learning:

decTree() It is used to construct a DT model.

randForest() It is used to construct a RF model.

SparkRF () It is used to construct an RF model on Apache
Spark.

SparkFerns() It is used to construct an RFe model on
Apache Spark.

Prediction:

predict.decTree()
predict.randForest()
predict.SparkRF ()
predict.SparkFerns()

predictSparkForest()

predictSparkFerns()

It is a method for prediction based on the DT
method.

It is a method for prediction based on the RF
method.

It is a method for prediction based on the RF
method using Apache Spark.

It is a method for prediction based on the RFe
method using Apache Spark.

It is a function used for prediction based on
the RF method where the input are the RDD
objects: objectRDD for the RF model and
newdataRDD for new data.

It is a function used for prediction based on
the RFe method where the input are the RDD
objects: objectRDD for the RFe model and
newdataRDD for new data.

197

Table 5.2: Part 2: The functions included in “SparkFernTreeR.”

Functions Descriptions

Other utilities:

genCrossValidation() It is used to generate k-fold cross validation.

sparkConfusionMatriz() It is used to calculate confusion matrix of clas-
sification on big data.

sparkRegressionAcc() It is used to calculate accuracy of regression
on big data.

convertToObjectF'ile() It is used to convert input data from text files
into RDD objects.

splitTestingData() It is used to get input and real data separately.

“SparkFernTreeR” package does not need to execute other pack-
ages for this. Moreover, we can also execute functions included
in the standalone mode (i.e., randForest() and decTree()) besides
SparkRF(). However, it should be noted that for RFe on the
standalone mode, users refer to the “rFerns” package.

e On the prediction step: After doing the learning step, we predict
new /testing data by considering the obtained model. In this step,
mainly we need to consider the sizes of model and testing data. The
following are possible scenarios:

1. Big testing data and big model: As shown in Figure 5.4, both
testing data and model will be divided according to a number of
partitions. Then, a block of testing data broadcasts through all
worker nodes. After that, prediction functions compute values
based on the data and model. Predicted values of a block testing
data are produced by aggregating all block of models. To perform
this scenario, we need to execute predictSparkForest() for RFs
and predictSparkFerns() for RFe. The resulting model or outputs
can be saved in two alternative formats: an RDD object or an
R object. The first one should be chosen if we suspect that the
output is also big data.

2. Big testing data and small model: In this case, testing data are
divided based on a number of partitions and model is broad-

198

casted through worker nodes. Predicted values are calculated
by aggregating results of all worker nodes. The diagram can be
seen in Figure 5.5. To use this scenario, we just call the method
predict.SparkRF() for RFs and predict.SparkFerns() for RFe by
defining the parameter isBigData to be TRUE. Of course, in this
case we can also choose the first scenario.

3. Small testing data and big model: It is also a common scenario
when we have small testing data but huge numbers of trees be-
cause of big training data. Two parts that make this scenario
shown by Figure 5.6 with the previous one are (i) in this schema
we split model and broadcast testing data through worker nodes
and (ii) here the aggregation function is not only to collect but
also recapitulate results of each model. This scenario can be done
by predict.SparkRF() and predict.SparkFerns() with isBigData =

FALSE.
>
o E .| Learning —
- | Methods Aggregation
~— ©
ggreg 8
= || -]
= R .| Learning °
™ o gl o
a 2] Methods collect() +=
87._
= | |
©
|: | | saveAsObject |
File() Q9
) | I =
G
— . I o
Learning -
Methods

Model

Figure 5.3: Big Data processing on learning: The scenario “big training
data.”

It should be noted that the terms small and big in the above scenarios
can be defined based on whether the data are less or greater than the amount
of memory (RAM).

199

)

o
<> £s
] ‘g a
s | -
N —
T o '
Qg :
g= o
9 >
= s
=
[
Worker 1
ﬁ O@D Prediction
—> ;
%% g% > Functions
Worker 2
] Predicti
N rediction
—> Functions
Kb A :
H H v -
' : . [ORN)]
' : Aggregation s 9
: : Function 3o
H y'y a =
:
.
(f@j ﬁj > Worker 2
> N Predi(_:tion
Model Functions

Figure 5.4: Big Data processing on prediction: The scenario “big testing

data” and “big model.”

5.3 Examples of Usage

In this part, we will explain several steps in order to use the package.
First, we present a way to install and load the “SparkFernTreeR” package.

200

Model

7
s

i Prediction
T2 Functions
> . —
© kR Prediction
- T2 Functions
() v B o
B o
D ~ l l Collect 25
= ©3
n A o
z | |
= I
~

<>
Prediction
Functions

Figure 5.5: Big Data processing on prediction: The scenario “big testing

data” and “small model.”

5.3.1 Installation and Loading the “SparkFernTreeR” Pack-
age

To install “SparkFernTreeR” from CRAN, users simply enter the follow-
ing command in the R environment:

R> install.packages ("SparkFernTreeR")
The package installation has to be done only once. After that in any

session using “SparkFernTreeR”, we need to load it with the following com-
mand:

R> library(SparkFernTreeR)
The command loads the “SparkFernTreeR” package and makes its functions

available in the R environment. We can see a list of functions included in
“SparkFernTreeR” by typing the following command:

R> library(help=SparkFernTreeR)

201

)

Testing
Data

Worker 1
Prediction
—» .
ﬁj ng Functions

Worker 2
) Predict
8@) O/ib R rediction
Functions

AP A

Jé%) O%%j > Worker 2
L Predigtion
Model Functions

Figure 5.6: Big Data processing on prediction: The scenario “small testing

4

y

v
Aggregation
Function

A

Predicted
Values

Y

data” and “big model.”

All R functions available in “SparkFernTreeR” are documented in the R help
system in a hypertext format, and in the package manual in pdf format. To
get information on a particular function, we can call the help command, e.g.,

R> help(randForest)

If users use the package for dealing with big data on Apache Spark, the
“SparkR” must be installed first. The following steps are an instruction to
install the package: First, we need to clone the package from the github on
the console:

> git clone https://github.com/amplab-extras/SparkR-pkg.git
Then, go to the directory SparkR-pkg, and execute the following command:

> ./install-dev.sh

202

It should be noted that SparkR by default uses Apache Spark 1.1.0. You
can switch to a different Spark version by setting the environment variable
SPARK_VERSION. For example, to use Apache Spark 1.3.0, you can run

> SPARK_VERSION=1.3.0 ./install-dev.sh

Furthermore, SparkR by default links to Hadoop 1.0.4. To use SparkR
with other Hadoop versions, you will need to rebuild SparkR with the same
version that Spark is linked to. For example to use SparkR with a CDH
4.2.0 MR1 cluster, you can run

> SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 ./install-dev.sh

5.3.2 Classification Using Random Forests with the Stan-
dalone Mode

For example, in this case we are using the iris dataset. First, we need to
load the package:

R> library(SparkFernTreeR)

Then, prepare the data, as follows:

R> ## shuffle dataset

R> irisData <- iris[sample(nrow(iris)),]

R> ## set the first 120 rows to be training dataset

R> iris.tra <- irisData[1:120,]

R> ## set testing dataset

R> iris.tst <- irisData[121:nrow(irisData), -ncol(irisData)]
R> ## get real values of testing dataset

R> real.iris <- irisData[121:nrow(irisData), ncol(irisData)]

After that, we construct models. In this example, two models are built,
which as the DT and RF models.

R> ## construct a DT model

R> tree.iris <- decTree(iris.tra, typeTask = "classification",

203

+ controlTree = list(nameFeatures = NULL,

+ typeFeatures = c¢(1,1,1,1,0), paramPercent = 1,

+ typeEntropy = "ML", maxDepthTree = 20,

+ typeSplitting= "random", minNumData = 3))

R> ## construct a RF model

R> RF.iris <- randForest(iris.tra, typeTask = "classification",

controlRF = list(numTree = 20, numFeature = 2),
controlTree = list(typeFeatures = c(1,1,1,1,0),

paramPercent = 0.5,

+
+
+
+ typeEntropy = "ML", maxDepthTree = 20,
+ typeSplitting= "random",

+

minNumData = 3))

Prediction can be done through the following commands:

R> ## predict testing dataset using the DT model
R> res.test <- predict(tree.iris, iris.tst)
R> ## predict testing dataset using the RF model
R> res.test.RF <- predict(RF.iris, iris.tst)

Then, we can calculate the error:

R> ## error calculation
R> err.Tree = 100*sum(real.iris!=res.test)/length(real.iris)
R> err.RF = 100*sum(real.iris!=res.test.RF)/length(real.iris)
R> print("The result: ")

[1] "The result: "
R> print (err.Tree)
[1] 6.666667

R> print(err.RF)
[1] 6.666667

204

5.3.3 Classification Using Random Forest on Apache Spark

In this section, we explain the usage of the package for handling a clas-
sification task using RFs. In general speaking, the following are steps that
should be taken into account:

1. Installation of “SparkR”: It has been explained above. Further-
more, installation connecting with Apache Hadoop and other storage
systems can be also found in the website.

2. Loading “SparkR”: After installation, if we are working on single
machine, we can load the package from the SparkR-pkg folder by:

> ./sparkR

Other ways to load the package, e.g., working on cluster and connecting
with HDFS, can be read in the “SparkR” website.

3. Installation of “SparkFernTreeR”: In order to install “SparkFer-
nTreeR”, we can do it from a local file or CRAN. For example, to in-
stall it from the local file SparkFernTreeR_1.0-0.tar.gz: in the “sparkR”
shell, we execute the following command:

R> install.packages("/home/lala/SparkFernTreeR_1.0-0.tar.gz",
+ repos = NULL, type="source")

Since the package requires “entropy” and “rFerns”, we should install
them previously.

4. Load “SparkFernTreeR” and “SparkR”: As other R packages,
they are loaded by:

R> library(SparkR)
R> library(SparkFernTreeR)

5. Data preparation: In order to execute the functions included in
learning and prediction, data must be in RDD objects. So, if we have
other formats, we should convert them first. In the package, we provide
a function used for converting from text files to RDD objects, which is
convertToObjectFile(). The return of the functions is an RDD object
containing serialized R objects, which is a list consisting of data.frame.
In other words, when we print the RDD object by calling collect() in

205

“SparkR”, we have a list containing data.frame. For example, we have
the training data in iris.tra.txt as follows:

R> trainRDD <- convertToObjectFile("iris.tra.txt",
controlSpark = list(master = "locall[8]",

appName = "rForest", sparkHome = NULL),

controlBigData = list(

outputFile = "hdfs://hadoop-master:8020/xxxx/iris.tra",

numSlices = 4),

+ + + + + + +

sep = " ", strip.white = TRUE))

The above command aims to convert the text file iris.tra.txt to an
RDD file saved in HDFS: hdfs://hadoop-master:8020/xxzx/iris.tra.5.
There are three control parameters, which are controlSpark, control-
BigData, and controlDataFile. The controlSpark parameter is used to
define Apache Spark configuration. For example, in this case we are
working on the standalone mode by defining master = “local[8]”. De-
tailed description related this parameter can be seen in the “SparkR”
website and the manual. Two elements in controlBigData are output-
File and numSlices, which are set the directory path of RDD objects
and the number of partitions. We can also save the data into other
system files (e.g., local file, Cassandra, etc). The last parameter is
adopted from read.delim(), such as header, sep, etc.

As training data, we need to convert testing data as follows:

R> testRDD <- convertToObjectFile("iris.tst.txt",
controlSpark = list(master = "locall[8]",

appName = "randForest", sparkHome = NULL),
controlBigData = list(

outputFile = "hdfs://hadoop-master:8020/xxxx/iris.tst",

numSlices = 4),

+ + + + + + +

sep = " ", strip.white = TRUE))

Furthermore, it should be noted that testing data only contains input
data/features. So, in the case testing data still involves the output
data, we need to split the data by executing split TestingData().

206

controlDataFile = list(nameFeatures = NULL, header = FALSE,

controlDataFile = list(nameFeatures = NULL, header = FALSE,

If it is required to generate k-fold cross validation, we can also invoke
genCrossValidation().

. Learning: As we mentioned in this step we have two scenarios. How-
ever, we focus on the first scenario on the learning step: big training
data. The following command is an example on learning:

R> SparkRF("hdfs://hadoop-master:8020/xxxx/iris.tra",
typeTask = '"classification",
controlSpark = list(master = "local",
appName = "randForest", sparkHome = NULL),
controlRF = list(numTree = 8, numFeature = 3),

controlTree = list(paramPercent = 0.5,

typeSplitting = "ets", minNumData = 3),
controlBigData = list(
outputFile = "hdfs://hadoop-master:8020/xxxx/modIris",

+
+

+

+

+

+ typeEntropy = "ML", maxDepthTree = 4,

+

+

+

+ numSlices = 4, numBLB = 4, useBLB = FALSE))

It can be seen that SparkRF has six parameters, as follows:

e trainRDD: In this case, it is obtained from HDF'S: hdfs://hadoop-
master:8020/xxzx/iris.tra. Other storage types supported by “SparkR”
can be seen in the package website.

e typeTuask: For SparkRF, there are four options of tasks: “classifi-

cation”, "regression”, “clustering”, and "manifold”. In this exam-
ple, we are performing the classification task.

e controlSpark: It is the same as the parameter used in convert-
ToObjectFile. If the spark context has been running, we need to
execute sparkR.stop() for setting a new configuration.

e controlRF: It contains parameters related to RF's, such as numTree
and numPFeature for defining a number of trees and a number of
selected features.

e controlTree: It contains parameters related to decision tree. De-
tailed description regarding the parameters can be seen in the
manual.

e controlBigData: It contains parameters used to configure an out-
put file and a number of partitions. In this case, we define that the

207

output file will be saved in hdfs://hadoop-master:8020/xxzx/modlris
and the number of partitions is 4. Furthermore, we can also set
whether we are using the BLB algorithm or not.

Detailed description about the parameters can be seen in the manual.

7. Prediction: For example, in this case we are performing the first sce-
nario on the prediction step by calling predictSparkForest() as follows:

R> predictSparkForest ("hdfs://hadoop-master:8020/xxxx/modIris",
"hdfs://hadoop-master:8020/xxxx/iris.tst",

runSpark = TRUE,
controlSpark = list(master = "local",

appName = "rForestTest", sparkHome = NULL),
controlBigData = list(outputFile = "tstlIris",

+ + + + + +

numSlices = 4))

By executing the above command, we save the return to tstlris, which
is an RDD object saved in local file.

8. Accuracy measurements: After prediction new data, we can cal-
culate the confusion matrix by the following command:

R> conList <- sparkConfusionMatrix("tstIris",
+ "hdfs://hadoop-master:8020/xxxx/iris.real”,
+ controlSpark = list(master = "local",

+ appName = "randForest", sparkHome = NULL))
R> print(conList)

It should be noted that in this case the real data have been saved in
HDFS: hdfs://hadoop-master:8020/xxzz/iris.real.

Additionally, we have provided some examples in the package or users can go
to the project website: http://dicits.ugr.es/software/SparkFernTreeR.

5.3.4 Classification Using Random Ferns on Apache Spark

In this section, we explain the usage of the package for handling a classi-
fication task using RFe. Regarding steps that should be taken into account

208

are basically the same as the explanation in Section 5.3.3, especially for Step
1, 2, 3, and 5.

The following are steps to use RFe on Apache Spark that we begin with
loading the related packages:

1. Load the related package: In this case, we also need to load the “rFerns”
package as follows:

R> library(SparkR)
R> library(SparkFernTreeR)
R> library(rFerns)

2. Data preparation: Users can refers to Step 5 in Section 5.3.3.

3. Learning: As we mentioned in this step we have two scenarios. How-
ever, we focus on the first scenario on the learning step: big training
data. The following command is an example on learning:

R> SparkFerns("hdfs://hadoop-master:8020/xxxx/iris.tra",
controlSpark = list(

master = "spark://hadoop-master:7077",

appName = "randFerns", sparkHome = NULL,

sparkEnvir=1ist (spark.executor.memory='45g')),

controlFern = list(ferns = 1000, depth = 10,

nameFeatures = c("Sepal.Length", "Sepal.Width",

"Petal.Length", "Petal.Width", "Species")),

controlBigData = list(

outputFile = "hdfs://hadoop-master:8020/xxxx/modIris",

+ + + + + + + + + +

numSlices = 3))

It can be seen that the SparkFerns() function has three the control
parameters:

e controlSpark: 1t refers to the same parameter used on the SparkRF()
function in Section 5.3.3.

e controlFern: It is a list containing the parameters related to con-
struction ferns: ferns, depth, and nameFeatures. The first param-
eter expresses the number of ferns to build while depth represents

209

the depth of the ferns; it must be in 1-16 range. The last one is
used to define names of attributes.

e controlBigData: It is used to define the output filename and the
number of partitions.

Detailed description about the parameters can be seen in the manual
and the project website.

4. Prediction: For example, in this case we are performing the first sce-
nario on the prediction step by calling predictSparkFerns() as follows:

R> predictSparkFerns (
"hdfs://hadoop-master:8020/xxxx/modIris",
"hdfs://hadoop-master:8020/xxxx/iris.tst",
controlSpark = list("spark://hadoop-master:7077",
appName = "randFernTest", sparkHome = NULL),
controlBigData = list(outputFile = "tstIris"",

+ + + + + +

numSlices = 3))

It can be seen from the above command that we save the results to
the local file tstiris.

5. Accuracy measurements: In this step, we can refers to Step 8 in
Section 5.3.3.

Additionally, we have provided some examples in the package. The users can
go to the project website: http://dicits.ugr.es/software/SparkFernTreeR.

5.4 Survey and Comparison with Other Software

Libraries

In this section, we present a brief survey on software libraries that imple-
ment DTs, RFs, and RFe. These packages can be run on both standalone
and cluster modes. Moreover, we compare the functionalities “SparkFern-
TreeR” with these packages as shown in Table 5.3.

In the R environment, several packages implementing RFs can be found.
First, the “randomForest” package [169] focuses on implementing RFs for

210

dealing with classification and regression. In this package, we are allowed to
define some parameters for constructing a model, such as a number of trees,
missing value handling, and tuning procedures. Then, “bigrf” is an R pack-
age implementing RFs for classification and regression with optimization for
performance and for handling of datasets that are too large to be processed
in memory [170]. Moreover, in this package, there are two scenarios: growing
trees in parallel on a single machine using the “foreach” package and con-
structing multiple forests in parallel on multiple machines, then merged into
one. In order to manage the memory, “bigrf” utilizes the “bigmemory.” An-
other package in R that implements RFs is “ipred” [222]. Besides being used
for classification and regression, this package allows to deal with survival
problems and resampling. Regarding the implementations of RF's in R, only
the “bigrf” package is able to handle massive datasets as “SparkFernTreeR”.
By comparing with “bigrf”, “SparkFernTreeR” offers other advantages, which
are gained from the Big Data frameworks, such as the integration between
distributed file systems and programming models, fault tolerance, scalabil-
ity, etc.

Furthermore, from other platforms, there are many libraries running on
a single machine. For example, RFs have been implemented in WEKA [109]
in Java and the “scikit” package in Python [218]. Basically, these packages
are quite similar to the implementations of RFs in R, and they are only used
on the standalone mode.

Related to the Big Data processing, the following are packages imple-
menting RFs:

e Mahout [211]: It is a software library containing many machine-learning
algorithms that are used for Big Data on top of Apache Hadoop. In the
library, there are several groups of tasks, such as collaborative filtering,
classification, and clustering. For classification tasks, it provides RF's
implemented with the MapReduce model. Furthermore, an extension
of the implementation, which is used for imbalanced Big Data using
RF's, has been proposed by the study [64].

e MLIib [189]: As explained above, it is a part of Apache Spark that
implements a variety of machine-learning algorithms, such as linear
support vector machine, k-means, DTs, RFs, classification and regres-
sion trees, etc. Because of MLIib integrated with Apache Spark, we
allow to use it by using Java, Scala, and Python. For the implementa-
tion of RFs, it can be used for dealing with classification and regression
tasks.

211

According to this survey, it can be seen that RFs have been implemented
in well-known software libraries. However, an implementation of RFs used
for Big Data processing in the R community is still missing. Therefore,
the aim of this research is also to promote the implementation of RFs and
RFe on top of the Big Data frameworks in the R community. In addition,
the package “SparkFernTreeR” implements not only for Big Data processing
on the cluster mode, but also for regular datasets on the standalone mode,
where this feature is not available in Mahout and MLIib.

Table 5.3: A comparison of “SparkFernTreeR” with other packages.

Components randomForest bigrf [170] ipred [222] WEKA [109] scikit [218] Mahout [211] MLIlib [189] SparkFernTreeR
[169]
General views:
References [33] [33] [33] [33] [33] [33] [33] [33, 58]
Prog. Languages R R R Java Python Java Scala, Java, R
Python
Systems Standalone Parallel Com- Standalone Standalone Standalone Parallel Com- Parallel Comput- Parallel Comput-
puting puting ing ing
Big Data Processing No Yes No No No Yes Yes Yes
Computational Mod- - “foreach”, “big- - - - Apache Hadoop Apache Spark Apache Spark
els for Big Data memory” (MapReduce) (RDD) (RDD)
Features:
Tasks Classification, Classification Classification, Classification, Classification, Classification Classification, Classification,
Regression Regression, Sur- Variable Impor- Regression Regression Regression, Clus-
vival Problems, tance tering, Manifold
Resampling Learning
Missing Value Han- Yes No Yes Yes Yes Yes Yes Yes
dling
Plotting Models Yes Yes Yes Yes No No No No
Availabilities of
Paramaters:
Number of Trees Yes Yes Yes Yes Yes Yes Yes Yes
Number of Selected Yes Yes Yes Yes Yes No Yes Yes
Features
Maximum Depth of Yes Yes No Yes Yes No Yes Yes
Tree
Minimum Number of Yes Yes No Yes Yes No Yes Yes
Data
Entropy Equations No No Yes No Yes No Yes Yes
Aggregation Func- Yes Yes Yes Yes Yes Yes Yes Yes
tions
Others:
Cross Validation Yes No Yes Yes No No No Yes
Confusion Matrix Yes Yes No Yes No Yes Yes Yes
Outlier Handling Yes Yes No Yes No No No No
Mixed Variables Yes Yes Yes Yes Yes Yes Yes Yes

5.5 Summary

This chapter presents the implementation of the “SparkFernTreeR” pack-
age that fulfills the third objective. The package offers the following func-
tionalities:

1. Implementations of the decision tree and random forest methods for
dealing with classification, regression, clustering, and manifold learn-
ing on a single machine or the R environment.

2. Implementations of the random forest and random fern methods for
Big Data analysis under Apache Spark. While random forests can be
used for classification, regression, clustering, and manifold learning,
random ferns is used for classification.

In this chapter, we also provide some example showing how to use the pack-
age.

The “SparkFernTreeR” package is available in CRAN: http://cran.
r-project.org/package=SparkFernTreeR and in the project website: http:

//sci2s.ugr.es/dicits/software/SparkFernTreeR. Additionally, the jour-
nal paper describing the package is published:

L.S. Riza, C. Bergmeir, B. Krawczyk, F. Herrera, and J.M. Benitez.
“SparkFernTreeR": An R Package Based on Random Forest and Random
Ferns for Big Data Analysis under Apache Spark. R Journal, 2015 (to be
submitted).

214

Concluding Remarks

A. Summaries

To begin with, we should remark that all objectives set for this research
have been successfully reached. The results of the research can be summa-
rized as follows:

1. Implementing approaches based on fuzzy rule-based systems in the R
package “frbs:” The package aims to construct FRBSs by learning from
data with more than 10 well-known methods for handling classification
and regression tasks. Furthermore, it allows human experts to build an
FRBS model based on their knowledge. Besides three popular models:
Mamdani, TSK, and FRBCS, various options of parameters are avail-
able as well, such as types of membership functions and conjunction,
disjunction, and aggregation operators. The “frbs” package is avail-
able in CRAN: http://cran.r-project.org/package=frbs and in
the project website: http://sci2s.ugr.es/dicits/software/FRBS.

2. Implementing approaches based on rough set theory (RST) and fuzzy
rough set theory (FRST) in the package “RoughSets:” It provides the
following functionalities: missing value handling, discretization, in-
stance selection, feature selection, rule induction-based classifiers, and
nearest neighbor-based classifiers. Moreover, for academic purposes,
some functions used for performing the basic concepts of RST and
FRST are available, such as indiscernibility relations, the lower and
upper approximations, regions, and discernibility matrix. Users can
also define their own functions for building the concepts. The “Rough-
Sets” package is available in CRAN: http://cran.r-project.org/
package=RoughSets and in the project website: http://dicits.ugr.
es/software/RoughSets/.

215

3. Designing and implementing a universal representation framework of
FRBS models, called frbsPMML: It is designated based on PMML
by employing XML. The representation offers the following benefits:
interoperability, reproducibility, interpretability, and flexibility. Ad-
ditionally, the implementation of the representation has been embed-
ded in the package “frbs” so that we allow to produce and consume
FRBS models to/from the frbsPMML format. To further extend
the platforms where the models can be deployed, we have developed
the Java package “frbsJpmml” (http://dicits.ugr.es/software/
frbsJpmml/) which can be used for importing an FRBS model in the
frbsPMML format and applying it over new datasets.

4. Designing and implementing the package “SparkFernTreeR:” It is an
R package used to implement decision tree, random forest, and ran-
dom ferns for dealing with Big Data analysis. It can be used on
standalone machine and cluster/parallel computing using the Apache
Spark Framework. Using the random forest method we are allowed to
deal with classification, regression, density estimation/clustering, and
manifold learning, whereas random ferns can be used for classification.

B. The Associated Publications

The following is a list of publications related to the thesis:

e Publication on international journals:

1. L.S. Riza, C. Bergmeir, F. Herrera, and J.M. Benitez. frbs:
Fuzzy Rule-Based Systems for Classification and Regression in
R. Journal of Statistical Software, Vol. 65(6), p. 1-30, 2015,
http://wuw.jstatsoft.org/v65/i06/.

— Status: Published
— Impact Factor (JCR 2013): 3.801
— Subject category:
* COMPUTER SCIENCE, INTERDISCIPLINARY AP-
PLICATIONS, Ranking: 9 of 102 (Q1)

x STATISTICS & PROBABILITY, Ranking: 2 of 119 (Q1)

216

2. L.S. Riza, A. Janusz, C. Bergmeir, C. Cornelis, F. Herrera, D.
Sl@zak, and J.M. Benitez. Implementing Algorithms of Rough
Set Theory and Fuzzy Rough Set Theory in the R Package. In-
formation Sciences, 287, p. 68-98, 2014.

— Status: Published
— Impact Factor (JCR 2013): 3.893
— Subject category:
x COMPUTER SCIENCE, INFORMATION SYSTEMS,
Ranking: 8 of 135 (Q1)

3. L.S. Riza, C. Bergmeir, F. Herrera, and J.M. Benitez. A Uni-
versal Representation Framework for Fuzzy Rule-Based Systems
Based on PMML. Information Sciences, 2015 (submitted)

— Status: Submitted
— Impact Factor (JCR 2013): 3.893
— Subject category:
x* COMPUTER SCIENCE, INFORMATION SYSTEMS,
Ranking: 8 of 135 (Q1)

4. L.S. Riza, C. Bergmeir, B. Krawczyk, F. Herrera, and J.M. Benitez.
“SparkFernTreeR”: An R Package Based on Random Forest and

Random Ferns for Big Data Analysis under Apache Spark. R
Journal, 2015 (To be submitted)

— Status: To be submitted
— Impact Factor (JCR 2013): 0.895
— Subject category:

«+ COMPUTER SCIENCE, INTERDISCIPLINARY AP-
PLICATIONS, Ranking: 77 of 102 (Q4)

* STATISTICS & PROBABILITY, Ranking: 59 of 119
(Q2)

e Dissemination on conferences and workshops:

— The R user Conference 2013.

x Title: Constructing Fuzzy Rule-based System with the R
Package “frbs.”

217

x Place and date: University of Castilla-La Mancha, Albacete,
Spain, July 10 - 12, 2013.

2014 IEEE World Congress on Computational Intelligence.

x Title: Learning from Data Using the R Package “frbs.”
x Place and date: Beijing, July 6 - 11, 2014.
— The R User Conference 2014.
x Title: R as a PaaS Cloud Computing Service for Computa-
tional Intelligence Tasks.
x Place and date: UCLA, Los Angeles, California, June 30 -
July 3, 2014.
— 2014 Joint Rough Set Symposium.
* Title: Workshop on Computational Intelligence in R: “RSNNS,”
“Rmalschains,” “frbs,” and “RoughSets.”
x Place and date: Granada and Madrid, Spain, July 9 - 13,
2014.
2014 The Webinar of the Orange County R User Group.
x Title: “RoughSets:” A Classification Tool Based on Rough
Sets and Fuzzy Rough Sets in R.
*x Place and date: Webinar, June 24, 2014

C. Future Work

There are many opportunities to extend the work carried out in this
thesis. Concretely, we plan for the future to continue work on the following:

1. For the package “RoughSets,” we will extend it to deal with different
specific data mining problems, such as imbalanced classification.

2. The package “frbs” will be improved by adding new methods to deal
with regression and classification tasks.

3. Additionally, using frbsPMML, we will deploy FRBSs into Cloud Com-
puting’s schema so that users are able to use it as a Software as a
Service (SaaS) and a Platform as a Service (PaaS).

218

. We will develop a standard representation for RST and FRST based
on PMML.

. We plan to extend “frbs” and “RoughSets” so that the packages can be
used for Big Data processing under Apache Spark.

. We intend to enrich data preprocessing, such as feature extraction and
feature selection, for Big Data within the R ecosystem.

219

Appendix

Appendix A. The “frbs”
Package in CRAN

In this appendix we include the information for the “frbs” package in the
CRAN repository as shown in Figure 7. In order to provide some hints on
the development effort, we present Table 4 illustrating the following data:
number of functions and number of source code lines.

221

frbs: Fuzzy Rule-Based Systems for Classification and Regression Tasks

An implementation of various leaming algorithms based on fuzzy rule-based systems (FRBSs) for dealing with classification and regression
tasks. Moreover. it allows to construct an FRBS model defined by human experts. FRBSs are based on the concept of fuzzy sets. proposed by
Zadeh in 1965, which aims at representing the reasoning of human experts in a set of IF-THEN rules. to handle real-life problems in. e g.
control. prediction and inference. data mining. bicinformatics data processing. and robotics. FRBSs are also known as fuzzy inference systems
and fuzzy models. During the modeling of an FRBS. there are two important steps that need to be conducted: structure identification and
parameter estimation. Nowadays. there exists a wide variety of algorithms to generate fuzzy IF-THEN rules automatically from numerical data.
covering both steps. Approaches that have been used in the past are, e.g., heuristic procedures, neuro-fuzzy techniques. clustering methods,
genetic algorithms, squares methods, etc. Furthermore, in this version we provide a universal framework named 'frbsPMML', which is adopted
from the Predictive Model Markup Language (PMML). for representing FRBS models. PMML is an XML -based language to provide a
standard for describing models produced by data mining and machine learning algorithms. Therefore, we are allowed to export and import an
FRBS model to/from 'frbsPMML'. Finally, this package aims to implement the most widely used standard procedures, thus offering a standard
package for FRBS modeling to the R community.

Version: 3.1-0

Suggests: class, e1071. XML

Published: 2015-05-22

Author: Lala Septem Riza. Christoph Bergmeir. Francisco Herrera. and Jose Manuel Benitez
Maintainer: Christoph Bergmeir <c bergmeir at decsai ugres>

License: GPL-2 | GPL-3 | file LICENSE [expanded from: GPL (= 2) | file LICENSE]

URL: http!/scids ugr.es/dicits/software FRBS

NeedsCompilation: no

Citation: frbs citation info

In views: Machinel earning

CRAN checks: frbs results

Downloads:

Reference manual: fibs.pdf
Package source: fibs 3.1-O.tar.gz
Windows binaries: r-devel: fibs 3.1-0.zip, r-release: fibs 3.1-0.zip, r-oldrel: fibs 3.1-0.zip

OS X Snow Leopard binaries: r-oldrel: frbs 3.0-0.tgz
OS X Mavericks binaries: r-release: frbs 3.1-0tgz
Old sources: fibs archive

Reverse dependencies:

Reverse depends: fuzzyMM

Figure 7: The display of the “frbs” package in CRAN at http://cran.r-
project.org/package=frbs.

Z,
©

Filenames Line of Code
FNN.FunctionCollection.R 299
GFS.Methods.R 996
FRBS.MainFunction.R 2415
FGradDescent.Methods.R 299
FCluster.Methods.R 267
GFS.Predict.R 112
FNN.Methods.R 279
frbs-package.R 454
FSpacePartition.Method.R 584
FRBS.pmml.R 623
FCluster.Predict.R 119
FCluster.FunctionCollection.R 201

O© 00 ~J T W=

— =
—= O

—_
\)

222

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

pmml.R
GFS.FunctionCollection.R
pmml.frbs.R

docData.R

FGradDescent.FunctionCollection.R

FSpacePartition.Predict.R

FSpacePartition.FunctionCollection.R

GFS.LT.RS.MG1000.R
HyFIS.MG1000.R
ANFIS.GasFur.R
FRBCS.W.Iris.R
FIR.DM.GasFur.R
FRBCS.CHILIris.R
ANFIS.MG1000.R
FIR.DM.MG1000.R
WM.GasFur.R

Thrift. MG1000.R
GFS.MEMETIC.GasFur.R
HyFIS.GasFur.R
DENFIS.MG1000.R
FRBS.Manual.R
FH.GBML.Iris.R
GFS.MEMETIC.MG1000.R
GFS.FR.MOGUL.GasFur.R
GFS.FR.MOGUL.MG1000.R
DENFIS.GasFur.R
ANFIS.GasFur.PMML.R
WM.MG1000.R
FRBS.FRBCS.Manual.R
SLAVE.Iris.R
GFS.LT.RS.GasFur.R
Thrift. GasFur.R
FS.HGD.MG1000.R
SBC.GasFur.R
FRBS.Mamdani.Manual.R
GFS.GCCL.Iris.R
SBC.MG1000.R
FS.HGD.GasFur.R
FRBS.TSK.Manual.R
WM.GasFur.PMML.R

223

867
1885
973
57
209
214
1259
57
54
54
31
55
31
55
54
54
56
95
55
55
88
34
56
95
56
54
72
54
65
33
57
95
55
53
95
34
53
55
74
75

93 GFS.GCCL.Iris. PMML.R 55

Total: 13606

Table 4: Notes on the engineering software process of “frbs.”

224

Appendix B. The
“RoughSets” Package in
CRAN

In this appendix we include the information for the “RoughSets” package in
the CRAN repository as shown in Figure 8. In order to provide some hints
on the development effort, we present Table 5 illustrating the following data:
number of functions and number of source code lines.

226

RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories

Implementations of algorithms for data analysis based on the rough set theory (RST) and the fuzzy rough set theory (FRST). We not only provide
implementations for the basic concepts of RST and FRST but also popular algorithms that derive from those theories. The methods included in the
package can be divided into several categories based on their fanctionality: discretization, feature selection, instance selection, rule induction and
classification based on nearest neighbors. RST was introduced by Zdzislaw Pawlak in 1982 as a sophisticated mathematical tool based on
indiscernibility relations to model and process imprecise or incomplete information. It works on symbolic-valied datasets for tackling the data
analysis problems. By using the indiscernibility relation for objects/instances, RST does not require additional parameters to analyze the data.
FRST is an extension of RST. The FRST combine: pts of and indiscernibility that are expressed with fuzzy sets (as proposed by
Zadeh, in 1965) and RST.

Version: 12-1

Depends: Repp

LinkingTo: Repp

Suggests: class

Published: 2015-03-24

Author: Lala Septem Riza [aut], Andrzej Janusz [aut], Dominik él:zak [ctb]. Chris Comelis [ctb], Francisco Herrera [ctb], Jose
Manuel Benitez [ctb]. Christoph Bergmeir [cth, cre]. Sebastian Stawicki [ctb]

Maintainer: Christoph Bergmeir <c.bergmeir at decsai.ugr.es>

License: GPL-2 | GPL-3 [expanded from: GPL (= 2)]

URL: hitpr//sci2s ugr es/dicits/software/RoughSets

NeedsCompilation: yes

In views: Machinel earning

CRAN checks: RoughSets results

Downloads:

Reference mannal: RoughSets pdf
Package source: RoughSets 1.2-1targz
Windows binaries: r-devel: RoughSets 1.2-1.zip, r-release: RoughSets 1.2-1.zip, r-oldrel RoughSets 1.2-1.zip

OS X Snow Leopard binaries: r-oldrel: RoughSets 1.2-1tgz
OS X Mavericks binaries: r-release: RoughSets 1.2-1tgz
Old sources: RoughSets archive

Figure 8: The display of the “RoughSets” package in CRAN at http://cran.r-
project.org/package=RoughSets.

No. Filenames Lines of Code
BasicFuzzyRoughSets.R 1672
InstanceSelection.R 329
BasicRoughSets.OtherFuncCollections. R~ 1298
Discretization.R 674

© 00 N O Ut W~

InstanceSelection.OtherFuncCollections.R 63
IOFunctions.R 830

FeatureSelection.R 1582
MissingValue.R 402
FuzzyRoughSets-introduction.R 137

RoughSets-package.R 543
Rulelnduction.OtherFuncCollections.R 475
FeatureSelection.OtherFuncCollections. R~ 936
ReppExports.R 11

Discretization.OtherFuncCollections.R 291
docData.R 144

227

16 Rulelnduction.R 1051

17 NearestNeigbour.OtherFuncCollections.R 240
18 BasicRoughSets.R 402
19 NearestNeighour.R 337
20 RoughSets-introduction.R 116
21 FS.permutation.heuristic.reduct.RST.R 14
22 FRNN.O.iris.R 33
23 FS.QuickReduct.FRST.Ex3.R 51
24 RlI.classification. FRST.R 31
25 FS.QuickReduct.FRST.Ex5.R 57
26 FRNN.iris.R 38
27 DiscernibilityMatrix. FRST.R 28
28 FS.QuickReduct. FRST.Ex4.R 54
29 IS.FRPS.FRST.R 15
30 GettingStarted.B.R 136
31 FS.greedy.heuristic.reduct.RST.R 14
32 POSNN.iris.R 32
33 SimulationDataAnalysisWine.R, 148
34 FS.QuickReduct. FRST.Ex2.R 51
35 RILindiscernibilityBasedRules.RST.R 19
36 FS.greedy.heuristic.superreduct. RST.R 14
37 BasicConcept. FRST.R 47
38 D.discretize.quantiles. RST.R 14
39 IS.FRIS.FRST.R 19
40 BasicConcept.RST.R 25
41 RIL.regression.FRST.R 19
42 FS.QuickReduct. FRST.Ex1.R 56
43 D.local.discernibility.matrix. RST.R 13
44 D.discretize.equal.intervals.RST.R 14
45 FS.nearOpt.fvprs. FRST.R 9
46 GettingStarted.A.R 103
47 MYV .simpleData.R 30
48 D.global.discernibility.heuristic. RST.R 14
49 FS.QuickReduct.RST.R 10
50 DiscernibilityMatrix. RST.R 11
51 D.max.discernibility.matrix. RST.R 11
Total: 12663

Table 5: Notes on the engineering software process of “Rough-
Sets.”

228

Appendix C. The
“SparkFernTreeR” Package

In order to provide some hints on the development effort, we present Table 6
illustrating the following data: number of functions and number of source
code lines.

No. Filenames Lines of Code
1 RandomForest-introduction.R 231
2 SparkFernTreeR-package.R 421
3 SparkR-introduction.R 62
4 docData.R 57
5 modelFunctions.R 794
6 predictorFunctions.R 1342
7 supportingFunctionRF.R 394
8 utilityFunctions.R 670
9 FourHill RF_ex1.R 75
10 GasFur_RF_ex1.R 54
11 Iris_RF_ex1.R 35
12 Iris_SRF_ex1.R 59
13 Iris_ SRF_ex2.R 49
14 Iris_SRF_ex3.R 59
15 Iris_SRF_ex4.R 60
16 Iris_SRF_ex5.R 80
17 Iris_SRF_ex6.R 52
18 Iris_SRFerns_ex1.R 59
19 Iris_SRFerns_ex2.R 40
20 Iris_SRFerns_ex3.R 68
21 MackeyGlass_RF_ex1.R 54
22 MackeyGlass_SRF_ex1.R 61

229

23 Pima_SRF_ex1.R 51

24 Wine_RF_exClusterl.R 15
25 Wine_RF_exManifold1.R 11
26 Wine_SRF_ex1.R 53
27 Wine_SRF_exClusterl.R 45
28 Wine_SRF_exManifold1.R 46
Total: 4997

Table 6: Notes on the engineering software process of “Spark-
FernTreeR.”

230

Bibliography

1]

2]

[3]

[4]

[5]

B. Abdulhai and L. Kattan. Reinforcement learning: Introduction to
theory and potential for transport applications. Canadian Journal of
Civil Engineering, 30(6):981-991, 2003.

Y.S. Abu-Mustafa, M. Magdon-Ismail, and H. Lin. Learning from
Data: A Short Course. AMLbook.com, 2012.

G. Acampora and V. Loia. Fuzzy control interoperability and scala-
bility for adaptive domotic framework. Industrial Informatics, IEEE
Transactions on, 1(2):97-111, 2005.

G. Acampora, V. Loia, C-S. Lee, and M-H. Wang. On the power of
fuzzy markup language. Springer, 2013.

D. Adler, C. Gléser, O. Nenadic, J. Oehlschlédgel, and W. Zucchini.
ff: Memory-efficient Storage of Large Data on Disk and Fast Access
functions, 2014. R package version 2.2-13, http://cran.r-project.
org/web/packages/ff/index.html.

J. Adler. R in a Nutshell. O’'Reilly Media, 2012.

K. Ahmed, Abdullah-Al-Emran, Abdullah-Al-Emran, T. Jesmin, R.F.
Mukti, M.Z. Rahman, and F. Ahmed. Early detection of lung cancer
risk using data mining. Asian Pacific Journal of Cancer Prevention,
14(1):595-598, 2013.

M. Akin. A novel approach to model selection in tourism demand
modeling. Tourism Management, 48:64-72, 2015.

R. Alcala, J. Alcala-Fdez, and F. Herrera. A proposal for the genetic
lateral tuning of linguistic fuzzy systems and its interaction with rule
selection. IEEE Transactions on Fuzzy Systems, 15(4):616-635, 2007.

231

[10]

[11]

[12]

[13]

J. Alcald-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcia,
L. Sanchez, and F. Herrera. KEEL data-mining software tool: Data set
repository, integration of algorithms and experimental analysis frame-
work. Journal of Multiple-Valued Logic and Soft Computing, 17(2—
3):255-287, 2011.

J. Alcala-Fdez, L. Sanchez, S. Garcia, M.J. del Jesus, S. Ventura, J.M.
Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernan-
dez, and F. Herrera. KEEL: A software tool to assess evolutionary
algorithms for data mining problems. Soft Computing, 13(3):307-318,
2009.

J.M. Alonso and L. Magdalena. Generating understandable and accu-
rate fuzzy rule-based systems in a java environment. In Lecture Notes
in Artificial Intelligence - 9th International Workshop on Fuzzy Logic
and Applications, Springer-Verlag, LNAI6857, pages 212-219, 2011.

J.M. Alonso, L. Magdalena, and S. Guillaume. KBCT: A knowledge
extraction and representation tool for fuzzy logic based systems. In
Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Confer-
ence on, volume 2, pages 989-994. IEEE, 2004.

X. Amatriain. Big & personal: Data and models behind Netflix recom-
mendations. In Proceedings of the 2nd International Workshop on Big
Data, Streams and Heterogeneous Source Mining: Algorithms, Sys-
tems, Programming Models and Applications, pages 1-6. ACM, 2013.

AMPLab UC Berkely. SparkR: R Frontend for Spark, 2015. R package,
http://amplab-extras.github.io/SparkR-pkg/.

B. Amrouche and X.L. Pivert. Artificial neural network based daily
local forecasting for global solar radiation. Applied Energy, 130:333—
341, 2014.

R.C. Atkinson and R.M. Shiffrin. Human memory: A proposed system
and its control processes. Psychology of learning and motivation, 2:89—
195, 1968.

H. Aydt, S.J. Turner, W. Cai, M.Y.H. Low, Y.S. Ong, and R. Ayani.
Toward an evolutionary computing modeling language. FEvolutionary
Computation, IEEE Transactions on, 15(2):230-247, 2011.

232

[19]

23]

[24]

[26]

[27]

J.C. Backhus, H. Nonaka, T. Yoshikawa, and M. Sugimoto. Applica-
tion of reinforcement learning to the card game wizard. In 2013 IEEE
2nd Global Conference on Consumer Electronics, GCCE 20183, pages
329-333, 2013.

P. Barbera. streamR: Access to Twitter streaming API via R, 2014. R
package version 0.2.1, http://cran.r-project.org/web/packages/
streamR/index.html.

I. Baturone, F.J. Moreno-Velo, S. Sdnchez-Solano, A. Barriga, P. Brox,
A. Gersnoviez, and M. Brox. Using Xfuzzy environment for the whole
design of fuzzy systems. In Proc. IEEFE International Conference on
Fuzzy Systems, pages 1-6, 2007.

J. Bazan. A comparison of dynamic and non-dynamic rough set meth-
ods for extracting laws from decision tables. In A. Skowron and
L. Polkowski, editors, Rough Sets in Knowledge Discovery 1, volume 1,
pages 321-365. Physica Verlag, Heidelberg, 1998.

J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, and J. Wréblewski.
Rough set algorithms in classification problem. In L. Polkowski,
S. Tsumoto, and T.Y. Lin, editors, Rough Set Methods and Appli-
cations, pages 49-88, Heidelberg, New York, 2000. Physica-Verlag.

J.G. Bazan and M. Szczuka. RSES and RSESIlib—a collection of tools
for rough set computations. In W. Ziarko and Y. Yao, editors, Proceed-
ings of the 2nd International Conference on Rough Sets and Current
Trends in Computing (RSCTC’2000), volume 2005, pages 106-113,
2000.

J.G. Bazan and M. Szczuka. The rough set exploration system. In J.F.
Peters and A. Skowron, editors, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 3400 LNCS, pages 37-56, 2005.

D. Beaver, S. Kumar, H.C. Li, J. Sobel, P. Vajgel, et al. Finding a
needle in haystack: Facebook’s photo storage. In OSDI, volume 10,
pages 1-8, 2010.

C. Bergmeir and J.M. Benitez. Neural networks in R using the
stuttgart neural network simulator: RSNNS. Journal of Statistical
Software, 46(7):1-26, 2012.

233

[28]

[36]

[37]

[38]

M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kétter, T. Meinl,
P. Ohl, C. Sieb, K. Thiel, and B. Wisedel. KNIME: The Konstanz
Information Miner. Springer, 2007.

M.A. Beyer and D. Laney. The importance of "big data’: A definition,
2012. https://www.gartner.com.

R.B. Bhatt and M. Gopal. On fuzzy-rough sets approach to feature
selection. Pattern Recognition Letters, 26:965-975, 2005.

B. Bischl and M. Lang. parallelMap: Unified Interface to Some Pop-
ular Parallelization Back-ends for Interactive Usage and Package De-
velopment, 2015. R package version 1.2, http://cran.r-project.
org/web/packages/parallelMap/index.html.

G. Box and G.M. Jenkins. Time Series Analysis: Forecasting and
Control. CA: Holden Day, 1970.

L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

L. Breiman, A. Cutler, A. Liaw, and M. Wiener. randomFor-
est: Breiman and Cutler’s Random Forest for Classification and Re-
gression, 2012. R package version 4.6-7, http://www.stat-www.
berkeley.edu/users/breiman/RandomForests.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classifica-
tion and Regression Trees. 1984.

J.J. Buckley and Y. Hayashi. Fuzzy neural networks: A survey. Fuzzy
Sets and Systems, 66:1-13, 1994.

J. Buckner, M. Seligman, and J. Wilson. gputools: A few GPU enabled
functions, 2013. R package version 0.28, http://cran.r-project.
org/web/packages/gputools/index.html.

A. Bujard. fugeR: Fuzzy genetic, a machine learning algorithm to con-
struct prediction model based on fuzzy logic, 2012. R package version
0.1.2, http://CRAN.R-project.org/package=fugeR.

R. Buyya. Market-oriented cloud computing: Vision, hype, and reality
of delivering computing as the 5th utility. In Proc. of CCGRID 09,
Proc. of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2009.

234

[40]

[42]

[43]

[44]

[45]

[46]

[48]

[49]

[50]

R. Buyya, C.S. Yeo, and S. Venugopal. Market-oriented cloud comput-
ing: Vision, hype, and reality for delivering IT services as computing
utilities. In Proc. of the Tenth IEEE International Conference on High
Performance Computing and Communications, 2008.

Y. Cai, L. Song, T. Wang, and Q. Chang. Financial time series fore-
casting using directed-weighted chunking svms. Mathematical Prob-
lems in Engineering, 170424:1-7, 2014.

J. Casillas, O. Cordon, F. Herrera, and L. Magdalena (Eds). Inter-
pretability Issues in Fuzzy Modeling. Springer-Verlag Berlin Heidel-
berg, 2003.

F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R.E. Gruber. Bigtable: A distributed

storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

O. Chapelle, B. Scholkopf, and A. Zien. Semi-Supervised Learning.
MIT Press, Cambridge, 2006.

D. Chen, L. Zhang, S. Zhao, Q. Hu, and P. Zhu. A novel algorithm for
finding reducts with fuzzy rough sets. IEEE Transactions on Fuzzy
Systems, 20:385-389, 2012.

D.G. Chen, Q.H. Hu, and Y.P. Yang. Parameterized attribute re-
duction with Gaussian kernel based fuzzy rough sets. Information
Sciences, 181:5169-5179, 2011.

W.C. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu. pbdMPI:
Programming with big data — interface to MPI, 2012. R Package,
http://cran.r-project.org/package=pbdMPI.

W.C. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu. A
Quick Guide for the pbdMPI Package (Ver. 0.2-2), 2014. R Vignette,
http://cran.r-project.org/package=pbdMPI.

Z. Chi, H. Yan, and T. Pham. Fuzzy Algorithms with Applications to
Image Processing and Pattern Recognition. World Scientific, 1996.

S. Chiu. Method and software for extracting fuzzy classification
rules by subtractive clustering. Fuzzy Information Processing Soci-
ety, NAFIPS, pages 461-465, 1996.

235

[51]

[52]

[53]

[54]

[55]

[56]

[61]

D. Conway. The data science venn diagram. http://drewconway.
com/zia/2013/3/26/the-data-science-venn-diagram.

O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena. Genetic
Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge
Bases. Singapore: World Scientific Publishing, 2001.

C. Cornelis, M. De Cock, and A. Radzikowska. Vaguely quantified
rough sets. In Proceedings of 11th International Conference on Rough
Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFD-
GrC2007), Lecture Notes in Artificial Intelligence, volume 4482, pages
87-94, 2007.

C. Cornelis and R. Jensen. A noise-tolerant approach to fuzzy-rough
feature selection. In Proceedings of the 2008 IEEFE International Con-
ference on Fuzzy Systems (FUZZ-IEEE 2008), pages 1598-1605, 2008.

C. Cornelis, R. Jensen, G. Hurtado, and D. Slezak. Attribute selection
with fuzzy decision reducts. Information Sciences, 180(2):209-224,
2010.

C. Cornelis, N. Verbiest, and R. Jensen. Ordered weighted average
based fuzzy rough sets. In Proceedings of the 5th International Con-
ference on Rough Sets and Knowledge Technology (RSKT 2010), pages
78-85, 2010.

T.M. Cover and P.E. Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13:21-27, 1967.

A. Criminisi and J. Shotton. Decision forests for computer vision and
medical image analysis. Springer Science & Business Media, 2013.

P. Danenas and G. Garsva. Selection of support vector machines based
classifiers for credit risk domain. FExpert Systems with Applications,
42(6):3194-3204, 2015.

S. Das, Y. Sismanis, K.S. Beyer, R. Gemulla, P.J. Haas, and
J. McPherson. Ricardo: Integrating R and hadoop. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management
of data, pages 987-998. ACM, 2010.

S. Datoo. Big data: 4 predictions for 2014, 2014. http:
//www.theguardian.com/technology/datablog/2014/jan/14/
big-data-4-predictions-for-2014.

236

[62]

[63]

[66]

[67]

J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. Communications of the ACM, 51(1):107-113, 2008.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In ACM SIGOPS Operating
Systems Review, volume 41, pages 205—-220. ACM, 2007.

S. del Rio, V. Lopez, J.M. Benitez, and F. Herrera. On the use of
MapReduce for imbalanced big data using random forest. Information
Sciences, 285:112-137, 2014.

Department of Finance and Deregulation. The Australian public ser-
vice big data strategy, 2013. http://www.finance.gov.au/sites/
default/files/Big-Data-Strategy_0.pdf.

V. Dhar. Data science and prediction. Communications of the ACM,
56(12):64-73, 2013.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsuper-
vised discretization of continuous features. pages 194-20, San Fran-
cisco, CA, 1995. Morgan Kaufmann.

D. Dubois and H. Prade. Rough fuzzy sets and fuzzy rough sets.
International Journal of General Systems, 17:91-209, 1990.

R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis.
Wiley, New York, 1973.

K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming for hier-
archical parallelism and non-uniform data access. In Proceedings of the
International Workshop on Language Runtimes, OOPSLA, volume 30.
Citeseer, 2004.

D. Eddelbuettel, M. Stokely, and J. Ooms. RProtoBuf: Efficient cross-
language data serialization in R. arXiv preprint arXiv:1401.7372,
2014. http://arxiv.org/abs/1401.7372.

A.P. Engelbrecht. Computational intelligence: an introduction. John
Wiley & Sons, 2007.

Executive Office of the President of USA. Fact sheet:
Big data across the federal government. Technical report,
2012. https://www.whitehouse.gov/sites/default/files/

microsites/ostp/big_data_fact_sheet_final.pdf.

237

[74]

[81]

[82]

[83]

U.M. Fayyad and K.B. Irani. On the handling of continuous-valued
attributes in decision tree generation. Machine Learning, 8:87-102,
1992.

U.M. Fayyad and K.B. Irani. Multi-interval discretization of continu-
ous attributes as preprocessing for classification learning. In Proceeding
Thirteenth International Joint Conference on Artificial Intelligence,
pages 1022-1027. Morgan Kaufmann, 1995.

J.A. Fernandes, X. Irigoien, J.A. Lozano, 1. Inza, N. Goikoetxea, and
A. Pérez. Evaluating machine-learning techniques for recruitment fore-
casting of seven North East Atlantic fish species. Ecological Informat-
ics, 25:35-42, 2015.

A. Fernandez, S. del Rio, V. Lépez, A. Bawakid, M.J. del Jesus, J.M.
Benitez, and F. Herrera. Big data with cloud computing: an insight
on the computing environment, MapReduce, and programming frame-

works. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 4(5):380-409, 2014.

A.R. Ferreira da Silva. cudaBayesreg: Parallel implementation of a
bayesian multilevel model for fMRI data analysis. Journal of Statistical
Software, 44(4):1-24, 2011. http://wuw.jstatsoft.org/v44/104/.

E. Fix and J. Hodges. Discriminatory analysis, nonparametric dis-
crimination: Consistency properties. Technical report, 1951.

M. Forina, E. Leardi, C. Armanino, and S. Lanteri. PARVUS: An
extendable package of programs for data exploration, classification and
correlation. Journal of Chemonetrics, 4(2):191-193, 1988.

R. Francois, D. Eddelbuettel, M. Stokely, and J. Ooms. RProtoBuf: R
Interface to the Protocol Buffers API, 2014. R package version 0.4.2,
http://CRAN.R-project.org/package=RProtoBuf.

Y. Freund and R.E. Schapire. A desicion-theoretic generalization of
on-line learning and an application to boosting. In Computational

Learning Theory, pages 23-37. Springer, 1995.

J.H. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, pages 1189-1232, 2001.

238

[84]

[85]

[36]

A. Fu, S. Aiello, A. Rao, A. Wang, T. Kraljevic, and P. Maj. h2o:
H20R Interface, 2015. R package version 2.8.4.4, http://cran.
r-project.org/web/packages/h2o0/index.html.

L.A. Gabralla, H. Mahersia, and A. Abraham. Ensemble neurocom-
puting based oil price prediction. Advances in Intelligent Systems and
Computing, 334:293-302, 2015.

E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M.
Squyres, V.1 Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al.
Open mpi: Goals, concept, and design of a next generation mpi im-
plementation. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 97-104. Springer, 2004.

J. Gantz and D. Reinsel. Extracting value from chaos. Technical
report, 2011. http://www.emc.com/collateral/analyst-reports/
idc-extracting-value-from-chaos—-ar.pdf.

Q. Gao, Y. Huang, X. Gao, W. Shen, and H. Zhang. A novel semi-
supervised learning for face recognition. Neurocomputing, 152:69-76,
2015.

S. Ghemawat, H. Gobioff, and S. Leung. The google file system.
In ACM SIGOPS operating systems review, volume 37, pages 29-43.
ACM, 2003.

J. Ginsberg, M.H. Mohebbi, R.S. Patel, L. Brammer, M.S. Smolinski,
and L. Brilliant. Detecting influenza epidemics using search engine
query data. Nature, 457(7232):1012-1014, 2009.

A. Gonzalez and R. Peréz. Selection of relevant features in a fuzzy
genetic learning algorithm. IEEFE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 31(3):417-425, 2001.

A. Gonzdlez, R. Pérez, and J.L. Verdegay. Learning the structure of a
fuzzy rule: A genetic approach. In Proc. First Furopean Congress on
Fuzzy and Intelligent Technologies (EUFIT’93), pages 814-819, 1993.

Google Cloud Platform. What is BigQuery? https://cloud.google.
com/bigquery/what-is-bigquery.

J. Grzymala-Busse and W. Grzymala-Busse. Handling missing at-
tribute values. In O. Maimon and L. Rokach, editors, Data Mining and

239

[100]

[101]

[102]

[103]

[104]

Knowledge Discovery Handbook, pages 33-51. New York: Springer,
2010.

J.W. Grzymala-Busse. LERS - A system for learning from examples
based on rough sets. In R. Stowinski, editor, Intelligent Decision Sup-
port, pages 3—18, 1992.

J.W. Grzymala-Busse. A new version of the rule induction system
LERS. Fundamenta Informaticae, 31(1):27-39, 1997.

J.W. Grzymata-Busse. MLEM2: A new algorithm for rule induction
from imperfect data. In Proceedings of the 9th International Confer-

ence on Information Processing and Managament of Uncertainty in
Knowledge-Based Systems (IPMU), pages 243-250, 2002.

J.W. Grzymala-Busse. LERS - a data mining system. In O. Mai-
mon and L. Rokach, editors, Data Mining and Knowledge Discovery
Handbook, pages 1347-1351. Springer US, 2005.

J.W. Grzymala-Busse and M. Hu. A comparison of several approaches
to missing attribute values in data mining. In Proceesings of the
Second International Conference on Rough Sets and Current Trends
in Computing RSCTC’2000, LNAI 2005, pages 378-385. Springer-
Verlag, Berlin, 2000.

J.W. Grzymala-Busse and W. Rzasa. A local version of the MLEM2
algorithm for rule induction. Fundamenta Informaticae, 100(1-4):99—
116, 2010.

A. Guazzelli. Representing predictive solutions in PMML: From raw
data to predictions. Technical report, 2010. http://www.ibm.com/
developerworks/library/ba-ind-PMML2.

A. Guazzelli, K. Stathatos, and M. Zeller. Efficient deployment of pre-
dictive analytics through open standards and cloud computing. ACM
SIGKDD Ezplorations Newsletter, 11(1):32-38, 2009.

A. Guazzelli, M. Zeller, W. Lin, and G. Williams. PMML: An open
standard for sharing models. The R Journal.

S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi, and W.S. Cleveland.
Large complex data: Divide and recombine (d&r) with rhipe. Stat,
1(1):53-67, 2012.

240

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

S. Guillaume and B. Charnomordic. Learning interpretable fuzzy infer-
ence systems with FisPro. Information Sciences, 181(20):4409-4427,
2011.

P.D. Gutiérrez, M. Lastra, F. Herrera, and J.M. Benitez. A high
performance fingerprint matching system for large databases based

on GPU. IEEFE Transactions on Information Forensics and Security,
9(1):62-71, 2014.

M. Hahsler, M. Bolanos, and J. Forrest. stream: Infrastructure for
Data Stream Mining, 2015. R package version 1.1-1http://cran.
r-project.org/web/packages/stream/index.html.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I.LH. Witten. The WEKA data mining software: An update. ACM
SIGKDD Ezplorations Newsletter, 11(1):10-18, 2009.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten. The WEKA data mining software: An update. In ACM
SIGKDD Ezxplorations Newsletter, volume 11, pages 10-18, 2009.

S.B. Handurukande, M. Wang, and M. Nassar. RPig: A scalable
framework for machine learning and advanced statistical functional-
ities. In Proceedings of the 2012 IEEE jth International Conference
on Cloud Computing Technology and Science (CloudCom), pages 293—
300. IEEE Computer Society, 2012.

D. Harrison and D.L. Rubinfeld. Hedonic prices and the demand for
clean air. Journal of Environ. Economics and Management, 5:81-102,
1978.

I.LA.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, and
S.U. Khan. The rise of big data on cloud computing: Review and
open research issues. Information Systems, 47:98-115, 2015.

C. Hayashi. What is data science? fundamental concepts and a heuris-
tic example. In Data Science, Classification, and Related Methods,
pages 40-51. Springer, 1998.

J.M. Hellerstein, C. Ré, F. Schoppmann, D.Z. Wang, E. Fratkin,
A. Gorajek, K.S. Ng, C. Welton, X. Feng, K. Li, et al. The MADIlib
analytics library: or MAD skills, the SQL. Proceedings of the VLDB
Endowment, 5(12):1700-1711, 2012.

241

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

F. Herrera. Genetic fuzzy systems: Taxonomy, current research trends
and prospects. Fvolutionary Intelligence, 1:27-46, 2008.

F. Herrera, M. Lozano, and J. Verdegay. A learning process for
fuzzy control rules using genetic algorithms. Fuzzy Sets and System,
100:143-158, 1998.

F. Hsu. Behind Deep Blue: Building the Computer that Defeated the
World Chess Champion. Princeton University Press, 2002.

Q. Hu, S. An, and D. Yu. Soft fuzzy rough sets for robust feature
evaluation and selection. Information Sciences, 180:4384-4407, 2010.

Q. Hu, D. Yu, W. Pedrycz, and D. Chen. Kernelized fuzzy rough sets
and their applications. IEFE Transactions Knowledges Data FEngi-
neering, 23:1649-1471, 2011.

Q. Hu, L. Zhang, S. An, D. Zhang, and D. Yu. On robust fuzzy rough
set models. IEEE Transactions on Fuzzy Systems, 20:636-651, 2012.

H. Huang, S. Tata, and R.J. Prill. Bluesnp: R package for highly scal-
able genome-wide association studies using hadoop clusters. Bioinfor-
matics, 29(1):135-136, 2013.

P. Huijse, P. Estevez, P. Protopapas, J. Principe, and P. Zegers. Com-
putational intelligence challenges and applications on large-scale astro-
nomical time series databases. Computational Intelligence Magazine,
IEEE, 9(3):27-39, 2014.

IBM. An Introduction to Big R, 2015. R package version 1.0, http://
www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.
ibm.swg.im.infosphere.biginsights.bigr.doc/doc/intro.html.

R. Thaka and R. Gentleman. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299—
314, 1996.

Institute of Electrical and Electronics Engineers (IEEE). IEEE stan-
dard computer dictionary: a compilation of IEEE standard com-

puter glossaries: 610. Institute of Electrical and Electronics Engineers
(IEEE), 1991.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential building blocks. In

242

[127)

[128]

[129]

[130]

131]

[132]

133

134]

[135]

[136]

ACM SIGOPS Operating Systems Review, volume 41, pages 59-72.
ACM, 2007.

H. Ishibuchi and T. Nakashima. Effect of rule weights in fuzzy rule-
based classification systems. IEEE Transactions on Fuzzy Systems,
1:59-64, 2001.

H. Ishibuchi, T. Nakashima, and T. Murata. Performance evaluation
of fuzzy classifier systems for multidimensional pattern classification
problems. IEEFE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 29(5):601-618, 1999.

H. Ishibuchi, K. Nozaki, and H. Tanaka. Distributed representation
of fuzzy rules and its application to pattern classification. Fuzzy Sets
and Systems, 52:21-32, 1992.

H. Ishibuchi, K. Nozaki, and H. Tanaka. Empirical study on learn-
ing in fuzzy systems by rice taste analysis. Fuzzy Sets and Systems,
64(2):129-144, 1994.

H. Ishibuchi, T. Yamamoto, and T. Nakashima. Hybridization of
fuzzy GBML approaches for pattern classification problems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics, 35(2):359-365, 2005.

J.S.R. Jang. ANFIS: Adaptive-network-based fuzzy inference system.
IEEE Transactions on Systems, Man, and Cybernetics, 23(3):665-685,
1993.

A. Janusz and D. Sl@zak. Rough set methods for attribute clustering
and selection. Applied Artificial Intelligence, 28(3):220-242, march
2014.

A. Janusz and S. Stawicki. Applications of approximate reducts to
the feature selection problem. In Proceedings of International Confer-
ence on Rough Sets and Knowledge Technology (RSKT), volume 6954,
pages 45-50, 2011.

T. Jena, A. Guazzelli, W. Lin, and M. Zeller. The R pmmlTransfor-
mations package. In Proc. of the 19th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2013.

R. Jensen. Fuzzy-rough data mining with WEKA. Technical report,
2010. http://users.aber.ac.uk/rkj/Weka.pdf.

243

137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

R. Jensen and C. Cornelis. A new approach to fuzzy-rough nearest
neighbour classification. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 5306 LNAI pages 310-319, 2008.

R. Jensen and C. Cornelis. Fuzzy-rough instance selection. In Proceed-
ings of the 19th International Conference on Fuzzy Systems (FUZZ-
IEEE 2010), pages 1776-1782, 2010.

R. Jensen and C. Cornelis. Fuzzy-rough nearest neighbour classificition
and prediction. Theoretical Computer Science, 412:5871-5884, 2011.

R. Jensen, C. Cornelis, and Q. Shen. Hybrid fuzzy-rough rule induction
and feature selection. In IFEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pages 1151-1156, 20009.

R. Jensen and Q. Shen. Fuzzy-rough sets for descriptive dimensionality
reduction. In Proceedings of IEEE International Conference on Fuzzy
System, FUZZ-IEFE, pages 29-34, 2002.

R. Jensen and Q. Shen. Fuzzy-rough data reduction with ant colony
optimization. Fuzzy Sets and Systems, 149(1):5-20, 2005.

R. Jensen and Q. Shen. New approaches to fuzzy-rough feature selec-
tion. IEEE Transactions on Fuzzy Systems, 19(4):824-838, 2009.

R. Jensen, A. Tuson, and Q. Shen. Extending propositional satis-
fiability to determine minimal fuzzy-rough reducts. In IFEE World
Congress on Computational Intelligence, WCCI 2010, pages 1-8, 2010.

R. Jensen, A. Tuson, and Q. Shen. Finding rough and fuzzy-rough set
reducts with SAT. Information Sciences, 255:100-120, 2014.

W. Jin, L. Wang, X. Zeng, Z. Liu, and R. Fu. Classification of clouds
in satellite imagery using over-complete dictionary via sparse repre-
sentation. Pattern Recognition Letters, 49(1):193-200, 2014.

M.J. Kane, J. Emerson, and S. Weston. Scalable strategies for com-
puting with massive data. Journal of Statistical Software, 55(14):1-19,
2013. http://www.jstatsoft.org/v55/i14/.

M.J. Kane, J.W. Emerson, and P. Haverty. bigmemory: Manage mas-
sive matrices with shared memory and memory-mapped files, 2013. R
package version 4.4.6, http://cran.r-project.org/web/packages/
bigmemory/index.html.

244

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab — an
S4 package for kernel methods in R. Journal of Statistical Software,
11(9):1-20, 2004.

H Karau, A Konwinski, P Wendell, and M Zaharia. Learning Spark:
Lighting-Fast Data Analysis. O’Reilly, 2015.

N.K. Kasabov and Q. Song. DENFIS: Dynamic evolving neural-fuzzy
inference system and its application for time-series prediction. IEEE
Transactions on Fuzzy Systems, 10(2):144-154, 2002.

KDnuggets. Languages for analytics/data mining. Tech-
nical report, 2015. http://www.kdnuggets.com/2015/05/
poll-r-rapidminer-python-big-data-spark.html.

J.M. Keller, M.R. Gray, and J.R. Givens. A fuzzy k-nearest neighbor
algorithm. IEEFE Transactions on Systems, Man, and Cybernetics,
15:580-585, 1985.

R. Kerber. ChiMerge: Discretization of numeric attributes. In AAAI-
92 Proc. Ninth National Conference on Artificial Intelligence, pages
123-128. AAAI Press/MIT Press, 1992.

J. Kim and N. Kasabov. HyFIS: Adaptive neuro-fuzzy inference sys-
tems and their application to nonlinear dynamical systems. Neural
Networks, 12(9):1301-1319, 1999.

M. Kim, T. Zimmermann, R. DelLine, and A. Begel. The emerg-
ing role of data scientists on software development teams. Techni-
cal report, 2015. http://research.microsoft.com/pubs/242286/
MSR-TR-2015-30.pdf.

A. Kleiner, A. Talwalkar, P. Sarkar, and M. Jordan. The big data
bootstrap. arXiv preprint arXiv:1206.6415, 2012.

G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and
Applications. Prentice Hall PTR, 1995.

J. Komorowski, Z. Pawlak, L. Polwski, and A. Skowron. Rough sets:
A tutorial. In S.K. Pal and A. Skowron, editors, Rough Fuzzy Hy-
bridization, A New Trend in Decision Making, pages 3—98. Singopore,
Springer, 1999.

R. Kovahi. Glossary of terms. Machine Learning, 30:271-274, 1998.

245

[161]

[162]

163

[164]

[165]

[166]

[167]

168

[169]

[170]

[171]

P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes,
B. Pfahringer, and J. Read. Stream data mining using the MOA
framework. In Database Systems for Advanced Applications, pages
309-313. Springer, 2012.

K. Krawiec, R. Stowiniski, and D. Vanderpooten. Learning of decision
rules from similarity based rough approximations. In A. Skowron and
L. Polkowski, editors, Rough Sets in Knowledge Discovery vol 2, pages
37-54. Physica Verlag, Heidelberg, 1998.

M. Kuhn, S. Weston, N. Coulter, and R. Quinlan. C50: C5.0 Deci-
siton Trees and Rule-Based Models, 2012. R package version 0.1.0-013,
http://cran.r-project.org/web/packages/C50.

M.B. Kursa. rFerns: An implementation of the random ferns method
for general-purpose machine learning. Journal of Statistical Software,
61(10):1-13, 2014.

V. Labatut and H. Cherifi. Accuracy measures for the comparison of
classifiers. arXiv preprint arXiw:1207.3790, 2012.

A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35—
40, 2010.

V.G. Le. Building high-level features using large scale unsupervised
learning. In 2013 IEEFE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8595-8598, 2013.

A. Lewin. fuzzyFDR: FEract Calculation of Fuzzy Decision Rules for
Multiple Testing, 2007. R package version 1.0.

A. Liaw and M. Wiener. Classification and regression by randomforest.
R News, 2(3):18-22, 2002.

A. Lim, L. Breiman, and A. Cutler. bigrf: Big Random Forests: Clas-
sification and Regression Forests for Large Data Sets, 2014. R package
version 0.1-11.

H. Lin, S. Yang, and S.P. Midkiff. Rabid: A distributed parallel R for
large datasets. In Big Data (BigData Congress), 2014 IEEFE Interna-
tional Congress on, pages 725-732. IEEE, 2014.

246

[172]

[173]

[174]

[175]

[176]

[177]

178

[179]

[180]

[181]

[182]

J. Lin and C. Dyer. Data-intensive text processing with MapRe-
duce. Synthesis Lectures on Human Language Technologies, 3(1):1-
177, 2010.

C. Liu, W. Hsaio, C. Lee, T. Chang, and T. Kuo. Semi-supervised
text classification with universum learning. IEFE Transactions on
Cybernetics, 2015. In Press.

H. Liu and R. Setiono. Discretization of ordinal attributes and feature
aelection. In Proc. Seventh International Conference on Tools with
Artificial Intelligence, pages 388-391, Washington DC, 1995.

Y. Liu, Q. Zhou, E. Rakus-Anderson, and G. Bai. A fuzzy-rough sets
based compact rule induction method for classifying hybrid data. In
Rough Sets and Knowledge Technology, Lecture Notes in Computer
Science, volume 7414, pages 63-70, 2012.

S. Lohr. In big data, shepherding comes first,
2014. http://www.nytimes.com/2014/12/15/technology/
in-big-data-shepherding-comes-first-.html.

J. Long. An R language seque into parallel processing on Amazon’s
Web Services, 2012. R package version 0.05, http://https://code.
google.com/p/segue/.

G. Louppe. Understanding random forests: From theory to practice.
Master’s thesis, Faculty of Applied Sciences, Department of Electrical
Engineering & Computer Science, University of Liége, 2014. http:
//arxiv.org/abs/1407.7502.

M. Liibbecke. Big data saves lives, 2015. http://edition.cnn.com/
2015/02/12/opinion/lbbecke-big-data-saves-lives/.

T. Lumley. biglm: Bounded memory linear and generalized linear mod-
els, 2013. R package version 0.9-1, http://cran.r-project.org/
web/packages/biglm/index.html.

M.C. Mackey and L. Glass. Oscillation and chaos in physiological
control systems. Science, 197(4300):287-289, 1977.

G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135-146. ACM, 2010.

247

[183] E.H. Mamdani. Applications of fuzzy algorithm for control a simple
dynamic plant. Proceedings of the Institution of Electrical Engineers,
121(12):1585-1588, 1974.

[184] E.H. Mamdani and S. Assilian. An experiment in linguistic synthesis
with a fuzzy logic controller. Int. J. Man Mach. Stud, 7:1-13, 1975.

[185] D.P. Mandal, C.A. Murthy, and S.K. Pal. Formulation of a multival-
ued recognition system. IFEFE Transactions on Systems, Man, and
Cybernetics, 22:607-620, 1992.

[186] McKinsey Global Institute (MGI). Big data: The next frontier
for innovation, competition, and productivity. Technical report,
2011. http://www.mckinsey.com/insights/business_technology/
big_data_the_next_frontier_for_innovation.

[187] K. McKusick and S. Quinlan. GFS: evolution on fast-forward. Com-
munications of the ACM, 53(3):42-49, 2010.

[188] S. Melnik, A. Gubarev, J.J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: interactive analysis of web-
scale datasets. Communications of the ACM, 54(6):114-123, 2011.

[189] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D.B. Tsai, M. Amde, S. Owen, et al. MLIlib: Machine
learning in Apache Spark. arXiv preprint arXiv:1505.06807, 2015.

[190] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch.
el1071: Misc Functions of the Department of Statistics (e1071), TU
Wien, 2012. R package version 1.6-1, http://CRAN.R-project.org/
package=e1071.

[191] D. Meyer and K. Hornik. Generalized and customizable sets in R.
Journal of Statistical Software, 31(2):1-27, 20009.

[192] R.S. Michalski. A theory and methodology of inductive learning. In
R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine
Learning, pages 83-134. Morgan Kaufmann, 1983.

[193] Microsoft. The big bang: How the big data explosion is chang-
ing the world, 2013. http://news.microsoft.com/2013/02/11/
the-big-bang-how-the-big-data-explosion-is-changing-the-world/.

248

[194]

[195]

[196]

[197]

198

[199]

200]

[201]

[202]

203]

[204]

R. Mienko, J. Stefanowski, K. Tuomi, and D. Vanderpooten.
Discovery-oriented induction of decision rules. Cahier du Lamsade
no. 141, 1996.

T. M. Mitchell. Machine Learning. McGraw-Hill Science/Engineer-
ing/Math, 1997.

F.J. Moreno-Velo, A. Barriga, S. Sanchez-Solano, and I. Baturone.
XFSML: An XML-based modeling language for fuzzy systems. In
Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference
on, pages 1-8. IEEE, 2012.

D. Morent, K. Stathatos, W. Lin, and M. Berthold. Comprehensive
PMML preprocessing in KNIME. In Proc. of the 17th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2011.

C. Moretti, J. Bulosan, D. Thain, and P.J. Flynn. All-pairs: An
abstraction for data-intensive cloud computing. In Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on, pages 1-11. IEEE, 2008.

A.C. Murthy, V.K. Vavilapalli, D. FEadline, J. Niemiec, and
J. Markham. Apache Hadoop YARN: Moving Beyond MapReduce and
Batch Processing with Apache Hadoop 2. Pearson Education, 2013.

H. Naessend, H.D. Meyer, and B.D. Baets. Algorithms for the compu-
tation of T-transitive closures. IEEE Transactions on Fuzzy Systems,
10:541-551, 2002.

E. Neisser. Cognitive Psychology. New York: Appleton-Century-
Crofts, 1967.

D. Newby, A.A. Freitas, and T. Ghafourian. Decision trees to char-
acterise the roles of permeability and solubility on the prediction of

oral absorption. Furopean journal of medicinal chemistry, 90:751-765,
2015.

NexR. RHive: R and Hive, 2014. R package version 2.0-0.2, http:
//cran.r-project.org/web/packages/RHive/index.html.

H.S. Nguyen and S.H. Nguyen. Discretization methods in data mining.
In A. Skowron and L. Polkowski, editors, Rough Sets in Knowledge
Discovery, volume 1, pages 451-482. Physica Verlag, Heidelberg, 1998.

249

[205]

206]

207]

[208]

209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

S.H. Nguyen. On efficient handling of continuous attributes in large
data bases. Fundamenta Informaticae, 48:61-81, 2001.

S.H. Nguyen and A. Skowron. Quantization of real-valued attributes.
In P.P. Wang, editor, Second Annual Joint Conference on Information
Sciences (JCIS’95), pages 34-37, Wrightsville Beach, North Carolina,
1995.

NIST. Big data interoperability framework: Volume 1, defi-
nitions, 2013. http://jtclbigdatasg.nist.gov/_uploadfiles/
NOO28_NBD-PWG_Voll-Definitions_V1Draft_Pre-release.pdf.

H. Nomura, I. Hayashi, and N. Wakami. A learning method of fuzzy
inference rules by descent method. IEEE International Conference on
Fuzzy Systems, pages 203-210, 1992.

A. Ohrn. ROSETTA-A rough set toolkit for analysis of data. Tech-
nical report, 2009. http://www.lcb.uu.se/tools/rosetta/.

A. Ohrn and J. Komorowski. ROSETTA-A rough set tool kit for
analysis of data. In Proceedings of the fifth International Workshop on
Rough Sets and Soft Computing (RSSC’97) at the Third Joint Con-
ference on Information Sciences (JCIS’97), Research Triangle Park,
NC, pages 403-407, 1997.

S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in action.
Manning, 2011.

M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten
lines of code. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1-8. leee, 2007.

Z. Pawlak. Rough sets. International Journal of Computer Sciences,
11:341-356, 1982.

Z. Pawlak. Rough sets—Theoretical aspects of reasoning about data.
Kluwer Academic, 1991.

Z. Pawlak and A. Skowron. Rough sets and boolean reasoning. Infor-
mation Sciences, 177:41-73, 2007.

Z. Pawlak and A. Skowron. Rudiments of rough sets. Information
Sciences, 177:3-27, 2007.

250

[217]

[218]

[219]
[220]
[221]
[222]
[223]

[224]

[225]

[226]

[227]

C.A. Pena Reyes. Coevolutionary fuzzy modelling. Master’s the-
sis, Faculté Informatique et Communications, Ecole Polytechnique
Fédérale De Lausanne, 2002. http://library.epfl.ch/en/theses/
?nr=2634.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825-2830, 2011.

W. Pedrycz. Fuzzy Modelling: Paradigms and Practice. Kluwer Aca-
demic Press, 1996.

W. Pedrycz and F. Gomide. An Introduction to Fuzzy Sets: Analysis
and Design. The MIT Press, 1998.

R.D Peng. Reproducible research in computational science. Science,
334:1226-1227, 2011.

A. Peters, T. Hothorn, B.D. Ripley, T. Therneau, and B. Atkinson.
ipred: Improved Predictors, 2015. R package version 0.9-4.

J. Piaget. Siz Psychological Studies. New York: Random House, 1967.

N.M. Portela, G.D.C. Cavalcanti, and T.I. Ren. Semi-supervised clus-
tering for MR brain image segmentation. FExpert Systems with Appli-
cations, 41(4 PART 1):1492-1497, 2014.

B. Predki, R. Stowiniski, J. Stefanowski, R. Susmaga, and S. Wilk.
ROSE - software implementation of the rough set theory. In
L. Polkowski and A. Skowron, editors, Proceedings of the Rough Sets
and Current Trends in Computing’98 Conference, Lecture Notes in
Artificial Intelligence, volume 1424, pages 605—-608. Springer, Berlin,
1998.

B. Predki and S. Wilk. Rough set based data exploration using ROSE
system. In Z.W. Ras and A. Skowron, editors, Foundations of Intel-

ligent Systems, Lecture Notes in Artificial Intelligence, volume 1609,
pages 172-180. Springer-Verlag, Berlin, 1999.

Gill Press. A very short history of data science?, 2013.
http://wuw.forbes.com/sites/gilpress/2013/05/28/
a-very-short-history-of-data-science/.

251

[228]

[229]

[230]

[231]

[232]

233

[234]

[235]

[236]

237]

[238]

[239]

H. Qian. PivotalR: A package for machine learning on big data. The
R Journal, 6(1):57-67, 2014.

J.R. Quinlan. Discovering Rules by Induction from Large Collections
of Examples. Expert systems in the micro electronic age. Edinburgh
University Press, 1979.

J.R. Quinlan. Learning Efficient Classification Procedures and Their
Application to Chess End Games. Springer Berlin Heidelberg, 1983.

J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,
1986.

R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993. http://www.rulequest.com/see5-unix.html.

R Core Team, R. Bivand, V.J. Carey, S. DebRoy, S. Eglen, R. Guha,
N. Lewin-Koh, M. Myatt, B. Pfaff, B. Quistorff, F. Warmerdam,
S. Weigand, and Free Software Foundation Inc. foreign: Read data
stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase, 2014.
R package version 0.8-61, http://CRAN.R-project.org/package=
foreign.

R Development Core Team. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna,
Austria, 2008.

R Development Core Team. R Installation and Administration. R
Foundation for Statistical Computing, Vienna, Austria, 2008.

R Development Core Team. Writing R Extensions. R Foundation for
Statistical Computing, Vienna, Austria, 2008.

T. Rabl, S. Gémez-Villamor, M. Sadoghi, V. Muntés-Mulero, H. Ja-
cobsen, and S. Mankovskii. Solving big data challenges for enterprise

application performance management. Proceedings of the VLDB En-
dowment, 5(12):1724-1735, 2012.

A.M. Radzikowska and E.E. Kerre. A comparative study of fuzzy
rough sets. Fuzzy Sets and Systems, 126:137-156, 2002.

Revolution Analytics. Revolution R Enterprise DistributedR: Portable
Power: Big Data Analytics For the Entire IT Infrastructure, 2014.
R package version 1.0.0, http://www.revolutionanalytics.com/
revolution-r-enterprise-distributedr.

252

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247)

[248]

[249]

[250]

Revolution Analytics. RHadoop, 2015. https://github.com/
RevolutionAnalytics/RHadoop/wiki.

Revolution Analytics and S. Weston. foreach: Foreach looping con-
struct for R, 2014. R package version 1.4.2, http://cran.r-project.
org/web/packages/foreach/index.html.

B. Ripley. nnet: Feed-forward neural networks and multinomial log-
linear models, 2012. R package version 7.3-5, http://www.stats.ox.
ac.uk/pub/MASS4.

B. Ripley. tree: Classification and Regression Trees, 2012. R package
version 1.0-33, http://cran.r-project.org/web/packages/tree.

L.S. Riza, C. Bergmeir, F. Herrera, and J.M. Benitez. frbs: Fuzzy
Rule-Based Systems for Classification and Regression Tasks, 2014. R
package version 3.0-0.

L.S. Riza, A. Janusz, C. Bergmeir, C. Cornelis, F. Herrera, D. Slezak,
J.M. Benitez, et al. RoughSets: Data Analysis Using Rough Set and
Fuzzy Rough Set Theories, 2015. R package version 1.2-0.

M. Robnik-Sikonja and P. Savicky. CORFElearn: CORElearn Clas-
sification, Regression, Feature Evaluation and Ordinal Evaluation,
2013. R package version 0.9.41, http://1km.fri.uni-1j.si/rmarko/
software/.

S. Romanski. Operation on families of sets for exhaustive search, given
a monotonic function. In W. Beeri, C. Schmidt, and N. Doyle, editors,
Proceedings of the 3rd Int. Conference on Data and Knowledge Bases,
pages 310-322, 1988.

D.S. Rosenberg. HadoopStreaming: Utilities for using R scripts
i Hadoop streaming, 2012. R package version 0.2, http://cran.
r-project.org/web/packages/HadoopStreaming/index.html.

J.M.F. Salido and S. Murakami. Rough set analysis of a general type
of fuzzy data using transitive aggregations of fuzzy similarity relations.
Fuzzy Sets Systems, 139:635-660, 2003.

M. Sarkar. Fuzzy-rough nearest neighbors algorithm. In Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics,
volume 5, pages 3556-3561, 2000.

253

[251]

252]

[253]

[254]

[255]

[256]

257]

[258]

259

260]

[261]

[262]

M. Sarkar. Fuzzy-rough nearest-neighbor algorithm in classification.
Fuzzy Sets and System, 158:2123-2152, 2007.

M. Sarkar. Fuzzy-rough nearest algorithms in classification. Fuzzy Sets
and Systems, 158:2134-2152, 2012.

C.E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423,623-656, 1948.

Q. Shen and A. Chouchoulas. A modular approach to generating fuzzy
rules with reduced attributes for the monitoring of complex systems.
Engineering Applications of Artificial Intelligencee, 13:263-278, 2000.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1-10. IEEE, 2010.

B.F. Skinner. The Behavior of Organisms: An Experimental Analysis.
Oxford, England: Appleton-Century, 1938.

B.F. Skinner. The evolution of behavior. Journal of the Experimental
Analysis of Behavior, 41:217-221, 1984.

A. Skowron and C. Rauszer. The discernibility matrices and functions
in information systems. In R. Stowinski, editor, Intelligent Decision
Support: Handbook of Applications and Advances of Rough Sets The-
ory, pages 331-362, Dordrecht, Netherland, 1992. Kluwer Academic
Publisherst.

D. Sl@zak. Approximate bayesian networks. In B. Bounchon-Meunier,
J. Gutierrez-Rios, L. Magdalena, and R.R. Yager, editors, Technologies
for Constructing Intelligent Systems 2: Tools, pages 313-326. Springer
Verlag, 2002.

D. Slgzak. Approximate entropy reducts. Fundamenta Informaticae,
53:365-390, 2002.

R. Stowinski and J. Stefanowski. Rough set reasoning about uncertain
data. Fundamenta Informaticae, 27(2-3):229-244, 1996.

R. Stowinski and D. Vanderpooten. Similarity relation as a basis for
rough approximations. In P.P. Wang, editor, Advances in Machine
Intelligence and Soft Computing, pages 17-33. Bookwrights, Raleigh,
NC, 1997.

254

263

[264]

265]

[266]

267]

268

269

270]

271]

272]

[273]

[274]

R. Stowinski and D. Vanderpooten. A generalized definition of rough
approximations based on similarity. IEEE Transactions on Knowledge
and Data Engineering, 12(2):331-336, 2000.

B.J. Smith. magma: Matriz algebra on GPU and multicore architec-
tures, 2013. R package version 1.3.0-2, http://cran.r-project.org/
web/packages/magma/index.html.

D. Smith and J. Rickert. RevoScaleR: Big data analysis for R using
Revolution R Enterprise, 2010. http://www.revolutionanalytics.
com/sites/default/files/big-data-wp.pdf.

J.M. Stanton. Introduction to data science. Syracuse University, 2013.
http://surface.syr.edu/istpub/165/.

J. Stefanowski. On rough set based approaches to induction of de-
cision rules. In L. Polkowski and A. Skowron, editors, Rough Sets in
Knowledge Discovery 1: Methodology and Applications, pages 500-529.
Heidelberg: Physica-Verlag, 1998.

J. Stefanowski and D. Vanderpooten. A general two stage approach to
rule induction from examples. In W. Ziarko, editor, Rough Sets, Fuzzy
Sets and Knowledge Discovery, pages 317-325. Springer-Verlag, 1994.

M. Stokely and T. Hesterberg. HistogramTools: Utility Functions for R
Histograms, 2014. R package version 0.3.1, http://cran.r-project.
org/web/packages/HistogramTools/index.html.

P. Stone, R.S. Sutton, and G. Kuhlmann. Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3):165-188, 2005.

M. Sugeno and G.T. Kang. Structure identification of fuzzy model.
Fuzzy Sets and Systems, 28:15-33, 1988.

M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qual-
itative modeling. IEEE Transactions on Fuzzy Systems, 1(1):7-31,
1993.

T. Takagi and M. Sugeno. Fuzzy identification of systems and its
applications to modeling and control. IEEE Transactions on Systems,
Man, and Cybernetics, 51(1):116-132, 1985.

D.K. Tayal, A. Jain, S. Arora, S. Agarwal, T. Gupta, and N. Tyagi.
Crime detection and criminal identification in india using data mining
techniques. AT and Society, 30(1):117-127, 2014.

255

[275]

276]

277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

The Apache Software Foundation. Apache HBase. http://hbase.
apache.org/.

The Apache Software Foundation. Apache HIVE. http://hive.
apache.org/index.html.

The MathWorks, Inc. The fuzzy logic toolbox for use with MATLAB
version 2, 2002. http://www.mathworks.com/help/pdf_doc/fuzzy/
fuzzy.pdf.

P. Thrift. Fuzzy logic synthesis with genetic algorithms. In Proc.
of the Fourth International Conf. on Genetic Algorhtms (ICGA91),
pages 509-513, 1991.

L. Tierney, A.J. Rossini, N. Li, and H. Sevcikova. snow: Sim-
ple network of workstations, 2013. R package version 0.3-13, http:
//cran.r-project.org/web/packages/snow/index.html.

Y. Tillé and A. Matei. sampling: Survey sampling, 2013. R package
version 2.6, http://cran.r-project.org/web/packages/sampling/
index.html.

M. Troester. Big data meets big data analytics. Technical report,
2015. http://www.sas.com/resources/whitepaper/wp_46345.pdf.

E.C.C. Tsang, D.G. Chen, D.S. Yeung, X.Z. Wang, and J.W.T. Lee.
Attributes reduction using fuzzy rough sets. IEEE Transactions on
Fuzzy Systems, 16:1130-1141, 2008.

S. Tsumoto. Automated induction of medical expert system rules from
clinical databases based on rough set theory. Information Sciences,
112:67-84, 1998.

L.G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103-111, 1990.

N. Verbiest, C. Cornelis, and F. Herrera. A fuzzy rough prototype
selection method. Pattern Recognition, 46:2770-2782, 2013.

N. Verbiest, C. Cornelis, and R. Jensen. Fuzzy-rough positive region
based nearest neighbour classification. In Proceedings of the 20th In-
ternational Conference on Fuzzy Systems (FUZZ-IEEE 2012), pages
1961-1967, 2012.

256

[287]

[288]

[289]

290]

201]

292]

293

294]

[295]

296]

297]

298]

299]

Voldemort. Project voldemort. http://project-voldemort.com/.

M. Wall. Ebola: Can big data analytics help contain its spread?, 2014.
http://wuw.bbc.com/news/business-29617831.

P. Walmsley. Definitive XML Schema. Prentice Hall PTR, 2012.

G. Wang, Z. Zheng, and Y. Zhang. RIDAS - a Rough Set Based Intel-
ligent Data Analysis System. In Machine Learning and Cybernetics,
2002. Proceedings. 2002 International Conference on, volume 2, pages
646-649 vol.2, 2002.

L.X. Wang. Adaptive Fuzzy Systems and Control: Design and Analy-
sis. Prentice-Hall, 1994.

L.X. Wang and J.M. Mendel. Generating fuzzy rules by learning from
examples. [IEEE Transactions on Systems, Man, and Cybernetics,
22(6):1414-1427, 1992.

X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature selec-
tion based on rough sets and particle swarm optimization. Pattern
Recognition Letters, 28(4):459-471, 2007.

T. White. Hadoop: The Definitive Guide. ” O’Reilly Media, Inc.”,
2015.

H. Wickham. The split-apply-combine strategy for data analysis. Jour-
nal of Statistical Software, 40(1):1-29, 2011. http://www.jstatsoft.
org/v40/i01/.

H. Wickham. Advanced R. CRC Press, 2015.

J. Wijffels and BNOSAC. RMOA: Connect R with MOA for mas-
siwe online analysis, 2014. R package version 1.0, http://cran.
r-project.org/web/packages/RMOA/index.html.

M. Wojnarski. LTF-C: Architecture, training algorithm and applica-
tions of new neural classifier. Fundamenta Informaticae, 54(1):89-105,
2003.

World Wide Web Consortium. XML 1.0 Specification, 2014. Retrieved
2014-10-4, http://www.w3.org/TR/xml/.

257

300]

301]

302]

303]

304]

[305]

306]

307]

308]

[309]

310]

J. Wréblewski. Covering with reducts - a fast algorithm for rule genera-
tion. In Proceeding of RSCTC"98, LNAI 1424, pages 402—-407. Springer
Verlag, Berlin, 1998.

J. Wréblewski. Ensembles of classifiers based on approximate reducts.
Fundamenta Informaticae, 47:351-360, 2001.

Z. Wu, G. Eadon, S. Das, E.I. Chong, V. Kolovski, M. Annamalai,
and J. Srinivasan. Implementing an inference engine for RDFS/OWL
constructs and user-defined rules in Oracle. In Data Engineering, 2008.
ICDFE 2008. IEEE 2/th International Conference on, pages 1239-1248.
TEEE, 2008.

D. Wuerts and et al. fRegression: Regression based decision and pre-
diction, 2012. R package version 2160.77, http://www.rmetrics.org.

X. Xie, J. Cao, H. Jin, X. Ke, and W. Cao. JRBridge: A frame-
work of large-scale statistical computing for R. In Services Computing
Conference (APSCC), 2012 IEEE Asia-Pacific, pages 27-34. IEEE,
2012.

R. Yager and D. Filev. Generation of fuzzy rules by mountain clus-
tering. Journal of Intelligent and Fuzzy Systems, 2(3):209-219, 1994.

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

L.A. Zadeh. The concept of a linguistic variable and its application to
approximate reasoning - part i. Information Sciences, 8(3):199-249,
1975.

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, pages 10-10,
2010.

S.Y. Zhao, E.C.C. Tsang, and D.G. Chen. The model of fuzzy variable
precision rough sets. IEEE Transactions on Fuzzy Systems, 17:451—
467, 2009.

S.Y. Zhao, E.C.C. Tsang, D.G. Chen, and X.Z. Wang. Building a
rule-based classifier — a fuzzy-rough set approach. IEEFE Trans. on
Knowledge and Data Engineering, 22:624-638, 2010.

258

[311] Q. Zhong, A.G. Busetto, J.P. Fededa, J.M. Buhmann, and D.W. Ger-
lich. Unsupervised modeling of cell morphology dynamics for time-
lapse microscopy. Nature Methods, 9:711-713, 2012.

[312] W. Ziarko. Analysis of uncertain information in the framework of
variable precision rough sets. Foundation of Computing and Decision
Sciences, 18(3-4):381-396, 1993.

259

