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Prólogo

Esta memoria de tesis doctoral es presentada por D. Benjamı́n Alarcón Heredia para
optar al t́ıtulo de Doctor en Matemáticas por la Universidad de Granada, dentro del
programa oficial de Doctorado en F́ısica y Matemáticas (FisyMat). Se realiza por
tanto de acuerdo con las normas que regulan las enseñanzas oficiales de Doctorado
y del T́ıtulo de Doctor en la Universidad de Granada, aprobadas por Consejo de
Gobierno de la Universidad en su sesión de 2 de Mayo de 2012, donde se especifica
que “la tesis doctoral consistirá en un trabajo original de investigación elaborado por
el candidato en cualquier campo del conocimiento que se enmarcará en alguna de las
ĺıneas del programa de doctorado en el que está matriculado. Para garantizar, con
anterioridad a su presentación formal, la calidad del trabajo desarrollado se aportará,
al menos, una publicación aceptada o publicada en un medio de impacto en el ámbito
de conocimiento de la tesis doctoral firmada por el doctorando, que incluya parte de
los resultados de la tesis. La tesis podrá ser desarrollada y, en su caso, defendida, en
los idiomas habituales para la comunicación cient́ıfica en su campo de conocimiento.
Si la redacción de la tesis se realiza en otro idioma, deberá incluir un resumen en
español.”.

La presente memoria ha sido redactada en base a cuatro art́ıculos de investigación,
todos ellos publicados entre los años 2012-2015 [38, 45–47], que se han seleccionado
tenido en cuenta sobre todo su coherencia temática, pero también su extensión en
orden a que la tesis tenga un tamaño razonable. Todas estas publicaciones han apare-
cido en revistas de relevancia internacional en los ámbitos de la Teoŕıa de Categoŕıas,
la Topoloǵıa Algebraica y la Teoŕıa de Homotoṕıa y estructuras algebraicas asociadas,
referenciadas todas ellas en el Journal of Citations Reports e incluidas en las bases de
datos MathSciNet (American Mathematical Society) y Zentralblatt für Mathematik
(European Mathematical Society).

Para optar a la mención internacional en el t́ıtulo de doctor, la mayor parte de la
memoria está escrita en inglés, idioma que actualmente es de mayoritario uso en la
comunicación cient́ıfica en el ámbito de las matemáticas, respetando aśı el idioma en
que los art́ıculos de investigación recopilados han sido publicados. Al redactarse en
una lengua no oficial, sin embargo, incluimos un resumen también en español.

Los resultados novedosos presentados en la memoria han sido obtenidos a lo largo
de los últimos años bajo la supervisión del Dr. Antonio Mart́ınez Cegarra en el Depar-
tamento de Álgebra de la Universidad de Granada. En este tiempo, el doctorando ha
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sido alumno del Programa Oficial de Doctorado en F́ısica y Matemáticas (FisyMat);
desde Septiembre de 2011 ha disfrutado de una Beca de Formación de Profesorado
Universitario (FPU: AP2010-3521), financiada por el Ministerio de Educación, Cul-
tura y Deportes español, y ha realizado sus investigaciones en el marco del Grupo
de Investigación FQM-1668, financiado por la Junta de Andalućıa, y del Proyecto de
Investigación MTM2011-22554, financiado por la Dirección General de Investigación
del gobierno de España. Durante los meses de Julio, Agosto y Septiembre de 2013,
el doctorando realizó una estancia de investigación en el Centre of Australian Cate-
gory Theory, en la Macquarie University (Śıdney, Australia), y durante los meses de
Septiembre, Octubre y Noviembre de 2014, realizó una otra estancia en la School of
Mathematics and Statistics, University of Sheffield (Reino Unido).
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Abstract

After the seminal paper by Quillen [109] in 1973, the homotopy theory of categorical
structures has become a relevant part of the machinery of algebraic topology and al-
gebraic K-theory, and this work contributes to clarifying several relationships between
certain higher categories, the homotopy types of their classifying spaces (or geometric
realizations) and some classical homotopical constructions applied to these homotopy
types.

Higher categorical structures provide a powerful tool for the study of several areas
of mathematics. See the recent book Toward Higher Categories [8], which provides
a useful background for this subject. They also find applications in areas such as
theoretical physics and computer science, since they appear in the study of topological
quantum field theories (see for example [6]), or more recently, they serve as a starting
point for the Univalent Foundations program in the study of homotopy type theory
[122].

This thesis consists of four main chapters presenting the results obtained, and a
conclusion chapter in Spanish. All chapters can be read independently, although most
of the terminology and some technical arguments are shared between them. Apart
from a few minor notational changes that have been made to unify our presentation,
and that the full bibliography has been collected at the end of the thesis, Chapter 1 has
appeared as [46] in the journal Applied Categorical Structures (2012), Chapter 2 as [45]
in Algebraic and Geometric Topology (2014), Chapter 3 as [38] in Journal of Homotopy
and Related Structures (2014), and Chapter 4 as [47] in Theory and Applications of
Categories (2015).

In Chapter 1, we deal with certain double categories which model homotopy 2-
types. A small double category (defined by Ehresmann around 1963 [62, 63]) can be
interpreted as a set of ‘squares’, whose vertices are objects and whose edges are two
different kinds of morphisms –vertical and horizontal–, with two category compositions
–the vertical and horizontal ones–, together with compatible category compositions
of the morphisms, obeying several conditions. Any (small) double category admits a
double nerve construction, which in a very standard way can be made into a simplicial
set, and therefore into a topological space, its geometric realization or classifying space.
The simplicial set obtained this way is not a Kan complex, and to some extent it is
hard to work with it. Nevertheless, a necessary and sufficient condition on a double
category to obtain a Kan complex through its double nerve is actually very simple to
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2 Abstract

formulate: it must be a double groupoid satisfying the filling condition. This condition
says that any pair of arrows, one vertical and the other horizontal, with a common
vertex occurs in the boundary of a square of the double groupoid. This fact can be
seen as a higher version of the well-known fact that the nerve of a category is a Kan
complex if and only if the category is a groupoid.

Any such double groupoid with filling condition characteristically has associated to
it homotopy groups, which are defined using only its algebraic structure. Thus arises
the notion of weak equivalence between such double groupoids, and a corresponding
homotopy category is defined. A main result here states that the geometric realization
functor induces an equivalence between the homotopy category of double groupoids
with filling condition and the category of homotopy 2-types (that is, the homotopy
category of all topological spaces with the property that the nth homotopy group at
any base point vanishes for n ≥ 3). A quasi-inverse functor is explicitly given by
means of a new homotopy double groupoid construction for topological spaces.

Chapter 2 deals with small tricategories, as introduced by Gordon, Power, and
Street in their 1995 AMS Memoir paper [69]. They were aware that strict 3-groupoids
do not model homotopy 3-types, and thus the aim of their work was to create an
explicit definition of a weak 3-category, which would not be equivalent (in the ap-
propriate three-dimensional sense) to that of a strict 3-category. Our results here
contribute to the study of classifying spaces for (small) tricategories, with applica-
tions to the homotopy theory of monoidal categories, bicategories, braided monoidal
categories, and monoidal bicategories. Any tricategory has associated various sim-
plicial or pseudo-simplicial objects, and we explore the relationship between three of
them: the pseudo-simplicial bicategory so-called Grothendieck nerve of the tricategory,
the simplicial bicategory termed its Segal nerve, and the simplicial set called its Street
geometric nerve. We prove the fact that the geometric realizations of all of these
‘nerves of the tricategory’ are homotopy equivalent. Any one of these realizations
could therefore be taken as the classifying space of the tricategory. Nevertheless, each
of them clarifies different aspects of the theory. These nerves have been used recently
by Buckley, Garner, Lack and Street in their work on skew-monoidal categories [34].

The Grothendieck nerve construction serves as a generalization for the triple nerve
of a strict 3-category. The Segal nerve allows us to prove that, under natural require-
ments, the classifying space of a monoidal bicategory is, in a precise way, a loop space.
With the use of Street geometric nerves, we obtain simplicial sets whose simplices have
a pleasing geometrical description in terms of the cells of the tricategory, and we can
make precise the form in which the classifying space construction transports tricate-
gorical coherence to homotopy coherence. We also prove that, via this construction,
bicategorical groups are a convenient algebraic model for path-connected homotopy
3-types, that is, spaces whose nth homotopy groups vanish for n ≥ 4.

In the next Chapters 3 and 4, we change from modeling homotopy types to use our
algebraic models in some homotopy constructions usually applied to them. More pre-
cisely, we are interested in homotopy pullbacks. General limits and colimits associated
with a diagram, which include the notion of pullback, are a powerful tool in category
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theory, with uncountable applications. Sadly, they behave poorly in homotopy theory.
That is, if we replace our original diagram by a weak homotopy equivalent diagram,
the corresponding limits, or colimits, are not necessarily weak homotopy equivalent.
That is why homotopy limits and colimits are studied.

Theorems A and B (due to Quillen [109]) are the starting point for Quillen’s
homotopy-theoretic description of higher algebraic K-theory, and they are now two of
the most important theorems in the foundations of homotopy theory. Chapter 3 of the
thesis focuses on generalizations of these theorems to lax functors between bicategories
(defined by Bénabou around 1967 [15]), which cover both (lax) monoidal functors be-
tween monoidal categories and (lax) functors between 2-categories. In our theorems,
we use a construction of homotopy-fiber bicategories of a lax functor between bicat-
egories, a naive bicategorical emulation of the topological construction of homotopy
fibers of continuous maps, which is, however, subtle. In fact, we prove that, under nat-
ural necessary conditions, the classifying space of each homotopy-fiber bicategory is
actually homotopy equivalent to the homotopy-fiber of the induced continuous map on
classifying spaces by the lax functor (Theorem B). In particular, when all homotopy-
fiber bicategories have contractible classifying spaces, the continuous map induced by
the lax functor is a homotopy equivalence (Theorem A).

We should stress that the process of taking homotopy-fiber bicategories of lax
functors is more complicated than for categories and ordinary functors, since we are
forced to deal with lax bidiagrams of bicategories with the shape of a given bicategory,
which are a type of trihomomorphism from the shape bicategory into the tricategory of
bicategories. A higher Grothendieck construction on such bidiagrams leads us to state
and prove a higher version of Quillen’s Homotopy Lemma [109] that, as it happens
for the ordinary case of functors between categories, is a key result here.

Going further, in Chapter 4 we deal with general homotopy pullbacks. For any
cospan of bicategories in which one leg is a lax functor, and the other one an oplax
functor, we construct a homotopy-fiber product bicategory and prove that, under rea-
sonable necessary conditions, the classifying space of this homotopy-fiber product
bicategory is naturally homotopy equivalent to the ordinary homotopy-fiber product
space of the induced cospan of spaces obtained by taking classifying spaces. Our main
theorem here generalizes the bicategorical Quillen’s Theorem B of Chapter 3, and ex-
tends recent similar results for spans of categories by Cisinski (2006) [55] and Barwick
and Kan (2011) [13]. We should mention that the category of (strict) 2-categories and
2-functors has a Thomason model structure, as was first announced by Worytkiewicz,
Hess, Parent and Tonks (2007) [125] and fully proved by Ara and Maltsiniotis (2014)
[2], such that the classifying space functor induces an equivalence of homotopy theo-
ries between 2-categories and topological spaces. Hence, our results when restricted
to 2-categories find a natural interpretation in terms of homotopy pullbacks relative
to its Thomason model structuture. Similarly, thanks to the equivalence between the
category of crossed modules (over groupoids) and the category of 2-groupoids, they
find an application in this setting in terms of the model structure of crossed com-
plexes by Brown and Golasinski (1989) [26]. Also, since any monoidal category can be
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regarded as a bicategory with only one 0-cell, our results are applicable to monoidal
categories and we dedicate a part of the chapter to do this.

Chapter 4 also includes some new results concerning classifying spaces of bicate-
gories, which are needed here to obtain the aforementioned results about homotopy-
fiber products. The development of the work above is a great example of how useful
it is to establish the relationship between the different nerves of bicategories, in order
to be able to work both with lax and oplax functors at the same time. The Street
geometric nerve of a bicategory is usually the simplest one to work with, but it is only
functorial with respect to lax functors. There is however an op-geometric nerve, which
is functorial with respect to oplax functors. Then, in the Appendix of Chapter 4, we
complete the work by Carrasco, Cegarra and Garzón [41] by proving new naturality
results for the comparisons of nerves of bicategories. The results here are obtained
following ideas used in Chapter 2 for the study of nerves of tricategories.



Chapter 1

Double groupoids and homotopy
2-types

1.1 Introduction and summary.

Higher-dimensional categories provide a suitable setting for the treatment of an exten-
sive list of subjects of recognized mathematical interest. The construction of nerves
and classifying spaces of higher categorical structures discovers ways to transport
categorical coherence to homotopic coherence, and it has shown its relevance as a
tool in algebraic topology, algebraic geometry, algebraic K-theory, string field theory,
conformal field theory, and in the study of geometric structures on low-dimensional
manifolds.

Double groupoids, that is, groupoid objects in the category of groupoids, were
introduced by Ehresmann [62, 63]) in the late fifties and later studied by several
people because of their connection with several areas of mathematics. Roughly, a
double groupoid consists of objects, horizontal and vertical morphisms, and squares.
Each square, say α, has objects as vertices and morphisms as edges, as in

· ·oo

α
·

OO

·oo

OO

,

together with two groupoid compositions -the vertical and horizontal compositions-
of squares, and compatible groupoid compositions of the edges, obeying several condi-
tions (see Section 1.3 for details). Any double groupoid G has a geometric realization
(or classifying space) BG, which is the topological space defined by first taking the

double nerve N
(2G, which is a bisimplicial set, and then realizing the diagonal to obtain

a space: BG = |diagN
(2G|. In this chapter, we address the homotopy types obtained

in this way from double groupoids satisfying a natural filling condition: Any filling

5



6 Chapter 1. Double groupoids and homotopy 2-types

problem

· ·oo

∃?
OO

·oo

OO

finds a solution in the double groupoid. This filling condition on double groupoids is
often assumed in the case of double groupoids arising in different areas of mathematics,
such as in differential geometry or in weak Hopf algebra theory (see the papers by
Mackenzie [102] and Andruskiewitsch and Natale [1], for example), and it is satisfied
for those double groupoids that have emerged with an interest in algebraic topology,
mainly thanks to the work of Brown, Higgins, Spencer, et al., where the connection
of double groupoids with crossed modules and a higher Seifert-van Kampen Theory
has been established (see, for instance, the survey paper [24] and references therein).
Thus, the filling condition is easily proven for edge symmetric double groupoids (also
called special double groupoids) with connections (see, for example [27, 31] or [25, 30,
32], for more recent instances), for double groupoid objects in the category of groups
(also termed cat2-groups, [37, 98, 107]), or, for example, for 2-groupoids (regarded as
double groupoids where one of the side groupoids of morphisms is discrete [106],[79]).

When a double groupoid G satisfies the filling condition, then there are character-
istically associated to it ‘homotopy groups’, πi(G, a), which we define using only the
algebraic structure of G, and which are trivial for integers i ≥ 3. A first major result
states that:

If G is a double groupoid with filling condition, then, for each object a,
there are natural isomorphisms πi(G, a) ∼= πi(BG,Ba), i ≥ 0.

The proof of this result requires a prior recognition of the significance of the filling
condition on double groupoids in the homotopy theory of simplicial sets; namely, we
prove that

A double category C is a double groupoid with filling condition if and only if
the simplicial set diagonal of its double nerve, diagN

(2C, is a Kan complex.

This fact can be seen as a higher version of the well-known fact that the nerve of
a category is a Kan complex if and only if the category is a groupoid (see [85], for
example).

Once we have defined the homotopy category of double groupoids satisfying the
filling condition Ho(DGfc), to be the localization of the category of these double
groupoids, with respect to the class of weak equivalences or double functors F : G → G′
inducing isomorphisms πiF : πi(G, a) ∼= πi(G′, Fa) on the homotopy groups, we then
obtain an induced functor

B : Ho(DGfc)→ Ho(Top), G 7→ BG ,
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where Ho(Top) is the localization of the category of topological spaces with respect to
the class of weak equivalences. Furthermore, we show a new functorial construction of
a homotopy double groupoid Π

(2
X, for any topological space X, that induces a functor

Ho(Top)→ Ho(DGfc), X 7→ Π
(2
X.

A main goal in this chapter is to prove the following result, whose proof is somewhat
indirect since it is given through an explicit description of a left adjoint functor,
P

(2 a N
(2
, to the double nerve functor G 7→ N

(2G:

The functors G 7→ BG and X 7→ Π
(2
X induce mutually quasi-inverse equiv-

alences
Ho(DGfc) ' Ho(2-types),

where Ho(2-types) is the full subcategory of the homotopy category of topological
spaces given by those spaces X with πi(X, a) = 0 for any integer i> 2 and any base
point a. From the point of view of this fact, the use of double groupoids and their
classifying spaces in homotopy theory goes back to Whitehead [124] and Mac Lane-
Whitehead [101] since double groupoids where one of the side groupoids of morphisms
is discrete with only one object (= strict 2-groups, in the terminology of Baez [7])
are the same as crossed modules (this observation is attributed to Verdier in [31]).
In this context, we should mention the work by Brown-Higgins [27] and Moerdijk-
Svensson [106] since crossed modules over groupoids are essentially the same thing
as 2-groupoids and double groupoids where one of the side groupoids of morphisms
is discrete. Along the same line, our result is also a natural 2-dimensional version
of the well-known equivalence between the homotopy category of groupoids and the
homotopy category of 1-types (for a useful survey of groupoids in topology, see [23]).

The plan of this chapter is, briefly, as follows. After this introductory Section 1.1,
the chapter is organized in six sections. Section 1.2 aims to make this chapter as self-
contained as possible; hence, at the same time as fixing notations and terminology, we
also review necessary aspects and results from the background of (bi)simplicial sets
and their geometric realizations that will be used throughout the thesis. However, the
material in Section 1.2 is quite standard, so the expert reader may skip most of it.
The most original part is in Subsection 1.2.2, related to the extension condition on
bisimplicial sets. In Section 1.3, after recalling the notion of a double groupoid and
fixing notations, we mainly introduce the homotopy groups πi(G, a), at any object a of
a double groupoid with filling condition G. Section 1.4 is dedicated to showing in detail
the construction of the homotopy double groupoid Π

(2
X, characteristically associated

to any topological space X. Here, we prove that a continuous map X → Y is a weak
homotopy 2-equivalence (i.e., it induces bijections on the homotopy groups πi for

i ≤ 2) if and only if the induced double functor Π
(2
X → Π

(2
Y is a weak equivalence.

Next, in Section 1.5, we give a manageable description for the bisimplices in N
(2G,

the double nerve of a double groupoid, and then we determine the homotopy type of
the geometric realization BG of a double groupoid with filling condition. Specifically,



8 Chapter 1. Double groupoids and homotopy 2-types

we prove that the homotopy groups of BG are the same as those of G. Our goal in
Section 1.6 is to prove that the double nerve functor, G 7→ N

(2G, embeds, as a reflexive
subcategory, the category of double groupoids satisfying the filling condition into a
certain category of bisimplicial sets. The reflector functor K 7→ P

(2
K works as a

bisimplicial version of Brown’s construction in [25, Theorem 2.1]. Furthermore, as we

will prove, the resulting double groupoid P
(2
K always represents the homotopy 2-type

of the input bisimplicial set K, in the sense that there is a natural weak 2-equivalence
|K| → BP

(2
K. This result becomes crucial in the final Section 1.7 where, bringing into

play all the previous work, the equivalence of categories Ho(DGfc) ' Ho(2-types) is
achieved.

1.2 Some preliminaries on bisimplicial sets.

This section aims to make this chapter as self-contained as possible; therefore, while
fixing notations and terminology, we also review necessary aspects and results from
the background of (bi)simplicial sets and their geometric realizations used throughout
the thesis. However, the material in this section is quite standard and, in general, we
employ the standard symbolism and nomenclature to be found in texts on simplicial
homotopy theory, mainly in [68] and [104], so the expert reader may skip most of it.
The most original part is in Subsection 1.2.2, related to the extension condition and
the bihomotopy relation on bisimplicial sets.

1.2.1 Kan complexes: Fundamental groupoids and homotopy
groups.

We start by fixing some notations. In the simplicial category1 ∆, the generating
coface and codegeneracy maps are denoted by di : [n− 1]→ [n] and si : [n+ 1]→ [n]
respectively. However, for L : ∆op → Set any simplicial set, we write di = L(di) :
Ln → Ln−1 and si = L(si) : Ln → Ln+1 for its corresponding face and degeneracy
maps.

The standard n-simplex is ∆[n] = ∆(−, [n]) and, as is usual, we identify any
simplicial map x : ∆[n] → L with the simplex x(1[n]) ∈ Ln, the image by x of the

basic simplex 1[n] = id : [n] → [n] of ∆[n]. Thus, for example, the ith-face of ∆[n]
is di = ∆(−, di) : ∆[n − 1] → ∆[n], the simplicial map with di(1[n−1]) = di(1[n]).
Similarly, si= ∆(−, si) : ∆[n + 1] → ∆[n] is the simplicial map that we identify with
the degenerated simplex si(1[n]) of ∆[n].

The boundary ∂∆[n] ⊂ ∆[n] is the smallest simplicial subset containing all the
faces di : ∆[n − 1] → ∆[n], 0 ≤ i ≤ n, of ∆[n]. Similarly, for any given k with

1Throughout this chapter we use the convention that there is a morphism j → i for every i ≤ j in
[n]. This convention is different in the others chapter of the thesis and it only amounts to changing
certain subindices. We decided to maintain it as in the original published paper to avoid introducing
potential errors in the formulas.
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0 ≤ k ≤ n, the kth-horn, Λk[n] ⊂ ∆[n], is the smallest simplicial subset containing all
the faces di : ∆[n − 1] → ∆[n] for 0≤ i≤ n and i 6= k. For a more geometric (and
useful) description of these simplicial sets, recall that there are coequalizers⊔

0≤i<j≤n
∆[n− 2]⇒

⊔
0≤i≤n

∆[n− 1]→ ∂∆[n], (1.1)

and ⊔
0≤ i<j≤n
i 6= k 6= j

∆[n− 2]⇒
⊔

0≤ i≤n
i 6= k

∆[n− 1]→ Λk[n], (1.2)

given by the relations djdi = didj−1 if i<j.
A simplicial set L is a Kan complex if it satisfies the so-called extension condition.

Namely, for any simplicial diagram

Λk[n] //
� _

��

L

∆[n]

==

there is a map ∆[n]→ L (the dotted arrow) making the diagram commute.
In a Kan complex L, two simplices x, x′ : ∆[n] → L are said to be homotopic

whenever they have the same faces and there is a homotopy from x to x′, that is, a
simplex y : ∆[n+ 1]→ L making this diagram commutative

∂∆[n+ 1]
(xd0sn−1, ··· ,xdn−1sn−1, x, x′) //

� _

��

L.

∆[n+ 1]

y

33

Being homotopic establishes an equivalence relation on the simplices of L, and we
write

[x] (1.3)

for the homotopy class of a simplex x. A useful result is the following:

Fact 1.1 Let y, y′ :∆[n+1]→ L be two simplices such that [ydi] = [y′di] for all i 6= k;
then [ydk] = [y′dk].

The fundamental groupoid of L, denoted by

PL, (1.4)

also called its Poincaré groupoid, has objects the vertices a : ∆[0]→ L, and a morphism
[x] : a→ b is the homotopy class of a simplex x : ∆[1]→ L with xd0 = a and xd1 = b.
The composition in PL is defined by

[x] ◦ [x′] = [yd1],
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where y : ∆[2] → L is any simplex with yd2 = x and yd0 = x′, and the identities are
1a = [as0].

The set of path components of L, denoted by π0L, is the set of connected compo-
nents of PL, so it consists of all homotopy classes of the 0-simplices of L. For any
given vertex of the Kan complex a :∆[0]→ L, π0(L, a) is the set π0L, pointed by [a],
the component of a. The group of automorphisms of a in the fundamental groupoid
of L is π1(L, a), the fundamental group of L at a. Furthermore, denoting every com-
posite map ∆[m] → ∆[0]

a→ L by a as well, the nth homotopy group πn(L, a) of L at
a consists of homotopy classes of simplices x :∆[n]→ L for all simplices x with faces
xdi = a, for 0≤ i≤ n. The multiplication in the (abelian, for n≥ 2) group πn(L, a) is
given by

[x] ◦ [x′] = [ydn],

where y :∆[n+ 1]→ L is a (any) solution to the extension problem

Λn[n+ 1]
(a, ··· ,a, x′,−, x)//

� _

��

L.

∆[n+ 1]

y

55

The following fact is used several times throughout the chapter:

Fact 1.2 Let L be a Kan complex and n an integer such that the homotopy groups
πn(L, a) vanish for all base vertices a. Then, every extension problem

∂∆[n+ 1] //
� _

��

L

∆[n+ 1]
∃?

99

has a solution. In particular, any two n-simplices with the same faces are homotopic.

We shall end this preliminary subsection by recalling that two simplicial maps
f, g :L→ L′ are homotopic whenever there is a map L × ∆[1] → L′ which is f on
L× 0 and g on L × 1. The resulting homotopy relation becomes a congruence on
the category KC of Kan complexes, and the corresponding quotient category is the
homotopy category of Kan complexes, Ho(KC). A map between Kan complexes is a
homotopy equivalence if it induces an isomorphism in the homotopy category. The
following result is known as Whitehead’s theorem for Kan complexes:

Fact 1.3 A simplicial map between Kan complexes, L→ L′, is a homotopy equiva-
lence if and only if it induces an isomorphism πi(L, a) ∼= πi(L

′, fa) for all base vertex
a of L and any integer i ≥ 0.
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1.2.2 Bisimplicial sets: The extension condition and the
bihomotopy relation.

It is often convenient to view a bisimplicial set K : ∆op×∆op → Set as a (horizontal)
simplicial object in the category of (vertical) simplicial sets. For this case, we write
dh
i =K(di, 1) :Kp,q → Kp−1,q and sh

i =K(si, 1) : Kp,q → Kp+1,q for the horizontal face
and degeneracy maps, and, similarly dv

j = K(1, dj) and sv
j = K(1, sj) for the vertical

ones.
For simplicial sets X and Y , let X×̃Y be the bisimplicial set with (X×̃Y )p,q =

Xp×Yq. The standard (p, q)-bisimplex is

∆[p, q] := ∆×∆(−, ([p], [q])) = ∆[p]×̃∆[q],

the bisimplicial set represented by the object ([p], [q]), and usually we identify any
bisimplicial map x : ∆[p, q] → K with the (p, q)-bisimplex x(1[p], 1[q]) ∈ K. The
functor ([p], [q]) 7→ ∆[p, q] is then a co-bisimplicial bisimplicial set, whose cofaces and
codegeneracy operators are denoted by dih, djv, and so on, as in the diagram

∆[p− 1, q]
dih=di×̃1

// ∆[p, q]
sih=si×̃1

oo
sjv=1×̃sj

// ∆[p, q − 1]
djv=1×̃djoo .

The (k, l)th-horn Λk,l[p, q], for any integers 0≤ k≤ p and 0≤ l≤ q, is the bisimpli-

cial subset of ∆[p, q] generated by the horizontal and vertical faces ∆[p−1, q]
dih
↪→ ∆[p, q]

and ∆[p, q − 1]
djv
↪→∆[p, q] for all i 6= k and j 6= l. There is a natural pushout diagram

Λk[p]×̃Λl[q] �
� //

� _

��

∆[p]×̃Λl[q]� _

��
Λk[p]×̃∆[q] �

� // Λk,l[p, q],

which, taking into account the coequalizers (1.2), states that the system of data to
define a bisimplicial map x : Λk,l[p, q]→ K consists of a list of bisimplices

x = (x0, . . . , xk−1,−, xk+1, . . . , xp;x
′
0, . . . , x

′
l−1,−, x′l+1, . . . , x

′
q),

where xi : ∆[p− 1, q]→ K and x′j : ∆[p, q− 1]→ K, such that the following compati-
bility conditions hold:

- xjd
i
h = xid

j−1
h , for all 0 ≤ i < j ≤ p with i 6= k 6= j,

- x′jd
i
v = x′id

j−1
v , for all 0 ≤ i < j ≤ q with i 6= l 6= j,

- x′jd
i
h = xid

j
v , for all 0 ≤ i ≤ p, 0 ≤ j ≤ q with i 6= k, j 6= l.
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Definition 1.1 A bisimplicial set K satisfies the extension condition if all simplicial
sets Kp,∗ and K∗,q are Kan complexes, that is, if any of the extension problems

∆[p]×̃Λl[q] //
� _

��

K

∆[p, q]
∃?

88 Λk[p]×̃∆[q] //
� _

��

K

∆[p, q]
∃?

88

has a solution, and, moreover, if there is also a solution for any extension problem of
the form

Λk,l[p, q] //
� _

��

K

∆[p, q] .
∃?

::

When a bisimplicial set K satisfies the extension condition, then every bisimplex
x : ∆[p, q]→ K, which can be regarded both as a simplex of the vertical Kan complex
Kp,∗ and as a simplex of the horizontal Kan complex K∗,q, defines both a vertical
homotopy class and a horizontal homotopy class, denoted respectively by

[x]v, [x]h. (1.5)

The following lemma is needed.

Lemma 1.1 Let x, x′ : ∆[p, q]→ K be bisimplices of bisimplicial set K, which satis-
fies the extension condition. The following conditions are equivalent:

i) There exists y : ∆[p, q]→ K such that [x]h = [y]h and [y]v = [x′]v,
ii) There exists z : ∆[p, q]→ K such that [x]v = [z]v and [z]h = [x′]h.

Proof: We only prove that i) implies ii) since the proof for the other implication is
similar. Let α : ∆[p+1, q]→ K be a horizontal homotopy (i.e., a homotopy in the Kan
complex K∗,q) from x to y, and let β : ∆[p, q+1]→ K be a vertical homotopy from y to
x′. Since K satisfies the extension condition, a bisimplicial map Γ : ∆[p+1, q+1]→ K
can be found such that the diagram below commutes.

Λp,q+1[p+ 1, q + 1]
(βd0

hs
p−1
h ,..., βdp−1

h sp−1
h ,−, β;αd0

vs
q−1
v ,..., αdq−1

v sq−1
v , α,−)

//
� _

��

K

∆[p+ 1, q + 1]

Γ

22

Then, by taking α′ = Γdq+1
v : ∆[p + 1, q] → K, β′ = Γdph : ∆[p, q + 1] → K, and

z = α′dph = β′dq+1
v : ∆[p, q] → K, one sees that α′ becomes a horizontal homotopy

(i.e., a homotopy in K∗,q) from z to x′ and β′ becomes a vertical homotopy from x to
z. Therefore, [x]v = [z]v and [z]h = [x′]h, as required. �

The two simplices x, x′ : ∆[p, q] → K in the above Lemma 1.1 are said to be
bihomotopic if the equivalent conditions i) and ii) hold.
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Lemma 1.2 If K is a bisimplicial set satisfying the extension condition, then ‘to be
bihomotopic’ is an equivalence relation on the bisimplices of bidegree (p, q) of K, for
any p, q ≥ 0.

Proof: The relation is obviously reflexive, and it is symmetric thanks to Lemma 1.1.
For transitivity, suppose x, x′, x′′ : ∆[p, q] → K such that x and x′ are bihomotopic
as well as x′ and x′′ are. Then, for some y, y′ : ∆[p, q] → K, we have [x]h = [y]h,
[y]v = [x′]v, [x′]h = [y′]h, and [y′]v = [x′′]v. Also, again by Lemma 1.1, there is
z : ∆[p, q] → K such that [y]h = [z]h and [z]v = [y′]v. It follows that [x]h = [z]h and
[z]v = [x′′]v, whence x and x′′ are bihomotopic. �

We will write

[[x]] (1.6)

for the bihomotopic class of a bisimplex x : ∆[p, q]→ K.

Lemma 1.3 Let K be any bisimplicial set satisfying the extension condition. There
are four well-defined mappings such that [[x]] 7→ [xdih]v, [[x]] 7→ [xdjv]h, [x]h 7→ [[xsjv]],
and [x]v 7→ [[xsih]] respectively, for any x : ∆[p, q]→ K, 0 ≤ i ≤ p and 0 ≤ j ≤ q.

Proof: Suppose that [[x]] = [[x′]]. Then, [x]h = [y]h and [y]v = [x′]v, for some
y : ∆[p, q] → K. It follows that xdih = ydih and there is a vertical homotopy, say z :
∆[p, q+1]→ K, from y to x′. As zdih : ∆[p−1, q+1]→ K is then a vertical homotopy
from ydih to x′dih, we conclude that [xdih]v = [x′dih]v. The proof that [xdiv]h = [x′div]h is
similar. For the third mapping, note that any horizontal homotopy y : ∆[p+1, q]→ K
from x to x′ yields the horizontal homotopy ysjv : ∆[p + 1, q + 1] → K from xsjv to
x′sjv. Therefore, [xsjv]h = [x′sjv]h, whence [[xsjv]] = [[x′sjv]], as required. Similarly, we
see that [x]v = [x′]v implies [[xsih]] = [[x′sih]]. �

We shall end this subsection by remarking that any bisimplicial set K, satisfying
the extension condition, has associated horizontal fundamental groupoids PK∗,q, one
for each integer q ≥ 0, whose objects are the bisimplices x : ∆[0, q] → K and mor-
phisms [y]h : x′ → x horizontal homotopy classes of bisimplices y : ∆[1, q] → K with
yd0

h = x′ and yd1
h = x. The composition in these groupoids PK∗,q is written using the

symbol ◦h, so the composite of [y]h with [y′]h : x′′ → x′ is

[y]h ◦h [y′]h = [γd1
h]h,

where γ : ∆[2, q] → K is a (any) bisimplex with γd2
h = y and γd0

h = y′. The
identities are denoted by 1h

x, that is, 1h
x = [xs0

h]h. Similarly, K also has associated
vertical fundamental groupoids PKp,∗, whose morphisms [z]v : zd0

v → zd1
v are vertical

homotopy classes of bisimplices z : ∆[p, 1]→ K. For these, we use the symbol ◦v for
denoting the composition and 1v for identities.
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1.2.3 Weak homotopy types: Some related constructions.

Let Top denote the category of spaces and continuous maps. A map X → X ′ in
Top is a weak equivalence if it induces an isomorphism πi(X, a) ∼= πi(X

′, fa) for all
base points a of X and i ≥ 0. The category of weak homotopy types is defined as the
localization of the category of spaces with respect to the class of weak equivalences
[82, 108] and, for any given integer n, the category of homotopy n-types is its full
subcategory given by those spaces X with πi(X, a) = 0 for any integer i> n and any
base point a.

There are various constructions on (bi)simplicial sets that traditionally aid in the
algebraic study of homotopy n-types. Below is a brief review of the constructions used
in this work.

Segal’s geometric realization functor [111], for simplicial spaces K : ∆op → Top, is
denoted by K 7→ |K|. Recall that it is defined as the left adjoint to the functor that
associates to a space X the simplicial space [n] 7→ X∆n , where

∆n = {(t0, . . . , tn)∈Rn+1 |Σ ti=1, 0≤ ti≤1}

denotes the affine simplex having [n] as its set of vertices and X∆n is the the function
space of continuous maps from ∆n to X, given the compact-open topology. The
underlying simplicial set is the singular complex of X, denoted by

SX. (1.7)

For instance, by regarding a set as a discrete space, the (Milnor’s) geometric
realization of a simplicial set L : ∆op → Set is

|L|, (1.8)

which is a CW-complex whose n-cells are in one-to-one correspondence with the n-
simplices of L which are nondegenerate. The following six facts are well-known:

Facts 1.4 1. For any space X, SX is a Kan complex.

2. For any Kan complex L, there are natural isomorphisms πi(L, a) ∼= πi(|L|, |a|),
for all base vertices a : ∆[0]→ L and n ≥ 0.

3. A simplicial map between Kan complexes L → L′ is a homotopy equivalence if
and only if the induced map on realizations |L| → |L′| is a homotopy equivalence.

4. For any Kan complex L, the unit of the adjunction L → S|L| is a homotopy
equivalence.

5. A continuous map X → Y is a weak homotopy equivalence if and only if the
induced SX → SY is a homotopy equivalence.

6. For any space X, the counit |SX| → X is a weak homotopy equivalence.
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When a bisimplicial set K : ∆op×∆op → Set is regarded as a simplicial object in
the simplicial set category and one takes geometric realizations, then one obtains a
simplicial space ∆op → Top, [p] 7→ |Kp,∗|, whose Segal realization is taken to be |K|,
the geometric realization of K. As there are natural homeomorphisms [109, Lemma
on page 86]

|[p] 7→ |Kp,∗|| ∼= |diagK| ∼= |[q] 7→ |K∗,q||,

where diagK is the simplicial set obtained by composing K with the diagonal functor
∆→ ∆×∆, [n] 7→ ([n], [n]), one usually takes

|K| = |diagK|. (1.9)

Composing with the ordinal sum functor or : ∆ ×∆ → ∆, ([p], [q]) 7→ [p+1+q],
gives Illusie’s total Dec functor, L 7→ DecL, from simplicial to bisimplicial sets [85,
VI, 1.5]. More specifically, for any simplicial set L, DecL is the bisimplicial set whose
bisimplices of bidegree (p, q) are the (p+1+q)-simplices of L, x : ∆[p+1+q] → L,
and whose simplicial operators are given by xdih = xdi, xsih = xsi, for 0 ≤ i ≤ p, and

xdjv = dp+1+j , xsjv = xsp+1+j , for 0 ≤ j ≤ q. The functor Dec has a right adjoint [59]

Dec aW, (1.10)

often called the codiagonal functor, whose description is as follows [3, III]: for any
bisimplicial set K, an n-simplex of WK is a bisimplicial map

n⊔
p=0

∆[p, n−p]
(x0,...,xn) // K

such that xpd
0
v = xp+1d

p+1
h , for 0 ≤ p < n, whose faces and degeneracies are given by

(x0, . . . , xn)di = (x0d
i
v, . . . , xi−1d

1
v, xi+1d

i
h, . . . , xnd

i
h),

(x0, . . . , xn)si = (x0s
i
v, . . . , xis

0
v, xis

i
h, . . . , xns

i
h) .

The unit and the counit of the adjunction, u : L → W DecL and v : DecWK → K,
are respectively defined by

u(y) = (ys0, . . . , ysn) (y : ∆[n]→ L)

v(x0, . . . , xp+1+q) = xp+1d
0
h ((x0, . . . , xp+1+q) :∆[p, q]→ DecWX) .

The following facts are used in our development below:

Facts 1.5 1. For each n ≥ 0, there is a natural Alexander-Whitney type diagonal
approximation

φ : Dec∆[n]→ ∆[n, n],

(∆[p+1+q]
x→ ∆[n]) 7→ (∆[p]

x(dp+1)q−→ ∆[n],∆[q]
x(d0)p+1

−→ ∆[n])
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such that, for any bisimplicial set K, the induced simplicial map φ∗ :diagK →WK
determines a homotopy equivalence

|diagK| ' |WK|

on the corresponding geometric realizations [49, Theorem 1.1].

2. For any simplicial map f : L → L′, the induced |f | : |L| → |L′| is a homotopy
equivalence if and only if the induced |Decf | : |DecL| → |DecL′| is a homotopy
equivalence [49, Corollary 7.2].

3. For any simplicial set L and any bisimplicial set K, both induced maps |u| : |L| →
|WDecL| and |v| : |DecWK| → |K| are homotopy equivalences [49, Proposition
7.1 and discussion below].

4. If K is any bisimplicial set satisfying the extension condition, then WK is a
Kan complex [51, Proposition 2].

5. If L is a Kan complex, then DecL satisfies the extension condition (the proof is
a straightforward application of [104, Lemma 7.4]) or [51, Lemma 1]) .

1.3 Double groupoids satisfying the filling condition:
Homotopy groups.

A (small) double groupoid [31, 62, 63, 92] is a groupoid object in the category of
small groupoids. In general, we employ the standard nomenclature concerning double
categories but, for the sake of clarity, we shall fix some terminology and notations
below.

A (small) category can be described as a system (M,O, s, t, 1, ◦), where M is the
set of morphisms, O is the set of objects, s, t : M → O are the source and target
maps, respectively, 1 : O → M is the identities map, and ◦ : M s×tM → M is the
composition map, subject to the usual associativity and identity axioms. Therefore,
a double category provides us with the following data: a set O of objects, a set H
of horizontal morphisms, a set V of vertical morphisms, and a set C of squares, to-
gether with four category structures, namely, the category of horizontal morphisms
(H,O, sh, th, 1h, ◦h), the category of vertical morphisms (V,O, sv, tv, 1v, ◦v), the hor-
izontal category of squares (C, V, sh, th, 1h, ◦h), and the vertical category of squares
(C,H, sv, tv, 1v, ◦v). These are subject to the following three axioms:

Axiom 1


(i) shsv = svsh, thtv = tvth, shtv = tvsh, svth = thsv,
(ii) sh1v = 1vsh, th1v = 1vth, sv1h = 1hsv, tv1h = 1htv,
(iii) 1h1v = 1v1h.
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Equalities in Axiom 1 allow a square α ∈ C to be depicted in the form

d b
goo

α
c

w
OO

a
f
oo

u
OO (1.11)

where shα = u, thα = w, svα = f and tvα = g, and the four vertices of the square
representing α are shsvα = a, thtvα = d, shtvα = b and svthα = c. Moreover, if we
represent identity morphisms by the symbol , then, for any horizontal morphism
f , any vertical morphism u, and any object a, the associated identity squares 1v

f , 1h
u

and 1a :=1h
1v
a

= 1v
1h
a

are respectively given in the form

· ·foo

·
1v
f
·

f
oo

· ·

·
u 1h

u

OO

·
u
OO · ·

·
1a
·

The equalities in Axiom 2 below show the squares are compatible with the bound-
aries, whereas Axiom 3 establishes the necessary coherence between the two vertical
and horizontal compositions of squares.

Axiom 2


(i) sv(α ◦h β) = svα ◦h svβ, tv(α ◦h β) = tvα ◦h tvβ,
(ii) sh(α ◦v β) = shα ◦v shβ, th(α ◦v β) = thα ◦v thβ,
(iii) 1v

f◦hf ′ = 1v
f ◦h 1v

f ′ , 1h
u◦vu′ = 1h

u ◦v 1h
u′ .

Axiom 3 In the situation
· ·oo ·oo

α β
·

OO

·oo

OO

·

OO

oo

γ δ
·

OO

·oo

OO

·oo

OO

the interchange law holds, that is, (α ◦h β) ◦v (γ ◦h δ) = (α ◦v γ) ◦h (β ◦v δ).

A double groupoid is a double category such that all the four component categories
are groupoids. We shall use the following notation for inverses in a double groupoid:
f -1h denotes the inverse of a horizontal morphism f , and u-1v denotes the inverse of a
vertical morphism u. For any square α as in (1.11), the first one of

b d
g-1hoo

α-1h

a

u

OO

c,
f -1h

oo
w

OO c a
foo

α-1v

d
w-1v

OO

b,g
oo

u-1v

OO a c
f -1hoo

α-1

b
u-1v

OO

d,
g-1h

oo
w-1v

OO (1.12)

is the inverse of α in the horizontal groupoid of squares, the second one denotes
the inverse of α in the vertical groupoid of squares, and the third one is the square
(α-1h)-1v = (α-1v)-1h , which is denoted simply by α-1.
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The double groupoids we are interested in satisfy the condition below.

Filling condition : Any filling problem

· ·goo

∃?
·

OO

·oo
u
OO

has a solution; that is, for any horizontal morphism g and any vertical morphism
u such that shg = tvu, there is a square α with shα = u and tvα = g.

As we recalled in the introduction, this filling condition on double groupoids is
often satisfied for those double groupoids arising in algebraic topology. However,
we should stress the existence of double groupoids which do not satisfy the filling
condition (see [50, Example] for instances). Later in Sections 1.4 and 1.6, we show two

new homotopical double groupoid constructions: one, Π
(2
X, for topological spaces X,

and the other, P
(2
K, for bisimplicial sets K, both yielding double groupoids satisfying

the filling condition.
The remainder of this section is devoted to defining homotopy groups, πi(G, a), for

double groupoids G satisfying the filling condition. The useful observation below is a
direct consequence of [1, Lemma 1.12].

Lemma 1.4 A double groupoid G satisfies the filling condition if and only if any filling
problem such as the one below has a solution.

· ·oo

∃?
·

w
OO

·
f
oo

,
OO · ·oo

∃?
·

OO

·
f
oo

u ,
OO · ·goo

∃?
·

w
OO

·oo
,
OO

Hereafter, we assume G is a double groupoid satisfying the filling condition.

1.3.1 The pointed sets π0(G, a).

We state that two objects a, b of G are connected whenever there is a pair of morphisms
(g, u) in G of the form

b ·goo

a
u ,
OO

that is, where g is a horizontal morphism and u a vertical morphism such that shg =
tvu, thg = b, and svu = a. Because of the filling condition, this is equivalent to saying
that there is a square in G of the form

b ·goo

α
·

w
OO

a
f
oo

u ,
OO
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and it is also equivalent to saying that there is a pair of matching morphisms (w, f)
as

b

·
w
OO

a.
foo

If a and b are recognized as being connected by means of the pair of morphisms
(g, u) as above, then the pair (u-1v , g-1h) shows that b is connected to a. Hence, being
connected is a symmetric relation on the set of objects of G. This relation is clearly
reflexive thanks to the identity morphisms (1h

a, 1
v
a), and it is also transitive. Suppose

a is connected with b, which itself is connected with another object c. Then, we have
morphisms u, f, v, g as in the diagram

c ·goo ·g′oo

b

v
OO
β
·

f
oo

u′
OO

a

u
OO

where β is any square with thβ = v and svβ = f , and the dotted g′ and u′ are the
other sides of β. Consequently, on considering the pair of composites (g ◦h g′, u′ ◦v u),
we see that a and c are connected.

Therefore, being connected establishes an equivalence relation on the objects of
the double groupoid and, associated to G, we take

π0G = the set of connected classes of objects of G,

and we write π0(G, a) for the set π0G pointed with the class [a] of an object a of G.

1.3.2 The groups π1(G, a)

Let a be any given object of G, and let

G(a) =

 a ·goo

a
u
OO


be the set of all pairs of morphisms (g, u), where g is a horizontal morphism and u a
vertical morphism in G such that thg = a = svu and shg = tvu.

Define a relation ∼ on G(a) by the rule (g, u) ∼ (g′, u′) if and only if there are two
squares α and α′ in G of the form

a ·goo

·
w
OO
α
a

f
oo

u
OO a ·g′oo

·
w
OO
α′

a
f
oo

u′
OO
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that is, such that thα = thα′, svα = svα′, shα = u, shα′ = u′, tvα = g, and tvα′ = g′.

Lemma 1.5 The relation ∼ is an equivalence.

Proof: Since G satisfies the filling condition, the relation is clearly reflexive, and it
is obviously symmetric. To prove transitivity, suppose (g, u) ∼ (g′, u′) ∼ (g′′, u′′), so
that there are squares α, α′, β and β′ as below.

a ·goo

·
w
OO
α
a

f
oo

u
OO a ·g′oo

·
w
OO
α′

a
f
oo

u′
OO a ·g′oo

·
w′
OO
β
a

f ′
oo

u′
OO a ·g′′oo

·
w′
OO
β′

a
f ′
oo

u′′
OO

Then, we have the horizontally composable squares

a ·g′oo a
g′-1h
oo ·goo

·
w′
OO
β

a

OO

f ′
oo

α′-1h

·
f -1h

oo

OO
α

a
f
oo

u
OO

whose composition β◦hα′-1h◦hα and β′ show that (g, u) ∼ (g′′, u′′). �
We write [g, u] for the ∼-equivalence class of (g, u) ∈ G(a). Now we define a

product on
π1(G, a) := G(a)�∼

as follows: given [g1, u1], [g2, u2] ∈ π1(G, a), by the filling condition on G, we can
choose a square γ with svγ = g2 and thγ = u1 so that we have a configuration in G of
the form

a ·g1oo ·goo

a

OO
u1 γ

·g2

oo
u
OO

a
u2

OO

where g = tvγ and u = shγ. Then we define

[g1, u1] ◦ [g2, u2] = [g1 ◦h g, u ◦v u2]

Lemma 1.6 The product is well defined.

Proof: Let [g1, u1] = [g′1, u
′
1], [g2, u2] = [g′2, u

′
2] be elements of π1(G, a). Then, there

are squares

a ·g1oo

·
w1

OO
α
a

f1

oo
u1

OO a ·
g′1oo

·
w1
OO
α′

a
f1

oo
u′1
OO a ·g2oo

·
w2

OO
β
a

f2

oo
u2

OO a ·
g′2oo

·
w2

OO
β′

a
f2

oo
u′2
OO
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and choosing squares γ and γ′ as in

· ·goo

a
u1

OO
γ
·g2

oo
u
OO · ·g′oo

a
u′1
OO
γ′

·
g′2

oo
u′
OO

we have [g1, u1] ◦ [g2, u2] = [g1 ◦h g, u ◦v u2] and [g′1, u
′
1] ◦ [g′2, u

′
2] = [g′1 ◦h g′, u′ ◦v u′2].

Now, letting θ be any square with tvθ = f1 and shθ = w2, we have squares as in

a ·g1oo ·goo

α γ
·

w1

OO

aoo

OO

·
u
OO

oo

θ β

·

OO

·oo

OO

a
f2

oo
u2

OO

a ·
g′1oo ·g′oo

α′ γ′

·
w1

OO

aoo

OO

·
u′
OO

oo

θ β′

·

OO

·oo

OO

a
f2

oo
u′2

OO

whose corresponding composites (α◦h γ)◦v (θ ◦h β) and (α′ ◦h γ′)◦v (θ ◦h β′) show that
[g1 ◦h g, u ◦v u2] = [g′1 ◦h g′, u′ ◦v u′2], as required. �

Lemma 1.7 The given multiplication turns π1(G, a) into a group.

Proof: To see the associativity, let [g1, u1], [g2, u2], [g3, u3] ∈ π1(G, a), and choose γ, γ′

and γ′′ any three squares as in the diagram (1.13) below. Then we have

([g1, u1] ◦ [g2, u2]) ◦ [g3, u3] = [g1 ◦h g ◦h g′, u ◦v u′ ◦v u3] = [g1, u1] ◦ ([g2, u2] ◦ [g3, u3]).

a ·g1oo ·goo ·g′oo

a
u1

OO
γ
·
γ′

g2

oo

OO

·oo
u
OO

a
u2

OO
γ′′

·g3

oo
u′
OO

a
u3

OO

(1.13)

The identity of π1(G, a) is [1h
a, 1

v
a]. In effect, if [g, u] ∈ π1(G, a), then the diagrams

a x
goo x

a

OO
u 1h

u
a
u
OO

a

a a x
goo

a
1v
g
xg

oo

a
u
OO

show that

[g, u] ◦ [1h
a, 1

v
a] = [g ◦h 1h

x, u ◦v 1v
a] = [g, u] = [1h

a ◦h g, 1v
x ◦v u] = [1h

a, 1
v
a] ◦ [g, u].
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Finally, to see the existence of inverses, let [g, u] ∈ π1(G, a). By choosing any
square α with thα = u-1v and svα = g-1h , that is, of the form

a ·foo

·
u-1v
OO
α
a

g-1h

oo
v
OO

we find [f, v] := [tvα, shα] ∈ π1(G, a). Since the diagrams

a ·goo a
g-1hoo

a

OO
u
OO
α-1v

·
f
oo

v-1v

OO

a
v
OO

a ·foo a
f -1hoo

a

OO
v
OO
α-1h

·g
oo

u-1v

OO

a
u
OO

show that [g, u] ◦ [f, v] = [1h
a, 1

v
a] = [f, v] ◦ [g, u], we have [g, u]-1 = [f, v]. �

1.3.3 The abelian groups πi(G, a), i ≥ 2.

These are easier to define than the previous ones. For i = 2, as in [31, Section 2],
we take

π2(G, a) =

{
a a
α

a a

}
the set of all squares α ∈ G whose boundary edges are shα = thα = 1v

a and svα =
tvα = 1h

a.
By the general Eckman-Hilton argument, it is a consequence of the interchange

law that, on π2(G, a), operations ◦h and ◦v coincide and are commutative. In effect,
for α, β ∈ π2(G, a),

α ◦h β = (α ◦v 1a) ◦h (1a ◦v β) = (α ◦h 1a) ◦v (1a ◦h β)

= α ◦v β
= (1a ◦h α) ◦v (β ◦h 1a) = (1a ◦v β) ◦h (α ◦v 1a)

= β ◦h α.

Therefore, π2(G, a) is an abelian group with product

α ◦h β = α ◦v β ,

identity 1a = 1v
1h
a
, and inverses α-1h = α-1v .

The higher homotopy groups of the double groupoid are defined to be trivial, that
is,

πi(G, a) = 0 if i ≥ 3.
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1.3.4 Weak equivalences.

A double functor F : G → G′ between double categories takes objects, horizontal and
vertical morphisms, and squares in G to objects, horizontal and vertical morphisms,
and squares in G′, respectively, in such a way that all the structure categories are
preserved.

Clearly, each double functor F : G → G′, between double groupoids satisfying the
filling condition, induces maps (group homomorphisms if i > 0)

πiF : πi(G, a)→ πi(G′, Fa)

for i ≥ 0 and a any object of G. Call such a double functor a weak equivalence if it
induces isomorphisms πiF for all integers i ≥ 0.

1.4 A homotopy double groupoid for topological spaces.

Our aim here is to provide a new construction of a double groupoid for a topological
space that, as we will see later, captures the homotopy 2-type of the space. For any
given space X, the construction of this homotopy double groupoid, denoted by Π

(2
X,

is as follows:
The objects in Π

(2
X are the paths inX, that is, the continuous maps u :I=[0, 1]→X.

The groupoid of horizontal morphisms in Π
(2
X is the category with a unique mor-

phism between each pair (u′, u) of paths in X such that u′(1) = u(1), and, similarly,

the groupoid of vertical morphisms in Π
(2
X is the category having a unique morphism

between each pair (v, u) of paths in X such that v(0) = u(0).

A square in Π
(2
X, [α], with a boundary as in

v′ voo

[α]
u′

OO

uoo

OO
(1.14)

is the equivalence class, [α], of a map α :I2→X whose effect on the boundary ∂(I2) is
such that α(x, 0) = u(x), α(0, y) = v(y), α(1, 1− y) = u′(y), and α(1− x, 1) = v′(x),
for x, y ∈ I. We call such an application a “square in X” and draw it as

· ·v′oo
u′
��α

·
v
OO

u
// ·

Observe that the arrows representing the paths u′ and v′ above are reversed from
those that might be expected, namely, their corresponding inverses y 7→ α(1, y) =
u′(1 − y) = u′−1(y) and x 7→ α(x, 1) = v′(1 − x) = v′−1(x), respectively. The reason
for that is precisely to avoid the use of inverse paths, which could be confusing in our
context (where a path is a vertex).
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Two such mappings α, α′ are equivalent, and then represent the same square in
Π

(2
X, whenever they are related by a homotopy relative to the sides of the square,

that is, if there exists a continuous map H : I2 × I → X such that H(x, y, 0) =
α(x, y), H(x, y, 1) = α′(x, y), H(x, 0, t) = u(x), H(0, y, t) = v(y), H(x, 1, t) = v′(1−
x) and H(1, y, t) = u′(1− y), for x, y, t ∈ I.

Given the squares in Π
(2
X

w′ woo

[β]

v′′ v′oo

OO

voo

OO

[α′] [α]

u′′

OO

u′oo

OO

uoo

OO

the corresponding composite squares

v′′ voo

[α′]◦h [α]

u′′

OO

uoo

OO w′ woo

[β]◦v [α]

u′

OO

uoo

OO

are defined to be those represented by the squares in X

· ·v′′oo

u′′

��
·

^^
v′

��
u′

·

v

OO

u
//

α

α′

·

·
β

α

·w′oo

u′

��

��
v′

·

·

w

OO

u
//

@@
v

·

obtained, respectively, by pasting α′ with α, and β with α, along their common pair
of sides. That is,

[α′] ◦h [α] = [α′ ◦h α], [β] ◦v [α] = [β ◦v α],

where

(α′ ◦h α)(x, y) =


α(2x, x+ y) if x ≤ y, x+ y ≤ 1,
α(x+ y, 2y) if x ≥ y, x+ y ≤ 1,
α′(x+ y − 1, 2y − 1) if x ≤ y, x+ y ≥ 1,
α′(2x− 1, x+ y − 1) if x ≥ y, x+ y ≥ 1,

(1.15)

(β ◦v α)(x, y) =


α(2x− 1, 1− x+ y) if x ≥ y, x+ y ≥ 1,
α(x− y, 2y) if x ≥ y, x+ y ≤ 1,
β(1 + x− y, 2y − 1) if x ≤ y, x+ y ≥ 1,
β(2x, y − x) if x ≤ y, x+ y ≤ 1.

It is not hard to see that both the horizontal and vertical compositions of squares
in Π

(2
X are well defined. For example, to prove that [α] = [α1] and [α′] = [α′1] imply
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[α′ ◦h α] = [α′1 ◦h α1], let H,H ′ : I2 × I → X be homotopies (rel ∂(I2)) from α to α1

and from α′ to α′1 respectively. Then, a homotopy F : I2 × I → X is defined by

F (x, y, t) =


H(2x, x+ y, t) if x ≤ y, x+ y ≤ 1,
H(x+ y, 2y, t) if x ≥ y, x+ y ≤ 1,
H ′(x+ y − 1, 2y − 1, t) if x ≤ y, x+ y ≥ 1,
H ′(2x− 1, x+ y − 1, t) if x ≥ y, x+ y ≥ 1,

showing that α′ ◦h α and α′1 ◦h α1 represent the same square in Π
(2
X.

The horizontal identity square on a vertical morphism (v, u) is

v v

1h
(v,u) = [eh]

u

OO

u

OO

where

· ·voo

u

��
eh = eh(v, u) =

·

v

OO

u
// ·

is defined by

eh(x, y) =

{
v(y − x) if x ≤ y,
u(x− y) if x ≥ y,

whereas, for any horizontal morphism (u′, u), its corresponding vertical identity square
is

u′ uoo

1v
(u′,u) = [ev]

u′ uoo

where

· ·u′oo

u′

��
ev = ev(u′, u) =

·

u

OO

u
// ·

is defined by

ev(x, y) =

{
u(x+ y) if x+ y ≤ 1,
u′(2− x− y) if x+ y ≥ 1.

(1.16)

Theorem 1.1 Π
(2
X is a double groupoid satisfying the filling condition.
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Proof: The horizontal composition of squares in Π
(2
X is associative since, for any

three composable squares, say

· ·oo ·oo ·oo

[α′′] [α′] [α]

·

OO

·oo

OO

·oo

OO

·oo

OO

,

a relative homotopy

· ·oo

��

·
ii

��

·

\\

!!·

OO

//
α

α′
α′′

·
(α′′◦hα′)◦hα

H //

· ·oo

��

·

aa

��
·

UU

))·

OO

//
α

α′

α′′

·
α′′◦h(α′◦hα)

is given by the formula

H(x, y, t) =

α( 4x
2−t ,

(2+t)x+(2−t)y
2−t ) if x≤y, (2−t)(1−y)≥(2+t)x,

α( (2−t)x+(2+t)y
2−t , 4y

2−t) if x≥y, (2−t)(1−x)≥(2+t)y,

α′(t(1+x−y)+2(x+y−1),x+3y−2+t(1+x−y)) if x≤y, (2−t)(1−y)≤(2+t)x, (1+t)x≤(3−t)(1−y),

α′(3x+y−2+t(1−x+y),t(1−x+y)+2(x+y−1)) if x≥y, (2−t)(1−x)≤(2+t)y, (1+t)y≤(3−t)(1−x),

α′′(x+3y−3+t(1+x−y)
1+t , t−3+4y

1+t ) if x≤y, (1+t)x≥(1−y)(3−t),

α′′( t−3+4x
1+t , 3x+y−3+t(1−x+y)

1+t ) if x≥y, (1+t)y≥(3−t)(1−x).

And, similarly, we prove the associativity for the vertical composition of squares
in Π

(2
X. For identities, let [α] be any square in Π

(2
X as in (1.14). Then, a relative

homotopy

· ·v′oo

u′

��
·

^^
v

��
u

·

v

OO

u
//

eh

α

·

H //
· ·v′oo

u′

��
α

·

v

OO

u
// · ,

between α ◦heh and α is given by the formula

H(x, y, t) =



v(y−x) if x≤y, x≤ 1
2

(1−t)(1+x−y),

u(x−y) if x≥y, x≤ 1
2

(1−t)(1+x−y),

α(x+y−1+t(1+x−y)
1+t , 2y+t−1

1+t ) if 1
2

(1−t)(1+x−y)≤x≤y,

α(2x+t−1
1+t , x+y−1+t(1−x+y)

1+t ) if 1
2

(1−t)(1−x−y)≤y≤x.
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Therefore, [α] ◦h 1h
(v,u) = [α]; and similarly we prove the remaining needed equali-

ties:

[α] = 1h ◦h [α] = [α] ◦v 1v = 1v ◦v [α].

Let us now describe inverse squares in Π
(2
X. For any given square [α] as in (1.14),

its respective horizontal and vertical inverses

v v′oo

[α]-1h

u

OO

u′oo

OO

,

u′ uoo

[α]-1v

v′

OO

voo

OO

,

are represented by the squares in X, α-1h , α-1v : I2 → X, defined respectively by the
formulas

α-1h(x, y) = α(1− y, 1− x), α-1v(x, y) = α(y, x).

The equality [α-1h ] ◦h [α] = 1h
(v,u) holds, thanks to the homotopy

· ·voo

u

��
·

^^
v′

��
u′

·

v

OO

u
//

α

α-1h

·

H //
· ·voo

u

��
eh

·

v

OO

u
// ·

defined by

H(x, y, t) =


α(2x(1−t),(1−2t)x+y) if x≤y, x+y≤1,

α(x+(1−2t)y,2y(1−t)) if x≥y, x+y≤1,

α(2(ty−t−y+1),2(ty−t+1)−x−y) if x≤y, x+y≥1,

α((2x−2)t+2−x−y,(2x−2)t+2−2x) if x≥y, x+y≥1.

And, similarly, one sees the remaining equalities:

[α] ◦h [α]-1h = 1h, [α] ◦v [α]-1v = 1v, [α]-1v ◦v [α] = 1v.

By construction of Π
(2
X, conditions (i) and (ii) in Axiom 1 are clearly satisfied.

For (iii) in Axiom 1, we need to prove that, for any path u : I → X, the equality
1h

(u,u) = 1v
(u,u) holds. This follows from the relative homotopy

· ·uoo

u

��
·

u

OO

u //
eh(u,u)

·

H //

· ·uoo

u

��
·

u

OO

u //
ev(u,u)

·
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defined by

H(x, y, t) =



u(y−x) if x≤y, (1−t)(1−y)≥(1+t)x,

u(2y−1+t(1+x−y)) if x≤y, x+y≤1, (1−t)(1−y)≤(1+t)x,

u(x−y) if x≥y, (1−t)(1−x)≥(1+t)y,

u(2x−1+t(1−x+y)) if x≥y, x+y≤1, (1−t)(1−x)≤(1+t)y,

u(1−2x+t(1+x−y)) if x≤y, x+y≥1, (1+t)(1−y)≥(1−t)x,

u(y−x) if x≤y, x+y≥1, (1+t)(1−y)≤(1−t)x,

u(1−2y+t(1−x+y)) if x≥y, x+y≥1, (1+t)(1−x)≥(1−t)y,

u(x−y) if x≥y, (1+t)(1−x)≤(1−t)y.

The given definition of how squares in Π
(2
X compose makes the conditions (i) and

(ii) in Axiom 2 clear, and the remaining condition (iii) holds since, for any three
paths u, u′, u′′ : I → X with u(1) = u′(1) = u′′(1), there is a relative homotopy

· ·u′′oo

u′′

��
·

__
u′

��
u′

·

u

OO

u // ·
ev(u′′,u′)◦hev(u′,u)

H //

· ·u′′oo

u′′

��
·

u

OO

u // ·,
ev(u′′,u)

defined by

H(x, y, t) =



u(y−x+ 4x
1+t

) if x≤y, (1+t)(1−y)≥(3−t)x,

u′(2−3x−y+t(1+x−y)) if x≤y, x+y≤1, (1+t)(1−y)≤(3−t)x,

u(x−y+ 4y
1+t

) if x≥y, (1+t)(1−x)≥(3−t)y,

u′(2−x−3y+t(1−x+y)) if x≥y, x+y≤1, (1+t)(1−x)≤(3−t)y,

u′(x+3y−2+t(1+x−y)) if x≤y, x+y≥1, (3−t)(1−y)≥(1+t)x,

u′′(y−x+
4(y−1)

1+t
) if x≤y, (3−t)(1−y)≤(1+t)x,

u′(3x+y−2+t(1−x+y)) if x≥y, x+y≥1, (3−t)(1−x)≥(1+t)y,

u′′(x−y+
4(1−x)

1+t
) if x≥y, (3−t)(1−x)≤(1+t)y.

Whence 1v
(u′′,u′) ◦h 1v

(u′,u) = 1v
(u′′,u). Similarly, for any three paths in X, u, v, w : I → X

with u(0) = v(0) = w(0), one proves the equality 1h
(w,v) ◦v 1h

(v,u) = 1h
(w,u).

Then, it only remains to prove the interchange law in Axiom 3. To do so, let

w′′ w′oo woo

[δ] [β]

v′′

OO

v′oo

OO

voo

OO

[γ] [α]

u′′

OO

u′oo

OO

uoo

OO
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be squares in Π
(2
X. Then, the required equality follows from the existence of the

relative homotopy

·
δ

·w′′oo

��

v′′

u′′

��

·
__
w′

��
v′

β · γ

·
__
v′

��
u′

·
(δ◦hβ)◦v(γ◦hα)

??

v

w

OO

u //

α

·

H //

·
δ

·w′′oo

��v
′′

u′′

��

·

β ·
??

v′

__

w′

��v
′

��

u′

γ

·

·
(δ◦vγ)◦h(β◦vα)

??
v

w

OO

u //

α

·

defined by the map H : I2 × I → X such that

H(x, y, t) =

• α(x+y−2ty,4y) if 1−x+2ty≥5y, x−3y≥2ty,

• α(2(x−y)
1+t , 2(x−tx+y+3ty)

2+t−t2 ) if 2+t−t2−6x+4tx+2y≥8ty, (3+2t)y≥x≥y,

• α( t
2−2t+2x−2y+4ty

1−2t+2t2
, 3t2−t(1+4x)+2(x+y)

2−4t+4t2
) if

t2+t(4x−3)≥2(x+y−1),
t2−2x+6y≥t(4x+8y−3),
t2+6x+t(8y−4x−1)≥2(1+y),

• α( t−2(x+y)
t−2 , 2t(x+3y−1)−8y

t2−t−2
) if 1≥x+y, x−1≥(2t−5)y,

2x−t2−6y≥t(3−4x−8y),
• v′(3−t−4x) if x≥y, 1≥x+y, 2(x+y−1)≥t2+t(4x−3),

• γ(4x−3, x+y−1−2t(x−1)) if 5x+y−5≥2t(x−1),2t(x−1)+3x≥y+2,

• γ(6+t2−8x+t(6x+2y−7)
t2−t−2

, 2(x+y−1)
2−t ) if x+y≥1, 5+2t(x−1)≥5x+y,

9t+6x≥4+t2+8tx+2y+4ty,

• γ( t+t
2−4ty+2(x+y−1)

2−4t+4t2
, 1+t2+4t(x−1)−2x+2y

1−2t+2t2
) if

t+t2+2(x+y−1)≥4ty,
t2+2(1+x−3y)≥t(8x−y−3),
4+t2−6x+2y≥t(9−8x−4y),

• γ( t
2−2(x+y−1)+t(3−6x+2y)

t2−t−2
, 1+t−2x+2y

1+t ) if 8tx+6y−4ty≥2+3t+t2+2x,
x≥y, 2+y≥2t(x−1)+3x,

• v′(4y−1−t) if x≥y, x+y≥1, 2+4ty≥t+t2+2x+2y,

• β(4x,x+y−2tx) if 1+2tx≥y+5x, y≥3x+2tx,

• β(2t(y+3x−1)−8x
t2−t−2

, t−2(x+y)
t−2 ) if 1≥x+y, y+(5−2t)x≥1,

2y+t(3−4y−8x)−6x≥t2,

• β(3t2−t(1+4y)+2(x+y)
2−4t+4t2

, t
2−2t+2y−2x+4tx

1−2t+2t2
) if

t2+t(4y−3)≥2(x+y−1),
t2+t(3−4y−8x)+6x≥2y,
t2+6y−2(1+x)≥t(1+4y−8x),

• β(2(y−ty+x+3tx)
2+t−t2 , 2(y−x)

1+t ) if 2+t+4ty+2x≥t2+6y+8tx, (3+2t)x≥y≥x,

• v′(3−t−4y) if y≥x, 1≥x+y, 2(x+y−1)≥t2+t(3−4y),

• δ(2t(1−y)+x+y−1,4y−3) if 5y+x≥5+2t(y−1), 2t(y−1)+3y≥x+2,

• δ(2(x+y−1)
2−t , 6+t2−8y+t(6y+2x−7)

t2−t−2
) if x+y≥1, 9t+6y−8ty−2x−4tx≥4+t2,

5+2t(y−1)≥5y+x,
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• δ(1+t2+4t(y−1)−2y+2x
1−2t+2t2

, t+t
2−4tx+2(x+y−1)

2−4t+4t2
) if

t+t2−4tx≥2(1−x−y),
t2+2(1+y−3x)≥t(8y−4x−3),
4+t2−6y+2x≥t(9−8y−4x),

• δ(1+t−2y+2x
1+t , t

2−2(x+y−1)+t(3−6y+2x)
t2−2−t ) if 8ty+6x−4tx≥2+3t+t2+2y,

y≥x, 2−3y+x≥2t(y−1),
• v′(4y−1−t) if y≥x, x+y≥1, 2+4tx≥t+t2+2y+2x.

Finally, we observe that Π
(2
X satisfies the filling condition. Suppose a configura-

tion of morphisms in Π
(2
X

v′ voo

u

OO

is given. This means we have paths u, v, v′ : I → X with u(0) = v(0) and v(1) = v′(1).
Since the inclusion ∂I ↪→ I is a cofibration, the map f : ({0}× I)∪ (I×∂I)→ X with
f(0, t) = v(t), f(t, 0) = u(t) and f(t, 1) = v′(1− t) for 0 ≤ t ≤ 1, has an extension to

a map α : I × I → X, which precisely represents a square in Π
(2
X of the form

v′ voo

[α]
u′

OO

uoo

OO

where u′ : I → X is the path u′(t) = α(1, 1 − t). Hence, Π
(2
X verifies the filling

condition. �
In the previous Section 1.3 we introduced homotopy groups for double groupoids

satisfying the filling condition. The next proposition provides greater specifics on
the relationship between the homotopy groups of the associated homotopy double
groupoid Π

(2
X to a topological space X and the corresponding for X.

Theorem 1.2 For any space X, any path u : I → X, and 0 ≤ i ≤ 2, there is an
isomorphism

πi(Π
(2
X,u) ∼= πi(X,u(0)).

Proof: For any two points x, y ∈ X, the constant paths cx and cy are in the same

connected component of Π
(2
X if and only if there is a pair of morphisms in Π

(2
X of

the form
cy uoo

cx

OO

or, equivalently, if and only if there is a path u : I → X in X such that u(1) = y and
u(0) = x. Then, we have an injective map

π0X → π0Π
(2
X, [x] 7→ [cx],

which is also surjective since, for any path u in X, we have a vertical morphism
u← cu(0) in Π

(2
X; whence the announced bijection π0X ∼= π0Π

(2
X.
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Next, we prove that there is an isomorphism π1(Π
(2
X,u) ∼= π1(X,u(0)) for any

given path u : I → X. To do so, we shall use the fundamental groupoid ΠX of the
space X; that is, the groupoid whose objects are the points of X and whose morphisms
are the (relative to ∂I) homotopy classes [v] of paths v : I → X. Simply by checking

the construction, we see that an element [(u, v), (v, u)] ∈ π1(Π
(2
X,u) is determined by

a path v : I → X, with v(0) = u(0) and v(1) = u(1). Moreover, for any other such

v′ : I → X, it holds that [(u, v), (v, u)] = [(u, v′), (v′, u)] in π1(Π
(2
X,u) if and only if

there are squares in Π
(2
X of the form

u voo

[α]
w

OO

uoo

OO u v′oo

[α′]
w

OO

uoo

OO

or, equivalently, if and only if there are squares in X, α, α′ : I2 → X with boundaries
as in

· ·uoo
w��α

·
v
OO

u
// ·

· ·uoo

w
��

α′

·
v′
OO

u
// ·

Since this last condition simply means that, in the fundamental groupoid ΠX, the
equality [v] = [v′] holds, we conclude with bijections

π1(Π
(2
X,u)∼= HomΠX(u(0), v(1))∼= π1(X,u(0))

[(u, v), (v, u)] � // [v] � // [u]-1◦ [v]

To see that the composite bijection φ : [(u, v), (v, u)] 7→ [u]-1 ◦ [v] is actually an
isomorphism, let v1, v2 : I → X be paths in X, both from u(0) to u(1). Then,
[(u, v1), (v1, u)] ◦ [(u, v2), (v2, u)] = [(u, v), (v, u)], where v occurs in a configuration
such as

u v1
oo voo

u

OO
[γ]

v2

OO

oo

u

OO

for some (any) square γ : I2 → X in X with boundary as below.

· ·v1oo

u
��

·
v
OO

v2

//
γ

·

It follows that, in ΠX, [v] = [v1] ◦ [u]-1 ◦ [v2] and therefore

φ[(u, v1), (v1, u)] ◦ φ[(u, v2), (v2, u)] = [u]-1 ◦ [v1] ◦ [u]-1 ◦ [v2] = [u]-1 ◦ [v]

= φ([(u, v1), (v1, u)] ◦ [(u, v2), (v2, u)]).
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Finally, we consider the case i = 2. Let u : I → X be any path with u(0) =
x. Then, the mapping [α] 7→ 1h

(cx,u) ◦v [α] ◦v 1h
(u,cx), which carries a square [α] ∈

π2(Π
(2
X,u), to the composite of

cx cx
[eh(cx, u)]

u

OO

u

OO

[α]

u u

[eh(u, cx)]

cx

OO

cx

OO

establishes an isomorphism π2(Π
(2
X,u) ∼= π2(Π

(2
X, cx). Now, it is clear that both

π2(Π
(2
X, cx) and π2(X,x) are the same abelian group of relative to ∂I2 homotopy

classes of maps I2 → X which are constant x along the four sides of the square. �
The construction of the double groupoid Π

(2
X from a space X is easily seen to

be functorial and, moreover, the isomorphisms in Theorem 1.2 above become natural.
Then, we have the next corollary.

Corollary 1.1 A continuous map f : X → Y is a weak homotopy 2-equivalence if
and only if the induced double functor Π

(2
f : Π

(2
X → Π

(2
Y is a weak equivalence.

1.5 The geometric realization of a double groupoid.

If A and B are categories, then let A×̃B denote the double category whose objects are
pairs (a, b), where a is an object of A and b is an object of B; horizontal morphisms
are pairs (f, b) : (a, b) → (c, b), with f : a → c a morphism in A; vertical morphisms
are pairs (a, u) : (a, b)→ (a, d) with u : b→ d in B; and a square in A×̃B is given by
each morphism (f, u) : (a, b) → (c, d) in the product category A × B, by stating its
boundary as in

(c, d)

(f, u)

(a, d)
(f, d)
oo

(c, b)

(c, u)

OO

(a, b)
(f, b)
oo

(a, u)

OO

Compositions in A×̃B are defined in the evident way.
Hereafter, we shall regard each ordered set [n] as the category with exactly one

arrow j → i when 0 ≤ i ≤ j ≤ n. Then, a non-decreasing map [n]→ [m] is the same
as a functor.

The geometric realization, or classifying space, of a category C, [109], is BC := |NC|,
the geometric realization of its nerve [73]

NC : ∆op → Set, [n] 7→ Func([n], C),



1.5. The geometric realization of a double groupoid. 33

that is, the simplicial set whose n-simplices are the functors F : [n]→ C, or tuples of
arrows in C

F =
(
Fi
Fi,j←− Fj

)
0≤i≤j≤n

such that Fi,j ◦Fj,k = Fi,k and Fi,i = 1Fi . If G is a double category, then its geometric
realization, BG, is

BG := |N(2G|,

the geometric realization of its double nerve

N
(2G : ∆op×∆op → Set, ([p], [q]) 7→ DFunc([p]×̃[q],G),

that is, the bisimplicial set whose (p, q)-bisimplices are the double functors F : [p]×̃[q]→
G or configurations of squares in G of the form

F ri

F r,si,j

F rj
F ri,joo

0 ≤ i ≤ j ≤ p
0 ≤ r ≤ s ≤ q ,

F si

F r,si

OO

F sjF si,j
oo

F r,sj

OO

such that F r,si,j ◦h F
r,s
j,k = F r,si,k , F r,si,j ◦v F

s,t
i,j = F r,ti,j , F r,si,i = 1h

F r,si
, and F r,ri,j = 1v

F ri,j
.

Note that the double category [p]×̃[q] is free on the bigraph

(j−1,r−1) (j,r−1)oo

0 ≤ i ≤ j ≤ p
0 ≤ r ≤ s ≤ q ,

(j−1,r)

OO

(j,r)oo

OO

and therefore, giving a double functor F : [p]×̃[q] → G as above is equivalent to
specifying the p× q configuration of squares in G

F r−1
j−1

F r−1,r
j−1,j

F r−1
j

F r−1
j−1,joo

1 ≤ j ≤ p
1 ≤ r ≤ q .

F rj−1

F r−1,r
j−1

OO

F rjF rj−1,j

oo

F r−1,r
j

OO

Thus, each vertical simplicial set N
(2Gp,∗ is the nerve of the “vertical” category

having as objects strings of p-composable horizontal morphisms a0 ← a1 ← · · · ← ap,
whose arrows consist of p horizontally composable squares as in

b0 b1oo ·oo · bpoo

a0

OO

a1

OO

oo ·

OO

oo ·

OO

ap

OO

oo
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And, similarly, each horizontal simplicial set N
(2G∗,q is the nerve of the “horizontal”

category whose objects are the length q sequences of composable vertical morphisms
of G, with length q sequences of vertically composable squares as morphisms between
them.

For instance, if A and B are categories, then N
(2
(A×̃B) = NA×̃NB. In particular,

N
(2
([p]×̃[q]) = ∆[p]×̃∆[q] = ∆[p, q],

is the standard (p, q)-bisimplex.
It is a well-known fact that the nerve NC of a category C satisfies the Kan exten-

sion condition if and only if C is a groupoid, and, in such a case, every (k, n)-horn
Λk[n]→ NC, for n ≥ 2, has a unique extension to an n-simplex of NC

Λk[n] //
� _

��

NC

∆[n]
∃!

<<

(see [85, Propositions 2.6.1], for example). For double categories G, we have the
following:

Theorem 1.3 Let G be a double category. The following statements are equivalent:

(i) G is a double groupoid satisfying the filling condition.

(ii) The bisimplicial set N
(2G satisfies the extension condition.

(iii) The simplicial set diagN
(2G is a Kan complex.

Proof: (i)⇒ (ii) Since G is a double groupoid, all simplicial sets N
(2Gp,∗ and N

(2G∗,q
are nerves of groupoids. Therefore, every extension problem of the form

∆[p]×̃Λl[q] //
� _

��

N
(2G

∆[p, q]
∃!

99
or

Λk[p]×̃∆[q] //
� _

��

N
(2G

∆[p, q]
∃!

99

has a solution and it is unique. Suppose then an extension problem of the form

Λk,l[p, q] //
� _

��

N
(2G

∆[p, q]

99 (1.17)

If p ≥ 2, then the restricted map Λk[p]×̃∆[q] ↪→ Λk,l[p, q]→ N
(2G has a unique exten-

sion to a bisimplex ∆[p, q] → N
(2G, which is a solution to (1.17) (which in fact has a
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unique solution if p ≥ 2 or q ≥ 2). Hence, we reduce the proof to the case in which
p = 1 = q, with the four possibilities k = 0, 1 and l = 0, 1. But any such extension
problem has a solution thanks to Lemma 1.4. For example, let us discuss the case

k = 0 = l: A bisimplicial map Λ0,0[1, 1]
(−,w;−,g) // N

(2G consists of two bisimplicial

maps w : ∆[0, 1] → N
(2G and g : ∆[1, 0] → N

(2G, such that wd1
v = gd1

h. That is, a
vertical morphism w of G and a horizontal morphism g of G, such that both have the
same target. By Lemma 1.4, there is a square α in G of the form

·
α
·goo

·
w
OO

·oo
OO

which defines a bisimplicial map F : ∆[1, 1] → N
(2G such that F 0,1

0,1 = α. Then

Fd1
h = w, Fd1

v = g, and the diagram below commutes, as required.

Λ0,0[1, 1]� _

��

(−,w;−,g)// N
(2G

∆[1, 1]
F

66

(ii) ⇒ (i) The simplicial sets N
(2G0,∗, N

(2G∗,0, N
(2G1,∗, and N

(2G∗,1 are respectively
the nerves of the four component categories of the double category G. Since all these
simplicial sets satisfy the Kan extension condition, it follows that the four category
structures involved are groupoids; that is, G is a double groupoid. Furthermore, for
any given filling problem in G,

· ·goo

∃?
·

OO

·oo
u
OO

we can solve the extension problem

Λ1,0[1, 1]� _

��

(u,−;−,g)// N
(2G

∆[1, 1]
F

77

and the square F 0,1
0,1 has u as horizontal source and g as vertical target. Thus G satisfies

the filling condition.
(i)⇒ (iii) The higher dimensional part of the proof is in the following lemma, that

we establish for future reference.

Lemma 1.8 If G is any double groupoid and n is any integer such that n ≥ 3, then
every extension problem

Λk[n] //
� _

��

diagN
(2G

∆[n]
∃?

88
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has a solution and it is unique.

Proof: Let F = (F r,si,j ) : [n]×̃[n] → G denote the double functor we are looking for
solving the given extension problem. Recall that to give such an F is equivalent to
specifying the n× n configuration of squares

F r−1
j−1

F r−1,r
j−1,j

F r−1
j

F r−1
j−1,joo

1 ≤ j ≤ n
1 ≤ r ≤ n .

F rj−1

F r−1,r
j−1

OO

F rjF rj−1,j

oo

F r−1,r
j

OO

We claim that F exists and, moreover, that it is completely determined by any three

of its (known) faces [n−1]×̃[n−1]
dm×̃dm−→ [n]×̃[n]

F−→ G, m 6= k; therefore, by the input

data Λk[n]→ diagN
(2G. In effect, since each mth-face consists of all squares F r,si,j such

that m /∈ {i, j, r, s}, once we have selected any three integers m, p, q with m < p < q
and k /∈ {m, p, q}, we know explicitly all squares F r,si,j except those in which m, p and

q appear in the labels, that is: Fm,pq,j , Fm,qp,j , F j,pm,q, and so on. In the case where k ≥ 3,
if we take {m, p, q} = {0, 1, 2} then we have given all squares F r,si,j , except those with

{0, 1, 2} ⊆ {r, s, i, j}. In particular, we have all F r,r+1
i,i+1 , except four of them, namely,

F 0,1
2,3 , F

0,1
1,2 , F

1,2
0,1 , and F 2,3

0,1 , which, however, are uniquely determined by the equations

F 0,1
2,3 ◦v F

1,2
2,3 = F 0,2

2,3 , F
2,3
0,1 ◦h F

2,3
1,2 = F 2,3

0,2 , F
0,1
1,2 ◦h F

0,1
2,3 = F 0,1

1,3 , F
1,2
0,1 ◦v F

2,3
0,1 = F 1,3

0,1 ,

that is, F 0,1
2,3 = F 0,2

2,3 ◦v (F 1,2
2,3 )-1v , and so on. The other possibilities for k are discussed in

a similar way: If k = 2, then we select {m, p, q} = {0, 1, n} and determine F completely
by taking into account the two equations F 0,1

n−1,n ◦v F
1,2
n−1,n = F 0,2

n−1,n, Fn−1,n
0,1 ◦h Fn−1,n

1,2 =

Fn−1,n
0,2 .

If k = 1, then we take {m, p, q} = {0, 2, 3} and find the unknown squares F 2,3
0,1 and

F 0,1
2,3 by the equations F 1,2

0,1 ◦v F
2,3
0,1 = F 1,3

0,1 and F 0,1
1,2 ◦h F

0,1
2,3 = F 0,1

1,3 , respectively.
Finally, in the case where k = 0, we take {m, p, q} = {n−2, n−1, n} and we find

the non-given four squares of the family (F r,r+1
i,i+1 ), that is, Fn−2,n−1

n−1,n ,Fn−1,n
n−2,n−1,Fn−3,n−2

n−1,n ,

and Fn−1,n
n−3,n−2 by means of the four equations Fn−3,n−2

n−3,n−1 ◦hF
n−3,n−2
n−1,n = Fn−3,n−2

n−3,n , Fn−3,n−1
n−3,n−2 ◦v

Fn−1,n
n−3,n−2 = Fn−3,n

n−3,n−2, Fn−3,n−2
n−1,n ◦v Fn−2,n−1

n−1,n = Fn−3,n−1
n−1,n , and Fn−1,n

n−3,n−2 ◦h F
n−1,n
n−2,n−1 = Fn−1,n

n−3,n−1.
This completes the proof of the lemma. �

We now return to the proof of (i) ⇒ (iii) in Theorem 1.3. Following on from
Lemma 1.8 above, it remains to prove that every extension problem

Λk[2] //
� _

��

diagN
(2C

∆[2]
∃?

::
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for k = 0, 1, 2, has a solution. In the case where k = 0, the data for a simplicial map
(−, τ, σ) : Λ0[2]→ diagN

(2G consists of a couple of squares in G of the form

a

σ
·oo

·
OO

·
OO

oo

a

τ
·oo

·
OO

·
OO

oo

and an extension solution ∆[2] // diagN
(2G amounts to a diagram of squares as in

a

σ
·oo
x
·oo

·

OO

y
·oo

OO

z
·oo
OO

·

OO

·oo

OO

·oo
OO

such that (σ ◦h x) ◦v (y ◦h z) = τ . To see that such squares x, y, and z exist, we first
select squares α and β such that thα = shσ-1, svα = tvτ , shβ = thτ , and tvβ = svσ-1.
The filling condition in G assures that these α and β can be found. The squares σ,
σ-1h ,σ-1v , σ-1, α, β, α-1v , β-1h , and τ fit together in the configuration (actually, a

3-simplex of diagN
(2G)

a

σ
·oo

σ-1h

·oo

α-1v

·oo

·

OO

σ-1v

·

OO

oo

σ-1

·oo

OO

α
·oo

OO

·

OO

β-1h

·

OO

oo

β
aoo

OO

τ
·oo

OO

·

OO

·oo

OO

·oo

OO

·

OO

oo

and then, we take x = σ-1h ◦h α-1v , y = σ-1v ◦v β-1h , and z = (σ-1 ◦h α) ◦v (β ◦h τ).

The case in which k = 2 is dual of the case k = 0 above, and the case when k = 1
is easier: A simplicial map (σ,−, τ) : Λ1[2]→ diagN

(2G amounts to a couple of squares
in G of the form

a

σ
·oo

·

OO

·

OO

oo

·
τ
·oo

·

OO

a

OO

oo

and an extension solution ∆[2] // diagN
(2G is given by any configuration of squares

in G of the form

·
τ
·oo

x
·oo

·

OO

y
a

OO

oo

σ
·oo
OO

·

OO

·oo

OO

·

OO

oo

Since G satisfies the filling condition (recall Lemma 1.4), it is clear that filling squares
x and y as above exist, and therefore the required extension map exists.
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(iii) ⇒ (i) By [51, Theorem 8], all simplicial sets N
(2Gp,∗ and N

(2G∗,q satisfy the
Kan extension condition. In particular, the nerves of the four component categories of
the double category G, that is, the simplicial sets N

(2G0,∗, N
(2G∗,0,N

(2G1,∗, and N
(2G∗,1

are all Kan complexes. By [85, Propositions 2.6.1], it follows that the four category
structures involved are groupoids, and so G is a double groupoid.

To see that G satisfies the filling condition, suppose that a filling problem

· ·goo
∃?
·
OO

·oo
u
OO

is given. Since the simplicial map Λ1[2]
(1h

u,−,1v
g)// diagN

(2C has an extension to a 2-

simplex ∆[2] // diagN
(2G , we conclude the existence of a diagram of squares in G

of the form

·
1v
g

·goo ·oo

· ·oo
g

1h
u

·

OO

·
α
OO

·

OO
u

oo ·
u
OO

and then, particularly, the existence of a square α as is required. �
We now state our main result in this section.

Theorem 1.4 Let G be a double groupoid satisfying the filling condition. Then, for
each object a of G, there are natural isomorphisms

πi(G, a) ∼= πi(BG,Ba), i ≥ 0. (1.18)

Proof: By taking into account Fact 1.4 (2), we shall identify the homotopy groups of

BG with those of the Kan complex (by Theorem 1.3) diagN
(2G, which are defined, as

we noted in the preliminary Section 1.2, using only its simplicial structure.
To compare the π0 sets, observe that the 0-simplices a ∈ diagN

(2G0 = N
(2G0,0 are

precisely the objects of G. Furthermore, two 0-simplices a, b are in the same connected
component of diagN

(2G if and only if there is a square (i.e., a 1-simplex) of the form

b
∃?
·oo

·

OO

a,oo

OO

that is, since G satisfies the filling condition, if and only if a and b are connected in G
(see Subsection 1.3.1). Thus, π0BG = π0G.

We now compare the π1 groups. An element [α] ∈ π1(BG,Ba) is the equivalence
class of a square α in G of the form

a
α
·goo

·

OO

aoo
u
OO
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and [α] = [α′] if and only if there is a configuration of squares in G of the form

a
α
·
x

goo ·g′oo

·
y

OO

a
1a

OO
u

oo a
u′
OO

·

OO

aoo a

such that (α ◦h x) ◦v y = α′. By recalling now the definition of the homotopy group
π1(G, a), we observe that, if [α] = [α′] in π1(BG,Ba), then, by the existence of the
squares α and α ◦h x, we have [g, u] = [g ◦h g′, u′] in π1(G, a); that is,[tvα, shα] =
[tvα′, shα′]. It follows that there is a well-defined map

Φ : π1(BG,Ba) −→ π1(G, a),
[α] 7−→ [g, u]=[tvα, shα]

which is actually a group homomorphism. To see that, let

a
α1

·g1oo

·

OO

aoo
u1

OO a
α2

·g2oo

·

OO

aoo
u2

OO

be squares representing elements [α1], [α2] ∈ π1(BG,Ba). Then, its product in the
homotopy group π1(BG,Ba) is [α1] ◦ [α2] = [(α1 ◦h β) ◦v (γ ◦h α2)], where β and γ are

any squares in G defining a configuration of the form (i.e., a 2-simplex of diagN
(2G)

a
α1

·g1oo

β
·goo

·
γ

OO

a
α2

OO

oo ·oo
u
OO

·

OO

·oo

OO

aoo
u2

OO

Hence,

Φ([α1] ◦ [α2]) = [g1 ◦h g, u ◦v u2] = [g1, u1] ◦ [g2, u2] = Φ([α1]) ◦ Φ([α2]),

and therefore Φ is a homomorphism.

From the filling condition on G, it follows that Φ is a surjective map. To prove
that it is also injective, suppose Φ[α1] = Φ[α2], where [α1], [α2] ∈ π1(BG,Ba) are as
above. This means that there are squares in G, say x1 and x2, of the form

a
x1

·g1oo

·
w
OO

a
f
oo

u1

OO a
x2

·g2oo

·
w
OO

a
f
oo

u2

OO
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with which we can form the following three 2-simplices of diagN
(2G

·
x1

·
1h
u1

oo ·

·
x-1v

1 ◦vα1

OO

·
1a

oo

OO

·

OO

·

OO

·oo · ,

·
x2

·
1h
u2

oo ·

·
x-1v

2 ◦vα2

OO

·
1a

oo

OO

·

OO

·

OO

·oo · ,

·
x1

·
x-1h

1 ◦hx2

oo ·oo

·
1v
f

OO

·
1a

oo

OO

·

OO

· ·oo · .

The first one shows that [x1] = [α1] in the group π1(BG,Ba), the second that [x2] =
[α2], and the third that [x1] = [x2]. Whence [α1] = [α2], as required.

Finally, we show the isomorphisms πi(BG,Ba) ∼= πi(G, a), for i ≥ 2. For i ≥
3, it follows from Lemma 1.8 that πi(BG, a) = 0, and the result becomes obvious.
For the case i = 2, it is also a consequence of the afore-mentioned Lemma 1.8 that
the homotopy relation between 2-simplices in diagN

(2G is trivial. Then, the group
π2(BG,Ba) consists of all 2-simplices in diagN

(2G of the form

·
1a
·
σ
·

·
σ-1
·

1a
· · ·

for σ ∈ π2(G, a), whence the isomorphism becomes clear. �

Corollary 1.2 A double functor F : G → G′ is a weak equivalence if and only if the
induced cellular map on realizations BF :BG → BG′ is a homotopy equivalence.

1.6 A left adjoint to the double nerve functor.

Recall from Theorem 1.3 (ii) that the double nerve N
(2G, of any double groupoid satis-

fying the filling condition, is a bisimplicial set which satisfies the extension condition.
Moreover, since both simplicial sets N

(2G∗,0 and N
(2G0,∗ are nerves of groupoids, all

homotopy groups π2N
(2G∗,0 and π2N

(2G0,∗ vanish. Our main goal in this section is to
prove that any bisimplicial set K that satisfies the extension condition and such that
the homotopy groups π2K∗,0 and π2K0,∗ vanish, has functorially associated a dou-

ble groupoid with filling condition, denoted by P
(2
K and called its homotopy double

groupoid, such that: (i) P
(2
K always represents the same homotopy 2-type as K does,

(ii) If K = N
(2G, for a double groupoid G, then P

(2
K = G. (see Theorems 1.6 and 1.7,

for details).
Let K be any given bisimplicial set K, under the assumption that it satisfies the

extension condition of Definition 1.1 and both the Kan complexes K∗,0 and K0,∗ have
trivial groups π2. The construction of its homotopy double groupoid

P
(2
K,
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which works as a bisimplicial version of Brown’s construction in [25, Theorem 2.1], is
as follows:

The objects of P
(2
K are the vertices a : ∆[0, 0]→ K of K.

The groupoid of horizontal morphisms is the horizontal fundamental groupoid
PK∗,0, and the groupoid of vertical morphisms is the vertical fundamental groupoid
PK0,∗ (see the last part of Subsection 1.2.2). Thus, a horizontal morphism [f ]h : a→ b
is the horizontal homotopy class of a bisimplex f : ∆[1, 0] → K with fd0

h = a and

fd1
h = b, whereas a vertical morphism in P

(2
K, [u]v : a→ b, is the vertical homotopy

class of a bisimplex u : ∆[0, 1]→ K with ud0
v = a and ud1

v = b.

A square of P
(2
K is the bihomotopy class [[x]] of a bisimplex x : ∆[1, 1]→ K, with

boundary

· ·
[xd1

v]hoo

·
[xd1

h]v

OO

·
[xd0

v]h

oo
[xd0

h]v

OO

which is well defined thanks to Lemma 1.3.

The horizontal composition of squares in P
(2
K is the only one making the corre-

spondence (
xd0

h

[x]h→ xd1
h

)
[ ]7−→

(
[xd0

h]v
[[x]]→ [xd1

h]v

)
a surjective fibration of groupoids from the horizontal fundamental groupoid PK∗,1 to

the horizontal groupoid of squares in P
(2
K. To define this composition, we shall need

the following:

Lemma 1.9 Let x, y : ∆[1, 1] → K be bisimplices such that [xd0
h]v = [yd1

h]v. Then,
there is a bisimplex x′ :∆[1, 1]→ K such that:

(a) [x′]v = [x]v,

(b) x′d0
h = yd1

h.

For any such bisimplex x′ satisfying (a) and (b), the following equalities hold:

(d) [[x′]] = [[x]],

(e) x′d0
v = xd0

v, x′d1
v = xd1

v.

Proof: Once any vertical homotopy from xd0
h to yd1

h is selected, say α : ∆[0, 2]→ K,
let β : ∆[1, 2]→ K be any bisimplex solving the extension problem

Λ1,2[1, 2]
(α,−;xd0

vs
0
v, x,−)//

� _

��

K.

∆[1, 2]
β

55



42 Chapter 1. Double groupoids and homotopy 2-types

Note that such a simplex β exists since it is assumed that the bisimplicial set K
satisfies the extension condition in Definition 1.1. Then, we take x′ = βd2

v : ∆[1, 1]→
K. Since β becomes a vertical homotopy from x to x′, we have [x]v = [x′]v, and
then the equalities [[x′]] = [[x]], x′d0

v = xd0
v, and x′d1

v = xd1
v, follow. Moreover,

x′d0
h = βd2

vd
0
h = βd0

hd
2
v = αd2

v = yd1
h, as required. �

Now define the horizontal composition of squares in P
(2
K by

[[x]] ◦h [[y]] = [[x′]h ◦h [y]h] if [x]v = [x′]v and x′d0
h = yd1

h, (1.19)

where [x′]h ◦h [y]h is the composite in the fundamental groupoid PK∗,1, that is,

[[x]] ◦h [[y]] = [[γd1
h]]

for γ : ∆[2, 1]→ K any bisimplex with γd2
h = x′ and γd0

h = y.

In view of Lemma 1.9, our product is given for all squares [[x]] and [[y]] with
sh[[x]] = th[[y]]. We also have the lemma below, where it is crucial in our argument
the hypothesis of π2(K0,∗, a) being trivial.

Lemma 1.10 The horizontal composition of squares in P
(2
K is well defined.

Proof: We first prove that the square in (1.19) does not depend on the choice of x′.
To do so, suppose x′′ : ∆[1, 1] → K is another bisimplex such that [x]v = [x′′]v and
x′′d0

h = yd1
h, and let β, β′ : ∆[1, 2]→ K be vertical homotopies from x to x′ and from x

to x′′ respectively. Then, both bisimplices βd0
h : ∆[0, 2] → K and β′d0

h : ∆[0, 2] → K
have the same vertical faces. Since the 2 nd homotopy groups of the Kan complex
K0,∗ vanish, it follows that βd0

h and β′d0
h are vertically homotopic (Fact 1.2). Choose

ω : ∆[0, 3]→ K any vertical homotopy from βd0
h to β′d0

h, and then let Γ : ∆[1, 3]→ K
be a solution to the extension problem

Λ1,3[1, 3]
(ω,−;xd0

vs
0
vs

1
v, xs

1
v, β,−) //

� _

��

K .

∆[1, 3]
Γ

33

Then, the bisimplex β̃ = Γd3
v : ∆[1, 2]→ K has vertical faces

β̃d0
v = Γd3

vd
0
v = Γd0

vd
2
v = xd0

vs
0
vs

1
vd

2
v = xd0

vs
0
v,

β̃d1
v = Γd3

vd
1
v = Γd1

vd
2
v = xs1

vd
2
v = x,

β̃d2
v = Γd3

vd
2
v = Γd2

vd
2
v = βd2

v = x′,

so that β̃ is another vertical homotopy from x to x′, and moreover

β̃d0
h = Γd3

vd
0
h = Γd0

hd
3
v = ωd3

v = β′d0
h,
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that is, β̃ and β′ have both the same horizontal 0-face, say α. Now let Φ : ∆[1, 3]→ K
and θ : ∆[2, 2]→ K be solutions to the following extension problems

Λ1,3[1, 3]
(αs1v,−;xd0

vs
0
vs

1
v, β̃, β

′,−)//
� _

��

K

∆[1, 3]
Φ

33 Λ1,2[2, 2]
(ys1v,−,Φd3

v;γd0
vs

0
v, γ,−) //

� _

��

K

∆[2, 2]
θ

33

where γ : ∆[2, 1] → K is any bisimplex such that γd2
h = x′ and γd0

h = y. Then, θ is
actually a vertical homotopy from γ to γ′ = θd2

v, and this bisimplex γ′ satisfies that

γ′d2
h = θd2

vd
2
h = θd2

hd
2
v = Φd3

vd
2
v = Φd2

vd
2
v = β′d2

v = x′′,
γ′d0

h = θd2
vd

0
h = θd0

hd
2
v = ys1

vd
2
v = y.

Hence, [x′]h ◦h [y]h = [γd1
h]h whereas [x′′]h ◦h [y]h = [γ′d1

h]h. Since the bisimplex
θd1

h : ∆[1, 2]→ K is a vertical homotopy from γd1
h to γ′d1

h, we conclude that [[γd1
h]] =

[[γ′d1
h]], that is, [[x′]h ◦h [y]h] = [[x′′]h ◦h [y]h], as required.

Suppose now x0, x1, y : ∆[1, 1] → K bisimplices with [[x0]] = [[x1]] and [x0d
0
h]v =

[yd1
h]v. Then, for some x : ∆[1, 1] → K, we have [x0]v = [x]v and [x]h = [x1]h.

Let x′0 : ∆[1, 1] → K be any bisimplex with [x′0]v = [x]v and x′0d
0
h = yd1

h. Since
[x′0]v = [x0]v, we have

[[x0]] ◦h [[y]] = [[x′0]h ◦ [y]h]. (1.20)

Letting β : ∆[1, 2] → K be any vertical homotopy from x to x′0 and δ : ∆[2, 1] → K
be any horizontal homotopy from x1 to x, we can choose θ : ∆[2, 2]→ K, a bisimplex
making commutative the diagram

Λ1,2[2, 2]
(βd0

hs
0
h,−, β;δd0

vs
0
v, δ,−)

//
� _

��

K

∆[2, 2]
θ

44

Then, β1 = θd1
h : ∆[1, 2]→ K is a vertical homotopy from x1 to x′1:= β1d

2
v, and since

x′1d
0
h = β1d

2
vd

0
h = β1d

0
hd

2
v = θd1

hd
0
hd

2
v = θd0

hd
0
hd

2
v = βd0

hd
2
v = βd2

vd
0
h = x′0d

0
h = yd1

h,

we have

[[x1]] ◦h [[y]] = [[x′1]h ◦h [y]h]. (1.21)

As θd2
v : ∆[2, 1] → K is a horizontal homotopy from x′1 to x′0, we have [x′0]h = [x′1]h.

Therefore, comparing (1.20) with (1.21), we obtain the desired conclusion, that is,

[[x0]] ◦h [[y]] = [[x1]] ◦h [[y]].
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Finally, suppose x, y0, y1 : ∆[1, 1] → K with [[y0]] = [[y1]] and [xd0
h]v = [y0d

1
h]v.

Then, [y0]v = [y]v, [y]h = [y1]h, for some y : ∆[1, 1] → K. Let x′ : ∆[1, 1] → K be
such that [x]v = [x′]v and x′d0

h = yd1
h. Since x′d0

h = y1d
1
h, we have

[[x]] ◦h [[y1]] = [[x′]h ◦h [y1]h] = [[x′]h ◦h [y]h] = [[γd1
h]], (1.22)

for γ : ∆[2, 1] → K any bisimplex with γd2
h = x′ and γd0

h = y. Now, as [y0]v = [y]v,
we can select a vertical homotopy δ : ∆[1, 2]→ K from y to y0, and then a bisimplex
β0 : ∆[1, 2]→ K making commutative the diagram

Λ1,2[1, 2]
(δd1

h,−;x′d0
vs

0
v, x
′,−)
//

� _

��

K.

∆[1, 2]
β0

44

This bisimplex β0 becomes a vertical homotopy from x′ to x′0 := β0d
2
v, and this x′0

verifies that x′0d
0
h = y0d

1
h. Hence,

[[x]] ◦h [[y0]] = [[x′0]h ◦h [y0]h].

But, by taking θ : ∆[2, 2]→ K any bisimplex solving the extension problem

Λ1,2[2, 2]
(δ,−, β0;γd0

vs
0
v, γ,−) //

� _

��

K,

∆[2, 2]
θ

44

we obtain a bisimplex γ0:= θd2
v : ∆[2, 1]→ K satisfying that γ0d

0
h = y0 and γ0d

2
h = x′0,

whence
[[x]] ◦h [[y0]] = [[γ0d

1
h]]. (1.23)

As the bisimplex θd1
h : ∆[1, 2] → K is easily recognized to be a vertical homotopy

from γd1
h to γ0d

1
h, we conclude [[γd1

h]] = [[γ0d
1
h]]. Consequently, the required equality

[[x]] ◦h [[y0]] = [[x]] ◦h [[y1]]

follows by comparing (1.22) with (1.23). �
Simply by exchanging the horizontal and vertical directions in the foregoing dis-

cussion, we also have a well-defined vertical composition of squares [[x]] and [[y]] in

P
(2
K, whenever [xd0

v]h = [yd1
v]h, which is given by

[[x]] ◦v [[y]] = [[x′]v ◦v [y]v] if [x]h = [x′]h and x′d0
v = yd1

v,

where [x′]v ◦v [y]v is the composite in the fundamental groupoid PK1,∗, that is,

[[x]] ◦v [[y]] = [[γd1
v]]

for γ : ∆[1, 2]→ K any bisimplex with γd2
v = x′ and γd0

v = y.
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Theorem 1.5 P
(2
K is a double groupoid satisfying the filling condition.

Proof: We first observe that, with both defined horizontal and vertical compositions,
the squares in P

(2
K form groupoids. The associativity for the horizontal composition

of squares in P
(2
K follows from the associativity of the composition of morphisms in

the fundamental groupoid PK∗,1. In effect, let [[x]], [[y]] and [[z]] be three horizontally

composable squares in P
(2
K. By changing representatives if necessary, we can assume

that xd0
h = yd1

h and yd0
h = zd1

h. Then,

[[x]] ◦h ([[y]] ◦h [[z]]) = [[x]] ◦h [[y]h ◦h [z]h] = [[x]h ◦h ([y]h ◦h [z]h)]
= [([x]h ◦h [y]h) ◦h [z]h] = [[x]h ◦h [y]h] ◦h [[z]]
= ([[x]] ◦h [[y]]) ◦h [[z]].

The horizontal identity square on the vertical morphism represented by a bisimplex
u :∆[0, 1]→ K is

1h
[u]v

= [[us0
h]]

(recall Lemma 1.3), as can be easily deduced from the fact that [us0
h]h is the identity

morphism on u in the groupoid PK∗,1. Thus, for example, for any x : ∆[1, 1]→ K,

[[x]] ◦h 1h
[xd0

h]v
= [[x]h ◦h [xd0

hs
0
h]h] = [[x]h] = [[x]].

The horizontal inverse in P
(2
K of a square [[x]] is [[x]]-1h = [[x]-1h ], where [x]-1h is

the inverse of [x]h in PK∗,1, as is easy to verify:

[[x]] ◦h [[x]-1h ] = [[x]h ◦h [x]-1h ] = [[xd1
hs

0
h]] = 1h

[xd1
h]v
.

Similarly, we see that the associativity for the vertical composition of squares in
P

(2
K follows from the associativity of the composition in the fundamental groupoid

PK1,∗, that the vertical identity square on the horizontal morphism represented by a

bisimplex f : ∆[1, 0]→ K is 1v[f ]h
= [[fs0

v]], and that the vertical inverse in P
(2
K of a

square [[x]] is [[x]−1
v ], where [x]-1v denotes the inverse of [x]v in PK1,∗.

We are now ready to prove that P
(2
K is actually a double groupoid. Axiom 1 is

easily verified. Thus, for example, given any x : ∆[1, 1]→ K,

shsv[[x]] = sh[xd0
v]h = xd0

vd
0
h = xd0

hd
0
v = sv[xd0

h]v = svsh[[x]],

or, given any f : ∆[1, 0]→ K,

sh1v
[f ]h

= sh[[fs0
v]] = [fs0

vd
0
h]v = [fd0

hs
0
v]v = 1v

fd0
h

= 1v
sh[f ]h

,

and so on. Also, for any a : ∆[0, 0]→ K,

1h
1v
a

= 1h
[as0v]v

= [[as0
vs

0
h]] = [[as0

hs
0
v]] = 1v

[as0h]h
= 1v

1h
a
.
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For Axiom 2 (i), let [[x]] and [[y]] be two horizontally composable squares in P
(2
K.

We can assume that xd0
h = yd1

h, and then [[x]]◦h [[y]] = [[γd1
h]], for any γ : ∆[2, 1]→ K

with γd2
h = x and γd0

h = y. Hence,

sv([[x]] ◦h [[y]]) = [γd1
hd

0
v]h = [γd0

vd
1
h] = [γd0

vd
2
h]h ◦h [γd0

vd
0
h]h

= [γd2
hd

0
v]h ◦h [γd0

hd
0
v] = [xd0

v]h ◦h [yd0
v]h = sv[[x]] ◦h sv[[y]],

tv([[x]] ◦h [[y]]) = [γd1
hd

1
v]h = [γd1

vd
1
h]h = [γd1

vd
2
h]h ◦h [γd1

vd
0
h]h

= [γd2
hd

1
v]h ◦h [γd0

hd
1
v]h = [xd1

v]h ◦h [yd1
v]h = tv[[x]] ◦h tv[[y]].

Axiom 2 (ii) is proved analogously, and for (iii), let f, f ′ : ∆[1, 0]→ K be maps
with fd0

h = f ′d1
h. Then, [f ]h ◦h [f ′]h = [γd1

h]h, for γ : ∆[2, 0]→ K any bisimplex with
γd2

h = f and γd0
h = f ′, and we have the equalities:

1v
[f ]h◦h[f ′]h

= 1v
[γd1

h]h
= [[γd1

hs
0
v]] = [[γs0

vd
1
h]] = [[γs0

vd
2
h]] ◦h [[γs0

vd
0
h]] = 1v

[f ]h
◦h 1v

[f ′]h
.

And similarly one sees that 1h
[u]v◦v[u′]v

= 1h
[u]v
◦v 1h

[u′]v
for any u, u′ : ∆[0, 1]→ K with

ud0
v = u′d1

v.

To verify Axiom 3, that is, to prove that the interchange law holds in P
(2
K, let

·
[[x]]

·oo

[[x′]]

·oo

·

OO

[[y]]

·oo

OO

[[y′]]

·

OO

oo

·

OO

·oo

OO

·oo

OO

be squares in P
(2
K. By an iterated use of Lemmas 1.9 and 1.10 (and their cor-

responding versions for vertical direction), we can assume that xd0
h = x′d1

h, xd
0
v =

yd1
v, x

′d0
v = y′d1

v and yd0
h = y′d1

h. Let α : ∆[2, 1] → K and β : ∆[1, 2] → K be
bisimplicial maps such that αd2

h = y, αd0
h = y′, βd2

v = x′ and βd0
v = y′; there-

fore, [[y]] ◦h [[y′]] = [[αd1
h]] and [[x′]] ◦v [[y′]] = [[βd1

v]]. Now we select bisimplices
γ : ∆[1, 2]→ K and δ : ∆[2, 1]→ K as respective solutions to the following extension
problems:

Λ1,1[1, 2]� _

��

(βd1
h,−;y,−,x)

// K

∆[1, 2]

γ

66 Λ1,1[2, 1]� _

��

(x′,−,x;αd1
v,−)// K

∆[2, 1]
δ

66

Then [[x]]◦v [[y]] = [[γd1
v]], [[x]]◦h [[x′]] = [[δd1

h]] and, moreover, we can find a bisimplex
θ : ∆[2, 2]→ K making the triangle below commutative.

Λ1,1[2, 2]� _

��

(β,−,γ;α,−,δ)// K

∆[2, 2]
θ

66
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Letting φ = θd1
h : ∆[1, 2]→ K and ψ = θd1

v : ∆[2, 1]→ K, we have the equalities:

φd2
v = θd2

vd
1
h = δd1

h, φd0
v = θd0

vd
1
h = αd1

h,

ψd2
h = θd2

hd
1
v = γd1

v, ψd0
h = θd0

hd
1
v = βd1

v,

whence,
([[x]] ◦h [[x′]]) ◦v ([[y]] ◦h [[y′]]) = [[δd1

h]] ◦v [[αd1
h]] = [[φd1

v]],

([[x]] ◦v [[y]]) ◦h ([[x′]] ◦h [[y′]]) = [[γd1
v]] ◦h [[βd1

v]] = [[ψd1
h]].

Since φd1
v = θd1

hd
1
v = θd1

vd
1
h = ψd1

h, the interchange law follows.

Thus, P
(2
K is a double groupoid and, moreover, it satisfies the filling condition:

given morphisms

· ·
[g]hoo

·
[u]v
OO

represented by bisimplices u : ∆[0, 1] → K and g : ∆[1, 0] → K with gd0
h = ud1

v, if
x : ∆[1, 1]→ K is any solution to the extension problem

Λ0,1[1, 1]� _

��

(−, g;u,−) // K

∆[1, 1]
x

55

then the bihomotopy class of x is a square in P
(2
K

·
[[x]]
·

[g]hoo

·

OO

·oo
[u]v
OO

as required. �
The construction of the double groupoid P

(2
K is clearly functorial on K, and we

have the following:

Theorem 1.6 The double nerve construction, G 7→ N
(2G, embeds, as a reflexive sub-

category, the category of double groupoids satisfying the filling condition into the cat-
egory of those bisimplicial sets K that satisfy the extension condition and such that
π2(K∗,0, a) = 0 = π2(K0,∗, a) for all vertices a ∈ K0,0. The reflector functor for such
bisimplicial sets is given by the above described homotopy double groupoid construction

K 7→ P
(2
K.

Thus, P
(2
N

(2G = G, and there are natural bisimplicial maps

ε(K) : K → N
(2
P

(2
K, (1.24)

such that P
(2
ε = id and εN

(2
= id.
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Proof: From Theorem 1.3(ii), if G is any double groupoid satisfying the filling

condition, then its double nerve N
(2G satisfies the extension condition and, since

both simplicial sets N
(2G∗,0 and N

(2G0,∗ are nerves of groupoids, all homotopy groups

π2(N
(2G∗,0, a) and π2(N

(2G0,∗, a) vanish. Moreover, since the bihomotopy relation is

trivial on the bisimplices ∆[p, q] → N
(2G, for p ≥ 1 or q ≥ 1, it is easy to see that

P
(2
N

(2G = G.

For any bisimplicial set K in the hypothesis of the theorem, there is a natural
bisimplicial map

ε = ε(K) : K → N
(2
P

(2
K,

that takes a bisimplex x : ∆[p, q]→ K, of K, to the bisimplex εx : [p]×̃[q]→ P
(2
K, of

N
(2
P

(2
K, defined by the p× q configuration of squares in P

(2
K

εrix

εr,si,jx

εrj
εri,jxoo

0 ≤ i ≤ j ≤ p
0 ≤ r ≤ s ≤ q ,

εsix

εr,si x
OO

εsjxεsi,jx
oo

εr,sj x
OO

where

εr,si,jx = [[xdph · · · d
j+1
h dj−1

h · · · di+1
h di−1

h · · · d0
hd
q
v · · · ds+1

v ds−1
v · · · dr+1

v dr−1
v · · · d0

v]],

εr,sj x = [xdph · · · d
j+1
h dj−1

h · · · d0
hd
q
v · · · ds+1

v ds−1
v · · · dr+1

v dr−1
v · · · d0

v]v,

εri,jx = [xdph · · · d
j+1
h dj−1

h · · · di+1
h di−1

h · · · d0
hd
q
v · · · dr+1

v dr−1
v · · · d0

v]h,

εrix = xdph · · · d
i+1
h di−1

h · · · d0
hd
q
v · · · dr+1

v dr−1
v · · · d0

v.

Since a straightforward verification shows that P
(2
ε(K) is the identity map on

P
(2
K, for any K, and ε(N

(2G) is the identity map on N
(2G, for any double groupoid G,

it follows that N
(2

is right adjoint to P
(2
, with ε and the identity being the unit and

the counit of the adjunction respectively. �
With the next theorem we show that the double groupoid P

(2
K represents the

same homotopy 2-type as the bisimplicial set K.

Theorem 1.7 Let K be any bisimplicial set satisfying the extension condition and
such that, for all base vertices a, π2(K0,∗, a) = 0 and π2(K∗,0, a) = 0 . Then, the

induced map by unit of the adjunction |ε| : |K| → |N(2
P

(2
K| = BP

(2
K is a weak

homotopy 2-equivalence.

Proof: By Facts 1.5 (1) and (3) and Theorem 1.3, the map |ε| : |K| → |N(2
P

(2
K| is,

up to natural homotopy equivalences, induced by the simplicial map Wε : WK →
WN

(2
P

(2
K, where both WK and WN

(2
P

(2
K are Kan-complexes.
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At dimension 0, we have the equalities WK0 = K0,0 = WN
(2
P

(2
K0, and the map

Wε is the identity on 0-simplices. At dimension 1, the map

Wε : (x0,1, x1,0) 7→ ([x0,1]v, [x1,0]h),

is clearly surjective, whence we conclude that the induced

π0Wε : π0WK → π0WN
(2
P

(2
K

(1.18)∼= π0P
(2
K

is a bijection and also that, for any vertex a ∈ K0,0, that induced on the π1-groups

π1Wε : π1(WK,a)→ π1(WN
(2
P

(2
K, a)

(1.18)∼= π1(P
(2
K, a)

is surjective. To see that π1Wε is actually an isomorphism, suppose that (x0,1, x1,0) ∈
WK1, with x0,1d

1
v = a = x1,0d

0
h, represents an element in the kernel of π1Wε. This

implies the existence of a bisimplex x : ∆[1, 1] → K whose bihomotopy class is a

square in P
(2
K with boundary as in

a

[[x]]

a
[as0h]h

·
[x0,1]v

OO

a
[x1,0]h

oo
[as0v]v

Using Lemma 1.9 twice (one in each direction), we can find a bisimplex x1,1 : ∆[1, 1]→
K, such that [[x1,1]] = [[x]], x1,1d

1
v = as0

h, and x1,1d
0
h = as0

v. Moreover, since
[x1,1d

0
v]h = [x1,0]h and [x1,1d

1
h]v = [x0,1]v, there are bisimplices x2,0 : ∆[2, 0] → K

and x0,2 : ∆[0, 2]→ K, with faces as in the picture

a a
as0voo

x1,1

a
as0hoo

·

x0,2
bb

x0,1

OO

aoo
as0v

OO

a

bb
x2,0

x1,0 as0h

OO

This amounts to saying that the triplet (x0,2, x1,1, x2,0) is a 2-simplex of WK which
is a homotopy from (x0,1, x1,0) to (as0

v, as
0
h). Then, (x0,1, x1,0) represents the identity

element of the group π1(WK,a). This proves that π1Wε is an isomorphism.
Let us now analyze the homomorphism

π2Wε : π2(WK,a)→ π2(WN
(2
P

(2
K, a)

(1.18)∼= π2(P
(2
K, a).

An element of π2(P
(2
K, a) is a square in P

(2
K of the form

a
[[x]]

a
[as0h]hoo

a
[as0v]v

OO

a
[as0h]h

oo
[as0v]v

OO
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and the homomorphism π2Wε is induced by the mapping

a a
as0voo

x1,1

a
as0hoo

a

x0,2
bb

as0v

OO

aoo
as0v

OO

a

bb
x2,0

as0h
as0h

OO
7−→ [[x1,1]].

That π2Wε is surjective is proven using a parallel argument to that given previously
for proving that π1Wε is injective (given [[x]], using Lemma 1.9 twice, we can find
x1,1 : ∆[1, 1]→ K, etc.). To prove that π2Wε is also injective, suppose (x0,2, x1,1, x2,0)
as above, representing an element of π2(WK,a) into the kernel of π2Wε, that is,
such that [[x1,1]] = [[as0

hs
0
v]]. Then, there is a bisimplex y : ∆[1, 1] → K such that

[x1,1]v = [y]v and [y]h = [as0
hs

0
v]h, whence we can find bisimplices α′ : ∆[1, 2] → K

and β′ : ∆[2, 1]→ K such that

α′d0
v = yd0

vs
0
v, α′d1

v = y, α′d2
v = x1,1, β′d0

h = as0
hs

0
v, β′d1

h = as0
hs

0
v, β′d2

h = y.

Let us now choose θ : ∆[2, 2]→ K and θ′ : ∆[1, 3]→ K as respective solutions to the
following extension problems

Λ2,0[2, 2]� _

��

(as0hs
0
vs

0
v, as

0
hs

0
vs

0
v,−;−,β′d1

vs
0
v, β
′)
// K

∆[2, 2]
θ

22 ∆[1]×̃Λ2[3]� _

��

(θd2
hd

0
vs

0
v, θd

2
h,−,α

′)
// K

∆[1, 3]
θ′

33

Then, for α = θ′d2
v : ∆[1, 2]→ K and β = θd0

v : ∆[2, 1]→ K, we have the equalities

αd0
v = βd2

h, αd1
v = as0

hs
0
v, αd2

v = x1,1, βd0
h = as0

hs
0
v, βd1

h = as0
hs

0
v. (1.25)

By Lemma 1.2, as the 2nd homotopy groups ofK0,∗ vanish and both bisimplices αd0
h

and as0
vs

0
v have the same vertical faces, there is a vertical homotopy ω : ∆[0, 3] → K

from as0
vs

0
v to αd0

h. And similarly, since βd1
v and x2,0 have the same horizontal faces

and the 2nd homotopy groups of K∗,0 are all trivial, there is a horizontal homotopy,
say ω′ : ∆[3, 0]→ K, from βd1

v to x2,0. Now, let Γ : ∆[1, 3]→ K and Γ′ : ∆[3, 1]→ K
be bisimplices solving, respectively, the extension problems

Λ1,2[1, 3]� _

��

(ω,−;αd0
vs

1
v, as

0
vs

0
vs

0
h,−, α)

// K

∆[1, 3]
Γ

33 Λ3,0[3, 1]� _

��

(as0vs
0
hs

0
h, as

0
vs

0
hs

0
h, β,−;−, ω′)

// K

∆[3, 1]
Γ′

22

and take x1,2 = Γd2
v : ∆[1, 2] → K and x2,1 = Γ′d3

h : ∆[2, 1] → K. Then, the
same equalities as in (1.25) hold for x1,2 instead of α and x2,1 instead of β, and
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moreover x1,2d
0
h = as0

vs
0
v and x2,1d

1
v = x2,0. Finally, by taking x0,3 : ∆[0, 3] → K any

bisimplex with x0,3d
0
v = x1,2d

1
h, x0,3d

1
v = as0

vs
0
v, x0,3d

2
v = as0

vs
0
v and x0,3d

3
v = x0,2, and

x3,0 : ∆[3, 0] → K any horizontal homotopy from as0
hs

0
h to x2,1d

0
v (which exist thanks

to Lemma 1.2), we have the 3-simplex (x0,3, x1,2, x2,1, x3,0) of WK, which is easily
recognized as a homotopy from (as0

vs
0
v, as

0
hs

0
v, as

0
hs

0
h) to (x0,2, x1,1, x2,0). Consequently,

(x0,2, x1,1, x2,0) represents the identity of the group π2(WK,a). Therefore, π2Wε is
an isomorphism, and the proof is complete. �

1.7 The equivalence of homotopy categories.

Recall that the category of weak homotopy types is defined to be the localization
of the category of topological spaces with respect to the class of weak equivalences,
and the category of homotopy 2-types, hereafter denoted by Ho(2-types), is its full
subcategory given by those spaces X with πi(X, a) = 0 for any integer i> 2 and any
base point a.

We now define the homotopy category of double groupoids satisfying the filling
condition, denoted by Ho(DGfc), to be the localization of the category DGfc, of
these double groupoids, with respect to the class of weak equivalences, as defined in
Subsection 1.3.4.

By Corollaries 1.2 and 1.1, both the geometric realization functor G 7→ BG and
the homotopy double groupoid funtor X 7→ Π

(2
X induce equally denoted functors

B : Ho(DGfc)→ Ho(2-types), (1.26)

Π
(2

: Ho(2-types)→ Ho(DGfc). (1.27)

One of the main goals in this section is to prove the following:

Theorem 1.8 The induced functors (1.26) and (1.27) are mutually quasi-inverse,
establishing an equivalence of categories

Ho(DGfc) ' Ho(2-types).

The proof of this Theorem 1.8 is somewhat indirect. Previously, we shall establish
the following result, where KC is the category of Kan complexes and

Ho(L ∈ KC | πiL = 0, i > 2)

is the full subcategory of the homotopy category of Kan complexes given by those L
such that πi(L, a) = 0 for all i > 2 and base vertex a ∈ L0:

Theorem 1.9 There are adjoint functors, WN
(2

: DGfc → KC, the right adjoint,
and P

(2
Dec : KC→ DGfc, the left adjoint, that induce an equivalence of categories

Ho(DGfc) ' Ho(L ∈ KC | πiL = 0, i > 2).
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Proof: The pair of adjoint functors P
(2
Dec a WN

(2
is obtained by composition of

the pair of adjoint functors Dec a W , recalled in (1.10), with the pair of adjoint

functors P
(2 a N

(2
, stated in Theorem 1.6. For any double groupoid G ∈ DGfc, its

double nerve N
(2G satisfies the extension condition, by Theorem 1.3, and therefore,

by Fact 1.5 (4), the simplicial set WN
(2G is a Kan complex. Conversely, if L is any

Kan complex, then the bisimplicial set DecL satisfies the extension condition by Fact
1.5 (5) and, moreover, π2(DecL∗,0, a) = 0 = π2(DecL0,∗, a) for all vertices a, since

both augmented simplicial sets DecL∗,0
d0→ L0 and DecL0,∗

d1→ L0 have simplicial
contractions, given respectively by the families of degeneracies (sp : Lp → Lp+1)p≥0

and (s0 :Lq → Lq+1)q≥0. Therefore, in accordance with Theorem 1.6, the composite

functor L 7→ P
(2
DecL is well defined on Kan complexes.

By Fact 1.4 (3), the homotopy equivalences in Fact 1.5 (1), and Corollary 1.2, it
follows that a double functor F : G → G′, in DGfc, is a weak equivalence if and only
if the induced simplicial map WN

(2
F : WN

(2G →WN
(2G′ is a homotopy equivalence.

By Facts 1.4 (3) and 1.5 (2), Theorem 1.7, and Corollary 1.2, if f : L → L′ is
any simplicial map between Kan complexes L,L′ such that πi(L, a)=0=πi(L

′, a′) for
all i ≥ 3 and base vertices a ∈ L0, a′ ∈ L′0, then f is a homotopy equivalence if and

only if the induced P
(2
Decf : P

(2
DecL → P

(2
DecL′ is a weak equivalence of double

groupoids.
If L is any Kan complex such that πi(L, a) = 0 for all i ≥ 3 and all base vertices

a ∈ L0, then the unit of the adjunction L→WN
(2
P

(2
DecL is a homotopy equivalence

since it is the composition of the simplicial maps

L
u //WDecL

Wε(DecL) //WN
(2
P

(2
DecL,

where u is a homotopy equivalence by Fact 1.5(3) and Fact 1.4 (3), and then Wε(DecL)
is also a homotopy equivalence by Theorem 1.7 and Fact 1.4 (3).

Finally, the counit P
(2
v(N

(2G) : P
(2
DecWN

(2G → P
(2
N

(2G = G, at any double
groupoid G, is a weak equivalence, thanks to Fact 1.5(3), Theorem 1.7, and Corollary
1.2. This makes the proof complete. �

Since, by Facts 1.4, the adjoint pair of functors | | a S : Top � KC induces
mutually quasi-inverse equivalences of categories

Ho(2-types) ' Ho(L ∈ KC | πiL = 0, i > 2),

the following follows from Theorem 1.9 above, and Fact 1.5 (1):

Theorem 1.10 The induced functor (1.26), B : Ho(DGfc) → Ho(2-types), is an

equivalence of categories with a quasi-inverse induced by the functor X 7→ P
(2
Dec SX.

Theorem 1.10 gives half of Theorem 1.8. The remaining part, that is, that the
induced functor (1.27) is a quasi-inverse equivalence of (1.26), follows from the propo-
sition below.
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Theorem 1.11 The two induced functors Π
(2
,P

(2
Dec S : Ho(2-types) → Ho(DGfc)

are naturally equivalent.

Proof: The proof consists in displaying a natural double functor

η : P
(2
DecSX → Π

(2
X,

which is a weak equivalence for any topological space X. This is as follows:

On objects of P
(2
DecSX, the double functor η carries a continuous map u : ∆1 → X

to the path ηu : I → X given by

ηu(x) = u(1− x, x),

that is, the obtained from u through the homeomorphism

I ∼= ∆1 : x 7→ (1− x, x).

On horizontal morphisms of P
(2
DecSX, η acts by

(gd0 [g]h−→ gd1)
η7→ (ηgd0 → ηgd1),

for any continuous map g : ∆2 → X. That is, η carries the horizontal homotopy class
of g in DecSX to the unique horizontal morphism in Π

(2
X from the path ηgd0 to the

path ηgd1 . This correspondence is well defined since

ηgd0(1) = gd0(0, 1) = g(0, 0, 1) = gd1(0, 1) = ηgd1(1),

and, moreover, if [g]h = [g′]h in DecSX, then gdi = g′di for i = 0, 1.

Similarly, on vertical morphisms, η is given by

(gd1 [g]v−→ gd2)
η7→ (ηgd1 → ηgd2).

On squares in P
(2
DecSX, η is defined through the embedding I × I ↪→ ∆3

(0, 1) (1, 1)oo

��
(0, 0)

OO

// (1, 0)

� � //

(0, 0, 1, 0)

(1, 0, 0, 0)

d1d2kk

d1d1
||

(0, 1, 0, 0)

33d0d2

CC

d0d1
// (0, 0, 0, 1)

[[
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given by: (x, y) 7→
(
xy, (1− x)(1− y), (1− x)y, x(1− y)

)
. That is, for any continuous

map α : ∆3 → X, η is defined by

·
[[α]]

·
[αd3]hoo ηαd1d2 ηαd0d2oo

·
[αd1]v

OO

·
[αd2]h

oo
[αd0]v

OO
η7→

ηαd1d1

OO
[ηα]

ηαd0d1oo

OO

where ηα : I × I → X is the square in X given by the formula

ηα(x, y) = α
(
xy, (1− x)(1− y), (1− x)y, x(1− y)

)
.

To see that η is well defined on squares in P
(2
DecSX, suppose [[α1]] = [[α2]]. This

means that [α1]h = [α]h and [α2]v = [α]v, for some α : ∆3 → X, in the bisimplicial set
DecSX. Then, there are maps β, γ : ∆4 → X such that the following equalities hold:

βd0 = α1d
0s0, βd1 = α1, βd

2 = α = γd3, γd4 = α2, γd
2 = α2d

2s2;

whence the equalities of squares in Π
(2
X, [ηα1 ] = [ηα] = [ηα2 ], follow from the relative

homotopies F1 : ηα1 → ηα and F2 : ηα → ηα2 , respectively given by the formulas

F1(x, y, t) = β
(
xy, t(1− x)(1− y), (1− t)(1− x)(1− y), (1− x)y, x(1− y)

)
,

F2(x, y, t) = γ
(
xy, (1− x)(1− y), (1− x)y, tx(1− y), (1− t)x(1− y)

)
.

Most of the details to confirm η is actually a double functor are routine and easily
verifiable. We leave them to the reader since the only ones with any difficulty are
those a)- d) proven below.

a) For ω : ∆4 → X, [ηωd1 ] = [ηωd2 ] ◦h [ηωd0 ],

b) For ω : ∆4 → X, [ηωd3 ] = [ηωd4 ] ◦v [ηωd2 ],

c) For g : ∆2 → X, [ηgs2 ] = 1v
(ηgd1 ,ηgd0 ),

d) For g : ∆2 → X, [ηgs0 ] = 1h
(ηgd2 ,ηgd1 ).

To prove a), let H : I2 × I → X be the continuous map defined by

H(x, y, t) =



ω
(

(1-t)xy,2tx(x+y),(1-x)(1-y)+tx(2x-2+y),

y(1-x)+tx(1-2x-y),x(1-y)+tx(1-2x-y)
) if x+y≤1, x≤y,

ω
(

(1-t)xy,2ty(x+y),(1-x)(1-y)+ty(2y-2+x),

y(1-x)+ty(1-x-2y),x(1-y)+ty(1-x-2y)
) if x+y≤1, x≥y,

ω
(
xy+t(1-y)(1-x-2y),2t(1-y)(2-x-y),(1-t)(1-x)(1-y),

y(1-x)-t(1-y)(2-x-2y),(1-y)(x-t(2-x-2y)
) if x+y≥1, x≤y,

ω
(
xy+t(1-x)(1-2x-y),2t(1-x)(2-x-y),(1-t)(1-x)(1-y),

(1-x)(y-t(2-2x-y)),x(1-y)-t(1-x)(2-2x-y)
) if x+y≥1, x≥y.
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When t = 0, then

H(x, y, 0) = ω
(
xy, 0, (1− x)(1− y), (1− x)y, x(1− y)

)
= ηωd1(x, y),

while, if t = 1, then
H(x, y, 1) =

• ω
(

(0,2x(x+y),(1-x)(1-y)+x(2x-2+y),y(1-x)+x(1-2x-y),x(1-y)+tx(1-2x-y)
)

if x+y≤1, x≤y,

• ω
(

(0,2y(x+y),(1-x)(1-y)+y(2y-2+x),y(1-x)+ty(1-x-2y),x(1-y)+y(1-x-2y)
)

if x+y≤1, x≥y,

• ω
(
xy+(1-y)(1-x-2y),2(1-y)(2-x-y),0,y(1-x)-(1-y)(2-x-2y),(1-y)(x-(2-x-2y)

)
if x+y≥1, x≤y,

• ω
(
xy+(1-x)(1-2x-y),2(1-x)(2-x-y),0,(1-x)(y-(2-2x-y)),x(1-y)-(1-x)(2-2x-y)

)
if x+y≥1, x≥y.

(1.15)
= (ηωd2 ◦h ηωd0)(x, y).

Hence, since the following equalities hold:

H(x, 0, t) = ω(0, 0, 1− x, 0, x) = ωd1d0d1(1− x, x) = ηωd1d0d1(x),
H(0, y, t) = ω(0, 0, 1− y, y, 0) = ωd1d0d2(1− y, y) = ηωd1d0d2(y),
H(x, 1, t) = ω(x, 0, 0, 1− x, 0) = ωd1d1d2(x, 1− x) = ηωd1d1d2(1− x),
H(1, y, t) = ω(y, 0, 0, 0, 1− y) = ωd1d1d1(y, 1− y) = ηωd1d1d1(1− y),

we conclude that H is actually a relative homotopy

·
ηωd1

·oo

��
·

OO

// ·

H //

· ·oo

��
·

__

��·
ηωd0

ηωd2
OO

// ·

between ηωd1 and ηωd2 ◦h ηωd0 , as required for proving a). The proof of b) is completely
similar.

Now we attend to the case c). For, let H : I2 × I → X be the continuous map
defined by

H(x, y, t) =

{
g
(

(1-t)xy,(1-x)(1-y)−txy,x+y+2xy(t-1)
)

if x+y ≤ 1,

g
(
xy+t(x+y-1-xy),(1-t)(1-x)(1-y),x+y-2xy+2t(1-x)(1-y)

)
if x+y ≥ 1.

When t = 0, then

H(x, y, 0) = g
(
xy, (1− x)(1− y), x+ y − 2xy

)
= gs2

(
xy, (1− x)(1− y), (1− x)y, x(1− y)

)
= ηgs2(x, y),

while, if t = 1, then

H(x, y, 1) =

{
g(0, 1− x− y, x+ y) if x+ y ≤ 1,

g(x+ y − 1, 0, 2− x− y) if x+ y ≥ 1.

=

{
gd0(1− x− y, x+ y) if x+ y ≤ 1,

gd1(x+ y − 1, 2− x− y) it x+ y ≥ 1.
(1.16)

= ev(gd1, gd0)(x, y).
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Moreover,

H(x, 0, t) = g(0, 1− x, x) = gd0(1− x, x) = ηgd0(x),
H(0, y, t) = g(0, 1− y, y) = gd0(1− y, y) = ηgd0(y),
H(x, 1, t) = g(x, 0, 1− x) = gd1(x, 1− x) = ηgd1(1− x),
H(1, y, t) = g(y, 0, 1− y) = gd1(y, 1− y) = ηgd1(1− y),

and therefore we conclude that H is actually a relative homotopy

· ·gd1
oo

gd1

��
ηgs2

·
gd0

OO

gd0
// ·

H //
· ·gd1
oo

gd1

��
ev

·
gd0

OO

gd0
// · ,

between ηgs2 and ev(gd1, gd0). This proves c), and the proof of d) is parallel.

Hence, η : P
(2
DecSX → Π

(2
X is a double functor, which is clearly natural on the

topological space X. Moreover, for any X, it is actually a weak equivalence since, for
any 1-simplex u : ∆1 → X and integer i ≥ 0, the induced map πiη : πi(P

(2
DecSX,u)→

πi(Π
(2
X, ηu) occurs in this commutative diagram

πi(P
(2
DecSX,u)

πiη

��

πi(BP
(2
DecSX,u)

Th.1.4∼=oo πi(|DecSX|, u)
Th.1.7∼=oo

Fact1.5(1)∼=
��

πi(|WDecSX|, u)

Fact1.5(3)∼=
��

πi(Π
(2
X, ηu)

Th.1.2∼= // πi(X,u(1, 0)) πi(|SX|, u(1, 0))
Fact1.4(6)∼=oo

in which all other maps are bijections (group isomorphisms for i ≥ 1) by the references
in the labels. �



Chapter 2

Comparing geometric
realizations of tricategories

2.1 Introduction and summary

As we mention in Chapter 1, the process of taking classifying spaces of categorical
structures has shown its relevance as a tool in algebraic topology and algebraic K-
theory, and one of the main reasons is that the classifying space constructions transport
categorical coherence to homotopic coherence. We can easily stress the historical
relevance of the construction of classifying spaces by recalling that Quillen [109]
defines a higher algebraic K-theory by taking homotopy groups of the classifying
spaces of certain categories. Joyal and Tierney [89] have shown that Gray-groupoids
are a suitable framework for studying homotopy 3-types. Monoidal categories were
shown by Stasheff [114] to be algebraic models for loop spaces, and work by May
[105] and Segal [112] showed that classifying spaces of symmetric monoidal categories
provide the most noteworthy examples of spaces with the extra structure required to
define an Ω-spectrum, a fact exploited with great success in algebraic K-theory.

This chapter contributes to the study of classifying spaces for (small) tricategories,
introduced by Gordon, Power and Street in [69]. The homotopy theory of higher
categorical structures has demonstrated relevance as a tool for the treatment of an
extensive list of subjects of recognized mathematical interest in several mathematical
contexts beyond homotopy theory, such as algebraic geometry, geometric structures
on low-dimensional manifolds, string theory, or topological quantum field theory and
conformal field theory.

We explore the relationship amongst three different ‘nerves’ that might reasonably
be associated to any tricategory T . These are the pseudo-simplicial bicategory called
the Grothendieck nerve NT : ∆op → Bicat, the simplicial bicategory termed the Se-
gal nerve ST : ∆op → Hom, and the simplicial set called the geometric nerve of the
tricategory ∆T : ∆op → Set. Since, as we prove, these three nerve constructions lead
to homotopy equivalent spaces, any one of these spaces could therefore be taken as

57



58 Chapter 2. Comparing geometric realizations of tricategories

the classifying space B3T of the tricategory1. Many properties of the classifying space
construction for tricategories, T 7→ B3T , may be easier to establish depending on the
nerve used for realizations. Here, both for historical reasons and for theoretical inter-
est, it is appropriate to start with the Grothendieck nerve construction to introduce
B3T . Let us briefly recall that it was Grothendieck who first associated a simplicial
set NC to a small category C, calling it its nerve, whose p-simplices are composable
p-tuples x0 → · · · → xp of morphisms in C. Geometric realization of its nerve is the
classifying space of the category, BC = |NC|. A first result in this chapter shows how
the Grothendieck nerve construction for categories rises to tricategories. Thus, we
prove

Theorem 2.1 Any tricategory T defines a pseudo-simplicial bicategory,
that is, a trihomomorphism NT = (NT , χ, ω): ∆op → Bicat, whose bi-
category of p-simplices

NTp =
⊔

(x0,...,xp)∈ObT p+1

T (xp−1, xp)× T (xp−2, xp−1)× · · · × T (x0, x1)

consists of p-tuples of horizontally composable cells.

Then, heavily dependent on the results by Carrasco, Cegarra and Garzón in [42],
where an analysis of classifying spaces is performed for lax diagrams of bicategories
following the way Segal [112] and Thomason [120] analyzed lax diagrams of categories,
we introduce the classifying space B3T , of a tricategory T , to be the classifying space of
its Grothendieck nerve NT . Briefly, say that the so-called Grothendieck construction
[42, §3.1] on the pseudo-simplicial bicategory NT produces a bicategory

∫
∆NT . Again,

the Grothendieck nerve construction on this bicategory
∫
∆NT now gives rise to a

normal pseudo-simplicial category N(
∫
∆NT ): ∆op → Cat, on which once more the

Grothendieck construction leads to a category,
∫
∆N(

∫
∆NT ), whose classifying space is,

by definition, the classifying space of the tricategory, that is:

B3T = |N(
∫
∆N(

∫
∆NT ))|

or, in other words, B3T = B2

∫
∆NT = B

∫
∆N(

∫
∆NT ) , where B2B denotes the classi-

fying space of any bicategory B as defined by Carrasco, Cegarra and Garzón [41,
Definition 3.1]. The behavior of this classifying space construction, T 7→ B3T , can be
summarized as follows (see Propositions 2.1 and 2.4 and Corollary 2.3):

- Any trihomomorphism F : T → T ′ induces a continuous map B3F: B3T →
B3T ′.

1Throughout this chapter we indicate the different classifying spaces of categories, bicategories
and tricategories by B, B2 and B3 respectively to avoid confusion. In the rest of the thesis we will
omit the index since it will be clear in each case by context.
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- For any composable trihomomorphisms F: T → T ′ and F ′: T ′ → T ′′,
there is a homotopy B3F

′B3F ' B3(F ′F ): B3T → B3T ′′ and, for any
tricategory T , there is a homotopy B31T ' 1B3T .

- If F,G: T → T ′ are two trihomomorphisms, then any tritransformation,
F ⇒ G, canonically defines a homotopy B3F ' B3G: B3T → B3T ′ between
the induced maps on classifying spaces.

- Any triequivalence of tricategories T → T ′ induces a homotopy equiva-
lence on classifying spaces B3T ' B3T ′.

For instance, for every tricategory T there is a Gray-category G(T ) with a triequiv-
alence T → G(T ), thanks to the coherence theorem for tricategories by Gordon, Power
and Street [69, Theorem 8.1]. Then, it is a consequence of the properties above that

- There is an induced homotopy equivalence B3T ' B3G(T ).

To deal with the delooping properties of certain classifying spaces, for any tri-
category T , we introduce its Segal nerve ST . This is a simplicial bicategory whose
bicategory of p-simplices, STp, is the bicategory of unitary trihomomorphisms of the
ordinal category [p] into T . Each ST is a special simplicial bicategory, in the sense
that the Segal projection homomorphisms on it are biequivalences of bicategories, and
thus it is a weak 3-category from the standpoint of Tamsamani [119] and Simpson
[113]. When T is a reduced tricategory (i.e., with only one object), then the simplicial
space B2ST : ∆op → Top, obtained by replacing the bicategories STp by their classify-
ing spaces B2(STp), is a special simplicial space. Therefore, according to Segal [112,
Proposition 1.5], under favorable circumstances, Ω|B2ST | is homotopy equivalent to
B2(ST1). In our development here, the relevant result is

Theorem 2.2 For any tricategory T , there is a homotopy equivalence
B3T ' |B2ST |.

Any monoidal bicategory (B,⊗) gives rise to a one-object tricategory Σ(B,⊗),
its ‘suspension’ tricategory following Street’s terminology [117, §9, Example 2] (or
‘delooping’ in the terminology of Kapranov-Voevodsky [90] or Berger [17]). Defining
the classifying space of a monoidal bicategory (B,⊗) to be the classifying space of its
suspension tricategory, that is, B3(B,⊗) = B3Σ(B,⊗), we prove the following extension
to bicategories of the aforementioned fact by Stasheff on monoidal categories.

Theorem 2.3 Let (B,⊗) be a monoidal bicategory such that, for any
object x ∈ B, the homomorphism x⊗−: B → B induces a homotopy auto-
equivalence on the classifying space B2B of B. Then, there is a homotopy
equivalence

B2B ' ΩB3(B,⊗),

between the classifying space of the underlying bicategory and the loop
space of the classifying space of the monoidal bicategory.
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If (C,⊗, c) is any braided monoidal category, then, thanks to the braiding, the
suspension of the underlying monoidal category Σ(C,⊗), which is actually a bicategory,
has a structure of monoidal bicategory. Hence, the double suspension tricategory
Σ2(C,⊗, c) is defined. According to Jardine [86, Setion 3], the classifying space of the
monoidal category B2(C,⊗) is the classifying space of its suspension bicategory, and,
following Carrasco, Cegarra and Garzón [42, Definition 6.1], the classifying space
of the braided monoidal category B3(C,⊗, c) is the classifying space of its double
suspension tricategory. Hence, from the above result we get the following.

Corollary 2.2 (i) For any braided monoidal category (C,⊗, c) there is
a homotopy equivalence

B2(C,⊗) ' ΩB3(C,⊗, c).

(ii) Let (C,⊗, c) be a braided monoidal category such that, for any object
x ∈ C, the functor x⊗−: C → C induces a homotopy auto-equivalence on
the classifying space of C. Then, there is a homotopy equivalence

BC ' Ω2B3(C,⊗, c).

Thus, under natural hypothesis, the double suspension tricategory Σ2(C,⊗, c) is
a categorical model for the double deelooping space of the classifying space of the
underlying category C, a fact already proved in [42, Theorem 6.10] (cf. Berger [17,
Proposition 2.11] and Balteanu, Fiedorowicz, Schwänzl and Vogt [12, Theorem 2.2]).

The process followed for defining the classifying space of a tricategory T , by means
of its Grothendieck nerve NT , is quite indirect and the CW-complex B3T thus ob-
tained has little apparent intuitive connection with the cells of the original tricategory.
However, when T is a (strict) 3-category, then the space |diagNNNT |, the geometric
realization of the simplicial set diagonal of the 3-simplicial set 3-fold nerve of T , has
usually been taken as the ‘correct’ classifying space of the 3-category. In Example 2.4,
we state that, for a 3-category T , there is homotopy equivalence

B3T ' |diagNNNT |.

The construction of the simplicial set diagNNNT for 3-categories does not work in the
non-strict case since the compositions in arbitrary tricategories are not associative and
not unitary, which is crucial for the 3-simplicial structure of the triple nerve NNNT ,
but only up to coherent equivalences or isomorphisms. There is, however, another
convincing way of associating a simplicial set to a 3-category T through its geometric
nerve ∆T , thanks to Street [116]. He extends each ordinal [p] = {0 < 1 < · · · < p}
to a p-category Op, the pth-oriental, such that the p-simplices of ∆T are just the
p-functors Op → T . Thus, ∆T is a simplicial set whose 0-simplices are the objects
(0-cells) F0 of T , whose 1-simplices are the 1-cells F0,1: F0→ F1, whose 2-simplices

F0
F0,1

||
F0,2

##F0,1,2⇒
F1

F1,2

// F2,
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consist of two composable 1-cells and a 2-cell F0,1,2: F1,2 ⊗ F0,1 ⇒ F0,2, and so on.
In fact, the geometric nerve construction ∆T even works for arbitrary tricategories
T , as Duskin [58] and Street [118] pointed out, and we discuss here in detail. The
geometric nerve ∆T is defined to be the simplicial set whose p-simplices are unitary
lax functors of the ordinal category [p] in the tricategory T . This is a simplicial set
which completely encodes all the structure of the tricategory and, furthermore, the
cells of its geometric realization |∆T | have a pleasing geometrical description in terms
of the cells of T . As a main result in the chapter, we state and prove that

Theorem 2.4 For any tricategory T , there is a homotopy equivalence
B3T ' |∆T |.

If (B,⊗) is any monoidal bicategory, then its geometric nerve, ∆(B,⊗), is defined
to be the geometric nerve of its suspension tricategory Σ(B,⊗). Then, in Example
2.10, we obtain that there is a homotopy equivalence

B3(B,⊗) ' |∆(B,⊗)|.

For instance, since the geometric nerve of a braided monoidal category (C,⊗, c)
is the geometric nerve of its double suspension tricategory, that is, ∆(C,⊗, c) =
∆Σ2(C,⊗, c), the existence of a homotopy equivalence B3(C,⊗, c) ' |∆(C,⊗, c)| fol-
lows, a fact proved by Carrasco, Cegarra and Garzón [42, Theorem 6.9].

The geometric nerve ∆(B,⊗), of any given monoidal bicategory (B,⊗), is a Kan
complex if and only if (B,⊗) is a bicategorical group, that is, a monoidal bicategory
whose 2-cells are isomorphisms, whose 1-cells are equivalences, and each object x has
a quasi-inverse with respect to the tensor product. In other words, a bicategorical
group is a monoidal bicategory whose suspension tricategory Σ(B,⊗) is a trigroupoid
(or Azumaya tricategory in the terminology of Gordon, Power and Street [69]). The
geometric nerve of any bicategorical group (B,⊗) is then a Kan complex, whose clas-
sifying space B3(B,⊗) is a path-connected homotopy 3-type. In fact, every connected
homotopy 3-type can be realized in this way from a bicategorical group, as suggested
by the unpublished but widely publicized result of Joyal and Tierney [89] that Gray-
groups (called semistrict 3-groups by Baez and Neuchl [9]) model connected homotopy
3-types (see also Berger [17], Lack [94], or Leroy [97]). Recall that, by the coher-
ence theorem for tricategories, every bicategorical group is monoidal biequivalent to
a Gray-group. In the last Subsection 2.5.1, we outline in some detail the proof of the
following statement.

Proposition 2.5 For any path-connected pointed CW-complex X,
there is a bicategorical group (B(X),⊗) with a homotopy equivalence
B3(B(X),⊗) ' X, if and only if πiX = 0 for i ≥ 4.

The bicategorical group (B(X),⊗) we build, associated to any space X as above,
might be recognized as a skeleton of Gurski’s monoidal fundamental bigroupoid of the
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loop space of X, (Π2(ΩX),⊗), [75, Theorem 1.4]. In the particular case when, in
addition, π3X = 0, then the resulting bicategorical group (B(X),⊗) has all its 2-cells
identities, so it is actually a categorical group in the sense of Joyal and Street [88,
Definition 3.1]. While in the particular case where π1X = 0, the bicategorical group
(B(X),⊗) has only one object, so that it is the suspension of a braided categorical
group, see Cheng and Gurski [53, §2]. Hence, our proof implicitly covers two relevant
particular cases, already well-known from Joyal and Tierney [89] (see also Carrasco
and Cegarra [39, Theorems 2.6 and 2.10]), one stating that categorical groups are
a convenient algebraic model for connected homotopy 2-types, and the other that
braided categorical groups are algebraic models for connected, simply-connected ho-
motopy 3-types.

2.1.1 The organization of the chapter

The plan of this chapter is, briefly, as follows. After this introductory Section 2.1,
the chapter is organized in five sections. Section 2.2 is quite technical, but crucial
to our discussions. It is dedicated to establishing some needed results concerning the
notion of lax functor from a category into a tricategory, which is at the heart of the
several constructions of nerves for tricategories used in the chapter. In Section 2.3,
we mainly include the construction of the Grothendieck nerve NT : ∆op → Bicat, for
any tricategory T , and the study of the basic properties concerning the behavior of
the Grothendieck nerve construction, T 7→ NT , with respect to trihomomorphisms
of tricategories. Section 2.4 contains the definition of classifying space B3T , for any
tricategory T . The main facts concerning the classifying space construction T 7→
B3T are established here. In this section we also study the relationship between
B3T and the space realization of the Segal nerve of a tricategory, ST : ∆op → Hom,
which, for instance, we apply to show how the classifying space of any monoidal
bicategory realizes a delooping space. Section 2.5 is mainly dedicated to describing
the geometric nerve ∆T : ∆op → Set, of any tricategory T , and to proving the
existence of homotopy equivalences B3T ' |∆T |. Also, by means of the geometric
nerve construction for monoidal bicategories, we show here that bicategorical groups
are a convenient algebraic model for connected homotopy 3-types. And finally, Section
2.6 collects the expression of various coherence conditions used throughout the chapter
and the proofs of lemmas in the preparatory Section 2.2.

2.1.2 Notations

We refer the reader to the papers by Bénabou [15], Street [117], Gordon-Power-Street
[69], Gurski [77], and Leinster [96], for the background on bicategories. The bicat-
egorical conventions and the notations that we use along the thesis are the same
as in [42, §2.1] and [41, §2.4]. Thus, given any bicategory B, the composition in
each hom-category B(x, y), that is, the vertical composition of 2-cells, is denoted
by β · α, while the symbol ◦ is used to denote the horizontal composition functors
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B(y, z) × B(x, y)
◦→ B(x, z). Identities are denoted as 1a : a ⇒ a, for any 1-cell

a : x→ y, and 1x : x→ x, for any object x ∈ ObB. The associativity, right unit, and
left unit constraints of the bicategory are respectively denoted by the letters a, r, and
l.

A lax functor F : A → B will have structure constraints

Fa ◦ Fb⇒ F (a ◦ b), 1Fx ⇒ F1x.

The lax functor is termed a pseudo functor or homomorphism whenever all these
structure constraints are invertible. If the unit constraints are all identities, then the
lax functor is qualified as (strictly) unitary or normal and if, moreover, the composition
constraints are also identities, then F is called a 2-functor.

If F,G : A → B are lax functors, then we follow the convention of [69] in
what is meant by a lax transformation α : F ⇒ G. Thus, α consists of morphisms
αx : Fx→ Gx, x ∈ ObA, and of 2-cells αa : αy ◦ Fa⇒ Ga ◦ αx, subject to the usual
axioms. When all the 2-cells αa are invertible, we say that α : F ⇒ G is a pseudo
transformation.

In accordance with the orientation of the naturality 2-cells chosen, if α, β : F ⇒ G
are two lax transformations, then a modification σ : α V β will consist of 2-cells
σx : αx ⇒ βx, x ∈ ObA, subject to the commutativity condition, for any morphism
a : x→ y of A:

Fx <<

αx

⇑σ
βx //

Fa

��

Gx

Ga

��

=

Fy

⇒
α

αy
// Gy

Fx
βx //

Fa

��

⇒
β

Gx

Ga

��
Fy

$$
βy

⇑σ
αy

// Gy.

Bicat denotes the tricategory of of bicategories, homomorphisms, pseudo trans-
formations, and modifications, while Hom will denote the category of bicategories
and homomorphisms. Thus we follow the notations by Gordon, Power and Street
[69, Notation 4.9 and §5] and Gurski [77, §5.1]. In the structure of Bicat we use, the
composition of pseudo transformations is taken to be

(
B

G
''

⇓β

G′
77 C
)(
A

F
''

⇓α

F ′
77 B
)

=
(
A

GF
%%

⇓βα

G′F ′
99 C
)
,

where βα = βF ′ ◦ Gα :
(
GF

Gα +3 GF ′
βF ′ +3 G′F ′

)
, but note the existence of the

useful invertible modification

GF
V

βF +3

Gα ��

G′F

G′α��
GF ′

βF ′ +3 G′F ′

(2.1)

whose component at an object x of A, is βαx, the component of β at the morphism
αx. The following fact will be also very useful.
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Fact 2.1 Let α: F ⇒ F ′: A → B be a lax transformation between homomorphisms of
bicategories. Then, for any 2-cell in A

x1
// · · · // xn an

''
x

a0 88

b0
$$

⇓u x′,

x′1
// · · · // x′m bm

88

the following equality holds:

=

Fx1
// · · · // Fxn Fan

))
Fx1

//

��

· · · // Fxn Fan
))

��

Fx

Fa0 66
Fb0((

αx

��
⇓αb0

⇓Fu

⇓αbm

Fx′

��
αx′

Fx

Fa0 66

��
αx

⇓αa0

Fx′

αx′

��

⇓αanFx′1
//

��

· · · // Fx′m

Fbm 66

��

· · ·
· · · F ′x1

// · · · // F ′xn
F ′an
))

F ′x

F ′b0
((

F ′x′ F ′x F ′a0

66

F ′b0
((

⇓F ′u F ′x′.

F ′x′1
// · · · // F ′x′mF ′bm

66
F ′x′1

// · · · // F ′x′m F ′bm

66

In this thesis we use the notion of tricategory T = (T ,a , l , r , π, µ, λ, ρ) as it was
introduced by Gordon, Power and Street in [69], but with a minor alteration: we
require that the homomorphisms of bicategories picking out units are normalized, and
then written simply as 1t ∈ T (t, t). This restriction is not substantive, see Gurski
[77, Theorem 7.24], but it does slightly reduce the amount of coherence data we have
to deal with. For any object t of the tricategory T , the arrow r1t: 1t → 1t ⊗ 1t is an
equivalence in the hom-bicategory T (t, t), with the arrow l1t: 1t ⊗ 1t → 1t an adjoint
quasi-inverse, see [77, Lemma 7.7]. Hereafter, we suppose the adjoint quasi-inverse
of r , r• a r , has been chosen such that r•1t = l1t, with the isomorphism r•1t ∼= l1t
being an identity. We will extensively use the coherence results in [77, Corollaries
10.6 and 10.15], particulary the following facts, easily deduced from them.

Fact 2.2 Any two pasting diagrams in a tricategory T with the same source and target
constructed only out of constraints 2-cells and 3-cells of T are equal2.

Fact 2.3 Given a trihomomorphism H: T → T ′, any two pasting diagrams in T ′ with
the same source and target constructed only out of constraints 2-cells and 3-cells of
T , T ′, and H, are equal.

For the general background on simplicial sets, we mainly refer to the book by
Goerss and Jardine [68]. The simplicial category3 is denoted by ∆, and its objects,

2Actually, as stated these facts aren’t exactly true. To be more precise, we should ask that the
diagrams appear as diagrams in a free tricategory. This condition is easy to check for all the diagrams
in which these facts have being applied.

3Notice that here we change the directions for the arrows of [n] with respect to Chapter 1, we will
keep this convention for the rest of the thesis.
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that is, the ordered sets [n] = {0, 1, . . . , n}, are usually considered as categories with
only one morphism (i, j): i → j when 0 ≤ i ≤ j ≤ n. Then, a non-decreasing map
[n]→ [m] is the same as a functor, so that we see ∆, the simplicial category of finite
ordinal numbers, as a full subcategory of Cat, the category (actually the 2-category)
of small categories. Throughout the chapter, Segal’s geometric realization [111] of
a simplicial (compactly generated topological) space X: ∆

op → Top is denoted by
|X|. By regarding a set as a discrete space, the (Milnor) geometric realization of a
simplicial set X: ∆

op → Set is |X|. Following Quillen [109], the classifying space of a
category C is denoted by BC.

2.2 Lax functors from categories into tricategories

As we will show in this chapter, the classifying space of any tricategory can be realized
up to homotopy by a simplicial set ∆T , whose p-simplices ∆[p]→ ∆T are lax functors
[p]→ T , where [p] is regarded as a tricategory in which the 2-cells and 3-cells are all
identities, satisfying various requirements of normality. To be more precise, we recall
the following.

A lax functor F: I → T , of a category I in a tricategory T , is a system of data
consisting of
• for each object i in I, an object Fi ∈ ObT ,
• for each arrow a: i→ j in I, a 1-cell Fa: Fi→ Fj,

• for each pair of composable arrows i
b→ j

a→ k in I, a 2-cell Fa,b: Fa ⊗ Fb ⇒
F (ab),
• for each object i ∈ ObI, a 2-cell Fi: 1Fi ⇒ F1i,

• for any three composable arrows i
c→ j

b→ k
a→ l in I, a 3-cell

(Fa⊗Fb)⊗Fc
Fa,b⊗1

��

Fa,b,c
V

a +3 Fa⊗(Fb⊗Fc)
1⊗Fb,c
��

F (ab)⊗Fc
Fab,c

+3 F (abc) Fa⊗F (bc),
Fa,bc
ks

• for any arrow i
a→ j in the index category I, two 3-cells

1Fj⊗Fa
l

�!

Fj⊗1

y�
F̂a
V

F1j⊗Fa
F1,a

+3 Fa,

Fa⊗1Fi
r•

�!

1⊗Fi
y�

F̃a
V

Fa⊗F1i
Fa,1

+3 Fa.

These data are required to satisfy the coherence conditions (CR1), (CR2), and
(CR3) as stated in the Appendix, §2.6.1.

Notice that we use a weaker notion of lax functor from that by Garner and Gurski
in [65], where it is required for the structure 3-cells to be invertible. Furthermore,
here the hom-functors I(i, j)→ T (Fi, F j) are normal.
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The set of lax functors from a small category I to a small tricategory T is denoted
by

Lax(I, T ).

A lax functor F: I → T is termed unitary or normal whenever the following
conditions hold: for each object i of I, F1i = 1Fi and Fi = 11Fi ; for each arrow
a: i→ j of I, Fa,1i = r•: Fa⊗ 1⇒ Fa, F1j ,a = l: 1⊗Fa⇒ Fa, and the 3-cells F1,b,c,

Fa,1,c, Fa,b,1, F̂a, and F̃a are the unique coherence isomorphisms. Furthermore, a lax
functor F: I → T whose structure 2-cells Fa,b are all equivalences (in the corresponding

hom-bicategories of T where they lie) and whose structure 3-cells Fa,b,c, F̂a, and F̃a, are
all invertible is called homomorphic (or, trihomomorphism). The subsets of Lax(I, T )
whose elements are the unitary, homomorphic, and unitary homomorphic lax functors,
are denoted respectively by

Laxu(I, T ), Laxh(I, T ), Laxuh(I, T ). (2.2)

Example 2.1 LetA be an abelian group, and let Σ2A denote the tricategory (actually
a 3-groupoid) having only one i-cell for 0 ≤ i ≤ 2 and whose 3-cells are the elements
of A, with all the compositions given by addition in A. Then, for any small category
I (e.g., a group G or a monoid M), a unitary lax functor F : I → Σ2A is the same as
a function F : NI3 → A satisfying the equations

F (b, c, d) + F (a, bc, d) + F (a, b, c) = F (ab, c, d) + F (a, b, cd),

and such that F (a, b, c) = 0 whenever any of the arrows a, b, or c is an identity. Thus
Laxu(I,Σ2A) = Z3(I, A), the set of normalized 3-cocycles of (the nerve NI of) the
category I with coefficients in the abelian group A.

2.2.1 The bicategories Lax(I, T ), Laxu(I, T ), Laxh(I, T ), Laxuh(I, T )

For any category I and any tricategory T , the set Lax(I, T ) of lax functors from I
into T is the set of objects of a bicategory whose 1-cells are a kind of degenerated
lax transformations between lax functors that agree on objects, called oplax icons by
Garner and Gurski in [65]. When T = B is a bicategory, that is, when the 3-cells
are all identities, these transformations have been considered by Bullejos and Cegarra
in [35] under the name of relative to objects lax transformations, whereas they are
termed icons by Lack in [93]. This bicategory, denoted by Lax(I, T ), is as follows:

• The cells of Lax(I, T ). As we said above, lax functors F: I → T are the 0-cells
of this bicategory. For any two lax functors F,G: I → T , a 1-cell Φ: F ⇒ G may
exists only if F and G agree on objects, and is then given by specifying

• for every arrow a: i→ j in I, a 2-cell Φa: Fa⇒ Ga of T ,
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• for each pair of composable arrows i
b→ j

a→ k in I, a 3-cell

Fa⊗ Fb
Fa,b +3

Φa⊗Φb
��

F (ab)

Φ(ab)
��

Φa,b
V

Ga⊗Gb
Ga,b
+3 G(ab),

(2.3)

• for each object i of the category I, a 3-cell

1Fi=Gi
Fi

{�

Gi

�$
Φi
W

F1i
Φ1i

+3 G1i,

(2.4)

This data are subject to the axioms (CR4) and (CR5) as stated in the Appendix,
§2.6.1.

A 2-cell M: ΦV Ψ, for Φ,Ψ: F ⇒ G two 1-cells in Lax(I, T ), is an icon modifica-
tion in the sense of [65], so it consists of a family of 3-cells in T , Ma: ΦaV Ψa, one
for each arrow a: i→ j in I, subject to the coherence condition (CR6).
• Compositions in Lax(I, T ). The vertical composition of a 2-cell M: Φ V Ψ

with a 2-cell N: Ψ V Γ, for Φ,Ψ,Γ: F ⇒ G, yields the 2-cell N ·M: Φ V Γ which
is defined using pointwise vertical composition in the hom-bicategories of T ; that is,
for each a: i→ j in I, (N ·M)a = (Na) · (Ma): ΦaV Γa: Fa⇒ Ga. The horizontal
composition of 1-cells Φ: F ⇒ G and Ψ: G ⇒ H, for F,G,H: I → T lax functors, is
Ψ ◦ Φ: F ⇒ H, where (Ψ ◦ Φ)a = Ψa ◦ Φa: Fa ⇒ Ha, for each arrow a: i → j in I.
Its component

(Ψ ◦ Φ)a,b: Ha,b ◦ ((Ψ ◦ Φ)a⊗ (Ψ ◦ Φ)b)V (Ψ(ab) ◦ Φ(ab)) ◦ Fa,b,

attached at a pair of composable arrows i
b→ j

a→ k of the category I, is given by
pasting in the bicategory T (Fi, Fk) the diagram

Fa⊗ Fb

(Ψa◦Φa)⊗(Ψb◦Φb)

��

Fa,b +3
Φa,b
V

Φa⊗Φb

$,

F (ab)
Φ(ab)

#+
Ga⊗Gb∼=

Ga,b +3
Ψa,b
VΨa⊗Ψbrz

G(ab)

Ψ(ab)s{
Ha⊗ Fb

Ha,b
+3 H(ab),

and its component (Ψ◦Φ)i: Hi V (Ψ◦Φ)1i ◦Fi, attached at any object i of I, is given
by pasting in T (Fi, F i) the diagram

1Fi=Gi=Hi
Hi

�&

Fi

x�
Gi
��

F1i
Φ1i
+3 G1i

Ψi
W

Φi
W

Ψ1i
+3 H1i.
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The horizontal composition of 2-cells M: ΦV Ψ: F ⇒ G and N: ΓV Θ: G⇒ H
in Lax(I, T ) is N ◦M: Γ ◦ Φ V Θ ◦ Ψ, which, at each a: i → j in I, is given by the
formula (N ◦M)a = Na ◦Ma.
• Identities in Lax(I, T ). The identity 1-cell of a lax functor F : I → T is 1F : F ⇒

F , where (1F )a = 1Fa, the identity of Fa in the bicategory T (Fi, F i), for each a: i→ j
in I. Its structure 3-cell (1F )a,b: Fa,b ◦ (1Fa ⊗ 1Fa) V 1F (ab) ⊗ Fa,b, attached at each

pair of composable arrows i
b→ j

a→ k, is the canonical one obtained from the identity
constraints of the bicategory T (Fk, F i) by pasting the diagram

Fa⊗ Fb
Fa,b +3

1⊗1

��
1

v~
∼=

F (ab)

1
��

∼=

Fa⊗ Fb
Fa,b

+3 F (ab),

and its component attached at any object i of I is obtained from the left unit con-
straints of the bicategory T (Fi, F i) at Fi: 1Fi ⇒ F1i, that is, (1F )i = l−1: Fi ∼=
1F1i ◦Fi. The identity 2-cell 1Φ, of a 1-cell Φ: F ⇒ G, is defined at any arrow a: i→ j
of I by the simple formula (1Φ)a = 1Φa: ΦaV Φa.

• The structure constraints in Lax(I, T ). For any three composable 1-cells F
Φ⇒

G
Ψ⇒ H

Θ⇒ K in Lax(I, T ), the component of the structure associativity isomorphism
(Θ ◦ Ψ) ◦ Φ ∼= Θ ◦ (Ψ ◦ Φ), at any arrow i

a→ j of the category I, is provided by
the associativity constraint (Θa ◦ Ψa) ◦ Φa ∼= Θa ◦ (Ψa ◦ Φa) of the hom-bicategory
T (Fi, F j). And similarly, the components of structure left and right identity isomor-
phisms 1G◦Φ ∼= Φ and Φ◦1F ∼= Φ, at any arrow a: i→ j as above, are provided by the
identity constraints 1Ga ◦ Φa ∼= Φa, and Φa ◦ 1Fa ∼= Φa, of the bicategory T (Fi, Fj),
respectively.

The bicategory Lax(I, T ), contains three sub-bicategories that are of interest in
our development: The bicategory of unitary lax functors, denoted by

Laxu(I, T ), (2.5)

whose 1-cells are those Φ: F ⇒ G in Lax(I, T ) that are unitary, in the sense that
Φ1i = 11Fi , the 3-cells Φ1,a, Φa,1 in (2.3), and Φi in (2.4) are those given by the
constraints of the tricategory, and it is full on 2-cells between such normalized 1-cells.

The bicategory of homomorphic lax functors (i.e., of trihomomorphisms), denoted
by

Laxh(I, T ),

whose 1-cells are those Φ: F ⇒ G in Lax(I, T ) such that the structure 3-cells Φa,b

and Φi are all invertible, and it is full on 2-cells M: ΦV Ψ between such 1-cells.
The bicategory of unitary homomorphic lax functors, denoted by Laxuh(I, T ),

which is defined to be the intersection of the above two, that is,

Laxuh(I, T ) = Laxu(I, T ) ∩ Laxh(I, T ). (2.6)
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Example 2.2 Let Σ2A be the strict tricategory defined by an abelian group A as
in Example 2.1 and let I be any category. Then, the bicategory Laxu(I,Σ2A) is
actually a 2-groupoid whose objects are normalized 3-cocycles of I with coefficients in
A. If F,G: NI3 → A are two such 3-cocycles, then a 1-cell Φ: F ⇒ G is a normalized
2-cochain Φ: NI2 → A satisfying

G(a, b, c) + Φ(b, c) + Φ(a, bc) = F (a, b, c) + Φ(ab, c) + Φ(a, b),

that is, G = F+∂Φ. And for any two 1-cells Φ,Ψ: F ⇒ G as above, a 2-cell M: ΦV Ψ
consists of a normalized 1-cochain M: NI1 → A such that Ψ = Φ + ∂M , that is, such
that Ψ(a, b) +M(a) +M(b) = M(ab) + Φ(a, b).

2.2.2 Functorial properties of Lax(I,−)

For any given tricategory T , any functor α: I → J induces a strict functor

α∗: Lax(J , T )→ Lax(I, T )

given on cells in the following way: For any F : J → T , α∗F: I → T is the lax functor
acting both on objects and arrows as the composite Fα, and whose structure cells are
simply given by the rules

(α∗F )a,b = Fαa,αb, (α∗F )i = Fαi,

(α∗F )a,b,c = Fαa,αb,αc, (α̂∗F )a = F̂αa, (α̃∗F )a = F̃αa.

Notice that α∗F is slightly different from the composite lax functor Fα, which will
give structure 2-cells (Fα)a,b = 1F (αaαb) ◦ Fαa,αb.

For Φ: F ⇒ G a 1-cell of Lax(J , T ), α∗Φ: α∗F ⇒ α∗G is the 1-cell of Lax(I, T )
with

(α∗Φ)a = Φ(αa), (α∗Φ)a,b = Φαa,αb, (α∗Φ)i = Φαi.

Similarly, for any 2-cell M: Φ V Ψ in Lax(J , T ), α∗M: α∗Φ V α∗Ψ is the 2-cell of
Lax(I, T ) with (α∗M)a = M(αa).

Using the definition above, the construction I 7→ Lax(I, T ) is functorial on the
category I. For a trihomomorphism of tricategories H = (H,χ, ι, ω, γ, δ): T → T ′, as
defined by Gordon, Power and Street in [69, Definition 3.1], we have the following
result.

Lemma 2.1 Let I be any given small category.
(i) Every trihomomorphism H: T → T ′ gives rise to a homomorphism

H∗: Lax(I, T )→ Lax(I, T ′),

which is natural on I, that is, for any functor α: I → J ,

H∗α
∗ = α∗H∗: Lax(J , T )→ Lax(I, T ′).
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(ii) If H: T → T ′ and H ′: T ′ → T ′′ are any two composable trihomomorphisms,
then there is a pseudo-equivalence m: H ′∗H∗ ⇒ (H ′H)∗, such that, for any functor
α: I → J , the equality mα∗ = α∗m holds.

(iii) For any tricategory T , there is a pseudo-equivalence m: (1T )∗ ⇒ 1, such that,
for any functor α: I → J , the equality mα∗ = α∗m holds.

Proof: This is given in the Appendix, §2.6.2. �

2.2.3 Lax functors from free categories

Let us now replace the category I above by a (directed) graph G. For any tricategory
T , there is a bicategory

Lax(G, T ),

where a 0-cell f: G → T consists of a pair of maps that assigns an object fi to each
vertex i ∈ G and a 1-cell fa: fi → fj to each edge a: i → j in G, respectively. A
1-cell φ: f ⇒ g may exist only if f and g agree on vertices, that is, fi = gi for all
i ∈ G; and then it consists of a map that assigns to each edge a: i→ j in the graph a
2-cell φa: fa⇒ ga of T . And a 2-cell m: φV ψ, for φ, ψ: f ⇒ g two 1-cells as above,
consists of a family of 3-cells in T , ma: φa V ψa, one for each arrow a: i → j in I.
Compositions in Lax(G, T ) are defined in the natural way by the same rules as those
stated above for the bicategory of lax functors from a category into a tricategory.

Suppose now that I(G) is the free category generated by the graph G. Then,
restriction to the basic graph gives a strict functor

R: Lax(I(G), T )→ Lax(G, T ),

and we shall state the following auxiliary statement to be used later.

Lemma 2.2 Let I = I(G) be the free category generated by a graph G. Then, for any
tricategory T , there is a homomorphism

L: Lax(G, T )→ Lax(I, T ),

and a lax transformation v: LR⇒ 1Lax(I,T ), such that the following facts hold:
(a) RL = 1Lax(G,T ), vL = 1L, Rv = 1R.
(b) The image of L is contained in the sub-bicategory Laxuh(I, T ) ⊆ Lax(I, T ).
(c) The restricted homomorphisms of L and R establish biadjoint biequivalences

Lax(G, T )
L //∼ Laxh(I, T )
R
oo , (2.7)

Lax(G, T )
L //∼ Laxuh(I, T )
R
oo , (2.8)

whose respective unit is the identity 1: 1⇒ RL, the counit is given by the corresponding
restriction of v: LR ⇒ 1, and whose triangulators are the canonical modifications
1 ∼= 1 ◦ 1 = vL ◦ L1 and Rv ◦ 1R = 1 ◦ 1 ∼= 1, respectively.
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Proof: This is given in the Appendix, §2.6.3. �

2.3 The Grothendieck nerve of a tricategory

Let us briefly recall that it was Grothendieck who first associated a simplicial set

NC: ∆op → Set (2.9)

to a small category C, calling it its nerve. The set of p-simplices

NCp =
⊔

(c0,...,cp)

C(cp−1, cp)× C(cp−2, cp−1)× · · · × C(c0, c1)

consists of length p sequences of composable morphisms in C. Geometric realization
of its nerve is the classifying space of the category, BC. The main result here shows
how the Grothendieck nerve construction for categories rises to tricategories.

When a tricategory T is strict, that is, a 3-category, then the nerve construction
(2.9) actually works by giving a simplicial 2-category (see Example 2.4). However,
for an arbitrary tricategory, the device is more complicated since the compositions of
cells in a tricategory is in general not associative and not unitary (which is crucial
for the simplicial structure in the construction of NT as above), but it is only so up
to coherent isomorphisms. This ‘defect’ has the effect of forcing one to deal with
the classifying space of a nerve of T in which the simplicial identities are replaced by
coherent isomorphisms, that is, a pseudo-simplicial bicategory as stated in the theorem
below. Pseudo-simplicial bicategories, and the tricategory they form (whose 1-cells
are pseudo-simplicial homomorphisms, 2-cells pseudo-simplicial transformations, and
3-cells pseudo-simplicial modifications) were studied by Carrasco, Cegarra and Garzón
in [42], to which we refer the reader4.

Theorem 2.1 Any tricategory T defines a normal pseudo-simplicial bicategory, that
is, a unitary trihomomorphism from the simplicial category ∆op into the tricategory
of bicategories,

NT = (NT , χ, ω): ∆op → Bicat, (2.10)

called the nerve of the tricategory, whose bicategory of p-simplices, for p ≥ 1, is

NTp =
⊔

(t0,...,tp)∈ ObT p+1

T (tp−1, tp)× T (tp−2, tp−1)× · · · × T (t0, t1),

4See also Subsection 3.2.1 and Example 3.1 in Chapter 3.
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and NT0 = 0bT , as a discrete bicategory. The face and degeneracy homomorphisms
are defined on 0-cells, 1-cells and 2-cells of NTp by the ordinary formulas

di(xp, . . . , x1) =


(xp, . . . , x2) if i = 0,

(xp, . . . , xi+1 ⊗ xi, . . . , x1) if 0 < i < p,

(xp−1, . . . , x1) if i = p,

si(xp, . . . , x1) = (xp, . . . , xi+1, 1, xi, . . . , x1).

(2.11)

Indeed, if a: [q] → [p] is any map in the simplicial category ∆, then the associated
homomorphism

NTa: NTp → NTq

is induced by the composition T (t′, t)× T (t′′, t′)
⊗→ T (t′′, t) and unit 1t: 1 → T (t, t)

homomorphisms. The structure pseudo-equivalences

NTp

NTb NTa
((

NTab
66⇓χa,b NTn, (2.12)

for each pair of composable maps [n]
b→ [q]

a→ [p] in ∆, and the invertible modifications

NTc NTb NTa
χb,cNTa

��
ωa,b,cV

NTc χa,b +3 NTc NTab
χab,c

��
NTbc NTa χa,bc

+3 NTabc,

(2.13)

respectively associated to triplets of composable arrows [m]
c→ [n]

b→ [q]
a→ [p], canon-

ically arise all from the structure pseudo equivalences and modifications data of the
tricategory.

We shall prove Theorem 2.1 simultaneously with the Proposition 2.1 below, which
states the basic properties concerning the behavior of the Grothendieck nerve con-
struction, T 7→ NT , with respect to trihomomorphisms of tricategories.

Proposition 2.1 (i) Any trihomomorphism between tricategories H: T → T ′ induces
a normal pseudo-simplicial homomorphism

NH = (NH, θ,Π): NT → NT ′,

which, at any integer p ≥ 0, is the evident homomorphism NHp: NTp → NT ′p defined
on any cell (xp, . . . , x1) of NTp by

NHp(xp, . . . , x1) = (Hxp, . . . ,Hx1).
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The structure pseudo-equivalence

NTp
θa⇒

NHp //

NTa
��

NT ′p
NT ′a��

NTq
NHq
// NT ′q ,

(2.14)

for each map a: [q]→ [p] in ∆, and the invertible modifications

NHn NTb NTa
θNTa

��

NHnχ +3 NHn NTab
θ
��

Πa,bV

NT ′b NHq NTa
NT ′b θ

+3 NT ′b NT ′a NHp
χNHp

+3 NT ′ab NHp,

(2.15)

respectively associated to pairs of composable arrows [n]
b→ [q]

a→ [p], canonically arise
all from the structure pseudo equivalences and modifications data of the trihomomor-
phism and the involved tricategories.

(ii) For any pair of composable trihomomorphisms H: T → T ′ and H ′: T ′ → T ′′,
there is a pseudo-simplicial pseudo-equivalence

NH ′ NH ⇒ N(H ′H). (2.16)

(iii) For any tricategory T , there is a pseudo-simplicial pseudo-equivalence

N1T ⇒ 1NT . (2.17)

Proof:[Proof of Theorem 2.1 and Proposition 2.1.] Let us note that, for any p ≥ 0,
the category [p] is free on the graph Gp = (0 → 1 → · · · → p), and that NTp =
Lax(Gp, T ). Hence, the existence of a biadjoint biequivalence

Lp a Rp: NTp � Laxh([p], T )

follows from Lemma 2.2, where Rp is the strict functor defined by restricting to the
basic graph Gp of the category [p], such that RpLp = 1, whose unity is the identity, and
whose counit vp: LpRp ⇒ 1 is a pseudo-equivalence satisfying the equalities vpLp = 1
and Rpvp = 1. Then, if a: [q]→ [p] is any map in the simplicial category, the associated
homomorphism NTa: NTp → NTq, is defined to be the composite

NTp
NTa //

Lp ��

NTq

Laxh([p], T )
a∗ // Laxh([q], T ).

Rq

OO
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Observe that, thus defined, the homomorphism NTa maps the component bicategory
of NTp at (tp, . . . , t0) into the component at (ta(q), . . . , ta(0)) of NTq, and it acts on 0-
cells, 1-cells, and 2-cells of NTp by the formula NTa(xp, . . . , x1) = (yq, . . . , y1), where,

for 0 ≤ k < q, (see (2.43) for the definition of
or

⊗)

yk+1 =


or

⊗(xa(k+1), . . . , xa(k)+1) if a(k) < a(k + 1),

1 if a(k) = a(k + 1).

Thus we get, in particular, the formulas for the face and degeneracy homomorphisms.
The pseudo natural equivalence (2.12) is

NTb NTa= Rnb
∗LqRqa

∗Lp
χa,b=Rnb

∗vqa∗Lp +3 Rnb
∗a∗Lp = Rn(ab)∗Lp = NTab,

and the invertible modification (2.13) is

ωa,b,c = Rmc
∗ω′ba

∗Lp,

where ω′b is the canonical modification below.

LnRnb
∗LqRq

LnRnb∗vq +3

vnb∗LqRq
��

(2.1)
Vω′b:

LnRnb
∗

vnb∗
��

b∗LqRq
b∗vq

+3 b∗
(2.18)

Thus defined, NT is actually a normal pseudo-simplicial bicategory. Both coher-
ence conditions for NT , that is, conditions (CC1) and (CC2) in [42], follow from the
equalities RpLp = 1, vpLp = 1, and Rpvp = 1, and the coherence in the tricategory
Bicat. This proves Theorem 2.1.

And when it comes to Proposition 2.1, first, let us note that the homomorphisms
NHp: NTp → NT ′p , p ≥ 0, make commutative the diagrams

NTp
NHp //

L=LTp
��

NT ′p

Laxh([p], T )
H∗ // Laxh([p], T ′),

R=RT
′

p

OO

where H∗ is the induced homomorphism by the trihomomorphism H: T → T ′, as
stated in Lemma 2.1 (i). Then, the pseudo-equivalence (2.14), θa, is provided by the
pseudo-equivalences v: LR ⇒ 1 and their adjoint quasi-inverses v•: 1 ⇒ LR (which
we can choose such that Rv• = 1 and v•L = 1); that is, θa = Ra∗v•H∗L◦RH∗LRa∗L,

RH∗a
∗L = Ra∗H∗L

%-
Ra∗v•H∗L

NHq NTa = RH∗LRa
∗L

19RH∗va∗L

θa // Ra∗LRH∗L = NT ′a NHp.
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And, for [n]
b→ [q]

a→ [p], any two composable arrows of ∆, the structure invertible
modification (2.15), Πa,b, is the modification obtained by pasting the diagram

RH∗LRb
∗LRa∗L

(2.1)
VRH∗vb∗LRa∗L

��

RH∗LRb∗va∗L +3 RH∗RLb
∗a∗L

RH∗vb∗a∗L

��
RH∗b

∗LRa∗L

(2.1)
V

Rb∗H∗va∗L +3

Rb∗v•H∗LRa∗L

��

RH∗b
∗a∗L

1
rz

Rb∗v•H∗a∗L

t|

Rb∗a∗v•H∗L

��
Rb∗LRH∗LRa

∗L

Rb∗LRH∗va∗L

��

Rb∗a∗H∗L
Rb∗a∗v•H∗L

+3 Rb∗a∗LRH∗L

∼=

Rb∗LRH∗a
∗L

Rb∗LRa∗v•H∗L +3

Rb∗va∗H∗L

/7
(A)∼=

Rb∗LRa∗LRH∗L

Rb∗va∗LRH∗L

KS

(2.1)
V

where the isomorphism labelled (A) is given by the adjunction invertible modification
v ◦ v• ∼= 1. The coherence conditions for NH: NT → NT ′, that is, conditions (CC3)
and (CC4) in [42], are easily verified again from coherence in Bicat.

Suppose now that T H→ T ′ H
′
→ T ′′ are two composable trihomomorphisms. Then,

the pseudo-simplicial pseudo-equivalence (2.16), α: NH ′ NH ⇒ N(H ′H), is, at any
integer p ≥ 0, given by αp = RmL ◦RH ′∗vH∗L,

RH ′∗H∗L

#+

RmL

NH ′p NHp = RH ′∗LRH∗L

3;RH′∗vH∗L

αp // R(H ′H)∗L = N(H ′H)p,

where the pseudo-equivalence m: H ′∗H∗ ⇒ (H ′H)∗: Laxh([p], T ) → Laxh([p], T ′′) is
that given in Lemma 2.1 (ii). The naturality component of α at any map a: [q]→ [p],

NH ′q NHq NTa
V

αqNTa +3

NH′q θa
��

N(H ′H)q NTa
θa
��

NH ′q NT ′a NHp
θaNHp

+3 NT ′′a NH ′p NHp
NT ′′a αp

+3 NT ′′a N(H ′H)p,
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is provided by the invertible modification obtained by pasting in

H ′∗LRH∗LRa
∗

(2.1)
VH′∗LRH∗va

∗

��

H′∗vLRa
∗

+3 H ′∗H∗LRa
∗ mLRa∗ +3

H′∗H∗va
∗

��

(2.1)
V

(H ′H)∗LRa
∗

(H′H)∗va∗

��
H ′∗LRH∗a

∗

(A)
V

H′∗vH∗a
∗

+3

H′∗LRa
∗v•H∗
��

1

&.
∼=

H ′∗H∗a
∗ ma∗=a∗m +3

a∗v•H′∗H∗

��

(H ′H)∗a
∗

(2.1)
V

a∗v•(H′H)∗

��

H ′∗LRa
∗LRH∗

(2.1)
VH′∗va

∗LRH∗

��

H′∗LRa
∗vH∗

+3 H ′∗LRa
∗H∗

(2.1)
V

H′∗vH∗a
∗ 19

H ′∗a
∗LRH∗

H′∗a
∗vH∗

;C

a∗v•H′∗LRH∗
+3 a∗LRH ′∗LRH∗a∗LRH′∗vH∗

+3 a∗LRH ′∗H∗ a∗LRm
+3 a∗LR(H ′H)∗,

where the isomorphism (A) is given by the adjunction invertible modification v◦v• ∼= 1.

Finally, the pseudo-simplicial pseudo-equivalence (2.17), β: N1T ⇒ 1NT , is defined
by the family of pseudo-equivalences

N(1T )p = R(1T )∗L
βp=RmL +3 RL = 1NTp ,

where m: (1T )∗ ⇒ 1: Laxh([p], T )→ Laxh([p], T ) is the pseudo-equivalence in Lemma
2.1 (iii). The naturality invertible modification attached at any map a: [q]→ [p],

N(1T )p NTa
Vθa

��

βpNTa +3 NTa
1
��

NTa N(1T )q
NTaβq

+3 NTa,

is that obtained by pasting the diagram

R(1T )∗LRa
∗L

(2.1)
V

RmLRa∗L +3

R(1T )∗va∗L
��

RLRa∗L = Ra∗L

1

��

rz

1=Rva∗L

R(1T )∗a
∗L

(2.1)
V

Rma∗L +3

Ra∗v•(1T )∗L
��

Ra∗L ∼=

$,1=Ra∗v•L

Ra∗LR(1T )∗L
Ra∗LRmL

+3 Ra∗LRL = Ra∗L.

The conditions (CC5) and (CC6) in [42], for both α and β, are plainly verified. �



2.4. The classifying space of a tricategory 77

2.4 The classifying space of a tricategory

2.4.1 Preliminaries on classifying spaces of bicategories

When a bicategory B is regarded as a tricategory all of whose 3-cells are identities,
the nerve construction on it actually produces a normal pseudo-simplicial category
NB = (NB, χ): ∆

op → Cat, which is called by Carrasco, Cegarra and Garzón [41, §3]
the pseudo-simplicial nerve of the bicategory. The classifying space of the bicategory,
denoted here by B2B, is then defined to be the ordinary classifying space of the cate-
gory obtained by the Grothendieck construction [73] on the nerve of the bicategory,
that is,

B2B = B
∫
∆NB .

The following facts are proved in [41].

Fact 2.4 Each homomorphism between bicategories F: B → C induces a continuous
(cellular) map B2F: B2B → B2C. Thus, the classifying space construction, B 7→ B2B,
defines a functor from the category Hom of bicategories to CW-complexes.

Fact 2.5 If F, F ′: B → C are two homomorphisms between bicategories, then any
lax (or oplax) transformation, F ⇒ F ′, canonically defines a homotopy between the
induced maps on classifying spaces, B2F ' B2F

′: B2B → B2C.

Fact 2.6 If a homomorphism of bicategories has a left or right biadjoint, the map in-
duced on classifying spaces is a homotopy equivalence. In particular, any biequivalence
of bicategories induces a homotopy equivalence on classifying spaces.

Furthermore, we should recall that the classifying space of any pseudo-simplicial
bicategory F: ∆

op → Bicat is defined by Carrasco, Cegarra and Garzón in [42,
Definition 5.4] to be the classifying space of its bicategory of simplices

∫
∆F , also called

the Grothendieck construction on F [42, §3.1]5. That is, the bicategory whose objects
are the pairs (x, p), where p ≥ 0 is an integer and x is an object of the bicategory Fp,
and whose hom-categories are∫

∆F
(
(y, q), (x, p)

)
=

⊔
[q]

a→[p]

Fq(y, a∗x),

where the disjoint union is over all arrows a: [q] → [p] in the simplicial category ∆;
compositions, identities, and structure constraints are defined in the natural way. We
refer the reader to [42, §3] for details about the bicategorical Grothendieck construc-
tion trihomomorphism ∫

∆−: Bicat∆op → Bicat,

from the tricategory of pseudo-simplicial bicategories to the tricategory of bicategories.
The following facts are proved in [42].

5See also Section 3.3.



78 Chapter 2. Comparing geometric realizations of tricategories

Fact 2.7 (i) If F ,G: ∆op → Bicat are pseudo-simplicial bicategories, then each
pseudo-simplicial homomorphism F: F → G induces a continuous map

B2

∫
∆F: B2

∫
∆F → B2

∫
∆G.

(ii) For any pseudo-simplicial bicategory F: ∆
op → Bicat, there is a homotopy

B2

∫
∆1F ' 1B2

∫
∆F

: B2

∫
∆F → B2

∫
∆F .

(iii) For any pair of composable pseudo-simplicial homomorphisms F: F → G,
G: G → H, there is a homotopy

B2

∫
∆G B2

∫
∆F ' B2

∫
∆(GF ): B2

∫
∆F → B2

∫
∆H.

Fact 2.8 Any pseudo-simplicial transformation F ⇒ G: F → G induces a homotopy

B2

∫
∆F ' B2

∫
∆G: B2

∫
∆F → B2

∫
∆G.

Fact 2.9 If F : F → G is a pseudo simplicial homomorphism, between pseudo simpli-
cial bicategories F ,G: ∆

op → Bicat, such that the induced map B2Fp: B2Fp → B2Gp is
a homotopy equivalence for all p ≥ 0, then the induced map B2

∫
∆F: B2

∫
∆F → B2

∫
∆G

is a homotopy equivalence.

Fact 2.10 If F: ∆
op → Hom ⊂ Bicat is a simplicial bicategory, then there is a

natural homotopy equivalence

B2

∫
∆F ' |B2F| = |[p] 7→ B2Fp|,

where the latter is the geometric realization of the simplicial space B2F: ∆
op → Top,

obtained by composing F with the classifying space functor B2: Hom→ Top.

2.4.2 The classifying space construction for tricategories

We are now ready to make the following definition, which recovers the more tradi-
tional way through which a classifying space is assigned in the literature to certain
specific kinds of tricategories, such as 3-categories, bicategories, monoidal categories,
or braided monoidal categories (see Examples 2.4, 2.5, and 2.6 below).

Definition 2.1 The classifying space B3T , of a tricategory T , is the classifying space
of its bicategorical pseudo-simplicial Grothendieck nerve, NT : ∆op → Bicat, that is,

B3T = B2

∫
∆NT .
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Let us remark that the classifying space of a tricategory T is then realized as the
classifying space of a category canonically associated to it, namely, as

B3T = B
∫
∆N
(∫

∆NT
)

= |N
( ∫

∆N
(∫

∆NT
))
|.

Example 2.3 (Classifying spaces of categories and bicategories) When a bi-
category B is viewed as a tricategory whose 3-cells are all identities, then its classifying
space is homotopy equivalent to the classifying space of the bicategory B2B as defined
by Carrasco, Cegarra and Garzón in [41, Definition 3.1], that is

B3B ' B2B.

To see that, let us recall that, for any simplicial set X: ∆op → Set, there is a natural
homotopy equivalence B

∫
∆X ' |X|, between the classifying space of its category of

simplices and its geometric realization (see Illusie [85, Theorem 3.3]). As, for any
bicategory B, N

(∫
∆NB

)
is actually a simplicial set, we have a homotopy equivalence

B3B = B
∫
∆N
(∫

∆NB
)
| ' |N

(∫
∆NB

)
| = B

∫
∆NB = B2B.

Similarly, for C any category regarded as a tricategory whose 2- and 3-cells are all
identities, we have homotopy equivalences

B3C ' B2C = B
∫
∆NC ' |NC| = BC,

since, in this case, NC is a simplicial set.

The next proposition deals with some properties concerning the homotopy behavior
of the classifying space construction, T 7→ B3T , with respect to trihomomorphisms of
tricategories.

Proposition 2.2 (i) Any trihomomorphism between tricategories H: T → T ′ induces
a continuous (cellular) map B3H: B3T → B3T ′.

(ii) For any pair of composable trihomomorphisms H: T → T ′ and H ′: T ′ → T ′′,
there is a homotopy

B3H
′ B3H ' B3(H

′H): B3T → B3T ′′.

(iii) For any tricategory T , there is a homotopy B31T ' 1B3T : B3T → B3T .

Proof: (i) By Proposition 2.1 (i), any trihomomorphism H: T → T ′ gives rise to a
pseudo-simplicial homomorphism on the corresponding Grothendieck nerves NH: NT →
NT ′, which, by Fact 2.7 (i), produces the claimed continuous map B3H = B2

∫
∆NH: B3T →

B3T ′.
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(ii) Suppose that T H→ T ′ H
′
→ T ′′ are trihomomorphisms. By Proposition 2.1 (ii),

there is a pseudo-simplicial pseudo-equivalence NH ′ NH ⇒ N(H ′H), which, by Fact
2.8, induces a homotopy

B2

∫
∆(NH ′NH) ' B2

∫
∆N(H ′H) = B3(H ′H).

Then, the result follows since, by Fact 2.7 (iii), there is a homotopy

B2

∫
∆(NH ′NH) ' B2

∫
∆NH ′ B2

∫
∆NH = B3H

′B3H.

(iii) By Proposition 2.1 (iii), there is a pseudo-simplicial pseudo-equivalence

N1T ⇒ 1NT ,

which, by Fact 2.8, induces a homotopy B31T = B2

∫
∆N1T ' B2

∫
∆1NT . Since, by Fact

2.7 (ii), there is a homotopy B2

∫
∆1NT ' B21∫

∆NT = 1B3T , the result follows. �

Example 2.4 (Classifying spaces of 3-categories) In [111], Segal observed that,
if C is a topological category, then its Grothendieck nerve (2.9) is, in a natural way, a
simplicial space, that is, NC: ∆

op → Top. Then, he defines the classifying space of a
topological category C to be |NC|, the geometric realization of this simplicial space.
This notion given by Segal provides, for instance, the usual definition of classifying
spaces of strict bicategories, or 2-categories, and strict tricategories, or 3-categories.
Thus, the classifying space of a 2-category B is, by definition, the classifying space
of the topological category whose space of objects is the discrete space of objects of
B, and whose hom spaces are obtained by replacing the hom categories B(b, b′) by
their classifying spaces. In other words, the classifying space of the 2-category is the
geometric realization of the simplicial space obtained by composing NB: ∆op → Cat
with the classifying space functor B: Cat→ Top, that is, the space

|[p] 7→ B(NBp)| = |[p] 7→ |N(NBp)|| = |[p] 7→ |[q] 7→ N(NBp)q|| ∼= |diagNNB|

where diagNNB is the diagonal simplicial set of the bisimplicial set NNB double nerve
of B, ([p], [q]) 7→ N(NBp)q, and the last homeomorphism above is a consequence of
Quillen’s Lemma [109, page 86]. Similarly, as a 3-category T is just a category
enriched in the category of 2-categories and 2-functors, that is, a category T endowed
with 2-categorical hom-sets T (t′, t), in such a way that the compositions T (t′, t) ×
T (t′′, t′)→ T (t′′, t) are 2-functors, by replacing the hom 2-categories T (t′, t) by their
classifying spaces as above, we obtain a topological category, whose classifying space
is the classifying space of the 3-category T . That is, the space

|[p] 7→ |diagNN(NTp)|| = |[p] 7→ |[q] 7→ N(N(NTp)q)q| ∼= |diagNNNT |.
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For B any 2-category, Thomason’s Homotopy Colimit Theorem [120, Theorem
1.2] and a result by Bousfield and Kan [20, XII, 4.3] give the existence of natural
homotopy equivalences

B2B = B
∫

∆NB ' |hocolim∆NNB| ' |diagNNB|.

For T any 3-category, by Fact 2.10, there is a homotopy equivalence B3T =
B2

∫
∆NT ' |[p] 7→ B2(NTp)|, and therefore we have an induced homotopy equiva-

lence
B3T ' |[p] 7→ |diagNN(NTp)|| ∼= |diagNNNT |.

2.4.3 The Segal nerve of a tricategory

Several theoretical interests suggest dealing with the so-called Segal nerve construc-
tion for tricategories. This associates to any tricategory T a simplicial bicategory,
denoted by ST , which can be thought of as a ‘rectification’ of the pseudo-simplicial
Grothendieck nerve of the tricategory NT , since both are biequivalent in the tricate-
gory of pseudo-simplicial bicategories and therefore model the same homotopy type.
Furthermore, ST is a weak 3-category under the point of view of Tamsamani [119]
and Simpson [113] (see Proposition 2.3 below), in the sense that it is a special simpli-
cial bicategory, that is, a simplicial bicategory S: ∆

op → Hom satisfying the following
two conditions:

(i) S0 is discrete (i.e., all its 1- and 2-cells are identities).
(ii) for n ≥ 2, the Segal projection homomorphisms below are biequivalences.

pn =
n∏
k=1

dn · · · dk+1dk−2 · · · d0: Sn −→ S1d1×d0S1d1×d0 · · · d1×d0S1. (2.19)

For a given tricategory T , the construction of the bicategory of unitary homomor-
phic lax functors from any small category I in the tricategory T , I 7→ Laxuh(I, T ),
given in (2.6), is functorial on the category I, and this leads to the definition below.

Definition 2.2 The Segal nerve of a tricategory T is the simplicial bicategory

ST : ∆
op → Hom ⊂ Bicat, [p] 7→ STp = Laxuh([p], T ). (2.20)

We should remark that, when T = B is a bicategory, that is, when its 3-cells are all
identities, then the Segal nerve SB was introduced by Carrasco, Cegarra and Garzón
in [41, Definition 5.2], although it was first studied by Lack and Paoli in [95] under
the name of ‘2-nerve of B’.

Proposition 2.3 Let T be a tricategory. Then, the following statements hold:
(i) There is a normal pseudo-simplicial homomorphism

L: NT → ST , (2.21)
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such that, for any p ≥ 0, the homomorphism Lp: NTp → STp is a biequivalence.

(ii) The simplicial bicategory ST is special.

Proof: We keep the notations established in the construction of NT = (NT , χ, ω)
given in the proof of Theorem 2.1, and recall from Lemma 2.2 (c) that we have a
biadjoint biequivalence

Lp a Rp: NTp � STp.

The normal pseudo-simplicial homomorphism L = (L, θ,Π): NT → ST is then
defined by the homomorphisms Lp: NTp → STp, p ≥ 0. For any a: [q] → [p], the
structure pseudo-equivalence

NTp
Lp //

NTa
��

θa⇒

STp
a∗
��

NTq
Lq
// STq,

is provided by the counit pseudo-equivalence vq: LqRq ⇒ 1STq ; that is,

Lq NTa = LqRqa
∗Lp

θa=vqa∗Lp+3 a∗ Lp.

For [n]
b→ [q]

a→ [p], any two composable arrows of ∆, the structure invertible modifi-
cation

Ln NTb NTa
θNTa

��

Lnχ +3 Ln NTab
θ
��

Πa,b
V

b∗Lq NTa
b∗θ

+3 b∗a∗Lp 1
(ab)∗Lp

is directly provided by the canonical modification (2.18), Πa,b = ω′ba
∗Lp.

The coherence conditions for L (i.e., conditions (CC3) and (CC4) in [42], with
the modifications Γ the coherence isomorphisms 1◦1 ∼= 1), are easily verified by using
Fact 2.1. This complete the proof of part (i).

And when it comes to part (ii), that is, that ST is a special simplicial bicategory,
we have the following isomorphisms between bicategories:

ST0 = Laxuh([0], T ) ∼= ObT = NT0, (2.22)

which identifies a normal trihomomorphism F: [0]→ T with the object F0,

ST1 = Laxuh([1], T ) ∼=
⊔

(t0,t1)

T (t0, t1) = NT1, (2.23)

which carries a normal trihomomorphism F: [1] → T to the 1-cell F0,1: F0 → F1,
and, for any integer p ≥ 2,
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ST1d1×d0 · · · d1×d0ST1

∼=
⊔

(tp−1,tp)

T (tp−1, tp)×
⊔

(tp−2,tp−1)

T (tp−2, tp−1)× · · · ×
⊔

(t0,t1)

T (t0, t1)

∼=
⊔

(t0,...,tp)

T (tp−1, tp)× T (tp−2, tp−1)× · · · × T (t0, t1) = NTp.

Through these isomorphisms we see that, for any integer p ≥ 2, the Segal projection
homomorphism (2.19) is precisely the biequivalence Rp: STp → NTp which, recall, is
defined by restricting it to the basic graph of the category [p]. Whence the simplicial
bicategory ST is special. �

The following theorem states that the classifying space of a tricategory T can be
realized, up to homotopy equivalence, by its Segal nerve ST . This fact will be relevant
for our later discussions on loop spaces. Let

B2ST : ∆op → Top, [p] 7→ B2(STp),

be the simplicial space obtained by composing ST : ∆
op → Hom ⊂ Bicat with the

classifying functor B2: Hom→ Top (recall Fact 2.4).

Theorem 2.2 For any tricategory T , there is a homotopy equivalence

B3T ' |B2ST |.

Proof: Let us consider the pseudo-simplicial homomorphism (2.21), L: NT → ST .
Since, for every integer p ≥ 0, the homomorphism Lp: NTp → STp is a biequivalence,
it follows from Fact 2.6 that the induced cellular map B2Lp: B2(NTp) → B2(STp) is
a homotopy equivalence. Then, by Fact 2.9, the induced map B2

∫
∆L: B2

∫
∆NT →

B2

∫
∆ST is a homotopy equivalence. Since, by definition, B3T = B2

∫
∆NT , whereas, by

Fact 2.10, there is a homotopy equivalence B2

∫
∆ST ' |B2ST |, the claimed homotopy

equivalence follows. �

Example 2.5 ( Classifying spaces of monoidal bicategories) Any monoidal bi-
category (B,⊗) = (B,⊗, I,a , l , r , π, µ, λ, ρ) can be viewed as a tricategory

Σ(B,⊗) (2.24)

with only one object, say ∗, whose hom-bicategory is the underlying bicategory. Thus,
Σ(B,⊗)(∗, ∗) = B, and its composition given by the tensor functor ⊗: B × B → B and
the identity at the object is 1∗ = I, the unit object of the monoidal bicategory. The
structure pseudo-equivalences and modifications a , l , r , π, µ, λ, and ρ for Σ(B,⊗)
are just those of the monoidal bicategory, respectively (see the paper by Cheng and
Gurski [53, §3] for details). Call this tricategory the suspension, or delooping, tri-
category of the bicategory B induced by the monoidal structure given on it, and call
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its corresponding Grothendieck nerve the nerve of the monoidal bicategory, hereafter
denoted by N(B,⊗). Thus,

N(B,⊗)=NΣ(B,⊗): ∆op → Bicat, [p] 7→ Bp,

is a normal pseudo-simplicial bicategory, whose bicategory of p-simplices is the p-fold
power of the underlying bicategory B, with face and degeneracy homomorphisms in-
duced by the tensor homomorphism ⊗: B × B → B and unit object I, following the
familiar formulas (2.11), in analogy with those of the reduced bar construction on a
topological monoid, and with structure pseudo-equivalences and modifications canon-
ically arising from the data of the monoidal structure on B. The general Definition
2.1 for classifying spaces of tricategories leads to the following.

Definition 2.3 The classifying space of the monoidal bicategory, denoted by B3(B,⊗),
is defined to be the classifying space of its delooping tricategory Σ(B,⊗). Thus,

B3(B,⊗) = B3Σ(B,⊗) = B2

∫
∆N(B,⊗) .

The next theorem extends a well-known result by Mac Lane and Stasheff on
monoidal categories to monoidal bicategories.

Theorem 2.3 Let (B,⊗) be a monoidal bicategory such that, for any object x ∈ B, the
homomorphism x⊗−: B → B induces a homotopy auto-equivalence on the classifying
space of B, B2(x⊗−): B2B ' B2B. Then, there is a homotopy equivalence

B2B ' ΩB3(B,⊗),

between the classifying space of the underlying bicategory and the loop space of the
classifying space of the monoidal bicategory.

Proof: By Theorem 2.2, B3(B,⊗) is homotopy equivalent to |X•|, the geometric
realization of the the simplicial space X• = B2SΣ(B,⊗): ∆

op → Top obtained by
taking classifying spaces on the simplicial bicategory SΣ(B,⊗), the Segal nerve of the
suspension tricategory of the monoidal bicategory. By Proposition 2.3, SΣ(B,⊗) is a
special simplicial bicategory. Furthermore, since the tricategory Σ(B,⊗) has only one
object, the simplicial bicategory SΣ(B,⊗) is reduced (see (2.22)), that is, SΣ(B,⊗)0 =
∗ the one-object discrete bicategory. Hence, the simplicial space B2SΣ(B,⊗) satisfies
hypothesis (i) and (ii) of Segal’s Proposition 1.5 in [112]: X0 = B2(SΣ(B,⊗)0) is
contractible, and the Segal projections maps

B2pn: Xn = B2(SΣ(B,⊗)n)→ Xn
1 = B2(SΣ(B,⊗)n1 )

(2.23)∼= B2Bn

are homotopy equivalences. Since the H-space structure on X1 = B2B is just induced
by tensor homomorphism ⊗: B × B → B, we have, by hypothesis, that X1 has ho-
motopy inverses. Therefore, from [112, Proposition 1.5 (b)], we can conclude that
the canonical map X1 → Ω|X•| is a homotopy equivalence, whence the homotopy
equivalence B2B ' ΩB3(B,⊗) follows. �
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Example 2.6 (Classifying spaces of braided monoidal categories) If (C,⊗) is
a monoidal category , then Σ(C,⊗) is the bicategory called by Kapranov and Voevod-
sky in [90, 2.10] the delooping bicategory of the category induced by its monoidal
structure. The nerve of Σ(C,⊗) then becomes the pseudo-simplicial category used by
Jardine in [86, §3] to define the classifying space of the monoidal category just as
above: B2(C,⊗) = B

∫
∆N(C,⊗) (see also Bullejos and Cegarra [36], or Balteanu et

al. [12]). Thus,
B2(C,⊗) = B2Σ(C,⊗). (2.25)

Now, let (C,⊗, c) be a braided monoidal category as defined by Joyal and Street in
[88, Definition 3.1]. Thanks to the braidings c: x⊗y → y⊗x, the given tensor product
on C defines in a natural way a tensor product homomorphism on the suspension
bicategory of the underlying monoidal category, ⊗: Σ(C,⊗)×Σ(C,⊗)→ Σ(C,⊗). Thus
(Σ(C,⊗),⊗) is a monoidal bicategory. The corresponding suspension tricategory,

Σ2(C,⊗, c) = Σ(Σ(C,⊗),⊗)

is called the double suspension, or double delooping, of the underlying category C asso-
ciated to the given braided monoidal structure on it (see Berger [17, 4,2.5], Kapranov
and Voevodsky [90, 4.2] or Gordon, Power and Street [69, 7.9]). We refer the reader
to Cheng and Gurski [53, §2] for the (nontrivial details) of this construction and,
briefly, recall that this is a tricategory with only one object, say ∗, only one arrow
∗ = 1∗: ∗ → ∗, the objects of C are the 2-cells, and the morphisms of C are the 3-cells.
The hom-bicategory is Σ2(C,⊗, c)(∗, ∗) = Σ(C,⊗), the suspension bicategory of the
underlying monoidal category (C,⊗), the composition is also (as the horizontal one in
Σ(C,⊗)) given by the tensor functor ⊗: C × C → C and the interchange 3-cell between
the two different composites of 2-cells is given by the braiding.

The most striking instance is for (C,⊗, c) = (A,+, 0), the strict braided monoidal
category with only one object defined by an abelian group A, where both composition
and tensor product are given by the addition + in A; in this case, the double suspension
tricategory Σ2A is precisely the 3-category treated in Examples 2.1 and 2.2.

For any braided monoidal category (C,⊗, c), the Grothendieck nerve of the dou-
ble suspension tricategory Σ2(C,⊗, c) coincides with the pseudo-simplicial bicategory
called by Carrasco, Cegarra and Garzón in [42] the nerve of the braided monoidal
category, and denoted by N(C,⊗, c). Thus,

N(C,⊗, c)=NΣ2(C,⊗, c): ∆
op → Bicat, [p] 7→ (Σ(C,⊗))p = Σ(Cp,⊗),

is a normal pseudo-simplicial one-object bicategory whose bicategory of p-simplicies
is the suspension bicategory of the monoidal category p-fold power of (C,⊗). Since
the classifying space of the braided monoidal category [42, Definition 6.1], B3(C,⊗, c),
is just given by

B3(C,⊗, c) = B2

∫
∆N(C,⊗, c),

we have the following.
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Corollary 2.1 The classifying space of a braided monoidal category is the classifying

space of its double suspension tricategory, that is, B3(C,⊗, c) = B3Σ
2(C,⊗, c) .

It is known that the group completion of the classifying space BC of a braided
monoidal category (C,⊗, c) is a double loop space. This fact was first noticed by J.
D. Stasheff in [114], but originally proven by Z. Fiedorowicz in [64] (other proofs
can be found in Balteanu et al. [12] or Berger [17]). We shall show below that under
favorable circumstances B3(C,⊗, c) is a model for such a double delooping of BC.

Corollary 2.2 (i) For any braided monoidal category (C,⊗, c) there is a homotopy
equivalence

B2(C,⊗) ' ΩB3(C,⊗, c).

(ii) Let (C,⊗, c) be a braided monoidal category such that, for any object x ∈ C,
the functor x⊗−: C → C induces a homotopy auto-equivalence on the classifying space
of C, B(x⊗−): BC ' BC. Then, there is a homotopy equivalence

BC ' Ω2B3(C,⊗, c),

between the classifying space of the underlying category and the double loop space of
the classifying space of the underlying category.

Proof: (i) By Corollary 2.1, the classifying space of any braided monoidal category
(C,⊗, c) is the same as the classifying space of the monoidal bicategory Σ(Σ(C,⊗),⊗).
Therefore, ΩB3(C,⊗, c) = ΩB3Σ(Σ(C,⊗),⊗). Since Σ(C,⊗) has only one object,
it is obvious that its monoid of connected components π0Σ(C,⊗) = 1, the triv-
ial group. Then, by Theorem 2.3, there is a homotopy equivalence B2Σ(C,⊗) '
ΩB3Σ(Σ(C,⊗),⊗). Since, by (2.25), B2(C,⊗) = B2Σ(C,⊗), the result follows.

(ii) From the discussion in Example 2.3, we have homotopy equivalences BC ' B2C
and B2(C,⊗) ' B3(C,⊗). Then, by Theorem 2.3, there is a homotopy equivalence
BC ' ΩB2(C,⊗). By the already proved in (i), there is a homotopy equivalence
ΩB2(C,⊗) ' Ω2B3(C,⊗, c), whence the result. �

2.5 The geometric nerve of a tricategory

With the notion of the classifying space of a tricategory T given above, the resulting
CW-complex B3T thus obtained has many cells with little apparent intuitive con-
nection with the cells of the original tricategory, and they do not enjoy any proper
geometric meaning. This leads one to search for any simplicial set realizing the space
B3T and whose cells give a logical geometric meaning to the data of the tricategory.
With the definition below, we give a natural candidate for such a simplicial set, which,
up to minor changes affecting the direction conventions on 2- and 3-cells, is essentially
due to Street [116, 118].
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For any given tricategory T , the construction I 7→ Laxu(I, T ) given in (2.2),
which carries each category I to the set of unitary lax functors from I into T , is
clearly functorial on the small category I, whence we have the following simplicial
set.

Definition 2.4 The geometric nerve of a tricategory T is the simplicial set

∆T : ∆op → Set, [p] 7→ Laxu([p], T ).

The simplicial set ∆T encodes the entire tricategorical structure of T and, as we
will prove below, represents the classifying space of the tricategory T , up to homotopy.
We shall stress here that the simplices of the geometric nerve ∆T have the follow-
ing pleasing geometric description, where we have taken into account the coherence
theorem for tricategories in order to interpret correctly the pasting diagrams (i.e., by
thinking of T as a Gray-category). The vertices of ∆T are points labelled with the
objects F0 of T . The 1-simplices are paths labelled with the 1-cells

F0,1: F0→ F1. (2.26)

The 2-simplices are oriented triangles

F0
F0,1

||
F0,2

##F0,1,2⇒
F1

F1,2

// F2,
(2.27)

with objects Fi placed on the vertices, 1-cells Fi,j: Fi→ Fj on the edges, and labelling
the interior as a 2-cell F0,1,2: F1,2 ⊗ F0,1 ⇒ F0,2. For p ≥ 3, a p-simplex of ∆T is
geometrically represented by a diagram in T with the shape of the 3-skeleton of an
oriented standard p-simplex whose 3-faces are oriented tetrahedrons

Fi
||

��

##
Fj

""
// Fl,

Fk

;;
(2.28)

one for each 0 ≤ i < j < k < l ≤ p, whose faces

Fj
Fj,k
}}

Fj,l
!!Fj,k,l⇒

Fk
Fk,l

// Fl,

F iFi,k
||

Fi,l
""Fi,k,l⇒

Fk
Fk,l

// Fl,

F i
Fi,j
}}

Fi,l
""Fi,j,l⇒

Fj
Fj,l

// Fl,

FiFi,j
~~

Fi,k
!!Fi,j,k⇒

Fj
Fj,k

// Fk,
(2.29)

are geometric 2-simplices as above, and

Fi

  }} ⇒

Fi

��

  }}
Fj //

  

Fl
Fi,j,k,l
V Fj

  

⇒ Fl⇑

Fk

>>
⇑

Fk

>> (2.30)
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is a 3-cell of the tricategory that labels the interior of the tetrahedron. For p ≥ 4,
these data are required to satisfy the coherence condition (CR1), as stated in the
Appendix, §2.6.1; that is, for each 0 ≤ i < j < k < l < m ≤ p, the following diagram
commutes:

Fi

{{ ##⇒

(Street’s fourth oriental, [116])

Fi

{{ ##





Fj

��

// Fm
Fi,j,k,m *4 Fj

��

⇒ ⇑ Fm

Fk //

77
⇑


�
Fj,k,l,m

Fl

CC
⇑

Fk //

77


�
Fi,k,l,m

Fl

CC
⇑

Fi

{{ ##⇒
Fi

{{ ##

��

Fi

{{ ##



 ��
⇒Fj //

''��

Fm
Fi,j,l,m *4 Fj ⇒

�� ''

⇑ Fm
Fi,j,k,l *4 Fj

��

⇒ ⇑ Fm

Fk //
⇑

Fl

CC⇑

Fk //
⇑

Fl

CC

Fk // Fl

CC

The simplicial set ∆T is coskeletal in dimensions greater than 4. More precisely,
for p ≥ 4, a p-simplex F: ∆[p] → T of ∆T is determined uniquely by its boundary
∂F = (Fd0, . . . , Fdp)

∂∆[p]
∂F //

_�

��

∆T ,

∆[p]
F

88

and, for p ≥ 5, every possible boundary of a p-simplex, ∂∆[p] → ∆T , is actually the
boundary ∂F of a geometric p-simplex F of the tricategory T .

Example 2.7 (Geometric nerves of bicategories) When a bicategory B is re-
garded as a tricategory, all of whose 3-cells are identities, then the simplicial set
∆B is precisely the unitary geometric nerve of the bicategory, as it is called by Car-
rasco, Cegarra and Garzón in [41] (but denoted by ∆

uB). The construction of the
geometric nerve for a bicategory was first given in the late eighties by J. Duskin and
R. Street (see [117, pag. 573]). In [58], Duskin gave a characterization of the unitary
geometric nerve of a bicategory B in terms of its simplicial structure. The result states
that a simplicial set is isomorphic to the geometric nerve of a bicategory if and only
if it satisfies the coskeletal conditions above as well as supporting appropriate sets
of ‘abstractly invertible’ 1- and 2-simplices (see Gurski [74], for an interesting new
approach to this subject). In [41, Theorem 6.1], the following fact is proved.

Fact 2.11 For any bicategory B, there is a homotopy equivalence B2B ' |∆B|.

We now state a main result of this chapter.

Theorem 2.4 For any tricategory T , there is a homotopy equivalence B3T ' |∆T |.
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Proof: Let us consider, for any given tricategory T , the simplicial bicategory

∆T : ∆op → Hom ⊂ Bicat, [q] 7→ Laxu([q], T ),

whose bicategories of q-simplices are the bicategories of unitary lax functors (2.5) of
[q] into T . In this simplicial bicategory, the homomorphism induced by any map
a: [q]→ [p], a∗: ∆Tp → ∆Tq, is actually a strict functor. Hence, the bisimplicial set

∆∆T : ∆
op ×∆

op → Set, ([p], [q]) 7→ ∆(∆Tq)p = Laxu([p],Laxu([q], T )),

is well defined, since the geometric nerve construction ∆ is functorial on unitary
homomorphisms between bicategories. The plan is to prove the existence of homotopy
equivalences

B3T ' |diag∆∆T |, (2.31)

|∆T | ' |diag∆∆T |, (2.32)

whence the theorem follows.

• The homotopy equivalence (2.31): The Segal nerve of the tricategory (2.20)
is a simplicial sub-bicategory of ∆T . Let L: NT → ∆T be the pseudo-simplicial
homomorphism obtained by composing the pseudo simplicial homomorphism (2.21),
equally denoted by L: NT → ST , with the simplicial inclusion ST ⊆ ∆T . At any
degree p ≥ 0, the homomorphism Lp: NTp → ∆Tp is precisely the homomorphism
in Lemma 2.2, Lax(Gp, T )→ Laxu([p], T ), corresponding with the basic graph of the
category [p]. Then, we have a homomorphism Rp: ∆Tp → NTp such that RpLp = 1NTp ,
and a lax transformation vp: LpRp ⇒ 1∆Tp . It follows from Fact 2.5 that every induced
map B2Lp: B2(NTp) → B2(∆Tp) is a homotopy equivalence. Then, by Fact 2.9, the
induced map B2

∫
∆L: B2

∫
∆NT → B2

∫
∆∆T is a homotopy equivalence. Let

B2∆T : ∆
op → Top, [p] 7→ B2(∆Tp),

be the simplicial space obtained by composing ∆T with the classifying space functor
B2: Hom → Top (see Fact 2.4). Since, by definition, B3T = B2

∫
∆NT , whereas, by

Fact 2.10, there is a homotopy equivalence B2

∫
∆∆T ' |B2∆T |, we have a homo-

topy equivalence B3T ' |B2∆T |. Furthermore, by Fact 2.11, we have a homotopy
equivalence

|B2∆T |= |[q] 7→ B2(∆Tq)| ' |[q] 7→ |∆(∆Tq)||∼= |diag∆∆T |,

where for the last homeomorphism we refer to Quillen’s Lemma in [109, page 86].
Thus, BT ' |diag∆∆T |, as claimed.

• The homotopy equivalence (2.32): Note that the geometric nerve ∆T is the
simplicial set of objects of the simplicial bicategory ∆T , that is, ∆T = ∆(∆T )0.
Therefore, if we regard ∆T as a simplicial discrete bicategory (i.e., all 1-cells and
2-cells are identities), then ∆∆T becomes a bisimplicial set that is constant in the
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horizontal direction, and there is a natural bisimplicial map ∆∆T ↪→ ∆∆T , which is,
at each horizontal level p ≥ 1, the composite simplicial map

∆T = ∆(∆T )0

sh0
↪→ ∆(∆T )1 ↪→ · · · ↪→ ∆(∆T )p−1

shp−1
↪→ ∆(∆T )p. (2.33)

Next, we prove that the simplicial map ∆T → diag∆∆T , induced on diagonals, is
a weak homotopy equivalence, whence the announced homotopy equivalence in (2.32).
It suffices to prove that every one of the simplicial maps in (2.33) is a weak homotopy
equivalence and, in fact, we will prove more: Every simplicial map sh

p−1, p ≥ 1, embeds
the simplicial set ∆(∆T )p−1 into ∆(∆T )p as a simplicial deformation retract. Since
dh
ps

h
p−1 = 1, it is enough to exhibit a simplicial homotopy h: 1⇒ sh

p−1d
h
p: ∆(∆T )p →

∆(∆T )p.

To do so, we shall use the following notation for the bisimplices in ∆∆T . Since
such a bisimplex of bidegree (p, q), say F ∈ ∆(∆Tq)p, is a unitary lax functor of the
category [p] in the bicategory of unitary lax functors Laxu([q], T ), it consists of

• unitary lax functors F u: [q]→ T for 0 ≤ u ≤ p,

• 1-cells F u,v: F u ⇒ F v for 0 ≤ u < v ≤ p,

• 2-cells F u,v,w: F v,w ◦ F u,v V F u,w for 0 ≤ u < v < w ≤ p,

such that the diagrams

(Fw,t ◦ F v,w) ◦ F u,v

F v,w,t◦ 1

�

a *4 Fw,t ◦ (F v,w ◦ F u,v)
1◦Fu,v,w

�

F v,t ◦ F u,v Fu,v,t *4 F u,t Fw,t ◦ F u,wFu,w,tjt

commute for u < v < w < t. Hence, such a (p, q)-simplex is described by a list of cells
of the tricategory T

F =
(
Fi, F ui,j , F

u
i,j,k, F

u
i,j,k,l, F

u,v
i,j , F

u,v
i,j,k, F

u,v,w
i,j

)
, (2.34)

with 0 ≤ i < j < k < l ≤ q, where

• Fi (= F 0 i) is an object of T ,

• F ui,j: Fi→ Fj are 1-cells in T ,

• F ui,j,k: F uj,k ⊗ F ui,j ⇒ F ui,k are 2-cells in T ,

• F u,vi,j : F ui,j ⇒ F vi,j are 2-cells in T ,
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• F ui,j,k,l, F
u,v
i,j,k and F u,v,wi,j are 3-cells in T of the form

(F uk,l⊗F uj,k)⊗F ui,j
Fuj,k,l⊗1

��

Fui,j,k,l
V

a +3 F uk,l⊗(F uj,k⊗F ui,j)
1⊗Fui,j,k
��

F uj,l⊗F ui,j Fui,j,l

+3 F ui,l F uk,l⊗F ui,k,Fui,k,l

ks

F uj,k⊗F ui,j
Fui,j,k +3
F
u,v
i,j,k
VFu,vj,k ⊗F

u,v
i,j

��

F ui,k

Fu,vi,k
��

F vj,k⊗F vi,j F vi,j,k

+3 F vi,k,

F ui,j
Fu,wi,j

�'
F
u,v,w
i,j
V

Fu,vi,j

x�
F vi,j F v,wi,j

+3 Fwi,j ,

satisfying the various conditions.

The horizontal faces and degeneracies of such a bisimplex (2.34) are given by the
simple rules dh

mF = (Fi, F d
mu

i,j , . . . ) and sh
mF = (Fi, F s

mu
i,j , . . . ), whereas the vertical

ones are given by dv
mF = (Fdmi, F udmi,dmj , . . . ) and sv

mF = (Fsmi, F usmi,smj , . . . ).

We have the following simplicial homotopy h: 1 ⇒ sh
p−1d

h
p: ∆(∆T )p → ∆(∆T )p.

For each 0 ≤ m ≤ q, the map hm: ∆(∆Tq)p → ∆(∆Tq+1)p takes a (p, q)-simplex F as
in (2.34) of ∆∆T to the (p, q + 1)-simplex hmF consisting of:

� The lax functors hmF
u = (sm)∗F u: [q + 1]→ T for 0 ≤ u < p.

� The lax functors hmF
p: [q + 1]→ T , with

• (hmF )pi = Fsmi for 0 ≤ i ≤ q + 1,

• (hmF )pi,j =

{
F p−1
smi,smj if j ≤ m,
F psmi,j−1 if m < j,

• (hmF )pi,j,k =


F p−1
smi,smj,smk if k ≤ m,

F pj,k−1⊗F
p−1
i,j

1⊗F p−1,p
i,j +3 F pj,k−1⊗F

p
i,j

F pi,j,k−1 +3 F pi,k−1 if j ≤ m < k,

F psmi,j−1,k−1 if m < j,

• (hmF )pi,j,k,l =


F p−1
smi,smj,smk,sml if l ≤ m,

the 3-cell given by the pasting diagram (2.35) if k ≤ m < l,

the 3-cell given by the pasting diagram (2.36) if j ≤ m < k,

F psmi,j−1,k−1,l−1 if m < j.
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(F pk,l−1⊗F
p−1
j,k )⊗F p−1i,j

∼=(1⊗Fp−1,p
j,k )⊗Fp−1,p

i,j

��

a +3
(1⊗Fp−1,p

j,k )⊗1
px

F pk,l⊗(F p−1j,k ⊗F
p−1
i,j )

1⊗(Fp−1,p
j,k ⊗Fp−1,p

i,j )

��

1⊗Fp−1
i,j,k

%-
(F pk,l−1⊗F

p
j,k)⊗ F p−1i,j

∼=Fpj,k,l−1⊗1

��

F pk,l−1⊗F
p−1
i,k

1⊗Fp−1,p
i,k

��

(F pk,l−1⊗F
p
j,k)⊗F pi,j

Fpj,k,l−1⊗1

��

a +3 F pk,l−1⊗(F pj,k⊗F
p
i,j)

1⊗Fpi,j,k
%-

1⊗Fp−1,p
i,j,k

V

F pj,l−1⊗F
p
i,j

1⊗Fp−1,p
i,j

'/

F pk,l−1⊗F
p
i,k

Fpi,k,l−1qy

F
p
i,j,k,l−1

V

F pj,l−1 ⊗ F
p
i,j

Fpi,j,l−1 +3 F pi,l−1
(2.35)

(F pk−1,l−1⊗F
p
j,k−1)⊗F p−1

i,j

∼=

a +3

F pj,k−1,l−1⊗1

qy
(1⊗1)⊗F p−1,p

i,j

��

F pk−1,l−1⊗(F pj,k−1⊗F
p−1
i,j )

1⊗(1⊗F p−1,p
i,j )

��
F pj,l−1⊗F

p−1
i,j

1⊗F p−1,p
i,j

��

∼= (F pk−1,l−1⊗F
p
j,k−1)⊗F pi,j

a +3

F pj,k−1,l−1⊗1

qy

F pk−1,l−1⊗(F pj,k−1⊗ F
p
i,j)

1⊗F pi,j,k−1

��

F
p
i,j,k−1,l−1
V

F pj,l−1⊗F
p
i,j

F pi,j,l−1 +3 F pi,l−1 F pk−1,l−1⊗F
p
i,k−1

F pi,k−1,l−1ks

(2.36)

� The 1-cells hmF
u,v = (sm)∗F u,v: hmF

u ⇒ hmF
v for 0 ≤ u < v < p.

� The 1-cells hmF
u,p: hmF

u ⇒ hmF
p with

• (hmF )u,pi,j =

{
F u,p−1
smi,smj if j ≤ m,
F u,psmi,j−1 if j > m,

• (hmF )u,pi,j,k =


F u,p−1
smi,smj,smk if k ≤ m,

the 3-cell given by the pasting diagram (2.37) if j ≤ m < k,

F u,psmi,j−1,k−1 if m < j,

F uj,k−1⊗F ui,j

Fu,pj,k−1⊗F
u,p
i,j

��

Fu,pj,k−1⊗F
u,p−1
i,j

qy

Fui,j,k−1 +3 F ui,k−1

Fu,pi,k−1

��

F pj,k−1⊗F
p−1
i,j

1⊗F p−1,p
i,j %-

F
u,p−1,p
i,j
V

F pj,k−1⊗F
p
i,j

F pi,j,k−1 +3

F
u,p
i,j,k−1
V

F pi,k−1,

(2.37)

� The 2-cells (hmF )u,v,w = (sm)∗F u,v,w for w < p.
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� The 2-cells (hmF )u,v,p are given by (hmF )u,v,pi,j =

{
F u,v,p−1
smi,smj if j ≤ m,
F u,v,psmi,j−1 if m < j.

So defined, to show that h: 1⇒ sh
p−1d

h
p is actually a simplicial homotopy, is a

straightforward (though quite tedious) verification. �
As an application of the theorem above, we shall prove that tritransformations

produce homotopies. To do so, the following lemma is the key.

Lemma 2.3 Suppose θ = (θ,Π,M): F ⇒ G: T → T ′ is a tritransformation. There
is a trihomomorphism H: T × [1]→ T ′ making the diagram commutative

T ×[0] ∼= T
1×δ1

��
F

))T × [1]
H // T ′.

T × [0] ∼= T
G

55

1×δ0
OO

(2.38)

Proof: For any objects x, y of T , H: (T × [1])((x, 0), (y, 1)) → T ′(Fx,Gy) is the
homomorphism composite of

T (x, y)×{(0, 1)} ∼= T (x, y)
G→ T ′(Gx,Gy)

T ′(θx,1) // T ′(Fx,Gy).

For objects x, y, z of T , the pseudo-equivalence

(T ×[1])((y, 1), (z, 1))× (T ×[1])((x, 0), (y, 1))
H×H //

⊗
��

⇓χH

T ′(Gy,Gz)× T ′(Fx,Gy)

⊗
��

(T ×[1])((x, 0), (z, 1))
H // T ′(Fx,Gz)

is obtained by pasting the diagram

T (q, r)×T (x, y)

⇓χG⊗
��

G×G // T ′(Gy,Gz)×T ′(Gx,Gy)

⊗
��

1×T ′(θx,1)//

∼=

T ′(Gy,Gz)×T ′(Fx,Gy)

⊗
��

T (x, z)
G // T ′(Gx,Gz)

T ′(θx,1) // T ′(Fx,Gz),

and the pseudo-equivalence

(T ×[1])((y, 0), (z, 1))× (T ×[1])((x, 0), (y, 0))
H×H //

⊗
��

⇓χH

T ′(Fy,Gz)× T ′(Fx, Fy)

⊗
��

(T ×[1])((x, 0), (z, 1))
H // T ′(Fx,Gz)
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by pasting in

T (y, z)×T (x, y)
G×F //

F×F ++

⊗

��

T ′(Gy,Gz)×T ′(Fx, Fy)

⇓χF ∼=

⇓θ•×1

T ′(θy,1)×1// T ′(Fy,Gz)×T ′(Fx, Fy)

⊗

��

T ′(Fy, Fz)×T ′(Fx, Fy)
T ′(1,θz)×1

22

⊗��
T ′(Fx, Fz)

⇓θ
T ′(1,θz)

,,
T (x, z)

F
33

G // T ′(Gx,Gz)
T ′(θx,1) // T ′(Fx,Gz).

For x, y, z, t any objects of T , the components of the invertible modification ωH

at the triples of composable 1-cells of T ×[1]

(x, 0)
(a,(0,1))// (y, 1)

(b,11) // (z, 1)
(c,11) // (t, 1),

(x, 0)
(a,10))// (y, 0)

(b,(0,1))// (z, 1)
(c,11) // (t, 1),

(x, 0)
(a,10))// (y, 0)

(b,10))// (z, 0)
(c,(0,1))// (t, 1),

are canonically provided by the 3-cells (2.39), (2.40) and (2.41) below.

((Gc⊗Gb)⊗Ga)⊗θx

a⊗1

��

(χG⊗1)⊗1 +3

ωG⊗1
W

(G(c⊗b)⊗Ga)⊗θx

�� χ
G⊗1

G((c⊗b)⊗a)⊗θx
Ga⊗1��

(Gc⊗(Gb⊗Ga))⊗θx
(1⊗χG)⊗1 +3 (Gc⊗(G(b⊗a))⊗θx χG⊗1 +3 G(c⊗(b⊗a))⊗θx.

(2.39)

(Gc⊗Gb)⊗(θy⊗Fa)
χG⊗1 +3

1⊗θ
��

∼=

G(c⊗b)⊗(θy⊗Fa)

1⊗θ
��

(Gc⊗Gb)⊗(Ga⊗θx)
χG⊗1 +3 G(c⊗b)⊗(Ga⊗θx)

(2.40)

Gc⊗((θz⊗Fb)⊗Fa)
1⊗(θ⊗1) +3

1⊗a ��
1⊗Π
W

Gc⊗((Gb⊗θy)⊗Fa)
1⊗a +3 Gc⊗(Gb⊗(θy⊗Fa))

1⊗(1⊗θ)
��

Gc⊗(θz⊗(Fb⊗Fa))

1⊗(1⊗χF ) ��

Gc⊗(Gb⊗(Ga⊗θx))

1⊗a•��
Gc⊗(θz⊗F (b⊗a))

1⊗θ +3 Gc⊗(G(b⊗c)⊗θx) Gc⊗((Gb⊗Ga)⊗θx)
1⊗(χG⊗1)ks

(2.41)

To finish the description of the homomorphism H, say that the component of the
invertible modification δH at any morphism (a, (0, 1)): (x, 0) → (y, 1) is canonically
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obtained from the 3-cells 1 ⊗ M and δG ⊗ 1 below, while the component of γH is
provided by 3-cell γG ⊗ 1.

Ga⊗θx 1⊗r +3

1⊗M
W1⊗ l•

��

Ga⊗(θx⊗1)
1⊗(1⊗ιF )+3 Ga⊗(θx⊗F1)

1⊗θ
��

Ga⊗(1⊗ θx)
1⊗(ιG⊗1) +3 Ga⊗(G1⊗θy),

Ga⊗θx r⊗1 +3

Gr⊗1
��

δG⊗1
V

(Gx⊗1)⊗θp
(1⊗ιG)⊗1
��

G(a⊗1)⊗θx (Ga⊗G1)⊗θx,
χG⊗1

ks

(1⊗Ga)⊗θx
(ιG⊗1)⊗1+3

l⊗1

��
γG⊗1
W

(G1⊗Ga)⊗θx

χG⊗1
��

Ga⊗θx G(1⊗a)⊗θx.
Gl⊗1

ks

�

Proposition 2.4 If F,G: T → T ′ are two trihomomorphisms between tricategories,
then any tritransformation, F ⇒ G, defines a homotopy between the induced maps on
classifying spaces

B3F ' B3G: B3T → B3T ′.

Proof: Taking geometric nerves in the diagram (2.38), we obtain a commutative dia-
gram of simplicial maps

∆T ×∆[0] ∼= ∆T

1×δ1
��

∆F

**
∆T ×∆[1]

∆H // ∆T ′,

∆T ×∆[0] ∼= ∆T
∆G

44

1×δ0

OO

Since |∆[1]| ∼= [0, 1], the unity interval, the result follows by Theorem 2.4. �
As a consequence for triequivalences between tricategories, we have the following.

Corollary 2.3 (i) If F: T → T ′ is any trihomomorphism such that there is a triho-
momorphism G: T ′ → T and tritransformations FG ⇒ 1T ′ and 1T ⇒ GF , then the
induced map B3F: B3T → B3T ′ is a homotopy equivalence.

(ii) Any triequivalence of tricategories induces a homotopy equivalence on classi-
fying spaces.

Proof: (i) Given any trihomomorphism F : T → T ′ in the hypothesis, by Proposition
2.2 (ii), there is a homotopy B3F B3G ' B3(FG). By Proposition 2.4, the existence
of a homotopy B3(FG) ' B31T ′ follows. Since, by Proposition 2.2 (iii), there is a
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homotopy B31T ′ ' 1B3T ′ , we conclude the existence of a homotopy B3F B3G ' 1B3T ′ .
Analogously, we can prove that 1B3T ' B3G B3F , which completes the proof of this
part. Part (ii) clearly follows from part (i). �

Example 2.8 (Geometric nerves of 3-categories) In [116], Street gave a precise
notion of nerve for n-categories. He extended each graph Gp = (0→ 1→ · · · → p) to
a “free” ω-category Op (called the pth-oriental) such that, for any n-category X , the
p-simplices of its nerve, are just n-functors Op → X , from the underlying n-category
of the pth-oriental to X . In the case when n = 3, Street’s nerve construction on a
3-category T just produces, up to some directional changes, its geometric nerve ∆T ,
as stated in Definition 2.4. After the discussion in Example 2.4, from Theorem 2.4 we
get, for any 3-category T , homotopy equivalences

|diagNNNT | ' B3T ' |∆T |.

Example 2.9 (Geometric nerves of braided monoidal categories) If A is any
abelian group, then the braided monoidal category with only one object it defines,
(A,+, 0), has as double suspension the tricategory Σ2A, treated in Examples 2.1 and
2.2. For any integer p ≥ 0, we have

Laxu([p],Σ2A) = Z3([p], A) = Z3(∆[p], A) = K(A, 3)p,

whence ∆Σ2A = K(A, 3), the minimal Eilenberg-Mac Lane complex. Hence, from
Theorem 2.4 and Corollary 2.1, it follows that B3(A,+, 0) = |K(A, 3)|.

If (C,⊗, c) is any braided monoidal category, then a unitary lax functor of a
category I in the double suspension tricategory, I → Σ2(C,⊗, c), is what was called by
Carrasco, Cegarra and Garzón in [42, Definition 6.6] and by Cegarra and Khmaladze
in [48, §4] a (normal) 3-cocycle of I with coefficients in the braided monoidal category.
Therefore, the geometric nerve ∆Σ2(C,⊗, c) coincides with the simplicial set [42,
Definition 6.7]

Z3(C,⊗, c): ∆
op → Set, [p] 7→ Z3([p], (C,⊗, c)),

whose p-simplices are the 3-cocycles of [p] in the braided monoidal category. The
geometric nerve Z3(C,⊗, c) is then a 4-coskeletal 1-reduced (one vertex, one 1-simplex)
simplicial set, whose 2-simplices are the objects F0,1,2 of C, and whose p-simplices, for
p ≥ 3, are families of morphisms of the form

Fi,j,k,l: Fi,j,l ⊗ Fj,k,l → Fi,k,l ⊗ Fi,j,k, 0 ≤ i < j < k < l ≤ p,
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making commutative, for 0 ≤ i < j < k < l < m ≤ p, the diagrams

Fi,j,m ⊗ (Fj,k,m ⊗ Fk,l,m)

1⊗Fj,k,l,m
��

a(Fi,j,k,m⊗1)a−1

// Fi,k,m ⊗ (Fi,j,k ⊗ Fk,l,m)

1⊗c
��

Fi,j,m ⊗ (Fj,l,m ⊗ Fj,k,l)

(Fi,j,l,m⊗1)a−1

��

Fi,k,m ⊗ (Fk,l,m ⊗ Fi,,j,k)

(Fi,k,l,m⊗1)a−1

��
(Fi,l,m ⊗ Fi,j,l)⊗ Fj,k,l

a−1(1⊗Fi,j,k,l)a // (Fi,l,m ⊗ Fi,k,l)⊗ Fi,j,k.

From Theorem 2.4 and Corollary 2.1, we obtain the following known result.

Corollary 2.4 ([42, Theorem 6.11]) For any braided monoidal category (C,⊗, c),
there is a homotopy equivalence B3(C,⊗, c) ' |Z3(C,⊗, c)|.

Example 2.10 (Geometric nerves of monoidal bicategories) If (B,⊗) is any
monoidal bicategory, then we define its geometric nerve, denoted by ∆(B,⊗), as the
geometric nerve of its suspension 3-category Σ(B,⊗), (2.24). That is,

∆(B,⊗): ∆op → Simpl.Set, [p] 7→ Laxu([p],Σ(B,⊗)).

Then, Theorem 2.4 specializes to monoidal bicategories giving a homotopy equiv-
alence

B3(B,⊗) ' |∆(B,⊗)|.

2.5.1 Bicategorical groups and homotopy 3-types

Recall that a bigroupoid is a bicategory B in which every 2-cell is invertible, that is, all
the hom-categories B(x, y) are groupoids, and every 1-cell u: x→ y is an equivalence,
that is, there exist a morphism u′: y → x and 2-cells u ◦ u′ ⇒ 1y and 1x ⇒ u′ ◦ u. By
a bicategorical group we shall mean a monoidal bigroupoid (B,⊗) in which for every
object x there is an object x′ with 1-cells 1 → x ⊗ x′ and x′ ⊗ x → 1. Bicategorical
groups correspond to those Picard 2-categories, in the sense of Gurski [76, §6], whose
underlying bicategory is a bigroupoid.

In any bicategorical group (B,⊗), the homomorphisms x ⊗ −: B → B and − ⊗
x: B → B are biequivalences, for any object x ∈ B. Hence, by Theorem 2.3, there is a
homotopy equivalence

B2B ' ΩB3(B,⊗),

between the classifying space of the underlying bigroupoid and the loop space of the
classifying space of the bicategorical group.

If (B,⊗) is any monoidal bicategory, then its geometric nerve ∆(B,⊗) is a 4-
coskeletal reduced (one vertex) simplicial set, which satisfies the Kan extension condi-
tion if and only if (B,⊗) is a bicategorical group. In such a case, the homotopy groups
of its geometric realization

πiB3(B,⊗) ∼= πi∆(B,⊗) ∼= πi−1∆B
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are plainly recognized to be

- πiB3(B,⊗) = 0, if i 6= 1, 2, 3.

- π1B3(B,⊗) = ObB/∼, the group of equivalence classes of objects in B where
multiplication is induced by the tensor product.

- π2B3(B,⊗) = AutB(1)/∼=, the group of isomorphism classes of autoequivalences
of the unit object where the operation is induced by the horizontal composition
in B.

- π3B3(B,⊗) = AutB(11), the group of automorphisms of the identity 1-cell of the
unit object where the operation is vertical composition in B.

Thus, bicategorical groups arise as algebraic path-connected homotopy 3-types, a
fact that supports the Homotopy Hypothesis of Baez [5]. Indeed, every path-connected
homotopy 3-type can be realized in this way from a bicategorical group, as we show
below (cf. Berger [17], Joyal and Tierney [89], Lack [94], or Leroy [97], for alternative
approaches to this issue).

Proposition 2.5 For any path-connected pointed CW-complex X for which πiX = 0
for i ≥ 4, there is a bicategorical group (B(X),⊗) whose classifying space B3(B(X),⊗)
is homotopy equivalent to X.

Proof: Given X as above, let M(X) ⊆ S(X) be a minimal subcomplex that is a
deformation retract of the total singular complex of X, so that |M(X)| ' X. Taking
into account the Postnikov k-invariants, this minimal complex M can be described
(see Goerss and Jardine [68, VI. Corollary 5.13]), up to isomorphism,

M(X) = K(B, 3)×t(K(A, 2)×hK(G, 1)), (2.42)

by means of the group G = π1X, the G-modules A = π2X and B = π3X, and two
maps,

h: G3 → A, t: A6 ×G4 → B,

defining normalized cocycles h ∈ Z3(G,A) and t ∈ Z4(K(A, 2)×hK(G, 1), B). That
is, M(X) is the 4th coskeleton of the truncated simplicial set

tr4M(X) = B4×A6×G4 //d0

d4

··· // B×A3×G3
uu s0��

s3···
//d0

d3

··· // A×G2
vv s0��

s2

}}
//d0

d2

//// G
zz s0��

s1

//d0 //
d1

1,
��

s0

whose face and degeneracy operators are given by (σi ∈ G, xj ∈ A, uk ∈ B)

di(x1, σ1, σ2) =


σ2 i = 0,
σ1σ2 i = 1,
σ1 i = 2.
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di(u1, x1, x2, x3, σ1, σ2, σ3) =


(σ
−1
1 x3, σ2, σ3) i = 0,

(x2 + x3, σ1σ2, σ3) i = 1,
(x1 + x2, σ1, σ2σ3) i = 2,
(x1 − h(σ1, σ2, σ3), σ1, σ2) i = 3.

di(u1, u2, u3, u4, x1, x2, x3, x4, x5, x6, σ1, σ2, σ3, σ4) =
(σ
−1
1 u4,

σ−1
1 x4,

σ−1
1 x5,

σ−1
1 x6, σ2, σ3, σ4) i = 0,

(u3 + u4, x2 + x4, x3 + x5, x6, σ1σ2, σ3, σ4) i = 1,
(u2 + u3, x1 + x2, x3, x5 + x6, σ1, σ2σ3, σ4) i = 2,
(u1 + u2, x1, x2 + x3, x4 + x5, σ1, σ2, σ3σ4) i = 3
(ū1, x̄1, x̄2, x̄3, σ1, σ2, σ3) i = 4,

where ū1 = u1 − t(x1, x2, x3, x4, x5, x6, σ1, σ2, σ3, σ4), x̄1 = x1 − h(σ1, σ2, σ3σ4) +

h(σ1, σ2, σ3), x̄2 = x2−h(σ1σ2, σ3, σ4)+σ−1
1 h(σ2, σ3, σ4), and x̄3 = x4−σ

−1
1 h(σ2, σ3, σ4).

Then, a bicategorical group (B(X),⊗) with a simplicial isomorphism ∆(B(X),⊗) ∼=
M(X) is defined as follows:

• A 0-cell of B = B(X) is an element σ ∈ G. If σ 6= τ are different elements of G, then
B(σ, τ) = ∅, that is, there is no 1-cell between them, whereas if σ = τ , then a 1-cell
x: σ → σ is an element x ∈ A. Similarly, there is no 2-cell in B between two 1-cells
x, y: σ → σ if x 6= y, whereas, when x = y, a 2-cell u: x⇒ x is an element u ∈ B.

• The vertical composition of 2-cells is given by addition in B, that is,

(x
u

=⇒ x) · (x v
=⇒ x) = (x

u+v
=⇒ x).

• The horizontal composition of 1-cells and 2-cells is given by addition in A and B
respectively, that is,

(σ

x
''

⇓u
x
77 σ) ◦ (σ

y
''

⇓v
y
77 σ) = (σ

x+y
((

⇓u+v

x+y

77 σ).

•The associativity isomorphism is

σ

(x+y)+z
&&

⇓a

x+(y+z)

88 σ, a = t(x, y, z, 0, 0, 0, σ, 1, 1, 1),

and the 0 of A gives the (strict) unit on each σ, that is, 1σ = 0: σ → σ.

• The (strictly unitary) tensor homomorphism ⊗: B×B → B is given on cells of B by

(σ

x
''

⇓u
x
77 σ) ⊗ (τ

y
''

⇓v
y
77 τ) = (στ

x+σy
))

⇓u+σv

x+σy

55 στ).
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• The structure interchange isomorphism, for any 1-cells σ
x′→ σ

x→ σ and τ
y′→ τ

y→ τ ,

στ

(x+σy)+(x′+σy′)
))

⇓

(x+x′)+σ(y+y′)

55 στ,

is that obtained by pasting in the bigroupoid B the diagram

στ
σy′ //

σ(y+y′) ""

⇐χ
στ

��
σy
⇓ c

x′ // στ
σy // στ

x

��
στ

x+x′
//

x′
66

στ
⇓χ̄

χ = −t(0, 0, 0, σy, σy′, 0, σ, τ, 1, 1),

c = t(0, x, 0, 0, σy, 0, σ, τ, 1, 1)− t(0, 0, x, σy, 0, 0, σ, τ, 1, 1)− t(x, 0, 0, 0, 0, σy, σ, 1, τ, 1),

χ̄ = −t(0, x, x′, 0, 0, 0, σ, τ, 1, 1)+t(x, 0, x′, 0, 0, 0, σ, 1, τ, 1)−t(x, x′, 0, 0, 0, 0, σ, 1, 1, τ).

• The associativity pseudo-equivalence (−⊗−)⊗− a⇒ −⊗ (−⊗−): B3 → B is defined
by the 1-cells

h(σ, τ, γ): (στ)γ → σ(τγ).

The naturality component of a , at any 1-cells σ
x→ σ, τ

y→ τ and γ
z→ γ,

(στ)γ

⇒

h=h(σ,τ,γ)//

(x+σy)+στz
��

σ(τγ)

x+σ(y+τz)
��

(στ)γ
h(σ,τ,γ)

// σ(τγ)

is given by pasting in B the diagram

(στ)γ

x

��

h //

⇓Ω

σ(τγ)
x //

⇓Ψ

σ(τγ)
σy //

⇓Φ

σ(τγ)

στz
��

(στ)γ

h

55

σy
// (στ)γ

h

55

στz
// (στ)γ

h
// σ(τγ)

Φ = t(0, h, 0, 0, στz, 0, σ, τγ, 1, 1)− t(h, 0, 0, 0, 0, στz, σ, τ, γ, 1)
−t(0, 0, h, στz, 0, 0, σ, τγ, 1, 1),

Ψ = t(h, 0, 0, σy, 0, 0, σ, τ, 1, γ)− t(h, 0, 0, 0, σy, 0, σ, τ, γ, 1)
+t(0, h, 0, 0, σy, 0, σ, τγ, 1, 1)− t(0, 0, h, σy, 0, 0, σ, τγ, 1, 1),

Ω =−t(x, h, 0, 0, 0, 0, σ, 1, τ, γ) + t(h, x, 0, 0, 0, 0, σ, τ, 1, γ)
−t(h, 0, x, 0, 0, 0, σ, τ, γ, 1) + t(x, 0, h, 0, 0, 0, σ, 1, τγ, 1)
+t(0, h, x, 0, 0, 0, σ, τγ, 1, 1)− t(0, x, h, 0, 0, 0, σ, τγ, 1, 1),
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• The structure modification π, at any objects σ, τ, γ, δ ∈ G, is

((στ)γ)δ

⇒πh4=h(σ,τ,γ)
��

h1=h(στ,γ,δ) // (στ)(γδ)

h3=h(σ,τ,γδ)
��

(σ(τγ))δ
h2=h(σ,τγ,δ) // σ((τγ)δ)

h0=σh(τ,γ,δ) // σ(τ(γδ)),

π = t(h3, h1 − h0, 0, h0, 0, 0, σ, τ, γ, δ)− t(h2, h4, 0, 0, 0, 0, σ, τγ, 1, δ)
+t(h2, 0, h4, 0, 0, 0, σ, τγ, δ, 1)− t(h3, 0, h1 − h0, 0, h0, 0, σ, τ, γδ, 1)
+t(0, h3, h1 − h0, 0, h0, 0, σ, τγδ, 1, 1)− t(0, 0, h2 + h4, h0, 0, 0, σ, τγδ, 1, 1)
−t(0, h2, h4, 0, 0, 0, σ, τγδ, 1, 1).

This completes the description of the bicategorical group (B,⊗) = (B(X),⊗),
whose geometric nerve is recognized to be isomorphic to the minimal complex M(X)
in (2.42) by means of the simplicial map ϕ: ∆(B,⊗)→M which, in dimensions ≤ 4,

∆(B,⊗)4
//

··· //

ϕ
��

∆(B,⊗)3
//

··· //

ϕ
��

∆(B,⊗)2
// ////

ϕ
��

∆(B,⊗)1
// //

ϕ
��

1,

��
B4×A6×G4 //

··· // B×A3×G3 //
··· // A×G2 ////// G // // 1,

carries (keeping the notations in (2.26)− (2.30))
• a unitary lax functor F: [1]→ Σ(B,⊗) to ϕ(F ) = F0,1,
• a unitary lax functor F: [2]→ Σ(B,⊗) to ϕ(F ) = (−F0,1,2, F0,1, F1,2),
• a unitary lax functor F: [3]→ Σ(B,⊗) to

ϕ(F ) =
(−F0,1,2,3,−F0,1F1,2,3+F0,2,3−F0,1,3,

F0,1F1,2,3−F0,2,3,−F0,1F1,2,3, F0,1, F1,2, F2,3),

• a F: [4]→ Σ(B,⊗) to

ϕ(F ) = (u1, u2, u3, u4, x1, x2, x3, x4, x5, x6, F0,1, F1,2, F2,3, F3,4),

where

u1 = F0,1F1,2,3,4−F0,1,2,4 + F0,1,3,4−F0,2,3,4, x2 = F0,1F1,2,4−F0,1F1,3,4+F0,3,4−F0,2,4,
u2 = F0,2,3,4−F0,1,3,4−F0,1F1,2,3,4, x3 = F0,1F1,3,4−F0,3,4,
u3 = F0,1F1,2,3,4−F0,2,3,4, x4 = F0,1F1,3,4−F0,1F1,2,4−F0,2F2,3,4,
u4 = −F0,1F1,2,3,4, x5 = F0,2F2,3,4−F0,1F1,3,4,
x1 =F0,2,4−F0,1F1,2,4−F0,1,4, x6 = −F0,2F2,3,4.

�

Remark 2.1 The fundamental bigroupoid Π2(X) of a space X was independently
described by Hardie, Kamps and Kieboom in [80] and by Stevenson in [115]. The
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objects of Π2(X) are the points x ∈ X, the 1-cells f: x→ y are paths f: I = [0, 1]→
X with f(0) = x and f(1) = y, and the 2-cells [α]: f ⇒ g are relative homotopy
classes of homotopies between paths α: I × I → X with α|I×0 = f and α|I×1 =
g. In [75, Theorem 1.4], Gurski proves that when the space X is endowed with a
structure of algebra for the little cubes operad C1, then Π2(X) has the structure of a
monoidal bicategory, say (Π2(X),⊗). In this way, any given pointed topological space
X has associated a bicategorical group (Π2(ΩX),⊗), Gurski’s monoidal bicategory
of the loop space ΩX. Although we will not give details here, we want to point
out that, for X a path-connected pointed space X for which πiX = 0 for i ≥ 4, the
bicategorical group (B(X),⊗) in Proposition 2.5 is a skeleton of the bicategorical group
(Π2(ΩX),⊗). That is, there is a monoidal biequivalence (B(X),⊗) ' (Π2(ΩX),⊗),
and the bigroupoid B(X) is skeletal, in the sense that any two isomorphic 1-cells are
equal and any two equivalent objects are equal.

To finish, we shall remark on two particular relevant cases of the demonstrated
relationship between monoidal bicategories and path-connected homotopy 3-types.
Since categorical groups, in the sense of Joyal and Street [88, §3], are the same thing
as bicategorical groups in which all 2-cells are identities, then categorical groups are
algebraic models for path-connected homotopy 2-types, see Carrasco and Cegarra [39,
§2.1] and Cegarra and Garzón [44, §5]. This fact goes back to Whitehead (1949) [124]
and Mac Lane and Whitehead (1950) [101] since every categorical group is equiva-
lent to a strict one, and strict categorical groups are the same as crossed modules.
On the other hand, if (C,⊗, c) is any braided categorical group [88], then its classi-
fying space B3(C,⊗, c) is the classifying space of its suspension bicategorical group
(Σ(C,⊗),⊗) (see Examples 2.6 and 2.9), which is precisely a one-object bicategorical
group. Therefore, we conclude from the above discussion that braided categorical
groups are algebraic models for path-connected simply connected homotopy 3-types,
a fact due to Joyal and Tierney [89], but also proved by Carrasco and Cegarra in [39,
§2.2] (cf. [40, Theorem 3.8]) and, implicitly, by Joyal and Street in [88, Theorem
3.3].
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2.6 Appendix

2.6.1 Coherence conditions

(CR1): for any four composable arrows in I, i
d→ j

c→ k
b→ l

a→ m, the equation
A = A′ on 3-cells in T holds, where:

((Fa⊗Fb)⊗Fc)⊗Fd

A=

a +3

a⊗1

�'(Fa,b⊗1)⊗1

��

(Fa⊗Fb)⊗(Fc⊗Fd)
a +3 Fa⊗(Fb⊗(Fc⊗Fd))

1⊗(1⊗Fc,d)

��

π∼=

(Fa⊗(Fb⊗Fc))⊗Fd a +3

(1⊗Fb,c)⊗1

��

Fa⊗((Fb⊗Fc)⊗Fd)

1⊗a

7?

1⊗(Fb,c⊗1)
��

(F (ab)⊗Fc)⊗Fd

Fab,c⊗1

��

Fa,b,c⊗1

V
∼= 1⊗Fb,c,d

V Fa⊗(Fb⊗F (cd))

1⊗Fb,cd

��
Fa,bc,d
V

(Fa⊗F (bc))⊗Fd a +3

Fa,bc⊗1

s{

Fa⊗(F (bc)⊗Fd)

1⊗Fbc,d
#+

F (abc)⊗Fd
Fabc,d +3 F (abcd) Fa⊗F (bcd)

Fa,bcdks

((Fa⊗Fb)⊗Fc)⊗Fd

A′=

a +3

(Fa,b⊗1)⊗1

��

∼=

(Fa⊗Fb)⊗(Fc⊗Fd)
a +3

Fa,b⊗(1⊗1)
t|

(1⊗1)⊗Fc,d
"*

Fa⊗(Fb⊗(Fc⊗Fd))

1⊗(1⊗Fc,d)

��

∼=

F (ab)⊗(Fc⊗Fd)

1⊗Fc,d $,

∼=
(Fa⊗Fb)⊗F (cd)

Fa,b⊗1rz
a
$,

(F (ab)⊗Fc)⊗Fd

Fab,c⊗1

��

a 2:

F (ab)⊗F (cd)

Fab,cd

��

Fa⊗(Fb⊗F (cd))

1⊗Fb,cd

��
F (abc)⊗Fd

Fabc,d +3

Fab,c,d
V

F (abcd) Fa⊗F (bcd)
Fa,bcdks

Fa,b,cd
V

(CR2): for any two composable arrows i
b→ j

a→ k in I, the equations B = B′,
C = C ′, and D = D′, on 3-cells in T hold, where:

B=

(Fa⊗1Fj)⊗Fb
(1⊗Fj)⊗1+3

a
px

r•⊗1

��

F̃a⊗1
W

(Fa⊗F1j)⊗Fb
Fa,1⊗1
%-

Fa,1⊗1

s{

Fa⊗(1Fj⊗Fb)

1⊗l &.

µ∼= Fa⊗Fb=

Fa,bqy
Fa⊗Fb

Fa,b +3 F (ab)
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B′=

(Fa⊗1Fj)⊗Fb
(1⊗Fj)⊗1 +3

a
rz

(Fa⊗F1j)⊗Fb
Fa,1⊗1
"*arz

Fa,1,b
WFa⊗(1Fj⊗Fb)

1⊗(Fj⊗1) +3

∼=

1⊗l $,

Fa⊗(F1j⊗Fb)
1⊗F1,brz

Fa⊗Fb

Fa,bt|
Fa⊗Fb

Fa,b +3

1⊗F̂a
W

F (ab)

C=

(1Fk⊗Fa)⊗ Fb
&.

(Fk⊗1)⊗1a
px

l⊗1

�$

F̂a⊗1
W

λ∼=

∼=

1Fk⊗(Fa⊗Fb)

l

&.

1⊗Fa,b

��

(F1k⊗Fa)⊗Fb

F1,a⊗1

��
1Fk⊗F (ab)

l &.

Fa⊗Fb

Fa,bpx
F (ab)

C ′=

(1Fk⊗Fa)⊗Fb
&.

(Fk⊗1)⊗1a
px

1Fk⊗(Fa⊗Fb)
Fk⊗1

&.

1⊗Fa,b

��

∼=

∼= (F1k⊗Fa)⊗Fb

F1,a⊗1

��

a
px

F1k⊗(Fa⊗Fb)
1⊗Fa,b�� F1,a,b

WF1k⊗F (ab)

F1,ab

��

1Fk⊗F (ab)

l &.

Fk⊗1 08

F̂ab
W Fa⊗Fb

Fa,bpx
F (ab)

D=

(Fa⊗Fb)⊗1Fi Fa,b⊗1
(0

a
nv

r•

u}

Fa⊗(Fb⊗1Fi)

1⊗r•

��

ρ∼=
F (ab)⊗1Fi

1⊗Fi
��

r•

u}

∼=

Fa⊗Fb
Fa,b (0

F (ab)⊗F1i

Fab,1nv

F̃ab
W

F (ab)



2.6. Appendix 105

D′=

(Fa⊗Fb)⊗1Fi Fa,b⊗1

(0
a

nv 1⊗Fi

 (∼=
Fa⊗(Fb⊗1Fi)

1⊗r•

��

1⊗(1⊗Fi)

 (

F (ab)⊗1Fi

1⊗Fi

��

∼=

1⊗F̃b
W

(Fa⊗Fb)⊗F1i

Fa,b⊗1 �&

anv
Fa⊗(Fb⊗F1i)

1⊗Fb,1
qy

Fa,b,1
W

Fa⊗Fb
Fa,b (0

F (ab)⊗F1i

Fab,1nv
F (ab)

(CR3): for any object i ∈ I,the following equation holds:

1Fi ⊗ 1Fi
r•

�&

Fi⊗1

u}
=F1i ⊗ 1Fi

F̃1
V

1⊗Fi
��

r•

%-

∼= 1Fi

Fi
��

F1i ⊗ F1i
F1,1 +3 F1i

1Fi ⊗ 1Fi

1⊗Fi
��

r•=l

�&

Fi⊗1

u}
F1i ⊗ 1Fi ∼=

1⊗Fi
��

1Fi⊗F1i
Fi⊗1

u}

l

�&

∼=

F̂1
V

1Fi

Fi
��

F1i ⊗ F1i
F1,1 +3 F1i

(CR4): for any triplet of composable morphisms of I, i
c→ j

b→ k
a→ l, the equation

E = E′ on 3-cells in T holds, where:

(Fa⊗Fb)⊗Fc

E =

a +3
Fa,b⊗1

&.
(Φa⊗Φb)⊗Φc

��

Fa⊗(Fb⊗Fc)
1⊗Fb,c +3

Fa,b,c
V

Fa⊗F (bc)

Fa,bc
��

(Ga⊗Gb)⊗Gc
Ga,b⊗1

��

Φa,b⊗1

V F (ab)⊗Fc

Φ(ab)⊗Φcpx

Fab,c +3

Φab,c
V

F (abc)

Φ(abc)
��

G(ab)⊗Gc
Gab,c +3 G(abc),

(Fa⊗Fb)⊗Fc

E′ =

∼=

a +3

(Φa⊗Φb)⊗Φc
��

Fa⊗(Fb⊗Fc)
1⊗Φb,c
V

Φa⊗(Φb⊗Φc)
��

1⊗Fb,c +3 Fa⊗F (bc)
Φa⊗Φ(bc)

s{
Fa,bc
��

(Ga⊗Gb)⊗Gc
Ga,b⊗1

��

a +3 Ga⊗(Gb⊗Gc)
Ga,b,c
V

1⊗Gb,c
+3 Ga⊗G(bc)

Ga,bc #+

Φa,bc
V F (abc)

Φ(abc)
��

G(ab)⊗Gc
Gab,c +3 G(abc).

(CR5): for any morphism of I, i
a→ j, the following two pasting equalities hold:
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1⊗ Fa
Fj⊗1

��

l

�%

1⊗Φa

v~
F̂a
V

1⊗ Fa
l

�$

1⊗Φa

v~ ∼=1⊗Ga

Gj⊗1

��

Φj⊗1

V F1⊗ Fa
F1,a

+3

Φ1⊗Φa
v~

Φ1,a
V

Fa

Φa
��

= 1⊗Ga

Gj⊗1

��

l

%-
Ĝa
V

Fa

Φa
��

G1⊗Ga
G1,a

+3 Ga G1⊗Ga
G1,a

+3 Ga,

Fa⊗ 1

1⊗Fi
��

r•

�$

Φa⊗1

w�
F̃a
V

Fa⊗ 1

r•

�#

Φa⊗1

x� ∼=Ga⊗ 1

1⊗Gi
��

1⊗Φi
V Fa⊗ F1

Fa,1
+3

Φa⊗Φ1

w�

Φa,1
V

Fa

Φa

��

= Ga⊗ 1

1⊗Gi
��

r•

$,

G̃a
V

Fa

Φa

��
Ga⊗G1

Ga,1
+3 Ga Ga⊗G1

Ga,1
+3 Ga,

(CR6): for any object i and each two composable arrows i
b→ j

a→ k of I, the
diagrams of 3-cells below commute.

Φ1i ◦ Fi
M1i◦1 *4

Zi

Φi

Ψ1i ◦ Fi5D

Ψi
Gi

Ga,b◦(Φa⊗Φb)

1◦(Ma⊗Mb)

�

Φa,b*4 Φ(ab)◦Fa,b
M(ab)⊗1

�

Ga,b◦(Ψa⊗Ψb)
Ψa,b*4 Ψ(ab)◦Fa,b

2.6.2 Proof of Lemma 2.1

(i) The homomorphism H∗ is defined as follows: It carries a lax functor F: I → T to
the lax functor H∗F : I → T ′, which is defined on objects i of I by (H∗F )i = HFi, and
on arrows a: i→ j by (H∗F )a = HFa: HFi→ HFj. The 2-cell (H∗F )a,b: (H∗F )a⊗
(H∗F )b ⇒ (H∗F )(ab), for each pair of composable arrows i

b→ j
a→ k, is the com-

position HFa ⊗ HFb χ
=⇒ H(Fa ⊗ Fb)

HFa,b
=⇒ HF (ab). For each object i, the 2-cell

(H∗F )i: 1(H∗F )i ⇒ (H∗F )1i is the composite of 1HFi
ι

=⇒ H1Fi
HFi=⇒ HF1i. The struc-

ture 3-cell of H∗F : I → T ′ associated to any three composable arrows i
c→ j

b→ k
a→ l,
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is that obtained by pasting the diagram

(HFa⊗HFb)⊗HFc
ω
V

χ⊗1ow

a +3 HFa⊗(HFb⊗HFc)
1⊗χ'/

H(Fa⊗Fb)⊗HFc
χ
'/

HFa,b⊗1

��

HFa⊗H(Fb⊗Fc)
χ
ow

1⊗HFb,c
��

H((Fa⊗Fb)⊗Fc)

H(Fa,b⊗1)

��

Ha +3

Fa,b,c
V

H(Fa⊗(Fb⊗Fc))
∼=

H(1⊗Fb,c)
��

HF (ab)⊗HFc
χ '/

∼=
HFa⊗HF (bc)

χow
H(F (ab)⊗Fc)

HFab,c
%-

H(Fa⊗F (bc))
qy
HFa,bcHF (abc)

whereas the structure 3-cells of the lax functor H∗F attached to an arrow a: i→ j of
the category I, are respectively those obtained by pasting the diagrams below.

H1Fj ⊗HFa

∼=
χ '/

HFj⊗1

v~

1HFj ⊗HFa

l

��

ι⊗1ks

H(1Fj ⊗ Fa)
HF̂a
V

Hl

&.
H(Fj⊗1)
rz

γ
V

HF1j ⊗HFa
χ +3 H(F1j ⊗ Fa)

HF1,a +3 HFa,

HFa⊗H1Fi

∼=
χ
'/

1⊗HFi

u}

HFa⊗ 1HFi

r•

��

1⊗ιks

H(Fa⊗ 1Fi)
HF̃a
V

Hr•

&.
H(1⊗Fi)rz

δ−1

V

HFa⊗HF1i
χ +3 H(Fa⊗ F1i)

HFa,1 +3 HFa.

If Φ: F ⇒ G is any 1-cell in the bicategory Lax(I, T ), then H∗Φ: H∗F ⇒ H∗G
is the 1-cell in Lax(I, T ′) whose component at an arrow a: i → j of I is the 2-cell
of T ′ defined by (H∗Φ)a = HΦa: HFa ⇒ HGa. For any pair of composable arrows

i
b→ j

a→ k and any object i of I, the corresponding structure 3-cells (2.3) and (2.4),
(H∗Φ)a,b and (H∗Φ)i, are respectively given by pasting in

HFa⊗HFb

∼=

χ +3

HΦa⊗HΦb

��

H(Fa⊗ Fb)
HFa,b +3

H(Φa⊗Φb)

��

HΦa,b
V

HF (ab)

HΦ(ab)

��
HGa⊗HGb χ

+3 H(Ga⊗Gb)
HGa,b

+3 HG(ab),

1HFi=HGi
ι��

H1Fi
HFi
t|

HGi
#+

HΦi
W

HF1i
HΦi

+3 HG1i.

And a 2-cell M: ΦV Ψ of Lax(I, T ) is applied by the homomorphism H∗ to the 2-cell
H∗M: H∗ΦV H∗Ψ of Lax(I, T ′), such that (H∗M)a = HMa: HΦaV HΨa for any
arrow a: i→ j of the category I.
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Finally, if Φ: F ⇒ G and Ψ: G⇒ H are any two composable 1-cells in Lax(I, T ),
and F: I → T is any lax functor, then the constraints (H∗Ψ) ◦ (H∗Φ) ∼= H∗(Ψ ◦ Φ)
and 1H∗F

∼= H∗1F are, at any arrow a: i → j of I, the structure isomorphisms
HΨa ◦HΦa ∼= H(Ψa ◦Φa) and 1HFa ∼= H1Fa of the homomorphism H: T (Fi, F j)→
T ′(HFi,HFj), respectively.

If α: I → J is a functor then, recalling the definition of α∗ given at the beginning
of Subsection 2.2.2, one easily checks the equality H∗α

∗ = α∗H∗.
(ii) For any lax functor F : I → T , the 2-cell attached by

m = mF : H ′∗(H∗F )⇒ (H ′H)∗F

at any arrow a: i → j of I is the identity, that is, ma = 1H′HFa. For any pair of

composable arrows i
b→ j

a→ k and any object i of I, the corresponding invertible
structure 3-cells (2.3) and (2.4),

ma,b: (H ′∗(H∗F ))a,b ◦ (ma⊗mb)V m(ab) ◦ ((H ′H)∗F )a,b,
mi: m1i ◦ (H ′∗(H∗F ))i V ((H ′H)∗F )i,

are, respectively, given by pasting in the diagrams below.

H ′HFa⊗H ′HFb

∼=

χ +3

1⊗1
��

H ′(HFa⊗HFb)
H′χ

%-
1

��

H′(HFa,b◦χ) +3 H ′HF (ab)

1

��
H ′HFa⊗H ′HFb χ

+3 H ′(HFa⊗HFb)
H′χ

+3

∼=

H ′H(Fa⊗ Fb)
H′HFa,b

+3

H′HFa,b
19

∼=

H ′HF (ab),

∼=

1H′HFi
ι +3

ι "*

H ′1HFi
∼= H′ι

#+
1
��

H′(HFi◦ι) +3 H ′HF1i

1
��

H ′1HFi
H′ι

+3

∼=

H ′H1Fi
H′HFi

+3

H′HFi
3;

∼=

H ′HF1i.

∼=

If Φ: F ⇒ G any 1-cell in Lax(I, T ), then the invertible naturality 2-cell mΦ: mG ◦
(H ′∗(H∗Φ))V (H ′H)∗Φ◦mF , at any arrow a: i→ j of I, is the canonical isomorphism
1 ◦H ′HΦa ∼= H ′HΦa ◦ 1 in the bicategory T ′′(H ′HFi,H ′HFj).

For a functor α: I → J , it is easy to see that mα∗ = α∗m.
(iii) For any lax functor F: I → T , the 2-cell attached by

m = mF : (1T )∗F ⇒ F

at any arrow a: i → j of I is the identity, that is, ma = 1Fa. For any pair of

composable arrows i
b→ j

a→ k and any object i of I, the corresponding invertible
structure 3-cells (2.3) and (2.4),

ma,b: Fa,b ◦ (ma⊗mb)V m(ab) ◦ ((1T )∗F )a,b, mi: m1i ◦ ((1T )∗F )i V Fi,
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are, respectively, the canonical isomorphisms in the diagrams below.

Fa⊗ Fb 1 +3

1⊗1
��

∼=

Fa⊗ Fb
Fa,b +3 F (ab)

1
��

Fa⊗ Fb
Fa,b +3 F (ab),

1Fi
∼=

1

w�

Fi

 (
1Fi

Fi +3 F1i
1 +3 F1i.

If Φ: F ⇒ G any 1-cell in Lax(I, T ), then the invertible naturality 2-cell mΦ: mG ◦
((1T )∗Φ)) V Φ ◦ mF , at any arrow a: i → j of I, is provided by the canonical
isomorphism 1 ◦ Φa ∼= Φa ◦ 1 in T (Fi, Fj).

Again, for α: I → J a functor, it is straightforward to check that the equality
mα∗ = α∗m holds. �

2.6.3 Proof of Lemma 2.2

To describe the homomorphism L, we shall use the following useful construction: For
any list (t0, . . . , tp) of objects in the tricategory T , let

or

⊗: T (tp−1, tp)× T (tp−2, tp−1)× · · · × T (t0, t1) −→ T (t0, tp) (2.43)

denote the homomorphism recursively defined as the composite

T (tp−1, tp)×
p−1∏
i=1
T (ti−1, ti)

1×
or
⊗ // T (tp−1, tp)× T (t0, tp−1)

⊗ // T (t0, tp).

That is,
or

⊗ is the homomorphism obtained by iterating composition in the tricategory,
which acts on 0-cells, 1-cells and 2-cells of the product bicategory

∏p
i=1 T (ti−1, ti) by

the recursive formula

or

⊗(xp, . . . , x1) =

{
x1 if p = 1,

xp ⊗
( or

⊗ (xp−1, . . . , x1)
)

if p ≥ 2.

• The definition of L on 0-cells . The homomorphism L takes a lax functor of the
graph in the tricategory, say f: G → T , to the unitary homomorphic lax functor from
the free category

L(f) = F: I → T ,

such that Fi = fi, for any vertex i of G (= objects of I), and associates to strings

a: a(0)
a1→ · · · ap→ a(p) in G the 1-cells Fa =

or

⊗(fap, . . . , fa1): fa(0) → fa(p). The
structure 2-cells Fa,b: Fa ⊗ Fb ⇒ F (ab), for any pair of strings in the graph, a =
ap · · · a1 as above and b = bq · · · b1 with b(q) = a(0), are canonically obtained from the
associativity constraint in the tricategory: first by taking Fa1,b = 1F (a1b) and then,
recursively for p > 1, defining Fa,b as the composite

Fa,b: Fa⊗ Fb a
=⇒ Fap ⊗ (Fa′ ⊗ Fb)

1⊗Fa′,b +3 F (ab),
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where a′ = ap−1 · · · a1 (whence Fa = Fap ⊗ Fa′). And the structure 3-cells Fa,b,c, for
any three strings in the graph a, b and c as above with a(0) = b(q) and b(0) = c(r), are
the unique isomorphisms constructed from the tricategory coherence 3-cells π. For a
particular construction of these isomorphisms, we can first take each Fa1,b,c to be the
canonical isomorphism

(Fa1 ⊗ Fb)⊗ Fc
Fa1,b,c

: ∼=1⊗1
��

a +3 Fa1 ⊗ (Fb⊗ Fc)
1⊗Fb,c
��

F (a1b)⊗ Fc a +3 Fa1 ⊗ (Fb⊗ Fc)
1⊗Fb,c +3 F (a1bc) Fa1 ⊗ F (bc),

1ks

and then, recursively for p > 1, take Fa,b,c to be the 3-cell canonically obtained from
Fap−1···a1,b,c by pasting the diagram bellow, where, as above, we write a′ for ap−1 · · · a1.

(Fa⊗Fb)⊗Fc
a

(0
a⊗1
qy

(Fap⊗(Fa′⊗Fb))⊗Fc π
V

a '/

(1⊗Fa′,b)⊗1

��

Fa,b,c :

Fa⊗(Fb⊗Fc)
a

t|

1⊗Fb,c

�&
Fap⊗((Fa′⊗Fb)⊗Fc)

1⊗a'/

1⊗(Fa′,b⊗1)

��

Fap⊗(Fa′⊗(Fb⊗Fc))
1⊗(1⊗Fb,c)

"*

∼=∼= Fa⊗F (bc)

a
x�

F (ab)⊗Fc
a '/

1⊗F
a′,b,c
V

Fap⊗(F (a′b)⊗Fc)
1⊗Fa′b,c '/

Fap⊗(Fa′⊗F (bc))

1⊗Fa′,bcpx
F (abc)

The conditions (CR1), (CR2), and (CR3), are verified thanks to Fact 2.2,
since we are only using constraints 2-cells and 3-cells. Note that, since all structure
2-cells Fa,b are equivalences in the corresponding hom-bicategories of T in which they
lie, as well as all the structure 3-cells Fa,b,c are invertible, the so defined unitary lax
functor F: I → T is actually a homomorphic one; that is, L(f) = F ∈ Laxuh(I, T ) ⊆
Lax(I, T ).

• The definition of L on 1-cells . Any 1-cell φ: f ⇒ g of Lax(G, T ), is taken by L
to the 1-cell in Laxuh(I, T )

L(φ) = Φ: F ⇒ G,

consisting of the 2-cells in the tricategory Φa =
or

⊗(φap, . . . , φa1): Fa⇒ Ga , attached

to the strings of adjacent edges in the graph a = ap · · · a1. The structure (actually
invertible) 3-cells Φa,b, for any pair of strings in the graph, a and b with b(q) = a(0)
as above, are defined by induction on the length of a as follows: each Φa1,b is the
canonical isomorphism

Fa1 ⊗ Fb 1 +3

∼=Φa1,b : Φa1⊗Φb
��

F (a1b)

Φ(a1b)=Φa1⊗Φb
��

Ga1 ⊗Gb 1 +3 G(a1b),
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and, for p > 1, each Φa,b is obtained from Φa′,b, where a′ = ap−1 · · · a1, by pasting

Fa⊗ Fb

∼=Φa,b : Φa⊗Φb

��

a +3 Fap ⊗ (Fa′ ⊗ Fb)
1⊗Φa′,b
V

Φap⊗(Φa′⊗Φb)

��

1⊗Fa′,b+3 F (ab)

Φ(ab)=Φap⊗(Φa′⊗Φb)

��
Ga⊗Gb a

+3 Gap ⊗ (Ga′ ⊗Gb)
1⊗Ga′,b

+3 G(ab).

Again, Fact 2.2 ensures that conditions (CR4) and (CR5) are satisfied. Note
that, since all structure 3-cells Φa,b are invertible, the thus defined unitary 1-cell
L(φ) = Φ of Laxu(I, T ) is actually a 1-cell of Laxuh(I, T ).

• The definition of L on 2-cells . For φ, ψ: f ⇒ g, any two 1-cells in Lax(G, T ),
the homomorphism L on a 2-cell m: φV ψ gives the 2-cell of Laxuh(I, T )

L(m) = M: ΦV Ψ,

consisting of the 3-cells in the tricategory Ma =
or

⊗(map, . . . ,ma1): Φa⇒ Ψa , for the

strings a = ap · · · a1 of adjacent edges in the graph G.

• The structure constraints of L. If φ: f ⇒ g and ψ: g ⇒ h are 1-cells in Lax(G, T ),
then the structure isomorphism in Laxu(I, T )

Lψ,φ: L(ψ) ◦ L(φ) ∼= L(ψ ◦ φ),

at each string a = ap · · · a1 as above, is recursively defined as the identity 3-cell on
ψa1 ◦ φa1 if p = 1, while, for p > 1, Lψ,φ a: L(ψ)a ◦ L(φ)a V L(ψ ◦ φ)a is obtained
from Lψ,φ a

′, where a′ = ap−1 · · · a1, as the composite

L(ψ)a ◦ L(φ)a = (ψap ⊗ L(ψ)a′) ◦ (φap ⊗ L(φ)a′)
∼= (ψap ◦ φap)⊗ (L(ψ)a′ ◦ L(φ)a′)

1⊗Lψ,φa′
V (ψap ◦ φap)⊗ L(ψ ◦ φ)a′ = L(ψ ◦ φ)a.

Similarly, the structure isomorphism Lf: 1L(f)
∼= L(1f ) consists of the 3-cells

Lf a: 1L(f)a V L(1f )a, where Lfa1 = 1: 1fa1 V 1fa1 and, for p > 1, Lfa is recursively
obtained from Lfa

′, a′ = ap−1 · · · a1, as the composite

1L(f)a = 1fap⊗L(f)a′
∼= 1fap ⊗ 1L(f)a′

1⊗Lfa′
V 1fap ⊗ L(1f )a′ = L(1f )a.

This completes the description of the homomorphism L.

• The definition of the lax transformation v. The component of this lax transfor-
mation at a lax functor F: I → T , v = v(F ): LR(F ) ⇒ F , is defined on identities
by

v1i = Fi: 1Fi ⇒ F1i,
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for any vertex i of G, and it associates to each string of adjacent edges in the graph
a = ap · · · a1 the 2-cell

va:
or

⊗ (Fap, . . . , Fa1)⇒ Fa, (2.44)

which is given by taking va1 = 1Fa1 if p = 1, and then, recursively for p > 1, by

taking va as the composite va:
or

⊗ (Fap, . . . , Fa1)
1⊗va′ +3 Fap ⊗ Fa′

Fap,a′ +3 Fa , where

a′ = ap−1 · · · a1.
The structure 3-cell

va,b: Fa,b ◦ (va⊗ vb)V v(ab) ◦ LR(F )a,b, (2.45)

for any pair of composable morphisms in I, is defined as follows: when a = 1j or b = 1i
are identities, then v1j ,b and va,1i are respectively given by pasting the diagrams

1Fj ⊗ LR(F )b
l +3

1⊗vb
#+

Fj⊗vb

��

LR(F )b

vb

��

v1j ,b : ∼= 1Fj ⊗ Fb
l

!)
Fj⊗1

s{

∼=

F̂b
V

F1j ⊗ Fb
F1j ,b

+3 Fb,

LR(F )a⊗ 1Fi
r• +3

va⊗1
#+

va⊗Fi

��

LR(F )a

va

��

va,1i : ∼= Fa⊗ 1Fi
r•

!)
1⊗Fi
rz

∼=

F̃a
V

Fa⊗ F1i
Fa,1i

+3 Fa,

and, for strings a and b in the graph with b(q) = a(0), va,b is defined by induction on
the length of a by taking va1,b to be the canonical isomorphism

Fa1 ⊗ LR(F )b

1⊗vb
��

∼=va1,b :

1 +3 LR(F )(a1b)

v(a1b)=Fa1,b
◦(1⊗vb)

��
Fa1 ⊗ Fb

Fa1,b

+3 F (a1b),

and then, for p > 1, va,b is obtained from va′,b, where a′ = ap−1 · · · a1, by pasting

LR(F )a⊗ LR(F )b
a +3

(1⊗va′)⊗vb
��

va,b :

Fap⊗(LR(F )a′⊗LR(F )b)
1⊗va′,b
V

1⊗(va′⊗vb)
��

1⊗LR(F )a′,b+3

∼=

LR(F )(ab)

1⊗v(a′b)
��

(Fap⊗Fa′)⊗Fb
Fap,a′,b
V

a +3

Fap,a′⊗1

��

Fap⊗(Fa′⊗Fb)
1⊗Fa′,b

+3 Fap ⊗ F (a′b)

Fap,a′b
��

Fa⊗ Fb
Fa,b +3 F (ab).

And the structure 3-cell
vi: v1i ◦ LR(F )i V Fi, (2.46)

for any vertex i of the graph, is the canonical isomorphism Fi ◦ 1 ∼= Fi. Conditions
(CR4) and (CR5) are verified by using conditions (CR1), (CR2), and (CR3)
for F , and Facts 2.2, 2.3, and 2.1.
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The naturality component of v at a 1-cell Φ: F ⇒ G in Laxu(I, T ),

vΦ: v(G) ◦ LR(Φ)V Φ ◦ v(F ), (2.47)

is given on identities by

1Fi

vΦ1i :

Fi +3

1
�� !)
Gi

F1i

Φ1i
��

1Fi
Gi
+3

∼=

Φi
V

G1i,

and it is recursively defined at each string in the graph a = ap · · · a1, by the 3-cells
vΦa, where

Fa1
1 +3

∼=vΦa1 : Φa1
��

Fa1

Φa1
��

Ga1
1 +3 Ga1,

and then, when p > 1, vΦa is obtained from vΦa
′, where a′ = ap−1 · · · a1, by pasting

Fap ⊗ LR(F )a′

1⊗vΦa
′

VvΦa : Φap⊗LR(Φ)a′

��

1⊗v(F )a′ +3 Fap ⊗ Fa′
Φap,a′
VΦap⊗Φa′

��

Fap,a′ +3 Fa

Φa
��

Gap ⊗ LR(G)a′
1⊗v(G)a′ +3 Gap ⊗Ga′

Gap,a +3 Ga.

Condition (CR6) for this 2-cell is verified using conditions (CR4) and (CR5)
for the 1-cell Φ, together with Facts 2.2, 2.3, and 2.1.

We are now ready to complete the proof. That the equalities RL = 1, vL = 1,
and Rv = 1 hold only requires a straightforward verification, and then (a) follows.
Moreover, (b) has already been shown by construction of the homomorphism L.
• The proof of (c). Suppose that F: I → T is any homomorphic lax functor.

This means that all structure 2-cells Fa,b and Fi are equivalences, and 3-cells Fa,b,c,

F̂a, and F̃a are isomorphisms in the hom-bicategories of T in which they lie. Then,
directly from the construction given, it easily follows that all the 2-cells v(F )a in
(2.44) are equivalences in the corresponding hom-bicategories, and that all the 3-cells
v(F )a,b in (2.45), and vi in (2.46) are invertible. Hence, each v(F ): LR(F ) ⇒ F ,
for F: I → T any homomorphic lax functor, is an equivalence in the bicategory
Laxh(I, T ). Moreover, if Φ: F ⇒ G is any 1-cell in Laxh(I, T ), so that every 3-cell
Φa,b and Φi is an isomorphism, then we see that the component (2.47) of v at Φ
consists only of invertible 3-cells vΦa, whence vΦ is invertible itself. Therefore, when
v is restricted to Laxh(I, T ), it actually gives a pseudo-equivalence between LR and
1, the identity homomorphism on the bicategory Laxh(I, T ). The claimed biadjoint
biequivalence (2.7) is now an easy consequence of all the already parts proved. Finally,
it is clear that the biadjoint biequivalence (2.7) gives by restriction the biadjoint
biequivalence (2.8). �





Chapter 3

Bicategorical homotopy fiber
sequences

3.1 Introduction and summary

The process of taking classifying spaces of bicategories reveals a way to transport cat-
egorical coherence to homotopical coherence since the construction B 7→ BB preserves
products, any lax or oplax functor between bicategories, F : A → B, induces a con-
tinuous map on classifying spaces BF : BA → BB, any lax or oplax transformation
between these, α : F ⇒ F ′, induces a homotopy between the corresponding induced
maps Bα : BF ⇒ BF ′, and any modification between these, ϕ : α V β, a homotopy
Bϕ : Bα V Bβ between them. Thus, if A and B are biequivalent bicategories or if
a homomorphism A → B has a biadjoint, then their associated classifying spaces are
homotopy equivalent.

In this chapter we show the subtlety of this theory by analyzing the homotopy
fibers of the map BF : BA → BB, which is induced by a lax functor between small
bicategories F : A → B, such as Quillen did in [109] where he stated his celebrated
Theorems A and B for the classifying spaces of small categories. Every object b ∈
ObB has an associated homotopy fiber bicategory F ↓ b whose objects are the 1-cells
f : Fa→ b in B, with a an object of A; the 1-cells consist of all triangles

Fa
Fu //

f ��
β⇒

Fa′

f ′��
b

with u : a→ a′ a 1-cell in A and β : f ⇒ f ′ ◦ Fu a 2-cell in B, and the 2-cells of this
bicategory are commutative diagrams of 2-cells in B of the form

f
β

w�
β′

�'
f ′ ◦ Fu

1f ′◦Fα +3 f ′ ◦ Fu′

115
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with α : u⇒ u′ a 2-cell in A. Compositions, identities, and the structure associativity
and unit constraints in F↓ b are canonically provided by those of the involved bicate-
gories and the structure 2-cells of the lax functor (see Section 3.5 for details). For the
case F = 1B, we have the comma bicategory B↓ b. Then, we prove (see Theorem 3.2):

“For every object b of the bicategory B, the induced square

B(F↓ b)

��

// B(B↓ b)

��
BA BF // BB

is homotopy cartesian if and only if all the maps Bp : B(F↓ b)→ B(F↓ b′),
induced by the 1-cells p : b→ b′ of B, are homotopy equivalences.”

Since the spaces B(B↓ b) are contractible (Lemma 3.7), the result above tells us
that, under the minimum necessary conditions, the classifying space of the homotopy
fiber bicategory F↓ b is homotopy equivalent to the homotopy fiber of BF : BA → BB
at its 0-cell Bb ∈ BB. Thus, the name ‘homotopy fiber bicategory’ is well chosen.
Furthermore, as a corollary, we obtain (see Theorem 3.3):

“ If all the spaces B(F↓ b) are contractible, then the map BF : BA → BB
is a homotopy equivalence.”

When the bicategoriesA and B involved in the results above are actually categories,
then they are reduced to the well-known Theorems A and B by Quillen [109]. Indeed,
the methods used in the proof of Theorem 3.2 we give follow similar lines to those
used by Quillen in his proof of Theorem B. However, the situation with bicategories is
more complicated than with categories. Let us stress the two main differences between
both situations: On one hand, every 2-cell σ : p ⇒ q : b → b′ in B gives rise to a
homotopy

Bσ : Bp ' Bq : B(F↓ b)→ B(F↓ b′)

that must be taken into account. On the other hand, for p : b → b′ and p′ : b′ → b′′

any two composable 1-cells in B, we have a homotopy

Bp′ ◦ Bp ' B(p′ ◦ p) : B(F↓ b)→ B(F↓ b′′),

rather than the identity Bp′ ◦Bp = B(p′ ◦ p), as it happens in the category case. This
unfortunate behavior is due to the fact that neither is the horizontal composition of
1-cells in the bicategories involved (strictly) associative nor does the lax functor pre-
serve (strictly) that composition. Therefore, in the process of taking homotopy fiber
bicategories, F↓: b 7→ F↓ b, we are forced to deal with lax bidiagrams of bicategories

F : B → Bicat, b 7→ Fb,
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which are a type of lax functors in the sense of Gordon, Power and Street [69] from the
bicategory B to the tricategory of small bicategories, rather than ordinary diagrams
of small categories, that is, functors F : B → Cat, as it happens when both A and B
are categories.

After this introductory Section 3.1, the chapter is organized in four sections. Sec-
tion 3.2 is an attempt to make the chapter as self-contained as possible; hence, at
the same time as we set notations and terminology, we define and describe in detail
the kind of lax functors F : B → Bicat we are going to work with. Section 3.3 is
very technical but crucial to our discussions. It is mainly dedicated to describing in
detail a bicategorical Grothendieck construction, which assembles any lax bidiagram
of bicategories F : B → Bicat into a bicategory

∫
B F. This is similar to what the

ordinary construction, due to Grothendieck [72, 73], Giraud [66, 67], and Thomason
[120] on lax diagrams of categories with the shape of any given category. By means of
this higher Grothendieck construction, in Section 3.4 we establish the third relevant
result of the chapter, namely (see Theorem 3.1):

“If F : B → Bicat is a lax bidiagram of bicategories such that each 1-cell
p : b→ b′ in the bicategory B induces a homotopy equivalence BFb ' BFb′,
then, for every object b ∈ ObB, there is an induced homotopy cartesian
square

BFb //

��

B
∫
B F

��
pt

Bb // BB.

That is, the classifying space BFb is homotopy equivalent to the homotopy
fiber of the map induced on classifying spaces by the projection homomor-
phism

∫
B F→ B at the 0-cell corresponding to the object b.”

Thanks to Thomason’s Homotopy Colimit Theorem [120], when B is a small cat-
egory and F take values in Cat, the result above is equivalent to the relevant lemma
used by Quillen in his proof of Theorem B. Similarly here, the proof of the bicat-
egorical Theorem B, given in the last Section 3.5, essentially consists of two steps:
First, to apply that key result above to the lax bidiagram of homotopy fiber bicat-
egories, F ↓ : B → Bicat, of a lax functor F : A → B. Second, to prove that there
is a homomorphism

∫
B F ↓ → A inducing a homotopy equivalence B(

∫
B F ↓) ' BA,

so that the bicategory
∫
B F↓ may be thought of as the “total bicategory” of the lax

functor F . Section 5 also includes some applications to classifying spaces of monoidal
categories. For instance, we find a new proof of the well-known result by Mac Lane
[99] and Stasheff [114]:

“ Let (M,⊗) = (M,⊗, I,a, l, r) be a monoidal category. If multiplication
for each object x ∈ ObM, y 7→ y⊗ x, induces a homotopy autoequivalence
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on BM, then there is a homotopy equivalence

BM' ΩB(M,⊗),

between the classifying space of the underlying category and the loop space
of the classifying space of the monoidal category.”

3.2 Bicategorical preliminaries: Lax bidiagrams of
bicategories

In this chapter we shall work with small bicategories following the notations in Sub-
section 2.1.2, with some minor changes. Namely, for a lax functor F : A → B we will
name its constraint 2-cells by

F̂g,f : Fg ◦ Ff ⇒ F (g ◦ f), F̂a : 1Fa ⇒ F1a.

while for a lax transformation α : F → G we will use α̂f : αb ◦ Ff ⇒ Gf ◦ αa for the
constraint 2-cell at a 1-cell f : a→ b in A.

We will use the fact that the commutative triangles

(1 ◦ g) ◦ f a +3

l◦1  (

1 ◦ (g ◦ f)

lv~
g ◦ f

(g ◦ f) ◦ 1
a +3

r �&

g ◦ (f ◦ 1)

1◦ rx�
g ◦ f

(3.1)

and the equality

r1 = l1 : 1 ◦ 1 ∼= 1 (3.2)

are consequences of the other axioms (this is not obvious, but a proof can be done
paralleling the one given, for monoidal categories, by Kelly in [91] or Joyal and Street
in [88, Proposition 1.1]).

3.2.1 Lax bidiagrams of bicategories

The next concept of fibered bicategory in bicategories is the basis of most of our
subsequent discussions. Let B be a bicategory. Regarding B as a tricategory in which
the 3-cells are all identities, we define a lax bidiagram of bicategories

F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat (3.3)

to be a contravariant1 lax functor of tricategories from B to Bicat, all of whose
coherence modifications are invertible, they are called lax homomorphisms by Garner

1Bop means that we are inverting the direction of the 1-cells but not of the 2-cells, that is
Bop(a, b) = B(b, a).
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and Gurski in [65]. More explicitly, a lax bidiagram of bicategories F as above consists
of the following data:

(D1) for each object b in B, a bicategory Fb;

(D2) for each 1-cell f : a→ b of B, a homomorphism f∗ : Fb → Fa;

(D3) for each 2-cell a

f
$$

g
::⇓α b of B, a pseudo transformation α∗ : f∗ ⇒ g∗;

Fb

f∗
&&

g∗
88⇓α∗ Fa

(D4) for each two composable 1-cells a
f // b

g // c in the bicategory B, a pseudo
transformation χ

g,f
: f∗g∗ ⇒ (g ◦ f)∗;

Fc
g∗

��
(g ◦f)∗

��⇒
χ

Fb
f∗

// Fa

(D5) for each object b of B, a pseudo transformation χ
b

: 1Fb ⇒ 1∗b ;

Fb

1Fb
&&

1∗b

88⇓χ Fb

(D6) for any two vertically composable 2-cells a
f
((

g
66⇓α b and a

g
((

h

66⇓β b in B, an

invertible modification ξ
β,α

: β∗ ◦ α∗ V (β · α)∗;

f∗
α∗

{�
(β·α)∗

�$V
ξ

g∗
β∗

+3 h∗

(D7) for each 1-cell f : a→ b of B, an invertible modification ξ
f

: 1f∗ V 1∗f ;

f∗

1f∗

�"
1∗f
|�

V
ξ

f∗
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(D8) for every two horizontally composable 2-cells a

f
$$

h

::⇓α b

g
##

k

;;⇓β c , an invertible

modification χ
β,α

: (β ◦ α)∗◦ χ
g,f
V χ

k,h
◦ (α∗β∗);

f∗ g∗
α∗β∗ +3

χ

��
V
χ

h∗ k∗

χ

��
(g ◦ f)∗

(β◦α)∗
+3 (k ◦ h)∗

(D9) for every three composable 1-cells a
f // b

g // c
h // d in B, an invertible mod-

ification ω
h,g,f

: a∗◦ (χ
h◦g,f ◦ f∗χh,g)V χ

h,g◦f ◦ χg,fh∗;

f∗g∗h∗
χh∗ +3

f∗χ
��

V
ω

(g ◦ f)∗h∗

χ

��
f∗(h ◦ g)∗

χ +3 ((h ◦ g) ◦ f)∗
a∗ +3 (h ◦ (g ◦ f))∗

(D10) for any 1-cell f : a→ b of B, two invertible modifications

γf : l∗f ◦ (χ
1b,f
◦ f∗χ

b
)V 1f∗ , δf : r∗f ◦ (χ

f,1a
◦ χaf∗)V 1f∗ .

f∗1∗b

χ

��
V
γ

f∗

1f∗

��

f∗χks χf∗ +3

W
δ

1∗af
∗

χ

��
(1b ◦ f)∗

l∗
+3 f∗ (f ◦ 1a)

∗
r∗

ks

These data must satisfy the following coherence conditions:

(C1) for any three composable 2-cells f
α +3 g

β +3 h
ζ +3 k : a→ b in B, the equation

on modifications below holds;

g∗

β∗

��

V
ξ

f∗
α∗ks

(ζ·β·α)∗

��

(β·α)∗

z�

=

g∗

β∗

��

(ζ·β)∗

�$

V
ξ

k∗
α∗ks

(ζ·β·α)∗

��
h∗

ζ∗
+3

V
ξ

k∗ h∗
V
ξ

ζ∗
+3 k∗

(C2) for any 2-cell f
α +3 g : a→ b of B,

1f∗

V
ξ

f∗

��

α∗

�#qy
V
ξ = rα∗ ,

f∗
α∗

+3
1∗f

g∗

1g∗

V
ξ

g∗

V
ξ = lα∗ ;

g∗

EM
/7

1∗g
f∗

α∗
[c

α∗
ks
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Notation 3.1 Thanks to conditions (C1) and (C2), for each objects a, b ∈ ObB, we
have a homomorphism B(a, b)→ Bicat(Fb,Fa) such that

a

f
$$

g
::⇓α b 7→ Fb

f∗
((

g∗
66

⇓α∗ Fa,

and whose structure constraints are the deformations ξ in (D6) and (D7). Then,
whenever it is given a commutative diagram in the category B(a, b) of the form

f

α0

��

β0 +3 g1
β1 +3 · · · +3 gn

βn
��

f1
α1 +3 · · · +3 fm

αm +3 g,

(3.4)

we will denote by

f∗

α∗0
��

∼=
ξ

β∗0 +3 g∗1
β∗1 +3 · · · +3 g∗n

β∗n
��

f∗1
α∗1 +3 · · · +3 f∗m

α∗m +3 g∗

(3.5)

the invertible modification obtained by an (any) appropriate composition of the mod-
ifications ξ and their inverses ξ−1, once any particular bracketing in the strings
α∗0, . . . , α

∗
m and β∗0 , . . . , β

∗
n has been chosen. That diagram (3.5) is well defined from

diagram (3.4) is a consequence of the coherence theorem for homomorphisms of bi-
categories [69, Theorem 1.6].

Furthermore, for any diagram a
f // b

g
%%

g′

99⇓α c
h // d in B, we shall denote by

χ
α,f

: (α ◦ 1f )∗ ◦ χ
g,f
V χ

g′,f ◦ f
∗α∗, χ

h,α
: (1h ◦ α)∗ ◦ χ

h,g
V χ

h,g′ ◦ α
∗h∗,

f∗g∗

V
χ

f∗α∗ +3

χ

��

f∗g′∗

χ

��
(g ◦ f)∗

(α◦1f )∗
+3 (g′ ◦ f)∗

g∗h∗

V
χ

α∗h∗ +3

χ

��

g′∗h∗

χ

��
(h ◦ g)∗

(1h◦α)∗
+3 (h ◦ g′)∗

the modifications obtained, respectively, by pasting the diagrams in Bicat below.

f∗g∗

V
χ

χ

��

1f∗α
∗ +3

∼=

∼=
ξ1α∗

f∗α∗

"*

1∗fα
∗

9Af
∗g′∗

χ

��
(g ◦ f)∗

(α◦1f )∗
+3 (g′ ◦ f)∗

g∗h∗

V
χ

χ

��

α∗1h∗ +3
∼=

∼=
1α∗ξ

α∗h∗

"*

α∗1∗h

9Ag
′∗h∗

χ

��
(h ◦ g)∗

(1h◦α)∗
+3 (h ◦ g′)∗
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(C3) for every diagram of 2-cells a

f

��
f ′ //

f ′′

@@ b

g

��
g′ //

g′′

@@ c
α��
α′��

β��
β′��

in B,

(g ◦ f)∗

V
χ

(β◦α)∗

��

f∗g∗

=

χks

(α′·α)∗(β′·β)∗

�	

α∗β∗

v~

(α′∗◦α∗)(β′∗◦β∗)

��

(g′ ◦ f ′)∗

(β′◦α′)∗

��

V
χ

f ′∗g′∗

α′∗β′∗
 (

χks (2.1)∼= ∼=
ξξ

(g′′ ◦ f ′′)∗ f ′′∗g′′∗χ
ks

(g ◦ f)∗

((β′·β)◦(α′·α))∗

|�

(β◦α)∗

��

f∗g∗
χks

(α′·α)∗(β′·β)∗

�	

(g′ ◦ f ′)∗

(β′◦α′)∗

��

∼=
ξ

V
χ

(g′′ ◦ f ′′)∗ f ′′∗g′′∗χ
ks

(C4) for every pair of composable 1-cells a
f // b

g // c ,

(g◦f)∗

�!
1(g◦f)∗ 1∗g◦f

~�
V
ξ

f∗g∗
χks

V
χ

1∗f1∗g
}�

=

(g◦f)∗ f∗g∗
χks

(g◦f)∗

�!
1(g◦f)∗

∼=

f∗g∗

V
ξξ

χks

1∗f1∗g
}��!

1f∗1g∗

(g◦f)∗ f∗g∗
χks

(C5) for every 2-cells a

f
$$

f ′
::⇓α b

g
##

g′
;;⇓β c

h
$$

h′
::⇓ζ d , the equation A = A′ holds, where

A =

((h ◦ g) ◦ f)∗

((ζ◦β)◦α)∗

��

V
χ

a∗

u}

f∗(h ◦ g)∗

V
α∗χ

χks

α∗(ζ◦β)∗

��

f∗g∗h∗
f∗χks

(α∗β∗)ζ∗

��

∼=

��
α∗(β∗ζ∗)

(h ◦ (g ◦ f))∗ ∼=
ξ

!)(ζ◦(β◦α))∗

((h′ ◦ g′) ◦ f ′)∗

V
ω

a∗

��

f ′∗(h′ ◦ g′)∗χ
ks f ′∗g′∗h′∗

χh′∗

u}

f ′∗χ
ks

(h′ ◦ (g′ ◦ f ′))∗ (g′ ◦ f ′)∗h′∗χks

A′ =

((h ◦ g) ◦ f)∗

a∗

u}

V
ω

f∗(h ◦ g)∗
χks f∗g∗h∗

f∗χks

(α∗β∗)ζ∗

��

χh∗

u}
(h ◦ (g ◦ f))∗

V
χ

!)(ζ◦(β◦α))∗

(g ◦ f)∗h∗

(β◦α)∗ζ∗

��

χks
V
χζ∗ f ′∗g′∗h′∗

χh′∗

u}
(h′ ◦ (g′ ◦ f ′))∗ (g′ ◦ f ′)∗h′∗χks
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(C6) for every four composable 1-cells a
f // b

g // c
h // d

k // e , the equation B =
B′ holds, where

B = f∗g∗h∗k∗

'/

χh∗k∗

ow

f∗g∗χ

f∗g∗(k◦h)∗

f∗χ

��

(2.1)∼=
χ(k◦h)∗ +3 (g◦f)∗(k◦h)∗

χ

��

(g◦f)∗h∗k∗

χk∗

��

(g◦f)∗χks

f∗((k◦h)◦g)∗ V
ω

χ

��

V
ω

(h◦(g◦f))∗k∗

χ

��
(((k◦h)◦g)◦f)∗

a∗ +3

#+(a◦1f )∗

((k◦h)◦(g◦f))∗
a∗ +3

∼=
ξ

(k◦(h◦(g◦f)))∗

((k◦(h◦g))◦f)∗
a∗

+3 (k◦((h◦g)◦f))∗
(1k◦a)∗

3;

B′ = f∗g∗h∗k∗

'/

χh∗k∗

ow

f∗g∗χ

f∗χk∗

��
f∗g∗(k◦h)∗

f∗χ

��

V
f∗ω

f∗(h◦g)∗k∗

χk∗

#+

f∗χ

t|

V
ωk∗

(g◦f)∗h∗k∗

χk∗

��
f∗((k◦h)◦g)∗

f∗a∗ +3

χ

��
V
χ

f∗(k◦(h◦g))∗

χ

��

V
ω

((h◦g)◦f)∗k∗
a∗k∗ +3

χ

��

V
χ

(h◦(g◦f))∗k∗

χ

��
(((k◦h)◦g)◦f)∗

#+(a◦1f )∗

(k◦(h◦(g◦f)))∗

((k◦(h◦g))◦f)∗
a∗

+3 (k◦((h◦g)◦f))∗
(1k◦a)∗

3;

(C7) for every 2-cell f
α +3 g : a→ b , the following two equations on modifications

hold:

1∗af
∗

χ

v~
V
δ

f∗
χf∗ks

y�

1f∗
α∗

��
(f ◦1a)∗

∼=
ξ

r∗ +3

(α◦1)∗

��

f∗ ∼=

α∗

��

g∗

1g∗y�
(g◦ 1a)

∗ r∗ +3 g∗

=

1∗af
∗

χ

v~ ��
1∗aα
∗

(2.1)∼=

f∗
χf∗ks

α∗

��
(f ◦1a)∗ V

χ

(α◦1)∗

��

1∗ag
∗

χ

v~
V
δ

g∗
χg∗ks

1g∗y�
(g◦ 1a)

∗ r∗ +3 g∗
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f∗1∗b
χ

v~
V
γ

f∗
f∗χks

y�

1f∗
α∗

��
(1b◦f)∗

∼=
ξ

l∗ +3

(1◦α)∗

��

f∗ ∼=

α∗

��

g∗

1g∗y�
(1b◦ g)∗

l∗ +3 g∗

=

f∗1∗b
χ

v~ ��
α∗1∗b

(2.1)∼=

f∗
f∗χks

α∗

��
(1b◦f)∗ V

χ

(1◦α)∗

��

g∗1∗b
χ

v~
V
γ

g∗
g∗χks

1g∗y�
(1b◦ g)∗

l∗ +3 g∗

(C8) for every pair of composable 1-cells a
f // b

g // c , the following equation
holds:

f∗1∗bg
∗

V
γg∗

f∗χ
��

χg∗

#+

f∗g∗

1f∗g∗
��

f∗χg∗ks

=

f∗(g◦1b)∗
V
ω

χ

��

(1b◦f)∗g∗

χ
��

l∗g∗ +3 f∗g∗

χ

��

(g◦(1b◦f))∗ V
χ

(1g◦ l)∗

"*
((g◦1b)◦f)∗

∼=
ξ

a∗
3;

(r◦1f )∗
+3 (g◦f)∗

f∗1∗bg
∗

f∗χ

��

f∗g∗
f∗χg∗ks

1f∗g∗

����

f∗1g∗ ∼=

f∗(g◦1b)∗

V
χ

V
f∗δ

f∗r∗ +3

χ

��

f∗g∗

χ

��
((g◦1b)◦f)∗

(r◦1f )∗
+3 (g◦f)∗

A lax bidiagram of bicategories F : Bop → Bicat is called a pseudo bidiagram
of bicategories whenever each of the pseudo transformations χ, in (D4) and (D5),
is a pseudo equivalence; that is, regarding B as a tricategory whose 3-cells are all
identities, a trihomomorphism F : Bop → Bicat in the sense of Gordon-Power-Street
[69, Definition 3.1].

Example 3.1 If C is any small category viewed as a bicategory, then a lax bidiagram
of bicategories over C, as above, in which the deformations ξ in (D6) and (D7),
and χ in (D8), are all identities is the same thing as a lax diagram of bicategories
F : Cop → Bicat as in [42, §2.2].

For instance, let X be any topological space and let C(X) denote its poset of open
subsets, regarded as a category. Then a fibered bicategory in bigroupoids above X is a
lax diagram of bicategories

F : C(X)op → Bicat,

such that all the bicategories FU are bigroupoids, that is, bicategories whose 1-cells are
invertible up to a 2-cell, and whose 2-cells are strictly invertible. In particular, when
all the bigroupoids FU are strict, that is, 2-categories, and all the homomorphisms
f∗ : FU → FV associated to the inclusions of open sets f : V ↪→ U are 2-functors, we
have the notion of fibered 2-category in 2-groupoids above the space X. Thus, 2-stacks
and 2-gerbes on spaces are relevant examples of lax diagrams of bicategories (see e.g.
Breen [22, Definitions 6.1, 6.2, and 6.3]).
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For another example, if T is any small tricategory, then its Grothendieck nerve
(2.10)

NT : ∆op → Bicat,

gives a striking example of a pseudo diagram of bicategories.

Example 3.2 For any bicategory B, a lax bidiagram of categories over B, that is, a lax
bidiagram F : Bop → Bicat in which every bicategory Fa, a ∈ ObB, is a category (i.e.,
a bicategory where all the 2-cells are identities) is the same thing as a contravariant
lax functor F : Bop → Cat to the 2-category Cat of small categories, functors, and
natural transformations, since the condition of all Fa being categories forces all the
modifications in (D6)− (D10) to be identities.

For example, any object b of a bicategory B defines a pseudo bidiagram of categories
[117, Example 10]

B(−, b) : Bop → Cat,

which carries an object x ∈ ObB to the hom-category B(x, b), a 1-cell g : x → y to
the functor g∗ : B(y, b)→ B(x, b) defined by

y

f
##

f ′

;;⇓β b � g∗ // x

f◦g
&&

f ′◦g

88⇓β◦1g b ,

and a 2-cell α : g ⇒ g′ is carried to the natural transformation α∗ : g∗ ⇒ g′∗ that

assigns to each 1-cell f : y → b in B the 2-cell 1f ◦ α : f ◦ g ⇒ f ◦ g′. For x
g→ y

h→ z
any two composable 1-cells of B, the structure natural equivalence χ : g∗h∗ ∼= (h ◦ g)∗,
at any f : z → b, is provided by the associativity constraint a : (f ◦h)◦ g ∼= f ◦ (h◦ g),
whereas for any x ∈ ObB, the structure natural equivalence χ : 1B(x,b)

∼= 1∗x, at any
f : x→ b, is the right unit isomorphism r−1 : f ∼= f ◦ 1x.

3.3 The Grothendieck construction on lax bidiagrams of
bicategories

The well-known ‘Grothendieck construction’, due to Grothendieck [72, 73] and Giraud
[66, 67], on pseudo diagrams (F, χ) : Bop → Cat of small categories with the shape
of any given small category, was implicitly used in the proof given by Quillen of
his famous Theorems A and B for the classifying spaces of small categories [109].
Subsequently, since Thomason established his celebrate Homotopy Colimit Theorem
[120], the Grothendieck construction has become an essential tool in homotopy theory
of classifying spaces.

In this section, our work is dedicated to extending the Grothendieck construc-
tion to lax bidiagrams of bicategories F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat, where B
is any bicategory, since its use is a key for proving our main results in this chap-
ter. But we are not claiming here much originality, since extensions of the ubiquitous
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Grothendieck construction have been developed in many general frameworks. In par-
ticular, we should mention here three recent approaches to our construction: In [42],
Carrasco, Cegarra, and Garzón study the bicategorical Grothendieck construction
on lax diagrams of bicategories, as in Example 3.1. In [10, 11], Baković performs
the Grothendieck construction on normal pseudo bidiagrams of bicategories, that is,
lax bidiagrams F whose modifications χb in (D5) and ξf in (D7) are identities, and
whose pseudo transformations χg,f in (D4) are pseudo equivalences. Buckley, in [33],
presents the more general case of pseudo bidiagrams, that is, when all the pseudo
transformations χg,f and χb in (D4) and (D5) are pseudo equivalences.

The Grothendieck construction on a lax bidiagram of bicategories F : Bop → Bicat,
as in (3.3), assembles it into a bicategory, denoted by∫

BF ,

which is defined as follows:
The objects are pairs (x, a), where a ∈ ObB and x ∈ ObFa.
The 1-cells are pairs (u, f) : (x, a) → (y, b), where f : a → b is a 1-cell in B and

u : x→ f∗y is a 1-cell in Fa.

The 2-cells are pairs (x, a) ⇓(φ,α)

(u,f)
**

(v,g)

44 (y, b), consisting of a 2-cell a

f
%%

g
99⇓α b of B to-

gether with a 2-cell φ : α∗y ◦ u⇒ v in Fa,

f∗y

⇓φ
α∗y
$$

x

u <<

v
// g∗y.

The vertical composition of 2-cells in
∫
B F, (x, a)

(u,f)
**

(v,g)

44
⇓(φ,α) (y, b) and (x, a)

(v,g)
**

(w,h)

44
⇓(ψ,β) (y, b) ,

is the 2-cell

(x, a)

(u,f)
))

⇓(ψ�φ,β·α)

(w,h)

55 (y, b),

where β · α is the vertical composition of β with α in B, and ψ� φ : (β · α)∗y ◦ u⇒ w
is the 2-cell of Fa obtained by pasting the diagram below.

ψ � φ :

f∗y

(β·α)∗y

��

α∗y
��

g∗y

β∗y %%

ξ∼=

x

u

CC

v

::

w
//

⇓φ

⇓ψ

h∗y
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The vertical composition of 2-cells so defined is associative and unitary thanks to
the coherence conditions (C1) and (C2). The identity 2-cell, for each 1-cell (u, f) :
(x, a)→ (y, b), is

1(u,f) = (
·
1(u,f), 1f ) : (u, f)⇒ (u, f).

·
1(u,f) =

(
1∗fy ◦ u

ξ−1◦1 +3 1f∗y ◦ u
l⇒ u

)
Hence, we have defined the hom-category

∫
B F
(
(x, a), (y, b)

)
, for any two objects

(x, a) and (y, b) of
∫
B F. Before continuing the description of this bicategory, we shall

do the following useful observation:

Lemma 3.1 A 2-cell (φ, α) : (u, f) ⇒ (v, g) in
∫
B F
(
(x, a), (y, b)

)
is an isomorphism

if and only if both α : f ⇒ g, in B(a, b), and φ : α∗y ◦ u ⇒ v, in Fa(x, g
∗y), are

isomorphisms.

Proof: It is quite straightforward, and we leave it to the reader. �

We return now to the description of the bicategory
∫
B F.

The horizontal composition of two 1-cells (x, a)
(u,f) // (y, b)

(u′,f ′)// (z, c) is the 1-cell

(u′, f ′) ◦ (u, f) = (u′ } u, f ′ ◦ f) : (x, a) −→ (z, c),

where f ′ ◦ f : a→ c is the composite in B of the 1-cells f and f ′, while

u′ } u = χz ◦ (f∗u′ ◦ u) : x −→ (f ′ ◦ f)∗z

is the composite in Fa of x
u // f∗y

f∗u′// f∗f ′∗z
χz // (f ′ ◦ f)∗z .

The horizontal composition of 2-cells is defined by

(x, a) ⇓(φ,α)

(u,f)
((

(v,g)

66
(y, b) ⇓(φ′,α′)

(u′,f ′)
((

(v′,g′)

66
(z, c)

◦7→ (x, a) ⇓(φ′}φ,α′◦α)

(u′}u,f ′◦f)

((

(v′}v,g′◦g)

66
(z, c),

where α′ ◦ α is the horizontal composition in B of α′ with α, and φ′ } φ is the 2-cell
in Fa canonically obtained by pasting the diagram below.

φ′ } φ :

f∗y

α∗y

��

f∗u′ //

&&f∗v′
⇓f∗φ′
f∗f ′∗z

χz //

f∗α′∗z
��

(f ′ ◦ f)∗z

(α′◦α)∗z

��

x ⇓φ

u
::

v
$$

f∗g′∗z

α∗g′∗z
��

χz
∼=

g∗y

α̂∗∼=

g∗v′
// g∗g′∗z χz

// (g′ ◦ g)∗z
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Owing to the coherence conditions (C3) and (C4), the horizontal composition so
defined truly gives, for any three objects (x, a), (y, b), (z, c) of

∫
BF, a functor∫

BF((y, b), (z, c))×
∫
BF((x, a), (y, b))

◦ //
∫
BF((x, a), (z, c)).

The structure associativity isomorphism, for any three composable morphisms

(x, a)
(u,f)−→ (y, b)

(v,g)−→ (z, c)
(w,h)−→ (t, d),

(
◦
a,a) :

(
(w } v)} u, (h ◦ g) ◦ f

) ∼= (w } (v } u), h ◦ (g ◦ f)
)
,

is provided by the associativity constraint a : (h ◦ g) ◦ f ∼= h ◦ (g ◦ f) of the bicategory
B, together with the isomorphism in the bicategory Fa

◦
a : a∗t ◦ ((w } v)} u) ∼= w } (v } u),

canonically obtained from the 2-cell pasted of the diagram

f∗(h ◦ g)∗t
χt // ((h ◦ g) ◦ f)∗t

a∗t

��

x
∼=

u //

v}u ))

f∗y //f∗v

f∗(w}v)
44

f∗g∗z //f∗g∗w

χz

��

∼=

f∗g∗h∗t

f∗χt

OO

χh∗t
��

∼=
ωt

(g ◦ f)∗z
(g◦f)∗w

//

χ̂∼=

(g ◦ f)∗h∗t
χt
// (h ◦ (g ◦ f))∗t

By Lemma 3.1, these associativity 2-cells are actually isomorphisms in
∫
BF . Fur-

thermore, they are natural thanks to the coherence condition (C5), while the pentagon
axiom for them holds because of condition (C6).

The identity 1-cell, for each object (x, a) in
∫
BF , is provided by the pseudo trans-

formation χa : 1Fa ⇒ 1∗a, by

1(x,a) = (χx, 1a) : (x, a)→ (x, a).

The left and right unit constraints, for each morphism (u, f) : (x, a) → (y, b) in∫
BF ,

(
◦
l, l) : 1(y,b) ◦ (u, f) ∼= (u, f), (

◦
r, r) : (u, f) ◦ 1(x,a)

∼= (u, f),

are respectively given by the 2-cells l : 1b ◦ f ⇒ f and r : f ◦ 1a ⇒ f of B, together
with the 2-cells in Fa obtained by pasting the diagrams below.

f∗y

◦
l :

$$

1f∗y

f∗χy // f∗1∗by
χy // (1b ◦ f)∗y

l∗y

��
x

∼=
l

∼=
γy

u

OO

u
// f∗y

1∗ax

◦
r :

1∗au // 1∗af
∗y

χy // (f ◦ 1a)
∗y

r∗y

��

∼=̂
χ

f∗y

OO

χf∗y

%%

1f∗y

∼=
δy

x

∼=
l

;;
u

χx

OO

u
// f∗y
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These unit constraints in
∫
BF are isomorphisms by Lemma 3.1, natural due to

coherence condition (C7), and the coherence triangle for them follows from condition

(C8). Hence,
∫
BF is actually a bicategory.

As a consequence of the above construction we obtain the following equalities on
lax bidiagram of bicategories, which is used many times along the chapter for several
proofs:

Lemma 3.2 Let F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat be a lax bidiagram of bicate-
gories. The equations on modifications below hold.

(i) For any object a of B,

1∗a

1

�#

1∗aχ

��
∼=

1Fa

χ

��

χks

=1∗a1
∗
a

χ

��

V
γ

(1a ◦ 1a)
∗

l∗1=r∗1

+3 1∗a

1∗a

1∗aχ

��

(2.1)∼=

1Fa

χ

��

χks

}�

χ

1∗a1
∗
a

χ

��

1∗a
χ1∗aks

1 �!

∼=

V
δ

(1a ◦ 1a)
∗

l∗1=r∗1

+3 1∗a

(ii) for every pair of composable 1-cells a
f // b

g // c in B,

f∗g∗1∗c
(2.1)∼=f∗χ

��

χ1∗c

$,

f∗g∗

χ
��

f∗g∗χks

=

f∗(1c◦g)∗

V
ω

χ

��

(g◦f)∗1∗c
χ
��

(g◦f)∗

1(g◦f)∗

��

(g◦f)∗χks

(1c◦(g◦f))∗
V
γ

l∗

#+
((1c◦g)◦f)∗

∼=
ξ

a∗
2:

(l◦1f )∗
+3 (g◦f)∗

f∗g∗1∗c

f∗χ

��

f∗g∗
f∗g∗χks

χ

��z�

f∗1g∗

f∗(1c◦g)∗
f∗l∗ +3

V
f∗γ

χ

��

f∗g∗

χ

�$

∼= (g◦f)∗

1(g◦f)∗

��
((1c◦g)◦f)∗

V
χ

(l◦1f )∗
+3 (g◦f)∗

1∗af
∗g∗

V
δg∗

1∗aχ �� χg∗ #+

f∗g∗

1f∗g∗
��

χf∗g∗ks

=

1∗a(g ◦f)∗

V
ω

χ

��

(f ◦1a)∗g∗
r∗g∗ +3

χ
��

f∗g∗

χ

��

(g◦(f ◦1a))∗ V
χ

(1g◦r)∗

"*
((g◦f)◦1a)∗

∼=
ξ

a∗
3;

r∗
+3 (g◦f)∗

1∗af
∗g∗

1∗aχ

��

f∗g∗
χf∗g∗ks

1f∗g∗

��

χ

y�
1∗a(g◦f)∗

(2.1)∼=

χ

��

(g◦f)∗
χ(g◦f)∗ks

�%

1(g◦f)∗

∼= f∗g∗

χ

��
((g◦f)◦1a)∗

V
δ

r∗
+3 (g◦f)∗
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Proof: (i) follows from the equality (3.2) in the bicategory
∫
B F, that is, r1(x,a)

= l1(x,a)
,

for any x ∈ Fa. Similarly, (ii) is consequence of the commutativity of triangles (3.1)
in
∫
B F, for any pair of composable 1-cells of the form

(f∗g∗x, a)
(1,f) // (g∗x, b)

(1,g) // (x, c) ,

for any x ∈ ObFc. �

3.3.1 A cartesian square

Let F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat be any given lax bidiagram of bicategories.
For any bicategory A and any lax functor F : A → B, we shall denote by

FF = (FF, χF , ξF , ωF , γF , δF ) : Aop → Bicat (3.6)

the lax bidiagram of bicategories obtained by composing, in the natural sense, F with
F ; that is, the lax bidiagram consisting of the following data:

(D1) for each object a in A, the bicategory FFa;

(D2) for each 1-cell f : a→ b of A, the homomorphism (Ff)∗ : FFb → FFa;

(D3) for each 2-cell a

f
$$

g
::⇓α b of A, the pseudo transformation (Fα)∗ : (Ff)∗ ⇒

(Fg)∗;

(D4) for each two composable 1-cells a
f // b

g // c in the bicategory A, the pseudo
transformation χFg,f : (Ff)∗(Fg)∗ ⇒ F (g ◦ f)∗ obtained by pasting

FFc

~~

(Fg)∗
(Fg◦Ff)∗

//

F (g◦f)∗

&&
FFb

(Ff)∗
//

⇒
χ

⇒̂F
∗

FFa;

(D5) for each object a of A, the pseudo transformation

χFa =
(
1FFa

χ
Fa +3 1∗Fa

F̂ ∗a +3 F (1a)
∗);

(D6) for any two vertically composable 2-cells f
α +3 g

β +3 h in A, the invertible
modification ξF β,α = ξ

Fβ,Fα
: F (β)∗ ◦ F (α)∗ V F (β · α)∗;

(D7) for each 1-cell f : a → b of A, the invertible modification ξF f = ξ
Ff

:
1F (f)∗ V 1∗Ff ;



3.3. The Grothendieck construction on lax bidiagrams of bicategories 131

(D8) for every two horizontally composable 2-cells a

f
$$

h

::⇓α b

g
##

k

;;⇓β c in A,

χF β,α : F (β ◦ α)∗◦ χF g,f V χF k,h ◦ (F (α)∗F (β)∗)

is the invertible modification obtained by pasting the diagram below;

F (f)∗F (g)∗
F (α)∗F (β)∗+3

χ

��

V
χ

F (h)∗F (k)∗
χ +3 (Fk ◦ Fh)∗

F̂ ∗

��
(Fg ◦ Ff)∗

F̂ ∗
+3

08

(Fβ◦Fα)∗

F (g ◦ f)∗
V
ξ

F (β◦α)∗
+3 F (k ◦ h)∗

(D9) for every three composable 1-cells a
f // b

g // c
h // d in A, the invertible

modification

ωF h,g,f : F (a)∗◦ (χF h◦g,f ◦ F (f)∗χF h,g)V χF h,g◦f ◦ χF g,fF (h)∗

is obtained from the modification pasted of the diagram below;

F (f)∗F (g)∗F (h)∗

F (f)∗χ

��

χF (h)∗+3

∼=
ω

(Fg ◦ Ff)∗F (h)∗

∼=
χχ

%-

F̂∗F (h)∗ +3 F (g ◦ f)∗F (h)∗

χ

%-
F (f)∗(Fh ◦ Fg)∗

∼=
χ

χ +3

F (f)∗F̂∗

��

((Fh ◦ Fg) ◦ Ff)∗

∼=
ξ

a∗ +3

(F̂◦1)∗

��

(Fh ◦ (Fg ◦ Ff))∗
(1◦F̂ )∗ +3 (Fh ◦ F (g ◦ f))∗

F̂∗

��
F (f)∗F (h ◦ g)∗ χ

+3 (F (h ◦ g) ◦ Ff)∗
F̂∗

+3 F ((h ◦ g) ◦ f)∗
F (a)∗

+3 F (h ◦ (g ◦ f))∗

(D10) for any 1-cell f : a→ b of A, the invertible modifications

γFf : F (lf )∗ ◦ (χF 1,f
◦ F (f)∗χFb)V 1F (f)∗ ,

δFf : F (rf )∗ ◦ (χF f,1 ◦ χFaF (f)∗)V 1F (f)∗ ,

are, respectively, canonically obtained from the modification pasted of the diagrams
below.

F (f)∗F (1b)
∗

γF :

χ

��
∼=
χ

F (f)∗1∗Fb

χ

��

F (f)∗F̂ ∗ks

∼=
γ

F (f)∗

1

��

F (f)∗χks

(F1b ◦ Ff)∗

F̂ ∗

��
∼=
ξ

(1Fb ◦ Ff)∗
(F̂◦1)∗
ks

l∗

$,
F (1b ◦ f)∗

F (l)∗
+3 F (f)∗
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F (1a)
∗F (f)∗

δF :

χ

��
∼=
χ

1∗FaF (f)∗

χ

��

F̂ ∗F (f)∗ks

∼=
δ

F (f)∗

1

��

χF (f)∗ks

(Ff ◦ F1a)
∗

F̂ ∗

��
∼=
ξ

(Ff ◦ 1Fa)
∗

(1◦F̂ )∗
ks

r∗

$,
F (f ◦ 1a)

∗
F (r)∗

+3 F (f)∗

There is an induced lax funtor

F̄ :
∫
A FF →

∫
B F (3.7)

given on cells by

(x, a) ⇓(φ,α)

(u,f)
((

(v,g)

66
(y, b)

F̄7→ (x, Fa) ⇓(φ,Fα)

(u,Ff)
))

(v,Fg)

55
(y, Fb),

and whose structure constraints are canonically given by those of F , namely: For

every two composable 1-cells (x, a)
(u,f) // (y, b)

(v,g) // (z, c) in
∫
A FF , the corresponding

structure 2-cell of F̄ for their composition is

(a−1, F̂ ) : F̄ (v, g) ◦ F̄ (u, f) ∼= F̄ ((v, g) ◦ (u, f)),

where F̂ = F̂g,f : Fg ◦ Ff ⇒ F (g ◦ f) is the structure 2-cell of F , and

a−1 : F̂ ∗g,f ◦ (χ
Fg,Ff

z ◦ (F (f)∗(v) ◦ u)) ∼= (F̂ ∗g,f ◦ χFg,Ff z) ◦ (F (f)∗(v) ◦ u)

is the associativity isomorphism in the bicategory FFa. For (x, a) any object of the
bicategory

∫
A FF , the corresponding structure 2-cell of F̄ for its identity is

(1, F̂ ) : 1F̄ (x,a) ⇒ F̄1(x,a),

where F̂ = F̂a : 1Fa ⇒ F (1a) is the structure 2-cell of F , and 1 is the is the identity
2-cell of the 1-cell F̂ ∗ax ◦ χFax : x→ F (1a)

∗x in the bicategory FFa.
Then, although the category of bicategories and lax functors has no pullbacks in

general, if, for any lax bidiagram of bicategories F : Bop → Bicat as above, we denote
by

P :
∫
B F→ B (3.8)

the canonical projection 2-functor, which is defined by

(x, a) ⇓(φ,α)

(u,f)
((

(v,g)

66
(y, b)

P7→ a ⇓α

f
&&

g
88 b,

the following fact holds:
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Lemma 3.3 Let F : Bop → Bicat be a lax bidiagram of bicategories. For any lax
functor F : A → B, the induced square∫

A FF

P
��

F̄ //
∫
B F

P
��

A F // B

is cartesian in the category of bicategories and lax functors.

Proof: Any pair of lax functors, say L : C → A and M : C →
∫
B F, such that

FL = PM determines a unique lax functor N : C →
∫
A FF

C

L

��

M

))
N
""∫
A FF

P

��

F̄ //
∫
B F

P
��

A F // B

such that PN = L and F̄N = M , which is defined as follows: Observe that the
lax functor M carries any object a ∈ ObC to an object of

∫
B F which is necessarily

written in the form Ma = (Da,FLa) for some object Da of the bicategory FFLa.
Similarly, for any 1-cell f : a → b in C, we have Mf = (Df, FLf), for some 1-cell
Df : Da → FL(f)∗Db in FFLa, and, for any 2-cell α : f ⇒ g ∈ C(a, b), we have
Mα = (Dα,FLα), for Dα : FL(α)∗Db ◦ Df ⇒ Dg a 2-cell in FFLa. Also, for any

pair of composable 1-cells a
f→ b

g→ c and any object a in C, the structure 2-cells of
M can be respectively written in a similar form as

M̂g,f = (D̂g,f , F L̂g,f ◦ F̂Lg,Lf ) : (Dg,FLg) ◦ (Df,FLf)⇒ (D(g ◦ f), FL(g ◦ f))

M̂a = (D̂a, F (L̂a) ◦ F̂La) : 1(Da,FLa) ⇒ (D1a, FL1a),

for some 2-cells D̂g,f and D̂a of the bicategory FFLa. Then, the claimedN : C →
∫
A FF

is the lax functor which acts on cells by

a

f
$$

g
::⇓α b

N7→ (Da,La)

(Df,Lf)

((

(Dg,Lg)

66
⇓(Dα,Lα) (Db,Lb)

and whose respective structure 2-cells, for any pair of composable 1-cells a
f→ b

g→ c
and any object a in C, are

N̂g,f = (D̂g,f , L̂g,f ) : (Dg,Lg) ◦ (Df,Lf)⇒ (D(g ◦ f), L(g ◦ f)),
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N̂a = (D̂a, L̂a) : 1(Da,La) ⇒ (D1a, L1a).

�

Remark 3.1 There exist different other ‘dual’ notions of bidiagrams of bicategories,
depending on the covariant or contravariant choices for (D2) and (D3), and the
direction of the pseudo transformations χ in (D4) and (D5), but the results we present
about lax bidiagrams are similarly proved for the different cases. For example, in a
covariant oplax bidiagram of bicategories F : B → Bicat the data in (D2) are specified
with homomorphisms f∗ : Fa → Fb for the 1-cells f : a → b of B, while in (D4), the
pseudo transformations are of the form χg,f : (g ◦ f)∗ ⇒ g∗f∗. The corresponding
data in (D5), (D8), (D9) and (D10) change in a natural way. The Grothendieck
construction on such a bidiagram, has now 1-cells (u, f) : (x, a) → (y, b) given by
f : a→ b a 1-cell in B and u : f∗x→ y a 1-cell in Fb. The 2-cells (φ, α) : (u, f)⇒ (v, g)
are now given by a 2-cell α : f ⇒ g in B and a 2-cell φ : u⇒ v◦α∗x. The compositions
and constraints of this bicategory are defined in the same way as in the contravariant
lax case.

3.4 The homotopy cartesian square induced by a lax
bidiagram

For the general background on simplicial sets we mainly refer to the book by Goerss
and Jardine [68]. In particular, we will use the following result, which can be easily
proved from the discussion made in [68, IV, 5.1] and Quillen’s Lemma [109, Lemma
in page 14] (or [68, IV, Lemma 5.7])2:

Lemma 3.4 Let p : E → B be an arbitrary simplicial map. For any n-simplex
x ∈ Bn, let p−1(x) be the simplicial set defined by the pullback diagram

p−1(x) //

��

E

p

��
∆[n]

∆x // B,

where ∆[n] = ∆(−, [n]) is the standard simplicial n-simplex, whose m-simplices are
the maps [m] → [n] in the simplicial category ∆, and ∆x : ∆[n] → B denotes the
simplicial map such that ∆x(1[n]) = x.

2This is also a consequence of Lemma 4.1.
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Suppose that, for every n-simplex x ∈ Bn, and for any map σ : [m] → [n] in the
simplicial category, the induced simplicial map p−1(σ∗x)→ p−1(x)

p−1(σ∗x)

((
++

��

p−1(x)

��

// E

p

��

∆[m]

∆σ ))

∆(σ∗x)

++∆[n]
∆x

// B

gives a homotopy equivalence on geometric realizations |p−1(σ∗x)| ' |p−1(x)|. Then,
for each vertex v ∈ B0, the induced square of spaces

|p−1(v)| //

��

|E|

|p|
��

pt
|v| // |B|

is homotopy cartesian, that is, |p−1(v)| is homotopy equivalent to the homotopy fiber
of the map |p| : |E| → |B| over the 0-cell |v| of |B|.

Like categories, bicategories are closely related to spaces through the classifying
space construction. We shall recall briefly from [41, Theorem 6.1] that the classifying
space of a (small) bicategory3can be defined by means of several, but always homotopy
equivalent, simplicial and pseudo simplicial objects that have been characteristically
associated to it. For instance, the classifying space BB of the bicategory B may be
thought of as

BB = |∆B|,

the geometric realization of its (non-unitary) geometric nerve [41, Definition 4.3]; that
is, the simplicial set

∆B : ∆
op → Set, [n] 7→ Lax([n],B),

whose n-simplices are all lax functors z : [n]→ B. Here, the ordered sets [n] =
{0, . . . , n} are considered as categories with only one morphism (i, j) : i → j when
0 ≤ i ≤ j ≤ n, so that a non-decreasing map [m] → [n] is the same as a functor.
Hence, a geometric n-simplex of B is a list of cells of the bicategory

z = (zi, zi,j , ẑi,j,k, ẑi)

3See also Section 2.4 in Chapter 2 or Appendix 4.6.
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which is geometrically represented by a diagram in B with the shape of the 2-skeleton
of an oriented standard n-simplex, whose faces are triangles

zj

⇓ ẑi,j,k
zj,k

  
zi

zi,j
>>

zi,k
// zk

with objects zi placed on the vertices, 1-cells zi,j : zi → zj on the edges, and 2-cells
ẑi,j,k : zj,k ◦ zi,j ⇒ zi,k in the inner, together with 2-cells ẑi : 1zi ⇒ zi,i. These data
are required to satisfy the condition that, for 0 ≤ i ≤ j ≤ k ≤ l ≤ n, each tetrahedron
is commutative in the sense that

zi
zi,l //

zi,k

  

zi,j

��

zl
ẑ⇑

=

zj
⇒̂z

zj,k
// zk

zk,l

OO zi
zi,l //

zi,j

��

ẑ⇑
zl

zj
⇐̂z

zj,k
//

zj,l

>>

zk

zk,l

OO

and, moreover,

1zi

⇒̂z
zi

��

zi,j

  uu
⇒̂
z =rzi,j ,

zi zi,j
//

zi,i
zj

1zj

⇒̂z

zj

⇒̂
z = lzi,j .

zj

HH
33

zj,j
zi

zi,j
``

zi,j
oo

If σ : [m]→ [n] is any map in ∆, that is, a functor, the induced σ∗ : ∆Bn → ∆Bm
carries any z : [n]→ B to σ∗z = zσ : [m]→ B, the composite lax functor of z with σ.

On a small category C, viewed as a bicategory in which all 2-cells are identities, the
geometric nerve construction ∆C gives the usual Grothendieck nerve of the category
[72], since, for any integer n ≥ 0, we have Lax([n], C) = Func([n], C). Hence, the
space BC = |∆C| of a category C, is the usual classifying space of the category, as
considered by Quillen in [109]. In particular, the geometric nerve of the category [n]
is precisely ∆[n], the standard simplicial n-simplex, so the notation is not confusing.
Furthermore, for any bicategory B, the simplicial map ∆z : ∆[n] → ∆B defined by
a n-simplex z ∈ ∆Bn, that is, such that ∆z(1[n]) = z, is precisely the simplicial
map obtained by taking geometric nerves on the lax functor z : [n] → B. Thus, if
σ : [m]→ [n] is any map in ∆, then

∆(σ∗z) = ∆(zσ) = ∆z∆σ : ∆[m]→ ∆B.

The following fact4, which is proved in [41, Proposition 7.1], will be used repeatedly
in our subsequent discussions:

4It also appears as Fact 2.5 in Chapter 2
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Lemma 3.5 If F,G : A → B are two lax functors between bicategories, then any lax
or oplax transformation, ε : F ⇒ G, canonically defines a homotopy Bε : BF ' BG
between the induced maps on classifying spaces BF,BG : BA → BB.

Suppose that F : Bop → Cat is a functor, where B is any small category, such
that for every morphism f : b → c of B the induced map Bf∗ : BFc → BFb is
a homotopy equivalence. Then, by Quillen’s Lemma [109, Lemma in page 14], the
induced commutative square of spaces

BFa //

��

hocolimBBF

��
pt // BB

is homotopy cartesian. By Thomason’s Homotopy Colimit Theorem [120], there is a
natural homotopy equivalence hocolimBBF ' B

∫
B F. Therefore, there is a homotopy

cartesian square

BFa //

��

B
∫
B F

��
pt // BB.

We are now ready to state and prove the following important result in this chapter,
which generalizes the result above, as well as the results in [41, Theorem 7.4] and [43,
Theorem 4.3]:

Theorem 3.1 Let F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat be any given lax bidiagram of
bicategories. For any object a ∈ ObB, there is a commutative square in Bicat

Fa
J //

��

∫
B F

P

��
[0]

a // B

(3.9)

where P is the projection 2-functor (3.8), a denotes the normal lax functor carrying 0
to a, and J is the natural embedding homomorphism (3.11) described below, such that,
whenever each 1-cell f : b→ c in B induces a homotopy equivalence Bf∗ : BFc ' BFb,
then the square of spaces induced on classifying spaces below is homotopy cartesian.

BFa
BJ //

��

B
∫
B F

BP

��
pt

Ba // BB

(3.10)
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Proof: This is divided into four parts.

Part 1. Here we exhibit the embedding homomorphism in the square (3.9)

J=J(F, a) : Fa //
∫
B F. (3.11)

It is defined on cells of Fa by

x

u
##

v

;;⇓φ y
J7→ (x, a)

(χy◦u,1a)
((

(χy◦v,1a)

66
⇓(φ̃,1) (y, a)

where χy ◦ u is the 1-cell of Fa composite of x
u // y

χay // 1∗ay , 1 = 11a , the identity

2-cell in B of the identity 1-cell of a, and φ̃ is the 2-cell given by the pasting in the
diagram below.

φ̃ :

1∗ay

1∗1ay

		��

1 ξ∼=x

u
%%

v

99⇓φ y

χy
>>

χy   

∼=
l

1∗ay

For x
u // y

v // z , two composable 1-cells in Fa, the corresponding constraint 2-cell for

their composition is (Ĵ , l) : Jv ◦ Ju ∼= J(v ◦ u), where l = l1a : 1a ◦ 1a ∼= 1a, while
Ĵ = Ĵv,u is the 2-cell of Fa given by pasting the diagram

x

Ĵv,u :

u //

v◦u

��

=

y
χy //

v

��

1∗ay
1∗a(χz◦v) //

##1∗av∼=̂
χ

∼=

1∗a1
∗
az

χz//

∼=
γ

(1a ◦ 1a)
∗z

l∗z

��

1∗az
1

**

1∗aχz

::

l∼=
z

χz
66

χz // 1∗az,

and, for any object x of Fa, the structure isomorphism for its identity is (Ĵ , 1) : 1Jx ∼=
J(1x), where 1 = 11a , and Ĵ = Ĵx is provided by pasting the diagram in Fa below.

x

∼=

χx //

1x

��

Ĵx :

1∗ax

1∗1ax

����

1 ξ∼=

x
χx // 1∗ax
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So defined, it is straightforward to verify that J is functorial on vertical composi-
tion of 2-cells in Fa. The naturality of the structure 2-cells Jv ◦ Ju ∼= J(v ◦ u) follows
from the coherence conditions in (C1) and (C2), whereas the hexagon coherence con-
dition for them is verified thanks to conditions (C1), (C2), and (C7), and the result
in Lemma 3.2(ii) relating γ with ω. As for the other two coherence conditions, one
amounts to the equality in Lemma 3.2(i), and the other is easily checked.

Part 2. Let z : [n] → B be any given geometric n-simplex of the bicategory, n ≥ 0.
Then, as in (3.6), we have a composite lax bidiagram of bicategories Fz : [n]→ Bicat.
In this part of the proof, we show that the homomorphism

J=J(Fz, 0) : Fz0
//
∫

[n] Fz

induces a homotopy equivalence on classifying spaces:

BJ : BFz0 ' B
∫

[n] Fz. (3.12)

This is a direct consequence of the following general observation:

Lemma 3.6 Suppose C is a small category with an initial object 0, and let us regard
C as a bicategory whose 2-cells are all identities. Then, for any lax bidiagram of
bicategories L : Cop → Bicat, the homomorphism J = J(L, 0) : L0 →

∫
CL induces a

homotopy equivalence on classifying spaces, BJ : BL0 ' B
∫
C L.

Proof: For any object a ∈ ObC, let 0a : 0→ a denote the unique morphism in C from
the initial object to a. There is a homomorphism

K = K(L, 0) :
∫
C L→ L0,

which carries any object (x, a) to K(x, a) = 0∗ax, the image of x by the homomorphism
0∗a : La → L0, a 1-cell (u, f) : (x, a)→ (y, b) to

K(u, f) =
(

0∗ax
0∗au // 0∗af

∗y
χ
f,0a

y
// (f ◦ 0a)

∗y = 0∗by
)
,

and a 2-cell (x, a) ⇓(φ,1)

(u,f)
**

(v,f)

44 (y, b) to the 2-cell K(φ, 1) : K(u, f)⇒ K(v, f) obtained by

pasting the diagram below, where (A) =
(

10∗af
∗y

0̂∗a +3 0∗a1f∗y
0∗aξ +3 0∗a1

∗
fy
)
.

K(φ, 1) :

0∗af
∗y

χy

''
0∗a1∗fy

��

1

��

∼=
(A) ∼=

r0∗ax

0∗au
<<

0∗av ##

⇓ 0∗aφ 0∗by

0∗af
∗y

χy

77
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For each object (x, a) of
∫
C L, the structure isomorphism K̂ : 1K(x,a)

∼= K1(x,a) is

0∗ax

K̂ :

0∗aχx //

1

��

∼=
γ

∼=
l

0∗a1
∗
ax

χx
mm

χx

{{
0∗ax

1tt

1∗0ax

��
∼=ξ

0∗ax

while the constraint K̂ : K(v, g) ◦K(u, f) ∼= K((v, g) ◦ (u, f)), for each pair of com-

posable 1-cells (x, a)
(u,f)// (y, b)

(v,g)// (z, c) of
∫
C L, is given by pasting in L0 the diagram

below.

0∗af
∗y

K̂ :

χy //

=

0∗by

∼=̂
χ

0∗bv // 0∗bg
∗z

χz //

∼=
ω

∼=
ξ

0∗cz

0∗af
∗y

χy

OO

0∗af
∗v
//

∼=

0∗af
∗g∗z

0∗aχz &&

χg∗z

OO

0∗cz

1∗0cz

22

1

DD

∼=
l

0∗ax

0∗au

OO

0∗au

::

0∗a(χz◦(f∗v◦u)) // 0∗a(g ◦ f)∗z

χz

OO
χz

OO

There are also two pseudo transformations

ε : JK ⇒ 1∫
CL
, η : 1L0 ⇒ KJ,

which are defined as follows: The component of ε at an object (x, a) of
∫
C L is

ε(x, a) = (10∗ax, 0a) : (0∗ax, 0)→ (x, a),

and its naturality component at a morphism (u, f) : (x, a)→ (y, b) is

(ε̂, 1) : ε(y, b) ◦ JK(u, f) ∼= (u, f) ◦ ε(x, a),

where ε̂ is the 2-cell of L0 pasted of the diagram below.

0∗ax

1

��

0∗au // 0∗af
∗y

χy // 0∗by
χ0∗by //

1

%%

1∗00∗by
1∗010∗

b
y

∼=
//

1
55

δ
∼= χy

''

1∗00∗by

χy

��
∼=
r

∼= 0∗by

��
1∗0b
y

0∗ax
0∗au // 0∗af

∗y
χy // 0∗by
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The pseudo transformation η : 1⇒ KJ assigns to each object x of the bicategory L0

the 1-cell ηx = χx : x→ 1∗0x, while its naturality isomorphism at any 1-cell u : x→ y,

η̂ : ηy ◦ u ∼= KJ(u) ◦ ηx,

is obtained by pasting the diagram below.

x
u //

χx

��

χ̂∼=

y

χy

��

χy

ss l∼=1∗0y

1∗0χy

��

1

��

γ
∼=

1∗0y
1∗0y

��1
--

ξ∼=
∼=

1∗0x 1∗0(χy◦u)
//

1∗0u

AA

1∗01∗0y χy
//

χy

88
∼=

1∗0y

Hence, by Lemma 3.5, there are induced homotopies Bε : BJ BK = B(JK) '
B1∫

CL
= 1B

∫
C L

and Bη : 1BL0 = B1L0 ' B(KJ) = BK BJ , and it follows that both
maps BJ and BK are actually homotopy equivalences. �

Part 3. Let σ : [m]→ [n] be a map in the simplicial category. By Lemma 3.3, for any
geometric n-simplex z : [n]→ B of the bicategory B, we have the square∫

[m] Fzσ
σ̄ //

P

��

∫
[n] Fz

P

��
[m]

σ // [n]

which is cartesian in the category of bicategories and lax functors. This part has the
goal of proving that the lax functor σ̄ induces a homotopy equivalence on classifying
spaces:

Bσ̄ : B
∫

[m] Fzσ ' B
∫

[n] Fz. (3.13)

To do that, let us consider the square of lax functors

Fzσ0

z∗0,σ0

��

J=J(Fzσ,0) //
∫

[m] Fzσ

σ̄

��
Fz0

J=J(Fz,0) //
∫

[n] Fz,

where z∗0,σ0 is the homomorphism attached by the lax diagram F : Bop → Bicat to the
1-cell z0,σ0 : z0 → zσ0 of B, and the homomorphisms J are defined as in (3.11). This
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square is not commutative, but there is a pseudo transformation θ : Jz∗0,σ0 ⇒ σ̄J ,
whose component at any object x of Fzσ0 is the 1-cell of

∫
[n] Fz

θx = (1z∗0,σ0x
, (0, σ0)) : (z∗0,σ0x, 0)→ (x, σ0),

and whose naturality isomorphism, at any 1-cell u : x→ y in Fzσ0, is

θ̂u = (θ̃, 1z0,σ0) : θy ◦ Jz∗0,σ0u
∼= σ̄Ju ◦ θx,

where θ̃ is given by pasting in Fz0 the diagram below.

z∗0,σ0x
z∗0,σ0u //

1

��

∼=

z∗0,σ0y
χzz∗0,σ0y //

z∗0,σ0χzy

��

1

  

∼=

∼=
γ

z∗0,0z
∗
0,σ0y

z∗0,01

∼=
//

1
22

χzy
((

∼=
δ

z∗0,0z
∗
0,σ0y

χzy

��
∼=

z∗0,σ0y

1∗z0,σ0
y

��

z∗0,σ0y
1∗z0,σ0

y

$$
1

,,

∼=
ξ∼=

z∗0,σ0x
z∗0,σ0(χzy◦u)

//

z∗0,σ0u

CC

z∗0,σ0z
∗
σ0,σ0y

χzy //

χzy
55

z∗0,σ0y

Hence, by Lemma 3.5, the induced square on classifying spaces

BFzσ0

Bz∗0,σ0

��

BJ // B
∫

[m] Fzσ

Bσ̄

��
BFz0

BJ // B
∫

[n] Fz

is homotopy commutative. Moreover, both maps BJ in the square are homotopy
equivalences, as we showed in the proof of Lemma 3.6 above. Since, by hypoth-
esis, the map Bz∗0,σ0 : BFzσ0 → BFz0 is also a homotopy equivalence, it follows
that the remaining map in the square have the same property, that is, the map

Bσ̄ : B
∫

[m] Fzσ // B
∫

[n] Fz is a homotopy equivalence.

Part 4. Finally, we are ready to complete here the proof of the theorem as follows:
Let us consider the induced simplicial map on geometric nerves ∆P : ∆

∫
B F → ∆B.

This verifies the hypothesis in Lemma 3.4. In effect, thanks to Lemma 3.3, for any
geometric n-simplex of B, z : [n]→ B, the square∫

[n] Fz
z̄ //

P

��

∫
B F

P

��
[n]

z // B
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is a pullback in the category of bicategories and lax functors, whence the square
induced by taking geometric nerves

∆
∫

[n] Fz
∆z̄ //

∆P

��

∆
∫
B F

∆P

��
∆[n]

∆z // ∆B

is a pullback in the category of simplicial sets. Thus, ∆P−1(∆z) = ∆
∫

[n] Fz .

Furthermore, for any map σ : [m] → [n] in the simplicial category, since the
diagram of lax functors ∫

[m] Fzσ

σ̄ ''
zσ

++
P

��

∫
[n] Fz

P

��

z̄
//
∫
B F

P

��

[m]

σ ((

zσ

++[n] z
// B

is commutative, the induced diagram of simplicial maps

∆
∫

[m] Fzσ

∆σ̄ ((
∆zσ

,,
∆P

��

∆
∫

[n] Fz

∆P

��

∆z̄
// ∆
∫
B F

∆P

��

∆[m]

∆σ ))

∆(zσ)

,,∆[n]
∆z

// ∆B

is also commutative. Then, as σ∗z = zσ, the induced simplicial map ∆P−1(σ∗z) →
∆P−1(z) is precisely the map ∆σ̄ : ∆

∫
[m] Fzσ → ∆

∫
[n] Fz, whose induced map on ge-

ometric realizations is the homotopy equivalence (3.13), Bσ̄ : B
∫

[m] Fzσ ' B
∫

[n] Fz .

Hence, by Lemma 3.4, for each object a ∈ ObB, the square

|∆P−1(a)| //

��

|∆
∫
B F|

|∆P |
��

=

pt
|∆a| // |∆B|

B
∫

[0] Fa
Bā //

��

B
∫
B F

BP

��
B∆[0]

Ba // BB
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is homotopy cartesian. Furthermore, since the diagram of lax functors

Fa

J(Fa,0) ''
J(F,a)

++

��

∫
[0] Fa

��

ā
//
∫
B F

P

��

[0]

''

a

++[0] a
// B

commutes, it follows that the square (3.10) is homotopy cartesian square (3.10) as it
is the composite of the squares

BFa
BJ(Fa,0)//

��

B
∫

[0] Fa
Bā //

��

B
∫
B F

BP

��
pt // pt

Ba // BB

where the map BJ(Fa, 0) : BFa ' B
∫

[0] Fa in the left square is one of the homotopy

equivalences (3.12), while the square on the right is homotopy cartesian. �

3.5 The homotopy cartesian square induced by a lax
functor

In this section we prove the main theorem of this chapter, that is, a generalization
to lax functors (monoidal functors, for instance) of the well-known Quillen’s Theorem
B [109]. We shall first extend Gray’s construction [71, Section 3.1] of homotopy
fiber 2-categories to homotopy fiber bicategories of an arbitrary lax functor between
bicategories, so we can state the corresponding ‘Theorem B’ in terms of them.

Let F : A → B be any given lax functor between bicategories. As in Example 3.2,
each object b of B gives rise to a pseudo bidiagram of categories

B(−, b) : Bop → Cat,

which carries an object x ∈ ObB to the hom-category B(x, b), and then also to the
lax bidiagram of categories

B(−, b)F : Aop → Cat, (3.14)

obtained, as in (3.6), by composing B(−, b) with F . The Grothendieck construction on
these lax bidiagrams leads to the notions of homotopy fiber and comma bicategories:
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Definition 3.1 The homotopy fiber, F ↓ b, of a lax functor between bicategories
F : A → B over an object b ∈ ObB, is the bicategory obtained as the Grothendieck
construction on the lax bidiagram (3.14), that is,

F↓ b =
∫
A B(−, b)F.

In particular, when F = 1B is the identity functor on B,

B↓ b =
∫
B B(−, b)

is the comma bicategory of objects over b of the bicategory B.

It will be useful to develop here the Grothendieck construction, exposed in Section
3.3, in this particular case. Its objects are pairs

(f : Fa→ b, a) (3.15)

with a a 0-cell of A and f a 1-cell of B whose source is Fa and target the fixed object
b. The 1-cells

(β, u) : (f, a)→ (f ′, a′) (3.16)

consist of a 1-cell u : a → a′ in A, together with a 2-cell β : f ⇒ f ′ ◦ Fu in the
bicategory B,

Fa
Fu //

f ��
β⇒

Fa′

f ′��
b

A 2-cell in F↓ b,

(f, a)

(β,u)
))

(β′,u′)

66
⇓α (f ′, a′) , (3.17)

is a 2-cell α : u⇒ u′ in A, such that the equation below holds in the category B(Fa, b).

Fa
Fu′

⇑Fα
//

f

��

88

Fu

Fa′

f ′

��

=

b

⇒β

Fa
Fu′ //

f

��

Fa′

f ′

��
b

⇒
β′

(3.18)

Compositions, identities, and the structure associativity and unit constraints in
F↓ b are as follows: For any given objects (f, a) and (f ′, a′) as in (3.15), the vertical
composition of 2-cells

(f, a) (β′,u′) //

(β,u)

%%

(β′′,u′′)

::

⇓α

⇓α′
(f ′, a′)

·7→ (f, a)

(β,u)
**

(β′′,u′′)

55
⇓α′·α (f ′, a′)
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is given by the vertical composition α′ · α of 2-cells in A. The horizontal composition
of two 1-cells in F↓ b,

(f, a)
(β,u) // (f ′, a′)

(γ,v) // (f ′′, a′′)

is the 1-cell

(γ, v) ◦ (β, u) = (γ } β, v ◦ u) : (f, a)→ (f ′′, a′′),

where the second component is the horizontal composition v ◦ u in A, while the first
one is the 2-cell in B obtained by pasting the diagram below.

Fa
Fu //

F (v◦u)

F̂⇑ %%

f
  

β⇒γ } β :
Fa′

Fv //

f ′

��

γ
⇒

Fa′′

f ′′

~~
b

(3.19)

The horizontal composition of 2-cells is simply given by the horizontal composition of
2-cells in B,

(f, a)

(β,u)
))

(β′,u′)

33
⇓α (f ′, a′)

(γ,v)
**

(γ′,v′)

33
⇓α′ (f ′′, a′′) 7→ (f, a)

(γ}β,v◦u)
**

(γ′}β′,v′◦u′)
44

⇓α′◦α (f ′′, a′′) ,

and the identity 1-cell of each 0-cell (f : Fa→ b, a) is

1(f,a) = (
◦
1(f,a), 1a) : (f, a)→ (f, a),

◦
1(f,a) =

(
f

r−1
+3 f ◦ 1Fa

1f◦F̂ +3 f ◦ F (1a)
)

Finally, the associativity, left and right unit constraints are obtained from those
of A by the formulas

a(β′′,u′′),(β′,u′),(β,u) = au′′,u′,u, r(β,u) = ru, l(β,u) = lu.

We shall prove below that, under reasonable necessary conditions, the classifying
spaces of the homotopy fiber bicategories B(F ↓ b), of a lax functor F : A → B,
realize the homotopy fibers of the induced map on classifying spaces, BF : BA → BB.
This fact will justify the name of ‘homotopy fiber bicategories’ for them. As a first
step to do it, we state the following particular case, when F = 1B is the identity
homomorphism:

Lemma 3.7 For any object b of a bicategory B, the classifying space of the comma
bicategory B↓ b is contractible, that is, B(B↓ b) ' pt.
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Proof: Let [0]→ B↓ b denote the normal lax functor that carries 0 to the object (1b, b),
and let Ct : B↓ b → B↓ b be the composite of B↓ b → [0] → B↓ b. Then, the induced
map on classifying spaces

B(B↓ b)
BCt // B(B↓ b) = B(B↓ b) // B[0] = pt // B(B↓ b)

is a constant map. Now, let us observe that there is a canonical oplax transformation
1B↓b ⇒ Ct, whose component at any object (f : a → b, a) is the 1-cell (l−1

f , f) :
(f, a)→ (1b, b), and whose naturality component at a 1-cell (β, u) : (f, a)→ (f ′, a′) is

(f, a)
(l−1,f) //

(β,u)
��

β·l⇐

(1b, b)

(r−1,1b)
��

(f ′, a′)
(l−1,f ′)

// (1b, b).

This oplax transformation gives, thanks to Lemma 3.5, a homotopy between B(1B↓b) =
1B(B↓b) and the constant map BCt, and so we obtain the result. �

Example 3.3 Let B be a bicategory, and suppose b ∈ ObB is an object such that the
induced maps Bp∗ : BB(y, b) → BB(x, b) are homotopy equivalences for the different
morphisms p : x → y in B (for instance, any object of a bigroupoid). By Theorem
3.1, we have the fiber sequence

BB(b, b)→ BB↓ b → BB

in which the space BB ↓ b is contractible by Lemma 3.7. Hence, we conclude the
existence of a homotopy equivalence

Ω(BB,Bb) ' B(B(b, b)) (3.20)

between the loop space of the classifying space of the bicategory with base point Bb
and the classifying space of the category of endomorphisms of b in B.

The homotopy equivalence above is already known when the bicategory is strict,
that is, when B is a 2-category. It appears as a main result in the paper by del Hoyo
[84, Theorem 8.5], and it was also stated at the same time by Cegarra in [43, Example
4.4]. Indeed, that homotopy equivalence (3.20), for the case when B is a 2-category,
can be deduced from a result by Tillmann about simplicial categories in [121, Lemma
3.3].

Returning to an arbitrary lax functor F : A → B, we shall now pay attention to
two constructions with fiber homotopy bicategories. First, we have that any 1-cell
p : b→ b′ in B determines a 2-functor

p∗ : F↓ b → F↓ b′ (3.21)
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whose function on objects is defined by

p∗(Fa
f→ b, a) = (Fa

p◦f−→ b′, a).

A 1-cell (β, u) : (f, a)→ (f ′, a′) of B↓ b, as in (3.16) , is carried to the 1-cell of B↓ b′

p∗(β, u) = (p} β, u) : (p ◦ f, a)→ (p ◦ f ′, a′),

p} β =
(
p ◦ f

1p◦β+3 p ◦ (f ′ ◦ Fu)
a−1
+3 (p ◦ f ′) ◦ Fu

)
while, for α : (β, u)⇒ (β′, u′) any 2-cell in B↓ b as in (3.17),

p∗(α) = α : (p} β, u)⇒ (p} β′, u′).

Secondly, by Lemma 3.3, we have a pullback square in the category of bicategories
and lax functors for any b ∈ ObB

F↓ b
P
��

F̄ // B↓ b
P
��

=

A F // B

∫
A B(−, b)F

P
��

F̄ //
∫
B B(−, b)

P
��

A F // B

(3.22)

where, recall, the 2-functors P are the canonical projections (3.8), and F̄ is the induced
lax functor (3.7), which acts on cells by

(f, a)

(β,u)
++

(β′,u′)

33
⇓α (f ′, a′)

F̄7→ (f, Fa)

(β,Fu)
,,

(β′,Fu′)

22
⇓Fα (f ′, Fa′),

and whose structure constraints are canonically given by those of F .
We are now ready to state and prove the following theorem, which is just the

well-known Quillen’s Theorem B [109] when the lax functor F in the hypothesis is an
ordinary functor between categories. The result therein also generalizes a similar result
by Cegarra [43, Theorem 3.2], which was stated for the case when F is a 2-functor
between 2-categories, but the extension to arbitrary lax functors between bicategories
is highly nontrivial and the proof we give here uses different tools.

Theorem 3.2 Let F : A → B be a lax functor between bicategories. The following
statements are equivalent:

(i) For every 1-cell p : b→ b′ in B, the induced map Bp∗ : B(F↓ b)→ B(F↓ b′) is a
homotopy equivalence.

(ii) For every object b of B, the induced square by (3.22) on classifying spaces

B(F↓ b)

BP
��

BF̄ // B(B↓ b)

BP
��

BA BF // BB

(3.23)
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is homotopy cartesian.
Therefore, in such a case, for each object a ∈ ObA such that Fa = b, there is a

homotopy fiber sequence
B(F↓ b)→ BA → BB,

relative to the base 0-cells Ba of BA, Bb of BB and B(1b, a) of B(F↓ b), that induces
a long exact sequence on homotopy groups

· · · → πn+1BB → πnB(F↓ b)→ πnBA → πnBB → · · · .

Proof: (ii) ⇒ (i) Suppose that p : b → b′ is any 1-cell of B. Then, taking z : [1] → B
the normal lax functor such that z0,1 = p, we have the path Bz : B[1] = I → BB,
whose origen is the point Ba and whose end is Bb (actually, BB is a CW-complex and
Bz is one of its 1-cells). Since the homotopy fibers of a continuous map whose over
points are connected by a path are homotopy equivalent, the result follows.

(i)⇒ (ii) This is divided into three parts.
Part 1. We begin here by noting that the bicategorical homotopy fiber construction

is actually the function on objects of a covariant oplax bidiagram of bicategories

F↓ = (F↓ , χ, ξ, ω, γ, δ) : B → Bicat

consisting of the following data:

(D1) for each object b in B, the homotopy fiber bicategory F↓ b;

(D2) for each 1-cell p : b→ b′ of B, the 2-functor p∗ : F↓ b → F↓ b′ in (3.21);

(D3) for each 2-cell b

p
''

p′
77⇓σ b′ of B, the pseudo transformation σ∗ : p∗ ⇒ p′∗, whose

component at an object (f, a) of F↓ b, is the 1-cell

σ∗(f, a) = (σ } f, 1a) : (p ◦ f, a)→ (p′ ◦ f, a),

σ } f =
(
p ◦ f σ◦1+3 p′ ◦ f r−1

+3 (p′ ◦ f) ◦ 1Fa
1◦F̂ +3 (p′ ◦ f) ◦ F1a

)
and whose naturality component at any 1-cell (β, u) : (f, a)→ (f ′, a′), as in (3.16), is
the canonical isomorphism r−1 · l : 1a′ ◦ u ∼= u ◦ 1a;

(p ◦ f, a)
(σ}f,1a) //

(p}β,u)
��

r−1· l∼=

(p′ ◦ f, a)

(p′}β,u)
��

(p ◦ f ′, a′)
(σ}f ′,1a′ )

// (p′ ◦ f ′, a′)

(D4) for each two composable 1-cells b
p // b′

p′ // b′′ in the bicategory B, the pseudo
transformation χ

p′,p : (p′ ◦ p)∗ ⇒ p′∗p∗ has component, at an object (f, a) of F↓ b, the
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1-cell

(ra, 1a) : ((p′ ◦ p) ◦ f, a)→ (p′ ◦ (p ◦ f), a),

ra =
(

(p′ ◦ p) ◦ f a +3 p′ ◦ (p ◦ f)
r−1
+3 (p′ ◦ (p ◦ f)) ◦ 1Fa

1◦F̂ +3 (p′ ◦ (p ◦ f)) ◦ F1a
)

and whose naturality component at a 1-cell (β, u) : (f, a)→ (f ′, a′), is

((p′ ◦ p) ◦ f, a)
(ra,1) //

((p′◦p)}β),u)
��

r−1· l∼=

(p′ ◦ (p ◦ f), a)

(p′}(p}β),u)
��

((p′ ◦ p) ◦ f ′, a′)
(ra,1)

// (p′ ◦ (p ◦ f ′), a′);

(D5) for each object b of B, χ
b

: 1b∗ ⇒ 1F↓b is the pseudo transformation whose
component at any object (f, a) is the 1-cell

(
◦
1 · l, 1a) : (1b ◦ f, a)→ (f, a),

◦
1 · l =

(
1b ◦ f

l +3 f
r−1
+3 f ◦ 1Fa

1◦F̂ +3 f ◦ F1a
)

and whose naturality component, at a 1-cell (β, u) : (f, a)→ (f ′, a′), is

(1b ◦ f, a)
(
◦
1,1) //

(1b}β,u)
��

r−1· l∼=

(f, a)

(β,u)
��

(1b ◦ f ′, a′)
(
◦
1,1)

// (f ′, a′);

(D6) for any two vertically composable 2-cells p
σ +3 p′

τ +3 p′′ in B, the invertible
modification ξτ,σ : τ∗◦σ∗ V (τ ·σ)∗ has component, at any object (f, a), the canonical
isomorphism l : 1a ◦ 1a ∼= 1a

(p ◦ f, a)
(σ}f,1a)

xx
((τ ·σ)}f,1a)

&&∼=
l

(p′ ◦ f, a)
(τ}f,1a)

// (p′′ ◦ f, a);

(D7) for each 1-cell p : b→ b′ of B, (1p)∗ = 1p∗ , and ξp is the identity modification;

(D8) for every two horizontally composable 2-cells b
p
((

q
66⇓σ b′

p′
))

q′
55⇓τ b′′ in B, the equal-

ity (τ∗σ∗)◦ χp′,p = χq′,q ◦ (τ ◦ σ)∗ holds and the modification χτ,σ is the identity;
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(D9) for every three composable 1-cells b
p // b′

p′ // b′′
p′′ // b′′′ in B, the invertible

modification ω
p′′,p′,p , at any object (f, a), is the canonical isomorphism r : (1a ◦ 1a) ◦

1a ∼= 1a ◦ 1a,

(((p′′ ◦ p′) ◦ p) ◦ f, a)
(a}f,1a) //

(ra,1a)
��

∼=
r

((p′′ ◦ (p′ ◦ p)) ◦ f, a)

(ra,1a)
��

((p′′ ◦ p′) ◦ (p ◦ f), a)
(ra,1a) // (p′′ ◦ (p′ ◦ (p ◦ f)), a) (p′′ ◦ ((p′ ◦ p) ◦ f), a);

(p′′} ra,1a)oo

(D10) for any 1-cell p : b→ b′ of B, the invertible modifications γp and δp, at any
object (f, a) are given by the canonical isomorphism 1a ◦ (1a ◦ 1a) ∼= 1a,

(1b′ ◦ (p ◦ f), a)
(
◦
1·l,1a) //

∼=
r·r

(p ◦ f, a)

(
◦
1,1a)
��

((1b′ ◦ p) ◦ f, a)

(ra,1a)

OO

(l}f,1a)
// (p ◦ f, a)

(p ◦ (1b′ ◦ f), a)
(p}(

◦
1·l),1a)//

∼=
r·r

(p ◦ f, a)

(
◦
1,1a)
��

((p ◦ 1b′) ◦ f, a)

(ra,1a)

OO

(r}f,1a)
// (p ◦ f, a).

Observe that all the 2-cells given above are well defined since all the data is ob-
tained from the constraints of the bicategories involved and the lax functor F . Then
the coherence conditions of these give us the equality (3.18) in each case. For the
same reason the axioms (C1)− (C8) hold.

Part 2. In this part, we consider the Grothendieck construction on the oplax
bidiagram of homotopy fibers F↓ : B → Bicat, and we shall prove the following:

Lemma 3.8 There is a homomorphism

Q :
∫
BF↓ → A, (3.24)

inducing a homotopy equivalence on classifying spaces, BQ : B
∫
BF↓ ' BA.

Before starting the proof of the lemma, we shall briefly describe the bicategory∫
BF↓. It has objects the triplets (f, a, b), with a ∈ ObA, b ∈ ObB, and f : Fa→ b a

1-cell of B. Its 1-cells

(β, u, p) : (f, a, b)→ (f ′, a′, b′),

consist of a 1-cell p : b→ b′ in B, together with a 1-cell (β, u) : p∗(f, a) = (p ◦ f, a)→
(f ′, a′) in F↓ b′ , that is, a 1-cell u : a→ a′ in A and a 2-cell β : p ◦ f ⇒ f ′ ◦ Fu in B

Fa

β⇒

Fu //

f
��

Fa′

f ′

��
b

p // b′.
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A 2-cell in
∫
BF↓,

(f, a, b)

(β,u,p)
**

(β′,u′,p′)

55
⇓(α,σ) (f ′, a′, b′) ,

consists of a 2-cell σ : p⇒ p′ in B, together with a 2-cell α : (β, u)⇒ (β′, u′) ◦σ∗(f, a)
in F↓ b′ , that is, (after some work using coherence equations) a 2-cell α : u ⇒ u′ ◦ 1a
in A, such that the equation below holds.

Fa
Fu′ //

f

��

Fa′

f ′

��

=

b
⇑σ %%
p′

⇒β
′

p
// b′

Fa ==

Fu

Fu′

⇑F (r·α)
//

f

��

Fa′

f ′

��
b

⇒β

p
// b′

We shall look carefully at the vertical composition of 2-cells and the horizontal
composition of 1-cells in

∫
B F ↓ since we will use them later: Given two vertically

composable 2-cells, say (α, σ) as above and (α′, σ′) : (β′, u′, p′) ⇒ (β′′, u′′, p′′), their
vertical composition is given by the formula

(α′, σ′) · (α, σ) = (α′ · r · α, σ′ · σ) : (β, u, p)⇒ (β′′, u′′, p′′).

Given two composable 1-cells, say (β, u, p) as above and (β′, u′, p′) : (f ′, a′, b′) →
(f ′′, a′′, b′′), their horizontal composition is

(β′, u′, p′)◦ (β, u, p) = (Fr−1 · (β′} (1p′ ◦β)), (u′ ◦u)◦1a, p
′ ◦p) : (f, a, b)→ (f ′′, a′′, b′′),

where β′ } (1p′ ◦ β) is as in (3.19), thus

Fa
Fr−1 · (β′ } (1p′ ◦ β)) :

F ((u′◦u)◦1a)

""⇑Fr−1·F̂

⇒β

Fu //

f
��

Fa′

⇒β
′

Fu′ //

f ′

��

Fa′′

f ′′

��
b

p // b′
p′ // b′′.

The identity 1-cell at an object (f, a, b) is

1(f,a,b) = (
◦
1(f,a) · l, 1a, 1b) : (f, a, b)→ (f, a, b).

◦
1(f,a) · l =

(
1b ◦ f

l +3 f
r−1
+3 f ◦ 1Fa

1f◦F̂+3 f ◦ F (1a)
)

Proof of Lemma 3.8. The homomorphism Q in (3.24) is defined on cells by

(f, a, b)

(β,u,p)
**

(β′,u′,p′)

55
⇓(α,σ) (f ′, a′, b′)

Q7→ a

u
&&

u′
88⇓r·α a′,

r · α =
(
u

α⇒ u′ ◦ 1a
r⇒ u′

)
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This homomorphism Q is strictly unitary, and its structure isomorphism at any two
composable 1-cells, say (β, u, p) as above and (β′, u′, p′) : (f ′, a′, b′)→ (f ′′, a′′, b′′), is

Q̂ = ru′◦u : Q((β′, u′, p′) ◦ (β, u, p)) ∼= Q(β′, u′, p′) ◦Q(β, u, p).

To prove that this homomorphism Q induces a homotopy equivalence on classifying
spaces, let us observe that there is also a lax functor L : A →

∫
BF ↓, such that

QL = 1A. This is defined on cells of A by

a

u
%%

u′
99⇓α a′

L7→ (1Fa, a, Fa)

(l−1·r,u,Fu)
,,

(l−1·r,u′,Fu′)
22

⇓(r−1·α,Fα) (1Fa′ , a
′, Fa′),

r−1 · α =
(
u

α⇒ u′
r−1

⇒ u′ ◦ 1a
)

where the first component of (l−1 · r, u, Fu) is the canonical isomorphism Fu ◦ 1Fa ∼=
1Fa′ ◦ Fu. Its structure 2-cells, at any pair of composable 1-cells a

u→ a′
u′→ a′′ and at

any object a of A, are respectively defined by

L̂u′,u = (1(u′◦u)◦1a , F̂u′,u) : Lu′ ◦ Lu⇒ L(u′ ◦ u),

L̂a = (r−1
1a
, F̂a) : 1La ⇒ L1a.

The equality QL = 1A is easily checked. Furthermore, there is an oplax transfor-
mation ι : LQ ⇒ 1∫

BF↓
assigning to each object (f, a, b) of the bicategory

∫
BF ↓ the

1-cell

ι(f, a, b) = (1f ◦ F̂a, 1a, f) : (1Fa, a, Fa)→ (f, a, b),

and whose naturality component at any 1-cell (β, u, p) : (f, a, b) → (f ′, a′, b′) is the
2-cell

(1Fa, a, Fa)

ι̂=((l−1◦1)◦1,β)⇒

(l−1·r,u,Fu)//

(1f◦F̂a,1a,f)
��

(1Fa′ , a
′, Fa′)

(1f ′◦F̂a′ ,1a′ ,f ′)
��

(f, a, b)
(β,u,p)

// (f ′, a′, b′).

Therefore, by taking classifying spaces, we have BQBL = 1BA and, by Lemma
3.5, BLBQ ' 1B

∫
BF↓

, whence BQ is actually a homotopy equivalence. �

Part 3. We complete here the proof of the theorem as follows: There is a canonical
homomorphism

F̄ :
∫
B F↓−→

∫
B B↓ (3.25)
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making commutative, for any object b ∈ ObB, the diagrams

(A) :

F↓ b
J //

F̄

��

P

%%∫
B F↓

Q //

F̄
��

A

F

��
B↓ b

J //

P

99
∫
B B↓

Q // B

(B) :

F↓ b
F //

J
��

&&
B↓ b //

J
��

[0]

b

��∫
B F↓

F̄ //

P

99
∫
B B↓

P // B

in which Q :
∫
B F ↓→ A is the homomorphism in (3.24) and Q :

∫
B B↓→ B is the

corresponding one for F = 1B, all the 2-functors P are the canonical projections (3.8),
and the embedding homomorphisms J are the corresponding ones defined as in (3.11).
This homomorphism (3.25) is defined on cells by

(f, a, b)

(β,u,p)
**

(β′,u′,p′)

55
⇓(α,σ) (f ′, a′, b′)

F̄7→ (f, Fa, b)

(β,Fu,p)
,,

(β′,Fu′,p′)

22
⇓(r−1·Fr·Fα,σ) (f ′, Fa′, b′).

r−1 · Fr · Fα =
(
Fu

Fα +3 F (u′ ◦ 1a)
Fr +3 Fu′

r−1
+3 Fu′ ◦ 1Fa

)
Its composition constraint at a pair of composable 1-cells, say (β, u, p) as above and
(β′, u′, p′) : (f ′, a′, b′)→ (f ′′, a′′, b′′), is the 2-cell

(F̃ , 1p′◦p) : F̄ (β′, u′, p′) ◦ F̄ (β, u, p)⇒ F̄ ((β′, u′, p′) ◦ (β, u, p)),

F̃ =
(

(Fu′ ◦ Fu) ◦ 1Fa
F̂◦1 +3 F (u′ ◦ u) ◦ 1Fa

F (r−1)◦1+3 F ((u′ ◦ u) ◦ 1a) ◦ 1Fa

)
while its unit constraint at an object (f, a, b) is

(F̃ , 11b) : 1F̄ (f,a,b) ⇒ F̄ (1(f,a,b)).

F̃ =
(

1Fa
r−1
+3 1Fa ◦ 1Fa

F̂◦1+3 F (1a) ◦ 1Fa

)
Let us now observe that (the covariant and oplax version of) Theorem 3.1 applies

both to the bidiagram of homotopy fibers F ↓, by hypothesis, and to the bidiagram
of comma bicategories B ↓, since the spaces BB ↓ b are contractible by Lemma 3.7
and therefore any 1-cell p : b → b′ in B obviously induces a homotopy equivalence
Bp∗ : BB↓ b ' BB↓ b′ . Hence, the squares

F↓ b
J //

��

∫
B F↓

P

��
[0]

b // B

B↓ b
J //

��

∫
B B↓

P

��
[0]

b // B

(3.26)



3.5. The homotopy cartesian square induced by a lax functor 155

induce homotopy cartesian squares on classifying spaces

BF↓ b
BJ //

��

B
∫
B F↓

BP

��
pt

Bb // BB,

BB↓ b
BJ //

��

B
∫
B B↓

BP

��
pt

Bb // BB.

By [68, II, Lemma 8.22 (2)(b)], it follows from the commutativity of diagram (B)
above that the induced square

BF↓ b
BF̄ //

BJ
��

BB↓ b

BJ
��

B
∫
B F↓

BF̄ // B
∫
B B↓

is homotopy cartesian. Then, by [68, II, Lemma 8.22 (1), (2)(a)], the theorem follows
from the commutativity of diagram (A), since, by Lemma 3.8, in the induced square

B
∫
B F↓

BF̄ //

BQ

��

B
∫
B B↓

BQ

��
BA BF // BB

both maps BQ are homotopy equivalences and therefore it is homotopy cartesian. �

The following corollary generalizes Quillen’s Theorem A in [109]:

Theorem 3.3 Let F : A → B be a lax functor between bicategories. The induced
map on classifying spaces BF : BA → BB is a homotopy equivalence whenever the
classifying spaces of the homotopy fiber bicategories BF ↓ b are contractible for all
objects b of B.

Particular cases of the result above have been also stated in [35, Theorem 1.2],
for the case when F : A → B is any 2-functor between 2-categories, and in [84,
Theorem 6.4], for the case when F is a lax functor from a category A to a 2-category
B. In [54, Théorème 6.5], it is stated a relative Theorem A for lax functors between
2-categories, which also implies the particular case of Theorem 3.3 when F is any lax
functor between 2-categories.

Example 3.4 Let (M,⊗) = (M,⊗, I,a, l, r) be a monoidal category (see e.g. [100]),
and let Σ(M,⊗) denote its suspension or delooping bicategory. That is, Σ(M,⊗) is
the bicategory with only one object, say ?, whose hom-category is M, and whose
horizontal composition is given by the tensor functor ⊗ :M×M→M. The identity
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1-cell on the object is the unit object I of the monoidal category, and the constraints
a, l, and r for Σ(M,⊗) are just those of the monoidal category. By [35, Theorem 1],

B(M,⊗) = BΣ(M,⊗),

that is, the classifying space of the monoidal category is the classifying space of its
suspension bicategory. Then, Theorem 3.2 is applicable to monoidal functors between
monoidal categories. However, we should stress that the homotopy fiber bicategory
of the homomorphism between the suspension bicategories that a monoidal functor
F : (M,⊗) → (M′,⊗) defines, ΣF : Σ(M,⊗) → Σ(M′,⊗), at the unique object of
Σ(M′,⊗), is not a monoidal category but a genuine bicategory: The 0-cells of ΣF↓?
are the objects x′ ∈ M′, its 1-cells (u′, x) : x′ → y′ are pairs with x an object in M
and u′ : x′ → y′ ⊗ F (x) a morphism in M′, and its 2-cells

x′
(u′,x)

&&

(v′,y)

88⇓u y′

are those morphisms u : x→ y in M making commutative the triangle

x′
u′ //

v′ ##

y′ ⊗ Fx

y′⊗Fu
��

y′ ⊗ Fy.

The vertical composition of 2-cells is given by the composition of arrows in M. The

horizontal composition of two 1-cells x′
(u′,x) // y′

(v′,y) // z′ is the 1-cell (v′ } u′, y ⊗ x) :
x′ → z′,

v′ } u′ =
(
x′

u′ // y′ ⊗ Fx v
′⊗Fx// (z′ ⊗ Fy)⊗ Fx ∼= z′ ⊗ (Fy ⊗ Fx) ∼= z′ ⊗ F (y ⊗ x)

)
and the horizontal composition of 2-cells is given by tensor product of arrows in M.

The identity 1-cell of any 0-cell x is (
◦
1x, I) : x→ x, where

◦
1x = (x′ ∼= x′⊗I ′ ∼= x′⊗FI).

The associativity, left and right constraints are obtained from those of (M,⊗) by the
formulas

a(w′,z),(v′,y),(u′,x) = az,y,x, r(u′,x) = rx, l(u′,x) = lx.

Following the terminology of [36, page 228], we shall call this bicategory ΣF ↓? the
homotopy fiber bicategory of the monoidal functor F : (M,⊗) → (M′,⊗), and write
it by KF . This bicategories have been studied by Vitale in [123] for the case of a
monoidal functor between categorical groups, where he calls them the cokernel of the
functor5. Every object z′ ofM′, determines a 2-endofunctor z′⊗− : KF → KF , which

5We would like to thank Niles Johnson for pointing this out.
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is defined on cells by

x′
(u′,x)

&&

(v′,y)

88⇓u y′ 7→ z′ ⊗ x′
(z′}u′,x)

,,

(z′}v′,y)

22⇓u z′ ⊗ y′,

where z′ } u′ =
(
z′ ⊗ x′ z

′⊗u′ // z′ ⊗ (y′ ⊗ Fx) ∼= (z′ ⊗ y′)⊗ Fx
)

, and from Theorems

3.2 and 3.3, we get the following:

Theorem 3.4 For any monoidal functor F : (M,⊗)→ (M′,⊗), the following state-
ments hold: (i) There is an induced homotopy fiber sequence

BKF → B(M,⊗)
BF−→ B(M′,⊗),

whenever the induced maps B(z′ ⊗−) : BKF → BKF are homotopy autoequivalences,
for all z′ ∈ ObM′. (ii) The induced map BF : B(M,⊗) → B(M′,⊗) is a homotopy
equivalence if the space BKF is contractible.

For any monoidal category (M,⊗), pseudo bidiagrams of categories over its suspension
bicategory,

N = (N , χ) : Σ(M,⊗)op → Cat,

are interesting to consider, since they can be regarded as a category N (the one
associated to the unique object of the suspension bicategory) endowed with a coherente
right pseudo action of the monoidal category (M,⊗) (see e.g. [86, §1]). Namely, by
the functor ⊗ : N ×M → N , which is defined on objects by a ⊗ x = x∗a and on
morphism by

(a
f→ b)⊗ (x

u→ y) =
(
x∗a

x∗f // x∗b
u∗b // y∗b

)
=
(
x∗a

u∗a // y∗a
y∗f // y∗b

)
,

together with the coherent natural isomorphisms

(a⊗ x)⊗ y = y∗x∗a
χx,ya // (x⊗ y)∗a = a⊗ (x⊗ y)

a
χ
I
a
// I∗a = a⊗ I.

For each such (M,⊗)-category N , the cells of the bicategory
∫

Σ(M,⊗)N has the
following easy description: Its objects are the same as the objects of the category N .
A 1-cell (f, x) : a→ b is a pair with x an object of M and f : a→ b⊗ x a morphism
in N , and a 2-cell

a

(f,x)
$$

(g,y)

::⇓u b
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is a morphism u : x→ y in M such that the triangle

a
g

!!
f

}}
b⊗ x b⊗u // b⊗ y.

is commutative. Many of the homotopy theoretical properties of the classifying space
of the monoidal category, B(M,⊗), can actually be more easily reviewed by using
Grothendieck bicategories

∫
Σ(M,⊗)N , instead of the Borel pseudo simplicial categories

E(M,⊗)N : ∆op → Cat, [p] 7→ N ×Mp

as, for example, Jardine did in [86] for (M,⊗)-categories N . Thus, one sees, for
example, that if the action is such that multiplication by each object x ofM, that is,
the endofunctor − ⊗ x : N → N , induces a homotopy equivalence BN ' BN , then,
by Theorem 3.1, one has an induced homotopy fiber sequence (cf. [86, Proposition
3.5])

BN → B
∫

Σ(M,⊗)N
BP−→ B(M,⊗).

In particular, the right action of (M,⊗) on the underlying category M leads to the
bicategory ∫

Σ(M,⊗)M = Σ(M,⊗)↓? ,

the comma bicategory of the suspension bicategory over its unique object, whose
classifying space is contractible by Lemma 3.7 (cf. [86, Proposition 3.8]). Then, it
follows the well-known result by Mac Lane [99] and Stasheff [114] that there is a
homotopy equivalence

BM' ΩB(M,⊗),

between the classifying space of the underlying category and the loop space of the
classifying space of the monoidal category, whenever multiplication by each object
x ∈ ObM, y 7→ y⊗x, induces a homotopy autoequivalence on BM (cf. Example 3.3).



Chapter 4

Bicategorical homotopy
pullbacks

4.1 Introduction and summary

If A
φ→ B

φ′← A′ are continuous maps between topological spaces, its homotopy-fiber
product A×h

BA
′ is the subspace of the product A×BI×A′, where I = [0, 1] and BI is

taken with the compact-open topology, whose points are triples (a, γ, a′) with a ∈ A,
a′ ∈ A′, and γ : φa → φ′a′ a path in B joining φa and φ′a′, that is γ : I → B is a
path starting at γ0 = φa and ending at γ1 = φ′a′. In particular, the homotopy-fiber
of a continuous map φ : A → B over a base point b ∈ B is Fib(φ, b) = A ×h

B {b},
the homotopy-fiber product of φ and the constant inclusion map {b} ↪→ B. That is,
Fib(φ, b) is the space of pairs (a, γ), where a ∈ A, and γ : φa → b is a path in B
joining φa with the base point b.

If A F→ B F ′← A′ are now functors between (small) categories, its homotopy-
fiber product category is the comma category F ↓ F ′ consisting of triples (a, f, a′)
with f : Fa → F ′a′ a morphism in B, in which a morphism from (a0, f0, a

′
0) to

(a1, f1, a
′
1) is a pair of morphisms u : a0 → a1 in A and u′ : a′0 → a′1 in A′ such

that F ′u′ ◦ f0 = f1 ◦ Fu. In particular, the homotopy-fiber category F ↓b of a functor
F : A → B, relative to an object b ∈ ObB, is the homotopy-fiber product category
of F and the constant functor {b} ↪→ B. These naive categorical emulations of the
topological constructions are, however, subtle. Let B : Cat→ Top be the classifying
space functor. The homotopy-fiber product category F ↓ F ′ comes with a canonical
map from its classifying space to the homotopy-fiber product space of the induced
maps BF : BA → BB and BF ′ : BA′ → BB, and Barwick and Kan [13, Theorem
3.5] [14, Theorem 8.2] have proven that this canonical map B(F ↓F ′)→ BA×h

BB BA′
is a homotopy equivalence whenever the maps B(F ↓ b0) → B(F ↓ b1), induced by the
different morphisms b0 → b1 of B, are homotopy equivalences. This result extends
the well-known Quillen’s Theorem B, which asserts that under such an hypothesis,
the canonical maps B(F ↓b)→ Fib(BF,Bb) are homotopy equivalences. Actually, the

159
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result by Barwick and Kan is a consequence of a Theorem B by Cisinski [55, Théorèm
6.4.15]1. Let us stress again that Theorem B and its consequent Theorem A have been
fundamental for higher algebraic K-theory since the early 1970s, when Quillen [109]
published his seminal paper, and they are now two of the most important theorems
in the foundation of homotopy theory.

Similar categorical lax limit constructions have been used to describe homotopy
pullbacks in many settings of enriched categories, where a homotopy theory has been
established (see Grandis [70], for instance). Here, we focus on the bicategorical case.
Recall again that like categories, small Bénabou bicategories [15] and, in particular,
2-categories and Mac Lane’s monoidal categories, are closely related to topological
spaces through the classifying space construction, as shown by Carrasco, Cegarra,
and Garzón in [41]. This assigns to each bicategory B a CW-complex BB, whose cells
give a natural geometric meaning to the cells of the bicategory. Further, we should
mention that the category of (strict) 2-categories and 2-functors has a Thomason-
type Quillen model structure, as was first announced by Worytkiewicz, Hess, Parent
and Tonks in [125, Theorem 4.5.1] and fully proved by Ara and Maltsiniotis in [2,
Théorème 6.27], such that the classifying space functor B 7→ BB is an equivalence of
homotopy theories between 2-categories and topological spaces.

In the preparatory Section 4.2 of this chapter, for any diagram A F // B A′F ′oo ,
where A, B, and A′ are bicategories, F is a lax functor, and F ′ is an oplax functor (for
instance, if F and F ′ are both homomorphisms), we present a homotopy-fiber product
bicategory F ↓F ′, whose 0-cells, or objects, are triples (a, f, a′) with f : Fa → F ′a′ a
1-cell in B as in the case when F and F ′ are functors between categories. But now, a
1-cell from (a0, f0, a

′
0) to (a1, f1, a

′
1) is a triple (u, β, u′) consisting of 1-cells u : a0 → a1

in A and u′ : a′0 → a′1 in A′, together with a 2-cell β : F ′u′ ◦ f0 ⇒ f1 ◦ Fu in B. And
F ↓F ′ has 2-cells (α, α′) : (u, β, u′)⇒ (v, γ, v′), which are given by 2-cells α : u⇒ v in
A and α′ : u′ ⇒ v′ in A′ such that (1f1 ◦ Fα) · β = (γ ◦ F ′α′) ◦ 1f0 . In particular, for
any object b ∈ B, we have the homotopy-fiber bicategories2 F ↓ b and b ↓F ′, in terms
of which we state and prove our main results of the chapter. These are exposed in
Section 4.3, and they can be summarized as follows (see Theorem 4.1 and Corollary
4.2):

• For any diagram of bicategories A F // B A′F ′oo , where F is a lax functor and
F ′ is an oplax functor, there is a canonical map B(F ↓ F ′) → BA ×h

BB BA′, from
the classifying space of the homotopy-fiber product bicategory to the homotopy-fiber
product space of the induced maps BF : BA → BB and BF ′ : BA′ → BB.

• For a given lax functor F : A → B, the following properties are equivalent:

- For any oplax functor F ′ : A′ → B, the map B(F ↓ F ′) → BA ×h
BB BA′ is a

homotopy equivalence.

1We thank the referee for pointing out this fact.
2These bicategories are isomorphic to the bicategories F↓ b of Chapter 3, but they are defined in

a slightly different way
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- For any 1-cell b0 → b1 of B, the map B(F ↓ b0) → B(F ↓ b1) is a homotopy
equivalence.

- For any 0-cell b of B, the map B(F ↓ b) → Fib(BF,Bb) is a homotopy equiva-
lence.

• For a given oplax functor F ′ : A′ → B, the following properties are equivalent:
-For any lax functor F : A → B, the map B(F ↓F ′)→ BA×h

BB BA′ is a homotopy
equivalence.

- For any 1-cell b0 → b1 of B, the map B(b1 ↓ F ′) → B(b0 ↓ F ) is a homotopy
equivalence.

- For any 0-cell b of B, the map B(b ↓F ′) → Fib(BF ′,Bb) is a homotopy equiva-
lence.

Let us remark that, if the map B(F ↓F ′)→ BA×h
BBBA′ is a homotopy equivalence,

then, by Dyer and Roitberg [61], there are Mayer-Vietoris type long exact sequences
on homotopy groups

· · · → πn+1BB // πnB(F ↓F ′) // πnBA× πnBA′ // πnBB → · · · .

The above results include the aforementioned results by Barwick and Kan, but
also the extension of Quillen’s Theorems A and B to lax functors between bicategories
stated in Chapter 3.

We also study conditions on a bicategory B in order to ensure that the space
B(F ↓F ′) is always homotopy equivalent to the homotopy-fiber product of the induced
maps BF : BA → BB and BF ′ : BA′ → BB. Thus, in Theorem 4.2, we prove

• For a bicategory B, the following properties are equivalent:

- For any diagram A F // B A′F ′oo , where F is a lax functor and F ′ is an oplax
functor, the map B(F ↓F ′)→ BA×h

BB BA′ is a homotopy equivalence
- For any object b and 1-cell b0 → b1 in B, the induced map BB(b, b0)→ BB(b, b1)

is a homotopy equivalence.
- For any object b and 1-cell b0 → b1 in B, the induced map BB(b1, b)→ BB(b0, b)

is a homotopy equivalence.
- For any two objects b, b′ ∈ B, the canonical map

BB(b, b′)→ {γ : I → BB | γ(0) = Bb, γ(1) = Bb′} ⊆ BBI

is a homotopy equivalence.

For a bicategory B satisfying the conditions above3, we conclude the existence of
a canonical homotopy equivalence

BB(b, b) ' Ω(BB,Bb)

between the loop space of the classifying space of the bicategory with base point Bb
and the classifying space of the category of endomorphisms of b in B (see Corollary

3See also Example 3.3.
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4.4). This result for B a 2-category should be attributed to Tillmann [121, Lemma
3.3], but it has been independently proven by both Cegarra [43, Example 4.4] and by
del Hoyo [84, Theorem 8.5].

Since any monoidal category can be regarded as a bicategory with only one 0-
cell, our results are applicable to them. Thus, any diagram of monoidal functors

and monoidal categories, (N ,⊗)
F→ (M,⊗)

F ′← (N ′,⊗), gives rise to a homotopy-

fiber product bicategory F
⊗
↓ F ′, whose 0-cells are the objects m ∈ M, whose 1-cells

(n, f, n′) : m0 → m1 consist of objects n ∈ N and n′ ∈ N ′, and a morphism f :
F ′n′ ⊗ m0 → m1 ⊗ Fn in M, and whose 2-cells (u, u′) : (n, f, n′) ⇒ (n̄, f̄ , n̄′) are
given by a pair of morphisms, u : n → n̄ in N and u′ : n′ → n̄′ in N ′, such that
(1 ⊗ Fu) · f = f̄ · (F ′u′ ⊗ 1). In particular, for any monoidal functor F as above,

we have the homotopy-fiber bicategory F
⊗
↓ I, where I : ([0],⊗) → (M,⊗) denotes the

monoidal functor from the trivial (one-arrow) monoidal category [0] toM that carries
its unique object 0 to the unit object I of the monoidal category M. Then, our main
conclusions concerning monoidal categories, which are presented throughout Section
4.4, are summarized as follows (see Theorems 4.4, 4.5, and 4.6).

• The following properties on a monoidal functor F : (N ,⊗)→ (M,⊗) are equiv-
alent:

- For any monoidal functor F ′ : (N ′,⊗)→ (M,⊗), the canonical map

B(F
⊗
↓F ′)→ B(N ,⊗)×h

B(M,⊗) B(N ′,⊗)

is a homotopy equivalence.

- For any object m ∈ M, the homomorphism m ⊗ − : F
⊗
↓ I → F

⊗
↓ I induces a

homotopy autoequivalence on B(F
⊗
↓ I).

- The canonical map B(F
⊗
↓ I)→ Fib(BF,BI) is a homotopy equivalence.

• The following properties on a monoidal category (M,⊗) are equivalent:

- For any diagram of monoidal functors (N ,⊗)
F // (M,⊗) (N ′,⊗)

F ′oo , the canon-

ical map B(F
⊗
↓F ′)→ B(N ,⊗)×h

B(M,⊗) B(N ′,⊗) is a homotopy equivalence.

- For any object m ∈ M, the functor m ⊗ − : M → M induces a homotopy
autoequivalence on the classifying space BM.

- For any object m ∈ M, the functor − ⊗ m : M → M induces a homotopy
autoequivalence on the classifying space BM.

- The canonical map from the classifying space of the underlying category into the
loop space of the classifying space of the monoidal category is a homotopy equivalence,
BM' ΩB(M,⊗).

The equivalence between the two last statements in the first result above might
be considered as a version of Quillen’s Theorem B for monoidal functors. A monoidal
version of Theorem A follows: If the homotopy-fiber bicategory of a monoidal functor
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F : (N ,⊗) → (M,⊗) is contractible, that is, B(F
⊗
↓ I) ' pt, then the induced map

BF : B(N ,⊗) → B(M,⊗) is a homotopy equivalence. The equivalence of the three
last statements in the second one are essentially due to Stasheff [114].

Thanks to the equivalence between the category of crossed modules and the cate-
gory of 2-groupoids, by Brown and Higgins [28, Theorem 4.1], our results on bicate-
gories also find application in the setting of crossed modules, what we do in Section 4.5.

Briefly, for any diagram of crossed modules (G,P, ∂)
(ϕ,F )−→ (H,Q, ∂)

(ϕ′,F ′)←− (G′,P ′, ∂),
we construct its homotopy-fiber product crossed module (ϕ, F )↓(ϕ′, F ′), and we prove
as the main result here (see Theorem 4.7) the following:

• There is a canonical homotopy equivalence

B
(
(ϕ, F )↓(ϕ′, F ′)

)
' B(G,P, ∂)×h

B(H,Q,∂) B(G′,P ′, ∂)

between the classifying space of the homotopy-fiber product crossed module and the
homotopy-fiber product space of the induced maps B(ϕ, F ) : B(G,P, ∂) → B(H,Q, ∂)
and B(ϕ′, F ′) : B(G′,P ′, ∂)→ B(H,Q, ∂).

(Here, (G,P, ∂) 7→ B(G,P, ∂) denotes the classifying space of crossed modules functor
by Brown and Higgins [29].) Recalling that the category of crossed complexes has a
closed model structure, as shown by Brown and Golasinki in [26], we also prove that
the constructed homotopy-fiber product crossed module (ϕ, F )↓(ϕ′, F ′) is compatible
with the construction of homotopy pullbacks in this model category. More precisely,
in Theorem 4.8, we prove that

• If one of the morphisms (ϕ, F ) or (ϕ′, F ′) is a fibration, then the canonical
morphism

(G,P, ∂)×(H,Q,∂) (G′,P ′, ∂)→ (ϕ, F )↓(ϕ′, F ′),

from the pullback crossed module to the homotopy-fiber product crossed module induces
a homotopy equivalence on classifying spaces.

The chapter also includes some new results concerning classifying spaces of bicate-
gories, which are needed here to obtain the aforementioned results on homotopy-fiber
products. On the one hand, although in [41, §4] it was proven that the classifying
space construction is a functor from the category of bicategories and homomorphisms
to the category Top of spaces, in this chapter we need to extend that fact as given
below (see Lemma 4.3).

• The assignment B 7→ BB is the function on objects of two functors

Lax
B−→ Top

B←− opLax,

where Lax is the category of bicategories and lax functors, and opLax the category
of bicategories and oplax functors.

On the other hand, we also need to work with Duskin and Street’s geometric nerves of
bicategories [58, 117]. That is, with the simplicial sets ∆uB, ∆B, ∇uB, and ∇B, whose
respective p-simplices are the normal lax, lax, normal oplax, and oplax functors from
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the category [p] = {0 < · · · < p} into the bicategory B. Although in [41, Theorem
6.1] the existence of homotopy equivalences

|∆uB| ' |∆B| ' BB ' |∇B| ' |∇uB|

was proved, their natural behaviour is not studied. Then, in Lemma 4.4 we state the
following:

• For any bicategory B, the homotopy equivalence |∆uB| ' |∆B| is natural on
normal lax functors, the homotopy equivalence |∆B| ' BB is homotopy natural on
lax functors, the homotopy equivalence BB ' |∇B| is homotopy natural on oplax
functors, and the homotopy equivalence |∇B| ' |∇uB| is natural on normal oplax
functors.

The proofs of these results are quite long and technical. Therefore, to avoid ham-
pering the flow of the chapter, we have put most of them into an appendix, comprising
Section 4.6.

4.2 Preparation: The constructions involved

This section aims to make this chapter as self-contained as possible; therefore, at the
same time as fixing notations and terminology, we also review some necessary aspects
and results about homotopy pullbacks of topological spaces, comma bicategories, and
classifying spaces of small bicategories that are used throughout the chapter. However,
some results, mainly those in Lemmas 4.1, 4.3, and 4.4, are actually new. For a detailed
study of the definition of homotopy pullback of continuous maps we refer the reader to
Mather’s original paper [103] and to the more recent approach by Doeraene [57]. For
a general background on simplicial sets and homotopy pullbacks in model categories,
we recommend again the books by Goerss and Jardine [68] and Hirschhorn [81]. For
a complete description of bicategories, lax functors, and lax transformations, we refer
the reader to the papers by Bénabou [15, 16] and Street [117].

4.2.1 Homotopy pullbacks.

Throughout this chapter, all topological spaces have the homotopy type of CW-complex-
es, so that a continuous map is a homotopy equivalence if and only if it is a weak
homotopy equivalence.

If X
f→ B

g← Y are continuous maps, recall that its homotopy-fiber product is the
space

X ×h
B Y = X ×B BI×B Y

consisting of triples (x, γ, y) with x a point of X, y a point of Y , and γ : I → B a
path of B joining f(x) and g(y). This space occurs in the so-called standard homotopy
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pullback of f and g, that is, the homotopy commutative square

X ×h
B Y

f ′ //

g′

��
F⇒

Y

g
��

X
f // B

where f ′ and g′ are the evident projection maps, and F : (X ×h
B Y ) × I → B is

the homotopy from fg′ to gf ′ given by F (x, γ, y, t) = γ(t). In particular, for any
continuous map g : Y → B and any point b ∈ B, we have the standard homotopy
pullback

Fib(g, b) //

��

F⇒

Y

g
��

pt
b // B,

where Fib(g, b) = pt ×h
B Y is the homotopy-fiber of g over b. (We use pt to denote a

one-point space.) For any y ∈ g−1(b), one has the exact homotopy sequence

· · · → πn+1(B, b)→ πn(Fib(g, b), (Ctb, y))→ πn(Y, y)→ πn(B, b)→ · · · ,

from which g is a homotopy equivalence if and only if all its homotopy fibers are
contractible.

More generally, following Mather’s definition in [103], a homotopy commutative
square

Z
f ′ //

g′
��

H⇒

Y

g
��

X
f // B,

(4.1)

where H : fg′ ⇒ gf ′ is a homotopy, is called a homotopy pullback whenever the
induced whisker map below is a homotopy equivalence.

w : Z → X ×h
B Y, z 7→ (g′(z), H|z×I , f ′(z)) (4.2)

Throughout this thesis, we use only basic well-known properties of homotopy pull-
backs. For instance, the homotopy-fiber characterization of homotopy pullback squares:
The homotopy commutative square (4.1) is a homotopy pullback if and only if, for
any point x ∈ X, the composite square

Fib(g′, x) //

��
⇒

Z

g′

��
⇒

f ′ // Y

g
��

pt
x // X

f // B
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is a homotopy pullback. That is, if and only if the induced whisker maps on homotopy
fibers are homotopy equivalences, w : Fib(g′, x)

∼→ Fib(g, f(x)); or the two out of three
property of homotopy pullbacks: Let

• //

��
⇒

• //

��
⇒

•

��
X ′ // X // •

be a diagram of homotopy commutative squares. If the right square is a homotopy
pullback, then the left square is a homotopy pullback if and only if the composite
square is as well. If π0X

′ → π0X is onto and the left and composite squares are
homotopy pullbacks, then the right-hand square is a homotopy pullback.

Many other properties are easily deduced from the above ones. For example, the
square (4.1) is a homotopy pullback whenever both maps g and g′ are homotopy equiv-
alences. If the square is a homotopy pullback and the map g is a homotopy equivalence,
then so is g′. If the square is a homotopy pullback, g′ is a homotopy equivalence, and
the map π0X → π0B is surjective, then g is also a homotopy equivalence.

Hereafter, any (strictly) commutative square of spaces

Z
f ′ //

g′
��

Y

g
��

X
f // B,

(4.3)

will be considered equipped with the static homotopy Z × I → B, (z, t) 7→ fg′(z) =
gf ′(z).

Remark 4.1 A commutative square of spaces, as above, is a homotopy pullback if
and only if it is a homotopy pullback in terms of the ordinary Quillen model structure
for spaces. To see that, simply observe that, given the commutative square (4.3), the
whisker map (4.2) is the composite Z → X ×B Y

w→ X ×h
B Y , where Z → X ×B Y is

the canonical map z 7→ (g′(z), f ′(z)) into the topological fiber product. If f or g is a
Serre fibration, the map X×B Y → X×h

B Y is a homotopy equivalence, and therefore
Z → X ×h

B Y is a homotopy equivalence if and only if Z → X ×B Y is.

In [52, Proposition 5.4 and Corollary 5.5], Chachólski, Pitsch, and Scherer char-
acterize continuous maps that always produce homotopy pullback squares when one
pulls back with them. Along similar lines, we prove the needed lemma below for maps
induced on geometric realizations by simplicial maps. More precisely, we characterize
those simplicial maps g : Y → B such that, for any simplicial map f : X → B, the
pullback square of simplicial sets

X ×B Y
g′
��

f ′ // Y

g
��

X
f // B

(4.4)
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induces, by taking geometric realizations, a homotopy pullback square of spaces. To
do so, recall the canonical homotopy colimit decomposition of a simplicial map, which
allows the source of the map to be written as the homotopy colimit of its fibers over the
simplices of the target: for a simplicial set B, we can consider its category of simplices
∆↓B whose objects are the simplicial maps ∆[n]→ B and whose morphisms are the
obvious commutative triangles. For a simplicial map g : Y → B, we can then associate
a functor from ∆↓B to the category of spaces by mapping a simplex x : ∆[n]→ B to
the geometric realization |g−1(x)| of the simplicial set g−1(x) defined by the pullback
square

g−1(x) //

��

Y

g

��
∆[n]

x // B.

By [68, Lemma IV.5.2], in the induced commutative diagram of spaces,

hocolim
x:∆[n]→B

|g−1(x)|

��
(a)

∼ // |Y |

|g|
��

hocolim
x:∆[n]→B

|∆[n]| ∼ // |B|

the horizontal maps are both homotopy equivalences.

Lemma 4.1 For any given simplicial map g : Y → B, the following statements are
equivalent:

(i) For any simplex of B, x : ∆[n] → B, and for any simplicial map σ : ∆[m] →
∆[n], the induced map |g−1(xσ)| → |g−1(x)| is a homotopy equivalence.

(ii) For any simplex x : ∆[n]→ B, the induced pullback square of spaces

|g−1(x)|

��

// |Y |

|g|
��

|∆[n]|
|x| // |B|

is a homotopy pullback.
(iii) For any simplicial map f : X → B, the pullback square of spaces

|X ×B Y |

|g′|
��

|f ′| // |Y |

|g|
��

|X|
|f | // |B|,

induced by (4.4), is a homotopy pullback.
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Proof: (i)⇒ (ii): Let x : ∆[n]→ B be any simplex of B. We have the diagram

|g−1(x)| //

��
(b)

hocolim
x:∆[n]→B

|g−1(x)|

��
(a)

∼ // |Y |

|g|
��

|∆[n]|
|x| //

o
��

(c)

hocolim
x:∆[n]→B

|∆[n]| ∼ //

o
��

|B|

pt
x // hocolim

x:∆[n]→B
pt,

where hocolim
x:∆[n]→B

pt = B(∆↓B) is the classifying space of the simplex category. Since, by

Quillen’s Lemma [109, page 14], the composite square (b)+(c) is a homotopy pullback,
it follows that (b) is a homotopy pullback. Therefore, the composite (b) + (a) is as
well.

(ii)⇒ (i): For any simplicial map σ : ∆[m]→ ∆[n] and any simplex x : ∆[n]→ B,
the right side and the large square in the diagram of spaces

|g−1(xσ)| //

��

|g−1(x)| //

��

|Y |
|g|
��

|∆[m]|
|σ| // |∆[n]|

|x| // |B|

are both homotopy pullback, and therefore so is the left-hand one. As |∆[m]| and
|∆[n]| are both contractible, the map |σ| is a homotopy equivalence, and therefore the
map |g−1(xσ)| → |g−1(x)| is a homotopy equivalence.

(i)⇒ (iii): Suppose we have the pullback square of simplicial sets (4.4). Then, for
any simplex x : ∆[n] → X of X, we have a natural isomorphism of fibers g′−1(x) ∼=
g−1(fx), and it follows that the map g′ also satisfies the same condition (i) as g
does. Then, by the already proven part (i) ⇔ (ii), we know that, for any vertex
x : ∆[0]→ X, both the left side and the composite square in the diagram

|g′−1(x)| ∼= |g−1(fx)| //

��

|X ×B Y | //

|g′|
��

|Y |
|g|
��

pt = |∆[0]|
|x| // |X|

|f | // |B|

are homotopy pullbacks. Therefore, from the diagram on whisker maps

|g′−1(x)| ∼ //

o
��

Fib(|g′|, |x|)

w

��
|g−1(fx)| ∼ // Fib(|g|, |fx|),
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we conclude that the map Fib(|g′|, |x|) → Fib(|g|, |fx|) is a homotopy equivalence.
Since the homotopy fibers of any map over points connected by a path are homo-
topy equivalent, and any point of |X| is path-connected with a 0-cell |x| defined by
some 0-simplex x : ∆[0] → X as above, the result follows from the homotopy fiber
characterization.

(iii)⇒ (ii): This is obvious. �

4.2.2 Some bicategorical conventions.

We use the same notations of the previous chapters for bicategories, see Subsection
2.1.2 for reference.

Again, a lax functor is written as a pair F = (F, F̂ ) : B → C, and we will denote
its structure constraints by

F̂f2,f1 : Ff2 ◦ Ff1 ⇒ F (f2 ◦ f1), F̂b : 1Fb ⇒ F1b,

for each pair of composable 1-cells, and each object of B. Recall that the struc-
ture 2-cells F̂f2,f1 are natural in (f2, f1) ∈ B(b1, b2) × B(b0, b1) and they satisfy

the usual coherence conditions. Replacing the constraint 2-cells above by F̂f2,f1 :

F (f2 ◦ f1) ⇒ Ff2 ◦ Ff1 and F̂b : F (1b) ⇒ 1Fb, we have the notion of oplax functor
F = (F, F̂ ) : B → C. Recall that, any lax or oplax functor F is termed a pseudo-
functor or homomorphism whenever all the structure constraints F̂f2,f1 and F̂b are
invertible. When these 2-cells are all identities, then F is called a 2-functor. If all the
unit constraints F̂b are identities, then the lax or oplax functor is qualified as (strictly)
unitary or normal.

We also recall that a lax transformation consists of morphisms αb : Fb→ F ′b,
b ∈ ObB, and 2-cells

Fb0

αb0
��

Ff //

α̂f⇐

Fb1

αb1
��

F ′b0
F ′f
// F ′b1

which are natural on the 1-cells f : b0 → b1 of B, subject to the usual coherence axioms.
Replacing the structure deformation above by α̂f : F ′f ◦ αb0 ⇒ αb1 ◦ Ff , we have
the notion of oplax transformation α : F ⇒ F ′. Any lax or oplax transformation α is
termed a pseudo-transformation whenever all the naturality 2-cells α̂f are invertible.
Similarly, we have the notions of lax, oplax, and pseudo transformation between oplax
functors.

4.2.3 Homotopy-fiber product bicategories.

We present a bicategorical comma construction in some detail, since it is fundamental
for the results of this chapter. However, we are not claiming much originality since
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variations of the quite ubiquitous ‘comma category’ construction have been consid-
ered (just to define “homotopy pullbacks”) in many general frameworks of enriched
categories (where a homotopy theory has been established); see for instance Grandis
[70].

Let A F // B A′F ′oo be a diagram where A, B, and A′ are bicategories, F is a
lax functor, and F ′ is an oplax functor. The “homotopy-fiber product bicategory”

F ↓F ′ (4.5)

is defined as follows:

• The 0-cells of F ↓F ′ are triples (a, f, a′) with a a 0-cell of A, a′ a 0-cell of A′,
and f : Fa→ F ′a′ a 1-cell in B.

• A 1-cell (u, β, u′) : (a0, f0, a
′
0)→ (a1, f1, a

′
1) of F ↓F ′ consists of a 1-cell u : a0 →

a1 in A, a 1-cell u′ : a′0 → a′1 in A′, and 2-cell β : F ′u′ ◦ f0 ⇒ f1 ◦ Fu in B,

Fa0
Fu //

f0
��

⇒β
Fa1

f1
��

F ′a′0
F ′u′ // F ′a′1.

• A 2-cell in F ↓F ′, (a0, f0, a
′
0)

(u,β,u′)
**

⇓(α,α′)

(ū,β̄,ū′)

44
(a1, f1, a

′
1), is given by a 2-cell α : u ⇒ ū

in A and a 2-cell α′ : u′ ⇒ ū′ in A′ such that the diagram below commutes.

F ′u′ ◦ f0
F ′α′◦1 +3

β

��

F ′ū′ ◦ f0

β̄
��

f1 ◦ Fu 1◦Fα +3 f1 ◦ Fū

• The vertical composition of 2-cells in F ↓F ′ is induced by the vertical composition
laws in A and A′, thus (ᾱ, ᾱ′) · (α, α′) = (ᾱ ·α, ᾱ′ ·α′). The identity at a 1-cell is given
by 1(u,β,u′) = (1u, 1u′).

• The horizontal composition of two 1-cells in F ↓F ′,

(a0, f0, a
′
0)

(u1,β1,u′1)
// (a1, f1, a

′
1)

(u2,β2,u′2)
// (a2, f2, a

′
2) , (4.6)

is the 1-cell (u2, β2, u
′
2) ◦ (u1, β1, u

′
1) = (u2 ◦ u1, β2 } β1, u

′
2 ◦ u′1), where β2 } β1 is the
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2-cell pasted of the diagram in B

Fa0

β2 } β1 =

Fu1 //

f0

��

β1⇒

F̂ ⇑

F (u2◦u1)

%%
Fa1

Fu2 //

f1

��

β2⇒

Fa2

f2

��
F ′a′0

F ′u′1 //

F̂ ′⇑

F ′(u′2◦u′1)

99
F ′a′1

F ′u′2 // F ′a′2,

(4.7)

that is

β2 } β1 =
(
F ′(u′2 ◦ u′1) ◦ f0

F̂ ′◦1
=⇒ (F ′u′2 ◦ F ′u′1) ◦ f0

a
=⇒ F ′u′2 ◦ (F ′u′1 ◦ f0)

1◦β1
=⇒

F ′u′2 ◦ (f1 ◦ Fu1)
a−1

=⇒ (F ′u′2 ◦ f1) ◦ Fu1
β2◦1
=⇒ (f2 ◦ Fu2) ◦ Fu1

a
=⇒

f2 ◦ (Fu2 ◦ Fu1)
1◦F̂
=⇒ f2 ◦ F (u2 ◦ u1)

)
.

• The horizontal composition of 2-cells in F ↓F ′ is given by composing horizontally
the 2-cells in A and A′, thus (α2, α

′
2) ◦ (α1, α

′
1) = (α2 ◦ α1, α

′
2 ◦ α′1).

• The identity 1-cell in F ↓ F ′, at an object (a, f, a′), is (1a,
◦
1(a,f,a′), 1a′), where

◦
1(a,f,a′) is the 2-cell in B obtained by pasting the diagram

Fa
◦
1(a,f,a′) =

1Fa //

f
��

F̂ ⇑

F1a

##

r−1·l∼=

Fa

f
��

F ′a′
1F ′a′

//

F̂ ′⇑

F ′1a′

;;F
′a′,

that is,
◦
1(a,f,a′) =

(
F ′1a′ ◦ f

F̂ ′◦1
=⇒ 1F ′a′ ◦ f

l
=⇒ f

r−1

=⇒ f ◦ 1Fa
1◦F̂
=⇒ f ◦ F1a

)
.

• The associativity, right and left unit constraints of the bicategory F ↓ F ′ are
provided by those of A and A′ by the formulas

a(u3,β3,u′3),(u2,β2,u′2),(u1,β1,u′1) =(au3,u2,u1 ,au′3,u′2,u′1), l(u,β,u′) =(lu, lu′), r(u,β,u′) =(ru, ru′).
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The main square.

There is a (non-commutative!) square, which is of fundamental interest for the dis-
cussions below:

F ↓F ′ P ′ //

P
��

A′

F ′
��

A F // B

(4.8)

where P and P ′ are projection 2-functors, which act on cells of F ↓F ′ by

a0

u
''

ū

77⇓α a1
�Poo (a0, f0, a

′
0)

(u,β,u′)
++

(ū,β̄,ū′)

33
⇓(α,α′) (a1, f1, a

′
1) �P ′ // a′0

u′ ((

ū′
66⇓α′ a′1. (4.9)

Two pullback squares.

We consider here three particular cases of the construction (4.5):

- For any lax functor F : A → B, the bicategory F ↓B := F ↓1B.

- For any oplax functor F ′ : A′ → B, the bicategory B↓F ′ := 1B ↓F ′.

- For any bicategory B, the bicategory B↓B := 1B ↓1B.

There are commutative squares

F ↓F ′ F̄ //

P
��

B↓F ′

P
��

A F // B,

F ↓F ′ P ′ //

F̄ ′
��

A′

F ′
��

F ↓B P ′ // B,

(4.10)

where the first one is in the category of bicategories and lax functors, and the second
one in the category of oplax functors. The lax functor F̄ : F ↓F ′ → B↓F ′ in the first
square is given on cells by applying F to the first components

(a0, f0, a
′
0)

(u,β,u′)
++

(ū,β̄,ū′)

33
⇓(α,α′) (a1, f1, a

′
1)

F̄7→ (Fa0, f0, a
′
0)

(Fu,β,u′)
++

(F ū,β̄,ū′)

33
⇓(Fα,α′) (Fa1, f1, a

′
1),

while the oplax functor F̄ ′ : F ↓F ′ → F ↓ B in the second one acts on cells through
the application of F ′ to the last components

(a0, f0, a
′
0)

(u,β,u′)
++

(ū,β̄,ū′)

33
⇓(α,α′) (a1, f1, a

′
1)

F̄ ′7→ (a0, f0, F
′a′0)

(u,β,F ′u′)
++

(ū,β̄,F ′̄u′)

33
⇓(α,F ′α′) (a1, f1, F

′a′1).
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At any pair of composable 1-cells in F ↓ F ′ as in (4.6), their respective structure
constraints for the composition are the 2-cells

(F̂u2,u1 , 1u′2◦u′1) : F̄ (u2, β2, u
′
2) ◦ F̄ (u1, β1, u

′
1)⇒ F̄

(
(u2, β2, u

′
2) ◦ (u1, β1, u

′
1)
)
,

(1u2◦u1 , F̂
′
u′2,u

′
1
) : F̄ ′

(
(u2, β2, u

′
2) ◦ (u1, β1, u

′
1)
)
⇒ F̄ ′(u2, β2, u

′
2) ◦ F̄ ′(u1, β1, u

′
1),

and, at any object (a, f, a′) of F ↓F ′, their respective constraints for the identity are

(F̂a, 11a′ ) : 1F̄ (a,f,a′) ⇒ F̄1(a,f,a′), (11a , F̂
′
a′) : F̄ ′1(a,f,a′) ⇒ 1F̄ ′(a,f,a′).

Although neither the category of bicategories and lax functors nor the category of
bicategories and oplax functors have pullbacks in general, the following fact holds.

Lemma 4.2 (i) The first square in (4.10) is a pullback in the category of bicategories
and lax functors.

(ii) The second square in (4.10) is a pullback in the category of bicategories and
oplax functors.

Proof: (i) Any pair of lax functors L : D → A and M : D → B ↓ F ′ such that
FL = PM determines a unique oplax functor N : D → F ↓F ′

D
M

''

L

��

""
N

F ↓F ′ F̄ //

P
��

B↓F ′

P
��

A F // B

such that PN = L and F̄N = M , which is defined as follows: The lax functor M
carries any object d ∈ ObD to an object of B ↓F which is necessarily written in the
form M(d) = (FL(d), f(d), a′(d)), with a′(d) an object of A′ and f(d) : FL(d) →
F ′a′(d) a 1-cell in B. Similarly, for any 1-cell h : d0 → d1 in D, we have M(h) =
(FL(h), β(h), u′(h)) for some 1-cell u′(h) : a′(d0)→ a′(d1) in A′ and some 2-cell

FL(d0)
FL(h) //

f(d0)
��

⇒
β(h)

FL(d1)

f(d1)
��

F ′a′(d0)
F ′u′(h)

// F ′a′(d1),

in B, and for any 2-cell γ : h0 ⇒ h1 in D, we have M(γ) = (FL(γ), α′(γ)), for some
2-cell α′(γ) : u′(h0)⇒ u′(h1) in A′. Also, for any object d and any pair of composable
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1-cells h1 : d0 → d1 and h2 : d1 → d2 in D, the attached structure 2-cells of M can be
respectively written in a similar form as

M̂d = (F (L̂d) · F̂L(d), α̂
′
d) : 1M(d) ⇒M(1d),

M̂h2,h1 = (F (L̂h2,h1) · F̂L(h2),L(h1), α̂
′
h2,h1

) : M(h2) ◦M(h1)⇒M(h2 ◦ h1),

for some 2-cells α̂′h2,h1
and α̂′d in A′. Then, the claimed N : D → F ↓ F ′ is the lax

functor which acts on cells by

d0

h
&&

h̄

99⇓γ d1
N7→ (L(d0), f(d0), a′(d0))

(L(h),β(h),u′(h))

,,

(L(h̄),β(h̄),u′(h̄))

22
⇓(L(γ),α′(γ)) (L(d1), f(d1), a′(d1))

and its respective structure 2-cells, for any object d and any pair of composable 1-cells
h1 : d0 → d1 and h2 : d1 → d2 in D, are

N̂d = (L̂d, α̂
′
d) : 1N(d) ⇒ N(1d),

N̂h2,h1 = (L̂h2,h1 , α̂
′
h2,h1

) : N(h2) ◦N(h1)⇒ N(h2 ◦ h1).

The proof of (ii) is parallel to that given above for part (i), and it is left to the
reader. �

4.2.4 The homotopy-fiber bicategories.

For any 0-cell b ∈ B, we also denote by b : [0] → B the normal homomorphism such
that b(0) = b, and whose structure isomorphism is l : 1b⊗ 1b ∼= 1b. Then, we have the
bicategories4

- F ↓b, for any lax functor F : A → B.

- b↓F ′, for any oplax functor F ′ : A′ → B.

- b↓B := b ↓1B, and B↓b := 1B ↓b.

Given F and F ′ as above, any 1-cell p : b0 → b1 in B determines 2-functors

p∗ : F ↓b0 → F ↓b1, p∗ : b1 ↓F ′ → b0 ↓F ′, (4.11)

respectively given on cells by

(a0, f0)

(u,β)
**

(ū,β̄)

44
⇓α (a1, f1) � p∗ // (a0, p ◦ f0)

(u,p�β)
++

(ū,p�β̄)

33
⇓α (a1, p ◦ f1),

4As we mentioned before these bicategories are isomorphic to the bicategories F ↓ b defined in
Chapter 3
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(f0, a
′
0)

(β,u′)
**

(β̄,ū′)

44
⇓α′ (f1, a

′
1) � p∗ // (f0 ◦ p, a′0)

(β�p,u′)
++

(β̄�p,ū′)
33

⇓α′ (f1 ◦ p, a′1),

where, for any (u, β) : (a0, f0) → (a1, f1) in F ↓ b0 and (β, u′) : (f0, a
′
0) → (f1, a

′
1) in

b1 ↓F ′, the 2-cells p� β and β � p are respectively obtained by pasting the diagrams

Fa0

p� β :

β⇒f0

��

Fu // Fa1

f1

��
b0

∼=p

��

1 // b0

p

��
b1

1 // b1

b0

β � p :

∼=p

��

1 // b0

p

��
b1

β
⇒f0

��

1 // b1

f1

��
F ′a′0

F ′u′ // F ′a′1

that is,

p� β =
(

1 ◦ (p ◦ f0)
l

=⇒ p ◦ f0
1◦l−1

=⇒ p ◦ (1 ◦ f0)
1◦β
=⇒ p ◦ (f1 ◦Fu)

a−1

=⇒ (p ◦ f1) ◦Fu
)
,

β�p =
(
F ′u′ ◦ (f0 ◦p)

a−1

=⇒ (F ′u′ ◦f0)◦p β◦1
=⇒ (f1 ◦1)◦p r◦1

=⇒ f1 ◦p
r−1

=⇒ (f1 ◦p)◦1
)
.

4.2.5 Classifying spaces of bicategories.

Briefly, let us recall5 from [41, Definition 3.1] that the classifying space BB of a
(small) bicategory B is defined as the geometric realization of the Grothendieck nerve
or pseudo-simplicial nerve of the bicategory, that is, the pseudo-functor from ∆op to
the 2-category Cat of small categories

NB : ∆op → Cat, [p] 7→
⊔

(b0,...,bp)

B(bp−1, bp)× B(bp−2, bp−1)× · · · × B(b0, b1), (4.12)

whose face and degeneracy functors are defined in the standard way by using the
horizontal composition and identity morphisms of the bicategory, and the natural iso-
morphisms didj ∼= dj−1di, etc., being given from the associativity and unit constraints
of the bicategory (see Theorem 4.9 in the Appendix, for more details). Thus,

BB = B
∫

∆NB

is the classifying space of the category
∫

∆NB obtained by the Grothendieck construc-
tion6 [73] on the pseudofunctor NB. In other words, BB = |N

∫
∆NB| is the geometric

realization of the simplicial set nerve of the category
∫

∆NB. When B is a 2-category,
then BB is homotopy equivalent to Segal’s classifying space [111] of the topological

5Also see Chapter 2.
6See Section 3.3 in Chapter 3.
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category obtained from B by replacing the hom-categories B(x, y) by their classifying
spaces BB(x, y), see [41, Remark 3.2].

In [41, §4], it is proven that the classifying space construction, B 7→ BB, is a
functor B : Hom → Top, from the category of bicategories and homomorphisms to
the category Top of spaces (actually of CW-complexes). In this chapter, we need the
extension of this fact stated in part (i) of the lemma below.

Lemma 4.3 (i) The assignment B 7→ BB is the function on objects of two functors
into the category of spaces

Lax
B // Top opLax

Boo ,

where Lax (resp. opLax) is the category of bicategories with lax (resp. oplax) functors
between them as morphisms.

(ii) If F,G : B → C are two lax or oplax functors between bicategories, then
any lax or oplax transformation between them α : F ⇒ G determines a homotopy,
Bα : BF ⇒ BG : BB → BC, between the induced maps on classifying spaces.

Proof: It is given in the Appendix, Corollaries 4.5 and 4.7. �
Other possibilities for defining BB come from the geometric nerves of the bicate-

gory, first defined by Street [117] and studied, among others, by Duskin [58], Gurski
[74] and Carrasco, Cegarra, and Garzón [41]; that is, the simplicial sets

∆uB : ∆op → Set, [p] 7→ NorLax([p],B),

∆B : ∆op → Set, [p] 7→ Lax([p],B),

∇uB : ∆op → Set, [p] 7→ NorOpLax([p],B),

∇B : ∆op → Set, [p] 7→ OpLax([p],B),

(4.13)

whose respective p-simplices are the normal lax, lax, normal oplax, and oplax functors
from the category [p] into the bicategory B. In the Homotopy Invariance Theorem
[41, Theorem 6.1] the existence of homotopy equivalences

|∆uB| ' |∆B| ' BB ' |∇B| ' |∇uB|, (4.14)

it is proven, but their natural behaviour is not studied. Since, to establish the results in
this chapter, we need to know that all the homotopy equivalences above are homotopy
natural, we state the following

Lemma 4.4 For any bicategory B, the first homotopy equivalence in (4.14) is natural
on normal lax functors, the second one is homotopy natural on lax functors, the third
one is homotopy natural on oplax functors, and the fourth one is natural on normal
oplax functors.
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Proof: By [41, Theorem 6.2], the homotopy equivalence |∆uB| ' |∆B| is induced on
geometric realizations by the inclusion map ∆uB ↪→ ∆B. Therefore, it is clearly natural
on normal lax functors between bicategories. Similarly, the homotopy equivalence
|∇uB| ' |∇B| is natural on normal oplax functors. The proof for the other two is
more complicated and is given in the Appendix, Corollary 4.6. �

4.3 Inducing homotopy pullbacks on classifying spaces

Quillen’s Theorem B [109] provides a sufficient condition on a functor between small
categories F : A → B for the classifying space B(F ↓ b) to be a homotopy-fiber over
the 0-cell Bb ∈ BB of the induced map BF : BA → BB, for each object b ∈ ObB.
The condition is that the maps Bp∗ : B(F ↓b)→ B(F ↓b′) are homotopy equivalences
for every morphism p : b → b′ in the category B. That condition was referred to by
Dwyer, Kan, and Smith in [60, §6] by saying that “the functor F has the property
B” (see also Barwick, and Kan in [13, 14]), and by Cisinski in [55, 6.4.1] by saying
that “the functor F is locally constant”. To state our theorem below, we shall adapt
that terminology to the bicategorical setting, and we will say that

(Bl) a lax functor between bicategories F : A → B has the property Bl if, for any
1-cell p : b0 → b1 in B, the 2-functor p∗ : F ↓ b0 → F ↓ b1 in (4.11) induces a
homotopy equivalence on classifying spaces, B(F ↓b0) ' B(F ↓b1).

(Bo) an oplax functor between bicategories F ′ : A′ → B has the property Bo if, for
any 1-cell p : b0 → b1 in B, the 2-functor p∗ : b1 ↓F ′ → b0 ↓F ′ in (4.11) induces
a homotopy equivalence on classifying spaces, B(b1 ↓F ′) ' B(b0 ↓F ′).

The main result in this chapter can be summarized as follows:

Theorem 4.1 Let A F // B A′F ′oo be a diagram of bicategories, where F is a lax
functor and F ′ is an oplax functor (for instance, if F and F ′ are any two homomor-
phisms).

(i) There is a homotopy BF BP ⇒ BF ′BP ′, so that the square below, which is
induced by (4.8) on classifying spaces, is homotopy commutative.

B(F ↓F ′)
⇒

BP ′ //

BP
��

BA′

BF ′

��
BA BF // BB

(4.15)

(ii) Suppose that F has the property Bl or F ′ has the property Bo. Then, the
square (4.15) is a homotopy pullback.

Therefore, by Dyer and Roitberg [61], for each a ∈ ObA and a′ ∈ ObA′ such that
Fa = F ′a′ there is an induced Mayer-Vietoris type long exact sequence on homotopy
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groups based at the 0-cells Ba of BA, BFa of BB, Ba′ of BA′, and B(a, 1, a′) of
B(F ↓F ′),

· · · → πn+1BB // πnB(F ↓F ′) // πnBA× πnBA′ // πnBB → · · ·

· · · → π1B(F ↓F ′) // π1BA× π1BA′ // π1BB // π0B(F ↓F ′) // π0(BA× BA′).

(iii) If the square (4.15) is a homotopy pullback for every F ′ = b : [0] → B,
b ∈ ObB, then F has the property Bl. Similarly, if the square (4.15) is a homotopy
pullback for any F = b : [0]→ B, b ∈ ObB, then F ′ has the property Bo.

The remainder of this section is devoted to the proof of this theorem. We shall
start by recalling Lemma 3.7 from Chapter 3:

Lemma 4.5 For any object b of a bicategory B, the classifying spaces of the comma
bicategories B↓b and b↓B are contractible, that is, B(B↓b) ' pt ' B(b↓B).

We also need the auxiliary result below. To state it, we use that, for any given
diagram F : A → B ← A′ : F ′, with F a lax functor and F ′ an oplax functor, and for
each objects a of A and a′ of A′, there are normal homomorphisms

Fa↓F ′ J // F ↓F ′ F ↓F ′a′,J ′oo (4.16)

where J acts on cells by

(f0, a
′
0)

(β,u′)
**

(β̄,ū′)

44
⇓α′ (f1, a

′
1) � J // (a, f0, a

′
0)

(1a,ı(β,u′),u′)
++

(1a,ı(β̄,ū′),ū′)

33
⇓(1,α′) (a, f1, a

′
1),

where, for any 1-cell (β, u′) : (f0, a
′
0)→ (f1, a

′
1) in Fa↓F ′, the 2-cell ı(β, u′) is defined

as the composite

ı(β, u′) =
(
F ′u′ ◦ f0

β
=⇒ f1 ◦ 1Fa

1◦F̂a=⇒ f1 ◦ F1a
)
,

and whose constraints, at pairs of 1-cells (f0, a
′
0)

(β1,u′1)
// (f1, a

′
1)

(β2,u′2)
// (f2, a

′
2) in Fa↓F ′,

are the 2-cells of F ↓F ′

(l1a , 1u′2◦u′1) : (1a ◦ 1a, ı(β2, u
′
2)} ı(β1, u

′
1), u′2 ◦ u′1) ∼= (1a, ı(β2 } β1, u

′
2 ◦ u′1), u′2 ◦ u′1).

Similarly, J ′ acts by

(a0, f0)

(u,β)
**

(ū,β̄)

44
⇓α (a1, f1) � J ′ // (a0, f0, a

′)

(u,ı′(u,β),1a′ )
++

(ū,ı′(ū,β̄),1a′ )

22
⇓(α,1) (a1, f1, a

′),
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where, for any 1-cell (u, β) : (a0, f0)→ (a1, f1) in F ↓F ′a′, the 2-cell ı′(u, β) is defined
as the composites

ı′(u, β) =
(
F ′1a′ ◦ f0

F̂ ′◦1
=⇒ 1F ′a′ ◦ f0

β
=⇒ f1 ◦ Fu

)
,

and whose constraints, at pairs of 1-cells (a0, f0)
(u1,β1)// (a1, f1)

(u2,β2)// (a2, f2) in F ↓F ′a′,
are the 2-cells of F ↓F ′

(1u2◦u1 , l1a′ ) : (u2 ◦ u1, ı′(u2, β2)} ı′(u1, β1), 1a′ ◦ 1a′) ∼= (u2 ◦ u1, ı′(u2 ◦ u1, β2 } β1), 1a′).

Lemma 4.6 Let A F // B A′F ′oo be any diagram of bicategories, where F is a lax
functor and F ′ is an oplax functor.

(i) If A is a category with an initial object 0, then the homomorphism J in (4.16)
induces a homotopy equivalence on classifying spaces, B(F 0↓F ′) ' B(F ↓F ′).

(ii) If A′ is a category with a terminal object 1, then the homomorphism J ′ in
(4.16) induces a homotopy equivalence on classifying spaces, B(F ↓F ′1) ' B(F ↓F ′).

Proof: We only prove (i) since the proof of (ii) is parallel. Let 〈a〉 : 0→ a be the unique
morphism in A from the initial object to a. There is a 2-functor L : F ↓F ′ → F 0↓F ′
given on cells by

(a0, f0, a
′
0)

(u,β,u′)
++

(u,β̄,ū′)

33
⇓(1,α′) (a1, f1, a

′
1)

L7→ (f0 ◦ F 〈a0〉,a′0)

(`(u,β,u′),u′)
++

(`(u,β̄,ū′),ū′)

33
⇓α′ (f1 ◦ F 〈a1〉, a′1),

where, for any 1-cell (u, β, u′) : (a0, f0, a
′
0) → (a1, f1, a

′
1) of F ↓ F ′, `(u, β, u′) is the

2-cell of B obtained by pasting the diagram

F 0

`(u, β, u′) :

r−1·F̂
⇒F 〈a0〉

��

1 // F 0

F 〈a1〉
��

Fa0

β
⇒f0

��

Fu // Fa1

f1

��
F ′a′0 F ′u′

// F ′a′1

that is,

`(u, β, u′) =
(
F ′u′ ◦ (f0 ◦ F 〈a0〉)

a−1

=⇒ (F ′u′ ◦ f0) ◦ F 〈a0〉
β◦1
=⇒ (f1 ◦ Fu) ◦ F 〈a0〉

a
=⇒

f1 ◦ (Fu ◦ F 〈a0〉)
1◦F̂
=⇒ f1 ◦ F (u ◦ 〈a0〉) = f1 ◦ F 〈a1〉

r−1

=⇒ (f1 ◦ F 〈a1〉) ◦ 1
)
.

In addition, there are two pseudo-transformations

1F0↓F ′ ⇒ LJ, JL⇒ 1F↓F ′ .
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The first one has as a component, at any object (f, a′) of F 0↓F ′, the 1-cell

(η(f, a′), 1a′) : (f, a′)→ (f ◦ F10, a
′),

η(f, a′) =
(
F ′1a′ ◦ f

F̂ ′◦1 +3 1F ′a′ ◦ f
l +3 f

r−1
+3 f ◦ 1F0

1◦F̂ +3 f ◦ F10
r−1
+3 (f ◦ F10) ◦ 1F0

)
while its naturality component, at any 1-cell (β, u′) : (f0, a

′
0) → (f1, a

′
1) of F 0↓F ′, is

given by the canonical isomorphism l−1 · r : u′ ◦ 1a′0
∼= 1a′1 ◦ u

′,

(f0, a
′
0)

(η,1)
��

(β,u′) //

∼=l−1·r

(f1, a
′
1)

(η,1)
��

(f0 ◦ F10, a
′
0)

(`(10,ı(β,u
′),u′),u′)

// (f1 ◦ F10, a
′
1).

As for the pseudo-transformation JL⇒ 1F↓F ′ , it associates to an object (a, f, a′)
in F ↓F ′ the 1-cell

(〈a〉, ε(a, f, a′), 1a′) : (0, f ◦ F 〈a〉, a′)→ (a, f, a′)

ε(a, f, a′) =
(
F ′1a′ ◦ (f ◦ F 〈a〉)F̂

′◦1 +3 1F ′a′ ◦ (f ◦ F 〈a〉) l +3 f ◦ F 〈a〉
)

while its naturality component, at a 1-cell (u, β, u′) : (a0, f0, a
′
0) → (a1, f1, a

′
1) of

F ↓F ′, is

(0, f0 ◦ F 〈a0〉, a′0)

(〈a0〉,ε,1)
��

(10,ı(`(u,β,u
′),u′),u′) //

∼=
(1,l−1·r)

(0, f1 ◦ F 〈a1〉, a′1)

(〈a1〉,ε,1)
��

(a0, f0, a
′
0)

(u,β,u′)
// (a1, f1, a

′
1).

Therefore, owing to Lemma 4.3, there are homotopies BJ BL ⇒ 1B(F↓F ′) and
1B(F0↓F ′) ⇒ BLBJ making BJ a homotopy equivalence. �

As we will see below, the following result is the key for proving Theorem 4.1.

Lemma 4.7 (i) If an oplax functor F ′ : A′ → B has the property Bo, then, for any
lax functor F : A → B, the commutative square

B(F ↓F ′) BF̄ //

BP
��

B(B↓F ′)
BP
��

BA BF // BB,

(4.17)

induced by the first square in (4.10) on classifying spaces, is a homotopy pullback.
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(ii) If a lax functor F : A → B has the property Bl, then, for any oplax functor
F ′ : A′ → B, the commutative square

B(F ↓F ′) BP ′ //

BF̄ ′
��

BA′

BF ′

��
B(F ↓B)

BP ′ // BB,

(4.18)

induced by the second square in (4.10) on classifying spaces, is a homotopy pullback.

Proof: Suppose that F ′ : A′ → B is any given oplax functor having the property Bo.
We will prove that the simplicial map ∆P : ∆(B ↓F ′) → ∆B, induced on geometric
nerves by the projection 2-functor P : B ↓F ′ → B in (4.9), satisfies the condition (i)
of Lemma 4.1. To do so, let x : [n]→ B be any geometric n-simplex of B. Thanks to
Lemma 4.2 (i), the square

x↓F ′ x̄ //

P
��

B↓F ′

P
��

[n]
x // B

is a pullback in the category of bicategories and lax functors, whence the square
induced by taking geometric nerves

∆(x↓F ′) ∆x̄ //

∆P
��

∆(B↓F ′)
∆P
��

∆[n]
∆x // ∆B

is a pullback in the category of simplicial sets. Therefore, ∆P−1(∆x) ∼= ∆(x↓F ′) .

Furthermore, for any map σ : [m]→ [n] in the simplicial category, the diagram of lax
functors

xσ↓F ′

σ̄ ((
xσ

,,
P

��
x↓F ′

P

��

x̄
// B↓F ′

P

��

[m]

σ ((

xσ

,,[n] x
// B

is commutative, whence the induced diagram of simplicial maps

∆(xσ↓F ′)
∆σ̄ **

∆xσ

,,
∆P

��

∆(x↓F ′)

∆P

��

∆x̄
// ∆(B↓F ′)

∆P

��

∆[m]

∆σ **

∆(xσ)

,,∆[n]
∆x

// ∆B
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is also commutative. Consequently, the diagram below commutes.

∆P−1(∆x∆σ)

∼=
��

// ∆P−1(∆x)

∼=
��

∆(xσ↓F ′) ∆σ̄ // ∆(x↓F ′)

Therefore, it suffices to prove that the lax functor σ̄ : xσ ↓F ′ → x ↓F ′ induces a
homotopy equivalence on classifying spaces, B(xσ↓F ′) ' B(x↓F ′). But note that we
have the diagram

xσ0↓F ′ J //

x(0,σ0)∗

��
⇒θ

xσ↓F ′

σ̄
��

x0↓F ′ J // x↓F ′

where the homomorphisms J are given as in (4.16), and θ is the pseudo-transformation
that assigns to every object (f, a′) of xσ0↓F ′ the 1-cell of x↓F ′(

(0, σ0), θ(f, a′), 1a′
)

: (0, f ◦ x(0, σ0), a′)→ (σ0, f, a′),

where the 2-cell of B
x0

x(0,σ0) //

f◦x(0,σ0)
�� ⇒

θ(f,a′)

xσ0

f
��

F ′a′
F ′1a′

// F ′a′

is the composite

θ(f, a′) =
(
F ′1a′ ◦ (f ◦ x(0, σ0))

F̂ ′◦1
=⇒ 1F ′a′ ◦ (f ◦ x(0, σ0))

l
=⇒ f ◦ x(0, σ0)

)
,

and its naturality component at any 1-cell (β, u′) : (f0, a
′
0)→ (f1, a

′
1)

(0, f0 ◦ x(0, σ0), a′0)
((0,0),ı(β}x(0,σ0),u′),u′) //

((0,σ0),θ(f0,a′0),1a′0
)

��
∼=

(1,l−1·r)

(0, f1 ◦ x(0, σ0), a′1)

((0,σ0),θ(f1,a′1),1a′1
)

��
(σ0, f0, a

′
0)

((σ0,σ0),ı(β,u′),u′)
// (σ0, f1, a

′
1)

is given by the canonical isomorphism l−1 · r : u′ ◦ 1a′1
∼= 1a′2 ◦ u

′ in A′. Therefore, by
Lemma 4.3, the induced square on classifying spaces

B(xσ0↓F ′)

⇒Bθ

BJ //

Bx(0,σ0)∗

��

B(xσ↓F ′)

Bσ̄
��

B(x0↓F ′) BJ // B(x↓F ′)
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is homotopy commutative. Moreover, by Lemma 4.6(i), both maps BJ in the square
are homotopy equivalences and, since the oplax functor F ′ has the property Bo, the
map Bx(0, σ0)∗ : B(xσ0 ↓ F ′) → B(x0 ↓ F ′) is also a homotopy equivalence. It
follows that the remaining map in the square has the same property, that is, the map
Bσ̄ : B(xσ↓F ′) ' B(x↓F ′) is a homotopy equivalence, as required.

Suppose now that F : A → B is any lax functor. Again, by Lemma 4.2(i), the first
square in (4.10) is a pullback in the category of bicategories and lax functors, whence
the square induced by taking geometric nerves

∆(F ↓F ′) ∆F̄ //

∆P
��

∆(B↓F ′)
∆P
��

∆A ∆F // ∆B

(4.19)

is a pullback in the category of simplicial sets. By what has been already proven
above, it follows from Lemma 4.1 (iii) that the commutative square

|∆(F ↓F ′)|
|∆F̄ | //

|P |
��

|∆(B↓F ′)|

|P |
��

(4.14)
'

|∆A|
|∆F | // |∆B|

B(F ↓F ′) BF̄ //

BP
��

B(B↓F ′)

BP
��

BA BF // BB

is a homotopy pullback. This completes the proof of part (i) of the lemma.

The proof of part (ii) follows similar lines, but using the geometric nerve functor
∇ instead of ∆ as above. Thus, for example, given any lax functor F : A → B having
the property Bl, we start by proving that the simplicial map ∇P ′ : ∇(F ↓B) → ∇B
satisfies the condition (i) in Lemma 4.1, which we do by first getting natural simplicial
isomorphisms ∇P ′−1(∇x′) ∼= ∇(F ↓x′), for the different oplax functors x′ : [n] → B
(i.e., the simplices of ∇B), and then by proving that any simplicial map σ : [m]→ [n]
induces a homotopy equivalence B(F ↓ x′σ) ' B(F ↓ x′). Here, we need to use the
homomorphisms J ′ : F ↓x′n → F ↓x′ in (4.16), which induce homotopy equivalences
on classifying spaces by Lemma 4.6 (ii), and the existence of a pseudo-transformation
θ′ : σ̄ J ′ ⇒ J ′ x′(σm, n)∗, which assigns to every object (a, f) of F ↓ x′σm the 1-cell(
1a, θ

′(a, f), (σm, n)
)

: (a, f, σm)→ (a,x′(σm, n) ◦ f, n), where

θ′(a, f) =
(
x′(σm, n) ◦ f r−1

=⇒ (x′(σm, n) ◦ f) ◦ 1Fa
1◦F̂
=⇒ (x′(σm, n) ◦ f) ◦ F1a

)
.

Using Lemma 4.2 (ii) therefore, we deduce that, for any lax functor F ′ : A′ → B, the
square

∇(F ↓F ′) ∇P
′
//

∇F̄ ′
��

∇A′

∇F ′
��

∇(F ↓B)
∇P ′ // ∇B,
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is a pullback in the category of simplicial sets which, by Lemma 4.1, induces a homo-
topy pullback square on geometric realizations. It follows that (4.18) is a homotopy
pullback. �

With the corollary below we will be ready to complete the proof of Theorem 4.1.

Corollary 4.1 (i) For any lax functor F : A → B, the projection 2-functor P :
F ↓B → A induces a homotopy equivalence on classifying spaces, B(F ↓B) ' BA.

(ii) For any oplax functor F ′ : A′ → B, the projection 2-functor P ′ : B ↓F ′ → A′
induces a homotopy equivalence on classifying spaces, B(B↓F ′) ' BA′.

Proof: Once again we limit ourselves to proving (i). Let F : A → B be a lax functor.

The identity homomorphism 1B : B → B has the property Bo since, for any object
b ∈ ObB, the classifying space of the comma bicategory b↓B is contractible, by Lemma
4.5. Therefore, Lemma 4.7 (i) applies to the case when F ′ = 1B, and tells us that the
induced commutative square

B(F ↓B)
BF̄ //

BP
��

B(B↓B)

BP
��

BA BF // BB,

is a homotopy pullback. So, it is enough to prove that the map BP : B(B↓B)→ BB
is a homotopy equivalence. To do so, let b be any object of B, and let us particularize
the square above to the case where F = b : [0] → B. Then, we find the commutative
homotopy pullback square

B(b↓B)
Bb̄ //

BP
��

B(B↓B)

BP
��

pt
Bb // BB,

where, by Lemma 4.5, the left vertical map is a homotopy equivalence. This tells us
that the different homotopy fibers of the map BP : B(B↓B)→ BB over the 0-cells of
BB are all contractible, and consequently BP is actually a homotopy equivalence. �

We can now complete the proof of Theorem 4.1:

For any diagram A F // B A′F ′oo , where F is a lax functor and F ′ is an oplax
functor, the square (4.15) occurs as the outside region in both of the following two
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diagrams:

B(F ↓F ′)
(4.17)

=

BP
��

BP ′

&&
BF̄ // B(B↓F ′)

⇒BωBP
��

BP ′ // BA′

BF ′

��
BA

=

BF

77
BF // BB B1B // BB

B(F ↓F ′)

BP

$$

=

BP ′ //

BF̄ ′

��
(4.18)

BA′

BF ′

��
BF ′

||

=
B(F ↓B)

⇒Bω
′

BP
��

BP ′ // BB

B1B
��

BA
BF

// BB
(4.20)

where the inner squares with the homotopies labelled Bω and Bω′ are the particular
cases of the squares (4.15) obtained when F = 1B and when F ′ = 1B, respectively.
The homotopies are respectively induced, by Lemma 4.3, by the oplax transformations

B↓F ′ P ′ //

P
��

A′

F ′
��

B

ω⇒
1B // B

F ↓B P ′ //

P
��

B
1B
��

A

ω′⇒
F // B

which are defined as follows: The oplax transformation ω associates to any object
(b, f, a′) of B ↓F ′ the 1-cell f : b → F ′a′, and its naturality component at any 1-cell
(p, β, u′) : (b0, f0, a

′
0) → (b1, f1, a

′
1) is the 2-cell β : F ′u′ ◦ f0 ⇒ f1 ◦ p. Similarly, ω′

associates to any object (a, f, b) of F ↓ B the 1-cell f : Fa → b, and its naturality
component at any 1-cell (u, β, p) : (a0, f0, b0) → (a1, f1, b1) is β : p ◦ f0 ⇒ f1 ◦ Fu.
Since, by Corollary 4.1, both maps BP ′ : B(B↓F ′) → BA′ and BP : B(F ↓B) → BA
are homotopy equivalences, both squares are homotopy pullbacks. The other inner
squares are those referred to therein.

The above implies the part (i) of Theorem 4.1 and, furthermore, it follows that
the square (4.15) is a homotopy pullback whenever one of the inner squares (4.17) or
(4.18) is a homotopy pullback. Therefore, Lemma 4.7 implies part (ii).

For proving part (iii), suppose a lax functor F : A → B is given such that the
square (4.15) is a homotopy pullback for any F ′ = b : [0] → B, b ∈ ObB. It follows
from the diagram on the left in (4.20) that the inner square (4.17)

B(F ↓b) BF̄ //

BP
��

B(B↓b)

BP
��

BA BF // BB
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is a homotopy pullback for any object b ∈ B. Then, if p : b0 → b1 is any 1-cell of B,
since we have the commutative diagram

B(F ↓b0)

BP

��

BF̄ //
Bp∗
((

B(B↓b0)

BP

��

Bp∗
''

B(F ↓b1)
BF̄ //

BPvv

B(B↓b1)

BPvv
BA BF // BB

we deduce that the square

B(F ↓b0)
BF̄ //

Bp∗
��

B(B↓b0)

Bp∗
��

B(F ↓b1)
BF̄ // B(B↓b1)

is also a homotopy pullback. Therefore, as B(B ↓ b0) ' pt ' B(B ↓ b1), by Lemma
4.5, we conclude that the induced map Bp∗ : B(F ↓ b0) ' B(F ↓ b1) is a homotopy
equivalence. That is, the lax functor F has the property Bl. �

As a corollary, we obtain again Theorems 3.2 and 3.3:

Corollary 4.2 (i) If a lax functor F : A → B has the property Bl then, for every
object b ∈ B, there is an induced homotopy fiber sequence

B(F ↓b) BP // BA BF // BB.

(ii) If an oplax functor F ′ : A′ → B has the property Bo then, for every object
b ∈ B, there is an induced homotopy fiber sequence

B(b↓F ′) BP ′ // BA′ BF ′ // BB.

Proof: It follows from Theorem 4.1, by taking F ′ = b : [0]→ B to obtain part (i) and
F = b : [0]→ B for part (ii). �

Corollary 4.3 (i) Let F : A → B be a lax functor such that the classifying spaces of
its homotopy-fiber categories are contractible, that is, B(F ↓ b) ' pt for every object
b ∈ B. Then, the induced map on classifying spaces BF : BA → BB is a homotopy
equivalence.

(ii) Let F ′ : A′ → B be an oplax functor such that the classifying spaces of its
homotopy-fiber categories are contractible, that is, B(b ↓ F ′) ' pt for every object
b ∈ B. Then, the induced map on classifying spaces BF ′ : BA′ → BB is a homotopy
equivalence.
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Next we study conditions on a bicategory B in order for the square (4.15) to always
be a homotopy pullback. We use that, for any two objects b, b′ of a bicategory B,
there is a diagram

B(b, b′)
γ
⇒

//

��

[0]

b′
��

[0]
b // B,

(4.21)

in which γ is the lax transformation defined by γf = f , for any 1-cell f : b→ b′ in B,
and whose naturality component at a 2-cell β : f0 ⇒ f1, for any f0, f1 : b→ b′, is the

composite 2-cell γ̂β =
(
1b′ ◦ f0

l∼= f0
β⇒ f1

r−1

∼= f1 ◦ 1b
)
.

Theorem 4.2 The following properties of a bicategory B are equivalent:

(i) For any diagram of bicategories A F // B A′F ′oo , where F is a lax functor and
F ′ is an oplax functor, the induced square (4.15)

B(F ↓F ′)
⇒

BP ′ //

BP
��

BA′

BF ′

��
BA BF // BB

is a homotopy pullback.

(ii) Any lax functor F : A → B has the property Bl.

(iii) Any oplax functor F ′ : A′ → B has the property Bo.

(iv) For any object b and 1-cell p : b0 → b1 in B, the functor p∗ : B(b, b0)→ B(b, b1)
induces a homotopy equivalence on classifying spaces, BB(b, b0) ' BB(b, b1).

(v) For any object b and 1-cell p : b0 → b1 in B, the functor p∗ : B(b1, b)→ B(b0, b)
induces a homotopy equivalence on classifying spaces, BB(b1, b) ' BB(b0, b).

(vi) For any two objects b, b′ ∈ B, the homotopy commutative square

BB(b, b′)

Bγ⇒

//

��

pt

Bb′
��

pt
Bb // BB,

induced by (4.21), is a homotopy pullback. That is, the whisker map

BB(b, b′)→ {γ : I → BB | γ(0) = Bb, γ(1) = Bb′} ⊆ BBI

is a homotopy equivalence.
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Proof: The implications (i) ⇔ (ii) ⇔ (iii) are all direct consequences of Theorem
4.1. For the remaining implications, let us take into account that, for any objects
b, b′ ∈ B there is quite an obvious isomorphism of categories b↓b′ ∼= B(b, b′). With this
identification in mind, we see that the homomorphism b : [0] → B has the property
Bl (resp. Bo) if and only if, for any 1-cell p : b0 → b1 in B, the functor p∗ : B(b, b0)→
B(b, b1) (resp. p∗ : B(b1, b)→ B(b0, b)) induces a homotopy equivalence on classifying
spaces. Therefore, the implications (ii)⇒ (iv) and (iii)⇒ (v) are clear.

Furthermore, we see that the square in (vi) identifies the square

B(b↓b′)
⇒

BP ′ //

BP
��

B[0]

Bb′

��
B[0]

Bb // BB.

Then, for b fixed, it follows from Theorem 4.1 that the square in (vi) is a homotopy
pullback for any b′ if and only if b : [0]→ B has the property Bl, that is, the equivalence
of statements (vi)⇔ (iv) holds.

Finally, to complete the proof, we are going to prove that (iv)⇒ (iii) and we shall
leave it to the reader the proof that (v) ⇒ (ii) since it is parallel. By hypothesis,
for any object b ∈ ObB, the normal homomorphism b : [0] → B has the property Bl.
Then, by Theorem 4.1 (ii), for any oplax functor F ′ : A′ → B the square

B(b↓F ′) BP ′ //

BP
��

⇒

BA′

BF ′

��
B[0]

Bb // BB

is a homotopy pullback for any object b ∈ B. Therefore, by Theorem 4.1 (iii), F ′ has
the property Bo. �

We can state that

(B) a bicategory B has the property B if it has the properties in Theorem 4.2.

For example, bigroupoids, that is, bicategories whose 1-cells are invertible up to
a 2-cell, and whose 2-cells are strictly invertible, have the property B: If B is any
bigroupoid, for any object b and 1-cell p : b0 → b1 in B, the functor p∗ : B(b1, b) →
B(b0, b) is actually an equivalence of categories and, therefore, induces a homotopy
equivalence on classifying spaces Bp∗ : BB(b1, b) ' BB(b0, b). Recall that, by the
correspondence B 7→ BB, bigroupoids correspond to homotopy 2-types, that is, CW-
complexes whose nth homotopy groups at any base point vanish for n ≥ 3 (see Duskin
[58, Theorem 8.6]).
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Corollary 4.4 7 If a bicategory B has the property B, then, for any object b ∈ B,
there is a homotopy equivalence

Ω(BB,Bb) ' BB(b, b) (4.22)

between the loop space of the classifying space of the bicategory with base point Bb and
the classifying space of the category of endomorphisms of b in B.

The above homotopy equivalence is already known when the bicategory is strict,
that is, when B is a 2-category. It appears as a main result in the paper by Del Hoyo
[84, Theorem 8.5], and it was also stated at the same time Cegarra in [43, Example
4.4]. Indeed, that homotopy equivalence (4.22), for the case when B is a 2-category,
can be deduced from a result by Tillmann about simplicial categories in [121, Lemma
3.3].

4.3.1 Homotopy pullbacks of 2-categories.

As we recalled in the introduction, the category 2-Cat of (strict) 2-categories and 2-
functors has a Thomason-type Quillen model structure [2, Théorème 6.27], such that
the classifying space functor is equivalence of homotopy theories between 2-categories
and topological spaces [2, Corollaire 6.31]. Thus, in this model category, a 2-functor
F : A → B is a weak equivalence if and only if the induced map on classifying spaces
BF : BA → BB is a homotopy equivalence, and a commutative square in 2-Cat

C G′ //

G
��

A′

F ′

��
A F // B

(4.23)

is a homotopy pullback if and only if the induced on classifying spaces

BC BG′ //

BG
��

BA′

BF ′

��
BA BF // BB

(4.24)

is a homotopy pullback of spaces (see Remark 4.1). This is, for example, the case
when F or F ′ in (4.23) is a fibration, C = A×B A′ is the pullback 2-category, and G
and and G′ are the respective projection 2-functors.

Our result in Theorem 4.1 has a natural interpretation in this setting as below. Ob-
serve that, when F and F ′ are 2-functors between 2-categories as above, the homotopy-
fiber product bicategory F ↓ F ′ as well as the homotopy-fiber bicategories F ↓ b are
actually 2-categories.

7This is also Example 3.3.
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Proposition 4.1 Let (4.23) be a commutative square in 2-Cat. Suppose the 2-
functor F has property Bl. Then the square is a homotopy pullback in the model
category 2-Cat (with the ‘Thomason’ model structure) if and only if the canonical
2-functor

V : C → F ↓F ′

c

h
&&

h′
88⇓α c′ � V // (Gc, 1, G′c)

(Gh,1,G′h)

**

(Gh′,1,G′h′)

44
⇓(Gα,G′α) (Gc′, 1, G′c′),

is a weak equivalence of 2-categories.

Proof: The square (4.24) is the composite of the induced squares

BC BV //

BG

��

B(F ↓F ′) BP ′ //

BP

��
⇒

BA′

BF ′

��
BA BA BF // BB,

(4.25)

where the right square is (4.15). In effect, one easily verifies that PV = G and P ′V =
G′. Further, the homotopy BF BP ⇒ BF ′BP ′ is induced by the oplax transformation
ω : FP ⇒ F ′P ′ with ω(a, f, a′) = f : Fa→ Fa′, and whose naturality component at
any 1-cell (u, β, u′) : (a0, f0, a

′
0)→ (a1, f1, a

′
1) is the 2-cell β : F ′u′ ◦ f0 ⇒ f1 ◦Fu. The

composite ωV : FPV = FG ⇒ F ′G′V = F ′G′ is then the identity transformation,
whence BωBV is the static homotopy on FG = F ′G′.

Suppose now that F has property Bl, so that the right square in (4.25) is a homo-
topy pullback of spaces, by Theorem 4.1. It follows that the composite square (4.24)
is a homotopy pullback if and only if the left square in (4.25) is as well. As the later
is a homotopy pullback if and only if the map BV is a homotopy equivalence, the
proposition follows. �

4.3.2 The case when both functors are lax.

For a diagram A F // B CGoo , where both F and G are lax functors, the comma
bicategory F ↓G is not defined (unless G is a homomorphism). However, we can obtain
a bicategorical model for the homotopy pullback of the maps induced on classifying

spaces BA BF // BB BCBGoo as follows: Let

F ↓2G := F ↓P ′

be the comma bicategory defined as in (4.5) by the diagram A F−→ B P ′←− G ↓ B,
where P ′ is the projection 2-functor (4.9) (the notation is taken from Dwyer, Kan,
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and Smith in [60] and Barwick and Kan in [13, 14]). Thus, F ↓2G has 0-cells tuples

(a, f, b, g, c), where Fa
f→ b

g← Gc are 1-cells of B. A 1-cell

(u, β, p, β′, v) : (a0, f0, b0, g0, c0)→ (a1, f1, b1, g1, c1)

in F ↓2 G consists of 1-cells u : a0 → a1, p : b0 → b1, and v : c0 → c1, in A, B, and C,
respectively, together with 2-cells β and β′ of B as in the diagram

Fa0
f0 //

Fu
��

β⇐

b0
β′⇒p

��

Gc0
g0oo

Gv
��

Fa1
f1

// b1 Gc1,g1

oo

and a 2-cell

(a0, f0, b0, g0, c0)

(u,β,p,β′,v)

**
⇓(α,δ,ρ)

(ū,β̄,p̄,β̄′,v̄)

44
(a1, f1, b1, g1, c1),

is given by 2-cells α : u ⇒ ū in A, δ : p ⇒ p̄ in B, and ρ : v ⇒ v̄ in C, such that the
diagrams below commute.

p ◦ f0
δ◦1 +3

β
��

p̄ ◦ f0

β̄
��

f1 ◦ Fu 1◦Fα +3 f1 ◦ Fū

p ◦ g0
δ◦1 +3

β′

��

p̄ ◦ g0

β̄′

��
g1 ◦Gv

1◦Gρ +3 g1 ◦Gv̄

There is a (non-commutative) square

F ↓2G
Q //

P
��

C

G
��

A F // B

(4.26)

where P and Q are projection 2-functors, which act on cells of F ↓2G by

a0

u
''

ū

77⇓α a1
�Poo (a0, f0, b0, g0, c0)

(u,β,p,β′,v)

**
⇓(α,δ,ρ)

(ū,β̄,p̄,β̄′,v̄)

44
(a1, f1, b1, g1, c1) � Q // c0

v
((

v̄
66⇓ρ c1,

and we have the result given below.
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Theorem 4.3 Let A F // B CGoo be a diagram where F and G are lax functors.

(i) There is a homotopy BF BP ⇒ BGBQ so that the square below, which is
induced by (4.26) on classifying spaces, is homotopy commutative.

B(F ↓2G)

⇒

BQ //

BP
��

BC

BG
��

BA BF // BB

(ii) The square above is a homotopy pullback whenever F or G has property Bl.

Proof: The part (i) follows from Theorem 4.1 (i) and the definition of F ↓2G. For the
part (ii), since F ↓2G

∼= G↓2 F , it is enough, by symmetry, to prove the theorem when
F has the property Bl. In this case, we have the homotopy commutative diagram

B(F ↓2G)

(4.15)

=

BP
��

BQ

%%
BP ′ // B(G↓B)

(4.15)BP ′

��

BP // BC

BG
��

BA
=

BF

88
BF // BB B1B // BB

where, by Theorem 4.1, the inner squares (4.15) are both homotopy pullback. Then,
the outside square is also a homotopy pullback, as claimed. �

4.4 Homotopy pullbacks of monoidal categories.

Recall [100, 110] that a monoidal category (M,⊗) = (M,⊗, I,a, l, r) consists of a
category M equipped with a tensor product ⊗ :M×M→M, a unit object I, and
natural and coherent isomorphisms a : (m3⊗m2)⊗m1

∼= m3⊗(m2⊗m1), l : I⊗m ∼= m,
and r : m⊗ I ∼= m. Any monoidal category (M,⊗) can be viewed as a bicategory
ΣM with only one object, say ∗, the objects m of M as 1-cells m : ∗ → ∗, and the
morphisms of M as 2-cells. Thus, ΣM(∗, ∗) =M, and the horizontal composition of
cells is given by the tensor functor. The identity at the object is 1∗ = I, the unit object
of the monoidal category, and the associativity, left unit and right unit constraints for
ΣM are precisely those of the monoidal category, that is, a, l, and r, respectively.
Furthermore, a monoidal functor F = (F, F̂ ) : (N ,⊗)→ (M,⊗) amounts precisely to
a homomorphism ΣF : ΣN → ΣM.

For any monoidal category (M,⊗), the Grothendieck nerve (4.12) of the bicate-
gory ΣM is exactly the pseudo-simplicial category that the monoidal category defines
by the reduced bar construction (see Jardine [86, Corollary 1.7]), whose category of
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p-simplices isMp, the p-fold power of the underlying categoryM. Therefore, the clas-
sifying space of the monoidal category B(M,⊗) [86, §3] is the same as the classifying
space BΣM of the one-object bicategory it defines [36], and thus the bicategorical re-
sults obtained above are applicable to monoidal functors between monoidal categories.
This, briefly, can be done as follows:

Given any diagram (N ,⊗)
F // (M,⊗) (N ′,⊗)

F ′oo , where F and F ′ are monoidal
functors between monoidal categories, the “homotopy- fiber product bicategory”

F
⊗
↓F ′ (4.27)

(the notation
⊗
↓ is to avoid confusion with the comma category F ↓F ′ of the underlying

functors) has as 0-cells the objects m ∈ M. A 1-cell (n, f, n′) : m0 → m1 of F
⊗
↓ F ′

consists of objects n ∈ N and n′ ∈ N ′, and a morphism f : F ′n′ ⊗m0 → m1 ⊗ Fn in

B. A 2-cell in F
⊗
↓F ′,

m0

(n,f,n′)

&&
⇓(u,u′)

(n̄,f̄ ,n̄′)

66 m1,

is given by a pair of morphisms, u : n→ n̄ in N and u′ : n′ → n̄′ in N ′, such that the
diagram below commutes.

F ′n′ ⊗m0
F ′u′⊗ 1 //

f
��

F ′n̄′ ⊗m0

f̄
��

m1 ⊗ Fn
1⊗Fu // m1 ◦ Fn̄

The vertical composition of 2-cells is given by the composition of morphisms in N

and N ′. The horizontal composition of the 1-cells m0
(n1,f1,n′1)

// m1
(n2,f2,n′2)

// m2 is
the 1-cell

(n2 ⊗ n1, f2 } f1, n
′
2 ⊗ n′1) : m0 → m2,

f2 } f1 =
(
F ′(n′2 ⊗ n′1)⊗m0

F̂ ′−1⊗1∼= (F ′n′2 ⊗ F ′n′1)⊗m0

a∼= F ′n′2 ⊗ (F ′n′1 ⊗m0)
1⊗f1−→

F ′n′2 ⊗ (m1 ⊗ Fn1)
a−1

∼= (F ′n′2 ⊗m1)⊗ Fn1
f2⊗1−→ (m2 ⊗ Fn2)⊗ Fn1

a∼=

m2 ⊗ (Fn2 ◦ Fn1)
1⊗F̂∼= m2 ⊗ F (n2 ⊗ n1)

)
,

and the horizontal composition of 2-cells is given by the tensor product of morphisms

in N and N ′. The identity 1-cell, at any 0-cell m, is (I,
◦
1m, I) : m→ m, where

◦
1m =

(
F ′I⊗m

F̂ ′−1⊗1∼= I⊗m
l∼= m

r−1

∼= m⊗ I
1⊗F̂∼= m⊗ F I

)
.
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The associativity, right, and left unit constraints of the bicategory F
⊗
↓F ′ are provided

by those of N and N ′ by the formulas

a(n3,f3,n′3),(n2,f2,n′2),(n1,f1,n′1) =(an3,n2,n1 ,an′3,n′2,n′1),

l(n,f,n′) =(ln, ln′), r(n,f,n′) =(rn, rn′).

Remark 4.2 Let us stress that F
⊗
↓ F ′ is not a monoidal category but a genuine

bicategory, since it generally has more than one object.

In particular, for any monoidal functor F : (N ,⊗) → (M,⊗), we have the
homotopy-fiber bicategories (cf. [35])

F
⊗
↓ I, I

⊗
↓F (4.28)

where we denote by I : ([0],⊗) → (M,⊗) the monoidal functor that carries 0 to the
unit object I, and whose structure isomorphism is lI = rI : I ⊗ I ∼= I. Every object
m ∈M determines 2-endofunctors

m⊗− : F
⊗
↓ I→ F

⊗
↓ I, −⊗m : I

⊗
↓F → I

⊗
↓F,

respectively given on cells by

m0

(n,f)

%%

(n̄,f̄)

77⇓u m1
�m⊗−// m⊗m0

(n,m�f)
((

(n̄,m�f̄)

55
⇓u m⊗m1, m0

(g,n′)

##

(ḡ,n̄′)

88⇓u′ m1
�−⊗m// m0⊗m

(g�m,n′)
))

(ḡ�m,n̄′)
44

⇓u′ m1⊗m,

where, for any (n, f) : m0 → m1 in F
⊗
↓ I and (g, n) : m0 → m1 in I

⊗
↓F ,

m� f=
(
I⊗ (m⊗m0)

l∼= m⊗m0

1⊗l−1

∼= m⊗ (I⊗m0)
1⊗f−→ m⊗ (m1 ⊗ Fn)

a−1

∼= (m⊗m1)⊗ Fn
)
,

g �m =
(
Fn⊗ (m0 ⊗m)

a−1

∼= (Fn⊗m0)⊗m g⊗1−→ (m1 ⊗ I)⊗m
r⊗1∼= m1 ⊗m

r−1

∼= (m1 ⊗m)⊗ I
)
.

We state that

(Bl) the monoidal functor F has the property Bl if, for any object m ∈ M, the

induced map B(m⊗−) : B(F
⊗
↓ I)→ B(F

⊗
↓ I) is a homotopy autoequivalence.

(Bo) the monoidal functor F has the property Bo if, for any object m ∈ M, the

induced map B(−⊗m) : B(I
⊗
↓F )→ B(I

⊗
↓F ) is a homotopy autoequivalence.

Our main result here is a direct consequence of Theorem 4.1, after taking into

account the identifications B(M,⊗) = BΣM, BF = BΣF , F
⊗
↓ F ′ = ΣF ↓ ΣF ′,

F
⊗
↓ I = ΣF ↓ ∗, and I

⊗
↓ F = ∗ ↓ ΣF , and the fact that a monoidal functor has the

property Bl or Bo if and only if the homomorphism ΣF has that property. This result
is as given below.
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Theorem 4.4 (i) Suppose (N ,⊗)
F // (M,⊗) (N ′,⊗)

F ′oo are monoidal functors

between monoidal categories, such that F has the property Bl or F ′ has the property
Bo. Then, there is an induced homotopy pullback square

B(F
⊗
↓F ′)

⇒

BP ′ //

BP
��

B(N ′,⊗)

BF ′

��
B(N ,⊗)

BF // B(M,⊗).

(4.29)

Therefore, there is an induced Mayer-Vietoris type long exact sequence on homotopy
groups, based at the 0-cells B∗ of B(M,⊗), B(N ,⊗), and B(N ′,⊗) respectively, and

the 0-cell BI ∈ B(F
⊗
↓F ′),

· · · → πn+1B(M,⊗) // πnB(F
⊗

↓F ′) // πnB(N ,⊗)× πnB(N ′,⊗) // πnB(M,⊗)→

· · · → π1B(F
⊗

↓F ′) // π1B(N ,⊗)× π1B(N ′,⊗) // π1B(M,⊗) // π0B(F
⊗

↓F ′) // 0.

(ii) Given a monoidal functor F : (N ,⊗) → (M,⊗), if the square (4.29) is a
homotopy pullback for every monoidal functor F ′ : (N ′,⊗)→ (M,⊗), then F has the
property Bl. Similarly, if F ′ is a monoidal functor such that the square (4.29) is a
homotopy pullback for any monoidal functor F , as above, then F ′ has the property Bo.

Similarly, from Corollaries 4.2 and 4.3, we get the following extensions of Quillen’s
Theorems A and B to monoidal functors:

Theorem 4.5 Let F : (N ,⊗)→ (M,⊗) be any monoidal functor.
(i) If F has the property Bl, then there is an induced homotopy fiber sequence

B(F
⊗
↓ I) // B(N ,⊗) // B(M,⊗).

(ii) If F has the property Bo, then there is an induced homotopy fiber sequence

B(I
⊗
↓F ) // B(N ,⊗) // B(M,⊗).

(iii) If the classifying space of any of the two homotopy-fiber bicategories of F is

contractible, that is, if B(F
⊗
↓ I) ' pt or B(I

⊗
↓ F ) ' pt, then the induced map on

classifying spaces BF : B(N ,⊗) ' B(M,⊗) is a homotopy equivalence.

For the last statement in the following theorem, let us note that there is a diagram
of bicategories

M
γ
⇒

//

��

[0]

∗
��

[0]
∗ // ΣM

(4.30)
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in which γ is the lax transformation defined by γm = m : ∗ → ∗, for any object
m ∈ M, and whose naturality component at a morphism f : m0 → m1, is the

composite 2-cell γ̂f =
(
I ⊗m0

l∼= m0
f⇒ m1

r−1

∼= m1 ◦ I
)
. Then, we have an induced

homotopy commutative square on classifying spaces

BM
Bγ⇒

//

��

pt

∗��
pt

∗ // B(M,⊗)

and a corresponding whisker map

BM→ Ω(B(M,⊗), ∗). (4.31)

Theorem 4.2 particularizes by giving

Theorem 4.6 The following properties of a monoidal category (M,⊗) are equivalent:

(i) For any diagram of monoidal functors (N ,⊗)
F // (M,⊗) (N ′,⊗)

F ′oo , the in-

duced square (4.29)

B(F
⊗
↓F ′)

⇒

BP ′ //

BP

��

B(N ′,⊗)

BF ′

��
B(N ,⊗)

BF // B(M,⊗).

is a homotopy pullback.

(ii) Any monoidal functor F : (N ,⊗)→ (M,⊗) has property Bl.

(iii) Any monoidal functor F : (N ,⊗)→ (M,⊗) has property Bo.

(iv) For any object m ∈ M, the functor m ⊗ − : M → M induces a homotopy
autoequivalence on the classifying space BM.

(v) For any object m ∈ M, the functor − ⊗ m : M → M induces a homotopy
autoequivalence on the classifying space BM.

(vi) The whisker map (4.31) is a homotopy equivalence

BM' Ω(B(M,⊗), ∗)

between the classifying space of the underlying category and the loop space of the
classifying space of the monoidal category.
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The implications (iv) ⇒ (vi) and (v) ⇒ (vi) in the above theorem are essentially
due to Stasheff [114], but several other proofs can be found in the literature (see
Jardine [86, Propositions 3.5 and 3.8], for example). When the equivalent properties
in Theorem 4.6 hold, we say that the monoidal category is homotopy regular. For
example, regular monoidal categories (as termed by Saavedra [110, Chap. I, (0.1.3)]),
that is, monoidal categories (M,⊗) where, for every object m ∈ M, the functor
m ⊗ − : M → M is an autoequivalence of the underlying category M, and, in
particular, categorical groups (so named by Joyal and Street in [88, Definition 3.1]
and also termed Gr-categories by Breen in [21, §2, 2.1]), that is, monoidal categories
whose objects are invertible up to an isomorphism, and whose morphisms are all
invertible, are homotopy regular.

4.5 Homotopy pullbacks of crossed modules

Thanks to the equivalence between the category of crossed modules and the category
of 2-groupoids, the results in Section 4.3 can be applied to crossed modules. To do so
in some detail, we shall start by briefly reviewing crossed modules and their classifying
spaces.

Recall that, if P is any (small) groupoid, then the category of (left) P-groups has
objects the functors P → Gp, from P into the category of groups, and its morphisms,
called P-group homomorphisms, are natural transformations. If G is a P-group, then,
for any arrow p : a → b in P, we write the associated group homomorphism G(a) →
G(b) by g 7→ pg, so that the equalities 1g = g ,(q◦p)g = q(pg), and p(g · g′) = pg · pg′
hold whenever they make sense. Here, the symbol ◦ denotes composition in the
groupoid P, whereas · denotes multiplication in G. For instance, the assignment to
each object of P its isotropy group, a 7→ AutP(a), is the function on objects of a
P-group AutP : P → Gp such that pq = p ◦ q ◦ p−1, for any p : a → b in P and
q ∈ AutP(a). Then, a crossed module (of groupoids) is a triplet

(G,P, ∂)

consisting of a groupoid P, a P-group G, and a P-group homomorphism ∂ : G → AutP ,
called the boundary map, such that the Pfeiffer identity ∂gg′ = g · g′ · g−1 holds, for
any g, g′ ∈ G(a), a ∈ ObP.

When a group P is regarded as a groupoid P with exactly one object, the above
definition by Brown and Higgins [27] recovers the more classic notion of crossed
module (G,P, ∂) due to Whitehead and Mac Lane [101, 124], now called crossed
modules of groups. In fact, if (G,P, ∂) is any crossed module, then, for any object a
of P, the triplet (G(a),AutP(a), ∂a) is precisely a crossed module of groups.

Composition with any given functor F : P → Q defines a functor from the category
of Q-groups to the category of P-groups: (ϕ : G → H) 7→ (ϕF : GF → HF ). For
the particular case of the Q-group of automorphisms AutQ, we have the P-group
homomorphism F : AutP → AutQ F , which, at any a ∈ P, is given by the map
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AutP(a) → AutQ(Fa), q 7→ Fq, defined by the functor F . Then, a morphism of
crossed modules

(ϕ, F ) : (G,P, ∂)→ (H,Q, ∂)

consists of a functor F : P → Q together with a P-group homomorphism ϕ : G → HF
such that the square below commutes.

G ∂ //

ϕ
��

AutP

F
��

HF ∂F // AutQF.

The category of crossed modules, where compositions and identities are defined in
the natural way, is denoted by Xmod. Let us now recall from Brown and Higgins [28,
Theorem 4.1] that there is an equivalence between the category of crossed modules
and the category of 2-groupoids

β : Xmod ∼−→ 2-Gpd, (4.32)

which is as follows: Given any crossed module (G,P, ∂), P is the underlying groupoid
of the 2-groupoid β(G,P, ∂), whose 2-cells

a0

p
&&

p̄

77⇓ g a1

are those elements g ∈ G(a0) such that p̄ ◦ ∂g = p. The vertical and horizontal
composition of 2-cells are, respectively, given by

a0 p̄ //

p

""⇓g

⇓ḡ
¯̄p

;; a1
·7→ a0

p

""
⇓ḡ·g

¯̄p

:: a1 , a0 ⇓g1

p1
&&

p̄1

77 a1 ⇓g2

p2
&&

p̄2

77 a2
◦7→ a0 ⇓p̄

−1
1 g2·g1

p2◦p1

((

p̄2◦p̄1

77 a2.

A morphism of crossed modules (ϕ, F ) : (G,P, ∂) → (H,Q, ∂) is carried by the
equivalence to the 2-functor β(ϕ, F ) : β(G,P, ∂)→ β(H,Q, ∂) acting on cells by

a0

p
&&

p̄

77⇓g a1 7→ Fa0

Fp
**

F p̄

44⇓ϕg Fa1.

Example 4.1 An example of crossed module is Π(X,A, S) = (π2(X,A), π(A,S), ∂),
which comes associated to any triple (X,A, S), where X is any topological space,
A ⊆ X a subspace, and S ⊆ A a set of (base) points. Here, π(A,S) is the fundamental
groupoid of homotopy classes of paths in A between points in S, π2(X,A) : π(A,S)→
Gp is the functor associating to each a ∈ S the relative homotopy group π2(X,A, a),
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and, at any a ∈ S, the boundary map ∂ : π2(X,A, a)→ π1(A, a) is the usual boundary
homomorphism in the exact sequence of homotopy groups based at a of the pair (X,A):[

a
u //
g
a

a a

]
∂7→ a

[u] // a.

Furthermore, π(A,S) is the underlying groupoid of the Whitehead 2-groupoid
W (X,A, S) presented by Moerdijk and Svensson [106], whose 2-cells a v //

g
b

a w
// b

 : [v]⇒ [w] : a→ b,

are equivalence classes of maps g : I × I → X, from the square I × I into X, which
are constant along the vertical edges with values in S, and map the horizontal edges
into A; two such maps are equivalent if they are homotopic by a homotopy that is
constant along the vertical edges and deforms the horizontal edges within A.

Both constructions Π(X,A, S) and W (X,A, S) correspond to each other by the
equivalence of categories (4.32). More precisely, there is a natural isomorphism

βΠ(X,A, S) ∼= W (X,A, S), (4.33)

which is the identity on 0- and 1-cells, and carries a 2-cell [g] : [v]⇒ [w] of βΠ(X,A, S)
to the 2-cell 1[w] ◦ [g] : [v]⇒ [w] of W (X,A, S):

 a u //

g(s,t)

a

a a

 : [v] +3 [w]

 7→


 a

u //

g(2s,t)

a
w //

w(2s-1)

b

a a w
// b

 : [v] +3 [w]

 .

For a simplicial set K, its fundamental, or homotopy, crossed module Π(K) is
defined as the crossed module

Π(K) = Π
(
|K|, |K(1)|, |K(0)|

)
(4.34)

constructed in Example 4.1 (here, K(n) denotes the n-skeleton, as usual). The con-
struction K 7→ Π(K) gives rise to a functor Π : SimpSet→ Xmod, from the category
of simplicial sets to the category of crossed modules. To go in the other direction, we
have the notion of nerve of a crossed module, which is actually a special case of the
definition of nerve for crossed complexes by Brown and Higgins [29]. Thus, the nerve
N(G,P, ∂) of a crossed module (G,P, ∂) is the simplicial set

N(G,P, ∂) : ∆op −→ Set, [n] 7→ Xmod
(
Π(∆[n]), (G,P, ∂)

)
, (4.35)

whose n-simplices are all morphisms of crossed modules Π(∆[n])→ (G,P, ∂).
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The classifying space B(G,P, ∂) of a crossed module (G,P, ∂) is the geometric
realization of its nerve, that is,

B(G,P, ∂) = |N(G,P, ∂)|. (4.36)

By [29, Proposition 2.6], B(G,P, ∂) is a CW-complex whose 0-cells identify with the
objects of the groupoid P and whose homotopy groups, at any a ∈ ObP, can be
algebraically computed as

πi
(
B(G,P, ∂), a

)
=


the set of connected components of P, if i = 0,
Coker ∂ : G(a)→ AutP(a), if i = 1,
Ker ∂ : G(a)→ AutP(a), if i = 2,
0, if i ≥ 3.

(4.37)

Therefore, classifying spaces of crossed modules are homotopy 2-types. Furthermore,
it is a consequence of [29, Theorem 4.1] that, for any CW-complexX with πi(X, a) = 0
for all i > 2 and base 0-cell a, there is a homotopy equivalence X ' BΠ(X,X(1), X(0)).
Therefore, crossed modules are algebraic models for homotopy 2-types.

Lemma 4.8 For any crossed module (G,P, ∂), there is a homotopy natural homotopy
equivalence

B(G,P, ∂) ' Bβ(G,P, ∂). (4.38)

Proof: By [29, Theorem 2.4], the functor Π : SimpSet → Xmod is left adjoint
to the nerve functor N : Xmod → SimpSet. Furthermore, in [106, Theorem 2.3]
Moerdijk and Svensson show that the Whitehead 2-groupoid functor W : SimpSet→
2-Gpd, K 7→ W (K) = W

(
|K|, |K(1)|, |K(0)|

)
(see Example 4.1) is left adjoint to

the unitary geometric nerve functor ∆u : 2-Gpd → SimpSet. Since, owing to the
isomorphisms (4.33), there is a natural isomorphism βΠ ∼= W , we conclude that
∆uβ ∼= N . Therefore, for (G,P, ∂) any crossed module, B(G,P, ∂) = |N(G,P, ∂)| ∼=
|∆uβ(G,P, ∂)|

(4.14)
' Bβ(G,P, ∂). �

Remark 4.3 For any crossed module (G,P, ∂), the n-simplices of ∆uβ(G,P, ∂), that
is, the normal lax functors [n]→ β(G,P, ∂), are precisely systems of data

(g, p, a) =
(
gi,j,k, pi,j , ai

)
0≤i≤j≤k≤n

consisting of objects ai of P, arrows pi,j : ai → aj of P, with pi,i = 1, and elements
gi,j,k ∈ G(ai), with gi,i,j = gi,j,j = 1, such that the following conditions hold:

∂(gi,j,k) = p−1
i,k ◦ pj,k ◦ pi,j for i ≤ j ≤ k,

g−1
i,j,k · g

−1
i,k,l · gi,j,l ·

p−1
i,j gj,k,l = 1 for i ≤ j ≤ k ≤ l.

Thus, the unitary geometric nerve ∆uβ(G,P, ∂) coincides with the simplicial set called
by Dakin [56, Chapter 5, §3] the nerve of the crossed module (G,P, ∂) (cf. [29, page



4.5. Homotopy pullbacks of crossed modules 201

99] and [4, Chapter 1, §11]). From the above explicit description, it is easily proven
that the nerve of a crossed module is a Kan complex whose homotopy groups are given
as in (4.37).

Thanks to Lemma 4.8, the bicategorical results obtained in Section 4.3 are trans-
ferable to the setting of crossed modules. To do so, if

(G,P, ∂)
(ϕ,F ) // (H,Q, ∂) (G′,P ′, ∂)

(ϕ′,F ′)oo

is any diagram in Xmod, then its “homotopy-fiber product crossed module”

(ϕ, F )↓(ϕ′, F ′) =
(
Gϕ,F↓ϕ′,F ′ ,Pϕ,F↓ϕ′,F ′ , ∂

)
(4.39)

is constructed as follows:

- The groupoid Pϕ,F↓ϕ′,F ′ has objects the triples (a, q, a′), with a ∈ ObP, a′ ∈ ObP ′,
and q : Fa→ F ′a′ a morphism in Q. A morphism (p, h, p′) : (a0, q0, a

′
0)→ (a1, q1, a

′
1)

consists of a morphism p : a0 → a1 in P, a morphism p′ : a′0 → a′1 in P ′, and an
element h ∈ H(Fa0), which measures the lack of commutativity of the square

Fa0
q0 //

Fp
��

F ′a′0

F ′p′

��
Fa1

q1 // F ′a′1

in the sense that the following equation holds: ∂h = Fp−1 ◦ q−1
1 ◦ F ′p′ ◦ q0. The com-

position of two morphisms (a0, q0, a
′
0)

(p1,h1,p′1)
// (a1, q1, a

′
1)

(p2,h2,p′2)
// (a2, q2, a

′
2) is given

by the formula

(p2, h2, p
′
2) ◦ (p1, h1, p

′
1) = (p2 ◦ p1,

Fp−1
1 h2 · h1, p

′
2 ◦ p′1).

For every object (a, q, a′), its identity is 1(a,q,a′) = (1a, 1, 1a′), and the inverse of any

morphism (p, h, p′) as above is (p, h, p′)−1 = (p−1, Fph−1, p′−1).

- The functor Gϕ,F↓ϕ′,F ′ : Pϕ,F↓ϕ′,F ′ → Gp is defined on objects by

Gϕ,F↓ϕ′,F ′ (a, q, a′) = G(a)× G′(a′),

and, for any morphism (p, h, p′) : (a0, q0, a
′
0) → (a1, q1, a

′
1), the associated homomor-

phism is given by (p,h,p′)(g, g′) = (pg, p
′
g′).

- The boundary map ∂ : Gϕ,F↓ϕ′,F ′ → AutPϕ,F↓ϕ′,F ′ , at any object (a, q, a′) of the
groupoid Pϕ,F↓ϕ′,F ′ , is given by the formula

∂(g, g′) = (∂g, ϕg−1 · q−1
ϕ′g′, ∂g′).
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For any crossed module (H,Q, ∂), we identify any object b ∈ Q with the morphism
from the trivial crossed module b : (1, 1, 1) → (H,Q, ∂) such that b(1) = b, so that,
for any morphism of crossed modules (ϕ, F ) : (G,P, ∂) → (H,Q, ∂), we have defined
the “homotopy-fiber crossed module”

(ϕ, F )↓b.

Next, we summarize our results in this setting of crossed modules. The crossed
module (4.39) comes with a (non-commutative) square

(ϕ, F )↓(ϕ′, F ′)
(π′,P ′) //

(π,P )

��

(G′,P ′, ∂)

(ϕ′,F ′)

��
(G,P, ∂)

(ϕ,F ) // (H,Q, ∂),

(4.40)

where

(a0
p→ a1)

(
(a0, q0, a

′
0)�Poo (p,h,p′)// (a1, q1, a

′
1)
) � P ′ // (a′0 p′→ a′1)

g (g, g′)�πoo � π′ // g′

Theorem 4.7 The following statements hold:

(i) For any morphisms of crossed modules (G,P, ∂)
(ϕ,F )// (H,Q, ∂) (G′,P ′, ∂),

(ϕ′,F ′)oo

there is a homotopy B(ϕ, F ) B(π, P )⇒ B(ϕ′, F ′) B(π′, P ′) making the homotopy com-
mutative square

B((ϕ, F )↓(ϕ′, F ′))

⇒

B(π′,P ′) //

B(π,P )

��

B(G′,P ′, ∂)

B(ϕ′,F ′)
��

B(G,P, ∂)
B(ϕ,F ) // B(H,Q, ∂),

(4.41)

induced by (4.40) on classifying spaces, a homotopy pullback square.

(ii) For any morphism of crossed modules (ϕ, F ) : (G,P, ∂)→ (H,Q, ∂) and every
object b ∈ Q, there is an induced homotopy fiber sequence

B((ϕ, F )↓b)
B(π,P ) // B(G,P, ∂)

B(ϕ,F ) // B(H,Q, ∂).

(iii) A morphism of crossed modules (ϕ, F ) : (G,P, ∂) → (H,Q, ∂) induces a
homotopy equivalence on classifying spaces, B(ϕ, F ) : B(G,P, ∂) ' B(H,Q, ∂), if and
only if, for every object b ∈ Q, the space B((ϕ, F )↓b) is contractible.

(iv) For any crossed module (G,P, ∂) and object a ∈ P, there is a homotopy
equivalence

B
(
(G,P, ∂)(a)

)
' Ω(B(G,P, ∂), a),

where (G,P, ∂)(a) is the groupoid whose objects are the automorphisms p : a → a in
P, and whose arrows g : p→ q are those elements g ∈ G(a) such that p = q ◦ ∂g.
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Proof: (i) Let us apply the equivalence of categories (4.32) to the square of crossed
modules (4.40). Then, by direct comparison, we see that the equation between squares
of 2-groupoids

β
(
(ϕ, F )↓(ϕ′, F ′)

)β(π′,P ′) //

β(π,P )
��

β(G′,P ′, ∂)

β(ϕ′,F ′)
��

=

β(G,P, ∂)
β(ϕ,F ) // β(H,Q, ∂)

(
β(ϕ, F )↓β(ϕ′, F ′)

) P ′ //

P
��

β(G′,P ′, ∂)

β(ϕ′,F ′)
��

β(G,P, ∂)
β(ϕ,F ) // β(H,Q, ∂)

holds, where the square on the right is (4.8) for the 2-functors β(ϕ, F ) and β(ϕ′, F ′).
As any 2-groupoid has property (iv) in Theorem 4.2 (see the comment before Corollary
4.4), that theorem gives a homotopy Bβ(ϕ, F ) Bβ(π, P )⇒ Bβ(ϕ′, F ′) Bβ(π′, P ′) such
that the induced square

Bβ
(
(ϕ, F )↓(ϕ′, F ′)

) Bβ(π′,P ′) //

⇒
Bβ(π,P )

��

Bβ(G′,P ′, ∂)

Bβ(ϕ′,F ′)
��

Bβ(G,P, ∂)
Bβ(ϕ,F ) // Bβ(H,Q, ∂)

is a homotopy pullback. It follows that the square (4.41) is also a homotopy pullback
since, by Lemma 4.8, it is homotopy equivalent to the square above.

The implications (i)⇒ (ii)⇒ (iii) are clear, and (iv) follows from Corollary 4.4,
as (G,P, ∂)(a) = β(G,P, ∂)(a, a) and B(G,P, ∂) ' Bβ(G,P, ∂). �

We can easily show how the construction (ϕ, F )↓(ϕ′, F ′) works on basic examples
(see below).

Example 4.2 (i) Let P
F // Q P ′

F ′oo be homomorphisms of groups. These induce

homomorphisms of crossed modules of groups (1, P, 1)
(1,F ) // (1, Q, 1) (1, P ′, 1),

(1,F ′)oo

whose homotopy-fiber product is (1, F ) ↓ (1, F ′) = (1, F ↓ F ′, 1), where F ↓ F ′ is the
groupoid having as objects the elements q ∈ Q and as morphisms (p, p′) : q0 → q1

those pairs (p, p′) ∈ P × P ′ such that q1 · Fp = F ′p′ · q0. Thus, (4.41) particularizes
by giving a homotopy pullback square

B(F ↓F ′)
⇒

//

��

K(P ′, 1)

��
K(P, 1) // K(Q, 1).

(ii) Let A
ϕ // B A′

ϕ′oo be homomorphisms of abelian groups. These induce ho-

momorphisms of crossed modules of groups (A, 1, 1)
(ϕ,1) // (B, 1, 1) (A′, 1, 1),

(ϕ′,1)oo

whose homotopy-fiber product is the abelian crossed module of groups (ϕ, 1)↓(ϕ′, 1) =
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(A×A′, B, ∂), where the coboundary map is given by ∂(a, a′) = ϕ′a′−ϕa. Thus, (4.41)
particularizes by giving a homotopy pullback square

B(A×A′, B, ∂)

⇒

//

��

K(A′, 2)

��
K(A, 2) // K(B, 2).

Let us stress that, as Example 4.2(i) shows, the homotopy-fiber product crossed
module (ϕ, F ) ↓ (ϕ′, F ′) may be a genuine crossed module of groupoids even in the
case when both (ϕ, F ) and (ϕ′, F ′) are morphisms between crossed modules of groups.
The reader can find in this fact a good reason to be interested in the study of general
crossed modules over groupoids.

To finish, recall that the category of crossed complexes has a closed model structure
as described by Brown and Golasinski [26]. In this homotopy structure, a morphism
of crossed modules (ϕ, F ) : (G,P, ∂)→ (H,Q, ∂) is a weak equivalence if the induced
map on classifying spaces B(ϕ, F ) is a homotopy equivalence, and it is a fibration (see
Howie [83]) whenever the following conditions hold: (i) F : P → Q is a fibration of
groupoids, that is, for every object a ∈ P and every morphism q : Fa→ b in Q, there
is a morphism p : a → a′ in P such that Fp = q, and (ii) for any object a ∈ P, the
homomorphism ϕ : G(a) → H(Fa) is surjective. Then, it is natural to ask whether
the constructed homotopy-fiber product crossed module (ϕ, F )↓(ϕ′, F ′) is compatible
with the homotopy pullback in the model category of crossed complexes. The answer
is positive as a consequence of the theorem below, and this fact implies that the
classifying space functor (G,P, ∂) 7→ B(G,P, ∂) preserves homotopy pullbacks.

Theorem 4.8 Let (G,P, ∂)
(ϕ,F ) // (H,Q, ∂) (G′,P ′, ∂)

(ϕ′,F ′)oo be a diagram of mor-
phisms of crossed modules. If one of them is a fibration, then the canonical morphism

(G,P, ∂)×(H,Q,∂) (G′,P ′, ∂)→ (ϕ, F )↓(ϕ′, F ′)

induces a homotopy equivalence

B
(
(G,P, ∂)×(H,Q,∂) (G′,P ′, ∂)

)
' B

(
(ϕ, F )↓(ϕ′, F ′)

)
.

Proof:

Let us observe that the pullback crossed module of (ϕ, F ) and (ϕ′, F ′) is

(G,P, ∂)×(H,Q,∂) (G′,P ′, ∂) = (G ×HF G′,P ×Q P ′, ∂),

where P ×Q P ′ is the pullback groupoid of F : P → Q and F ′ : P ′ → Q. The functor
G ×F G′ : P ×Q P ′ → Gp is defined on objects by

(G ×HF G′)(a, a′) = G(a)×H(Fa) G′(a′) = {(g, g′) ∈ G(a)× G′(a′) | ϕa(g) = ϕ′a′(g
′)},
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and the homomorphism associated to any morphism (p, p′) : (a, a′)→ (b, b′) in P×QP ′
is given by (p,p′)(g, g′) = (pg, p

′
g′). The boundary map ∂ : G ×HF G′ → AutP×QP ′ , at

any object of the groupoid P ×Q P ′, is given by the formula ∂(g, g′) = (∂g, ∂g′).

The canonical morphism

(, J) : (G ×HF G′,P ×Q P ′, ∂)→
(
Gϕ,F↓ϕ′,F ′ ,Pϕ,F↓ϕ′,F ′ , ∂

)
(4.42)

is as follows: The functor J : P×Q P ′ → Pϕ,F↓ϕ′,F ′ sends a morphism (p, p′) : (a, a′) →
(b, b′) to the morphism (p, 1H(Fa), p

′) : (a, 1Fa, a
′)→ (b, 1Fb, b

′), and the P×QP ′-group
homomorphism  : G ×HF G′ → Pϕ,F↓ϕ′,F ′J is given at any object (a, a′) ∈ P ×Q P ′ by
the inclusion map G(a)×H(Fa) G′(a′) ↪→ G(a)× G′(a′).

Next, we assume that (ϕ, F ) is a fibration. Then, we verify that the canonical
morphism (4.42) induces isomorphisms between the corresponding homotopy groups.
Recall from (4.37) how to compute the homotopy groups of the classifying space of a
crossed module.

• The map π0(, J) is a bijection.

Injectivity: Suppose objects (a, a′), (b, b′) ∈ P ×Q P ′, such that there is a mor-
phism (p, h, p′) : (a, 1Fa, a

′) → (b, 1Fb, b
′) in Pϕ,F↓ϕ′,F ′ . Then, as ϕ : G(a) → H(Fa) is

surjective, there is g ∈ G(a) such that ϕ(g) = h, whence (p ◦ ∂g, p′) : (a, a′) → (b, b′)
is a morphism in P ×Q P ′.

Surjectivity: Let (a, q, a′) be an object of Pϕ,F↓ϕ′,F ′ . As F : P → Q is a fibration of
groupoids, there is a morphism p : a → b in P such that Fp = q. Then, (b, a′) is an
object of the groupoid P ×QP ′ with J(b, a′) = (b, 1Fb, a

′) in the same connected com-
ponent of (a, q, a′), since we have the morphism (p, 1H(Fb), 1a′) : (a, q, a′)→ (b, 1Fb, a

′).

• The homomorphisms π1(, J) are isomorphisms. Let (a, a′) be any object of P×QP ′.
Injectivity: Let [(p, p′)] be an element in the kernel of the homomorphism π1(, J)

at (a, a′), that is, such that [(p, 1H(Fa), p
′)] = [(1a, 1H(Fa), 1a′)]. This means that there

is (g, g′) ∈ G(a) × G′(a′) with ∂g = p, ∂(g′) = p′ and ϕ(g)−1 · ϕ′(g′) = 1. The last
equation says that (g, g′) is an element of G(a) ×H(Fa) G′(a) which, by the first two,
satisfies that ∂(g, g′) = (p, p′). Hence, [(p, p′)] = [(1a, 1a′)].

Surjectivity: Let (p, h, p′) : (a, 1Fa, a
′) → (a, 1Fa, a

′) be an automorphism of
Pϕ,F↓ϕ′,F ′ . As ϕ : G(a) → H(Fa) is surjective, there is a g ∈ G(a) such that ϕ(g) = h.
Then, we have

(p, h, p′)−1 ◦ J(p ◦ ∂g, p′) = (p, h, p′)−1 ◦ (p ◦ ∂g, 1H(Fa), p
′)

= (p−1 ◦ p ◦ ∂g, h−1, p′−1 ◦ p′)
= (∂g, ϕ(g)−1 · 1H(Fa), 1a′) = ∂(g, 1G′(a′))

and therefore [(p, h, p′)] = [J(p ◦ ∂g, p′)].
• The homomorphisms π2(, J) are isomorphisms. At any object (a, a′) ∈ P ×Q P ′,
the homomorphism π2(, J) is the restriction to the kernels of the boundary maps
of the inclusion G(a) ×H(Fa) G′(a′) ↪→ G(a) × G′(a′). Then, it is clearly injective.
To see the surjectivity, let (g, g′) ∈ G(a) × G′(a′) with ∂(g, g′) = (1a, 1H(Fa), 1a′).
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Then, we have ∂g = 1a, ∂g
′ = 1a′ and ϕ(g)−1 · ϕ′(g′) = 1H(Fa). That is, that

(g, g′) ∈ G(a)×H(Fa) G′(a′) and (∂g, ∂g′) = (1a, 1a′). �

4.6 Appendix: Proofs of Lemmas 4.3 and 4.4

We shall only address lax functors below, but the discussions are easily dualized in
order to obtain the corresponding results for oplax functors.

Our first goal is to accurately determine the functorial behaviour of the Grothen-
dieck nerve construction B 7→ NB (4.12) on lax functors between bicategories by
means of the theorem below. The result in the first part of it is just the bicategorical
version of Theorem 2.1. See also [41, §3, (21)], where a proof is given using Jardine’s
Supercoherence Theorem in [86]. The second part is a lax version of Proposition 2.1
for bicategories. The ideas in the proof are pretty similar to those used in Chapter 2.

Theorem 4.9 (i) Any bicategory B defines a normal pseudo-simplicial category, that
is, a unitary pseudo-functor from the simplicial category ∆op into the 2-category of
small categories,

NB = (NB, N̂B) : ∆op → Cat,

which is called the Grothendieck or pseudo-simplicial nerve of the bicategory, whose
category of p-simplices, for p ≥ 0, is

NBp :=
⊔

(xp,...,x0)∈ObBp+1

B(xp−1, xp)× B(xp−2, xp−1)× · · · × B(x0, x1).

(ii) Any lax functor between bicategories F : B → B′ induces a lax transformation
(i.e., a lax simplicial functor)

NF = (NF, N̂F ) : NB → NB′.

For any pair of composable lax functors F : B → B′ and F ′ : B′ → B′′, the equality
NF ′NF = N(F ′F ) holds, and, for any bicategory B, N1B = 1NB.

Before starting with the proof, we shall describe some needed constructions and a
few auxiliary facts. Given a category I and a bicategory B, we denote by

Lax(I,B)

the category8 whose objects are lax functors F : I → B, and whose morphisms are
relative to object lax transformations, as termed by Bullejos and Cegarra in [35], but
also called icons by Lack in [93]. That is, for any two lax functors F,G : I → B, a

8This is the bicategorical version of the bicategories Lax(I, T ) defined in Subsection 2.2.1 of
Chapter 2.
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morphism Φ : F ⇒ G may exist only if F and G agree on objects, and it is then given
by 2-cells in B, Φa : Fa⇒ Ga, for every arrow a : i→ j in I, such that the diagrams

Fa ◦ Fb
F̂a,b +3

Φa◦Φb
��

F (ab)

Φ(ab)
��

Ga ◦Gb
Ĝa,b +3 G(ab),

1Fi=Gi
F̂i

{�

Ĝi

�$
F1i

Φ1i +3 G1i,

commute for each pair of composable arrows i
b→ j

a→ k and each object i. The
composition of morphisms Φ : F ⇒ G and Ψ : G ⇒ H, for F,G,H : I → B lax
functors, is Ψ · Φ : F ⇒ H, where (Ψ · Φ)a = Ψa · Φa : Fa ⇒ Ha, for each arrow
a : i → j in I. The identity morphism of a lax functor F : I → B is 1F : F ⇒ F ,
where (1F )a = 1Fa, the identity of Fa in the category B(Fi, Fj), for each a : i → j
in I.

Let us now replace the category I above by a (directed) graph G. For any bicate-
gory B, there is a category

Lax(G,B),

where an object f : G → B consists of a pair of maps that assign an object fi to each
vertex i ∈ G and a 1-cell fa : fi → fj to each edge a : i → j in G, respectively. A
morphism φ : f ⇒ g may exist only if f and g agree on vertices, that is, fi = gi for all
i ∈ G; and then it consists of a map that assigns to each edge a : i → j in the graph
a 2-cell φa : fa⇒ ga of B. Compositions in Lax(G,B) are defined in the natural way
by the same rules as those stated above for the category Lax(I,B).

Lemma 4.9 Let I = I(G) be the free category generated by a graph G, let B be a
bicategory, and let

R : Lax(I(G),B)→ Lax(G,B)

be the functor defined by restriction to the basic graph. Then, there is a functor

J : Lax(G,B)→ Lax(I,B),

and a natural transformation

v : JR⇒ 1Lax(I,B), (4.43)

such that RJ = 1Lax(G,B), vJ = 1J , Rv = 1R. Thus, the functor R is right adjoint to
the functor J .

Proof: To describe the functor J , we use the following useful construction: For any
list (x0, . . . , xp) of objects in the bicategory B, let

or◦ : B(xp−1, xp)× B(xp−2, xp−1)× · · · × B(x0, x1) −→ B(x0, xp)
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denote the functor obtained by iterating horizontal composition in the bicategory,
which acts on objects and arrows of the product category by the recursive formula

or◦(up, . . . , u1) =

{
u1 if p = 1,

up ◦
( or◦ (up−1, . . . , u1)

)
if p ≥ 2.

Then, the homomorphism J takes a graph map, say f : G → B, to the unitary
pseudo-functor from the free category

J(f) = F : I → B,

such that Fi = fi, for any vertex i of G (= objects of I), and associates to strings

a : a(0)
a1→ · · · ap→ a(p) in G the 1-cells Fa =

or◦(fap, . . . , fa1) : fa(0) → fa(p).

The structure 2-cells F̂a,b : Fa ◦ Fb ⇒ F (ab), for any pair of strings in the graph,
a = ap · · · a1 as above and b = bq · · · b1 with b(q) = a(0), are canonically obtained from

the associativity constraints in the bicategory: first by taking F̂a1,b = 1F (a1b) when

p = 1 and then, recursively for p > 1, defining F̂a,b as the composite

F̂a,b : Fa ◦ Fb a
=⇒ Fap ◦ (Fa′ ◦ Fb)

1◦F̂a′,b +3 F (ab),

where a′ = ap−1 · · · a1 (whence Fa = Fap ◦ Fa′). The coherence conditions for F are
easily verified by using the coherence and naturality of the associativity constraint a
of the bicategory.

Any morphism φ : f ⇒ g in Lax(G,B) is taken by J to the morphism J(φ) : F ⇒ G
of Lax(I,B), consisting of the 2-cells in the bicategory

or◦(φap, . . . , φa1) : Fa ⇒ Ga,
attached to the strings of adjacent edges in the graph a = ap · · · a1. The coherence
conditions of J(φ) are consequence of the naturality of the associativity constraint
a of the bicategory. If φ : f ⇒ g and ψ : g ⇒ h are 1-cells in Lax(G,B), then
J(ψ) · J(φ) = J(ψ · φ) follows from the functoriality of the composition ◦, and so J is
a functor.

The lax transformation v is defined as follows: The component of this lax trans-
formation at a lax functor F : I → B, v : JR(F ) ⇒ F , is defined on identities by
v1i = F̂i : 1Fi ⇒ F1i, for any vertex i of G, and it associates to each string of adjacent
edges in the graph a = ap · · · a1 the 2-cell va :

or◦(Fap, . . . , Fa1)⇒ Fa, which is given
by taking va1 = 1Fa1 if p = 1, and then, recursively for p > 1, by taking va as the
composite

va =
( or◦ (Fap, . . . , Fa1)

1◦va′ +3 Fap ◦ Fa′
F̂ap,a′ +3 Fa

)
,

where a′ = ap−1 · · · a1. The naturality condition F̂a,b ◦ (va ◦ vb) = v(ab) ◦ ĴR(F )a,b,
for any pair of composable morphisms in I, can be checked as follows: when a = 1i
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or b = 1j are identities, then it is a consequence of the commutativity of the diagrams

1Fi ◦ JR(F )b
l +3

1◦vb
#+

F̂i◦vb

��

JR(F )b

vb

��

(A) 1Fi ◦ Fb
l
!)

F̂i◦1
s{

(B)

(C)

F1i ◦ Fb
F̂1i,b

+3 Fb,

JR(F )a ◦ 1Fj
r +3

va◦1
#+

va◦F̂j

��

JR(F )a

va

��

(A) Fa ◦ 1Fj
r

!)
1◦F̂j
s{

(B)

(C)

Fa ◦ F1j
F̂a,1i

+3 Fa,

where the regions labelled with (A) commute by the functoriality of ◦, those with
(B) by the naturality of l and r, and those with (C) by the coherence of F . Now,
for arbitrary strings a and b in the graph with b(q) = a(0), we study the coherence
recursively on the length of a. The case when p = 1 is the obvious commutative
diagram

Fa1 ◦ JR(F )b

1◦vb
��

1 +3 JR(F )(a1b)

v(a1b)=F̂a1,b
·(1◦vb)

��
Fa1 ◦ Fb

F̂a1,b

+3 F (a1b),

and then, for p > 1, the result is a consequence of the diagram

JR(F )a ◦ JR(F )b
a +3

(1◦va′)◦vb
��

Fap◦(JR(F )a′◦JR(F )b)

(B)1◦(va′◦vb)
��

1◦ĴR(F )a′,b +3

(A)

JR(F )(ab)

1◦v(a′b)
��

(Fap◦Fa′)◦Fb
(C)

a +3

F̂ap,a′◦1
��

Fap◦(Fa′◦Fb)
1◦F̂a′,b

+3 Fap ◦ F (a′b)

F̂ap,a′b��
Fa ◦ Fb

F̂a,b +3 F (ab)

where (A) commutes by the naturality of a, (B) by induction, and (C) by the coher-
ence of F .

To verify the equalities RJ = 1, vJ = 1, and Rv = 1 is straightforward. �
Let I = I(G) again be the free category generated by a graph G, as in Lemma 4.9

above, and suppose now that F : B → B′ is a lax functor. Then, the square

Lax(I,B)

F∗
��

R // Lax(G,B)

F∗
��

Lax(I,B′) R′ // Lax(G,B′)

(4.44)

commutes and, since RJ = 1, we have the equalities

R′F∗JR = F∗RJR = F∗R = R′F∗. (4.45)
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Furthermore, the naturality of v : JR⇒ 1 and v′ : J ′R′ ⇒ 1 means that the square

J ′R′F∗JR
v′F∗JR +3

J ′R′F∗v
��

F∗JR

F∗v
��

J ′R′F∗
v′F∗ +3 F∗

commutes. As Rv = 1R and then J ′R′F∗v = J ′F∗Rv = J ′F∗1R = 1J ′R′F∗ , we have
the equality

F∗v ◦ v′F∗JR = v′F∗. (4.46)

4.6.1 Proof of Theorem 4.9.

(i): Let us note that, for any integer p ≥ 0, the category [p] is free on the graph

Gp = (0→ 1 · · · → p).

Then, for any given bicategory B, the existence of an adjunction

Jp a Rp : NBp = Lax(Gp,B)� Lax([p],B) (4.47)

follows from Lemma 4.9, where Rp is the functor defined by restricting to the basic
graph Gp of the category [p], where RpJp = 1, whose unity is the identity, and whose
counit vp : JpRp ⇒ 1 satisfies the equalities vpJp = 1 and Rpvp = 1.

If a : [q] → [p] is any map in the simplicial category, then the associated functor
NBa : NBp → NBq is the composite

NBp
NBa //

Jp ��

NBq

Lax([p],B)
a∗ // Lax([q],B).

Rq

OO

Thus, NBa maps the component category of NBp at (xp, . . . , x0) into the component
at (xa(q), . . . , xa(0)) of NBq, and it acts both on objects and morphisms of NBp by the
formula NBp(up, . . . , u1) = (vq, . . . , v1), where, for 0 ≤ k < q,

vk+1 =

{
or◦(ua(k+1), . . . , ua(k)+1) if a(k) < a(k + 1),

1 if a(k) = a(k + 1),

whence, in particular, the usual formulas below for the face and degeneracy functors.

di(up, . . . , u1) =


(up, . . . , u2) if i = 0,

(up, . . . , ui+1 ◦ ui, . . . , u1) if 0 < i < p,

(up−1, . . . , u1) if i = p,

si(up, . . . , u1) = (up, . . . , ui+1, 1, ui, . . . , u0).



4.6. Appendix: Proofs of Lemmas 4.3 and 4.4 211

The structure natural transformation

NBp

NBb NBa
''

NBab

77⇓ N̂Ba,b NBn, (4.48)

for each pair of composable maps [n]
b→ [q]

a→ [p] in ∆, is

NBb NBa = Rnb
∗JqRqa

∗Jp
N̂Ba,b=Rnb∗vqa∗Jp +3 Rnb

∗a∗Jp = Rn(ab)∗Jp = NBab.

Let us stress that, in spite of the natural transformation v in (4.43) not being
invertible, the natural transformation N̂Ba,b in (4.48) is invertible since, for any x ∈
NBp, the lax functor a∗Jpx is actually a homomorphism and therefore vqa

∗Jpx is an

isomorphism. Consequently, we only need to prove that these constraints N̂Ba,b verify
the coherence conditions for lax functors:

If a = 1[p], then N̂B1,b = Rnb
∗vpJp = Rnb

∗1Jp = 1NBb . Similarly, N̂Ba,1 = 1NBa .

Furthermore, for every triplet of composable arrows [m]
c→ [n]

b→ [q]
a→ [p], the

diagram

NBc NBb NBa
N̂Bb,c NBa

��

NBc N̂Ba,b +3 NBc NBab
N̂Bab,c
��

NBbc NBa
N̂Ba,bc +3 NBabc,

is commutative since it is obtained by applying the functors Rmc
∗ on the left, and

a∗Jp on the right, to the diagram

JnRnb
∗JqRq

JnRnb∗vq +3

vnb∗JqRq
��

JnRnb
∗

vnb∗
��

b∗JqRq
b∗vq

+3 b∗,

(4.49)

which commutes by the naturality of vn.

(ii): Suppose now that F : B → B′ is a lax functor. Then, at any integer p ≥ 0,
the functor NFp : NBp → NB′p is the composite

NBp
NFp //

Jp
��

NB′p

Lax([p],B)
F∗ // Lax([p],B′),

R′p

OO
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which is explicitly given both on objects and arrows by the simple formula NFp(up, . . . , u1) =
(Fup, . . . , Fu1). The structure natural transformation

NBp
N̂Fa⇒

NBa //

NFp
��

NBq
NFq
��

NB′p NB′a
// NB′q,

at each map a : [q]→ [p] in ∆, is

NB′a NFp = R′qa
∗J ′pR

′
pF∗Jp

N̂Fa=R′qa
∗v′pF∗Jp +3 R′qa

∗F∗Jp = R′qF∗a
∗Jp

(4.45)
= R′qF∗JqRqa

∗Jp

= NFq NBa.
This family of natural transformations N̂Fa verifies the coherence conditions for

lax transformations: If a = 1[p], then N̂F1 = R′pv
′
pF∗Jp = 1R′pF∗Jp = 1

N̂Fp
. Suppose

that b : [n]→ [q] is any other map of ∆, then the coherence diagram

NB′b NB′a NFp

N̂B′a,b NFp
��

NB′b N̂Fa +3 NB′b NFq NBa
N̂Fb NBa +3 NFn NBb NBa

NFn N̂Ba,b
��

NB′ab NFp
N̂Fab +3 NFn NBab

commutes, since

(NFn N̂Ba,b) ◦ (N̂Fb NBa) ◦ (NB′b N̂Fa)

= (R′nF∗JnRnb
∗vqa

∗Jp) ◦ (R′nb
∗v′qF∗JqRqa

∗Jp) ◦ (R′nb
∗J ′qR

′
qa
∗v′pF∗Jp)

(4.45)
= (R′nb

∗F∗vqa
∗Jp) ◦ (R′nb

∗v′qF∗JqRqa
∗Jp) ◦ (R′nb

∗J ′qR
′
qa
∗v′pF∗Jp)

(4.46)
= (R′nb

∗v′qa
∗F∗Jp) ◦ (R′nb

∗J ′qR
′
qa
∗v′pF∗Jp)

(4.49)
= (R′nb

∗a∗v′pF∗Jp) ◦ (R′nb
∗v′qa

∗J ′pR
′
pF∗Jp) = N̂Fab ◦ (N̂B′a,b NFp).

To finish, let F : B → B′ and F ′ : B′ → B′′ be lax functors. Then, NF ′NF =
N(F ′F ) and N1B = 1NB since, at any [p] and a : [q]→ [p] in ∆, we have

NF ′p NFp = R′′F ′∗J
′
pR
′
pF∗Jp

(4.45)
= R′′pF

′
∗F∗Jp = R′′p(F ′F )∗Jp = N(F ′F )p,

N̂F ′NF a = NF ′q N̂Fa ◦ N̂F ′a NFp = (R′′qF
′
∗J
′
qR
′
qa
∗v′pF∗Jp) ◦ (R′′qa

∗v′′pF
′
∗J
′
pR
′
pF∗Jp)

(4.45)
= (R′′qa

∗F ′∗v
′
pF∗Jp) ◦ (R′′qa

∗v′′pF
′
∗J
′
pR
′
pF∗Jp)

(4.46)
= R′′qa

∗v′′pF
′
∗F∗Jp = N̂(F ′F )a,

N1p = Rp1∗Jp
(4.44)

= RpJp = 1NBp ,

N̂1a = Rqa
∗vp1∗Jp = Rqa

∗vpJp = Rqa
∗1Jp = 1Rqa∗Jp = 1NBa .
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This completes the proof of Theorem 4.9 and lets us prepare to prove the first part
of Lemma 4.3.

Corollary 4.5 The assignment B 7→ BB is the function on objects of a functor

B : Lax→ Top.

Proof: By Theorem 4.9, any lax functor F : B → B′ gives rise to a lax simplicial functor
NF : NB → NB′, hence to a functor

∫
∆ NF :

∫
∆ NB →

∫
∆ NB′ and then to a cellular

map BF : BB → BB′. For F = 1B, we have
∫

∆ N1B =
∫

∆ 1NB = 1∫
∆ NB, whence

B1B = 1BB. For any other lax functor F ′ : B′ → B′′, the equality NF ′NF = N(F ′F )

gives that
∫

∆ N(F ′F ) =
∫

∆ NF ′NF =
∫

∆ NF ′
∫

∆ NF , whence B(F ′F ) = BF ′BF . �

In [41, Definition 5.2], Carrasco, Cegarra, and Garzón defined the categorical
geometric nerve of a bicategory B as the simplicial category

∆B : ∆op → Cat, [p] 7→ Lax([p],B),

whose category of p-simplices is the category of lax functors x : [p]→ B, with relative
to objects lax transformations (i.e., icons) between them as arrows. The proposition
below shows how ∆B relates with the Grothendieck nerve NB.

Proposition 4.2 For any bicategory B, there is a lax simplicial functor

R = (R, R̂) : ∆B → NB (4.50)

inducing a homotopy equivalence

B
∫

∆R : B
∫

∆∆B ∼ // B
∫

∆NB = BB, (4.51)

which is natural in B on lax functors. That is, for any lax functor F : B → B′, the
square of spaces below commutes.

B
∫

∆∆B
B
∫
∆R //

B
∫
∆∆F

��

BB

BF
��

B
∫

∆∆B′
B
∫
∆R
′

// BB′

(4.52)

Proof: At any object [p] of the simplicial category, R is given by the functor in (4.47)

Rp : ∆Bp = Lax([p],B) −→ Lax(Gp,B) = NBp,
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and, at any map a : [q]→ [p], the natural transformation

∆Bp a∗ //

Rp
��

R̂a⇒

∆Bq
Rq
��

NBp
NBa
// NBq,

is defined by NBaRp = Rqa
∗JpRp

R̂a=Rqa∗vp +3 Rqa
∗ . When a = 1[p], clearly R̂1[p]

=

Rpvp = 1Rp and, for any b : [n]→ [q], the commutativity coherence condition

NBb NBaRp

N̂Ba,bRp
��

NBbR̂a +3 NBbRq a∗

R̂ba
∗

��
NBabRp

R̂ab +3 Rnb
∗a∗ = Rn(ab)∗,

holds since, by (4.49), Rnb
∗a∗vp ◦Rnb∗vqa∗JpRp = Rnb

∗vqa
∗ ◦Rnb∗JqRqa∗vp.

By [109, Corollary 1], every functor Rp : ∆Bp → NBp induces a homotopy equiv-
alence on classifying spaces BRp : B∆Bp

∼→ BNBp since it has the functor Jp in (4.47)
as a left adjoint. Then, the induced map in (4.51) is actually a homotopy equivalence
by [120, Corollary 3.3.1].

Now let F : B → B′ be any lax functor. Then, the square

∆B R //

∆F
��

NB

NF
��

∆B′ R′ // NB′

commutes since, for any integer p ≥ 0 and a : [q]→ [p], we have

NFpRp = R′pF∗JpRp
(4.45)

= R′pF∗ = R′p ∆Fp,

N̂FRa = NFqR̂a ◦ N̂FaRp = R′qF∗JqRqa
∗vp ◦R′qa∗v′pF∗JpRp

(4.45)
= R′qa

∗F∗vp ◦R′qa∗v′pF∗JpRp
(4.46)

= R′qa
∗v′pF∗ = R̂aF∗ = R̂′∆F a.

Hence, the commutativity of the square (4.52) follows:

BF B
∫

∆R = B
∫

∆NF B
∫

∆R = B(
∫

∆NF
∫

∆R) = B
∫

∆(NF R)

= B
∫

∆(R′∆F ) = B(
∫

∆R
′ ∫

∆ ∆F ) = B
∫

∆R
′ B
∫

∆ ∆F.

�
We are now ready to complete the proof of Lemmas 4.3 and 4.4.
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Corollary 4.6 For any bicategory B, there is a homotopy equivalence

κ : |∆B| ∼ // BB, (4.53)

which is homotopy natural on lax functors. That is, for any lax functor F : B → B′,
there is a homotopy κ′ |∆F | ⇒ BF κ,

|∆B| κ //

|∆F |
��

⇒

BB

BF
��

|∆B′| κ′ // BB′.

(4.54)

Proof: Let N∆B : ∆op → SimplSet be the bisimplicial set obtained from the simplicial
category ∆B : ∆op → Cat with the nerve of categories functor N : Cat→ SimplSet.

As ∆B is the simplicial set of objects of the simplicial category ∆B, if we regard
∆B as a discrete simplicial category (i.e., with only identities as arrows), we have a
simplicial category inclusion map ∆B ↪→ ∆B, whence a bisimplicial inclusion map
N∆B ↪→ N∆B, where N∆B is the bisimplicial set that is constant the simplicial set
∆B in the vertical direction. Then, we have an induced simplicial set map on diagonals
i : ∆B → diag N∆B. This map is clearly natural in B on lax functors and, by [41, The-
orem 6.2], it induces a homotopy equivalence on geometric realizations. Furthermore,
a result by Bousfield and Kan [20, Chap. XII, 4.3] and Thomason’s Homotopy Colimit
Theorem [120] give us the existence of simplicial maps µ : hocolim N∆B → diag N∆B
and η : hocolim N∆B → N

∫
∆∆B, which are natural on lax functors and both induce

homotopy equivalences on geometric realizations.
We then have a chain of homotopy equivalences between spaces

|∆B|
|i| // |diag N∆B| |hocolim N∆B|

|µ|oo |η| // B
∫

∆∆B
B
∫
∆R // BB,

where the last one on the right is the homotopy equivalence (4.50), all of them natural
on lax functors F : B → B′. Therefore, taking |µ|• : |diag N∆B| → |hocolim N∆B| to
be any homotopy inverse map of |µ|, we have a homotopy equivalence

κ = B
∫

∆R · |η| · |µ|
• · |i| : |∆B| ∼ // BB,

which is homotopy natural on lax functors, as required. �

Corollary 4.7 If F, F ′ : B → B′ are two lax functors between bicategories, then
any lax or oplax transformation between them α : F ⇒ F ′ determines a homotopy,
Bα : BF ⇒ BF ′ : BB → BB′, between the induced maps on classifying spaces.

Proof: In the proof of [41, Proposition 7.1 (ii)] it is proven that any α : F ⇒ G
gives rise to a homotopy H(α) : |∆F | ⇒ |∆F ′| : |∆B| → |∆B′|. Then, a homotopy
Bα : BF ⇒ BF ′ is obtained as the composite of the homotopies

BF =⇒ BFκκ•
(4.54)
=⇒ κ′|∆F |κ• κ

′H(α)κ•
=⇒ κ′|∆F ′|κ• (4.54)

=⇒ BF ′κκ• =⇒ BF ′,
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where κ• is a homotopy inverse of the homotopy equivalence κ : |∆B| → BB in (4.53).
�



Resumen

Tras el reconocido art́ıculo de Quillen [109] de 1973, la teoŕıa de homotoṕıa de estruc-
turas categóricas se ha convertido en una parte importante de la maquinaria para el
desarrollo de la topoloǵıa algebraica y la K-teoŕıa algebraica. Esta tesis contribuye
al estudio de las relaciones existentes entre ciertas categoŕıas superiores, los tipos de
homotoṕıa de sus espacios clasificadores (también llamados realizaciones geométricas)
y algunas construcciones homotópicas clásicas aplicadas a dichos tipos de homotoṕıa.

Las estructuras categóricas de dimensión superior son una herramienta poderosa
para el estudio de diversas áreas de las matemáticas. Véase por ejemplo el libro
recientemente publicado Toward Higher Categories [8], que sitúa adecuadamente el
área en contexto. Además, dichas estructuras son aplicadas en otras áreas, tales como
la f́ısica teórica o las ciencias de la computación, ya que aparecen en el estudio de las
teoŕıas de campos cuánticos topológicos (o TQFT por sus siglas en inglés, véase por
ejemplo [6]), o más recientemente, sirven como punto de partida para el programa
Univalent Foundations y su estudio de la teoŕıa homotópica de tipos [122].

Esta tesis está formada por cuatro caṕıtulos principales en los que se presentan los
resultados obtenidos. Se ha intentado que los caṕıtulos puedan ser léıdos independi-
ente, aunque comparten gran parte de la nomenclatura utilizada. Quitando algunos
cambios en la notación, realizados con el objetivo de unificar la presentación de la
tesis, el Caṕıtulo 1 ha sido publicado en la revista Applied Categorical Structures
(2012) como [46], el Caṕıtulo 2 en la revista Algebraic and Geometric Topology (2014)
como [45], el Caṕıtulo 3 en la revista Journal of Homotopy and Related Structures
(2014) como [38] y el Caṕıtulo 4 en la revista Theory and Applications of Categories
(2015) como [47].

En el Caṕıtulo 1, nos concentramos en ciertas categoŕıas dobles que modelan los
2-tipos de homotoṕıa. Una categoŕıa doble (definida por Ehresmann alrededor de
1963 [62, 63]) se puede interpretar como un conjunto de ‘cuadrados’ cuyos vértices
son objetos, y cuyos lados son dos tipos de morfismos diferentes –uno vertical y otro
horizontal– de la forma

· ·oo

α
·

OO

·oo

OO

,

junto con dos composiciones como en una categoŕıa –una vertical y la otra horizontal–
obedeciendo ciertas condiciones. Cualquier categoŕıa doble (pequeña) G admite una
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construcción conocida como su doble nervio N
(2G, que puede ser transformada en un

conjunto simplicial y por lo tanto, en un espacio topológico. Dicho espacio es llamado
su realización geométrica o espacio clasificador y denotado por BG. El conjunto
simplicial aśı obtenido no es un complejo de Kan, y por ello es complicado trabajar
con él. A pesar de esto, una condición necesaria y suficiente para que una categoŕıa
doble produzca de esta forma un complejo de Kan es muy sencilla de formular: tiene
que ser un grupoide doble que satisfaga una condición de relleno. Esta condición viene
a decir que dados un par de morfismos, uno vertical y el otro horizontal, que tengan
un vértice en común, podemos encontrar un cuadrado que tenga dichos morfismos en
el borde:

· ·oo

∃?
OO

·oo

OO

Este resultado puede verse como una versión bidimensional del conocido hecho de
que el nervio de una categoŕıa es un complejo de Kan si y sólo si la categoŕıa es un
grupoide.

Un grupoide doble verificando la condición de relleno G tiene asociados una serie
de grupos de homotoṕıa πi(G, a), que pueden ser definidos utilizando solamente su
estructura algebraica y que son triviales cuando i ≥ 3. Un primer resultado importante
es el siguiente:

Para todo grupoide doble que verifica la condición de relleno G, y para todo
objeto a en él, existen isomorfismos naturales πi(G, a) ∼= πi(BG,Ba), i ≥ 0.

Aśı podemos hablar de la clase de equivalencias débiles entre tales grupoides dobles,
es decir funtores dobles F : G → G′ que inducen isomorfismos en los grupos de ho-
motoṕıa πiF : πi(G, a) ∼= πi(G′, Fa), y correspondientemente podemos definir su cate-
goŕıa de homotoṕıa Ho(DGfc) como la localización de la categoŕıa de dichos grupoides
dobles con respecto a esta clase. Obtenemos de esta forma un funtor inducido

B : Ho(DGfc)→ Ho(Top), G 7→ BG ,

donde Ho(Top) es la localización de la categoŕıa de espacios topológicos con respecto a
la clase de equivalencias homotópicas débiles. Además, describimos una construcción
funtorial nueva para cualquier espacio topológico X, llamada su grupoide doble de
homotoṕıa Π

(2
X que induce un funtor

Ho(Top)→ Ho(DGfc), X 7→ Π
(2
X.

El principal resultado de este caṕıtulo establece lo siguiente

Los funtores G 7→ BG y X 7→ Π
(2
X inducen equivalencias mutuamente

cuasi-inversas

Ho(DGfc) ' Ho(2-types),
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donde Ho(2-types) es la subcategoŕıa plena a la categoŕıa de homotoṕıa de los espacios
topológicos, dada por aquellos espacios X cuyos grupos de homotoṕıa πi(X, a) son
triviales para i > 2, para todo punto a.

El Caṕıtulo 2 se centra en el estudio de las tricategoŕıas pequeñas, introduci-
das por Gordon, Power y Street en su art́ıculo en AMS Memoir de 1995 [69]. En
dicho art́ıculo eran conscientes de que 3-grupoides estrictos no modelan 3-tipos de
homotoṕıa, y el objetivo de su trabajo era dar una definición expĺıcita de una 3-
categoŕıa débil que no fuera equivalente (en el sentido tridimensional adecuado) a
una 3-categoŕıa estricta. Los resultados presentados en este caṕıtulo se centran en
el estudio de espacios clasificadores de tricategoŕıas (pequeñas), con aplicaciones en
la teoŕıa de homotoṕıa de categoŕıas monoidales, bicategoŕıas, categoŕıas monoidales
trenzadas y bicategoŕıas monoidales. Cualquier tricategoŕıa T tiene asociada varios
objetos simpliciales o pseudo-simpliciales, y exploramos la relación entre tres de ellos:
la bicategoŕıa pseudo-simplicial llamada nervio de Grothendieck NT : ∆op → Bicat,
la bicategoŕıa simplicial nervio de Segal ST : ∆op → Hom, y el conjunto simplicial
llamado nervio geométrico de Street ∆T : ∆op → Set. El principal resultado del
caṕıtulo se resume en que la realización geométrica de todos estos ‘nervios de la tri-
categoŕıa’ son homotópicamente equivalentes, y por lo tanto podemos usar cualquiera
de ellos como el espacio clasificador de la tricategoŕıa BT . Estos nervios han sido us-
ados recientemente por Buckley, Garner, Lack y Street en su trabajo sobre categoŕıas
skew-monoidales [34].

El nervio de Grothendieck NT sirve como una generalización del triple nervio
asociado a una 3-categoŕıa estricta ya que asocia a cada número p la bicategoŕıa

NTp =
⊔

(x0,...,xp)∈ObT p+1

T (xp−1, xp)× T (xp−2, xp−1)× · · · × T (x0, x1).

Entonces, utilizando los resultados de Carrasco, Cegarra y Garzón en [42] introduci-
mos el espacio clasificador de la tricategoŕıa BT de la siguiente manera: aplicamos la
construcción de Grothendieck a la bicategoŕıa pseudo-simplicial NT para obtener un
bicategoŕıa

∫
∆ NT , usando de nuevo el nervio de Grothendieck obtenemos una cat-

egoŕıa simplicial N(
∫

∆ NT ) cuya construcción de Grothendieck nos da una categoŕıa∫
∆ N(

∫
∆ NT ) y finalmente tomamos el espacio clasificador de la tricategoŕıa como el

espacio clasificador de esta categoŕıa:

BT = |N(
∫
∆N(

∫
∆NT ))|

El comportamiento de esta construcción del espacio clasificador T 7→ BT se puede
resumir con los siguientes resultados:

- Cualquier trihomomorfismo F: T → T ′ induce una aplicación continua
BF: BT → BT ′.
- Para cualquier pareja de trihomomorfismos componibles F: T → T ′ y
F ′: T ′ → T ′′, existe una homotoṕıa BF ′BF ' B(F ′F ): BT → BT ′′, y
para cualquier tricategoŕıa T , existe una homotoṕıa B1T ' 1BT .
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- Si F,G: T → T ′ son dos trihomomorfismos, entonces cualquier tritrans-
formación F ⇒ G induce una homotoṕıa BF ' BG: BT → BT ′ entre las
aplicaciones continuas inducidas en espacios clasificadores.

- Cualquier triequivalencia de tricategoŕıas T → T ′ induce una equivalen-
cia homotópica entre los espacios clasificadores BT ' BT ′.

Cuando T es una 3-categoŕıa estricta, el espacio |diagNNNT | obtenido como la
realización geométrica de su triple nervio es normalmente considerado como el es-
pacio clasificador de la misma. Nosotros demostramos que existe una equivalencia
homotópica

BT ' |diagNNNT |.

El nervio de Segal ST asociada a cada número p la bicategoŕıa STp de trihomomor-
fismos unitarios desde la categoŕıa [p] a T . Esta bicategoŕıa simplicial es especial en
el sentido de que las proyecciones de Segal son biequivalencias de bicategoŕıas. Este
hecho, viendo toda bicategoŕıa monoidal (B,⊗) como una tricategoŕıa con un único
objeto, nos permite demostrar lo siguiente:

Dada cualquier bicategoŕıa monoidal (B,×) tal que para todo objeto x ∈ B,
el homomorfismo x⊗−: B → B induce una auto-equivalencia homotópica
en el espacio clasificador BB de la bicategoŕıa, entonces existe una equiv-
alencia homotópica

BB ' ΩB(B,⊗),

entre el espacio clasificador de la bicategoŕıa subyacente y el espacio de
lazos del espacio clasificador de la bicategoŕıa monoidal, vista como una
tricategoŕıa con un sólo objeto.

De la misma forma, viendo una categoŕıa monoidal trenzada (C,⊗, c) como una
tricategoŕıa con un único objeto y una única 1-celda obtenemos el siguiente resultado
conocido:

(i) Para cualquier categoŕıa monoidal trenzada (C,⊗, c), existe una equiv-
alencia homotópica

B(C,⊗) ' ΩB(C,⊗, c)

(ii) Si además para todo objeto x ∈ C, el funtor x ⊗ −: C → C induce
una auto-equivalencia homotópica en el espacio clasificador de C, entonces
existe una equivalencia homotópica

BC ' Ω2B(C,⊗, c)

El espacio clasificador BT obtenido a través del nervio de Grothendieck es un
CW-complejo cuyas celdas no tienen una conexión intuitiva con las celdas de la tri-
categoŕıa. Para solucionar este problema, podemos usar el nervio geométrico de Street
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∆T . Dicho nervio es un conjunto simplicial, que tiene como p-śımplices los funtores
unitarios laxos desde la categoŕıa [p] a la tricategoŕıa T . Aśı pues, los 0-śımplices no
son más que los objetos de la tricategoŕıa, los 1-śımplices son las 1-celdas, mientras
que los 2-śımplices están dados por 2-celdas en la tricategoŕıa de la forma

F0
F0,1

||
F0,2

##F0,1,2⇒
F1

F1,2

// F2,

y aśı sucesivamente. Las celdas de la realización geométrica de este nervio |∆T | tienen
aśı una descripción en términos de las celdas de la tricategoŕıa, y podemos demostrar:

Para cualquier tricategoŕıa T existe una equivalencia homotópica

BT ' |∆T |.

Para finalizar el caṕıtulo, damos una descripción de los 3-tipos de homotoṕıa en
función de los trigrupoides (también conocidos como tricategoŕıas de Azumaya). Más
concretamente, nos centramos en 3-tipos conexos por arcos y grupos bicategóricos, es
decir, trigrupoides con un único objeto, y demostramos lo siguiente:

Para cualquier CW-complejo conexo por arcos X, existe un grupo bi-
categórico (B(X),⊗) y una equivalencia homotópica B(B(X),⊗) ' X si y
sólo si πiX = 0 para i > 3.

En los Caṕıtulos 3 y 4 pasamos de modelar tipos de homotoṕıa a utilizar estos
modelos algebraicos en construcciones homotópicas que se suelen realizar con dichos
tipos. Concretamente nos centraremos en cuadrados homotópicamente cartesianos.
Los ĺımites y coĺımites categóricos, incluyendo los cuadrados cartesianos, son una
herramienta muy poderosa en teoŕıa de categoŕıas, con innumerables aplicaciones.
Desgraciadamente, se comportan muy mal en términos de la teoŕıa de homotoṕıa, esto
es, si reemplazamos nuestro diagrama original por uno homotópicamente equivalente a
él, los ĺımites (o coĺımites) correspondientes no son necesariamente homotópicamente
equivalentes. Ése es el motivo por el que se estudian ĺımites y coĺımites homotópicos.

Los Teoremas A y B (probados por Quillen [109]) son el punto de partida con los
que Quillen dio una descripción homotópico-teórica de la K-teoŕıa algebraica superior,
y ahora son dos de los teoremas más importantes en los fundamentos de la teoŕıa de
homotoṕıa. El Caṕıtulo 3 de la tesis se centra en la generalización de dichos teoremas
a funtores laxos entre bicategoŕıas (definidas por Bénabou alrededor de 1967 [15]),
que incluyen tanto a categoŕıas monoidales como a 2-categoŕıas. Dado un funtor laxo
F: A → B, y un objeto b ∈ B podemos asociarles una bicategoŕıa fibra homotópica
F ↓ b cuyos objetos son las 1-celdas f: Fa → b en B. En particular para F = 1B
tenemos las bicategoŕıas coma B↓ b, entonces demostramos el Teorema B:
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Dado cualquier objeto b de B, el cuadrado inducido

B(F↓ b)

��

// B(B↓ b)

��
BA BF // BB

es homotópicamente cartesiano si y sólo si todas las aplicaciones cont́ınuas
Bp: B(F ↓ b) → B(F ↓ b′) inducidas por una 1-celda p: b → b′ en B son
equivalencias homotópicas.

Dado que los espacios B(B↓ b) son contráctiles, el resultado anterior nos dice que
el espacio clasificador de la bicategoŕıa F ↓ b es homotópicamente equivalente a la
fibra homotópica de la aplicación BF : BA → BB en el punto Bb. Además, como
consecuencia obtenemos el Teorema A:

Si todos los espacios B(F↓ b) son contráctiles, la aplicación BF: BA → BB
es una equivalencia homotópica.

Es importante resaltar que el proceso de tomar bicategoŕıas fibras homotópicas
de un funtor laxo F ↓: b 7→ F ↓ b es más complicado que para funtores ordinarios
entre categoŕıas, ya que nos vemos obligados a trabajar con bidiagramas laxos de
bicategoŕıas

F: B → Bicat, b 7→ Fb,

que son un tipo de trihomomorfismo desde la bicategoŕıa B a la tricategoŕıa de bi-
categoŕıas. Una construcción de Grothendieck superior para tales bidiagramas

∫
B F

nos lleva a enunciar y demostrar una versión bicategórica del Lema Homotópico de
Quillen [109] que, al igual que ocurre con funtores entre categoŕıas, es un resultado
clave en la demostración de los Teoremas A y B:

Si F: B → Bicat es un bidiagrama laxo de bicategoŕıas tal que cada 1-celda
p: b → b′ en B induce una equivalencia homotópica BFb ' BFb′, entonces
para cada objeto b de B, existe un cuadrado homotópicamente cartesiano

BFb //

��

B
∫
B F

��
pt

Bb // BB.

Es decir, el espacio clasificador BFb es homotópicamente equivalente a la
fibra homotópica de la aplicación inducida en espacios clasificadores por la
proyección

∫
B F→ B.
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Yendo un paso más allá, en el Caṕıtulo 4 tratamos cuadrados homotópicamente
cartesianos en general. Dados un funtor laxo y un funtor oplaxo entre bicategoŕıas
con el mismo codominio

A F // B A′,F ′oo

construimos una bicategoŕıa producto homotópicamente fibrado F ↓F ′ y obtenemos los
siguientes resultados:

— Para cualquier diagrama de bicategoŕıas A F // B A′F ′oo con F un fun-
tor laxo y F ′ uno oplaxo, existe una aplicación inducida B(F ↓ F ′) →
BA ×hBB BA′ desde el espacio clasificador de la bicategoŕıa producto ho-
motópicamente fibrado en el espacio producto homotópicamente fibrado
inducido por las aplicaciones BF y BF ′.

— Dado un funtor laxo F : A → B, las siguientes propiedades son equiva-
lentes:

• Para cualquier funtor oplaxo F ′: A′ → B, la aplicación B(F ↓F ′) →
BA×hBB BA′ es una equivalencia homotópica.

• Para cualquier 1-celda b→ b′ de B, la aplicación B(F ↓ b)→ B(F ↓ b′)
es una equivalencia homotópica

• Para cualquier objeto b de B, la aplicación B(F ↓ b)→ Fib(BF,Bb) a
la fibra homotópica de BF en Bb es una equivalencia homotópica.

aśı como un resultado dual para funtores oplaxos F ′: A′ → B.

Este resultado generaliza el Teorema B del Caṕıtulo 3 y extiende de forma simi-
lar resultados recientes sobre diagramas de categoŕıas debidos a Cisinski (2006) [55],
y Barwick y Kan (2011) [13]. Además, la categoŕıa de 2-categoŕıas (estrictas) y 2-
funtores tiene una estructura de modelos de tipo Thomason, tal y como anunciaron
Worytkiewicz, Hess, Parent y Tonks (2007) en [125] y demostraron Ara y Maltsin-
iotis (2014) en [2], tal que el funtor espacio clasificador induce una equivalencia en
las teoŕıas de homotoṕıa entre 2-categoŕıas y espacios topológicos. Aśı, al restringir
nuestros resultados a 2-categoŕıas, encontramos una interpretación natural de nuestra
construcción como un cuadrado homotópicamente cartesiano en la estructura de mod-
elos de Thomason. De la misma forma, gracias a la equivalencia entre la categoŕıa de
módulos cruzados (sobre grupoides) y la categoŕıa de 2-grupoides, podemos aplicarlos
también en términos de la estructura de modelos para complejos cruzados definida por
Brown y Golasinski (1989) [26]. Y también, dado que una categoŕıa monoidal puede
ser vista como una bicategoŕıa con un único objeto, nuestros resultados se aplican
también a categoŕıas monoidales.

El Caṕıtulo 4 también incluye algunos resultados nuevos relativos a espacios clasifi-
cadores de bicategoŕıas, que son necesarios en este estudio para obtener los resultados
principales del caṕıtulo. El desarrollo del mismo es un gran ejemplo de cuán útil
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resulta establecer la relación entre los diferentes nervios, en este caso para bicate-
goŕıas, para poder trabajar al mismo tiempo con funtores laxos y oplaxos. El nervio
geométrico de Street de una bicategoŕıa ∆B es normalmente el más sencillo para tra-
bajar, pero solamente es funtorial respecto a funtores laxos. También hay un nervio
op-geométrico ∇B, que es funtorial respecto a funtores oplaxos. En el Apéndice del
Caṕıtulo 4 completamos el trabajo de Carrasco, Cegarra y Garzón [41] demostrando
nuevos resultados de naturalidad para la comparación entre los nervios de bicategoŕıas

|∆B| ' BB ' |∇B|

demostrando

Para cualquier bicategoŕıa B, la equivalencia homotópica |∆B| ' BB es
homotópicamente natural con respecto a funtores laxos y la equivalencia
BB ' |∇B| es homotópicamente natural con respecto a funtores oplaxos.

Estos resultados siguen ideas similares a las usadas en el Caṕıtulo 2 para el estudio
de los nervios de tricategoŕıas.

Posibles investigaciones futuras

El programa de hallar modelos para tipos de homotoṕıa a través estructuras alge-
braicas está aún en pleno desarrollo. Algunos art́ıculos recientemente publicados so-
bre el tema son [19, 78, 87]. En relación con los temas estudiados en esta tesis se
encuentran los siguientes problemas abiertos:

• La conjetura de Brown: los grupoides dobles modelan 2-tipos de homotoṕıa. Es
decir, ¿es posible prescindir de la condición de relleno? Para ello habŕıa que de-
mostrar que todo grupoide doble es homotópicamente equivalente a un grupoide
doble satisfaciendo la condición de relleno. Aún mejor seŕıa la descripción de
una estructura de modelos de Quillen en la categoŕıa de grupoides dobles, en la
que los objetos fibrados sean los que satisfacen dicha condición.

• Extensión de estos resultados a multigrupoides generales. En particular, ¿qué
condición de relleno hay que exigir a un multigrupoide para que su nervio se
convierta en un complejo de Kan?

• La construcción de espacios topológicos de bicategoŕıas y tricategoŕıas permite
transformar coherencia categórica en coherencia homotópica. Es decir, las trans-
formaciones entre ellas se transforman en homotoṕıas entre sus espacios clasifi-
cadores. Esto apunta a la existencia de funtores

Bicat→∞-Top

Tricat→∞-Top

cuyo codominio es la ∞-categoŕıa de espacios topológicos. Una descripción de
dichos funtores seŕıa sin duda interesante.
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• El estudio de cuadrados homotópicamente cartesianos entre tricategoŕıas podŕıa
seguir los mismos derroteros llevados a cabo en el estudio del caso bicategórico.
De la misma forma, usando métodos para el estudio de coĺımites homotópicos
categóricos [120] se podŕıa hacer un estudio de cuadrados homotópicamente
cocartesianos entre tricategoŕıas.

• Para ciertas definiciones de n-categoŕıas débiles, existen diversas nociones no
simpliciales de nervio [18]. Una comparación homotópica de dichos nervios
podŕıa ser útil para el estudio de la relación entre las diferentes definiciones
de n-categoŕıas débiles.
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