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Resumen

La cáıda en los últimos años del coste de los procesos de secuenciación ha
puesto a disposición de la comunidad investigadora los genomas de muchos
organismos, convirtiéndose en necesaria la transformación de estos datos en
información útil para disciplinas tales como la medicina, la bioloǵıa o la agri-
cultura. El primer paso, y uno de los más determinantes, en la interpretación
de las secuencias de los genomas es la identificación y localización de los genes
contenidos en ellas, aśı como la predicción de sus estructuras. Dicha tarea es
conocida como predicción de genes, y el éxito de los pasos posteriores dentro
del proceso dependen de la calidad de los resultados de esta. Sin embargo,
no se trata de una tarea trivial. La dificultad de la labor queda ilustrada por
el hecho de que a pesar de los grandes avances experimentados en la última
década en las tecnoloǵıas aplicadas a ella, las técnicas actuales de predicción
de la localización y estructura de los genes están todav́ıa lejos de ser fiables.

Aunque inicialmente la predicción de genes se enfocó como una tarea
experimental de laboratorio, la acumulación de datos hizo necesaria una
metodoloǵıa automatizada que integraran técnicas propias de la teoŕıa de
la información. De hecho, en la actualidad, incluso las anotaciones manuales
realizadas sobre los genomas se valen de técnicas de predicción automáticas.
En este momento, la tendencia es hacia el desarrollo de enfoques que integren
ambas perspectivas. De este modo, el problema de la predicción de genes se
puede abordar mediante el uso de técnicas de Aprendizaje Automático de-
bido a que puede ser formulado en parte como una tarea de clasificación por
un lado, y por otro como un proceso de optimización.

La predicción de genes consiste en identificar aquellas porciones de se-
cuencias de ADN que contienen la información para codificar moléculas
biológicamente funcionales, tales como protéınas u otros elementos como
ncRNA. Desde un punto de vista computacional, una secuencia de ADN
es una cadena sobre el alfabeto {A, T, G, C}, letras que se corresponden con
las bases nitrogenadas que tienen los nucleótidos que la forman, Adenina,
Timina, Guanina y Cistosina. El principal objetivo de la tarea seŕıa asig-
nar correctamente una etiqueta a cada uno de los elementos identificándolos
como pertenecientes a una región determinada, codificante, no codificante,
intergénica... Cada una de las regiones cuentan en sus extremos con un de-
terminado marcador que las delimitan y los cuales son reconocidos por la
maquinaria celular. La mayoŕıa de las metodoloǵıas de predicción de genes
cuentan con un componente que trata de identificar estos puntos frontera
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denominados sitios funcionales. En este trabajo proponemos una serie de en-
foques que abordan el reconocimiento de sitios funcionales mediante el uso de
técnicas propias del Aprendizaje Automático y que tienen en consideración
al mismo tiempo aspectos propios de la naturaleza biológica del problema.
Concretamente, las metodoloǵıas presentadas para reconocimiento de puntos
funcionales en la secuencia cuentan con las siguientes caracteŕısticas:

Desde una perspectiva pura de Aprendizaje Automático, se demues-
tra la naturaleza desequilibrada en las clases problema y se muestra
la utilidad de aplicar métodos desarrollados para combatir esta carac-
teŕıstica. Del mismo modo, se hace un estudio que revela el beneficio de
usar técnicas de selección de caracteŕısticas en el problema en términos
de mejora del rendimiento global de los clasificadores y de la inter-
pretabilidad del problema.

Se propone una nueva técnica para predicción de este tipo de sitios
basada en la idea de que se consideren más de dos grupos en los pa-
trones para el entrenamiento utilizados para la generación de modelos
de clasificación. Esta premisa esta basada en el hecho de que los pa-
trones presentan diferentes caracteŕısticas biológicas con distintos nive-
les de importancia en el proceso de clasificación, abandonando el uso de
la tradicional separación binaria positivo/negativo. Además, se consid-
era el uso de más de un tipo de clasificador, apoyándose en la idea de
que el comportamiento de un conjunto de clasificadores es mejor a uno
individualmente, más si cabe con la existe diversidad en la naturaleza
de los mismos.

Por último, se introduce una nueva de metodoloǵıa de clasificación
basada en la creación de un modelo que combina tantos tipos de clasifi-
cadores como sea necesario y que consideran tantas fuentes de evidencia
como sea posibles. Con fuentes de evidencia se refiere a la utilización de
las secuencias de genomas de diferentes organismos como informantes.

Una vez identificados aquellos puntos que con mayor probabilidad repre-
sentan un sitio funcional en la secuencia, el siguiente paso debe ser integrar
toda la información disponible para presentar como resultado del proceso
una estructura correcta de genes. Aśı pues, ortogonalmente a la predicción
de sitios funcionales, se introduce las directrices para el diseño de un marco
de trabajo general para predicción de genes que aborda el problema desde
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una perspectiva global. Dicho elemento considera el problema como un pro-
ceso de búsqueda en el que se integran tantas fuentes de información como
sean necesarias para encontrar la estructura de genes más probables en una
secuencia. El proceso de optimización se realiza a través del uso de los prin-
cipios de la Computación Evolutiva. Una población de individuos, cada uno
de los cuales representa una solución al problema, es utilizada para simular
un proceso de evolución. En dicho proceso, una función basada en distin-
tos sensores determina qué individuos se adaptan mejor a la solución del
problema y poseen las caracteŕısticas estad́ısticas reseñables propias de las
regiones codificantes.

Los experimentos realizados en distintos cromosomas de varios organis-
mos, principalmente en el genoma humano, muestran que las técnicas men-
cionadas son útiles a la hora de tratar el problema de la predicción de genes,
mejorando los resultados de los mejores métodos actuales descritos en la bib-
liograf́ıa. El interés de los resultados obtenidos durante las investigaciones
realizadas ha derivado en forma de presentaciones en diferentes congresos de
ámbito internacional y en la publicación de varios art́ıculos en contrastadas
revistas del área de investigación.
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Chapter 1
Introduction

In current molecular biology and genetics, the genome is the genetic ma-
terial of an organism. It is encoded within the cells in form of chemical
macromolecules called deoxyribonucleic acid (DNA). Genes are the informa-
tion units within the genome that contain all the features necessary for the
synthesis of the elements –including but not limited to proteins– that regulate
the specific cellular functions related to the development and physiological
operations of living beings.

The genomes of many organisms have been sequenced in recent years, and
it has become necessary to transform these large raw datasets into useful
knowledge. One of the most crucial steps in the interpretation of genome
sequences is the identification of genes and the prediction of their structures.
The success of all subsequent steps of biological and biomedical research that
exploit these genomic sequences depends on the quality of this information.
The difficulties of gene prediction can be illustrated by the fact that, despite
significant improvements in gene prediction technologies, prediction of the
location and the structure of genes is still far from reliable. According to
current estimates, the complete structure of less than 50% of human genes
is predicted correctly[30].

Gene prediction problem can be approached by using machine learning
techniques because it can be formulated as a classification task plus an op-
timization process. In this chapter the problem of gene prediction will be
presented. A quick review of the existing computer approaches will also be
provided to better explain the key features of the machine learning method-
ology for gene prediction proposed in this thesis. Finally, the main objectives

1



2 CHAPTER 1. INTRODUCTION

and the contribution of this dissertation will be summarized together with
the organization of the thesis.

1.1 Motivation

Both, living organism features and the biological process produced within
them, are determined by the chemical macromolecules – mainly proteins, but
also non coding RNA1 – that they synthesize. The instructions to complete
the synthesis of these functional elements are contained in the cells, specifi-
cally in the DNA. The DNA segments that contain the required information
to codify such functional elements are called genes. The term genome clas-
sically refers to the complete set of genes that are encoded by the sequence
of nucleotides in a particular organelle. In the modern era, the term may
refer to the sequence itself. In recent times, because the cost of sequencing
the genome of an organism has decreased dramatically, an increase of the
amount of data produced by genomic sequencers has driven an increase in
the effort required for genome data analysis.

The term genome annotation denotes a two step procedure. First, struc-
tural annotation, the process of identifying genes, their locations in the se-
quence and their exon/intron structures. Second, functional annotation is
the process of attaching biological information to these elements resulting
in structural annotation. Thus, the aim of genome annotation is to deter-
mine the biochemical and biological function, if any, of each nucleotide in
a genome. For this reason, genome annotation has become one of the most
challenging tasks in bioinformatics.

Therefore, determining the complete set of genes in the whole genome of
an organism is a crucial task for understanding the biological information held
in such sequences. However, many aspects remain generating controversy and
make this task non trivial. Although many genome projects corresponding
to several species were completed years ago, the catalogs of the genes do
not specify the exact number of genes that compose the genome, which is
a quantity that can vary in individuals of the same species or even among
cells of the same organism. Another controversial subject is the definition of
the gene concept. Aside from recent investigations where overlapping genes

1Non coding RNA are functional RNA molecules that are transcribed from DNA but
are not translated into proteins. In general ncRNAs function to regulate gene expression
at the transcriptional and post-transcriptional levels.
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in different strands of DNA have been shown [61], currently in bioinformat-
ics, genes are discrete entities located linearly within chromosome sequences
that hold potential information that is required to be transcribed into RNA.
In this manner, the gene prediction problem can be stated as the effort to
determine the boundaries of those sequences that are transcribed into RNA
in a given genomic DNA target sequence, and this can refer to the search for
both protein coding genes and non-coding RNA genes.

Complexity of the problem makes finding an accurate gene model a great
bioinformatics challenge. An automatic annotation methodology is necessary
because, among other aspects, even manual annotation uses computational
techniques that search for evidence of the existence of genes in the absence of
homologous sequences. In fact, the current tendency is to develop integrative
systems that can incorporate diverse sources of information.

The human ENCODE Genome Annotation Assessment Project, EGASP
[28], was a community study conducted to evaluate the state of gene predic-
tion accuracy in the human genome. In this experiment, the gene predictor
systems were divided into categories based on the information sources used
to formulate their predictions. If we examine the presented results of such
predictions with reference to a specific benchmark, it is easy to conclude
that gene prediction is an unsolved problem, and hence every effort spent
on it is still relevant. In spite of the great efforts produced in this field of
research, the existing gene prediction programs have not provided a com-
plete solution to the problem so far. Short exons are often difficult to locate
because discriminative statistical characteristics are less likely to appear in
short segments. In addition, the problem of alternative splicing, an impor-
tant regulatory mechanism during gene expression in eukaryotes whereby a
single gene codes for multiple proteins, has to be resolved in a more efficient
way.

1.2 Biological background

Proteins are complex chains of chemical elements called amino acids. The in-
structions for building the proteins in an organism are maintained by another
type of organic molecule called nucleotides, and groups of three nucleotides
(codons) code for an amino acid. Nucleotides are joined together to form
large chains in the core of cells called deoxyribonucleic acid or DNA. Nu-
cleotides are organic molecules composed of a nitrogenous base, a five-carbon
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sugar, and at least one phosphate group. The four existing nitrogenous bases
include Adenine, Thymine, Guanine and Cytosine, which are abbreviated A,
T, G, and C, respectively. Therefore, the 64 different codons codify 20 amino
acids (synonymous codons exist). A molecule of DNA is organized to form
of two complementary chains of nucleotides wound in a double helix. In
chromosomes, the sequence of each nucleotide in one strand is opposed by
a complementary nucleotide in the other strand. A is the complement of
T, and C and G are complementary bases. Therefore, the sequence of nu-
cleotides of one strand is fully determined by the sequence of nucleotides on
the opposite strand, and it is only necessary to know the sequence of one of
the strands. This strand is called the forward strand, and its complementary
strand is the reverse strand. Both strands have a (chemically) distinguished
direction.

A gene is a DNA segment that codes for a specific functional element,
i.e., a protein or non-coding RNA molecule. In eukaryotic cells, genes are lin-
early distributed along the two complementary strands of the chromosomes
without overlapping in the same strand and are separated by intergenic re-
gions, extensive areas of DNA between regions that have no currently known
function. In a simplification of the central dogma of molecular biology, it can
be stated that the information contained in the coding portion of the genes
flows from DNA to RNA and then to proteins. These coding segments are
called exons. However, in eukaryotic cells, these segments are interrupted
by other segments called introns. Although introns are transcribed to RNA,
they are removed when the RNA matures, and therefore such information
is not translated into proteins. The intron boundaries are denoted as splice
sites, which are called donor sites, and they include the beginning of the
intron (i.e., the end of exon) or acceptor site and the end of the intron (i.e.,
where the next exon begins). Figure 1.1 illustrates the gene concept on a
DNA strand, including the key functional sites on the strand, followed by the
information flow in the biological processes of protein synthesis. Exons are
joined together to become a mature RNA product, which is usually trans-
formed into the corresponding protein through the process of translation.
Although most gene finding software programs use the term exon to denote
only the coding parts of the genome, in reality some exons (or parts of them)
are non-coding. However, in this work, the commonly used terminology of
gene prediction is followed, and the term exon only refers to the coding part
of the genome.
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Figure 1.1: Information flow within the proteins synthesis process in a eu-
karyotic cell.

1.3 The gene prediction problem

As previously mentioned, the problem of gene prediction consists of identi-
fying the portions of DNA sequences that hold the information that encodes
the biologically functional elements. Although this concept mostly refers to
protein-coding regions, it can also refer to other functional elements, e.g.,
ncRNA genes. In this sense, the main aim of gene prediction is to correctly
label each element of the DNA sequence as belonging to a protein-coding
region, RNA coding region, or non-coding or intergenic region. To represent
the problem from a computational point of view, a DNA sequence can be
established by its minimal dimension as a string over the alphabet A, T,
G, C that correspond to the nitrogenous bases of the nucleotides, including
Adenine, Thymine, Guanine and Cytosine, respectively.

Then, the gene prediction problem can be stated as:

Given a DNA sequence

X = (x1, x2, ..., xn) ∈ Σ, where Σ = {A,C,G, T} (1.1)

the goal is to correctly label each element of X as belonging to a specific
region.

All coding genes begin at the translation initiation site (TIS) and end
at the stop codon. As previously mentioned, the coding segments are usu-
ally interrupted by introns in eukaryotic cells. Exon–intron and intron–exon
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boundaries are called the splice sites or donor and acceptor sites, respectively.
Thus, in a correct gene structure:

• The exons do not overlap.

• The gene starts and finishes within an exon.

• An intron must be flanked by two exons.

• A gene can consist of only one exon.

• The complete set of coding exons must be frame compatible.

• Merging coding exons will not generate an in-frame stop codon.

Therefore, the problem consists of determining which parts of a DNA
sequence code for the whole gene2 from its start site to its stop codon [47, 10].
In the case of humans, it is believed that only 3% of the DNA sequence
consists of coding regions. Gene prediction is relatively simple in prokaryotes
due to their higher gene density and absence of introns. The main difficulty in
prokaryote gene prediction is the presence of overlapping regions. The process
is more complex for eukaryotes due to the large genome size and short exons
that are bordered by large introns. Furthermore, eukaryote coding segments
are subject to alternative splicing, i.e., a process of joining exons in different
ways during RNA splicing. Indeed, it is estimated that more than 95% of
human genes show evidence of at least one alternative splice site.

1.4 Current approaches

Most of the current gene prediction programs share a basic philosophy and
have many common methods. However, there are differences among them
that can be used to create a certain taxonomy of gene recognizing programs.
In general, current gene recognition systems can be divided into three cate-
gories [27] depending on the type of information that they use.

2Some gene finding approaches consider information in addition to the coding parts of
the genes. In our case, the gene is considered only the segment from the TIS to the stop
codon.
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• Ab initio predictors use only DNA sequences from the genome in which
predictions are desired and are called target genome programs. Predic-
tors such as GENSCAN[11] and CRAIG[7] belong to this category.

• De novo techniques additionally make use of aligned DNA sequences
from other genomes, called informant genomes. Alignments with other
genomes increase the prediction power because the functional parts of
the genome show an outstanding level of conservation. ROSETTA[6]
and CEM[2] were the first methods for predicting human genes using
this type of information. More advanced de novo predictors include
N-SCAN[26] and CONTRAST[27].

• Homology based A third class of predictors make use of the products
of the genes themselves, which usually include alignments over known
CDS, protein sequences, RNA-seq, expressed sequence tags (EST) or
cDNA. Pairagon[1], N-SCAN EST[70], GenomeWise[8] and EXOGEAN[18]
are included in this category. These methods can provide highly ac-
curate predictions for genes that are well covered by alignments of the
expressed sequences.

However, some methods, such as AUGUSTUS[66], can work with ab ini-
tio, de novo or homology-based information.

Typically, all methodologies that face the gene prediction problem have
three main components: signal detection, content sensing and optimal inte-
gration according to a global model of the gene structure. Signals are specific
functional sites that are inside or at the boundaries of the various genomic
regions and are involved in various levels of gene expression. This is the
case for transcription factor binding sites, TATA boxes, splice sites (donor
and acceptor sites), poly-A sites, translation initiation sites (TIS), and stop
codons. Thus, signal detection is the task of evaluating and choosing all
possible functionally relevant points in the sequence. Content sensors are
measures that classify sequence regions into types by evaluating the set of
nucleotides within them. Usually, these measures are discriminant factors
between coding and non-coding regions, CpG islands, and ALU sequences.
However, signal and content sensors cannot solve the problem by themselves,
and an integrator mechanism becomes necessary to obtain the whole gene
structure. This element can be considered as a framework where the other
two main components must be integrated, resulting an accurate, efficient and
consistent combination of information.
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1.4.1 Functional site recognition

The functional sites that mark the transcriptional, splicing and translational
boundaries in a gene consist of a sequence of nucleotides that are recognized
by the cellular machinery. The minimal set of signals needed to define a
coding sequence include the start, translation initiation site, and stop codons,
and for genes with multiple exons, the splice sites and donor and acceptor
sites for each intron are necessary. Other relevant signals include promoter
sequences, transcription start and termination sites, and TATA boxes.

One of the first and most accurate attempts to model functional sites in
the sequence consisted of the Positional Weight Matrices (PWM), known also
as position specific scoring matrices or position specific probability matrices.
PWMs are based on a matrix of the frequencies of nucleotides observed at
each position. The likelihood that a sequence belongs to a certain class is de-
rived from the product of the probabilities of the nucleotides in each position
according to the PWM for each type of site. Dependencies between adjacent
positions were incorporated in the Weight Array Matrix models (WAM). In
this case, the probabilities within the matrix are calculated as conditional
probabilities by examining the probability of previous positions. Thus, these
models can be considered as Markov chains. Maximal dependence decom-
position (MDD) based on decision trees, Inclusion-driven learned Bayesian
Networks (idlBNs) or approaches based on Neural Networks have also been
used for site prediction purposes. However, the improvements with respect
to PWMs or WAMs tend to disappear when they are used inside a global
strategy of prediction.

In any case, the methods considered most successful for addressing this
task at this moment are the Suppor Vector Machines models (SVMs). The
SVMs involve a machine learning method that attempts to discriminate two
classes by separating them with as large of a margin as possible. They
are trained by solving an optimization problem, and they employ similarity
measures known as kernels. Specifically, the most useful kernel for site classi-
fication, the Weighted Degree kernel (WD) [58], compares pairs of sequences
in terms of their substring matching. This approach, instead of performing a
probability estimation, attempts to estimate a function that ranks the actual
sites with as large of a margin as possible to all other potential sites.
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1.4.2 Gene prediction frameworks

The most important evidence of the presence of genes are the TIS, stop
codons, and splice sites, because they define the boundaries of coding re-
gions, in addition to the content sensors, which determine the differences
between regions according to their base composition. This evidence can be
combined for predicting the whole gene structure, in contrast to the ear-
lier approaches that identified individual exons. Dynamic Programming,
Hidden Markov Models, Conditional Random Fields or Rule-based systems
have been successfully used for these purposes, determining a global model of
gene structure. The gene prediction problem can be addressed by choosing
the optimal combination of potential exons. However, usually, the number
of possible combinations of potential exons increases exponentially, and con-
sidering all combinations is not feasible. Dynamic Programming solves this
problem because it determines the optimal solution without estimating all
possibilities. In Hidden Markov Model approaches (HMM), different types
of components (exon or introns) are labeled by a state, and the gene model
is generated by a state machine. Each base is generated by an emission
probability conditioned on the current state and a specific number of pre-
ceding bases. The transition from one state to another is determined by a
transition probability that maintains constraints inherent to the biological
problem. All of the parameters are learned from the training data set (anno-
tated genes). Because the states are unknown (hidden), the Vitrebi algorithm
is used to select the best set of consecutive states that holds the highest prob-
ability of any possible set of consecutive states for a given genomic sequence
without actually having to enumerate all possible sets of consecutive states.
More recent techniques[27] have been based on Conditional Random Fields
(CRF), which are particularly suitable for gene prediction and include the
semi Markov CRF. This model produces labels for segments over a target
input sequence. Essentially, it is designed to find the most likely set of labels
(states) that the model has been trained to determine over given a set of
observations (input sequence). In this case, the probability of value-label
pairs, the labels that are conditioned on the values, is learned directly. The
observations are examined and not emitted.
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1.5 Aims and Objectives

The main aim of this thesis is the design of machine learning methodologies
to address different aspects of the gene prediction problem. We will use
the most powerful soft-computing and data mining approaches to address
the high complexity of the problem. All tasks that are involved in the gene
prediction problem will be subject to study and improvement. Specifically,
to achieve this aim, the following particular objectives have been established:

• The advanced techniques of metaheuristics will be used to design a
gene prediction framework. Given the particularities of the problem,
the principles of evolutionary computation will be taken under consid-
eration to develop a gene prediction system that can contemplate a set
of biological restrictions and support a correct gene model. It may be
flexible enough to integrate several independent information sources,
regardless of their origin and nature, with a search power sufficient to
address the difficult and large solution space.

• The recognition of the different functional parts of the gene, such as pro-
moters, translation initiation sites, donors, acceptors and stop codons,
is a fundamental component of any gene finding system. The functional
site recognition problem will be addressed by using machine learning
techniques with additional biological information and/or introducing
conservative principles from the evolution theory. This objective can
be divided as follows:

– To try the improvement of the performance of the current site
recognition classifiers by introducing principles derived from in-
formation theory and biological aspects. In particular, we con-
sider that training patterns can be separated, depending on their
biological features, to build various models from each group that
can be combined in an optimal way to obtain the best general
classifier model.

– A methodology for site recognition will be proposed by combining
classifiers that consider as many different sources of evidence as
possible from several genomes and as many different type of classi-
fiers as needed. Previous studies have shown that the combination
of different sources of evidence is fundamental for the success of
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any genomic recognition task. This idea has become feasible be-
cause the collection of large and complex genomes from different
species has become routine.

– The imbalanced nature of the site recognition problem will be
addressed. In genome sequences, the number of negative instances
is much larger than the number of positive instances. In such
cases, the classification problem is considered a class imbalance
problem. Most learning algorithms expect a somewhat balanced
distribution of instances among the different classes. It has been
shown that learning algorithms suffer from a skewed distribution
that is associated with class imbalance, resulting in negative effects
on their performance.

– To study the relevance of the different features – i.e., the nu-
cleotides and codons – that form the sequences used for recogniz-
ing functional sites by means of feature selection techniques. Our
aim is to determine if this type of methods are useful for improving
the performance of site recognition.

1.6 Proposed methodologies

Computational intelligence techniques have been shown to be suitable for
solving several types of bioinformatics problems. In particular, such tech-
niques have been widely and successfully applied to gene prediction tasks
and at this moment the use of them is imperative. The presented method-
ologies in this work are focused on improving functional site recognition and
building a global framework for gene prediction, making use of both the
principles and strategies of computational intelligence and machine learning.

From the point of view of machine learning, site recognition is a class
imbalance problem. Thus, in this work, we approach site recognition from
this angle and apply different methods that have been developed to address
imbalanced datasets. The proposed approach has two advantages. First,
it improves the results using standard classification methods. Second, it
broadens the set of classification algorithms that can be used because some
of the class-imbalance methods, such as undersampling, are also useful as
methods for scaling up data mining algorithms as they reduce the size of
the dataset. In this manner, classifiers that cannot be applied to the whole
dataset, due to long training time or large memory requirements, can be
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used when undersampling methods are applied. In the same sense, many
classifiers have problems in site recognition tasks due to the large amount
of features involved in the problem. Most previous studies have used an
arbitrary window of nucleotides around the site. The methodology described
in this work presents a more principled method of choosing the relevant
features using feature selection techniques, first by selecting the most suitable
window for each organism, and then by the selection of a subset of the most
relevant features within that window.

At the same time, the most successful site recognition methods use pow-
erful classifiers. All these methods use two classes, one for positive instances
and another for negative instances, that are constructed using sequences from
the whole genome. However, the features of the negative sequences differ de-
pending on the origin of the negative samples. The negative sequences differ
depending on whether they are located on exons, introns or intergenic re-
gions. Thus, the positive class is fairly homogeneous as all of the sequences
are located at the same part of the gene, but the negative class is composed
of many different instances. The classifiers suffer from this problem. Herein,
we propose training different classifiers with different negative classes and
using a combination of these classifiers to improve accuracy.

Finally, due to the rapid evolution of our ability to collect genomic in-
formation, it has been shown that the combination of different sources of
evidence is fundamental for the success of any recognition task. We present
a methodology for combining hundreds of different classifiers to improve per-
formance. Our approach can include almost a limitless number of sources
of evidence. This approach can be used for any functional recognition task
related to the gene prediction task.

Orthogonally, we present an approach that addresses the gene finding task
from a general perspective, considering it as a search problem, where many
evidence sources can be integrated and combined using the principles of evo-
lutionary computation to produce a framework for gene structure modeling.
A genetic algorithm is designed to evolve a population where the individuals
consist of correct genetic structures of a given sequence. A fitness function
based on several sensors will determine a solution for individuals that show
outstanding statistical coding features. Additionally, this approach incorpo-
rates the best functional site recognizers to determine the most likely func-
tional points along the genomic sequence, reducing the search space. One of
the many advantages of this approach is the ability to incorporate the whole
complexity of the problem. Other optimization methods used for this project
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lack this flexibility.

1.7 Contribution of the thesis

In this thesis, new approaches for the gene prediction problem based on ad-
vanced techniques of machine learning are presented. Specifically, we have
focused our efforts on two main components of gene finding systems: improv-
ing the current approaches of functional site recognition and presenting a new
integrative framework for gene prediction based on evolutionary computation
principles.

The proposed methodologies have been successfully applied to gene recog-
nition tasks. In the case of site recognition, an improvement has resulted from
three different factors:

First, from a pure machine learning point of view, the class imbalance
nature of the problem has been revealed, and it has been shown that the
methods developed to address this feature can be useful for approaching
the site recognition problem. Equally, the usefulness of the application
of feature selection techniques to improve the performance of the site
classifiers by reducing the whole sequence to a smaller sequence and
elaborating the ranking of the most interesting features in terms of
bases or codons has been demonstrated.

Second, a new approach has been introduced based on the idea of con-
sidering more than two groups in the training patterns used to gen-
erate the classification models and combining more than one type of
classifier. The first premise is based on the biological feature differ-
ences presented by the patterns and allows for more than two groups
with different importance levels in the classification process, instead
of using the positive–negative binary separation. The second idea was
motivated by the fact that the behavior of an ensemble of classifiers
improves the performance of classifiers individually, and even more so
if diversity exists between them.

The third contribution to site recognition is a methodology based on
the combination of classifiers that considers as many different informant
genomes as possible and as many different classifiers as needed. This
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approach opens a new research field for determining non canonical genes
that most current gene recognizers tend to ignore.

All of these techniques were shown to be successful by experiments on the
chromosomes of several organisms, mostly in the human genome, and were
compared with the results of the best current methods for site prediction.

In the case of evolutionary gene recognition framework, the introduced
paradigm has the ability to define accurate gene models while maintaining a
set of constraints presented by the problem. At the same time, it is flexible
enough to integrate the functional site recognition and content sensor mech-
anisms, integrating the latter as the search driver of the most likely gene
structure in a given target sequence.

The research performed during the development of this thesis produced
valuable results in the form of presentations at international congresses and
the publication of several articles in outstanding journals in the specific re-
search field.

1.8 Thesis organization

The present document is organized as follows. Chapter 2 describes the class
imbalance nature of functional site recognition problem and presents a de-
tailed study about the most useful classic machine learning techniques to
address it. Equally, Chapter 3 shows the convenience of the application
of feature selection methods to improve the performance of the site predic-
tion classifiers. Chapters 4 and 5 provide the details of the design of two
new approaches to address functional site recognition in DNA sequences by
merging concepts from different backgrounds as information theory and bi-
ology. These chapters provide a discussion on the most relevant aspects in
their implementations as well as the experimental setup and the study of
the results. Chapter 6 presents in depth a gene prediction global framework
based on evolutionary computation and includes a description of the results
obtained by the methodology on human genome. Finally, Chapter 7 states
the final conclusions of our work and a summary of the highlighted results
of the described methodologies.



Chapter 2
Class imbalance methods for site
recognition

TIS, splice site or stop codon recognition consists of identifying the places
which mark the boundaries of the coding segments in the genes. Most pre-
vious approaches have focused on recognizing sites in transcripts. However,
recognizing sites in genomic sequences is a different, more difficult task. Full
length or partial transcripts usually contain a few of sites, and no introns. On
the other hand, in a generic genetic sequence, we can find decoy codons, and
thus a putative TIS, in any place. In this work we consider the most difficult
case of analyzing genomic sequences that contain intergenic DNA, exons,
introns and untranslated terminal regions (UTRs). The different character-
istics of recognizing site in transcripts and genomic sequences are illustrated
in the different performance of the predictors in each problem. For example,
TisMiner [44] is one of the best performing programs for TIS recognition in
transcripts, able to achieve a specificity of 98% at a sensitivity level of 80%.
However, when tested in genomic sequences, its performance at the same
level of sensitivity drops to a specificity of 55%.

One of the most important characteristics of site prediction in genome
sequences is the fact that negative instances greatly outnumber positive in-
stances. In machine learning theory, this is called the class imbalance problem
[3] [45]. Most learning algorithms expect a somewhat balanced distribution
of instances among the different classes. It has been shown that learning
algorithms suffer from the skewed distribution that is associated with class
imbalance. Most of the previous works in site recognition have not considered

15
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addressing this problem from the point of view of class imbalance methods.
However, the problem can be highly imbalanced. In our TIS test sets we
have a positive/negative ratio of 1:25, 1:93, and 1:123. In sequences with low
level of codification, such as human chromosome 21, it can reach a ratio of
1:4912. The cases of stop codon and splice site prediction are even worse.

In this chapter we approach the recognition of TIS as a class imbalance
problem. We test whether class imbalance methods are able to achieve the
same performance of the methods designed specifically for TIS recognition
from the biological point of view. This work also tests some of the most
widely used class-imbalance methods in a hard real-world task. Thus, it
allows an interesting evaluation of those methods in difficult problems.

2.1 Class Imbalance Problems

It has been repeatedly shown that most classification methods suffer from
an imbalanced distribution of the training instances among the classes [13].
Most learning algorithms expect an approximately even distribution of the
instances among the different classes and suffer, in different degrees, when
that is not the case. Dealing with the class imbalance problem is a difficult
task, but a very relevant one as many of the most interesting and challeng-
ing real-world problems have a very uneven class distribution, such as gene
recognition, intrusion detection, web mining, etc.

In most cases this problem appears in two class datasets. There is a class
of interest, the positive class, which is highly underrepresented in the dataset,
together with a negative class which accounts for most of the instances. In
highly imbalanced problems the ratio between the positive and the negative
class can be as high as 1:1000 or 1:10000. Many algorithms and methods have
been proposed to ameliorate the effect of class imbalance on the performance
of the learning algorithms. There are mainly three different approaches [67]
[21]:

• Internal approaches acting on the algorithm. These approaches modify
the learning algorithm to deal with the imbalance problem. They can
adapt the decision threshold to create a bias towards the minority class
or introduce costs in the learning process to compensate the minority
class.

• External approaches acting on the data. These algorithms act on the
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data instead of on the learning method. They have the advantage
of being independent from the classifier used. There are two basic
approaches, oversampling the minority class and undersampling the
majority class.

• Combined approaches which are based on boosting [20] taking into ac-
count the imbalance in the training set. These methods modify the
basic boosting method to account for the minority class underrepre-
sentation in the dataset.

There are two principal advantages of sampling against cost sensitive
methods. Firstly, sampling is more general as it does not depend on the
possibility of adapting a certain algorithm to work with classification costs.
Secondly, the learning algorithm is not modified, which can be in many cases
a difficult task and also adds additional parameters to be tuned.

Data driven algorithms can be broadly classified into two groups. Un-
dersampling the majority class and oversampling the minority class. There
are also algorithms that combine both processes. Both undersampling and
oversampling can be made randomly or with a more complicated process
searching for least/most useful instances. Previous works have shown that
undersampling the majority class usually leads to better results than over-
sampling the minority class [13], at least, when oversampling is performed
using sampling with replacement from the minority class. Furthermore, com-
bining undersampling on the majority class with oversampling of the minority
class has not yield to better results than undersampling of the majority class
alone [43]. One of the possible sources of this worse performance of oversam-
pling is the fact that there is no new information introduced in the training
set, as oversampling must rely on adding new copies of the minority class
instances already in the dataset.

2.1.1 Undersampling and Exploratory Undersampling

The first method for balancing a dataset is undersampling the majority class
until both classes have the same number of instances. We have not used
oversampling methods because most previous works agree that undersam-
pling performs better than oversampling [42]. However, a few works have
found the opposite [19]. Additionally, as we are dealing with very large
datasets, oversampling would make the datasets almost twice in size, pre-
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venting the use of some of the most interesting classifiers, such as support
vectors machines.

Random undersampling consists of randomly removing instances from the
majority class until a certain criterion is reached. In most works, instances
are removed until both classes have the same number of instances. Several
studies comparing sophisticated undersampling methods with random under-
sampling [34] have failed to establish a clear advantage of the formers. Thus,
in this work we consider first random undersampling. However, the problem
with random undersampling is that many, potentially useful, samples from
the majority class are ignored. In this way, when the majority/minority class
ratio is large the performance of random undersampling degrades [21]. Fur-
thermore, when the number of minority class samples is very small, we will
also have problems due to small training sets.

Liu et al. [46] propose two ensemble methods combining undersampling
and boosting to avoid that problem. This methodology is called exploratory
undersampling. The two proposed methods are called EasyEnsemble and
BalanceCascade. We describe these two methods in more detail as we have
tested both experimentally. EasyEnsemble consists of applying repeatedly
the standard ensemble method AdaBoost [5] to different samples of the
majority class. Algorithm 1 shows EasyEnsemble method. The idea behind
EasyEnsemble is generating T balanced subproblems sampling from the ma-
jority class.

EasyEnsemble is an unsupervised strategy to explore the set of negative
instances, N , as the sampling is made without using information from the
classification performed by the previous members of the ensemble. On the
other hand, BalanceCascade method explores N in a supervised manner,
removing from the majority class those instances that have been correctly
classified by the previous classifiers added to the ensemble. BalanceCascade
is shown in Algorithm 2.

2.1.2 SMOTE-N

One of the problems with oversampling is that merely making copies of the
minority class samples does not add new information to the dataset, and
the learning method is not able to significantly improve the classification of
the minority class. To overcome this problem, Chawla et al. [13] proposed
a method called SMOTE, which combines undersampling of the majority
class with oversampling of the minority class. However, instead of oversam-
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Data : A minority training set P and a majority training set N ,
|P| ≪ |N |, a number of subsets T to sample from N and si
the number of iterations to train the AdaBoost ensemble
Hi.

Result : The final ensemble:
H(x) = sgn

(∑T
i=1

∑si
j=1 αi,jhi,j(x)−

∑T
i=1 θi

)
.

for i = 1 to T do
1: Randomly sample a subset Ni from N , |Ni| = |P|
2: Learn Hi using P and Ni. Hi is an AdaBoost en-
semble with si weak classifiers hi,j and corresponding weights
αij . The ensemble threshold is θi. Hi is given by: Hi(x) =

sgn
(∑si

j=1 αi,jhi,j(x)− θi

)
.

end

Algorithm 1: EasyEnsemble method.

Data : A minority training set P and a majority training set N ,
|P| ≪ |N |, a number of subsets T to sample from N and si
the number of iterations to train the AdaBoost ensemble
Hi.

Result : The final ensemble:
H(x) = sgn

(∑T
i=1

∑si
j=1 αi,jhi,j(x)−

∑T
i=1 θi

)
.

1: f = T−1
√

|P|/|N |. f is the false positive rate thatHi should achieve.
for i = 1 to T do

2: Randomly sample a subset Ni from N , |Ni| = |P|
3: Learn Hi using P and Ni. Hi is an AdaBoost en-
semble with si weak classifiers hi,j and corresponding weights
αi,j. The ensemble threshold is θi. Hi is given by: Hi(x) =

sgn
(∑si

j=1 αi,jhi,j(x)− θi

)
.

4: Adjust θi such that Hi’s false positive rate is f .
5: Remove form N all examples that are correctly classified by Hi.

end

Algorithm 2: BalanceCascade method.
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pling the minority class just making copies of the minority class samples,
SMOTE generates synthetic instances from actual instances of the minority
class. Synthetic samples are generated in the following way: take the differ-
ence between the feature vector (sample) under consideration and its nearest
neighbor. Multiply this difference by a random number between 0 and 1, and
add it to the feature vector under consideration. This causes the selection
of a random point along the line segment between two specific features. In
this way, we can generate new samples that share the main characteristics of
actual instances for a more dense dataset.

The original algorithm is proposed for numerical attributes. However,
an algorithm, called SMOTE-N, is also proposed for nominal attributes as
it is our case. The procedure for generating this subset of synthetic sam-
ples, SMOTE-N, is shown in Algorithm 3. SMOTE-N differs from standard
SMOTE in using a modified version of the value difference metric (VDM),
proposed by Cost and Salzberg [15], instead of the Euclidean distance, as our
instances, DNA sequences, have only nominal attributes.

Data : A minority training set P ⊂ RD, the number of synthetic
instances to generate for each instance Ns, and the number
k of nearest neighbors.

Result : P with the synthetic instances added.

for t = 1 to |P| do
1: Obtain k nearest neighbors of xt using modified VDM distance
for i = 1 to Ns do

for j = 1 to D do
2: xj

new = select randomly a value from the corresponding
feature j within the set of k nearest neighbors of the same
class as xt.

end
3: Add xnew to P

end
end

Algorithm 3: SMOTE-N algorithm.



2.1. CLASS IMBALANCE PROBLEMS 21

2.1.3 Evaluation measures in class imbalanced prob-
lems

Accuracy is not a useful measure for imbalanced data, specially when the
number of instances of the minority class is very small compared with the
majority class. If we have a ratio of 1:100, a classifier that assigns all instances
to the majority class will have a 99% accuracy. Several measures [67] have
been developed to take into account the imbalance nature of the problems.
Given the ratio of true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN) we can define several measures. Perhaps the
most common are the true positive rate (TPrate), recall (R) or sensitivity
(Sn):

TPrate = R = Sn =
TP

TP + FN
, (2.1)

which is relevant if we are only interested in the performance on the positive
class; and the true negative rate (TNrate) or specificity (Sp)1:

TNrate = Sp =
TN

TN + FP
. (2.2)

From these basic measures, others have been proposed, such as the F -
measure [41] or, if we are concerned about the performance on both negative
and positive classes the G−mean measure [36]: G−mean =

√
Sp · Sn.

Many classifiers are subject to some kind of threshold that can be varied
to achieve different values of the above measures. For that kind of classifiers
receiver operating characteristic (ROC) curves can be constructed. A ROC
curve, is a graphical plot of the TPrate (sensitivity) against the FPrate (1 -
specificity or FPrate =

FP
TN+FP

) for a binary classifier system as its discrimi-
nation threshold is varied. The perfect model would achieve a true positive
rate of 1 and a false positive rate of 0. A random guess will be represented
by a line connecting the points (0, 0) and (1, 1). ROC curves are a good
measure of the performance of the classifiers. Furthermore, from this curve a
new measure, area under the curve (AUC), can be obtained, which is a very
good overall measure for comparing algorithms. AUC is a useful metric for
classifier performance as it is independent of the decision criterion selected

1In Bioinformatics, sometimes an alternative form of specificity is used, Sp = TP
TP+FP ,

as the large number of negative instances may yield to an unrealistic high specificity value.
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and prior probabilities. The AUC comparison can establish a dominance re-
lationship between classifiers. If the ROC curves are intersecting, the total
AUC is an average comparison between models [40].

In our experiments we will use as main comparison tool ROC curves. As
a numerical measure we have chosen the AUC value obtained by means of a
trapezoid numerical integration. Saeys et al. [59] developed the best current
model and compared their proposal with other methods using the obtained
specificity at a sensitivity level of 80%. To allow a fair comparison with their
method, we will also use a sensitivity of 80% and show the corresponding
specificity.

2.2 Experimental setup

Among the different methods for dealing with class imbalance problems we
have selected some of the most successful ones in the literature, which we
have described in previous sections. We have used random undersampling,
SMOTE-N, BalanceCascade and EasyEnsemble. Other methods were tried
with worse results. We must take into account that the two former are single
classifier methods, while the two latter, are ensemble methods. Due to their
increased complexity, BalanceCascade and EasyEnsemble must achieve a
significantly better performance than undersampling and SMOTE-N to be
competitive.

As base learners we used a C4.5 decision tree [53], a support vector ma-
chine (SVM) [62] and a k-nearest neighbors (k-NN) classifier. These are
some of the most powerful learning algorithms available. Although many
other classification methods can be used, these three are usually the best
ones in most works devoted to classification. There are also other reasons in
their favor. We have used decision trees because they can deal with nom-
inal values, are fast and achieve good results, and are good base learners
for ensembles. SVMs are included because overall they usually tend to be
the best methods in classification tasks, are specifically designed to two-class
problems and are very efficient in problems with many inputs. Finally, k-NN
method is used because it is simple and fast, and achieves very good results
in other real-world applications such as computer vision [64] and other areas
of Bioinformatics [52].

We have performed our experiments using k-fold cross-validation for set-
ting the values of the parameters, with k = 10. For each one of the classifiers
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used, we have obtained the best parameters from a set of different values. For
SVMs we tried a linear kernel with C ∈ {0.1, 1, 10}, and a Gaussian kernel
with C ∈ {0.1, 1, 10} and γ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}, testing all the
21 possible combinations. For C4.5 we tested 1 and 10 trials and softening
of thresholds trying all the 4 possible combinations. For k-NN the value of
k is obtained by cross-validation in the interval [1, 100]. The cross-validation
process used for setting the parameters is as follows: each time a classifier
has to be trained the training set is divided into k parts. Then each set
of parameters is evaluated using these k parts as in standard k-fold cross-
validation. That is, for evaluating each subset of parameters, each one of the
k parts is used in turn for testing the performance of the parameters and the
remaining k − 1 parts are used to train the classifier. After all the sets of
parameters have been evaluated, the best set is selected and the classifier is
trained with the whole training set and that set of parameters. G-mean is
used as the evaluation measure of each set of parameters. The whole process
for evaluating the testing error and obtaining the best parameter set is shown
in Figure 2.1 for k = 10.

Figure 2.1: Procedure for evaluating the testing error using k-fold cross-
validation, with k = 10 for one of the folds, together with the procedure of
obtaining the best set of parameters also using 10-fold cross-validation in the
training set.

The source code, in C and licensed under the GNU General Public Li-
cense, used for all methods as well as the datasets are freely available upon
request from the authors. SVMs were implemented using libsvm [12] library.
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2.2.1 Datasets

We have used three datasets for testing the performance of the described
methods. The CCDS dataset was compiled by Saeys et al. [59] from the
consensus CDS database. The CCDS project is a collaborative effort of
compiling and identifying a core of human genes that are accurately anno-
tated. The annotation is a mix of manual curation and automatic annotation.
CCDS contains 350,578 negative samples and 13,917 positive samples with
a positive/negative ratio of 1:25. Ustilago dataset is a set of coding and
non-coding regions of genomic sequences from the sequencing of the fungus
Ustilago maydis. The sequences are first obtained from the Broad Institute2

and then completed with the information of the Munich Information Center
for Protein Sequences (MIPS)3. Ustilago dataset contains 607,696 negative
samples and 6,515 positive samples with a ratio of 1:93. Arabidopsis dataset
comprises coding and non coding regions of the plant Arabidopsis thaliana ob-
tained from “The Arabidopsis Information Resource” (TAIR)4. This dataset
contains 27,342 positive instances and 3,369,875 negatives instances with an
imbalance ratio of 1:123.

For estimating the testing error we used a k-fold cross-validation method.
In this method the available data is divided into k approximately equal sub-
sets. Then, the method is learned k times, using, in turn, each one of the k
subsets as testing set, and the remaining k − 1 subsets as training set. The
estimated error is the average testing error of the k subsets. We have used a
fairly standard value for k which is k = 10.

Our aim was to test the proposed methods in very different datasets
to study whether the problem is more difficult depending on the organism.
Thus, we used these three datasets because they correspond to very different
species. CCDS dataset contains human DNA, thus it has long genes, with
many exons and potentially long introns. On the other hand, Ustilago dataset
contains shorter genes, with very few exons, usually only one or two, and few
and shorter introns. Arabidopsis complexity is between these two organisms.
With these datasets, we can study the behavior of the proposed methods in
different environments.

For all datasets we consider a sequence of 500 bps upstream and down-
stream of every ATG codon. For the classifiers that can deal with nominal

2http://www.broadinstitute.org/annotation/genome/ustilago_maydis/
3http://www.helmholtz-muenchen.de/en/mips/home/index.html
4http://www.arabidopsis.org/
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attributes, C4.5 and k-NN, we used the original sequence. For classifiers that
need numerical attributes, SVMs, we used a 1 out of 4 codification of each
element of the sequence for a total of 4012 inputs. For k-NN classifier we
used Hamming distance, dH , and the votes of each neighbor were weighted.
Thus, for a given query instance x, the vote for i-th neighbor, ni, receives a
weight wi, according to:

wi =
exp(−dH(x, ni))∑k
j=1 exp(−dH(x, nj))

. (2.3)

2.3 Experimental results

In a first step we wanted to establish the usefulness of undersampling. Fig-
ures 2.2, 2.3 and 2.4 show ROC curves for C4.5, k-NN and SVM classifiers
respectively for all datasets. These curves show a comparison between the
classification method using the whole dataset and the same classifier using
random undersampling.

ROC curves show the problems encountered by standard classification
methods when facing class imbalance datasets. For Ustilago dataset, C4.5
was not able to achieve useful values, classifying all the instances in either
class, depending on the used threshold. For CCDS, C4.5 obtained better
results, although not competitive with other methods that we will show. For
Arabidopsis the results are better than for Ustilago, but again undersampling
is able to show a large improvement. Undersampling was very effective in
improving the results for Ustilago and Arabidopsis. The results for CCDS
were also better, although the differences were not so marked, as C4.5 without
undersampling had a better performance.

ROC curves for k-NN show more marked differences. Undersampling
improved the performance of k-NN consistently. For CCDS the differences
are clear, achieving higher sensitivity. For Ustilago the behavior is even
better. Undersampling improved the performance of k-NN from a very poor
level to be one of the best performing algorithms of all for this dataset. The
same is observed for Arabidopsis, with a very marked improvement.

For SVM the performance of SVM with all the instances is better, but
still undersampling provides a significant improvement, especially for CCDS
and Arabidopsis. The performance of SVM with Ustilago is remarkably well,
almost matching undersampling in terms of AUC.
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Figure 2.2: ROC curve and AUC for C4.5 and CCDS, Ustilago and Ara-
bidopsis datasets, with and without undersampling.
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Figure 2.3: ROC curve and AUC for k-NN and CCDS, Ustilago and Ara-
bidopsis datasets, with and without undersampling.
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Figure 2.4: ROC curve and AUC for SVM and CCDS, Ustilago and Ara-
bidopsis datasets, with and without undersampling.
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Our second step was the comparison of the performance of undersampling
against the more sophisticated method, SMOTE-N, described above. We
wanted to check whether the added complexity of SMOTE-N paid off in
terms of improved performance. Figures 2.5, 2.6, and 2.7 compare the results
using undersampling and SMOTE-N methods for the three classifiers. The
behavior using C4.5 and SVM is similar. The results for these two classifiers
show small differences using undersampling and SMOTE-N, with a better
performance of each one of the methods depending on the dataset and the
classifier.

For k-NN, the results are somewhat different, as SMOTE-N is always
worse than undersampling, although the differences are not large. Thus, as
a general rule, SMOTE-N was not able to significantly improve the results
of standard undersampling. It does not mean that SMOTE is not a useful
method, although we can conclude that SMOTE-N, the version for nominal
attributes, is less efficient.
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Figure 2.5: ROC curve and AUC for C4.5 and Arabidopsis, CCDS and Usti-
lago datasets using undersampling and SMOTE-N methods.
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Figure 2.6: ROC curve and AUC for k-NN and Arabidopsis, CCDS and
Ustilago datasets using undersampling and SMOTE-N methods.
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Figure 2.7: ROC curve and AUC for SVMs and Arabidopsis, CCDS and
Ustilago datasets using undersampling and SMOTE-N methods.
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2.3.1 Ensemble methods

The next step in our experiments was devoted to ensemble methods. In
the previous experiments we have shown the efficiency of undersampling and
SMOTE-N in improving the performance of the classifiers. In this section,
we show the results of using the two ensemble methods described above.
The parameters are chosen following the recommendations of the authors
[46]. For easy and balance cascade ensembles we constructed 4 AdaBoost
ensembles, T = 4, of 10 classifiers, si = 10.

These two methods are applied using C4.5 and SVM as base learners.
k-NN is not used as it has been shown that this classifier is not efficient as a
member of an ensemble [24].

Figure 2.8 shows the ROC curve for easy and balance cascade ensembles.
We have included in the plots the performance of C4.5 and SVM with the
best class imbalance method, undersampling or SMOTE-N, for each dataset
for comparison purposes.

For C4.5, the performance of both methods is very similar in the three
datasets. We can see that the performance of these ensemble methods is
significantly better than the performance of C4.5 using undersampling or
SMOTE-N as imbalance method. However, we must also take into account
that their complexity is higher, as these ensembles are made of 40 classifiers.
We tried larger ensembles, but the addition of classifiers did not increase the
performance in a significant way. It is a known fact [23] that the performance
of ensembles does not improve after the first few classifiers are trained even
if we add many more classifiers.

For the case of SVM, the results are different, EasyEnsemble is always
better than BalanceCascadeEnsemble. However, both ensemble methods are
markedly worse than undersampling or SMOTE-N. It has been shown that
SVMs do not usually perform as well as decision trees as members of an
ensemble [63]. Our results corroborate that fact.

2.3.2 Comparison with state-of-the-art methods

Once we had established the utility o undersampling and SMOTE-N, we
wanted to compare whether these methods were able to improve the results of
the best performing method so far, the stop codon method [59]. This method
consists of looking at the stop codon frequencies downstream of the TIS. The
rationale for this approach is the following: TIS are characterized by the fact



32 CHAPTER 2. CLASS IMBALANCE METHODS FOR SITE RECOGNITION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e
n
s
it
iv

it
y
)

False positive rate (1-specificity)

Easy ensemble (CCDS)
Balance cascade ensemble (CCDS)

C4.5 undersampling (CCDS)
Easy ensemble (Ustilago)

Balance cascade ensemble (Ustilago)
C4.5 undersampling (Ustilago)
Easy ensemble (Arabidopsis)

Balance cascade ensemble (Arabidopsis)
C4.5 undersampling (Arabidopsis)

 0.7

 0.75

 0.8

 0.85

E
a
s
y
 e

n
s
e
m

b
le

 (
C

C
D

S
)

B
a
la

n
c
e
 c

a
s
c
a
d
e
 e

n
s
e
m

b
le

 (
C

C
D

S
)

C
4
.5

 u
n
d
e
rs

a
m

p
lin

g
 (

C
C

D
S

)
E

a
s
y
 e

n
s
e
m

b
le

 (
U

s
ti
la

g
o
)

B
a
la

n
c
e
 c

a
s
c
a
d
e
 e

n
s
e
m

b
le

 (
U

s
ti
la

g
o
)

C
4
.5

 S
M

O
T

E
-N

 (
U

s
ti
la

g
o
)

E
a
s
y
 e

n
s
e
m

b
le

 (
A

ra
b
id

o
p
s
is

)
B

a
la

n
c
e
 c

a
s
c
a
d
e
 e

n
s
e
m

b
le

 (
A

ra
b
id

o
p
s
is

)
C

4
.5

 u
n
d
e
rs

a
m

p
lin

g
 (

A
ra

b
id

o
p
s
is

)

A
U

C

C4.5 as base learner
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Figure 2.8: ROC curve for ensemble methods and CCDS, Ustilago and Ara-
bidopsis datasets.
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that they represent the start of the first exon, so we know the reading frame
of the first exon. In general, the first exon will have a minimal length, and
thus there will be a minimal amount of sequence downstream of the TIS that
does not contain an in-frame stop codon. On the other hand, pseudo TIS
will not have this constraint, so the presence of in-frame stop codons can be
used to discriminate between true and pseudo TIS. A very simple predictor
can now be constructed that looks at the region following a putative TIS for
the occurrence of in-frame stop codons. The earlier an in-frame stop codon
occurs in this region, the less likely it is that the putative TIS is a true TIS.
To obtain a simple scoring function that constructs a classifier out of this
observation, Saeys et al. calculate the (cumulative) probability of observing
an in-frame stop codon for the positive examples in the training set. It turns
out that there is a significant difference in the cumulative distributions of the
in-frame stop codons in both datasets. Then, for each testing example, the
method scans the downstream part of the sequence until it finds an in-frame
stop codon. For this first occurrence of an in-frame stop codon, the position
x is recorded, and the model checked to find the probability of having a first
in-frame stop codon at position x following a true TIS.

This last comparison shows the results of the proposed method with the
method based on stop codon frequencies as baseline method. We also wanted
to test whether the rationale of stop codon method applied to genomes as
different from human genome as Ustilago maydis and Arabidopsis thaliana.
Figures 2.9, 2.10, and 2.11 show the comparison between the baseline stop
codon method and the best performing method for each classifier.

We made the comparison using two numerical values. Firstly, we consider
the testing error. To compare the different methods, we set a sensitivity of
80% and measure the specificity at that level of sensitivity. We have chosen
this sensitivity level as it is the one used by Saeys et al.[59]. Figure 2.12 shows
a bar plot and numerical values for that specificity for all the methods. As a
second method, we used the area under the curve (AUC) of the ROC curves
shown above.

As described, AUC is a good value for comparing the overall behavior
of the different algorithms. Numerical values and a bar plot of AUC results
are shown in Figure 2.13. The first interesting result shows that stop codon
method performed very well for Ustilago and Arabidopsis datasets, in the
same way it obtains good results for CCDS dataset.

Both values show the same behavior. We see that stop codon method is
among the best performing ones, which is a great achievement if we consider
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Figure 2.9: ROC curve for C4.5, k-NN and SVM and Arabidopsis dataset
using the best performing method for dealing with imbalanced datasets and
stop codon method.

that it is very simple. These values also corroborate that the classifiers ap-
plied without class imbalance methods perform poorly. On the other hand,
the application of even a simple method as undersampling improves the per-
formance very significantly. In fact, SVM with undersampling or SMOTE-N
is able to beat stop codon method for all three datasets in terms of AUC
values. k-NN with either undersampling or SMOTE-N beats stop codon
method for Ustilago dataset. Although undersampling is also useful for C4.5
classifier, the poor performance of C4.5 without undersampling prevents the
results of C4.5 and undersampling or SMOTE-N of being useful, even after
the improvement obtained.

Ensemble methods are especially useful for improving the performance of
its base classifier when we use a decision tree as base learner. Both, easy and
balance cascade ensembles, obtain a very good performance that match the
performance of stop codon method for CCDS and Ustilago datasets, and its
clearly better that the performance of their base classifier, C4.5.

In addition to the comparison using the AUC we have also performed
a statistical test to assure whether the observed differences are statistically
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Figure 2.10: ROC curve for C4.5, k-NN and SVM and CCDS dataset using
the best performing method for dealing with imbalanced datasets and stop
codon method.

significant. As we are comparing results of different methods on the same
problems using 10-fold cross-validation, we have chosen the corrected resam-
pled t-test [49]. We have compared the specificity results of the different
methods at a sensitivity level of 80%. Table 2.1 shows the results of this
comparison at a confidence level of 95%. The table shows that the proposed
class imbalance methods are able to significantly improve the results of the
base method. In fact, SVM with either undersampling or SMOTE-N, is able
to perform significantly better than stop codon method for all three datasets.
The differences are specially marked for CCDS and Ustilago datasets.

However, there is second important issue in any real-world task, execution
time. Methods must not only be efficient for the solution of the problems,
they also have to solve the problem in a reasonable amount of time. Table
2.2 shows the training and testing time for all the used methods. We have
separated the execution time in training and testing time because testing
time is usually more relevant than training time, as training is performed
off-line. The table shows that although the training time is always longer
for the class imbalance methods the total time is within reasonable bounds.
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Figure 2.11: ROC curve for C4.5, k-NN and SVM and Ustilago dataset using
the best performing method for dealing with imbalanced datasets and stop
codon method.

Figure 2.12: Specificity at 80% sensitivity for Arabidopsis, CCDS and Usti-
lago dataset using all the methods.
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Figure 2.13: Area under the curve (AUC) for ROC curves for Arabidopsis,
CCDS and Ustilago dataset using all the methods.

Table 2.1: Comparison between stop codon method and the methods studied.
Stop codon method vs. CCDS Ustilago Arabidopsis

C4.5 % % %

C4.5 + undersampling % % %

C4.5 + SMOTE % % %

k-NN % % %

k-NN + undersampling % " %

k-NN + SMOTE % " %

SVM % % %

SVM + undersampling " " "

SVM + SMOTE " " "

EasyEnsemble (C4.5) — % %

BalanceCascade (C4.5) — % %

EasyEnsemble (SVM) " " %

BalanceCascade (SVM) % " %

A "marks results significantly better that stop codon method, and
%marks results significantly worse, at a confidence level of 95%. A —

means no significant differences.
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The worst case took less than 20 hours, which is a good result for these
huge datasets. Furthermore, testing time is even shorter. For SVM, the best
overall method, the worst case is 35,384 seconds. If we take into account that
this value is for a test set of 339,721 instances, each sequence is evaluated
fast and the application to the gene recognition task of this classifier is not
prevented by its computational cost.

Table 2.2: Average training and testing times in seconds for all the methods
and the three datasets.
Method CCDS Ustilago Arabidopsis

Training Testing Training Testing Training Testing
time time time time time time

Stop codon 1 1 1 1 1 1
C4.5 + undersampling 7 1 3 2 28 9
C4.5 + SMOTE 276 1 72 1 959 9
k-NN + undersampling 1256 1916 276 1503 5171 37289
k-NN + SMOTE 20851 7828 4456 6190 4230 43145
SVM + undersampling 3453 2561 751 2054 11832 35384
SVM + SMOTE 61967 8601 9006 3008 32456 31234

2.4 Summary

In this chapter we have shown that the methods developed to cope with class
imbalance problems can be useful for approaching TIS recognition problems.
We have tested four methods designed to deal with class imbalance problems.
These methods are able to improve the results of stop codon method, which
it is the best reported in the literature [59]. The achieved results are very
interesting, as TIS recognition is a difficult and relevant task within the field
of gene structure prediction.

The results show that simple random undersampling is a very competi-
tive method when compared with more complex ones. SMOTE-N achieved
a good performance, but the improvement over random undersampling is
only marginal if it exists at all. On the other hand, the performance of
EasyEnsemble and BalanceCascade is remarkably good. These two ensem-
ble methods improve the results obtained with undersampling and SMOTE-
N, obtaining a performance comparable with stop codon method even from
a base learner as C4.5 whose results as a single classifier were poor.
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Furthermore, these methods, undersampling and SMOTE-N, are also use-
ful for allowing the application of complex learning methods, such as SVMs,
to large problems. Although stop codon method is very efficient and accu-
rate for TIS recognition, it cannot be extended to the recognition of other
sites, such as splice sites or stop codons. On the other hand, the proposed
methodology can be applied to any of these problems in a straightforward
manner.





Chapter 3
Feature selection for site recognition

Functional site prediction in genome sequences has two important character-
istics from the machine learning perspective: firstly, as presented in Chapter
2, negative instances outnumber positive instances by many times, i.e., it is
a class imbalance problem, and secondly, there are usually many features to
describe each sequence. This Chapter explains the dealing with the second
aspect and study the effect of the number of features on the classification
accuracy. Additionally, the results of the application of feature selection
techniques and their effect on the performance of the model are shown.

Many classifiers find problems in site recognition task due to the large
amount of features involved. Most previous works used an arbitrary win-
dow of nucleotides around the putative site. In this part, we present a more
principled way of selecting the relevant features using feature selection tech-
niques. The method is designed to proceed in a two step procedure. First,
it selects the most suitable window for each organism, and then it is carried
out a selection of a subset of the most relevant features within that window.

This chapter summarizes the most important aspects of feature selection,
shows the experimental setup of applying feature selection for site recognition
and the results obtained on it.

41
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3.1 Feature selection

Feature selection has been a fertile field of research and development since
1970’s in statistical pattern recognition, machine learning, and data mining,
and widely applied to many fields such as text categorization, image retrieval,
customer relationship management, intrusion detection, and genomic analy-
sis. Feature selection can be defined as the selection of a subset of M features
from a set of N features, M < N , such that the value of a criterion function is
optimized over all subsets of size M [50]. The objectives of feature selection
are manifold, the most important ones being [59]:

• To avoid over-fitting and improve model performance, e.g. prediction
performance in the case of supervised classification and better cluster
detection in the case of clustering.

• To provide faster and more cost-effective models.

• To gain a deeper insight into the underlying processes that generated
the data.

However, the advantages of feature selection techniques come at a certain
price, as the search for a subset of relevant features introduces an additional
layer of complexity in the modeling task.

In the context of classification, feature selection techniques can be or-
ganized into different categories. The output type divides feature selection
algorithms into two groups: ranked list and minimum subset. The real differ-
ence between the two is about the order among the selected features. There
is no order among the features in a selected subset. One cannot easily re-
move any more features from the subset, but one can do so for a ranked
list by removing the least important one. If we focus on how they combine
the feature selection search with the construction of the classification model
we can identify three categories [59]: filter methods, wrapper methods, and
hybrid/embedded methods:

1. Filter techniques rely on the intrinsic properties of the data to evalu-
ate and select feature subsets without involving any mining algorithm.
Advantages of filter techniques are that they easily scale to very high-
dimensional datasets and that they are computationally simple, fast,
and independent of the classification algorithm. As a result, feature
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selection needs to be performed only once, and then different classifiers
can be evaluated.

2. Wrapper methods embed the model hypothesis search within the fea-
ture subset search. In this setup, a search procedure in the space of
possible feature subsets is defined, and various subsets of features are
generated and evaluated. To search the space of all feature subsets, a
search algorithm is then wrapped around the classification model. How-
ever, as the space of feature subsets grows exponentially with the num-
ber of features, heuristic search methods are used to guide the search
for an optimal subset. The evaluation of a specific subset of features is
obtained by training and testing a specific classification model. Their
advantages include the interaction between feature subset search and
model selection, and the ability to take into account feature dependen-
cies. A common drawback is that they have a high risk of over-fitting
and are very computationally intensive.

3. Hybrid/embedded techniques attempt to take advantage of the two
models by building the search for an optimal subset of features into the
classifier construction. Just like wrappers, they are specific to a given
learning algorithm. Embedded methods have the advantage that they
include the interaction with the classification model, while at the same
time being far less computationally intensive than wrapper methods.

3.1.1 Feature selection for functional site recognition

In order to choose an appropriate algorithm for our problem we have to
bear in mind the special characteristics of site recognition. First, its class
imbalance nature. To avoid the problems derived from this fact, we have
performed an undersampling step before applying any learning algorithm.
We applied undersampling as it was the overall best performing method in
our previous study. Then, we must consider the large number of features in
the datasets. This size prevents the use of wrapper approaches due to their
computational cost. Then, we must choose a filter approach. Furthermore,
the method used must be able to cope with many features. With all these
constraints we have selected SVM-RFE as the best choice.

Support vector machine recursive feature elimination (SVM-RFE) method
is well-studied for use in gene expression problems [29]. This algorithm con-
ducts feature selection in a sequential backward elimination manner, which
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starts with all the features and discards one feature at a time –it is a greedy
algorithm –. Just like SVM, SVM-RFE was initially proposed for binary
problems. The squared coefficients: w2

j (j = 1, ...; p) of the weight vector w
are employed as feature ranking criteria. Intuitively, those features with the
largest weights are the most informative. Thus in an iterative procedure of
SVM-RFE one trains the SVM classifier, computes the ranking criteria w2

j

for all features, and discards the feature with the smallest ranking criterion.
One can consider that the removed variable is the one which has the least
influence on the weight vector norm. The procedure provides as output a
ranking of the features.

3.2 Experimental setup and results

As learning algorithm we have used a support vector machine. In a previous
work we found SVM to achieve the best overall results [22] when compared
with other widely used classification methods. SVM is very sensitive to its
learning parameters, especially C, and γ in case of a Gaussian kernel. Thus,
we have carried out a cross-validation procedure for obtaining values for
these two parameters. We tried a linear kernel with C ∈ {0.1, 1, 10}, and a
Gaussian kernel with C ∈ {0.1, 1, 10} and γ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10},
testing all the 21 possible combinations. As the optimal values of these pa-
rameters depends on the training set, the cross-validation process is repeated
each time a SVM is trained.

As previously stated in Chapter 2, site recognition is a class-imbalance
problem and accuracy is not a useful measure. We used the developed mea-
sures that take into account the imbalanced nature of the problem described
on Section 2.1.3.

3.2.1 Datasets

We have used three datasets for testing the performance of the described
methods. The CCDS dataset was compiled by Saeys et al. [59] from the
consensus CDS database. The CCDS project is a collaborative effort of com-
piling and identifying a core of human genes that are accurately annotated.
The annotation is a mix of manual curation and automatic annotation. The
CCDS dataset contains 350,578 negative samples and 13,917 positive sam-
ples with a positive/negative ratio of 1:25. The Ustilago dataset is a set
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of coding and non-coding regions of genomic sequences from the sequencing
of the fungus Ustilago maydis. The sequences are first obtained from the
Broad Institute1 and then completed with the information of the Munich
Information Center for Protein Sequences (MIPS)2. The Ustilago dataset
contains 607,696 negative samples and 6, 515 positive samples with a ratio
of 1:93. The Arabidopsis dataset comprises coding and non coding regions
of the plant Arabidopsis thaliana obtained from “The Arabidopsis Informa-
tion Resource” (TAIR)3. This dataset contains 27,342 positive instances and
3,369,875 negatives instances with an imbalance ratio of 1:123.

Our aim was to test the proposed methodology on very different datasets
to study whether the problem is more difficult depending on the organism.
Thus, we used these three datasets because they correspond to very dif-
ferent species. The CCDS dataset contains human DNA, thus it has long
genes, with many exons and potentially long introns. On the other hand, the
Ustilago dataset contains shorter genes, with very few exons, usually only
one or two, and few and shorter introns. Arabidopsis complexity is between
these two organisms. With these datasets, we can study the behavior of the
proposed methodology in different environments.

In this case, the collected data is just related with the Translation Initi-
ation Site, althought the proposed methodology is enough general as to be
applied to any other functional site prediction problems. For all datasets
we consider a sequence of 500 bps upstream and downstream of every ATG
codon. The SVM classifier needs numerical attributes, thus we used a 1 out
of 4 codification of each element of the sequence for a total of 4012 inputs.

Our first task was to obtain a working window for classifying the se-
quences. We chose an initial window large enough to assure that all needed
information is contained in it. We selected sequences with 500 bps upstream
and downstream of the actual or putative TIS. With these sequences we ap-
plied SVM-RFE method to rank the inputs. However, we must take into
account that SVM-RFE works with decoded inputs. So we have to find a
method that processes the 4012 original inputs in a way that allows us to
measure the relevance of the 1003 corresponding nucleotides. To obtain that
measure, we assigned to each nucleotide in the sequence a ranking equal
to the average of the rankings of each of the 4 variables that codify the

1http://www.broadinstitute.org/annotation/genome/ustilago_maydis/
2http://www.helmholtz-muenchen.de/en/mips/home/index.html
3http://www.arabidopsis.org/
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nucleotide. To make the information obtained manageable we grouped the
relevance of the variables in 40 groups. These results are shown in Figure
3.1.

The first thing showed by the results is that the relevance of the variables
is highly dependent on the organisms. It is very clear that the profile of the
plots is very different for human, Arabidopsis thaliana and Ustilago maydis
genomes.

The profile of Ustilago maydis shows that most of the downstream part
is relevant. The ustilago dataset has genes with few exons and introns. Due
to the fact that the are few introns, the downstream sequence is usually an
exon with no introns, or at most one intron. Thus, it is a coding region
and significant for the classification of the sequence. For the human genome,
CCDS dataset, the situation is different. Human genome has more complex
genes, and the first exon is usually disrupted by an intron after a short
sequence. In this way, the downstream part is not all coding, and after the
first 50 codons, the significance of the features decreases. For Arabidopsis
thaliana, we found a behavior between these two.

With this first results we determined a sequence window to proceed with
our second experiment. This window must consider a smaller sequence and at
the same time include most of the significant features. We chose a sequence
of 250 bps for the three genomes. For CCDS and Ustilago maydis we selected
a window of 100 bases downstream and 150 upstream, and for Arabidopsis
thaliana of 50 bases upstream and 200 downstream. With these windows we
performed a second round of feature selection to study the relevancy of each
base in the sequence. The results are shown in Figure 3.2 for each base in
the sequence window.

For the CCDS dataset we found interesting results. First, most of the
useful information is concentrated in the coding part, as should be expected.
Furthermore, the relevance of the features follows a very marked sequence of
period three, always assigning less relevancy to the middle base in the codon
than the first base and the most relevant is always the last base. This is very
interesting and further research is ongoing for a complete explanation of this
fact. The ustilago has a more even distribution of the relevance of the features
but it also exhibits the periodicity of CCDS in the coding part. However, for
Ustilago maydis the first base of the codon is always the less informative, and
the middle one the most relevant. For Arabidopsis thaliana, the downstream
sequence is almost irrelevant. The periodicity in the coding region is also
observed with the middle base as the most important. A comparison of the
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Figure 3.1: Codon relevance for a sequence of 1000 bps for, from top to
bottom, Arabidopsis, CCDS and Ustilago
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Figure 3.2: Base relevance for a sequence of 250 bps around the TIS for, from
top to bottom, Arabidopsis, CCDS and Ustilago
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performance using this window and the whole sequence is shown in Figure
3.3. It is clear that using the reduced window the classification is improved.
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Figure 3.3: ROC curves and AUC values for, from top to bottom, Arabidop-
sis, CCDS and Ustilago
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Our last step was to obtain the subset of most relevant features within
the window and test its performance. However, SVM-RFE outputs a ranking
of the variables and not a selection. As we want to compare the performance
of feature selection with no feature selection, we performed a cross-validation
approach for selecting the most appropriate number of retained features ac-
cording to the ranking order provided by SVM-RFE in the classification
process. A comparison of the three different groups of features is shown in
Figure 3.3 for the three datasets. The figure shows the ROC curves and
corresponding AUC. The results show the improvement in performance of
feature selection against using all the variables. AUC is improved for the
three problems with fewer features.

3.3 Summary

In this chapter we have shown that feature selection methods are a useful
tool for improving the performance of TIS recognition. In a first step we have
improved the performance of the classifier reducing the whole sequence to a
smaller sequence. Then, we have carried out a second feature selection pro-
cess to select the most interesting features within that smaller sequence. The
performed selection has achieve better results in terms of AUC. In this way,
SVM-RFE has shown is ability to, first select the correct window for learning
the classifiers, and them to obtain a subset of features able to improve the
results of all of them.

Our current research is centered in the explanation of the periodicity
exhibited by the coding part of the sequences in the relevancy of the features.





Chapter 4
Site prediction using more than two
classes

As previously mentioned, the site recognition is one of the most critical tasks
for gene structure prediction. Most successful current gene recognizers first
implement a step of site recognition [27], which is followed by a process of
combining the sites into meaningful gene structures. This first step is of
the utmost importance because the program cannot find genes whose func-
tional sites are not identified. Furthermore, a large number of false positives
might inundate the second step of the programs, making it difficult to predict
accurate gene structures.

The best current approaches use powerful classifiers, namely support vec-
tor machines (SVMs), and moderately large sequences around the functional
site [73, 17, 4, 65]. In accordance with common practices in machine learn-
ing, these methods construct a positive instance set using sequences that
contains true sites and a negative instance set. In the case of TIS, in the
negative instance set, the sequences centered around an ATG triplet are not
TISs. In the stop codon recognition, the negative set are the sequences cen-
tered around TAG, TAA or TGA triplets are not stop codons. The negative
sequences are obtained from all the available information or are randomly
selected when sampling is used [25]. Thus, negative sequences can be part of
intergenic regions, introns, exons, UTRs, etc.

However, the negative sequences from these different regions have differ-
ent features. Therefore, the negative class, which the classifier must learn,
is highly non-homogeneous. This inhomogeneity is an unnecessary difficulty
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that the learning algorithm must face and that might damage its perfor-
mance. In this chapter, we show how the performance of the classifier can be
actually improved if the negative instances are divided into different classes
based on their position in the gene; subsequently, different classifiers are
learned for each pair of positive and negative instance sets.

Some previous works have also consider the idea of differentiating be-
tween functional sites before proceeding to their recognition. TriTISA [32]
is a method for detecting TISs in microbial genomes that classifies all candi-
date TISs into three categories based on evolutionary properties, and char-
acterizes them in terms of Markov models. Also, other methods [11], have
developed different models depending on the structure and composition of
the sequences to recognize. However, these approaches are different from
ours, as these models are trained and used separately instead of combined as
in our proposal.

4.1 Site recognition method by using more

than two classes

As explained in the previous section, our approach is based on separating the
negative sequences based on their position in the gene. The same method-
ology was used for TIS and stop codon recognition. Thus, five different sets
are created. First, we create a set containing all sequences that contain pos-
itive instances. Then, four additional sets are created containing negative
sequences; these sets vary based on the position in the gene of those neg-
ative sequences. One set was created for each of the three following types
of sequences: exons, introns and intergenic regions. A fourth set of neg-
ative sequences was created using sequences from noncoding regions, that
is, from introns and intergenic regions together. As stated, the aim of this
partitioning of the negative set is to obtain more homogeneous negative sets.

In the second step, we must decide how to use these five sets of instances.
A straightforward approach would be to use any classifier that can handle
more than two classes. However, as mentioned, SVMs are the best perform-
ing classifiers for both TIS and stop codon prediction. Although multi-class
methods have been developed for SVMs [31], two-class approaches usually
outperform those methods [55]. Thus, we chose to train four different clas-
sifiers, with each classifier trained to differentiate between the positive class
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and one of the four different negative classes. This approach has the ad-
ditional advantage that overwhelming evidence in the machine learning lit-
erature indicates that a combination of different learners very frequently
outperforms methods using only one classifier [57].

Additionally, we use another method in our approach. This last method is
the stop codon method. This method is chosen because it only uses positive
sequences; thus, it is not affected by the problem of mixing in the different
instances of the negative classes. The stop codon method [59] looks at either
the stop codon frequencies downstream of the TIS for TIS recognition or
the stop codon frequencies upstream of the actual stop codon for stop codon
recognition.

After these two steps, we have five trained classifiers that must be com-
bined to obtain a single value that tells us whether a certain sequence is a true
site or not. To classify a new sequence, we obtain the output of each classifier
and use those five outputs to predict the class of the sequence. There are
many ways of combining the outputs of different classifiers [37], some with
high complexity. However, in most cases, simple methods are not beaten by
the most complex ones, and those simple methods are faster and less prone
to over-fitting. The most common of these simple methods include the sum
of the outputs, majority voting and the maximum output.

Given the outputs of the five classifiers, c1, . . . , c5, and a threshold for
each one of these classifiers, t1, . . . , t5, the final answer of the classifier, C(x),
for a given sequence x, is defined as follows. For the sum of outputs, the
final answer is given by:

C(x) =
∑
i

ci(x)− ti. (4.1)

The threshold term, ti, corrects for the different ranges of the classifiers.
The majority voting approach is given by:

C(x) = arg max
y∈{−1,+1}

∑
y:ci(x)=y

1. (4.2)

Finally, the maximum is given by:

C(x) = ci(x) : i = argmax
j

|cj(x)− tj|. (4.3)

Once C(x) is obtained by any of these methods, a general threshold T
should be fixed to decide whether a certain sequence is an actual site or



56 CHAPTER 4. SITE PREDICTION USING MORE THAN TWO CLASSES

not. One of the problems we have when choosing the combination method is
model selection as we do not know a priori whether any of the three methods
would be consistently better that the other two for all the chromosomes and
all the three evaluation measures we used as performance measures. Thus,
the best combination was chosen for each case using cross-validation. This
cross-validation method is explained in the next section.

As a final remark, we should note that our approach is also general enough
to be used with any other classifier. Because this approach is based on
modifying the number of classifiers and the training sets, it can be used
with any other classification method. Furthermore, this method can also be
applied if a classifier uses other types of data besides the raw sequence if the
information used by the classifier is extracted using the datasets described
above.

4.2 Evaluating the approach

To evaluate our approach, we chose five different human chromosomes, namely
chromosomes 1, 3, 13, 19 and 21 for testing purposes, and chromosome 16 for
model selection. For each chromosome, we trained the classifiers with all the
remaining chromosomes excepting 16, then we chose the best combination
method using chromosome 16 and tested the chosen model with all the true
TIS or stop codons and the negative samples of the given chromosome. That
is, for chromosome 1, we trained the models with chromosomes 2 to 22 and
X and Y excepting 16. Then, we chose the best combination method using
chromosome 16 and tested this model using chromosome 1. A summary of
these datasets is shown in Table 4.1. The chromosomes were selected with
the aim of choosing chromosomes of different lengths and codification den-
sity. Chromosome 16 was chosen as validation set as it is a chromosome of
average length and coding density. For SVMWD, as no model selection is
needed, chromosome 16 was added to the training set. We used all TISs and
stop codons of the CCDS Update Released for Human of September 7, 2011.
This update uses Human NCBI build 37.3 and includes a total of 26,473
CCDS IDs that correspond to 18,471 GeneIDs.

One of the key aspects of the evaluation of any new proposal is the set
of previous methods used in the comparison. Many different methods have
been proposed for recognizing TISs and stop codons [73, 72, 69, 59]. However,
these previous works and our own research [25] have shown that a SVM with
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Table 4.1: Summary of the training and testing sets

Dataset Training data Testing data
Positives/Negatives Positives Negatives

Chr. 1 TIS 17,638 2,156 8,074,590
STOP 17,404 2,154 23,573,031

Chr. 3 TIS 18,631 1,163 7,291,951
STOP 18,444 1,114 21,522,500

Chr. 13 TIS 19,454 340 3,664,164
STOP 19,225 333 10,878,302

Chr. 19 TIS 18,383 1,411 1,698,891
STOP 18,136 1,422 4,665,804

Chr. 21 TIS 19,561 233 1,303,634
STOP 19,558 237 3,726,959

Random undersampling was used for training; thus, the number of negative
instances was equal to the number of positive instances.

a string kernel is the best state-of-the-art method not only for TISs and stop
codons but also for splice sites [65]. To assure the general advantage of SVMs
with string kernels we performed a preliminary study of the different available
methods that included position weight matrices, decision trees, k-nearest
neighbors, stop codon method [59], Wang et al.’s method [69], Salzberg’s
method [60] and SVMs with linear and Gaussian kernels and three different
string kernels: the locality improved (LI) kernel, the weighted degree kernel
(WD) and the weighted degree kernel with shifts [58] (WDS). SVMs with
WD kernel obtained consistently the best results and thus was chosen as the
method to be compared with our proposal. WDS obtained marginally better
results than WD but with a far higher computational complexity. We will
refer throughout the chapter to the SVM with a WD kernels as SVMWD.
The same WD kernel was used for the classifiers in our proposal. However,
we must bear in mind that our method, as it works on the design of the
datasets, can be used with any other classification method.

Another key parameter of the learning process is the window around the
functional site that is used to train the classifiers. A further advantage of
our approach is that it allows the use of a suitable window for each type
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Table 4.2: Summary of the window cross-validation

Data Positives vs. Negatives in

(chr) All Exons Introns Intergenic Noncoding Stop
regions regions codon

TIS
1 [-50,50] [-50,50] [-50,50] [-50,50] [-50,50] [0,500]
3 [-25,75] [-50,50] [-25,75] [-25,75] [-25,75] [0,500]
13 [-50,50] [-50,50] [-10,40] [-10,40] [-10,40] [0,500]
19 [-25,75] [-50,50] [-25,75] [-25,75] [-25,75] [0,500]
21 [-50,50] [-50,50] [-25,75] [-10,40] [-25,75] [0,500]
STOP
All [-90,10] [-90,10] [-90,10] [-90,10] [-90,10] [-500,0]

The window obtained around the functional site is shown for each classifier.

of sequence. The value of the window for each classifier was obtained by
cross-validation. We considering the site as offset 0 and did not count the
TIS or the stop codon, and we tested the performance of the following win-
dows [−100, 0], [−75, 25], [−50, 0], [−50, 50], [−25, 0], [−25, 25], [−25, 75],
[−10, 15], [−10, 40], [−10, 90], [0, 25], [0, 50] and [0, 100]. For each trained
classifier, the best window was chosen. Table 4.2 shows the window obtained
by cross-validation for all the classifiers. For the stop codon method, we
used the additional window values of [0, 200], [0, 300], [0, 400] and [0, 500] for
TIS recognition and the window values of [−200, 0], [−300, 0], [−400, 0] and
[−500, 0] for stop codon recognition.

Table 4.2 shows interesting results. First, the window for TIS recogni-
tion depended on the classifier and the chromosome. However, the window
for stop codon prediction was the same for all cases with only one excep-
tion. Second, this table also shows that the different classifiers used for TIS
recognition had different values; this finding supports our previous claim that
using different classifiers has the advantage of allowing better fine tuning of
the learning parameters.

Furthermore, SVMs are very sensitive to the learning parameters; thus,
we also performed a cross-validation to obtain their values. The WD kernel
has two parameters: the standard C parameter of any SVM and the window
width of the string kernel. We tested values of 1, 10, 100 and 1000 for C
and 12 and 24 for the window width. All 8 combinations were evaluated
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using 10-fold cross-validation, and the best one was chosen. Although it
may be argued that this method might result in suboptimal parameters, this
method is a good compromise between the performance of the SVM and the
high computational cost of evaluating each set of parameters. This same
procedure was used for both SVMWD and our approach.

For training the models, we used random undersampling [33] because pre-
vious studies have shown its usefulness for TIS recognition [25]. For random
undersampling, we used a ratio of 1, which means that the majority class was
randomly undersampled until both classes had the same number of instances.

To evaluate the obtained classifiers, we used the standard measures for
imbalanced data explained on Section 2.1.3 . Given the number of true
positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN), we used the sensitivity and the specificity. The geometric mean of these
two measures will be our first classification metric. As a second measure
we used the area under the receiver operating characteristic (ROC) curve
(auROC). However, auROC is independent of class ratios and that it can be
less meaningful when we have very unbalanced datasets [65]. In such cases,
area under the precision recall curve (auPRC) can be used. This measure is
specially relevant if we are mainly interested in the positive class. However,
it can be very sensible to subsamplig. In our results we use all the positive
and negative instances for each one of the five chromosomes tested, so no
subsampling is used. This also yields to small auPRC values.

We use these three metrics because they provide two different views of
the performance of the classifiers. The auROC and auPRC values describe
the general behavior of the classifier. However, when used in practice, we
must establish a threshold for the classification of a query pattern. G-mean
provides the required snapshot of the performance of the classifier when we
set the needed threshold.

4.3 Results and discussion

The first step of our experiments was devoted to studying the usefulness
of the five different classifiers that we considered. As stated, we have five
classifiers that are trained with the same positive class and a negative class
consisting on negative instances from exons, introns, intergenic regions and
noncoding regions. We had a fifth classifier using only positive instances.
Thus, we tested the performance, as measured by the auROC, of the com-
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bined approach with all five classifiers and then removed one classifier at a
time. A negative value means that the classifier had a negative effect on the
performance of the model and thus should not be used.

The results showed that the worst performing classifier was the one trained
using negative instances extracted form exons. For this classifier, the positive
and negative instances were the most similar; thus, the training algorithm
had more difficulties in differentiating between the positive and negative in-
stances. In fact, the overall effect of this classifier was harmful to the per-
formance of the method. Thus, this classifier was removed and was not
considered in the subsequent experiments.

The results also showed that the stop codon method classifier had the
most important contribution. This finding is interesting because this clas-
sifier was the worst when considered alone. The explanation for this differ-
ence may be found in the behavior of the ensembles of classifiers. It is well
known [38] that a diverse ensemble of classifiers improves the performance
of the set of classifiers. The stop codon method differs from the other four
classifiers, which are all based on SVMs; thus, although its performance is
worse than the performance of those four classifiers individually, the diversity
it introduces improves the performance of the set of classifiers.

The next step was the comparison of the performances of our approach
and SVMWD. A summary of the results for TIS recognition of the five studies
chromosomes is shown in Table 4.3. The first interesting result is that the
proposed approach beat SVMWD for all measures and all chromosomes with
only one exception. The improvements in specificity, sensitivity, geometric
mean, auROC and auPRC are shown in Figure 4.1.

The second remarkable result shown in Table 4.3 is the significant re-
duction in the FN rate. The reduction in the number of FNs was 9.3% in
the worst case and 44.5% in the best case. This reduction means that 284
TISs that were inaccurately classified as negatives by SVMWD were cor-
rectly identified by our method. Most current gene recognizers rely heavily
on the classification of TISs; therefore, it is very likely that those genes would
be completely missed by any gene recognizer. Thus, our approach has the
potential to improve the accuracy of any annotation system by 6.4%.

Furthermore, our method was also able to improve the true negative
rate. In total, 145,780 false positives from SVMWD were correctly classified
as negatives using our approach. Therefore, any annotation system that uses
our metric would have a significantly reduced set of putative TISs and better
expected performance.
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Table 4.3: Summary of the results for TIS recognition.

Dataset SVMWD
Sp Sn TP FN TN FP auROC/PRC

Chr. 1 .9155 .8326 1795 361 7392644 681946 .9481/.1001
Chr. 3 .9024 .8203 954 209 6580426 711525 .9357/.0891
Chr. 13 .9398 .8294 282 58 3443428 220736 .9522/.0818
Chr. 19 .8961 .8703 1228 183 1522340 176551 .9522/.1358
Chr. 21 .8965 .8326 194 39 1168732 134902 .9387/.0689

Dataset Proposed approach
Sp Sn TP FN TN FP auROC/PRC

Chr. 1 .9209 .9003 1941 215 7435495 639095 .9693/.1351
Chr. 3 .9066 .9003 1047 116 6611176 680775 .9628/.1229
Chr. 13 .9457 .8824 300 40 3465327 198837 .9695/.1207
Chr. 19 .9077 .8824 1245 166 1542012 156879 .9551/.1321
Chr. 21 .9200 .8755 204 29 1199340 104294 .9691/.1203

The table shows the specificity (Sp), sensitivity (Sn), true positives (TP), true

negatives (TN), false negatives (FN), false positives (FP) and area under the

ROC and PRC curves (auROC/PRC) for both methods and the five studied

chromosomes.

The improvement for auROC and auPRC1 values are also shown in Fig-
ure 4.1. The actual ROC and PRC curves are shown in Figures 4.2–4.6.
These figures show that our approach improved the auROC and auPRC for
all five studied chromosomes. These results demonstrate that the overall
performance of the proposed method was better than the performance of
SVMWD. The actual ROC and PRC curves shown in Figures 4.2–4.6 show
that the curves corresponding to our proposal are always above than the
curves of SVMWD. This result indicates the better performance for all the
possible thresholds of classification.

1We always performed the testing of all the methods with all the negative samples.
That means that the ratio minority/majority class is almost 1:11000 for the worst case
yielding to low auPRC values. We must take into account that with only a few thousands
FPs among several millions of TNs we would obtain a very low precision value. The
situation for stop codon recognition is even worse as the number of TNs is multiplied by
three.
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Figure 4.1: Absolute improvement for TIS recognition in specificity, sensitiv-
ity, G-mean, auROC and auPRC of our approach compared with SVMWD.
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Figure 4.2: ROC/PRC curves for TIS prediction for chromosome 1.
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Figure 4.3: ROC/PRC curves for TIS prediction for chromosome 3.

It is interesting to study how the proposed method achieved its good
performance. For both methods, Table 4.4 shows the distribution of the
false positives according to the part of the gene to which the TIS sequences
belong. The behavior is clear. Separating the negatives samples into four
classes improves the discrimination between positive instances and negative
instances from introns and intergenic regions. However, the number of false
positives for instances from exons increases but to a lesser extent than the
decrease in the number of false positives from introns and intergenic regions.
Furthermore, the false positives from exons many be reduced using other
sources of information, such as content measures.

The second part of our experiments was devoted to stop codon recogni-
tion. Stop codon recognition is a more difficult task because the achieved
accuracy is less than that for TIS recognition. One of the major sources
of this increased complexity is the number of negative instances. There are
three different stop codons rather than just one as it is the case for TIS recog-
nition; therefore, the number of negative instances is three times the number
of negative instances for TIS prediction. For instance, using the same five
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Figure 4.4: ROC/PRC curves for TIS prediction for chromosome 13.

Table 4.4: Distribution of false positives for both methods.

Dataset SVMWD Proposed approach
Exon Intron Intergenic Exon Intron Intergenic

regions regions

Chromosome 1 0.15% 1.39% 6.91% 0.21% 0.71% 3.72%
Chromosome 3 0.12% 1.58% 8.06% 0.13% 0.56% 4.24%
Chromosome 13 0.06% 0.79% 5.17% 0.07% 0.37% 2.79%
Chromosome 19 0.58% 1.55% 8.26% 0.71% 1.23% 6.54%
Chromosome 21 0.10% 1.30% 8.95% 0.13% 0.63% 4.05%
Average 0.20% 1.32% 7.47% 0.25% 0.70% 4.27%

The table shows the type of genome region for each false positive.

chromosomes from the previous experiments, the best current method found
more than 11.5 million false positive stop codons. This amount of incor-
rectly predicted stop codons might be able to mar any annotation system,
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Figure 4.5: ROC/PRC curves for TIS prediction for chromosome 19.

indicating that there is ample room for improvement.

Our approach for stop codon prediction used the same classifiers as for TIS
recognition. Table 4.3 shows a summary of results for stop codon recognition.
The first remarkable result is the large improvement in the number of both
FNs and FPs. The FNs were reduced by 26.8% in the worst case and by
57.9% in the best case. This result indicates that the number of total FNs
was reduced from 823 with SVMWD to 443 with our method. As for TIS
recognition, an annotation program may not be able to recognize a gene when
the stop codon is missing. Furthermore, this improvement was achieved
along with a significant improvement in the FPs. The FP improvement
was also large with a best result of 46.9%. As a whole, 2.7 million FPs
from SVMWD were accurately classified as negatives by our method. This
quantity of false positives may overwhelm any annotation system; thus, the
improvement should have a significant impact on automatic annotation.

Figure 4.7 shows the absolute improvement of our method in the speci-
ficity, sensitivity, G-mean, auROC and auPRC. The improvement for au-
ROC is particularly relevant. The proposed approach improved the auROC
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Figure 4.6: ROC/PRC curves for TIS prediction for chromosome 21.

by 3.7% in the worst case and 7.2% in the best case. Figures 4.8–4.12 show
the ROC/PRC curves for the five chromosomes. As for TIS recognition, the
ROC/PRC curves of our approach not only achieved a better auROC and
auPRC but were also always above than the curves of SVMWD.

In Section 4.1, we stated that our approach could be applied to any
type of classifier. In the previous experiments, we used SVMs because they
achieved the best performance in the literature. Now, we present the results
of another experiment that was conducted to demonstrate the applicability
of our method to other classifiers. We used a decision tree using the C4.5
learning algorithm [54] instead of SVMs. We tested a decision tree using the
standard approach of only one training set and one classifier and using our
method with the four classifiers that were used for SVMs. To avoid repeating
all the experiments, we only performed experiments for chromosome 13. The
results for both TIS and stop codon recognition are shown in Table 4.6. For
TIS recognition, the improvement was remarkable; the G-mean improved
by 8%, and the auROC increased from 0.8189 to 0.9372. For stop codon
classification, the improvement was even better. The standard approach had
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Figure 4.7: Absolute improvement for stop codon recognition in the speci-
ficity, sensitivity and G-mean of our approach compared with SVMWD.
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Figure 4.8: ROC/PRC curves for stop codon prediction for chromosome 1.
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Figure 4.9: ROC/PRC curves for stop codon prediction for chromosome 3.
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Figure 4.10: ROC/PRC curves for stop codon prediction for chromosome 13.
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Figure 4.11: ROC/PRC curves for stop codon prediction for chromosome 19.

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

SVMWD (ROC)
Proposal (ROC)
SVMWD (PRC)
Proposal (PRC)

Figure 4.12: ROC/PRC curves for stop codon prediction for chromosome 21.
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Table 4.5: Summary of the results for STOP codon recognition.

Dataset SVMWD
Sp Sn TP FN TN FP auROC/PRC

Chr. 1 .8361 .8347 1798 356 19710568 3862463 .9182/.0127
Chr. 3 .8109 .8402 936 178 17452195 4070305 .9115/.0049
Chr. 13 .8183 .8318 277 56 8901404 1976898 .9073/.0067
Chr. 19 .8117 .8706 1238 184 3787466 878338 .9258/.0357
Chr. 21 .8089 .7932 188 49 3014762 712197 .8811/.0058

Dataset Proposed approach
Sp Sn TP FN TN FP auROC/PRC

Chr. 1 .8393 .9304 2004 150 19784595 3788436 .9583/.0209
Chr. 3 .8630 .9174 1022 92 18573710 2948790 .9584/.0133
Chr. 13 .8900 .8769 292 41 9681647 1196655 .9494/.0081
Chr. 19 .9000 .9058 1288 134 4199221 466583 .9630/.0553
Chr. 21 .8900 .8903 211 26 3316990 409969 .9533/.0132

The table shows the specificity (Sp), sensitivity (Sn), true positives (TP), true neg-

atives (TN), false negatives (FN), false positives (FP) and area under the ROC and

PRC curves (auROC/PRC) for both methods and the five studied chromosomes.

an auROC of 0.6853, whereas our approach achieved an auROC of 0.9260.
As it was the case for the previous experiments auPRC was very low for all
experiments due to the huge number of negative instances.

4.4 Summary

In this chapter, we presented a new approach for TIS and stop codon recogni-
tion. This approach uses more than one classifier, divides the negative class
into four different groups and trains one classifier for each type of negative
class. This approach was applied to the recognition of TIS and stop codons
in five human chromosomes. The approach was compared with the best cur-
rent method for TIS and stop codon prediction. The proposed approach also
has the advantage of its simplicity, which makes it easily applicable to any
program for TIS or stop codon recognition.

The reported results show that the proposed method shows improved sen-
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Table 4.6: Results for TIS and stop codon prediction for chromosome 13
using a decision tree as the classifier.

Dataset Method auROC/auPRC Sp Sn G-mean

TIS C4.5 0.8183/0.0005 0.7756 0.7706 0.7731
Proposed 0.9372/0.0154 0.9053 0.8000 0.8510

Stop codon C4.5 0.6853/0.0001 0.6489 0.6426 0.6458
Proposed 0.9260/0.0097 0.8468 0.8709 0.8587

The table shows the values of the specificity (Sp), sensitivity (Sn), geometric mean

of the specificity and sensitivity and the area under the ROC/PRC curves (au-

ROC/auPRC).

sitivity, specificity, auROC and auPRC compared with SVMWD. The results
show a remarkable improvement in the ratio of FNs and FPs achieved over
those of SVMWD. Because state-of-the-art annotation systems rely heavily
on the accurate prediction of the functional sites of the gene, the proposed
method is an effective way of improving current gene recognizers.





Chapter 5
Stepwise approach for combining many
of sources of evidence for site
recognition

With the rapid evolution of our ability to collect genomic information, it has
been shown that combining differences sources of evidence is fundamental to
the success of any recognition task in Bioinformatics. The advent of next-
generation sequencing has made possible the number of available genomes is
increasing very rapidly. Thus, methods for making use of such large amounts
of information are needed. In this chapter, we present a methodology for
combining tens or even hundreds of different classifiers for an improved per-
formance. Our approach can include almost a limitless number of sources
of evidence. We can use the evidence for the prediction of sites in a cer-
tain species, such as human, or other species as needed. This approach can
be used for any of the functional recognition tasks cited above, although in
this work we have tested our approach in two functional recognition tasks:
translation initiation site and stop codon recognition.

5.1 Background

As previously stated, the recognition of functional sites within the genome is
one of the most important problems in Bioinformatics research. Determining
where different functional sites, such as the promoters, translation start sites,

73
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translation initiation sites (TISs), donors, acceptors and stop codons, are
located provides useful information for many tasks. For instance, the recog-
nition of translation initiation sites, donor, acceptors and stop codons [73] is
one of the most critical tasks for gene structure prediction. Most successful
gene recognizers currently in use first implement a step of site recognition [27],
which is followed by a process of combining the sites into meaningful gene
structures. This first step is of the utmost importance because the program
cannot find genes whose functional sites are not identified. Furthermore, a
large number of false positives might inundate the second step, making it
difficult to predict accurate gene structures. The best current approaches
use powerful classifiers, namely support vector machines (SVMs), and they
consider moderately large sequences around the functional site [73, 17, 4, 65].

Recent approaches [27] for human gene recognition also make use of the
information available for other species to improve the recognition of the func-
tional sites. However, the combination is carried out in a heuristic way. The
species used for comparison are arbitrarily chosen, using the widely assumed
hypothesis that we must consider moderately distant evolutionary relatives.
Furthermore, the classifiers used for recognition of the sites in each species
are also arbitrarily chosen. It is unlikely that such a process would produce
the best possible result. Due to the large number of available species and the
large number of different classifiers that can be applied to make use of such
information, a systematic method for obtaining the best possible combination
is highly desirable.

In this work, we propose a principled approach in which we can consider
as many different sources of evidence as possible and use as many different
classifiers as needed. A rapid validation process constructs a near-optimal
combination that achieves a better performance than any of its members. To
obtain a method that can be scaled up to as many sources of information as
needed, we use a greedy stepwise approach. Two alternatives are designed,
one based in a constructive approach beginning with an empty model and
another based on a destructive approach beginning with a model considering
all available sources of evidence. Then, a stepwise procedure is applied until
no further improvement is observed in the obtained model.
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5.2 Methods

Our aim is to develop a methodology for combining tens or even hundreds
of classifiers for site recognition. From a machine learning perspective, such
a problem is usually approached differently depending on the computational
cost of the available solutions. The optimum approach is the exhaustive
evaluation of all possible combinations of classifiers. However, if we have
N trained classifiers, the number of possible combinations is 2N − 1, which
is prohibitive even for moderate values of N . Thus, we must resort to opti-
mization algorithms that will perform a guided search in the space of possible
solutions. For the problem of finding the optimal solution, any of the many
metaheuristics available in the machine learning literature, such as evolu-
tionary computation [51], particle swarm optimization [35], ant colonies [14]
or differential evolution [16], could be used. However, all of these method-
ologies require the repetitive evaluation of many solutions to achieve their
optimization goal. In the problem of site recognition, the evaluation of a
possible solution is a costly process due to the large datasets involved. Thus,
these metaheuristics are not feasible.

To avoid the computational cost of these metaheuristics, we developed
a different approach. We used a stepwise greedy approach in both a con-
structive and a destructive way, which requires evaluating significantly fewer
solutions. The process for obtaining the best combination of classifiers for dif-
ferent species is composed of two main stages: training stage and validation
stage. Before starting the learning process, we need the training datasets,
the testing dataset and the validation dataset. Without loss of generality
and to provide the necessary focus for our description, we will use here the
same setup of the reported experiments below. We will address the problem
of site recognition in the human genome. To solve this problem, we will use
as a test set the sites of a certain chromosome, C. The training set will be
all the remaining human chromosomes and the genomes of all the species we
want. As validation, we will chose one of the human chromosomes in the
training set, V , and remove it from the training set.

For the training stage, we select as many species as could be useful for
our problem. We need not select the most appropriate ones because the
stepwise validation stage will discard the useless classifiers. Once we have
selected the set of species whose genomes we are going to use, we train as
many classifiers as we want from those species. For every organism, we can
train different classifiers, such as support vector machines (SVMs), neural
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networks (NNs), decision trees (DTs) of k-Nearest Neighbor (k-NN) rule, or
the same classifier methods with different parameters. Because the validation
stage can consider hundreds of classifiers, any method of potential interest
can be used. Again, the validation stage will remove unneeded classifiers.

Once we have the trained classifiers, we will perform the validation stage,
whose aim is to obtain the best possible combination of classifiers. For that
purpose, we designed two different approaches. Both of these approaches
are stepwise greedy approaches. We developed a constructive incremental
approach and a destructive decremental approach. In the incremental ap-
proach, we begin by evaluating all the classifiers in the validation set V . The
best one, c1, is added to the set of selected classifiers, which was empty.
Then, the evaluation is conducted again using c1 together with all the re-
maining classifiers. The best combination is chosen, and a second classifier,
c2, is added. The process is repeated until the addition of a new classifier
does not improve the validation accuracy.

For the destructive approach, we start with a model with all the avail-
able classifiers, n, {c1, c2, . . . , cn}. One by one, every classifier is removed
from the set, and the set is reevaluated using the validation set. If all of
the classifiers have a positive effect on the validation accuracy, the process
is stopped. Otherwise, the worst performing classifier is removed and the
process is repeated until the stop criterion is met.

Another issue must be considered for our approach. We must determine
how the different classifiers are combined. In the machine learning literature,
combining different sources of evidence for a classification problem is a com-
mon task [37]. Although various sophisticated methods have been developed
for combining many classifiers [71, 48, 39, 56], in a practical sense, none of
them are able to beat the simpler methods on a regular basis. Thus, we have
considered three commonly used simple methods to combine the classifiers:
sum of outputs, majority voting and maximum output. These methods are
fairly straightforward. The combination using the sum of outputs simply
adds together the outputs of all the models. The majority voting scheme
counts the classification given by every model and outputs the most common
case. The maximum approach uses only the classifier whose output has the
highest absolute value.

For these three methods to be useful, we must consider the different
ranges of their outputs and the different optimal decision thresholds of the
five classification method we will use. To account for the different ranges, all
the outputs of the methods were scaled to the interval [−1, 1]. To account
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for the different thresholds, we obtain the optimal threshold for each method
by cross-validation, thotpimal, and we obtain the effective output of every
classifier, which is given by y − thopimal, where y is the actual output of the
classifier.

With the three combination methods and the two stepwise algorithms,
we have for any performance measure selected six different combinations of
models. For any recognition task and any performance measure, we will
obtain these six models and return as a final result of our methodology the
best combination in terms of cross-validation performance.

5.2.1 Experimental setup

To test our model, we chose the human genome together with other 20
species. Our aim was to test whether any species, regardless of its closeness
with the human genome, could be useful. The following species were consid-
ered:1 Anolis carolinensis (AC), Bos primigenius taurus (BT), Caenorhab-
ditis elegans (CE), Callithrix jacchus (CJ), Canis lupus familiaris (CLF),
Danio rerio (DR), Drosophila melanogaster (DM), Equus caballus (EC),
Ficedula albicollis (FA), Gallus gallus (GG), Homo sapiens (HS), Macaca
mulatta (MaM), Monodelphis domestica (MD), Mus musculus (MM), Or-
nithorhynchus anatinus (OA), Oryctolagus cuniculus (OC), Pan troglodytes
(PT), Rattus norvegicus (RN), Schistosoma mansoni (SM), Sus scrofa (SS)
and Takifugu rubripes (TR). These genomes were selected to have a wide
variety of organisms whose genomes are fully annotated.

Five classifiers were trained from every dataset: the stop codon method [59],
a decision tree, a k-nearest neighbor rule, a positional weight matrix and a
support vector machine with a string kernel. The parameters for every clas-
sifier were obtained using 10-fold cross-validation.

To evaluate our approach, we used five different human chromosomes for
testing purposes, chromosomes 1, 3, 13, 19 and 21, and we used chromosome
16 for validation purposes. For each chromosome, we trained the classifiers
with all of the remaining chromosomes except 16, and we obtained the best
combination method by using our approach and by using chromosome 16
for validation. We tested the chosen models with all of the true TIS and
stop codons and all the negative samples of the given chromosome. That is,

1The acronyms in parentheses will be used across the chapter to refer to the corre-
sponding species.
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for chromosome 1, we trained the models with chromosomes 2 to 22 and X
and Y, leaving out chromosome 16. Then, we chose the best combination
method using chromosome 16, and we tested this combination of models
using chromosome 1. A summary of these datasets is shown in Table 5.1. The
chromosomes were selected with the aim of choosing chromosomes of different
lengths and coding density. Chromosome 16 was chosen as a validation set
because it is a chromosome of average length and coding density. We used all
TISs and stop codons of the CCDS Update Released for Human of September
7, 2011. This update uses Human NCBI build 37.3 and includes a total of
26,473 CCDS IDs that correspond to 18,471 GeneIDs.

Table 5.1: Random undersampling was used for training; thus, the number
of negative instances was equal to the number of positive instances.
Dataset Training data Testing data

Positives/Negatives Positives Negatives
Chr. 1 TIS 17,638 2,156 8,074,590

STOP 17,404 2,154 23,573,031
Chr. 3 TIS 18,631 1,163 7,291,951

STOP 18,444 1,114 21,522,500
Chr. 13 TIS 19,454 340 3,664,164

STOP 19,225 333 10,878,302
Chr. 19 TIS 18,383 1,411 1,698,891

STOP 18,136 1,422 4,665,804
Chr. 21 TIS 19,561 233 1,303,634

STOP 19,558 237 3,726,959

One of the key aspects of the evaluation of any new proposal is the set
of previous methods used in the comparison. Many different methods have
been proposed for recognizing TISs and stop codons [73, 72, 69, 59]. How-
ever, these previous works and our own research [25] have shown that an
SVM with a string kernel is the best state-of-the-art method not only for
TISs and stop codons but also for splice sites [65]. To assure the general
advantage of SVMs with string kernels, we performed a preliminary study
of the different available methods that included position weight matrices,
decision trees, k-nearest neighbors, stop codon method [59], Wang et al.’s
method [69], Salzberg’s method [60] and SVMs with linear and Gaussian
kernels and three different string kernels: the locality improved (LI) ker-
nel, the weighted degree kernel (WD) and the weighted degree kernel with
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shifts [58] (WDS). SVMs with WD kernels consistently provided the best
results, so we chose them for the method to be compared with our proposal.
WDS provided marginally better results than WD, but with a far higher
computational complexity. To assure a fair comparison, we considered not
only these methods but also all others used in classifiers. Then, for every
experiment, we compared our approach to the best performing method in
terms of validation performance. In fact, SVM with WD kernel was always
the best classifier.

Another key parameter of the learning process is the window around
the functional site that is used to train the classifiers. A further advan-
tage of our approach is that it allows the use of a suitable window for each
dataset. The value of the window for each classifier was obtained by cross-
validation. We considered the site to be offset 0, and we did not count the
TIS or the stop codon. We tested the performance of the following win-
dows: [−100, 0], [−75, 25], [−50, 0], [−50, 50], [−25, 0], [−25, 25], [−25, 75],
[−10, 15], [−10, 40], [−10, 90], [0, 25], [0, 50] and [0, 100]. For each trained
classifier, the best window was chosen. For the stop codon method, we
used the additional window values of [0, 200], [0, 300], [0, 400] and [0, 500] for
TIS recognition and the window values of [−200, 0], [−300, 0], [−400, 0] and
[−500, 0] for stop codon recognition.

Furthermore, SVMs are very sensitive to the learning parameters; thus,
we also performed a cross-validation to obtain their values. The WD kernel
has two parameters: the standard C parameter of any SVM and the window
width of the string kernel. We tested values of 1, 10, 100 and 1000 for C
and 12 and 24 for the window width. All 8 combinations were evaluated
using 10-fold cross-validation, and the best one was chosen. Although it
may be argued that this method might result in suboptimal parameters, it
represents a good compromise between the performance of the SVM and the
high computational cost of evaluating each set of parameters. For PWM and
C4.5, there are no parameters with a significant effect on their performance.
For k-NN, the number of neighbors, k, was chosen by cross-validation in the
interval [1, 100].

To train the models, we used random undersampling [33] as stated in
previous chapter, because it have been shown its usefulness for TIS recogni-
tion [25]. For random undersampling, we used a ratio of 1, which means that
the majority class was randomly undersampled until both classes had the
same number of instances. To avoid any contamination of the experiments,
for every training set, regardless of the species, we removed the genes that
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were shared with the test chromosome.
To evaluate the obtained classifiers, we used the standard measures for

imbalanced data , specificity and sensitivity, described on Chapter 2. The
geometric mean of these two measures, G − mean =

√
Sp · Sn, will be our

first classification metric. As a second measure, we used the area under the
receiver operating characteristic (ROC) curve (auROC). However, auROC
is independent of class ratios, and it can be less meaningful when we have
very unbalanced datasets [65]. In such cases, area under the precision recall
curve (auPRC) can be used. This measure is especially relevant if we are
mainly interested in the positive class. However, it can be very sensitive to
subsampling. In our results, we use all the positive and negative instances
for each of the five chromosomes tested, so no subsampling is used. This also
yields small auPRC values.

We use these three metrics because they provide two different views of
the performance of the classifiers. The auROC and auPRC values describe
the general behavior of the classifier. However, when used in practice, we
must establish a threshold for the classification of a query pattern. G-mean
provides the required snapshot of the performance of the classifier when we
set the required threshold.

5.3 Results and discussion

As stated, we performed experiments for the recognition of TISs and stop
codons to provide the necessary focus. However, our approach is applicable
to any recognition task. The experiments had two different objectives. We
wanted to know which species were more useful for the recognition of the two
functional sites. We challenged the general heuristic method of selecting a
species based on biological considerations alone. We also wanted to compare
the results using our method with the standard procedure of selecting the
best performing model, which is the common approach in the literature. In
the following two sections, we discuss the results for TIS and stop codon
recognition.

5.3.1 Results for TIS recognition

One of the advantages of our approach is that we can optimize for the per-
formance measure that we are interested in, which can be the G-mean, the
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auROC, the auPRC or any other measure useful for our application. Thus,
we conducted our experiments using three performance measures: G-mean,
auROC and auPRC. The first relevant result is that the combination of best
models obtained for each measure was different. This means that, depending
on the aim of the work, different combinations of classifiers are needed.

For each of the five studied chromosomes, we obtained three different com-
binations of models, each optimized for one of the three measures mentioned
above. As a general rule, the constructive method always outperformed the
destructive method. The latter always obtained combinations of many more
models that exhibited over-fitting and worse performance. It is also inter-
esting to note the homogeneous behavior across the different chromosomes.
For all of the five chromosomes, the combination that achieved the best re-
sults was the sum for auROC and auPRC and majority for G-mean. The
combination based on the maximum output was never the best-performing
one. In this latter combination method, the effect of a bad classifier was too
harmful to obtain good performance. In this work, for brevity’s sake, only
the best models are reported. However, all the results can be found in the
supplementary material.

Once we established the best stepwise method and the best combination,
we examined the results in terms of the species involved in the best combi-
nations. Table 5.2 shows the models selected for the best combination for
each measure and each chromosome. Regardless of the optimized measure,
there was only one species that never appeared in the best combination:
CE. This result indicates that, although the contribution of certain species
is more relevant than others, the information of many genomes was useful
for the prediction of human TISs, even those species that are very distant
relatives of humans. Another interesting result is the fact that, for the three
different measures, auROC, auPRC and G-mean, the obtained combinations
of models were quite different. This result indicates that we must consider
our aims before designing our classifier. In most previous works, that is not
taken into account.

Regarding the classification models, PWM was never chosen. The stop
codon method was chosen for EC and SM. The decision tree trained with the
C4.5 algorithm was selected several times, but the k-NN rule and the SVM
with a string kernel were the most frequently selected methods. The case of
k-NN is remarkable in that it is not usually used for this task [73, 72, 69, 59].
It appears that the diversity that k-NN introduced in the models was useful
for the overall performance of the combinations, despite of the fact that k-NN
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alone showed worse performance than an SVM alone. The explanation for
this may be found in the behavior of the ensembles of classifiers. It is well
known [38] that a diverse ensemble of classifiers improves the performance of
the set of classifiers.

With respect to the three different objectives, optimizing the G-mean
showed the most stable results. For the five chromosomes, the selected mod-
els were always the SVM method for MaM and PT. For auROC, six or seven
models were selected. The SVM method was always chosen for MaM and
PT, but the remaining methods depended on the chromosome. This is an-
other interesting result because most TIS recognition programs mainly rely
on common models for any task. Finally, for auPRC, significantly more
models were selected, from 16 to 29, with a significant variation between the
chromosomes. Here, the large number of negative samples made this task
harder than optimizing the other two criteria.

The next step was to compare the performances of our approach and the
standard method of choosing the best performing classifier. A summary of
the results for TIS recognition of the five studies chromosomes is shown in
Table 5.3. The first interesting result is that the proposed approach beat the
standard approach for all measures and all chromosomes. The improvements
in auROC, auPRC and G-mean are shown in Figure 5.1.

Figure 5.1: Improvement for TIS recognition.
The figure shows the improvement of our approach with respect
to the standard approach of using the best performing classifier.
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improvement was 3.25%, and in the best case, it was 9.23%. For auPPRC, the
results were even better, from 6.73% to 8.92%. For auROC, the improvement
was less significant, but it still ranged from 2.33% to 4.02%.

Table 5.4 shows the relative improvement of our approach in terms of the
numbers of true positive, false negatives, true negatives and false positives.
In the table, we can see how our approach was able to improve the false
negative results in the worst case by 20% and in the best case by 65%. This
reduction is relevant because most current gene recognizers rely heavily on
the classification of TISs; therefore, it is very likely that those genes would be
completely missed by any gene recognizer. Our approach has the potential
to significantly improve the accuracy of any annotation system.

Chromosome True False True False
positive negative negative positive

Chr.1 22.20% 65.15% 0.75% 15.11%
Chr. 3 21.83% 57.50% 0.84% 19.27%
Chr. 13 5.17% 20.29% 2.32% 42.27%
Chr. 19 8.86% 46.46% 5.37% 52.24%
Chr. 21 19.43% 58.62% 1.77% 28.47%

Table 5.4: Relative improvement for true positives, false negatives, true neg-
atives and false positive of our approach over the best method for TIS recog-
nition.

Furthermore, our method was also able to improve the true negative rate,
from 15% to 52% depending on the chromosome. Therefore, any annotation
system that uses our approach would have a significantly reduced set of
putative TISs and better expected performance. This would be especially
true when the large amount of false positives found by the standard approach
is an actual problem for any automatic annotation system.

The improvements in the auROC and auPRC2 values are also shown in
Figure 5.1. The actual ROC and PRC curves are shown in Figures 5.2–5.6.
These figures show that our approach improved the auROC and auPRC for

2We always performed the testing of all the methods with all the negative samples.
That means that the ratio minority/majority class is almost 1:11000 for the worst case
yielding to low auPRC values. We must take into account that with only a few thousands
FPs among several millions of TNs we would obtain a very low precision value. The
situation for stop codon recognition is even worse as the number of TNs is multiplied by
three.
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all five studied chromosomes. These results demonstrate that the overall
performance of the proposed method was better than the performance of the
best model. The actual ROC and PRC curves shown in Figures 5.2–5.6 show
that the curves corresponding to our proposal are always above the curves of
the best model. This result indicates better performance for all the possible
thresholds of classification.

Figure 5.2: ROC/PRC curves for TIS prediction for chromosome 1.
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5.3.2 Results for stop codon recognition

The second part of our experiments was devoted to stop codon recognition.
Stop codon recognition is a more difficult task because the achieved accuracy
is less than that of TIS recognition. One of the major sources of this increased
complexity is the number of negative instances. There are three different stop
codons rather than just one, as in the case of TIS recognition. Therefore,
the number of negative instances is approximately three times the number
of negative instances for TIS prediction. For instance, using the same five
chromosomes from the previous experiments, the best current method found
more than six million false positive stop codons across all the chromosomes.
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Figure 5.3: ROC/PRC curves for TIS prediction for chromosome 3.
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Figure 5.4: ROC/PRC curves for TIS prediction for chromosome 13.
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Figure 5.5: ROC/PRC curves for TIS prediction for chromosome 19.

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

SVM with WD kernel (ROC)
Proposal (ROC)

SVM with WD kernel (PRC)
Proposal (PRC)

Figure 5.6: ROC/PRC curves for TIS prediction for chromosome 21.
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This number of incorrectly predicted stop codons might be enough to mar
any annotation system, indicating that there is ample room for improvement.

As stated, one of the advantages of our approach is that we can optimize
for the performance measure we are interested in, whether it is G-mean,
auROC, auPRC or any other useful metric. Thus, as for TIS recognition, we
carried out experiments using three performance measures: G-mean, auROC
and auPRC. Again we found that the combination of best models obtained
for each measure was different. In fact, more variation was found for stop
codons than for TIS recognition.

For each of the five studied chromosomes, we obtained three different
combinations of models, each one aiming at optimization of one of the three
measures mentioned above. Table 5.5 shows the models selected for the
best combination for each measure and each chromosome. As it did for
TIS recognition, the constructive method always outperformed the destruc-
tive method. The latter always obtained combinations of more models that
yielded to over-fitting and worse performance. It is also interesting to note
the homogeneous behavior across the different chromosomes. For all five
chromosomes, the combination that achieved the best results was the sum
for auROC and auPRC and the majority for G-mean. The combination
based on the maximum output was never the best performing combination.

Regardless of the optimized measure, there were only three species that
never appeared in the best combination: AC, HS and FA. As was the case
for TIS recognition, although the contributions of certain species were more
relevant than others, the information from many genomes was useful for the
prediction of human stop codons, even those species with a large distance
from the human genome. It is interesting to note that classifiers trained on
the human genome were never used. The analysis of the behavior showed
that the information found in the human genome was redundant after a few
other species were added and then its inclusion did not improve the overall
performance.

For the three different measures, auROC, auPRC and G-mean, the ob-
tained combinations of models are quite different. That means that we must
consider which our aim before designing our classifier. This same behavior
was observed for TIS recognition. However, here the situation is less stable,
with more variations among chromosomes.

Regarding the classification models, PWM was never chosen. The stop
codon method was chosen for EC and SM. The decision tree trained with
the C4.5 algorithm was selected several times, but the k-NN rule and the
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SVM method with a string kernel were the most frequently selected methods.
These results are similar to the ones obtained for TIS recognition.

With respect to the three different objectives, optimizing the G-mean
showed the most stable results. For the five chromosomes, the SVM method
for MaM and PT was always selected, with the exception of chromosome 3.
However, for chromosomes 13 and 19, two additional models were selected.
Surprisingly, CE was selected in both cases, despite its large evolutionary
distance to human. This result supports the idea that selecting the genomes
in an intuitive way is not optimal. For auROC, five models were always
selected, although not the same models for every chromosome. The SVM
method for MaM and PT was always chosen, but the remaining methods
depended on the chromosome. This is another interesting result because
most stop codon recognition programs rely on common models for any task.
Finally, for auPRC, significantly more models were selected, from 10 to 27,
with a significant variation between the chromosomes.

The next step was to compare the performances of our approach and
the standard method of choosing the best performing classifier. A summary
of the results for stop codon recognition of the five studies chromosomes is
shown in Table 4.5. The first interesting result is that the proposed approach
beat the standard approach for all measures and all chromosomes. The
improvements in auROC, auPRC and G-mean are shown in Figure 5.7.

Figure 5.7: Improvement for stop codon recognition.
The figure shows the improvement of our approach with respect
to the standard approach of using the best performing classifier.
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Chromosome True False True False
positive negative negative positive

Chr.1 11.64% 48.21% 5.41% 45.73%
Chr. 3 18.34% 53.33% 3.31% 36.04%
Chr. 13 11.52% 31.11% 4.24% 43.01%
Chr. 19 11.60% 59.48% 3.89% 25.26%
Chr. 21 34.62% 66.67% 1.40% 15.95%

Table 5.7: Relative improvement for true positives, false negatives, true neg-
atives and false positive of our approach over the best method for stop codon
recognition.

The differences were significant. For G-mean, in the worst case, the
improvement was 6.37%, and in the best case, it was 13.09%. For auPPRC,
the results showed an improvement from 2.07% to 7.87%. For auROC, the
improvement was also significant, ranging from 4.03% to 7.83%.

Table 5.7 shows the relative improvement of our approach in terms of
true positives, false negatives, true negatives and false positives. From the
table, we can see how our approach was able to improve the false negative
results in the worst case by 31% and in the best case by 66%. This reduction
is relevant, as most current gene recognizers rely heavily on the classification
of stop codons; therefore, it is very likely that those genes would be com-
pletely missed by any gene recognizer. Our approach has the potential to
significantly improve the accuracy of any annotation system.

Furthermore, our method was also able to improve the true negative rate,
from 1% to 5% depending on the chromosome. Therefore, any annotation
system that uses our approach would have a significantly reduced set of
putative TISs and better expected performance. This is especially true when
a large amount of false positives is found the by the standard approach, which
is an actual problem for any automatic annotation system.

The improvements for auROC and auPRC values are also shown in Fig-
ure 5.7. The actual ROC and PRC curves are shown in Figures 5.8–5.12.
These figures show that our approach improved the auROC and auPRC for
all five studied chromosomes. These results demonstrate that the overall per-
formance of the proposed method was better than the performance of best
model. The actual ROC and PRC curves shown in Figures 5.8–5.12 show
that the curves corresponding to our proposal are always above the curves
of the best model. This indicates better performance for all the possible
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thresholds of classification.

Figure 5.8: ROC/PRC curves for stop codon prediction for chromosome 1.
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5.4 Summary

In this chapter, we presented a new approach for functional site recognition
in genomic sequences. The approach consists of a stepwise procedure that
can combine tens or hundreds of classifiers trained on different sequences
and using genomic information from different species. The approach is rapid
and can be used for the recognition of any type of functional site. Our
method substitutes the current approach of selecting the species to be used
heuristically based on biological considerations. Our results have proven that
that methodology is suboptimal because species that are not considered in
previous works have been shown useful in our experiments.

Although we have focused our experiments on the case of the combination
of multiple species, we can also use the proposed approach for combining
classifiers trained on different sequences of the same species, or classifiers
trained using different parameters or learning procedures.
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Figure 5.9: ROC/PRC curves for stop codon prediction for chromosome 3.
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Figure 5.10: ROC/PRC curves for stop codon prediction for chromosome 13.
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Figure 5.11: ROC/PRC curves for stop codon prediction for chromosome 19.
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Figure 5.12: ROC/PRC curves for stop codon prediction for chromosome 21.
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Furthermore, with our method, we can optimize any measure we are
interested in. For instance, in the reported experiments, we have shown how
we can focus on the optimization of G-mean, auROC or auPRC measures.
The results have shown that the combination of classifiers that optimizes
each one of these measures can be very different, supporting our separate
approach.

To provide the necessary focus, we restrict the experimental study of our
method to TIS and stop codon recognition. The reported results show that
the proposed method exhibits improved sensitivity, specificity, auROC and
auPRC compared with the standard approach of using the best available
classifier. The results show a remarkable improvement in the G-mean, au-
ROC and auPRC measures. Because state-of-the-art annotation systems rely
heavily on the accurate prediction of functional sites of genes, the proposed
method is an effective way of improving current gene recognizers.





Chapter 6
Evolutionary computation as a gene
structure prediction framework

A complete and accurate gene set for each sequenced genome is still perhaps
the single most important resource for genomic research after the genome
sequence itself. Accurate annotation of the human genome and other species
is an essential element in support of current drug discovery efforts, and val-
idating potential drug targets against genomic sequence requires accurate
annotation from the start to make this procedure worthwhile.

Automatic gene recognition continues being a difficult task, mainly due
to the absence of clear signals that can be used to recognize and the growing
complexity of the gene structure that its being revealed with the increased
knowledge we are gaining. Many flimsy pieces of evidence must be combined
to determine the correct structure of the gene. Regarding it as a search
problem, where many evidence sources can be combined, this paper proposes
an evolutionary computation framework for gene structure prediction. Ad-
ditionally, we use functional site prediction techniques presented in previous
chapter to localize the functional sites along the genomic sequence to reduce
the search space. Evolutionary computation is used to evolve a population
where the individuals are correct genetic structures. A fitness function based
on content sensors determines which individuals hold outstanding statistical
features. Evolutionary computation is a powerful paradigm that will allow
capturing all the complexities of the structure of genes when other optimiza-
tion measures fail.

The application of evolutionary algorithms to gene recognition will open

99
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a new field of research where its flexibility can be used to address the com-
plexities of the problem, which are growing as our knowledge of the molecular
processes of transcription and translation deepens.

6.1 Background

Bioinformatics is among the areas of major development in the field of ma-
chine learning. The vast amount of data that are constantly being produced,
as well as the high difficulty inherent to the problems in this field, poses a
challenge to the machine learning community. A notably relevant and attrac-
tive topic in bioinformatics is gene structure prediction[9], due to the enor-
mous potential information hidden in the genomes of the different species.

The genome of a living organism is the set of instructions that determine
its biological processes and features. These instructions, collected in DNA
in nucleus of the cells as sequences of nucleotides, are processed to be tran-
scripted in RNA segments, which in great part, are used to synthesize the
proteins. Even though the importance of the played role by non-coding RNA
has been demonstrated recently, the proteins continue being the main ele-
ments for the cell from a functional and structural point of view. Therefore,
to determine the complete set of genes composing the whole genome of an
organism is a crucial task to understand the biological information held in
such sequence. However, it remains many aspects which generate controversy
and convert this task in a not trivial one. Although many Genome Projects
corresponding to several species were completed years ago, the catalogs of
genes have not set a clearly exact number that compose them, quantity that
can be variable in individuals of the same specie, even between DNAs of the
same organism.

At this chapter, genes will be consider as discrete entities linearly located
within chromosome sequences that they have the potential information re-
quired to transcript in RNA. In such sense, gene prediction problem can be
stated as the try of determining of the boundaries of structures of those parts
that are transcripted in RNA in a given genomic DNA target sequence and
it can make reference to the search both protein coding genes as non-coding
RNA genes.

The current approaches (see Section 1.4) have been able to achieve a peak
performance of about a 50% of all the human genes. This is an impressive
results if we considered the state of the problems just a decade back. How-
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ever, the current methods seems to have reached a standstill situation, where
no significant advances have been reported in the last few years. In this con-
text, we are persuaded that evolutionary computation offers the perfect tool
to the necessary significant improvement of gene recognizers. Evolutionary
computation is not only a very powerful heuristic to address very difficult
optimization problems, but also it has the flexibility we need to deal with all
the non-canonical structures of the genes and the new situation that arise
with our increasing knowledge of the biological processes.

However, although evolutionary computation has been used to solve some
aspects of gene recognition, no general approach mainly based on evolution-
ary computation has been developed. In this chapter we show how we can use
evolutionary computation for gene recognition with a performance compara-
ble with gene predictors of much more complexity. Specifically, we present
a novel approach to implement a framework where different sources of evi-
dences for gene recognition from diverse nature are combined. This approach
takes the advantages that evolutionary computation characteristics hold to
develop a robust and open framework to face the problem from a heuristic
point of view. The most likely exonic structure is searched by using the avail-
able information and while maintaining the inherent biological restrictions.

6.1.1 Gene prediction problem

As stated on Section 1.3, gene prediction is the problem of identifying the
biologically functional portions in DNA sequences and assembling these parts
to obtain the complete structure of the gene. Despite this concept mostly
refers to protein-coding regions, it can also be used to make mention to other
functional elements, e.g. ncRNA genes. The approach presented on this work
will address the protein coding gene prediction problem in eukariotic cells,
although the methodology is general enough to be useful in the problem of
non coding gene prediction.

Then, the gene prediction problem can be stated as:
Let be X a DNA sequence, a string over the alphabet A, T, G, C,

X = (x1, x2, ..., xn) ∈ Σ, where Σ = {A,C,G, T} (6.1)

the goal is to correctly label each element of X as belonging to a specific
region. All coding genes begin at the TIS and end at the stop codon. The
coding segments in certain cases, can be interrupted by introns. The bound-
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aries Exon–intron intron–exon boundaries are called the splice sites, donor
and acceptor respectively. Thus, in a correct gene structure:

• The exons do not overlap.

• The gene starts and finishes within an exon.

• An intron must be flanked by two exons.

• A gene can consist of only one exon.

• The complete set of coding exons must be frame compatible.

• Merging coding exons will not generate an in-frame stop codon.

Therefore, it consists of determining which parts of a DNA sequence are
constructing the whole gene from its start site to its stop codon.

As it is the general case in most works, we are only concerned in recog-
nizing the coding part of the gene. However, as it is usual in the literature,
we will use the term gene as synonym of the coding part of the gene. In such
cases when we want to refer to the whole biological gene we will state that
explicitly.

6.2 Evolutionary framework for gene recog-

nition

The approach presented in this paper considers the gene recognition task as
an optimization problem, where, given a DNA sequence, the goal is finding
on it the most likely correct gene structure, by using the different measures
or hints described in the literature that show the difference in characteristics
between the types of regions. Each putative gene structure is modeled as a
series of not overlapped intervals in the sequence. Thus, the problem can be
formalized as a process of identifying a set of intervals in an input sequence,
where the intervals represent putative coding regions, and the set the gene
structure.

Formally, given a genomic DNA sequence seq, we propose to compute a
set of segmentations over it. Each segment of such set can be represented by
a sequence of intervals

(b, e, S, S ′, C) (6.2)
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characterized by start b and end e coordinates in seq, the types of the site S
and S ′ at these positions, and the class C of the interval. The next segment
must begin at e + 1 position downstream from previous one. The signal at
the beginning of any segment needs to be identical to that at the end of the
preceding segment. The set of intervals should covering the whole length of
seq.

However, the huge size of the resulting space of solutions make it not pos-
sible the exhaustive search process. At this point, we consider to use suitable
computational intelligence methods to deal with the task which can provide
great approximations of the results of the problem under consideration and
also work well in situations of incompleteness and uncertainty data. In par-
ticular, the approach presented in this paper combines two basic methods.
First, following the ideas introduced in Chapters 2, 4 and 5, functional site
recognition models are used to localize the functional sites along the genomic
sequence. We have shown that such models, trained using more than two
class, combining several classifiers from several sources of evidences, and the
undersampling method are the best current method for predicting the func-
tional sites of a genomic sequence. By using these models, it possible to
predict the most probable putatives funcional sites in a target DNA frag-
ment, and consequently, to limit the search space. Specifically, to obtain the
site recognition models by a supervised training process, we consider every
actual sites and canonical but false sites that were found in the set as posi-
tive and negative patterns for training respectively. Because we had a class
imbalance problem (ratio 1:1000 between positive and negative patterns), an
random undersampling process was employed to deal with the situation. By
applying theses models with the setting a certain threshold experimentally
determined, a set of most likely start, stop and splice sites is obtained.

In theory, we can determine that each consistent pair of predicted sites
defines a potential region since its boundaries are defined. If only this set
of sites are taken into account to make up an new set of potential exons,
the number of potential complete gene structures decreases immensely. Ad-
ditionally, the biological constraints should be beared in mind, such as the
rules of a correct gene structure previously described, the maximal and min-
imal exon/intron lengths or the maintenance of the ORF, so the reduction is
even bigger.

Once the space of possible solutions is reduced, the search to identify the
most likely gene structure could be carried on. At this point, a second com-
putational intelligence technique was used in order to complete such task.
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Actually, it could be considered the main part of the presented approach
due to it is a framework where many evidences of the presence of genes
are combined. Based on Evolutionary Computation (EC), this framework
works with a population (set) of individuals (solutions to the problem faced)
which are codified following a code similar to the genetic code of plants and
animals. This population of solutions is evolved (modified) over a certain
number of generations (iterations) until the defined stop criterion is fulfilled.
Each individual is assigned a real value that measures its ability to solve the
problem, which is called its fitness. In each iteration new solutions are ob-
tained combining individuals (crossover operator) or randomly modifying one
individual (mutation operator). After applying these two operators a subset
of individuals is selected to survive to the next generation, either by sam-
pling the current individuals with a probability proportional to their fitness,
or by selecting the best ones (elitism). The repeated processes of crossover,
mutation and selection are able to obtain increasingly better solutions for
many problems of artificial intelligence.

The choice of using EC comes from the flexibility and simpleness of the
paradigm and its power for solving complex tasks. The search is carried out
considering many sources of evidence, as the signals that identify gene regions
are subtle and must be combined to accumulate enough information to assure
with a high probability that an exon or an intron are found. However, the
problem is not multi-objective in the usual way. The combination of evidence
is used, but each single source is not useful by itself. Thus, the framework was
designed under the guideline of a standard genetic algorithm, whose fitness
function is a combination of different measures.

At each generation the standard steps of a generational genetic algorithm
are carried out:

• Selection. Selection is performed using binary tournament, to avoid
too much selective pressure, and taking care of maintaining the bal-
ance among the number of exons of the individuals. The subpopula-
tions with different number of exons are kept with the same number
of individuals. Elitism is applied to avoid loosing the best solutions so
far.

• Crossover. Crossover is carried out randomly recombining the exons
of two parents to obtain two offspring. The offspring substitutes their
parents.
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• Mutation. This operator consists of randomly removing, adding or
exchanging an exon. After mutation the individual is checked to assure
its viability.

The algorithm is a standard generational genetic algorithm [68] with the
particularity that we have forced an even distribution of the lengths of the
genes, in terms of number of exons, to avoid a premature convergence to a
suboptimal solution.

When the stop criterion is reached, a fine tuning process is carried out by
performing a local search over the individual with the best fitness. It consists,
first, on evaluating the fitness of such individual incorporating every possible
exon from the exon set suitable to be added. Secondly, on evaluating the
fitness of the individual when each exon that composes it is removed. If a
better solution is found, that new structure is considered as the output of
the process.

Finally, a layer based on the content sensors principles is included. Such
layer considers a binary task in which each exon of the final individual is
evaluated by a SVM model with a numeric kernel. This model uses the
frequency of the codon contained in the exon to be generated.

6.3 Experimental setup

In this section we show the details of the application of our method to human
genome gene prediction.

6.3.1 Human gene prediction

To test the accuracy of our system, we generated predictions for the chro-
mosomes 1, 13 and 21 from August 2014 build of the human genome (NCBI
build 104/ Assembly GRCh38). We used the consensus coding sequence
(CCDS) annotations of such chromosomes as our set of known genes. This
set contained the features specified on Table 6.1. A three-fold cross-validation
procedure was used to estimate how well are the predicts genes not present
in its training set. The chromosome 16 was used to validate several aspects
in the system components. The complementary genomic data besides human
we used on various layers of the system, came from other species: Bos prim-
igenius taurus (BT), Callithrix jacchus (CJ), Canis lupus familiaris (CLF),
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Danio rerio (DR), Equus caballus (EC), Gallus gallus (GG), Macaca mulatta
(MaM), Pan troglodytes (PT) and Sus scrofa (SS).

Size Genes Gene Density (x1000)

Chr 1 226.280.621 bps 2807 genes .012
Chr 13 95.589.878 bps 413 genes .004
Chr 21 35.158.702 bps 312 genes .009

Table 6.1: Features of data used as testing dataset.

6.3.2 Components

As previously stated, the core features of our algorithm can be grouped in
three classes: functional site recognition, the estimation of sequence compo-
sition of a given segment, and the definition of a gene structure by a global
evolutionary framework.

Due to layered architecture, our approach is a very flexible system. One
advantage of this is that separate datasets can be used for training its indi-
vidual parts (e.g., the site detectors). In contrast to less modular systems,
it can thus exploit the available data to a fuller extent. As another benefit,
the architecture readily allows the integration of additional information from
diverse data sources.

Site recognition

To recognize sites, we developed a mechanism according to the principles
described on Chapter 4 and Chapter 5 that computed the set corresponding
putative site found in the target sequence. Combining models based on
considering as many different sources of evidence as possible and as many
different classifiers as needed were used to TIS and stop codon recognition
because it has been shown to perform with superior accuracy compared with
the best methods described in the bibliography. In the case of splice site
recognition, the recognition models were built up by using more than one
SVM classifier, dividing the negative class into four different groups and
trains one classifier for each type of negative class and then, combining their
output in the most efficient way. Each of such site model was used to go
over the sequence and determining as an independent binary classification
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task completed by the models. All detail about model construction set up is
specified on Table 6.2. All models were trained using undersampling method
to address the class-imbalance nature of the datasets.

Content sensors

Content sensors are designed to discriminate sequence segment class by ana-
lyzing the base composition of the segments. In this sense, we have used two
different approaches to use this type of information. First, we have taken the
resultant scores of BLAST alignments to drive the evolutionary algorithm
search. Secondly, we have construct a SVM model with a gaussian kernel to
make the discrimination between coding and non coding segments in base
on the frequencies of the codons that they are formed. With this SVM, we
set up a binary classification problem once the gene structure evolutionary
framework is finished, in order to carry on a fine tune of the given solution.

To avoid the influence of different length distributions of the segments
on the discrimination, both techniques have a mechanism to deal with it.
In the case of the BLAST score, the actual used score is obtained from the
expression:

scoreBLAST (seq) = blastn(seq) ∗ length(blastn(Aligment(seq)))

length(seq)
(6.3)

In the case of SVM, the model results from patterns of 64 dimensions,
where each dimension represents the relative frequency of the corresponding
codon on the region. A standard centering and normalization on the unit
dispersion procedure is applied, i. e., x̃is =

xis−ms

σs
, where x̃is is the value of

the sth coordinate of the ith point after normalization, ms is the mean value
of the sth coordinate, and σ is the standard deviation of the sth coordinate.
The training data came from the predictions made over chromosome 16,
where the codon frequencies of each correctly predicted exons were used as
positive patterns and the codon frequencies of each wrong predicted exons
used as negative patterns.

The BLAST alignments were performed over a database composed by
the genes CDS of the genomes of three organisms: Canis Lupus Familiaris,
Macaca Mulata and Pan Troglodites.
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Gene structure genetic algorithm framework

We performed the described evolutionary processes to establish the global
gene structure framework where the rest of the components take sense. The
evolution to obtain the gene structure of each test sequence was performed
for 1000 generations where populations of 200 individuals were evolved. The
codification of each individual is a string of integers that represents the sites
of the gene, i.e. the boundaries of the exons that compose the gene expressed
by intervals (see form 6.2). The initial population is randomly obtained from
the possible exons set satisfying the biological constraints suitable to a correct
gene structure. For example, the minimum and maximum allowed lengths for
each class of interval are controlled, as well as the ORF of the CDS defined
by the solution is keeping in mind. The initial population is divided into
a number of subpopulations where the individuals are placed depending on
their number of exons. An individual may migrate to another population
when a mutation modifies its length. Some other details, e.g. mutation or
crossover probabilities, are specified under author request.

Fitness function
In this approach we have used a fitness function that is as simple as pos-

sible. It must be borne in mind that our main objective is developing a
system to prove the validity of evolutionary computation as a tool for gene
recognition. We are not creating a system competitive with current gene
recognizers, which make use of very complex measures.

The fitness of the possible solutions represented by the individuals are
calculated evaluating each segment regarding its type and the global CDS
defined by the intervals. In this way, exons and introns are evaluated dif-
ferently. In order to test two type of bias, one of them tends to be prone
to over-predicting and the other to be more restrictive, we have defined two
fitness function. On one hand, the more prone expression was defined as:

Fitness(ind) = scoreBLAST (CDS(ind))+
n∑

i=1

scoreBLAST (exoni) (6.4)

where n is the total number of fragments that ind represents in its genotype
as exons. This fitness function allows as good the inclusion of exons with at
least a bit of significance. Introns are not specifically valued at themselves
in the expression. However, if CDS contains non coding fragments they will
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Figure 6.1: Exon bonus obtained by an exon depending on its ranking.

be penalized by the fact that the expression 6.3 is dependent of the length
of the sequence.

On the other hand, the fitness function that limits the inclusion of coding
regions in the prediction was defined as:

Fitness(ind) = scoreBLAST (CDS(ind))+
n∑

i=1

scoreBLAST (exoni)∗
10

9 + n+ i

(6.5)
where exon is a ordered array that contains the set the exons hold by ind.
The order of such array is determined by the scoreBLAST . This fitness func-
tion give better score to the individual that include exons with a consistent
blastScore, and restricting the inclusion of exons with low significance.

6.3.3 Evaluation

In general, one of the most important difficulties in research on computa-
tional methods is to evaluate their performance in comparison to previously
published works with as little bias as possible. This situation is particularly
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prominent on gene preditors due to even the definition of a gene is still un-
der discussion. Moreover, tiny differences in evaluation procedures can cause
important differences in the result of the comparison between predictor sys-
tems. Finally, although standardized datasets for training and evaluation are
usually used to measure the accuracy, they are often insufficient.

To evaluate the gene predictors performance over a test sequence, the
predicted gene structure is compared with the annotated gene structure on
the target sequence. The accuracy is evaluated at different levels of resolu-
tion. Commonly, these levels are the nucleotide, exon and gene levels. Due to
the imbalance nature of the problem, the two useful measures that can offer
useful views of the performance at each level are Sensitivity and Specificity.
They are based on the concept of True Positive (TP), the total number of
coding elements correctly predicted, True Negative (TN), the number of cor-
rectly predicted non coding elements, False Positive (FP), the number of non
coding elements predicted as coding, and False Negative (FN), the number
of coding elements predicted as non coding. Sensitivity (Sn) is defined as:

Sn =
TP

TP + FN
(6.6)

This measure is relevant if we are interested only in the performance on
the positive class. Specificity (Sp) is defined as:

Sp =
TN

TN + FP
(6.7)

However, neither sensitivity nor specificity by themselves constitute a
measure of global accuracy. A good measure that summarizes both at nu-
cleotide level is the correlation coefficient (CC):

CC =
(TP )(TN)− (FP )(FN)√

(PP )(PN)(AP )(AN)
(6.8)

where PP are the predicted positives, AP the actual positives, PN the
predicted negatives and AN the actual negatives.

At exon level, an exon is considered correctly predicted when both bound-
aries are correctly predicted. At gene level, a gene is considered as correctly
predicted if all its coding exons are precisely identified. A global summary
measure at these level could be the geometric mean of sensitivity and speci-
ficity. The performance at nucleotide level expresses a measure of prediction
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Exon Filter based
Fitness function on Codon Frequency Label

1:1 3 GA:BLAST11+CF
10:9 3 GA:BLAST109+CF
1:1 GA:BLAST11
10:9 GA:BLAST109

Table 6.3: Labels of system configurations.

in terms of content capacity. At exon level, the signal and content prediction
ability is measured. Finally, the gene level is the measure to evaluate the
general performance of the system and to maximize this parameter is the
actual goal.

6.4 Results

The performance of four configurations of the system were tested. The details
of each one of them are summarized on Table 6.3. The label 1:1 denotes the
usage of expression 6.4 as fitness function. On the other hand, 10:9 label
denotes the usage of expression 6.5 for such purpose. The application of the
SVM model as exon filter based on codons frequency at the final stage of the
system is marked by a 3 in the pertinent column.

The results obtained for each configuration in the experimental process
are shown in Table 6.4, Table 6.5, Table 6.6 and Table 6.7. Tables show
the correlation coefficient at nucleotide level, sensitivity and specificity at
nucleotide and at exon levels, and the number of genes completely predicted
for each configuration in predictions made over chromosomes 1, 13 and 21 of
the human genome.

The results at nucleotide level are very promising if we take into account
the fact that our program is using less than two thousand sequences to learn
all its parameters. To get a clearer idea of the performance of our system,
Figure 6.8 shows the results published in Gross et al.[27]. At nucleotide level
our program in competitive, if we consider that CONTRAST is trained using
11 complete genomes.
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GA:BLAST11+CF
Chr1 Chr13 Chr21 Summary

Complete Genes 279 44 41 364
Exon Sn .389 .346 .519 .418
Exon Sp .665 .506 .535 .569
Nuc Sn .512 .618 .633 .587
Nuc Sp .978 .954 .966 .966
Nuc CC .534 .480 .547 .520

Table 6.4: Results of GA:BLAST11+CF configuration for chromosomes 1,
13 and 21 at different levels.

GA:BLAST109+CF
Chr1 Chr13 Chr21 Summary

Complete Genes 268 45 40 353
Exon Sn .354 .403 .460 .406
Exon Sp .816 .603 .725 .715
Nuc Sn .500 .565 .613 .559
Nuc Sp .980 .971 .972 .974
Nuc CC .550 .526 .580 .552

Table 6.5: Results of GA:BLAST109+CF configuration for chromosomes 1,
13 and 21 at different levels.

GA:BLAST11
Chr1 Chr13 Chr21 Summary

Complete Genes 232 42 39 313
Exon Sn .383 .268 .364 .338
Exon Sp .444 .503 .553 .500
Nuc Sn .539 .587 .636 .587
Nuc Sp .879 .844 .886 .870
Nuc CC .442 .407 .464 .438

Table 6.6: Results of GA:BLAST11 configuration for chromosomes 1, 13 and
21 at different levels.
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GA:BLAST109
Chr1 Chr13 Chr21 Summary

Complete Genes 231 41 40 312
Exon Sn .380 .374 .449 .401
Exon Sp .594 .491 .599 .561
Nuc Sn .509 .519 .586 .538
Nuc Sp .895 .845 .885 .875
Nuc CC .476 .445 .507 .476

Table 6.7: Results of GA:BLAST109 configuration for chromosomes 1, 13
and 21 at different levels.

N-SCAN CONTRAST CONTRAST
(mouse) (mouse) (11 informats)

Gene Sn .356 .508 .586
Gene Sp .251 .293 .355
Exon Sn .842 .908 .928
Exon Sp .646 .705 .725
Nucleotide Sn .908 .960 .969
Nucleotide Sp .679 .700 .720

Table 6.8: Results reported in Gross et al.[27].
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6.5 Summary

In this work we have shown that EC can be efficiently used for gene predic-
tion. We achieved performance comparable with the best in the literature
with a complexity far from the commonly used in gene prediction programs,
showing that a prediction program based on EC can be very efficient with a
significantly simpler setup. Once that is proved, all the power of EC tech-
niques can be used to improve the current gene recognition programs.

These promising results and the flexibility of the methodology will pro-
vide a tool that can deal with alternative splicing, non-canonical functional
sites, ignored stop codons, pseudo-genes, and any other issue that need to be
addressed in the search process.

The proposed methodology opens a new field of application of genetic
algorithms to gene structure prediction. Many new sources of evidence can
be added to the system, as well as more sophisticated evolutionary methods.
Additionally, we are also studying a multi-objective approach to the gene
finding problem.





Chapter 7
Conclusions

By means of the work presented in this thesis we have shown the suitability
of state-of-the-art machine learning techniques to address different aspects of
the gene prediction problem. We have used the most powerful soft-computing
and data mining approaches to address the high complexity of the problem.
All tasks that are involved in the gene prediction problem have been subject
to study and improvement. Specifically, to achieve this aim, the following
particular objectives have been reached:

• Advanced techniques of metaheuristics have been used to design a gene
prediction framework. Given the particularities of the problem, the
principles of evolutionary computation have been taken under consid-
eration to develop and implement a gene prediction system that has
been able to contemplate the set of biological restrictions. It has sup-
port a correct gene model that is flexible enough to integrate several
independent information sources, regardless of their origin and nature,
with a search power sufficient to address the difficult and large solution
space. Our results show that with a very simple program we are able
to achieve very good accuracies in the recognition of genes in human
chromosomes. This is the first evolutionary computation approach to
be used for full scale gene prediction.

• We have faced the recognition of the different functional parts of the
gene, such as translation initiation sites, donors, acceptors and stop
codons, a fundamental component of any gene finding system. The

117
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functional site recognition problem has been addressed by using ma-
chine learning techniques with additional biological information and/or
introducing conservative principles from the evolution theory. This step
was particularly divided as follows:

1. The imbalanced nature of the site recognition problem has been
addressed. In genome sequences, the number of negative instances
is much larger than the number of positive instances. Most learn-
ing algorithms expect a somewhat balanced distribution of in-
stances among the different classes and it has been shown that
they suffer from a skewed distribution that is associated with
class imbalance, resulting in negative effects on their performance.
With the studies presented in this work, it has been demonstrated
an advantage of class imbalance methods with respect to the same
methods applied without considering the class imbalance nature
of the problem. The applied methods are also able to improve the
results obtained with the best methods in the literature. Finally,
the results show that simple random undersampling is a very com-
petitive method when compared with more complex ones.

2. We have carried out a study of the relevance of the different fea-
tures, the nucleotides and codons that form the sequences, used
for recognizing functional sites by means of feature selection tech-
niques, and we valued this kind of methods as they are a useful
tool for improving the performance of site recognition. In this
way, in our experiments using sequences from various genomes,
SVM-RFE has shown is ability to, first select the correct window
for learning the classifiers, and them to obtain a subset of features
able to improve the results of all of them.

3. We got a improved performance of the current site recognition
classifiers by introducing principles derived from information the-
ory and biological aspects. In particular, we have proposed the
training of different classifiers with different negative, more ho-
mogeneous, classes and the combination of these classifiers for
improved accuracy. Such method, tested on recognizing both
translation initiation sites and stop codons on the whole human
genome, achieves better accuracy than the best state-of-the-art
method in the rates of both false negatives and false positives.
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4. A methodology for site recognition was proposed by combining
classifiers that considers as many different sources of evidence as
possible from several genomes and as many different classifiers
as needed. Previous studies have shown that the combination
of different sources of evidence is fundamental for the success of
any genomic recognition task. This idea was feasible because the
collection of large and complex genomes from different species
has become routine. Our approach has proven to be a powerful
tool for improving the performance of functional site recognition,
and it is a useful method for combining many sources of evidence
for any recognition task in Bioinformatics. The results also show
that the common approach of heuristically choosing the species to
be used as source of evidence can be improved because the best
combinations of genomes for recognition were those not usually
selected. In fact, we have shown that species not usually used for
site prediction are useful for improving the overall performance of
the human genome gene prediction.
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optimization metaheuristic: Basis, models and new trends. Mathware
& Soft Computing, 9:141–175, 2002.

[15] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for
learning with symbolic features. Machine Learning, 10(1):57–78, 1993.

[16] S. Das and P. N. Suganthan. Differential evolution: A survey of the
state-of-the-art. IEEE Transactions on Evolutionary Computation,
15:4–31, 2011.

[17] S. Degroeve, Y. Saeys, B. D. Baets, P. Rouzé, and Y. V. de Peer.
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[28] Guigó R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud F,
Antonarakis S, Ashburner M, Bajic VB, Birney E, Castelo R, Eyras
E, Ucla C, Gingeras TR, Harrow J, Hubbard T, Lewis SE, Reese
MG. EGASP: the human ENCODE Genome Annotation Assessment
Project. Genome Biol. 2006;7 Suppl 1:S2.1-31. 2006.



124 REFERENCES

[29] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning,
46(1-3):389–422, March 2002.

[30] Harrow J, Nagy A, Reymond A, Alioto T, Patthy L, Antonarakis
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[58] G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: Recognition of al-
ternative spliced exons in c. elegans. Bioinformatics, 21(Suppl 1):i369–
i377, 2005.

[59] Y. Saeys, T. Abeel, S. Degroeve, and Y. V. de Peer. Translation ini-
tiation site prediction on a genomic scale: beauty in simplicity. Bioin-
formatics, 23:418–423, 2007.

[60] S. L. Salzberg. A method for identifying splice sites and translational
start sites in eukaryotic mrna. Computational Applied Bioscience,
13:365–376, 1997.



REFERENCES 127

[61] C. R .Sanna, W. Li and L. Zhang. Overlapping genes in the human
and mouse genomes. BMC Genomics 2008, 9:169.

[62] B. Schölkopf, A. Smola, R. Williamson, and P. L. Bartlett. New support
vector algorithms. Neural Computation, 12:1207–1245, 2000.

[63] Sh.-J., A. D. Mathew, Y. Chen, L.-F. X. L. Ma, and J. Lee. Empirical
analysis of support vector machine ensemble classifiers. Expert Systems
with Applications, 36(3):6466–6476, 2009.

[64] G. Shakhnarovich, T. Darrell, and P. Indyk, editors. earest-Neighbor
Methods in Learning and Vision: Theory and Practice. Neural Infor-
mation Processing. MIT Press, 2006.

[65] S. Sonnenburg, G. Schweikert, P. Philips, J. Behr, and G. Rätsch.
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