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Abstract—In this paper we present a procedure to calculate the dis-
crete modes propagated with Crank—Nicolson FDTD in metallic waveg-
uides. This procedure enables the correct excitation of this kind of
waveguides at any resolution. The problem is reduced to solving an
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eigenvalue equation, which is performed, both in a closed form, for the
usual rectangular waveguide, and numerically in the most general case,
validated here with a ridged rectangular waveguide.

Key Terms: Crank—Nicolson, FDTD methods, Waveguide ezx-
citation, Figenvalues/eigenfunctions
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1. INTRODUCTION

The Finite Difference Time Domain (FDTD) [1] method is one
of the most widely used numerical techniques in computational
electrodynamics. However, for many problems of interest it may
become computationally inefficient, due to the upper limit for the
time step imposed by the Courant—Friedrich-Lewy (CFL) stability
condition [2]. There is a growing interest in overcoming this limitation
by employing unconditionally stable implicit FDTD methods, for
which time and space steps can be independently chosen. The
unconditionally stable alternating direction implicit (ADI-FDTD)
method [3,4] and some of his variations (Locally One Dimensional [5,6],
split—step [7], etc. ) have received a lot of attraction recently. These
approximations suffer up to some extent of numerical errors, which
may become severe for some practical applications [8,9].

An alternative to ADI-FDTD based methods, is the Crank—
Nicolson FDTD (CN-FDTD) method, for being unconditionally stable
beyond the CFL limit, and not presenting the numerical errors found
in these [8]. As in the classical FDTD, CN-FDTD replaces the time
and space derivatives by second order centered differences, but unlike
FDTD, the fields affected by the curl operators are also averaged in
time. The resulting scheme is an unconditionally stable fully implicit
marching—on—in—time algorithm.

Recently, both iterative preconditioned /non—preconditioned and
direct solving of CN-FDTD [10-16] are paving the way to its
development, and it is becoming a promising alternative to the classical
Yee-FDTD method, which is worth to be extended to include all the
features already developed for the classical FDTD method.

Two important problems, which have received a broad attention
in literature, arise in the simulation of multimode waveguides by time
domain methods: on one hand, the correct excitation of the incident
modes at the feeding port and, on the other hand, their subtraction at
the end of the guide [17-27].

In this paper, we apply some of these techniques to characterize
the discrete modes (also known as mode templates [18]) propagating
on arbitrarily—shaped conducting waveguides solved by the Crank-—
Nicolson Finite Difference Time Domain (CN-FDTD) method. For
this purpose we find the solution of the eigenvalue problem numerically,
for the general case, and analytically, for rectangular waveguides. The
numerical procedure is validated here with a simple ridged rectangular
waveguide.
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2. DISCRETE PROBLEM

Let us assume a conducting waveguide with arbitrary cross section,
filled up with a lossless homogeneous isotropic medium T with electrical
parameters € and p, and consider its axis in the Z direction. The modes
propagating in the waveguide must satisfy Maxwell’s curl equations,
together with the boundary conditions at the metallic walls: null
tangential components of the E field, and null normal components
of the H field.

In order to solve this problem with Crank-Nicolson FDTD (CN-
FDTD) an average-in—time operator is applied to the fields affected
by the space derivatives in Maxwell’s curl equations, and all the
derivative operators are replaced by the centered difference operator.
This results in an unconditionally stable scheme [12], which permits to
solve the fields located in the usual Yee—cube spatial disposition with
an implicit-in—space marching—on—in—time algorithm

flu+8%..)— flu—5,...)

Duf(u,...)= Au (1)
At _ At
Ptf(t,...):f(t+2’”');—f(t 5L, -) @)

Placing the field components distributed in the usual Yee’s
cube [1], and using the usual FDTD notation (¢"(i,j,k) =~
Y(iAx, jAy, kAz,nAt)) we can write CN-FDTD as

1

1 1 1
eDEy 2(iv1gk) = P <DyH§+2(i+;,j,k)—DZH§+2(i+;,j,k)> (3)

1

1 1 1
eDtE;]JrQ (ij+ik) = P <DZH;+2 (ij+ik) — DxH:JrQ (z‘,j+;,k)>

1 1 1
eDtE?+2(i,j,k+§) = P (DIHTQ(M,H;)—DyH§+2(i,j,k+;))
D Hy 2 (ij+lkel) = Py (DzE;l 2(ig+dk+d) — DyEL 2 (ij+Lk+d)

nti nt i n+

n+i n+i nt1
uDH, 2 (i+3j+ik) = Py <DyEx 2(i+3,5+1 k) — Dy By 2 (i+lj+ik)

T Although the procedure is shown for simplicity for lossless media, it can be easily
formulated for lossy media.
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Following the way employed in the non—discrete case, we
will search for discrete solutions of (3) with the general form
U (Mg, my,my) = Wo(my,my) e IPam=BzeiomiAl  with B being the
propagation constant along the waveguide, (m,,m,, m,) integer/semi-
integer multiples of the space step, m; integer/semi-integer multiple
of the time-step, and W¥,(m,, m,) the transversal profile amplitude.
For these functions, D,, D; and P; have the following eigenvalues
respectively

sin(8, 42 sin(w4t At

a, = —2j(zgzz) , ap = 2j(At2) , My = cos(wT) (4)
The general solution of equations (3), as in the non-discrete case, can
be divided into two basic mode sets: Transverse Magnetic (TM), for
which H, = 0, and Transverse Electric (TE), for which £, = 0. It
can be seen that for both TM and TE modes, it is sufficient to obtain
respectively F,. and H,,, to calculate the remaining components. For
instance, for the TM polarization (3) is equivalent to

1
EO.’E@"’%J‘) = E (az,Da:Eoz(i'f‘%vj)) (53)
1
Eoy(@j‘*‘%) = ? (aszEoz(i7j+%)) (5b)
1
Hox(i»jJF%) = ? (th':DyEoz(ivj+%)) (5C)
-1
Hoy(i+%:j) = ﬁ (Vtgproz(i+%:j)) (5d)
(DD + DyDy + 17) Eos(ij) = 0 (5e)
with the dispersion relationship
ta at
K? = al — pevy® VtZ:ZZan(:tz) (6)

If we place the staircased conducting walls along the planes
of Yee’s cube containing the E, component (Fig. 1), the boundary
conditions at the planes parallel to XZ are

(CL) Eoz(iJO) =0, (b) Eo:r(iJF%’jO) = 0, (C) Hoy(i+%vj0) =0 (7)
and for the planes parallel to YZ
(CL) E,.(io.j) = 0, (b) Eoy(i07j+%) =0, (C) Hoz(ioaj"‘%) =0 (8)

It can easily be deduced from Egs. (5), that (7a) and (8a) are
enough to satisfy the remaining boundary conditions (7b-c) and (8b-c)
automatically.
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Figure 1. Arrangement of the fields at an edge of the guide

Analogously, the eigenvalue equation for the TE polarization is
(DeDy + DyDy + K7) Hou(i+1,54+5) =0 (9)

Placing the waveguide walls in the same manner as in the TM case,
the boundary conditions reduce to

DyHoz(H‘%ajO) =0 (XZ)> DzHoz(i07j+%) =0 (YZ) (10)

These eigenvalue problems can be solved by numerical techniques,
although an analytical solution can be sought in some simple cases.
For instance, for a rectangular waveguide, a closed—form solution is
shown in Table I. It should be noticed that the non—discrete solution is
obtained from the discrete one by replacing the space discrete variables
in Table I by the continuous ones, and b; by w, b, by 2=, b, by 4, and
b. by 8,4, which are their respective limits when all the increments tend

. . . . . A
to 0. The FDTD solution is totally similar just replacing tan(w{) by

. At .
sin(w ") wherever it appears.

To obtain a discrete numerical solution, for instance in the TE
case, we first arrange the values of H,,(i+3,j+1) for all the discretized
points on the waveguide cross section on a single column vector
(f, and then, replacing the transverse discrete Laplacian operator
D,D,+D,D, by (1), equations (9) and (10) can be explicitly written in
matrix form as M® = —x2®. Since M turns out to be a sparse matrix
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Table 1. Closed form of the discrete TE and TM modes for a
rectangular waveguide of size a X b

] TM (p, ¢ non—null integers, E, arbitrary) \
Eow(i+3.5) = —j= Lb.b.E,cos (m(z+ )Am)sin( 7rjAy)
Eoy(ij+3) = —j= Lb, by E,sin (p;zAx)cos( A Chs )Ay)

FE,.(ij) = Eosm(—zA:r)sm jAy)
Ho. (i, g+ =17 thb FE,sin (—zAx)cos( (5+ )Ay)
Hoy(i+3.5) = = 5bitbs Epcos ( (i+3 )Aac)sm( ; jAy)
Hy,(i+3.5+3) =0

] TE (p, ¢ non simultaneous null integers, H, arbitrary) \

Eoz(i+ij) =7 btb H,cos (’m (i+1 )A:L‘)sin( ”jAy)
Eoy(ij+i) = —] £ b,b, H,ysin (—ZA:U)COS( (+ )Ay)
Eo.(ij) =0

B

Hoy(ij+3) = jHQb by Hosin (ZiAx)cos (% (j+1)Ay)

Hoy(i+3.5) = 2b by Hocos (BX (i+1)Ax)si

Hon(i3153) = Hocon (B2) Avfeos (20 1)50)
A .

2sin( 2% AJI")

_ b 2 _
bw_ Az ) by_ Ay ) bz_ Az
2tan(w%)
U —Y
sin2(BX Az sin? (4= &Y
W = AT AT = 0 e

2 - sin?(EE4E) | sin? (47 5Y)
Weutoff = A resin (Ax/cAt)Q T Eyjcan?

(no more than 5 non—null elements per line), this eigenvalue problem
can be solved using well known linear algebra numerical techniques.

3. IMPLEMENTATION INTO CN-FDTD

The procedure described in [14] has been followed for the
implementation of the CN-FDTD equations (3). An iterative Krylov—
based solution, employing the BiCGStab solver has been applied.
The discrete mode has been fed into the computational space with
a total-field /scattered—field formulation implemented by means of an
equivalent set of surface currents on two Huygens’ planes [2]: one to
inject the propagating mode at a plane near one end of waveguide, and
the other one close to the other end to suppress it. Simple Mur first
order boundary conditions are placed at every end of the waveguide.
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4. RESULTS

Using the IMSL eigenvalue routines, we have obtained the TE
numerical discrete modes supported by an airfilled ridged rectangular
waveguide (Fig. 2(middle)): a total number of 937 modes can
propagate in the waveguide f. In order to test the accuracy
of the method, we have excited at 3.30 GHz the 9* TE mode,
employing for the simulation Az = Ay = 333.3mm, Az = 9.0
mm, At = 29.70 ps. This mode, which has a numerical cutoff
frequency of 33.30 MHz, propagates along the Z axis with a low
resolution (~10 cells/wavelength), and it is poorly sampled in time (~10
samples/period). Fig. 2 shows the H,, pattern of this mode, together
with the propagation of E, along Z at y = 38 Ay, after 1200 time steps.
The null field region beginning at z = 600Az (the mode is excited at
z = 400Az) corresponds to the scattered field zone. Less than 0.01%
of the energy escapes from the total field region, which proves the
accuracy of the predicted mode propagation. It bears noting that the
numerical modes (eigenvectors) found for FDTD are the same as those
of CN-FDTD since the space operators of both methods coincide.
However the cut—off frequencies (eigenvalues) differ (sinus functions
in FDTD and tangent functions in CN-FDTD), and the numerical
dispersion also differs. Similar relative deviations between FDTD and
CN-FDTD to the ones commented in the next example for the square
waveguide are found (see [9] for more details on the dispersion topic).

We have also excited a 10 mm side airfilled square waveguide,
with a discrete TM1; mode from Table I at 31 GHz. A coarse space—
time sampling has been taken Az = Ay = 1.667 mm, Az = 1.581 mm,
At = 3.12 ps, which results in ~8 cells/wavelength in the propagation
direction, and ~10 samples/period. The CN-FDTD cut—off frequency
of this mode is f, = 20.67GHz § . Fig. 3 shows the E, profile at
(r = 3Ax,y = 3Ay), from z = 80Az to z = 120Az (the mode is
excited at z = 0), after 300 time steps. Perfect agreement is shown
between the discrete mode propagated with CN-FDTD (dashed line)
and its predicted propagation (+’ symbols), while phase differences
can be appreciated between the non—discrete mode (sampled in time
and in space) propagated with CN-FDTD (continuous line) and its

predicted evolution (’¢’ symbols) |

* The actual number of discrete modes is limited by the space discretization.

§ Just for comparison: the non—discrete cut—off frequency is f. = 21.20GHz while the Yee—
FDTD discrete one is 21.11 GHz. The FDTD discrete solution is closer to the non—discrete
one, as expected, since the dispersion of CN-FDTD is higher than that of the classical Yee
FDTD [9].

I This behavior has also been discussed in [28]
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Figure 2. H,, pattern of the 9" TE mode for a ridged rectangular
waveguide (top). Geometry of this guide (middle). Propagation along
the Z-axis of the E, component of the 9" mode, at y = 38 cells
(bottom). All dimensions are in cells (Az = Ay = 333.3 mm, Az = 9.0
mm, At = 29.70 ps)

5. CONCLUSIONS

In this paper we have presented a procedure to obtain the discrete
numerical modes propagated by the CN-FDTD method in arbitrarily—
shaped metallic waveguides. We have reduced the problem to the
solution of an eigenvalue problem, which has been addressed in the
general case by numerical techniques, and in an analytical manner for
rectangular waveguides.
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Figure 3. Propagation along the Z—axis of the F, component of the
TM;i; mode, at (z = 3Az,y = 3Ay), in a 6 cell square waveguide.
Comparison between different excitations. (Azx = Ay = 1.667 mm,
Az = 1.581 mm, At = 3.12 ps).
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